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A bstract

O ne-loop corrections to kink m asses in a fam ily of (1+ 1)-din ensional eld theoretical
m odels w ith two real scalar elds are com puted. A generalized DHN form ula applicable to
potentials w ith and w ithout re ection is obtained. It is shown how halflbound states arising
In the gpectrum of the second order uctuation operator for one-com ponent topologicalkinks
and the vacuum play a centralrdle in the com putation of the kink C asim ir energy. T he issue
ofw hether or not the kink degeneracy exhibited by this fam ity ofm odels at the classical level
survives one-loop quantum uctuations is addressed .

Introduction

arXiv:hep-th/0304125v3 7 Jan 2004

BPS states arising both In extended supersym m etric gauge theories, [1], and string/M theory, [2],
play a crucialdle in the understanding of dualities between the di erent regin es of these system s.
Tn this fram ework, dom ain walls appear as extended states in N=1 SUSY gluodynam ics and the
W ess7Zum ino m odel, [3]. Tt is desirable to com pute the one-oop quantum corrections, M , to
the m asses of these new entities. T he huge num ber of elds involved in these theories, however,
renders the task in possble. In a search for inspiration about this problem , study of quantum
corrections to the m asses of (1+ 1)-din ensional real solitons has been reignited In recent years,
both in a supersym m etric and a purely bosonic fram ework.

This topic was st addressed in the classic papers of D ashen, Hasslacher and Neveu, [4],
and Faddeev and K orepin, [5] . The authors treated the purely bosonic [ ﬁ and sineG ordon
m odels for a single real scalar eld. In the rstm odel, the quantum correction to the kink m ass

was established tobe M = ~m Eé_% 1935— . The regponse given in those papers is currently
acoepted to be correct. In the eighties, the supersym m etric extension of these theories was studied
w dely in references such as [6,7,8,9,10]. Them ain concems w ere the quantum correction, M ,

to the SUSY kink m ass, and whether or not the quantum Bogom olny bound was saturated. By
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the end of the past century consensus about both questions was reached, m ainly based on the
papers of theM innesota, Stony B rook-V ienna and M IT .groups: [11], [12]and [13]. In [11]usihg
pow erflil supersym m etric techniques a new anom aly in the central charge was found, follow ing a
con ecture in the second paperof [12]. In [12]a profound analysis of the bosonic issue wasachieved.
T hese authors carefully distinguished between the outocom es obtained using two di erent kinds
of cuto regularization procedure. They found that only the regularization m ethod based on a
subtle cuto in the number of uctuation m odes ts in sn oothly with supersym m etry, precisely
the m ethod that leads to the sam e result as in the com putation perform ed by DHN /FK for the
bosonic uctuations. W e shall re ne the m ode num ber reqularization procedure in a way suitable
to be applied also to potentials with re ection, carefully approaching the problem from the 1D
Levinson theoram as developed in Reference [14]. D irichlet boundary conditions w i1l be in posed
to m anage a discrete gpectrum ; a cuto iIn the energy will be considered, and a nite num ber
of m odes near thresholdd m ust be subtracted in such a way that the num bers of m odes counted
around the kink and the vacuum are dentical; after this, the continuous 1im it is taken.

G raham and Ja e [13]also obtained this response, using techniques based on continuous phase
shift m ethods. M oreover, they extended the analysis to the trivial sector in order to com pute the
one-Joop correction to the static energy of one (far separated ) kink-antikink con guration !. Here
the authors also notice one in portant point: halfloound states in the spectrum of the second
order uctuation operator around the static con guration require a sharper treatm ent. W eak

uctuationsaround the ( *), and sihe-G ordon kinks are govemed by Schrodinger operatorswhich
nhvolre potentialsw ithout re ection. T hus, the kink zeropoint energy receives a contribution from
halflound states that is exactly cancelled by the subtraction of dentical contributions from half-
bound states to the vacuum Casin ir energy. In general, this is no longer so and extrem e care is
neaded iIn dealing w ith the non-pairing of halfbound states to the kink and the vacuum sectors.

In both [15]and [16], generalized zeta function and heat kemel reqularization m ethods have
been used to com pute quantum corrections to the mass of SUSY (the rst paper) and bosonic
(the second one) one<om ponent kinks. This Jatter procedure directly uses nform ation com ing
from the potential —no nead to unveil the spectrum - of the Schodinger operator and one skips
the subtleties posad by half-bound states. In fact, the heat kemel high—tem perature expansion,
see [17], allowed us to express the one-loop correction to the ( *),~kink m ass as an asym ptotic
series w ith a relative error of the 0.07 % .

Them ain m erit of this approach is the breaking of the num ber of eld com ponents barrier. So
far, only kinksw ith a single non-null com ponent w ere susceptible of being treated sem i<lassically;
the di culty lies in the study of the spectrum of k  k non-diagonal m atrices of di erential
operators. In Reference [18], however, the one-Joop correction to the m ass of two-com ponent
topological kinks in the celedbrated M STB m odel -[19] —has been given as an asym ptotic series,
starting from the heat kemel expansion.

In order to be com plte we also m ention that there are other two interesting regularization
m ethods to calculate corrections to kink m asses. First, see [20], a localm ode regularization —the
cuto re ecting the spacialvariation of the kink —conceptually in proves them ode num berm ethod
and leads to the correct answer. Second, see [21], the din ensional regularization procedure is the
appropriate m ethod and has been successfilly used when the kink is em bedded in a dom ain wall.

In this paper we shall discuss a m odel encom passing two real scalar elds proposed by Bazeia

!The kink-antikink system was rst correctly analyzed by Schonfeld [9].



and cow orkers, see [22], w here the next level of com plexity in com puting quantum corrections to
kink m asses arises. T hem ain novelty w ith respect to theM ST B m odel is the existence of classically
degenerate kink fam ilies, see [23] and [24]. The in portance of the m odel lies n the fact that
Shifm an and Voloshin [23]have shown this system to be the dim ensional reduction of a generalized
W ess7Zum ino m odelw ith two chiral super- elds. T hus, In this fram ework the kink solutions tum
Into BPS dom ain walls of a e ective supersym m etric theory. An explicit dem onstration of the
stability of som e of these solutions is presented in ref. [25] using techniques of SUSY quantum
m echanics. M ore recently, see [26], it has been shown how to m odify the supersym m etric version
of thism odel to m ake the system com patible w ith local supersym m etry. T he kinks of the (1+ 1)-
din ensional m odel becom e exact extended solutions of N = 1 (3+ 1)-dim ensional supergravity
w ith the local superpotential proposad by Eto-Sakai. Study of the e ective dynam ics arising from
quantum uctuations around these kinks is of great interest because they becom e exact dom ain
walls (wodbranes) In N = 1 supergravity.

W hether ornot the BP S kinks ram ain degenerate in m ass -or the BP S dom ain walls in surface
tension—after taking into account one-loop quantum corrections is the m ain concem of this inves—
tigation. A clue to answering this question is o ered in our paper [27]. T he low -energy dynam ics
of BP S kinks is shown to be determm ined by geodesic m otion in the kink m oduli space for a special
value of the coupling constant. Bohr-Som m erfeld quantization of this adiabatic evolution am ounts
to treating the LaplaceB eltram i operator of the m etric inherited from the kink kinetic energy as
the Ham iltonian. The kink m oduli space is the halfplane and the m etric is at: T herefore, the
Ham iltonian is the ordinary Laplacian for an appropriate choice of coordinates and it seam s that
the quantum e ects do not lift the kink degeneracy, at least in this quantum adiabatic lin it.
W e shall show , however, that these expectations are not ful lled at the sam i<lassical level and
repulsive forces between separate lum ps arise.

T he organization of the paper is as follow s: In Section x2 we Introduce the m odel and brie vy
describe the structure of the con guration space and the rich variety of kinks. Section x3 is
devoted to com puting the quantum correction, M , to the onecom ponent topologicalkink TK 1
by m eansofa generalized D HN procedure applicable to potentialsw ith and w ithout re ection. T he
contrlbution of the halfbound states as a function of the coupling constant is carefiilly analyzed.
Tn this Section the one-loop corrections to them ass of the TK 1 kinks are also estim ated, using the
zeta function regularization m ethod and the high-tem perature expansion. Com parison between
the approxin ate and exact results for M (TK 1) serves as an evaluation of the error. Starting
from num erical solutions, Section x4 o ers a com putation of the sam iclassical m asses for the
whole BP S kink variety at three specialvalues of the coupling constant. If = 25and = 15we

nd a rapid convergence of the asym ptotic series, although violation of the classical degeneracy
is suggested by our results. T he anom alous kink degeneracy is analyzed in connection w ith the
existence of BPS link kinks. For = 2, the system becom es equivalent to two decoupled [ }
m odels and the num erical m ethod provides results in agreem ent w ith our previous work in [16]:
In this case the kink degeneracy still holds at the one-loop level. W e also com pute in this Section
the one-loop corrections to the m ass of the BP S link kinks for the value = 2 of the coupling—
constant in order to easily show that the kink sum ruleshold at the sam i<lassical level. Tn Section
x5 the dependence of the one-loop kink m ass form ula on the param eter ¢ is studied from a general
point of view , relying once again on asym ptotic m ethods (the high—tem perature expansion). T he
m odelalso hasnon-BP S kinks. Section x6 attem pts to elucidate why non-BP S kinks arise In som e
regin es of the coupling constant. In particular, study of stability via index theorem s show s that



fam ilies of this kind of kinks exist for som e critical values of the coupling constant. Finally, an
Appendix iso ered explaining the generalized DHN form ula,derived using the cuto in them ode
num ber regularization procedure but also valid for potentials w ith re ection.

2 The m odel: classical kink degeneracy

W e shall focus on the (1+ 1)-din ensional two-com ponent scalar eld m odel introduced in [22].
T his system arose as the bosonic sector of a supersym m etric theory w ith superpotential:

Wo(~)= ;oa

1 1

3 1 5 12

Here~(y )= 1(y e+ 2(y )& isatwo—<om ponentreal-scalar ed;y , = 0;1 ,arecoordinates

in theR!! spacetine,and e, ,a= 1;2 ,form an orthonom albasis in the the R ? intemal space :

e, = ..Wealochoosethemetricg = diag(l; 1)inR'" and a system ofunitswherec= 1
3
2

but keep ~ explicit. T he coupling constants thus have the follow ing units: [ 1= [ ]= M 7L
and [a2]= M L. The din ension of the scalar el is: [~]= M 2L: .
T he dynam ics is govemed by the action:
Z
Sl~1= dy }@ ~ @~ }fw il : 1)
2 2
Introducing din ensionless elds, variables and param eters ~ = 2a~,y' = ai,yO = ~,and = -,

we obtain expressions which are sin pler to handle.

For static con gurations and the din ensionless superpotentialW (7) = 2 % f % 1+ 35 15
the energy fuinctional reads:
E[ 17 2]= 4§ El1; 2] "
Z 2 2
1 d, 1 d, 1 5 5 2 5 o o
E[l 1= dx - — + = — + = 4 7+ 2 1 +2 : 2
. 2 dx 2 dx g ! ? b2 ©)

It is a function of the unique classically relevant coupling constant  and also depends on the
din ensionless potentialtem U ( 17 2)= 24 2+2 2 1Y+ 22 2 2,

T here are four classical vacuum con gurations in this system , organized in two orbits of the
Intemal parity symm etry group G = Z, 7, generated by the transform ations 1 : ( 1; ») !

( 17 20and , :( 15 2) ! (1; 2). Thevacuum m oduli space, however, includes two points
if > 0:
G Gt M . .
M = o [ o M = — = pont[ point
H;'  H, G
~ . —_— 1 . ~ . e 1
v, (X/t)_ Eel ’ v, (Xrt)_ p?@
Here, H I(a) is the sub-group of G ; that leaves the 7, point mvariant. If < 0, the sz is lost

and the vacuum m oduli space has only one point in this regim e.
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Figure 1: The potental U ( 1; ») or < 0 (keft) and for > 0 (right)

W e shall restrict ourselves here to the > 0 regim e, because a richer m anifold of kinks arises
In this range. The space of nite energy con gurations C is the union of sixteen disconnected
topological sectors In this case. Ifa;b= 1;2 we have that:

C=1tap Cop tap Cuy
w ith
n o
Capy = =L ;0=", ;7 1;9="
n O

C = =0 ="y 70 1= 7

(ab) Va v

b
IntheC_, non-topological sectors a sym m etry breaking scenario develops: the original G 1 sym —

m etry of the action (1) isbroken to theH ;| @) sub-group by the choice of j°, iasthe \zero-particle"
state in the Clam) SSCHOL.

The an all uctuation solutions ~, (t;x)= ", + (t;x) of the eld egquations

a
@? @?
— — 7= f£U
e @x?
around the vacuum pointsV, andV, can be respectively expanded in temn s of the eigenfunctions
of the H essian operators:

+ 4 0 + 2 0
dx? g2 2 V2 = dx2 g2
0 o7t 0 ozt 2

Vl — dx

T herefore, the one—partjc]e stateshave regpectively (din ensionless) m asses: m f(\/‘1 )= 4;m %(\/‘1 )=
andm iV, )=m3(V, )= 2
T he m ost In portant feature of this systam is that there exists a degenerate in energy fam ily
of BPS kinks in the Caa) topological sectors for any value of > 0. BPS kinks are nite energy
solutions of the rst-order system of di erential equations:
d @w 1 d @w
¢ - 22+ 2 = —Z- == 2 ., : (3)
dx Q@ 2 dx @,
In both References [23] and [24] it has been shown that the BPS kinks belonging to the C(l 1)
topological sectors are in one-to-one correspondence w ith the curves in the R? intemal space:



2_1+C. 2 . (4)
20 )2 a2 i

wherec?2 ( 1 ;) isan integration constant and there isa criticalvalue & = %—(2 )y

=1,
o 1
: §_+]Og]2]=z ;

H
Q

\)

c2(1;¢),= 1+ 2.

One sees in Figure 1 (right) that therearetwomaxima of U ( ;; ,) with the sam e height. K Ink
solutions which go from one maxinum to the other depend on a param eter ¢ which m easures
w hether the particle m oves through the bottom of the valley, or m ore along the sides on the curve
(4). T here is a critical value of c w here the particle m oves as high as possible; increasing ¢ beyond
this critical value the particle crosses the m ountain and fallso to the other side.

A 11the BP S kinks belonging to these fam ilies have the sam e (din ensionless) energy: E(BPS) =
W (NVl ) W (NVl )j= % . W e shalldenote these kinks as TK 2(c) because from (4) one sees that
the two com ponents of the eld are non—zero for generic values of c; also, all the kink orbits in (4)
start and end In vacua belonging to the sam e G ;-orbit, and are accordingly classi ed as \loop"
kinks.

P lugging (4) Into (3) one reduces the solution of the (3) ODE systam to a sihgl quadrature.
T he explicit integration can be perform ed analytically only for certain special values of , see
R eferences 23], [24].

Exactly forc= 1 , onecom ponent topological kinks — therefore term ed as TK 1- ardse. If
c= 1 ,Prany 2 [0;1 ),weobtain thecurve , = 0 1n (4) and nd the BPS kinks in the
C,, sectors of con guration space:

~

1
rx1(x)= (1) 5tanh(x+ ale 2 L=l,

a 2 R is another integration constant that xes the center of the kink.

3 O ne-loop correction to them ass ofone-com ponent topo-—
logical kinks

In this Section we shall com pute the oneJdoop quantum correction to the classicalmass of TK 1
kinks. Because the m atrix di erential operator goveming second-order uctuations around these
kinks is diagonal,

C;“—}(22+4 6 s=ch? x 0
K = 42 2 2
0 = + ( + 1)sech"x

dx?

(5)

this task can be perform ed using both the DHN form ula and the asym ptotic m ethod. Note also
that the one-loop correction to the TK 1 kink m ass is the sum of two contridbutions: (1) M (K 11)
is the one-loop correction due to the the tangent uctuations to the TK 1 kink govemed by K 17 .



(2) M (K 53) collects the contributions to the quantum corrections com ing from the orthogonal
uctuations to the TK 1 ruled by K 5, . T herefore, we w rite

M (TK1l)= M K 1)+ M K 2)

3.1 One-loop correction to the TK 1 kink mass: DHN form ula

In (5),both K1; and K, are particular cases of Schrodinger operators of Posch-Teller type
d2 Up
— +

dx? % cosh?x

w hose elgenvalues and eigenfiinctions are known [28]. Since K ,, isa Schrodinger operator involving
potential term s with re ection ( 2 N ) and without re ection ( 2 N ), we use the generalized
DHN form ula for the ~—correction to the m ass of one-com ponent topological kinks:

va . 7 ) #
~m Va 1 @ (Cl)p 5 o, (x)1
M K = — Lo+ 5! — + — lo! 2+ v2 E—
( aa) 2 - 1-1 2 . q @q q a 2
i= . 7 )
., (x)1i dk
+  ~m P ; (6)
8 0 k? + V§
w here ) )
U V)
Vi = 2 ’ Vaa (x)= Vi 2 7
a ~ a ~

and h i stands for the expectation valie: MY, (x)i= Rll dxV_. (x).

Fomula (6) has been derived in the A ppendix collecting previous work in this topic. W e set
asm = a the param eter with dinension of L * that willbe used to x the realdin ension of
each observable In the sy . Note that as a consequence of our choice of din ensionless variables
there is a global factor of 2 in ormula (6) with respect to the analogous form ula used In [16].
W e now pause to explain the origin of the di erent tem s:

1. The rst line accounts for the zeropoint energy of the quantum kink m easured w ith respect
to the zeropoint energy of the vacuum . E igenstates from both the discrete and continuous
goectrum of K 5, contrdbute. The highest bound state contrlbutes w ith a weight s;, which
is 1 if !'; does not coincide w ith the bottom of the continuous spectrum (threshod). If !,
is buried at threshold, the corresponding eigenstate is a halflbound state and s; = % . To
deduce form ula (6) the density of states In the continuous spectrum is given in temm s of the
phase shifts ,(g) of the scattering waves through the potential: va2 Vaa (X). A cuto iIn
the num ber of m odes (see A ppendix for a com plete derivation of form ula (6) including the
case of potentials w ith non—zero re ection coe cients) has been usad for renom alizing the
zero point energy. N ote also that the subtraction of "78 am ounts to taking into account the
contribution of the halfloound state in the vacuum to the vacuum zero point energy (see

[13]and the A ppendix).

2. The second Iine takes into account the contribution of them ass renomm alization counter-term
to the Casin ir energies of both the kink and the vacuum .



3.1.1 Tangent uctuations: M (K 11)

Spec(K ;1) Includes two bound states, one halfbound state (in the above notation 1= 2), and
scattering eigenfunctions characterized by the phase shifts:

3q

= Zarctan
1 (@) 7

T herefore:
Spec(Ku)= flo=0g[ fl1=3g[ flo= 49, _: [ o + 49px

Substituting all this inform ation into formula (6) we obtain:

— Z b —-— Z Z
MR T oS arA@ ) 3w Ak e
= — P — X
1 2 2 O pisgr 4 2 . x+a &
13
2 3
p

E xcept for a global factor 2, the contrbution of the tangent uctuations is the sam e as the
contrbution of all the uctuations to the kink in the ¢ m odel; note that there are two bound
states w ith elgenvalues of 0 and 3, giving tangent uctuations to the TK 1 kink identical to those
arising in the ( *), model. The global factor is due to the di erent choice of the param eters in
the potential.

3.1.2 Orthogonal uctuations: M (K ,;)

The scattering in the potentialwell-¢t = 2,u;= ( + 1) -ofKy, isnot \re ectionless" if is
not an integer. T here are In general even and odd phase shifts
1 Im (T R
(@) = arctan T@ R@) ;
4 Re(T (@) R (@)

to be read from the trangm ission and re ection coe cients

(+1 i@ (i (+1 i (i) ()
T = ; R = .
@ T i) ( i) @ T+ ) ( ) (i

R ecalling that
e”2 =T(@ R(@Q) (7)

T () and R (g) are obtained from the asym ptotic behaviour of the scattering elgenstates:
qx)=NeFF [ ; + 11 dgm==1 ;

where ,F; [a;b;c;d ] is the G auss hypergeom etric function .

If =12 N isanaturalnumber,R ()= 0 - ( ) has a pole In thiscase-, , (@)= , (@),
and the totalphase shift ,(@)= , @+ , (q) s
0., !

1 1 np+ 2igQ
@)= Sarctan gese@ (L nVrZEL m)) ®)
2 Re . (@ (1 n)+2igd n))




T he num ber of bound and halfloound states of Spec(K ,,) isequalto I[ ], I[ ]being the integer
partof . The corresponding eigenvalues are !; = i(2 i), see [29, 28], w hereas the bound state
elgenfunctions read :

N
i(xX)= ————,F i;2 i+ 1; i+ 1;2(1+ tanhx ;i= 0;1; I
(x) (o =)' 2 il 5 ( )] [ ]
The halfbound state arisesonly in thecase = I[ ]= 12 N. Som e explanation about this issue

should be provided: The \ rst" elgenfunction in the continuous spectrum
1
=o0X)=NF [ ; + 1;1;5(1+ tanhx) ]

does not belong to the H ibbert space because Iim 1 1 4-0(X) = C x,except ifup = L1+ 1). In
this latter case, 1= 40 ,
Im oFi[ L1+ 15153 (1+ tanhx))= c
and hence this is the halflound state in the spectrum ofK ,;.
In sum , we have that:

[ i= 071051 }f! i= U2 l)g [ f# + 2gq2R* if ZN

S K = . . .
pec (K 22) [ioamy 1f'i= 12 Dglfle = %g i [ fF+ “gpar i 2N

T herefore, in the subsgpace of C i) orthogonal to the TK 1 con guration m ore bound states, de-
pending in num ber on the value of ?, appear as eigen— uctuations of the H essian operator. T he
correspond ing eigenvalues are sam ide nite positive for any value of siima. The TK 1 kink is thus
stable independently of the 2 param eter. An in portant point is that there exists a second zero
m ode because the rst eigenvalie of K 5, is zero for all 2. This zero m ode cbeys neutral equi-
Ibrium uctuations in a continuous fam iy of kinks w ith the sam e energy as the TK 1 kink and
second non-zero com ponent, see [24 1.

Form ula (6) dem ands the com putation of the derivative of the phase shift w ith respect to the
mom entum g, using (7) can be perform ed explictly:

" #
@2(01) _ E_eﬁ;@eﬁ2+eﬁ2@eﬁ2 _
Cle] 2 Qg Cle]
= 2Re[ (i9) (  + ig)l+ 9)
= A e’ gcsc?2  + tan
P lugging all these expressions into (6) we have that:
M (K 25)=
( fzi] . ' 3
X p 1 1 1
- 2 1) —+L aq 29V, 4t ) (D5 ¢ 2y
2 o 0 @ gt+ 2
" 'p 121 @ P (1+ )I ( +1)#
~m
- 12 D+ = dq 2P 24 e 2N «(10)
2 0 @q q2+ 2



W earenow interested in describing separately the behaviour of the contributions from the discrete
goectrum of the operator K 5, and from the integralin (10)to M (K ,5). W ede ne
|

Xlp__ @ ,(Q)P L+ )
MK )= 2 0 fla )= 2@y 2y pot (11)
=0 Cq g+ 2

to em phasize the di erent contrdbutions.

In M (K ;021) ), the contribution of the discrete spectrum ofK ,, to the one-loop correction of the
TK 1 kink m ass, we notice the follow ing. F irst, the greater the value of , the greater the num ber
of bound states In Spec(K,;) is. Thereisa jimp in M (K ;‘;)) when crosses an integer value,

see Figure 2. Second, a halfbound state in Spec(K 5, ) arises exactly at the values = 12 N,

which contrbutes to M (K ;i)) with a % welght w ith respect to the contribution of any other

state. One would think from these considerations that M (K ,,) is a non-continuous fiinction of
the coupling constant because of the ji)mps in M (K ;? ). On the other hand, we know that
the TK 1 solution depends an oothly on the value of , such that a smooth responseof M (K ,5)
would be expected.

15 AN](Kdi screte ) /
[ ]
12.5 /
10 ° q
7.5 _— 5
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5 _—
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2.5 _—
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1 2 3 4 5 6

Figure 2: Contribution to the one-lop correction from the discrete spectrum of K 5, (left) Behaviour of
the integrand £ (g; ) in (10) (right)

T he analysis of the second contribution isalso subtle. Them ain pointsare as follow s: F irst, the
descriptive behaviour of the integrand f (g; ) depends only on the fractional part of , follow ing
the pattem shown in Figure 2 for therange 2 (1;2). Second, asym ptotically we have that:

Im f(g; )= 0 ;7 8
q! 1l
MOIEOV@I‘,
Im f(g; )=1+ (1 2¢ () @+ ) ;

g! 0

where ; istheEulerGamma constant,and (z) istheD igamm a function. Notethatf(g; = 1)
hasa polk atg= 0. Because f (q; ) iswellbehaved for any other value of g if  is non-integer,
the ntegraln (6) iswellde ned and a nite answer for M (K ,,) isobtalned, see Figure 2. The
Integralbecom es In proper if = 12 N: in this case it is only de ned by taking the Imitg! O
appropriately. A m iracle happens: the integral of the function f (g; ) produces a jJmp in this
contribbution when  crosses an integer that exactly cancels the jimp n M (K ;i)) due to the
appearance of a new bound or halfbound state!, M (K ,;) is a continuous function of
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N evertheless, the Integral cannot be evaluated analytically except for integer valuesof . W e
usenum ericalanalysistocompute M (K ,;) by meansofformula (6). T he num erical com putation
con mms that M (K ) is snooth In . The contributions from the discrete and continuous
spectrum balance each other to obtain a sm ooth behaviour in . W e stress that this balance is
m ade possible by a proper counting of the halfbound states in both the vacuum and TK 1 kink
Schrodinger operators.

In the next Table we o er thedata on the sum of the tangent and orthogonal contributions to
the TK 1 quantum m ass correction, M (TK 1), for som e values in the range 2 (0#4;3:3),which
are also depicted In F igure 3.

M (TK1l)=~m M (TK1l)=-m M (TK1l)=-m
04 0:799335 14 1:11618 24 1:4907
0:5 0:829892 15 1:15057 25 1:53212
06 0:860369 16 1:18559 26 1:57427
0:7 0:890955 1 1:22128 217 161717
08 0:921788 18 1:25765 28 1:65316
09 0:952966 19 1:2947 29 1:70527
0:99 0:981384 1:99 1:32865 299 1:74592
1:00 0:984565 20 1:33251 30 1:72309
101 0:98775 201 1:33627 301 1:75503
11 1:01664 21 1:37094 31 1:79644
12 1:04925 22 1:41013 32 1:84319
13 1:08242 23 1:45005 33 1:89071

3.2 A sym ptotic series for the TK 1 sem iclassicalm asses

T he evaluation of one-loop corrections to the m asses of other (two-com ponent) kinks which are
classically degenerate in energy w ith the TK 1 kink is another task to be addressed in this work.
For thispurpose the DHN form ula is of no use, because our know ledge about the spectrum of non—
diagonalm atrix Schodinger operators is grossly insu cient. A Itematively, we can use a formula,

dertved in R eferences [16, 18], that expresses the one-loop correction to k-com ponent kink m asses
as an asym ptotic series. If we denote asK the H essian operator around a given loop kink K , the
form ula for the one-loop correction to the m asses of topological kinks derived in R eference [18]
reads:

M ()= ~m[ o+ Dp,] x2 g ! X L2 (12)
2o, - [anlga( ) [DV2n ), 2w

a=1 n=2

A Iightning sum m ary of the content of form ula (12) isasfollows: j= din Ker(K ) is the num ber of
zerom odes in the spectrum ofK . [a, La (K ) are the coe cients of the high—tem perature expansion
of the heat function associated w ith the heat equation:

X? Q
@_ab+Kab Fy( ;x)= 0 ’
b1

n 1;va2 ]are incom plete G amm a functions, see [30], and v, are the m asses of the fundam ental
quanta at the point of the vacuum m oduli space determ ined by the loop kink K . T he divergent

11



term s
X lolaK) [ 1;¥] X . K)
. ; — " [0;%]
a=1 8 Va a=1 8
lacking In (12) are respectively cancelled by subtracting the zero point vacuum energy, and taking
Into account the m ass renom alization countertemm , see [16]and [18].

A Ythough we have computed M (TK 1) by means of the DHN formula (6) In the previous
Section,wenow apply (12) to the TK 1 kink in order to test how good the approxin ation provided
by the asym ptotic series is w ith respect to the exact DHN result.

The spectrum of K com prises two zero m odes; henceforth, j = 2. M oreover, v¢ = 4 and
vZ = 2 in this case, whereas the Seeley coe cients [a , (K )11 and [a, (K )}, are pointed out in
R eferences [16, 18]. The calculations of the partial sum s In (12) for several values of and with

ny = 10 provide the results shown in the next Table:

M (TK1l)=-m M (TK1l)=~m M (TK1l)=-m
05 0:962386 11 1:05073 17 1:22526
06 0:970537 12 1:07468 18 1:2599
0:7 0:981183 13 1:10097 19 1:29571
08 0:994487 14 1:12939 20 1:33324
09 1:01053 15 1:15971 21 137074
10 1:0293 16 1:19174 22 1:41007

In Figure 3 the results are plotted as (white) squares and are com pared w ith the data obtained
from the DHN procedure, (black) dots. W e can check the concordance between the two m ethods;
the relative error for the answer from the asym ptotic m ethod is, for nstance, 0.79 % for = 135,
0055% for = 20and 0004 % for = 22.Thegreater ,them ore exact the response reached
from (12). On the other hand, for the range 2 (0;1) the answer is less precise (for = 09 the
relative error is 6.0 % ). T he reason for this becom es clear taking into account that the greater the

value of the m asses, the an aller the value of [:2]11,275 ! , and the m ore rapidly the saries expansion

In formula (12) converges.

0.4
AM
-0.6 K
-0.8
., o
Ongle
0 “$8%,1.5 2 2.5 3 3.5
1.2 Y
Suy
1.4 @@@
¥y
-1.6 "o
®
1.8 ‘.

Figure 3: O ne-loop correction to the one-com ponent topological kink (TK 1) mass in units of ~m .
DHN formul . 2, asym ptotic series.

Tt is Interesting to note that the answer obtained by m eans of the asym ptotic series is a
continuous function of . Thismethod, based in the heat kemel expansion and the associated
generalized zeta function, leads directly to the correct result, w ithout needing to carefiilly balance
the contrdbutions from the discrete and the continuous parts of the spectrum . T he reason is that
the Seeley coe clients arede ned in term s of the potential (and its derivatives), which encodes all
the properties of the spectrum .

12



4 Sem jclassicalm asses of kink fam ilies

So far we have only com puted the one-loop correction to the classical m ass for the TK 1 kink-
using either the (exact) DHN formula (6) or the (approxim ate) asym ptotic expansion (12). T he
m odel, how ever, exhibits a continuous fam ity of kinks which have the sam e classical energy. O ur
goal in this Section is to com pute the one-doop correction to the kink m ass for each m em ber of
the fam ily and to analyze the fate of the kink degeneracy in the sam iclassical level, using form ula
(12) w ith the help of som e num erical analysis.

4.1 =2

In this case, it ispossible to nd explicit analytical expressions for the solutions corresponding to
the kink orbits (4), see [24]:

(1) sihh 2(x + a) (1) o1
e + S)
2 osh2x+a)+b 2 wsh2x+a)+ b

Ttk 2[Xja;b]= ’ (13)

wherea 2 R,b= %2 (1;1 ),and ; 2 Z=Z,.The fam ily of Schrodinger operators ruling

the an all uctuations In the original elds is In this case

0 P 1
dZ 6Sjnh2 ex)+p 1 2 10 @ ] sih@x0)
K (b) _Q dx? (cosh (2x )+ b)? (cosh (2x )+ b)? A
N 12p 5 ]_sbh@x) ra 6sjnh2 @ 1,
(cosh (2x )+ b)? dx? (cosh (2x )+ b)?

T he asym ptotic m ethod can be applied by substituting the corresponding expressions for this
case in formula (12): j= 2,v§ = 4,a= 1;2,and the potential term s of the above operator are
required in the de nitions of the Seeley coe cients [a , La (K ). This calculation has been carried
out for som e kinks of the fam ily (13) with integration constant ¢ in the rangec 2 [ 30;c ), see
Table and Figure 4. Tn sum , the approxim ate value of the one-Joop quantum m ass correction to
all these solutions is  1:33280 000001 in units of ~m . T hus, the statem ent that the degeneracy
of the classicalm ass to the kink fam ily in the case = 2 is preserved in the quantum fram ew ork
ishighly accurate.

For thisvalue of we can easily prove that the statem ent is com pletely exact. A rotation of
45° In R?, e = p%(ul + 1), e = pl—z(ul %), show s that the systam is non-coupled. W ritihg

~

= 1% + L% ,we have that:

2
+

1 d, ?

2 dx

d .

T _,= -z
z dx

N

W e can w rite the degenerate kink fam ily In the altemative form :

- (1 (1)
k2 Xjan;ar]= —2p?tanh(x+ arp )t + —2p?tanh(x+ a)’

In tem softhenew param etersa;;a, 2 ( 1 ;1 ). NotethattheTK 1 kinkscorrespond toa; = a,.
Tn these variables the H essian operator is diagonal for any m em ber of the TK 2 fam ily:
|
a? 6 ’
x t 4 cosh? (x+ ai) 0

dx
d? 6
—_ + [ —
0 dx? 4 cosh? (x+ aj )

K (arjaz) =
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T herefore, both the gpectrum of K (a1 ;a,) and the one-loop correction to the kink m asses are
independent of a;;a, 2 ( 1 ;1 ): M (TK2 [a;;a2]) = ~m (191—§ £y 1:33281. The kink
degeneracy is not broken by quantum uctuations at the one-loop level; this result would be
expected from general argum ents because the fam ily of second-order uctuation operators above

is isogpectral.

4.2 Num erical approxin ation

T he problem that we face is the lJack of explicit analytical expressions of the kink solutions for
generic values of ; only the kink orbits (4) are available. However we can solve the rstorder
equations (3) by standard num ericalm ethods. W e set the \initial" conditions:

T he rationale behind this choice is as follow s: (1) for any kink solution, ;(x) hasalways a zero.
Translhtional Invariance allow s us to set the zero at x = 0. (2) To ensure that we will nd a
num erical kink solution,we x ,(0) in such a way that (4) is satis ed fora given value of and
arbitrary choices of c.

In thisway the num ericalm ethod provides us w ith a succession of points of the kink solution
generated by a interpolation polynom ial. The kink polynom ial is then usad to calculate the
[an La (K ) coe cients of fomula (12) approxin ately and hence the one-loop correction to the
kink m ass. A subtle point needs to be clari ed: the coe cients are de ned in temm s of the eld
solutions and theirderivatives. W hereas it is all right to describe the kink solutions approxim ately
by Interpolation polynom ials, taking \derivatives" of such discrete con gurations of points would
Induce In portant errors. Fortunately, we can use the rstorder equations (3) to express all the

eld derivatives as polynom ials In the elds.

T his procedure was carried out for values of in the (1:3;3:3) range w ith = 01 nding
In all cases a sin ilar pattem in the behaviour of the M (K (c)). In the Figure 4 we show the
results cbtained using this m ethod for several values of ¢ .n the range ¢ 2 ( 30;¢ ) :n the cases

= 15and = 2:5.A rstobservation is the perfect agreem ent reached between the num erical
approxin ation and the exact result of the = 2 case. Next, we notice that the greater the value
of ,the better the convergence of the asym ptotic expansion to the exact value for kink solutions
w ith ¢ su ciently distant from c®. W e check that the kink degeneracy is always m aintained in a
w de range of ¢, but starts to failwhen c approaches ¢ .
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=15 =20 =25

c M ] M c M
30 1:16009 30 1:33281 30 1:52784
275 116017 275 1:33281 275 1:52782
25 116128 25 1:333281 25 1:52780
225 1:16042 225 1:33281 225 1:52778
20 1:16061 20 1:33281 20 152774
175 1:16088 175 1:33281 175 1:52769
15 116128 15 1:333281 15 152760
125 116193 125 1:333281 125 1:52744
10 1:16313 10 1:333281 10 152711
75 1:16597 75 1:33281 75 1:52626
5 1:18205 5 1:33280 5 1:52285
46801886 1:24345 4001 1:33280 4 1:52168
4:68018860186678332 1:25103 400001 1:33280 397 152915
396594571 1:55402

3:96594570565808127 1:56127

-0.9
C
-30 -25 -20 -15 -10
-1.1
| | | | n n | | | | | | n | | [ ]
o=1.5 -1.2I
o o o o s e 0 o o _01'30
ag=2. 1.4
A A A A A_ZASA A A 'A1'5
ag=2. 1.6
Figure 4: The One-loop Quantum M ass Correction in the cases = 1:5, = 2:0and = 235.

T hus, the previous Table and F igure suggest the survival of kink degeneracy at the one-loop
level up to values of ¢ close to ¢ . A m ore precise dea about w hat is going on in the vicinity of
¢ isgiven by the llow ing observations:

1) W e rst notice that the c = ¢ kink orbits belong to the C(ab) (@ & b) topological sectors
for any value of . Thus, this kind of kink is called a \1link" because the associated orbits link
di erent points in the vacuum m odulispace. T he tra fctordes of these link kinks enclose the orbits
of the kink fam ily studied previously in Section x4. For = 2, these TK 2L topological kinks of
Iink type are:

(1) (1)

Trron (X) = 2 1 (1) tanh(x+ a))e + (1+ ( 1) tanh(x+ a))e
witha2 R, ; ; 2 Z=Z,.The link topologicalkinks for = % are
r
- (1) X+ a (1) X+ a
TKZL(X)= T 1 ( 1) tanh > e + —pz— 1+ ( 1) tanh 5 S

with ; ; 2 Z.There are no analytical expressions available for other values of
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2) Second, we realize that because the existence of these enveloping kinks the energy density

of any kink obtained for c near ¢ is form ed by two um ps. W e explain the general situation in
the = % case. Even though the asym ptotic m ethod works poorly for thisvalue of  (w ith errors

higher than a 18% ), the analytical inform ation allow s a fulldescription of the situation. The TK 2
kink fam ily is given by:

(1) snh(x + a) 0D b
2 ocosh(x+ a)+ bel cosh(x + a)+ b@2

Tk 2 X b=

wherea 2 R, b= »=— 2 (0;1 ),and , ; 2 2=%,.

Tn R eference [27], we showed that the splitting into two Ium ps startsatc= 0 orb= 1. In the
previous subsection we have obsarved through num erical com putations forany value of 6 2 that
the departure from the TK 1 quantum correction also starts at the value of ¢ where the splitting
begins. U s of the ¢ param eter is necessary to in plem ent the num erical m ethod, but unsuitable
for discussing this phenom enon. Note that ¢ 2 (0;¢°) is tantamount to b 2 (1;+1 ). bis a
m easure of the distance between the two lum ps, although a highly non-linear one, see [27]. T hus,
the breaking of the degeneracy is noticeable w hen the two lum ps are further apart. T he induction
of this repulsive force by quantum e ects can be better understood by looking at the fam ily of
the TK 2 Hessian operators:

0 2 P 1
o = 6sih’x_ 6 bsinhx_
dx? ' coshx+b ' (coshx+b)? 5
K ()= @ pP_ , (coshx+D)Z ) A
_6 bsinhx 4, 3 b 4 3_sinn’x 1
(cosh x+ b)% dx? 2 cosh x+ b 4 (cosh x+ b)2 2

In the Figure 5 we show a plot of the diagonal com ponents of the potential for several values of c.

c=-30 c=-1
4 4

3 3

2 2

-4 -2 / 2 4
) -4 -2 2 4
-1

0.1 c=0.245 c=0.249
4 4
3 3
2 2
1 1
J A
/
2 4
Figure 5: D iagonal com ponents of the potential for c= 30, c=-1, c=0.1, c= 0.245 and c= 0.249.

Cc=

) ) 2 4 o3 2 2 )

T here isno m odi cation of the potentialbetween c= 30 and c= 1 (the o diagonalcom —
ponents are odd functions and the area enclosed by them is zero); there m ust be kink degeneracy
In this range of c. Starting at c= 0, the second com ponent tums from potential well to barrier,
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inducing a (still) very weak repulsion. The closer the value of c to && = % , the stronger the re-
pulsion com ing from the second com ponent, whereas the rst com ponent develops a double well,
clearly arising from the m elosis Into two lum ps. T herefore, the spectrum of K (b) is com pletely
di erent in thereginesb 2 (0;1) and b2 (10°;1 ),with a transition region in between. W e stress
again that the picture is sin ilar to this forany 6 2: the classicaldegeneracy starts to fail for the
value of c where two peaks in the energy density appear: quantum uctuations induce repulsive
forces between the two basic um ps, which are constituents ofa TK 2 kink. The data in the Table
also show that the rate of change of the quantum correction din Inishes when the two lum ps are
extram ely far apart, in a range of c w here there are no signi cant changes in the structure ofK (c).

W e stress that the breaking of the kink degeneracy due to quantum e ects suggests the pos-
sibility of a sim ilar phenom enon between higher din ensional topological defects as vortices and
m onopoles; it is tantalizing to think that them ethod here developed could also be applied to study
the one-loop e ects on the m oduli spaces of vortices and m onopoles. N evertheless, one can argue
the survival of kink degeneracy to quantum uctuations In the fully supersym m etric systam . The
reason is the saturation of the BPS bound at the quantum level n N = 1 W essZuminod = 2
supersym m etric m odels due to equalanom alies In the energy and the central charge; see R eference
[31] for a recent and elegant proof in system s with only one chiral super eld. In our case, two
chiral super elds, the anom aly is given —up to som e constant—in tem s of the Laplacian of the
superpotential:

jw (7 (1)) W (7 1))J=4+2 ;

a quantity independent of c. T herefore, the cdependence in the energy com ing from bosonic
uctuations must be exactly cancelled by taking into account the femm ionic uctuations w ith
SU SY preserving boundary conditions.
W e end this Section by exploring som e points about the one-loop correction to the TK 2L link
kinks. If = 2, the TK 2L Hessian/Schrodinger operator fora = 0 is

2

L %2 2x 2x
K ( — 2): d: 5 cosh d_2+cosh 5 ;
cosh? x dx? cosh? x
whereas if = %,a]so fora= 0,we have:

1
d? 5 3 X 3 1 X pix .

i 1)_ L+ 3 Etanhp(z) PPy #=(1 tanh(3)) 1+ tanh(3)

-5 x T e (X) a? 5 3 x 3 1
2 #5(1 tanh(})) 1+ tanh(§) >+ 3+ ;tanh(}) ey

In this Jast case, we would neaed to use the background renom alization m ethod as developed in
[16]to com pute the one-loop correction, but the task is so involved that we only discussthe = 2
case.

It is clear that SpecK* ( = 2)= SpecD ,where:

d2
D @+4 ) 0 6

One mm ediately concludes that



ie. the fam ous kink sum rule also holds at the onedoop level. The results obtained via the
asym ptotic expansion agree w ith this observation. T he very accurately calculated degeneracy in
thecase = 2,obtained from num erical plus asym ptotic com putations even in the vicinity of the
lin itihhg value ¢ = 4 (see Figure 4), in plies that the com bination of two identical Iink kinks
(reached when the param eter c goes to ¢’ ) has the sam e m ass quantum correction as the rest of
the kinks.
A swe have seen the situation is di erent (and to som e extent surprising) for other values of
. The singular behaviour of the system for = 2 is related to the fact that the m etric ruling
the kink adiabaticm otion is Euclidean if = 2, see [27]; consequently, the two lum psm ove freely
w ith respect to each other.

5 C lassical versus sem i—classical kink degeneracy

Tn this Section we shall address the subtle question of what happens to the kink degeneracy when
quantum e ects are taken into account from the analytical —m ore than the com putational- side.
Let us denote by

KO (xic)= (Xl + 5 (xC)e;

the solution of the rstorder equations (3) given by the orbit (4). Letusde neK (c)= V1 V (¢)
as:
L4 24 2l 4 (4 1) ZRxje] 2 8 ( + 1) slx;c]

K = 2
© 8 ( +1): 2kxic] L+ 4 (+ 1) ixicl+ 6 7 flxc

W e have thus a fam ily of Schrodinger operators goveming the an all uctuations around any kink
n the degenerate fam ily.

T he one-loop correction to them ass of the K (c) kink is given by the form ula (5) of R eference
[18]:

MK () = In [ ™)+ ")
s! 2
nK (C)(S) — 5 2s+ 1 Pk (@) (S) v, (S)
2 Z mL
~ (s+ 1) X Ea
nK (c) . 2s+1
= Im — —_— +1 dxV ; : 14
) = i — = Wi (S+ 1) dxVaa (x0) (14)

a=1 2

W e recall that "™ )( 2) is the kink Casin ir energy m easured with respect to the vacuum
Casin ir energy. "™ ©)( 2), however, accounts for the contrdbution to the kink energy of the
m ass renomm alization countertem .
T he generalized zeta functions of K (c) (with the zero elgenvalues excluded) and V; can be
w ritten in term s ofthezheat functions via M ellin transfom s: 7
1t 1!
Pk ((8)= —— d °'Tre FE© ; v, (8)= —— d °lTre
(s) o (s) o
T he derdvative of "™ ©)(s) w ith respect to ¢ is cbtained inm ediately,
2
_ l"K (C)(S)= ; 2s+ 1 d s lTr @_Ve PK (c) .
Qc 2 (s) 0 Qc ’
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whereas we also have:

ZmL

2 mL
L s+ )X 2 Qv
— " O(s)= 1m — T — Vi)s (54 1) dx —=
@c L1 2L (s) mL @c
a=1 2
TIfthe sum ofthese two quantities adds to zero at the s ! % Iim it we can be sure that the kink

degeneracy also holds up to this order in the ~-expansion . U nfortunately, an exact com putation is
beyond our analytical capacities but we can work an asym ptotic expansion of this form ula along
sin ilar lines to those used In R eference [18]and [32]. From the high-tem perature expansion of the
heat kemel,

X2 V2 V2 Xl
e d e b n
Kk (ap(Xix; )= A g (X% )p4 b = p4 [an by (x7%)
d=1 n=0
and bearing in m ind that
Z 1
Tr @—Ve PR~ dx‘a:hxj@—ve PEO 51
@c 1 @c
Z 1 Z 1
@v
= dx dxotrhij *ihk'e TR i
1 1
2 7
X271 ava(xic)
= dXT K (c)pa (X7X; )
aj=1 1
we nd
Qv R G @V (%) !
Tr[@—e ey = P dx Zib[anLa(X;X)e .
c n=0ajp=1 1! c
1 X X .
= p= hle ™= 72 ;
4 n=0a=1
where
X ! @V, (x;C)
[l = a}éc [Bn b (x;%)
=1 !
T herefore,
1 w2 Z
@ 1 x X ! w2 N 1 @B ()(S)
_K(C)(S)z — [Cn]a d e Ao ostnog K (c ;
e 4 |:S]n:O a=1 0 te
where Bk () (s) is a negliglble error arising from the truncation ofthe mtegrationin = 1.This
gives:
a 2 1.,
— ") = - 25+1X el sy n+§,v§:|+ error
Qc 2 P p4—V§(S+n+%)
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A Iso, we have that

1 2
L S+ =,V
o (54 1= L BT ]
[s+ 1] 4 ~2(s+ 3)
and, because [ag Lp (YY) = abs
[CO]iz X2 . @Vab
=1 1 @C
T hus,
2 1.
W (©) () m 2601 % s+ 3iv2] [
e 2 BT P e Ho
a=1 a(S+ E)

and nally we obtain:

~ X X s+ n+ 22

@
K K
" (C)(S)+ " (C)(S) _ > :
(s+n+3)
a

Qc 2

n=1a=1 4

It is a rem arkable fact that the pole arising in I, 1" ©)(s) appears .n then = 0 tem of
the asym ptotic expansion. T he residue takes a value such that this divergence is exactly cancelled
by lin , 1 ,"™ ©)(s). Explicit com putation of (15) has been carried out for = 2 and we have
perfect concordance w ith the data depicted in the F igure 5. In this case, the coe cientsc, vanish,
such that & " * “(s) = 0.

6 Jacobi elds, kink instability and resonances

IntheC,,,, topological sectors, thingsarem oredi cult. A scriticalpoints of the energy functional,

the topological defects m ust satisfy the Eulerd agrange equations
d* 4
dX2

da ,
=2, 4%7+2 1+ )Z 1 o - o 4 + 1) 2+ 2 201 : (16)

If =2and = %,we are able to obtain all the kinks in these sectors of the m odelbecause the
associated dynam ical problem is Integrable.

For = 2in theC, 2) topological sectors, we nd

1S .
N (1) 1 (1) sinh2(x + a)
rk 20[X;b]= e + )
2 cosh2(x+ a)+ b 2 oosh2(x+a)+ b
For =%,jn theC,,, topological sectors we have the fam ily of solutions:
~ B ;D] (1) sinhbsinh(x + a)
01X, = e +
TR cosh? (x + a) + 2coshboosh (x + a) + 1
sinh (x + a)
+ (1)« S

cosh®(x + a)+ 2coshboosh(x + a)+ 1
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For generic ,only the TK 1’ kinks are known explicitly in C

(272)
r __

1
Trr10(x)= (1) ??tanh 5(X+ a)

. P — . . .
Denngz= X, wewrite the Hessian for the TK 1" kinks as

o Emt4 e’z 0
2 0 L+ 4 6sh’z

17)

J isa diagonalm atrix di erential operator that includes as the J 5, m atrix elem ent the very well

know n Posch-Teller Schrodinger operator, w ith CS = 4and ug = 6.J1 isalso of Posch-Teller type

- 3 4,up = 2 ) and deserves a closer analysis. The eigenvalues !, = 4 [ (n + %)]2,

= 20r ) %,n= 0;1;2; ;I[%] 1 belong to the discrete spectrum of J1;1 . Thus,

Il 211

Specd = [, 4 [ (m+ )P [ fki+ 4g[ £0g[ £3g[ £ki + 49c,2x

T he phase shifts for the continuous spectrum are

3k,

k)= +k)+ (k) (k)= 2arctan 5
2 ¥

The re ection coe cient associated to the Schrodinger operator J 1; isnot zero if 6 ﬁ

with j a positive Integer num ber greater than or equal to 2. T herefore, there are also In general
even and odd phase shifts,

(ki) = }arctan ;
4 Re(T (k;) R (k)

to be read from the trangm ission and re ection

2 k) (k)
2) ( ikq)

(3 + ik ) (
1 ikq)

1 ik 1 ik 1
(2 O 1>(i

T (k)=
b iky) 1+ ) (

coe cients.
T he physical and geom etrical inform ation encoded in the spectrum of J is as follow s:

There are two bound states n the tangent direction to the TK P kink in C,,,. The rst
of them is the translational zero m ode and the second one is interpreted as usual: a scalar
boson \polarized" in internal gpace in the e, direction is captured by thekink. T he scattering
elgenstates correspond to e, polarized scalar bosonsm oving in the kink background.

There are I| %] 1 bound states in the orthogonal direction to the TK 19 kink in C(z-z) .
T he associated elgenvalues are positive if > 2 and thus the TK 1° kink is stable in this

regin e.
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W hen < 2,there are som e negative eigenvalues in Spec(J ) and the TK f kink is unstable
against the associated uctuations. T he num ber of negative eigenvalues and the degree of
Instability ncrease w ith decreasing :if 2 (j(j 41) 1 ;j(j+41) ; 1 the spectrum ofJ;; contains
j 2 negative eigenvalues and there exist j 2 instability directions around the TK 1° kink
n the C(zo) SECtors. Foran analysis of kink stability in m ulti-com ponent scalar eld theory,

see [331].

Atthecriticalvalues = j(j+41) ; there isa Jum p in the num ber of negative eigenvalues and
the Jacobi ed
g — g ———
s@= 1 LREG+ FE+ D+ 53 JG+ 1)+ £:3;3(1+ )] ; g= tanhz

becom es a bound state belonging to the discrete spectrum ofJ ;. TheM orse index theoram ,
[33], tellsus that there isa continuous fam ily of TK 2’ kinks in the Cpz, SECtOrs if = j(j%“l .
Them anbers of this fam ily are the ow E;jnes of the gradient of a second superpotential W

that has two critical points at sz = —j(jggeg and j 2 branching points: the zeroes

2 2
of ;x)e, e [33].

Wy W

Figure 6: Graphics of ;(q) for j= 2;j= 3;j= 4;j= 5 (kft), or non—critical values of clse to the
critical ones (right).

T herefore, the TK 1° kink gives rise to a bona de eigenstate of the Ham iltonian only if > 2.
Here we shallnot give M (TK 19, because the com putation is ientical to that developed for
M (TK1) if 2 but gives rise to a com plex m ass if 2 < 2;the TK 1’ kink state should be
Interpreted as a resonance in this regin e.

A ppendix: m ode num ber cuto regularization m ethod

Tn this A ppendix we present a derivation of the basic equation (6) In Section x3. G iven theK and
V Schrodinger operators

d? d?
V= —+v ; K = — V (x);
dx? dx?
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respectively ruling the an all uctuations around the vacuum and the kink, the renom alized zero
point energy is: |
~ X X '

1 W= — 'n 'n : (18)

SpecK SpecV

Here, V> = f—%jv isa constant,and vV (x)= f—ng gives rise to a potentialwellV (x),which

rapdly decreases to its asym ptotic value: X']jml V (x) = 0; note that, as In the man text, we
use din ensionless eigenvalues and recover the din ension in the nalresponse through the overall
constant of (18). T he spectrum ofboth K and V is continuous and som e reqularization isneeded to
com pute the In nite sum s in the Casim ir energy (18). O ver the last few years it becam e clear that
the correct reqularization procedure isbased on a cuto in the number of uctuation m odes, a
num ber that m ust be taken to be \equal" in the vacuum and kink sectors, see [12]. M ore recently,
controversy arose about whether an energy cuto regularization can yield the correct answer, see
[34]and [35]. This is a subtle m atter indeed, but all the evidence leads us to rely on the m ode
num ber reqularization m ethod.

Beforederiving (6),we outline the set-up pointed out in [14]that underlies our approach below .
T he problem is discretised by con ning the systeam to a box of length 21, , which is much greater
than any length scale characteristic of the potential term or of any of its bound states, and the
ImitL ! 1 istaken at the end of the analysis. In order to specify the boundary conditions we
distinguish between (a) eigenstates w ith eigenvalue greater than v*, giving rise to the continuous
part of the spectrum , and (b) those with eigenvaluie lower than or equal to v*, corresponding
respectively to bound orhalfloound states. F ictitiousboundary conditions ( L) = 0arein posad
on the eigenstates of type (a), but we can safely anticipate the Iimit L. ! 1 for states of type
(b) and use for them the eigenfunctions of the actual bound or halfbound states respectively
decrease exponentially or go to a nite constant at long distances. In any case, we stress the fact
that the e ects induced by the boundary conditions disappear when the L ! 1 Iim it is taken.
N evertheless, we shall approach rst the problam by focusing on operators K w ithout halfbound
states. T his particular case (tackling operators which involve potentials w ithout re ection, such
as those in the kink and soliton of the wellknown * and Sine-G ordon m odel) w illbe dealt w ith
later.

Apart from restricting the spectra of V. and K

VvV okxl= 7k) kix] ;K fxl= 7@ l@ix]

to those eigenfiinctions of type (a) satisfying D irichlet boundary conditions ( L )= 0,we shall
only consider symm etric potentials V (x) = V ( x) which allows us the choice of odd, (x) =
( x),and, even, (x)= ( x),elgenstates com plying with the boundary conditions. This
breaks the degeneracy that arises by im posing periodic conditions on eigenfunctions w ith non
de ned-parity (plane waves), and hence skips som e problam s arising when the num ber of bound
states is odd.
A brief description of the eigenvalues and eigenfunctions of V. and K in a nite box follow s.

1. Spectrum ofV

H alfbound state.
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T he constant function,
0(x) = constant ;

is an elgenfunction of V w ith eigenvalue v? that do not grow atx= 1 .

O dd elgenfunctions
Ifn isa natural num ber strictly positive and the wave vectors k, satisfy

k, L= n ; n 2N° ;
then the odd functions, , (x)= L (x),
n (X)= A, snk  x)

belong to the spectrum ofV w ith elgenvalue ! “(k, )= k? +v*.Shce (k, +1 ky, )L =
the density of odd eigenstates is: (k)= Z.

Even eigenfunctions
Ifn* isa naturalnum ber and the wave vectors k- satisfy

ke L= (h+3) ; n* 2 N ;
then the even functions, .+ (x)= L+ ( x),
ne ()= Ap coslk  X)
belong to the spectrum of V w ith eigenvalue ! *(ky+ ) = k2. + v*. Now, * (k)= =.
2. Spectrum ofK

Bound states:

W e assum e that there exist 1 bound states with !?  v?. In particular we denote
by I the number of sym m etric bound states and by 1 the num ber of antisym m etric
states, 1= 1" + 1 . If ! f = v?, the highest bound state becom es a halfoound one and
contrbutes w ith a weight of 51 = % to the m ass quantum correction.

O dd eigenfunctions.
T here are odd eigenfunctions which asym ptotically are of the fom :

n (X) ’ A, Sm';q X+ (& )]

The odd phase shifts (g, ) are de ned in temm s of the tranan ission and re ection
coe clents, see Section x3, but now the boundary conditions require:

h L+ (@ )= n ; n 2N : (19)

Unitarity, transparency at g = 1 , and, continuity of the wave function at g = 0
(threshold) allow us to set the phase am biguity as in [141]:

Im (@)= 0 ; Im (@)= 1

q! 1 q! 0O+
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The question arises: what is them ininum valuen = n,? For very lhrge L, = is
very an alland (19) becom es:

q., C+2@ N+ (0)= n, : (20)
Here, Y (0') is the lim it of the left-hand derivative of the antisym m etric phase shift
when g goes to zero from the right. The m ninum valuie ofn = n, is therefre
ng=1.Shee (¢ +1 G L+ (@& +1) (@ )=  thedensity of antisymm etric
states is:
L 1@ (k)
@=—+ K

Even eigenfunctions.
T here are even eigenfunctions which asym ptotically are of the fomm :

x! L

o (X) T AL coslg x+ (g )]

The phase shifts * (g,+ ) arede ned in tem s of the tranam ission and re ection coe —
cients, see Section x3, and the boundary conditions require:

G L+ T(@ )= @+ 3) ; n* 2N : (21)
Again we set the phase am biguity by invoking Levinson’s theoram as in [14]:

I T@=0 im @)= (T 3)
ql 1 q! ot

where I' is the num ber of even bound states.

From

Gy L+ TO N+ TO )= 5 +3)

we read them ininum possib]eva]ueof% :n, = I .Now,

@) L 1@ " (k)
= — 4+ —
E ek
W e stress that due to the parity of the eigenfunctions there is no need to consider

negative values of n

T he regularized version of form ula (18) reads:

Xl
~m
nkK 1.+
1 -1
2
W1 #
WA ®o g
+ 7 qﬁ+ + V2 k2+ +V2 +
2n*:l* n*=0 3
N X g
+ 74 qﬁ +V2 k2 + V25
n =1 n =0
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The rst row collects the contributions of the 1= 1" + 1 bound states of K . In the other two
row s, the contributions of even and odd eigenfunctions in the continuous spectra are accounted
for. N ote that we have added the contrilbution of the constantm ode of V to the odd sector because
it corresponds to the lower eigenvalue of V.. W e stick to m ode num ber cuto regqularization, ie.
we mpose N = N, and N %= N . This choice balances the num ber of states of K and V involved
n the above formula. W e have distinguished the num ber of sym m etric and antisym m etric states,
N and N Y, although we shall consider either N = N + 1 orN = N .

To m easure the contribution of K w ith respect to the contrdbution of V to the C asin ir energy
m ode by m ode, we w rite the second row in the fom :

" #
om X q o X 19 ——
— O+ VP k2 + v2 O+ VP
nt=0 nt=0
" X X119 — i
~Mm kn* * kn*
A ) GV E5)
2 L k2, + v?
nt =0 n nt=0
L! 1 Z 1
N ~m dk d! k) , .
! — — — " k)+ I'v
2 dk
A sim ilar process for the odd eigenfunctions gives:
" #
om X0 a q X 19
7 + V2 kz + V2 qj + V2
wh =0 n =0 #
X’ X 19—
~m k k
’ _ M Qﬁ + V2 4+ (L_lz)
2 L k% + v?
£ =0 n n =0
wo ~m bodk d! (k)
! — —— k)+1v
2 0 dk
The sum of all contrbutions plus a partial integration,
Xl
an — N_ I,
2,
B z
~m . ~m o, Poam T d k)
—TI'v — "k k) + — dk I(k)
2 2 0 2 dk
~m ~m ! ~m ! d (k)
—1lv — &)'k) + — dk (k) ;
2 2 0 2 dk
and the asym ptotic behaviour of the total phase shift,
k! 1 1Z * ki1 12 1
tk) = = dxV (x)cos” (kx) k) = — dxV (x)sin? (kx)
k L
show that:
o X o . o -
M= — Ly —T v+ — "O0w —1v+— (O
- 2 2 2 2
l_i 1 Z 1 +
~m .2 ~ alr ™ k) + (k)]
— dxV (x)[cos” (kx) + sin® (kx)]+ — dk (k)
2 0 0 dk



From the 1D Levinson theorem we notice that the two last term s In the rst line of the above
form ula cancel each other but the two preceding ones kave a contrbution: 7. Therefore, the
form ula for the kink C asin ir energy reads:

n #
. oem X v 17! d (k) W (x)i
L I, —+ = dk———1 (k) ; (22)
2 o 2 0 dk 2
Rl
wherelW (x)i= V (x)dx = 2 V (x)dx is the expectation value of the potential term and the

contribution of theloontjnuous spe?:‘a:um isencoded in the totalphase shift: (k)= * (k)+ k).
W e callattention to the contrbution =~ ,which tells us that the contribution of the m ode w ith
k = 0 wave vector in SpecV ishalf the contribution of a bona de bound state -hence, the nam e-.

T he generalization of this approach to tackle the presence of a bound state with k = 0 and

2= v? in SpecK (halfbound state) is direct. T he Levinson theorem ,

0")=1 ; +(07)=1 ; (23)

2
works as above, but there isnow a halfbound state that contrlbutes w ith % to both the num ber
1= 1 + 1 and themass quantum correction "™, see [13]. Thus, we write (23) as (0 ) =
1 - = N ,and, bearing n m ind the previous observation, the above calculations reproduce
the results obtained in R eference [12]. T he tricky point to realize is how the contribution of the
threshold state tums (23) nto  (§ ) = n, , with n, the number of bound states with !? < v2.
In the kink m ass form ula, the contribution of the halfstate would cancel out the tem ‘—2’ , and
everything is okay. For this reason, the form ula shown in [12]is valid only for operators involing
potentials w ithout re ection. A nal expression involring both of these cases provides the rst
row of formula (6)
~m X7 190 4 ) 5 (x)i#
"= i+ sy + —

-~ )
2, 2 0 dk 2

; (24)

where s, = % if we deal with a re ectionless potential but s; = 1 if the re ection coe cient is
non-zero.
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