O n the JacobiiM etric Stability C riterion

M A.G onzalez Leon and J.L. H emandez Pastora
D epartam ento de M atem atica A plicada. U niversidad de Salam anca, SPA $\mathbb{I N}$.

Abstract

W e investigate the exact relation existing betw een the stability equation for the solutions of a m echanical system and the geodesic deviation equation of the associated geodesic problem in the Jacobim etric constructed via the M aupertuisJacobiP rinciple. W e conclude that the dynam ical and geom etrical approaches to the stability/instability problem are not equivalent.

1 Introduction

In recent years, several authors [1], [2], [3], [4], have form ulated geom etrical criteria of (local) stability/instability in m echanicalsystem susing di erent \geom etrization" techniques (M aupertuis-Jacobi Principle, E isenhart metric, etc). Them ain idea is to interpret the local instability problem, understood in term s of sensitive dependence on initial conditions, as the study of an appropriate geodesic deviation equation. A s a principalapplication, chaotic behaviors in H am iltonian m echanical system s that appears in cosm ological m odels have been described using these results. M ost of these works are constructed using the M aupertuisJacobi principle for naturalm echanical system s, both in the very well known R iem annian case, but also in the recent generalization to the non R iem anian one [2].

T he M aupertuis-Jacobiprinciple establishes, in his classical form ulation, the equivalence betw een the resolution of the Euler-Lagrange equations of a natural H am iltonian dynam ical system (hence the N ew ton equations), for a given value of the m echanical energy, and the calculation of the geodesic curves in an associated R iem annian m anifold. Throughout the tim e this equivalence has been used for di erent purposes, as the m entioned description of chaotic situations, but also in the analysis of ergodic system s [3], [5], non-integrability problem s [7], determ ination of stability properties of solitons [8], [9], etcetera.
T he linealization of the geodesic equations in a given m anifold gives in a naturalw ay the so-called Jacobi equation, or geodesic deviation equation, that allow s to com pute the stability/instability of a given geodesic curve in term s of the sign of the curvature tensor over the geodesic (in fact, for twodim ensionalm anifolds, the problem reduces sim ply to the com putation of the sign of the gaussian curvature along the geodesic, see for instance [6]).

The geom etrization of the m echanical problem provides, as mentioned, a possible criterion of stability of the solutions of in term s of the geodesic deviation equation of the Jacobim etric associated to the system, via the M aupertuis-Jacobiprinciple, that wew ill call Jacobi-m etric stability criterion.

From the point ofview of the V ariationalC alculus applied to geodesics, a sim ilar result is obtained for the problem of calculation of xed-endpoints geodesics, where the sign of the second variation functional is determ ined by the geodesic deviation operator.

In this work we analyze the exact relation existing betw een this Jacobi-m etric criterion and the direct analysis of the stability of the solutions w ithout using the geom etrization principle. The linealization of the Euler-Lagrange equation (in this case, N ew ton equations) lead to a Jacobi-like equation that generalizes the geodesic deviation one to the case of naturalm echanical system s. In fact, this equation is also called Jacobi equation in the context of second-order ordinary di erential equations theory or K C C theory (K osam bi-C artan-C hem), [10], [11].

A swew ill see, the tw o approaches (geom etrical and dynam ical) are not equivalent in general, and the Jacobim etric criterion do not provide exactly the sam e result as the standard (or dynam ical) one.

The structure of the paper is as follow s : in section 2 we present the concepts involved in the w ork; Section 3 is dedicated to Jacobi-m etric stability criterion and its relation w ith the dynam ical one. In Section 4, the analysis is extended to the variational point of view for xed end-points problem s. Finally, an A ppendix is included w ith several technical form ulas (m ore or less well known) about the behavior of covariant derivatives and curvature tensor under conform al transform ations and reparam etrizations of curves.

2 P relim inaries and N otation

W e treat in this work w ith natural H am iltonian dynam ical system s, i.e., the triple (M ; ; ; L) , w here (M; g) is a R iem annian m anifold, and L is a naturalLagrangian function: $L: T M!R, L=T E U$,

$$
T=\frac{1}{2} h _i _=\frac{1}{2} g_{i j} q^{i} q^{j}
$$

in a system of local coordinates ($q^{1} ;::: ; q^{n}$) in M, U is a given smooth function $U: M \quad$! R,
(t) $\quad\left(q^{1}(t) ;::: q^{n}(t)\right)$ is a sm ooth curve on M, and $g_{i j}$ are the com ponents of the m etric g in this coordinate system (E instein convention about sum in repeated indices willbe used along the paper).
T he solutions (tra jectories) of the system are the extrem als of the action functionals [], de ned in the space of $s m$ ooth curves on $M: \quad:\left[t_{0} ; t_{1}\right]!M$, (we assum e that is at least of class C^{2} in the interval $\left.\left(t_{0} ; t_{1}\right)\right)$.

$$
S[]={ }_{t_{0}}^{Z} L(; \downarrow) d t
$$

where _ 2 (TM) stands for the tangent vector eld $\frac{d}{d t}$, i.e. _(t) $\frac{d}{d t}(t) 2 \mathrm{~T}$ ($\left.t\right)^{M}$.
Euler-Lagrange equations associated to this functional are N ew ton equations for the system :

$$
\begin{equation*}
S=0) r_{_}=\text {gradU } \tag{2}
\end{equation*}
$$

where r _ stands for the covariant derivative along (t) $\quad\left(q^{i}(t)\right)$:

$$
r_{--} \frac{D q^{i}}{d t}=\frac{d q^{i}}{d t}+\frac{i}{j k} q^{j} q^{k}
$$

being $\underset{j k}{i}$ the C hristofell sym bols of the Levi-C ivitta connection associated to the m etric g.

$$
\frac{1}{i j}=\frac{1}{2} g^{k l} \frac{@ g_{j k}}{@ q^{i}}+\frac{@ g_{i k}}{@ q^{j}} \frac{@ g_{i j}}{@ q^{k}}
$$

gradU is the vector eld w ith com ponents: (gradU) ${ }^{i}=g^{i j} \frac{@ U}{\varrho q^{j}}$. Equation (2) is thus written in local coordinates as the follow ing system of ordinary di erential equations:

$$
\begin{equation*}
\frac{D q^{i}}{d t}=q^{i}+\frac{i}{j k} q^{j} q^{k}=g^{i j} \frac{@ U}{@ q^{j}} \tag{3}
\end{equation*}
$$

N atural H am iltonian dynam ical system s over R iem annian m anifolds satisfy Legendre's condition in an obvious w ay, and thus the Legendre transform ation is regular, i.e. there exists a di eom orphism betw een the tangent and cotangent bundles of M in such a way that the Euler-Lagrange equations are equivalent to the H am ilton (or canonical) equations.

$$
\begin{equation*}
p_{i}=\frac{@ H}{@ q^{i}} ; \quad q^{j}=\frac{@ H}{@ p_{j}} \tag{4}
\end{equation*}
$$

where

$$
p_{j}=\frac{@ L}{@ q^{j}}=g_{i j} q^{i} ; \quad H=\frac{1}{2} g^{i j} p_{i} p_{j}+U
$$

and $g^{i j}$ denotes the com ponents of the inverse of g.
T his kind of system s are autonom ous, thus the m echanicalenergy is a rst integral of the system :

$$
E=\frac{1}{2} g_{i j} q^{i} q^{j}+U\left(q^{1} ;::: ; q^{n}\right)
$$

Stability of the solutions of (3), understood in term s of sensitive dependence on in itial conditions, is interpreted as follow s: T he trajectory (t), solution of (3), is said to be stable if all tra jectories w ith su ciently close in itialconditions at t_{0} rem ains close to the tra jectory (t) for later tim es $t>t_{0}$.

Let $(t ;)=\left(q^{1}(t ;) ;::: q^{n}(t ;)\right)$ be a fam ily of solutions of equations (3), with (t) (t; 0), and given initial conditions $q^{i}\left(t_{0} ;\right), q^{i}\left(t_{0} ;\right)$. Let us assum e that the initial conditions are analytic in the param eter. Then: $(t)=\left(q^{i}(t)\right)$ is a stable tra jectory iffor any " >0, there exists a (") >0 such that $\dot{q}^{i}\left(\mathrm{t}\right.$;) $q^{i}(t) j<$ " for $t>t_{0}$ and for all trajectories $q(t ;)=\left(q^{i}(t ;)\right)$ satisfying both $\dot{M}^{i}\left(t_{0} ;\right) \quad q^{i}\left(t_{0}\right) j<\quad$ and $\dot{\underline{q}}^{i}\left(t_{0} ;\right) \quad \underline{q}^{i}\left(t_{0}\right) j<$.

A ssum ing that g is sm ooth and considering that (t;) are analytic in (they are solutions of an analytic system of di erential equations), we can write, for su ciently sm all:

$$
\begin{equation*}
q^{i}(t ;)=q^{i}()+v^{i}(t)+o\left({ }^{2}\right) \quad ; \quad v^{i}(t)=\frac{@ q^{i}(t ;)}{@}=0 \tag{5}
\end{equation*}
$$

In a sim ilar way, we can w rite:

$$
\begin{align*}
\dot{i}(q(t ;)) & ={ }_{j k}^{i}(q(t))+\frac{@ \frac{i}{j k}}{@ q^{l}}(q(t)) v^{l}(t)+o\left({ }^{2}\right) \tag{6}\\
g^{i j}(q(t ;)) & =g^{i j}(q(t))+\frac{@ g^{i j}}{@ q^{l}}(q(t)) v^{1}(t)+o\left(^{2}\right) \tag{7}\\
@_{j} U(q(t ;)) & =@_{j} U(q(t))+@_{1} @_{j} U(q(t)) v^{1}(t)+o\left(^{2}\right) \tag{8}
\end{align*}
$$

where $@_{j} U=\frac{@ U}{@ q^{j}}$.
Thus equations (3) becom e:

$$
\begin{equation*}
v^{i}+2 \stackrel{i}{j k} \underline{v}^{j} q^{k}=g^{i p} v^{l} @_{1} @_{p} U+{ }_{l p}^{j} @_{j} U+g^{j p} \underset{l p}{i} @_{j} U v^{l} \tag{9}
\end{equation*}
$$

where allfunctions are taken at (t). Taking into account the expression of the second order covariant derivatives:
and the components of the R iem ann curvature tensor: $R(X ; Y) Z=r_{X}\left(r_{Y} Z\right)+r_{Y}\left(r_{X} Z\right)+$ $\left.r_{[X ; Y}\right]$, $8 \mathrm{X} ; \mathrm{Y} ; \mathrm{Z} 2$ (TM):

$$
R_{l k j}^{i}=\underset{k p}{\stackrel{i}{i}} \underset{p l}{i} \quad \underset{p l}{i} \underset{j k}{p}+@_{k} \underset{j 1}{i} \quad @_{1} \underset{j k}{i}
$$

we nally arrive to the expression:

$$
\frac{D^{2} v^{i}}{d t^{2}}+R{ }_{l j k}^{i} \underline{q}^{1} q^{j} v^{k}=\quad g^{i j} \quad @_{1} @_{j} U \quad{ }_{j 1}^{r} @_{r} U \quad v^{1}
$$

that can be w ritten as a vector equation:

$$
\begin{equation*}
r_{-} r_{-} V+K_{-}(V)+r_{V} g r a d U=0 \tag{10}
\end{equation*}
$$

where $V=V(t) \quad\left(V^{i}(t)\right)$, and we have used the sectional curvature tensor:

$$
K_{X}(Y)=R(X ; Y) X ; \quad 8 X ; Y 2 \quad(T M)
$$

and the H essian of the potential energy $U: H(U)=r d U$

$$
r d U=@_{j} @_{1} U \quad @_{k} U \quad \underset{j 1}{k} \mathrm{dq}^{j} \quad \mathrm{dq}^{1}
$$

in such a way that 8 X ; Y 2 (TM)
r dU (X ;Y)= hr x grad (U);Y i=hr y grad (U);X i

Solutions of equation (10) determ ine the behavior of the fam ily of solutions (t;) w ith respect to the selected solution (t). Thus typical solutions of linear equations (trigonom etric functions, exponentials, etc.) will prescribe the stability/instability situations. In several contexts equation (10) is usually called Jacobi equation, by analogy w ith the geodesic case. In fact, in the so-called K C C theory on second order di erential equations, equation (11) is nothing but the Jacobiequation for the special case of N ew ton di erential equations. In order to avoid confusions we will denote H essian operator for the m echanical system to:

$$
V=r r_{-} V+K_{-}(V)+r_{v} g r a d U
$$

and thus we reserve the term Jacobioperator (and equation) to the geodesic case, i.e. to the geodesic deviation equation.

In the special case of $x e d$ starting point for the fam ily of solutions (t;) , i.e. (t_{0};) = $\left(t_{0}\right)$, an equivalent approach to equation (11) can be considered. T he rst variational derivative of functional (1) lead to Euler-Lagrange equations (3), and thus the second variation functional (or H essian functional) will determ ine (together obviously w ith the Legendre straightness condition, autom atically satis ed for this kind of system s, see [12]) the localm inim um /m axim um character of a solution of (3). The second-variation functional of the action S, for the case of proper variations (V 2 ($\mathrm{T} M$) such that $\left.\mathrm{V}\left(\mathrm{t}_{0}\right)=\mathrm{V}\left(\mathrm{t}_{1}\right)=0\right)$ is:

$$
\begin{equation*}
{ }^{2} S[(t)]=\quad{ }_{t_{0}}^{\mathrm{t}_{1}} d t h r_{-} r_{-} V+K_{-}(V)+r_{v} \text { gradU ; } V i={ }_{t_{0}}^{\mathrm{Z}_{1}} d t h V ; V i \tag{11}
\end{equation*}
$$

and thus the positive or negative de niteness of the operator determ ines the character of the solution (t).

3 The Jacobi-M etric Stability C riterion

The M aupertuis-Jacobi P rinciple establishes the equivalence betw een the resolution of the N ew ton equations (3) of the natural system and the calculation of the geodesic curves in an associated R iem annian m anifold. The crucial point of the P rinciple is the existence of the m echanical energy as rst integral for equations (3). Solutions of (3) corresponding to a xed value E $=T+U$ will be in one to one correspondence w ith the solutions of the equations of geodesics in the m anifold M with the so-called Jacobim etric: $h=2(E \quad U)$ g, associated to the E value.
G eodesics in the R iem annian m anifold $M \quad(M ; h)^{1}$ can be view ed as extrem als of the free action

[^0]functional S_{0} or of the Length functionalL:
\[

$$
\begin{equation*}
S_{0}[]={ }_{t_{0}}^{\mathrm{Z}_{1}} \frac{1}{2}\left(\mathrm{k} _(\mathrm{t}) \mathrm{k}^{\mathrm{J}}\right)^{2} d t ; \quad \mathrm{L}[]={ }_{\mathrm{t}_{0}}^{\mathrm{Z}} \mathrm{t}_{1} \mathrm{k}_{\mathrm{l}}(\mathrm{t}) \mathrm{k}^{\mathrm{J}} d t \tag{12}
\end{equation*}
$$

\]

for any di erentiable curve : $\left[t_{0} ; t_{1}\right]!\mathrm{M}$ connecting thepoints $\left(t_{0}\right)=P$ and $\left(t_{1}\right)=Q, P ; Q 2 M$. The extrem al conditions, $S_{0}=0$ and $L=0$, lead us to the Euler-Lagrange equations (equations of the geodesics in M):

$$
\begin{equation*}
\left.\left.S_{0}=0\right) r_{--}^{J}=0 ; \quad L=0\right) \quad r_{--}^{J}=\quad(t) \quad ; \quad(t)=\frac{d^{2} t}{d s^{2}} \frac{d s}{d t}{ }^{2} \tag{13}
\end{equation*}
$$

$L=0$ leads to the equations of the geodesics param etrized w ith respect to an arbitrary param eter t (often called pre-geodesics) as a natural consequence of the invariance under reparam etrizations of the Length functional, whereas $S_{0}=0$ produces the equations of a nely param etrized geodesics. If we restrict to the arc-length param etrization and we will denote, as usual, ${ }^{0}=\frac{d}{d s}$, equations (13) are written as: $r^{J}{ }_{0}{ }^{0}=0$, or explicitly, in term s of C hristo el symbols $\sim{ }_{j k}^{\sim}$ of the Levi-C ivitta connection of h, as:

$$
\begin{equation*}
\frac{D\left(q^{i}\right)^{0}}{d s}=\left(q^{i}\right)^{\infty}+\underset{j k}{\sim}\left(q^{j}\right)^{0}\left(q^{k}\right)^{0}=0 \tag{14}
\end{equation*}
$$

T he M aupertuis-Jacobi P rinciple can be form ulated in the follow ing form :
Theorem of Jacobi. The extrem al trajectories of the variational problem associated to the functional (1) w ith m echanical energy E, are pre-geodesics of the m anifold (M; h), where h is the Jacobi m etric: $h=2\left(\begin{array}{ll}\mathrm{E} & \mathrm{U}\end{array}\right) \mathrm{g}$.

From an analytic point of view, the theorem sim ply establishes that the N ew ton equations (3) for the action S, are written as the geodesic equations in $(M ; h): r J_{0}{ }^{0}=0$, when the conform al transform ation: $h=2(E \quad U) g$, and a reparam etrization (from the dynam icaltim e to the arc-length param eter s in (M;h)) are perform ed.

M oreover, the dependence betw een the tw o param eters is determ ined over the solutions by the equation:

$$
\begin{equation*}
\frac{d s}{d t}=2^{P} \overline{E \quad U((s)) T}=2(E \quad U((s))) \tag{15}
\end{equation*}
$$

The proof of th is theorem can be view ed in several references (see for instance [6], see also [12] for a general version of the P rinciple). H ow ever, a very sim ple proof of the theorem can be carried out by the explicit calculation of equations (14) in term s of the originalm etric g, m aking use of Lem m as 1 and 2 of the A ppendix, that detail the behavior of the covariant derivatives under conform al transform ations and re-param etrizations. $r^{J_{0}}{ }^{0}=0$ turns out to be

$$
\begin{equation*}
r \quad 0^{0}+\operatorname{hgrad}(\ln (2(E \quad U))) ; 0_{i} 0 \quad \frac{1}{2} h^{0} ; \quad 0_{i g r a d}(\ln (2(E \quad U)))=0 \tag{16}
\end{equation*}
$$

in term sof the r derivative. By applying now Lem ma 2 to (16) we obtain, after the corresponding reparam etrization and sim pli cations, the equation

$$
\left.r_{_}+\operatorname{grad}^{(U)}\right)=0
$$

i.e. the N ew ton equations of the m echan ical system .
T his result allow s to de ne the Jacobi-m etric criterion for stability of the m echanical solutions in term s of the corresponding geodesics of the Jacobim etric.

In an analogous w ay to the previous section, one can linearize the equations (14) of the geodesics in (M;h) by considering a fam ily of geodesics $(s ;)$:

$$
(t ;)=(t)+V+o\left({ }^{2}\right)
$$

w ith $V(s)=\frac{@(s ;)}{@}=0$. Follow ing the sam e steps, one nally arrives to the expression

$$
\begin{equation*}
r^{J_{o r}}{ }_{o} V+K^{J_{o}}(V)=0 \tag{17}
\end{equation*}
$$

w here $V=V(s) \quad\left(V^{i}(s)\right)$, and K^{J} is the sectional curvature tensor of the $h m$ etric.
Equation (17) is the G eodesic Deviation Equation, or JacobiEquation, for a given geodesic (s) of (M ;h). W ew ill denote JacobiO perator, or G eodesic D eviation O perator to:

$$
\begin{equation*}
{ }^{J} V=r^{J_{o r}}{ }^{J_{o}} V+K^{J_{o}(V)} \tag{18}
\end{equation*}
$$

T hus stability of a solution of N ew ton equations (t) w ill be determ ined, in this criterion, if the corresponding geodesic (s) is stable, that nally leads to equation (17).

In order to determ ine the exact relation existing betw een the Jacobi-m etric criterion and the dynam ical o standard one, we w ill analyze now equation (17), by using the results about conform al transform ations and re-param etrizations included in the A ppendix.

A pplying Lem m a 1 and Lem m a 3 (see A ppendix) to the Jacobioperator (18) and sim plifying the expressions, equation (17) is w ritten as:

$$
\begin{align*}
& { }^{J} \mathrm{~V}=\mathrm{r} \text { or } \mathrm{oV}+\mathrm{K} 0(\mathrm{~V})+\frac{1}{2} \mathrm{hF} \text {;Vir } 0^{0}{ }^{0}+\mathrm{F} ;{ }^{0} \mathrm{r} \text { oV } \frac{1}{2}{ }^{0} \text {; }{ }^{0} r_{\mathrm{V}} \mathrm{~F}+ \\
& +\mathrm{FiroV}+\frac{1}{2} h \mathrm{FiViFi}{ }^{0}+\mathrm{rvFi}_{\mathrm{V}} \mathrm{O}^{0}+ \\
& +\frac{1}{2} F ; \mathrm{FO}^{0}+\frac{1}{2} \mathrm{~F} ; \mathrm{O}^{2} \frac{1}{4}{ }^{0} ;{ }^{0} \mathrm{hF} ; \mathrm{Fi} \mathrm{~V}+ \\
& +\quad \frac{1}{2} \mathrm{ra}{ }^{0} \mathrm{FV} \quad{ }^{0} ; \mathrm{r} 0 \mathrm{~V} \quad \frac{1}{2} \mathrm{Fi}{ }^{0}{ }^{0} ; \mathrm{V} \quad \mathrm{~F} \tag{19}
\end{align*}
$$

depending only on the m etric g, and where F denotes: $F=\operatorname{grad} \ln (2(E \quad U))$. Reparam etrization of (s) in term s of the t-param eter:

$$
{ }^{0}(s)=\frac{1}{2(E \quad U((t)))} _(t) ; \quad r \quad 0 X=\frac{1}{2(E \quad U((t)))} r X_{-}
$$

and application of Lem m a 2 to (19) lead to:

$$
\begin{aligned}
& { }^{J} \mathrm{~V}=\frac{1}{(2(\mathrm{E} U))^{2}} \quad r_{-} r_{-} \mathrm{V}+\mathrm{K}_{-}(\mathrm{V})+\frac{1}{2} \mathrm{hF} ; \mathrm{V} \text { ir _- } \frac{1}{2} h_{\text {_i_ir }}^{\mathrm{V}} \mathrm{~F}+
\end{aligned}
$$

$$
\begin{align*}
& +\frac{1}{2} h F ; r_{\text {__ }} \quad \frac{1}{4} h \text { i_ihF; } F i \quad V+ \\
& +\quad \frac{1}{2} h V ; r_{\text {_i }} \quad h _r_{-} \text {Vi F } \tag{20}
\end{align*}
$$

Expression (20) is written in term s of quantities depending only on the m etric g and the $t-$ param eter. In order to relate this expression w ith the H essian operator $w e$ need to rem em ber that (t) is a solution of the N ew ton equations (3) of energy E , and thus: $\mathrm{r}_{\mathrm{n}}=$ = gradU, h_i_i= $2(E \quad U((t))) . U$ sing these facts and sim plifying we arrive to:

$$
\begin{equation*}
{ }^{J} V=\frac{1}{(2(E \quad U))^{2}} \quad V \quad \frac{d}{d t} \frac{h V ; g r a d U ~ i}{E \quad U} \quad-\quad \frac{\text { hgradU ;Vi+ h_ir_V i }}{E \quad U} \text { gradU } \tag{21}
\end{equation*}
$$

where we have used the identity: h_ir v gradU i=hV ir _gradU i.
O bviously, the tw o operators do not coincide, and correspondingly solutions of the Jacobiequation
${ }^{J} \mathrm{~V}=0$ and the equation $\mathrm{V}=0$ do not so. The tw o criteria of stability are not equivalent. In order to investigate equation (21) to determ ine the reasons of this non-equivalence betw een the two criteria, we have to rem ark that whereas all the geodesics ($\mathrm{s} ;$) considered in the calculation of J correspond to m echanical solutions of energy E (they are solutions of the equation of geodesics in (M ;h), with $\mathrm{h}=2(\mathrm{E} \quad \mathrm{U}) \mathrm{g}$), the solutions (t ;) are in principle of energy:

$$
\begin{equation*}
E=\frac{1}{2} q^{i}(t ;) g_{i j}((t ;)) q^{j}(t ;)+U(q(t ;)) \tag{22}
\end{equation*}
$$

B ut a correct com parison betw een tw o stability criteria is only well established if the criteria act over the sam e ob jects. T hus the com parison is only licit if one restricts the fam ily (t;) to verify: $\mathrm{E}=\mathrm{E}$. Expanding (22) in we nd:

$$
\begin{equation*}
E=E+\left(h _r \text { _ } V+\text { hgradU ; } V i i\right)+o\left({ }^{2}\right) \tag{23}
\end{equation*}
$$

A nd thus the requirem ent $\mathrm{E}=\mathrm{E}$ reduces to the veri cation of: h_ir _i= hgradU ;Vi.
T hus the relation betw een the Jacobioperator and the hessian operator restricted to equal-energy variations is:

$$
\begin{equation*}
{ }^{J} V=\frac{1}{(2(E \quad U))^{2}} \quad V \quad \frac{d}{d t} \quad \frac{h V \text {;gradU } i}{E \quad U}- \tag{24}
\end{equation*}
$$

and the two operators are not equivalent, even considering the equal-energy restriction.

4 The V ariational point of view

As it has been explained in the Introduction of this work, we will apply now the above obtained results to the special case of xed end-points, i.e. we w ill restrict our analysis to the situation w here the conditions: $\left(t_{0}\right)=P$ and $\left(t_{1}\right)=Q, w$ ith P and $Q \quad$ xed, are im posed. From the m echanical point of view, this is exactly the case of the calculation of soliton ic solutions in F ield T heories (see for instance [8]) where asym ptotic conditions determ ine the starting and ending points. U sing the M aupertuis-Jacobi P rinciple, this situation is translated to the problem of calculating the geodesics connecting two xed points in the manifold M. W e thus use the fram ew ork of the Variational C alculus for xed end-points problem s.

The m in im izing character (local minim um) of a geodesic (s) connecting two xed points is determ ined by the second variation functional:

$$
\begin{equation*}
{ }^{2} \mathrm{~S}_{0}=\mathrm{Z}_{\mathrm{s}_{1}}{ }_{\mathrm{s} 0}{ }^{\mathrm{J}} \mathrm{~V} ; \mathrm{V} \text { ds; } \quad{ }^{2} \mathrm{~L}=\mathrm{s}_{\mathrm{s}_{1} \mathrm{D}}{ }^{J} \mathrm{~V}^{?} ; \mathrm{V}^{?}{ }^{\mathrm{E}} \mathrm{ds} \tag{25}
\end{equation*}
$$

where J is the geodesic deviation operator of h :

$$
{ }^{J} V=r^{J_{o r}}{ }^{J_{0}} V+R^{J}\left({ }^{0} ; V\right)^{0}=r \text { or } 0 V+K^{J_{0}}(V)
$$

where V 2 (TM) denotes any proper variation and V ? is the orthogonal com ponent of V to the geodesic.

W ew illshow now tw o theorem s, in the rst one it is established the di erence betw een the second variation functional of the dynam icalproblem and the corresponding one to the free-action functional associated to the Jacobim etric. In the second one, a sim ilar analysis is carried out for the Length functional.
 $S_{0}^{J}[]=\begin{array}{r}R_{S_{1}} \\ S_{0} \\ 2\end{array}{ }^{0} ;{ }_{i}{ }_{i}^{J}$ ds be the free action functional of the Jacobim etric associated to S [] and corresponding to a xed value, E, of the m echanical energy, then the corresponding H essian functionals verify :

$$
\begin{equation*}
{ }^{2} S_{0}^{J}[]={ }^{2} S[]+{ }_{t_{0}}^{\mathrm{t}_{1}} d t 2 h_{\sim} r^{r} \text { _VihF ;Vi } \tag{26}
\end{equation*}
$$

where $F=\operatorname{grad} \ln (2(E \quad U))$.
Theorem 2. Let (t) be an extrem al of the $S\left[1=\begin{array}{c}R_{t_{1}} \\ t_{0}\end{array} \frac{1}{2} h_{i} ; i \quad U() d t\right.$ functional and let $L^{J}[]=\begin{gathered}R_{S_{1}} \\ s_{0}\end{gathered} q_{k} d s$ be the length functionalof the Jacobim etric associated to S [] and corresponding to a xed value, E, of the m echanical energy, then the corresponding hessian functionals verify:

$$
\begin{equation*}
{ }^{2} L^{J}[]={ }^{2} S[] \quad{ }_{t_{0}}^{\mathrm{t}_{1}} \frac{d t}{2(E \mathrm{U})}[\mathrm{hr} \quad \text { _iVi } \quad \text { sh_r } \quad \mathrm{V} i]^{2} \tag{27}
\end{equation*}
$$

From (27) it is obvious that m in im izing geodesics are equivalent to m in im izing (stable) solutions of the dynam ical system, i.e. a positive de niteness of ${ }^{2} L^{J}$ im plies the sam e behaviour for ${ }^{2} S$, but it is not necessarily true the reciprocal statem ent.

If w e restrict the variations to the orthogonal ones, $V=V^{?}$, (27) can be rew ritten as:

$$
{ }^{2} S_{V=V} ?={ }^{2} L^{J}+{ }_{s_{0}}^{Z} d s h F^{J} ; V^{?} i^{J}{ }^{2}
$$

T he proofs of these tw o theorem s are based on the behaviour of the covariant derivatives and the curvature tensor under reparam etrizations and conform al transform ations of the m etric tensor. We thus use the technical results included in the A ppendix.
Proof of Theorem 1.W e start w ith equation (25) particularized to the case of the Jacobim etric:

$$
{ }^{2} S_{0}^{J}[]={ }_{s_{0}}^{Z} \mathrm{ds} \quad{ }^{\mathrm{J}} \mathrm{~V} ; \mathrm{V}^{\mathrm{J}}
$$

With ${ }^{J} V=r{ }^{J}{ }_{0}{ }^{J^{J}}{ }_{0} V+K{ }^{J}{ }_{0}(V)$.
U sing expression (21), deduced in the previous section after changing them etric and re-param etrizing, we can w rite:

$$
\begin{align*}
& r^{J_{o r}}{ }^{J}{ }_{o} V+K^{J_{0}}(V) ; V^{J}=\frac{1}{2(E \quad U)} h r_{-} r_{-} V+K_{-}(V)+r_{v} g r a d U ; V i+ \tag{28}\\
& +\frac{1}{2(\mathrm{E} U)} \frac{@}{@ t}\left(\mathrm{hF} ; \mathrm{V} \text { ih_;Vi)+} \frac{1}{\left(\mathrm{E} \mathrm{U} \mathrm{)}^{2}\right.} \mathrm{h}_{\mathrm{E}} ; \mathrm{r}_{-}\right. \text {V ihgradU ;V i }
\end{align*}
$$

A nd thus, the second variation functional is w ritten as:

$$
\begin{aligned}
& \frac{d^{2} S_{0}^{J}[]}{d^{2}}(0)=\quad Z_{S_{1}} d s r^{J_{o r}}{ }^{J}{ }_{0} V+K^{J_{0}}(V) ; V^{J}= \\
& { }^{s} Z_{t_{1}} \\
& =Z_{t_{1}}^{t_{0}} d \text { thr } r_{-} V+K_{-}(V)+r_{v} \text { gradU ; } V i+ \\
& + \\
& \text { dt2h_r } \quad \text { VihF; } \mathrm{V} \text { i } \mathrm{hF} ; \mathrm{V} \text { ih_; } \mathrm{V} i \mathrm{i}_{\mathrm{t}_{0}}^{\mathrm{t}_{1}}
\end{aligned}
$$

For proper variations: $V\left(t_{1}\right)=V\left(t_{2}\right)=0$

$$
\frac{d^{2} S_{0}^{J}[]}{d^{2}}(0)=\frac{d^{2} S[]}{d^{2}}(0)+{ }_{t_{1}}^{\mathrm{t}_{2}} d t 2 h_{i} ; r_{-} \mathrm{V} i h F ; V i
$$

with $F=\operatorname{grad} \operatorname{Ln}\left(2\left(\begin{array}{ll}\mathrm{E} & \mathrm{U}))=\frac{1}{\mathrm{E} \quad \mathrm{U}} \operatorname{gradU} . \\ \text {. }\end{array}\right.\right.$ Q E.D.

Proof of Theorem 2: For the Length functionalwe have:

$$
\frac{d^{2} L^{J}[]}{d^{2}}(0)=\quad Z_{s_{1}}^{s_{2}} d^{D} r^{J_{o r}}{ }_{o} V^{?}+K^{J_{0}\left(V^{?}\right) ; V^{?}}
$$

where

$$
\mathrm{V}^{?}=\mathrm{V} \quad \frac{0}{\mathrm{k} \mathrm{O}_{\mathrm{k}} \mathrm{~J}} ; \mathrm{V} \quad \frac{\mathrm{~J}}{\mathrm{k} 9_{\mathrm{k}^{J}}}=\mathrm{V} \quad{ }^{0} ; \mathrm{V} \quad 0
$$

and thus:

$$
\frac{d^{2} L^{J}[]}{d^{2}}(0)=\frac{d^{2} S_{0}^{J}[]}{d^{2}}(0) \quad{ }_{s_{1}}^{Z} \mathrm{~S}_{2} \quad 0^{0} r^{J_{0}} V^{J^{2}}
$$

By using T heorem 1 , we have that

$$
\begin{aligned}
& \frac{d^{2} L^{J}[]}{d^{2}}(0)=\frac{d^{2} S_{0}^{J}[]}{d^{2}}(0){ }_{s_{1}}^{Z} \mathrm{~s}_{2} d_{; r^{J}{ }_{0} V^{J}{ }^{2}=}= \\
& =\frac{d^{2} S[]}{d^{2}}(0)+{ }_{t_{1}}^{Z_{t_{2}}^{s_{1}}} 2 h_{i} ; r_{-} V i h F ; V d t i+{ }_{t_{1}}^{Z} A(t) d t
\end{aligned}
$$

where:

$$
{ }_{t_{1}}^{\mathrm{Z}_{2}} A(\mathrm{t}) \mathrm{dt}=\mathrm{Z}_{\mathrm{s}_{1}} \mathrm{ds} \quad{ }^{0} ; r^{J_{0} V} \mathrm{~J}^{2}={ }_{\mathrm{t}_{1}}^{\mathrm{t}_{2}} d t(2(\mathrm{E} \quad \mathrm{U}))^{3} \quad{ }^{0} \boldsymbol{;} r_{0}{ }_{0} V^{2}
$$

From Lem m a 1 and N ew ton equations, we have

$$
{ }_{t_{1}}^{\mathrm{t}_{2}} A(t) d t={ }_{t_{1}}^{t_{2}} d t \frac{1}{2(E \quad U)}\left(h_{1} r_{-} V_{i+}(E \quad U) h F ; V i\right)^{2}
$$

Finally

$$
\frac{d^{2} L^{J}[]}{d^{2}}(0)=\frac{d^{2} S[]}{d^{2}}(0) \quad t_{t_{1}}^{t_{2}} d t \frac{1}{2(E \quad U)}\left[h_{1} ; r_{-} V i \quad h r r_{-} ; V i\right]^{2}
$$

Q E. D.

5 A ppendix

Lem ma1. G iven a conform altransform ation in a riem annian manifold, ($\mathrm{M} ; \mathrm{g}$) ! ($\mathrm{M} ; \mathrm{g}) ; \mathrm{g}=\mathrm{f}(\mathrm{x}) \mathrm{g}$, $f(x) \in 0,8 x 2 M$, letr and \tilde{r} be the associated Levi-C ivita connections respectively. Then, for all $\mathrm{X} ; \mathrm{Y} ; \mathrm{Z} 2$ (TM) it is veri ed that:

$$
\begin{equation*}
\tilde{r}_{X} Y=r_{x} Y+\frac{1}{2} h F ; Y i X+\frac{1}{2} h F ; X i Y \quad \frac{1}{2} h X ; Y i F \tag{29}
\end{equation*}
$$

$\tilde{r}_{X} \tilde{r}_{Y} Z=r_{X} r_{Y} Z+\frac{1}{2} h F ; Z$ ir $X Y+\frac{1}{2} h F ; Y$ ir $X Z \quad \frac{1}{2} h Y ; Z$ ir $X F+\frac{1}{2} h F ; X$ ir $Y Z+$

$+\frac{1}{2} h r \times F ; Z i+\frac{1}{2} h F ; r_{x} Z i+\frac{1}{4} h F ; Z i h F ; X i \quad Y+$ $+\frac{1}{2} h r x F ; Y i+\frac{1}{2} h F ; r \times Y i+\frac{1}{4} h F ; X i h F ; Y i Z+$ $+\frac{1}{2} h r x Y ; Z i \quad \frac{1}{2} h Y ; r_{x} Z i \quad \frac{1}{2} h X ; r_{y} Z i \quad \frac{1}{4} h F ; Z i h X ; Y i \quad \frac{1}{4} h F ; Y$ ihX ;Zi F
w here the scalar products are taken w ith respect to the m etric g and $F=g r a d(\ln f)$ (grad stands for the gradient w ith respect the m etric g).

Proof: By direct calculation. Let us consider the expression of the C hristo el sym bols of the of m etric:

$$
\sim \underset{j k}{i}=\frac{1}{2} g^{i r}\left(@_{k} \oiint_{j r} \quad @_{r} \bigodot_{j k}+@_{j} \Phi_{r k}\right)
$$

and substitute $g_{i j}=f g_{i j}, g^{i j}=\frac{1}{f} g^{i j}$. So

$$
\underset{j \mathrm{k}}{\sim}={ }_{j \mathrm{k}}^{\mathrm{i}}+\frac{1}{2} \operatorname{grad}(\ln \mathrm{f})^{m} \quad{ }_{j}^{i} \operatorname{g}_{\mathrm{m} k}+{ }_{k}^{i} \operatorname{g}_{\mathrm{m}} j \quad \operatorname{g}_{j \mathrm{k}} \operatorname{grad}(\ln \mathrm{f})^{i}
$$

and the covariant derivative will be

$$
\widetilde{r}_{X} Y=X^{j} \widetilde{r}_{j} Y=X^{j} \quad \frac{@ Y^{i}}{@ x^{j}}+\sim_{j k}^{i} Y^{k} \quad \frac{@}{@ x^{i}}=r_{X} Y+A_{j k}^{i} X^{j} Y^{k} \frac{@}{@ x^{i}}
$$

where $A{ }_{j k}^{i}$ stands for:

$$
\begin{aligned}
& A_{j k}^{i} X^{j} Y^{k}=\frac{1}{2} \operatorname{grad}(\ln f)^{m} \quad{ }_{j}^{i} g_{m k}+{ }_{k}^{i} g_{m} j \quad g_{j k} \operatorname{grad}(\ln f)^{i} X^{j} Y^{k}= \\
& \quad=\frac{1}{2} \operatorname{hgrad}(\ln f) ; Y i X^{i}+\operatorname{hgrad}(\ln f) ; X i Y^{i} \quad \frac{1}{2} h X ; Y \operatorname{igrad}(\ln f)^{i}
\end{aligned}
$$

Finally, sim plifying

$$
\tilde{r}_{X} Y=r_{X} Y+\frac{1}{2} h \operatorname{grad}(\ln f) ; Y i X+\frac{1}{2} \operatorname{hgrad}(\ln f) ; X i Y \quad \frac{1}{2} h X ; Y \operatorname{igrad}(\ln f)
$$

and sim ilarly for (30).
Q E.D.

Lem ma2. G iven a (di erentiable) curve : [$\left.t_{1} ; t_{2}\right]$! M on M, let $(s)=(t(s))$ be an adm issible re-param etrization of,$\left.d s=f(x(t)) d t(f(x(t))\} 0 ; 8 t 2\left[t_{1} ; t_{2}\right]\right)$. Then 8 X 2 (TM):

$$
\begin{gather*}
r \circ X=\frac{1}{f(x)} r X_{-} \tag{31}\\
r \circ^{0}=\frac{1}{f(x)^{2}}\left(r_{-} \quad \operatorname{hgrad}(\ln f) ; i_{-}\right) \tag{32}\\
r \text { or } o X=\frac{1}{f(x)^{2}}\left(r_{-} r ~_{-} \quad \operatorname{hgrad}(\ln f) ; i r_{-} X\right) \tag{33}
\end{gather*}
$$

where $\quad(t)=\frac{d(t)}{d t}$ and ${ }^{0}(s)=\frac{d(s)}{d s}$.
Proof: A gain by direct calculation

$$
\begin{aligned}
& r o X=\frac{d X^{i}}{d s}+{ }_{j k}^{i} x^{0 j} X^{k} \quad \frac{@}{@ x^{i}}=\frac{d X^{i}}{d t} \frac{d t}{d s}+{ }_{j k}^{i} \underline{X}^{j} \frac{d t}{d s} X^{k} \quad \frac{@}{@ x^{i}}=\frac{1}{f} r_{-} X \\
& r 0^{0}=\frac{1}{f} r{ }_{-}{ }^{0}=\frac{1}{f} \frac{d x^{0 i}}{d t}+{ }_{j k}^{i} \underline{x}^{j} x^{@} \quad \frac{@}{@ x^{i}}=\frac{1}{f} \frac{d}{d t} \frac{\underline{x}^{i}}{f}+{ }_{j k}^{i} \underline{x}^{j} \underline{x}^{k} \frac{1}{f^{2}} \frac{@}{@ x^{i}}= \\
& =\frac{1}{f^{2}} r_{--} @_{k} \ln f \underline{x}^{k} \underline{x}^{i} \frac{@}{@ x^{i}}=\frac{1}{f^{2}}\left(r_{-} \quad \operatorname{hgrad}(\ln f) ; i _\right. \\
& r \text { or } o X=r \circ \frac{1}{f} r X_{-}=r \circ \frac{1}{f} r X_{-} X+\frac{1}{f^{2}} r __{-} X= \\
& =\frac{d t}{d s} \frac{d}{d t} \frac{1}{f} r_{-} X+\frac{1}{f^{2}} r_{-} r_{-} X=\frac{1}{f^{2}}\left(r_{-} r_{-} X \quad \operatorname{hgrad}(\ln f) ; i r_{-} X\right)
\end{aligned}
$$

Q E.D.
Lem ma3. G iven a conform al transform ation in a R iem annian manifold: (M ; g) ! (M ; g), $g=$ $\mathrm{f}(\mathrm{x}) \mathrm{g}$, let R and R^{\sim} be the associated curvature tensors respectively. Then, for any X ; Y ; Z 2 (TM), it is veri ed that:

$$
\begin{align*}
& \mathrm{R}^{\sim}(\mathrm{X} ; \mathrm{Y}) \mathrm{Z} \quad=\mathrm{R}(\mathrm{X} ; \mathrm{Y}) \mathrm{Z} \quad \frac{1}{2} \mathrm{hX} \text {; } \mathrm{Z} \text { ir } \mathrm{Y} F+\frac{1}{2} \mathrm{hY} ; \mathrm{Z} \text { ir } \mathrm{X} F+ \\
& +\frac{1}{2} h r_{Y} F ; Z i \frac{1}{4} h F ; Z i h F ; Y i+\frac{1}{4} h Y ; Z i h F ; F i \quad X+ \\
& +\quad \frac{1}{2} h r \times F ; Z i+\frac{1}{4} h F ; Z i h F ; X i \quad \frac{1}{4} h X ; Z i h F ; F i \quad Y+ \\
& +\frac{1}{2} h r_{Y F ; X i} \frac{1}{2} h r_{x} \text { F;Yi Z + } \tag{34}\\
& +\frac{1}{4} h F ; Y i h X ; Z i \frac{1}{4} h F ; X \text { ihY ;Zi F }
\end{align*}
$$

w here r is the Levi-C ivita connection associated to $g, F=\operatorname{grad}(\ln f)$ and the scalar products and the gradient are taken w ith respect to the m etric g.

Proof: Apply Lemmal to the form ula: $\left.R(X ; Y) Z=\tilde{r}_{X}\left(\tilde{r}_{Y} Z\right)+\tilde{r}_{Y}\left(\tilde{r}_{X} Z\right)+\tilde{r}_{[X ;}\right]$, and simplify. Q E. D.

R eferences

[1] M . Szydlow ski, J. Szczesny, Phys. Rev. D 50 (1994) $819\{840$.
[2] M . Szydlow ski, M . H eller, W . Sasin , J. M ath. Phys. 37 (1996) $346\{360$. M . Szydlow ski, R egul. C haotic Dyn. 3 (1998) $10\{19$.
[3] O . H rycyna, M . Szydlow ski, C haos, Sol. Frac. 28 (2006) 1252\{1270.
[4] L. C asetti, M . Pettini, E .G D. C ohen, Phys. R ep. 337 (2000) 237\{341.
[5] D .V . A nosov, Ya.G . Sinai, R ussian M ath. Surveys 22 (1967) 103\{167.
[6] D. Laugw itz, D i erential and R iem annian G eom etry, A cadem ic Press, N ew Y ork, 1970.
[7] V .V . K ozlov, R ussian M ath. Surveys, $38: 1$ (1983) 1-76.
[8] A. A lonso Izquierdo, M A. G onzalez Leon and J. M ateos G uilarte, N onlinearity 13, (2000) 1137-1169.
[9] A. A lonso Izquierdo, M A. G onzalez Leon, J. M ateos G uilarte, M. de la Torre M ayado, P roc. of the X I FallW O G P , O viedo, 2002. Publ. R SM E 6, 81\{91.
[10] D D. K osam bi, M ath . Zeitschrift 37 (1933), 608\{618. E. C artan, M ath. Zeitschrift 37 (1933), $619\{622$. S.S. C hem, Bull. Sci. M at. 63 (1939), 206\{212. S S. C hem, Selected P apers V ol. II, Springer 1989, 52\{57.
[11] P L. A ntonelli, Equivalence problem for system s of second order ordinary di erential equations, Encyclopedia of M ath., K luw er A cad. Publ, 2000.
[12] M . G iaquinta and S.H ildebrant, C alculus of V ariations, Springer, B erlin-H eildelberg, 1996.

[^0]: for the covariant derivative w ith respect to h, and, for any vector elds $X ; Y 2(T M): h(X ; Y)=h X ; Y i^{J}$, and $k X k^{J}=\sqrt{h X ; X_{i}^{J}}$.

