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In this work we study models described by a single real scalar field in two-dimensional space-time,
using the deformation procedure to propose and investigate new families of models and their kink
solutions.

PACS numbers: 11.27.+d, 11.25.-w

I. INTRODUCTION

Our goal is the construction of relativistic scalar field
models and the analysis of their extended solutions. We
use the deformation procedure, which was put forward in
Ref. [1]-[2], and profusely applied in [3] in a diversity of
contexts. The deformation procedure relies on a function,
called the deformation function, which responds for the
construction of the new, deformed model. Here, however,
we choose the deformation function as a composed func-
tion of the scalar field under investigation. This novelty
nicely brings new interesting families of models, together
with their corresponding extended solutions.
The composed deformation function greatly enlarges

the capabilities of the method allowing also the deforma-
tion of singular solutions of the starting model into regu-
lar solutions of the deformed model. Another interesting
new result in this work is that all the potentials obtained
through the composed deformation can be written in a
factorized form, immediately allowing the identification
of the absolute minima of the new potential terms.
The deformation method introduced in [1] con-

nects two distinct models of real scalar fields in two-
dimensional space-time, characterized respectively by the
Lagrangians

L =
1

2
∂µχ∂

µχ− U(χ) (1a)

Ld =
1

2
∂µφ∂

µφ− V (φ) (1b)

where χ and φ are the scalar fields and U(χ) and V (φ)
are the potential terms, which specify each one of the
two models. The key ingredient is an invertible function
f = f(φ), the deformation function, from which we link
the model of (1a) with the “deformed” model of (1b) by
relating the two potentials U(χ) and V (φ) in the very
specific form

V (φ) =
U(χ→ f(φ))

(df/dφ)2
(2)
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This allows showing that if the starting model has
static solution χ(x) which obeys the first-order equa-

tions dχ/dx = ±
√

2U(χ), and the equation of mo-
tion d2χ/dx2 = dU/dχ, then, the deformed model has
static solution given by φ(x) = f−1(χ(x)), which obeys

dφ/dx = ±
√

2V (φ), and d2φ/dx2 = dV /dφ. The proof
was already given in Ref. [1].
The effectiveness of the deformation method in the

search for topological and non-topological defects in
(1+1)D scalar field theory demands, first, that the
static solutions of eq.(I) are known. The second sub-
tle point is an shrewd choice of deformation function
such that V (φ) has a finite set of degenerated minima:
φi(i = 1, · · · , N), and the analytical solution φS(x) =
f−1[χS(x)] of eq.(I) complies with: limx→−∞ φS(x) = φi

and limx→∞ φS(x) = φj , j = i+ 1, i, i− 1 If j = i± 1
we talk of topological defects named kinks/anti-kinks,
and if j = i we find, besides the classical minima, non-
topological defects called lumps.

II. COMPOSED DEFORMATION FUNCTIONS

In Ref. [2], some of us applied the deformation method
starting from the standard χ4 model and choosing

χ = f(φ) = cos(a arccosφ−Mπ) , (3)

as deformation functions, where a and M are integer or
half-integer numbers. In this paper we extend the family
of deformation functions by allowing composed functions
f [g(φ)] of the form

χ = f [g(φ)] = cos(a arccos[g(φ)]−Mπ) . (4)

Appropriate choices of the function g(φ) will provide us
with new scalar field models having analytically solvable
first-order differential field equations, which support new
topological (kink-shape, double kink-shape) and/or non-
topological (bell-shape, sugar loaf-shape) defect struc-
tures as classical static solutions of the corresponding
field equations.
The starting model is described by the potential

U(χ) =
1

2
(1− χ2)2 (5)
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where we are using dimensionless field and coordinates.
We fix the center of the defect at the origin (x0 = 0)
to get, for |χ| ≤ 1, the finite energy regular kink solu-
tion χ1(x) = ± tanh(x) and, for |χ| ≥ 1, the infinite
energy singular kink solution χ2(x) = ± coth(x). Like in
Ref. [2], the parameter M leads to two distinct families
of models: for M integer, the deformed potential can be
written in the form

V a
sin(φ) =

1

2a2
(1− g2(φ))

(g′(φ))2
sin2 (a arccos(g(φ))) (6)

where g′(φ) = dg/dφ. However, for M half-integer we
get

V a
cos(φ) =

1

2a2
(1 − g2(φ))

(g′(φ))2
cos2 (a arccos(g(φ))) (7)

Using half-integer and integer values for the parameter a
the number of vacua of the new model is fixed at will.
By this procedure we identify families of potentials

which present static solutions of the general form

φS(x) = g−1 (cos [(η(x) +M π)/a]) (8)

where g−1 is the inverse function of g(φ), and η(x) is
either θ1(x) or θ2(x), both ∈ [0, π] given by

θ1(x) = arccos(tanh(x)) , (9)

θ2(x) = arccos(coth(x)) . (10)

Firstly, we start with (6) and g(φ) = φ. Here the
potentials are, for a odd,

V a
sin(φ) =

1

2a2

(a+1)/2
∏

j=1

(

1−
φ2

Za
j
2

)2

, (11)

and for a even,

V a
sin(φ) =

1

2
φ2

a/2
∏

j=1

(

1−
φ2

Za
j
2

)2

, (12)

where Za
j = cos[(j − 1)π/a]. Also, for a half-integer we

get

V a
sin(φ) =

1

4a2
(1− φ)(1 − φ2)

a−1/2
∏

j=1

(

1 +
φ

Z̃a
j

)2

, (13)

where Z̃a
j = cos[(2j − 1)π/2a]. Now, if we start with (7)

and g(φ) = φ, the potentials are, for a odd,

V a
cos(φ) =

1

2
φ2(1− φ2)

(a−1)/2
∏

j=1

(

1−
φ2

Z̃a2
j

)2

, (14)

and, for a even,

V a
cos(φ) =

1

2a2
(1− φ2)

a/2
∏

j=1

(

1−
φ2

Z̃a2
j

)2

, (15)

whereas, for a half-integer we have V a
cos(φ) = V a

sin(−φ).
Note that, the choice g(φ) = φ gives the polynomial

potentials already investigated in Ref. [2], but here the
formula for a half-integer, Eq. (13), is factorized.

III. FAMILIES OF MODELS FOR g(φ) = φr

Consider the case g(φ) = φr , where r = n/m is a
positive rational number, the ratio of two nonzero natural
numbers, i.e., n,m ∈ N

∗. From (8), the static solutions
of the V a

sin(φ) and V
a
cos(φ) are given by

φkS(x) = s(r) cos1/r [(η(x) +M π)/a] , (16)

where M = k− 1 for the sine family, or M = (2k− 1)/2
for the cosine family, and k is a positive natural number,
but only a few values of k produce different solutions
depending on a. The symbol s(r) in (16) is defined as
follows: If r = 2p/(2q − 1), p, q ∈ N

∗, s(r) amounts to
take the ± sign and the modulus before extracting the
odd root in Eq.(16):

φkS(x) = ±
∣

∣cos2q−1 [(η(x) +M π)/a]
∣

∣

1

2p . (17)

For any other value of r the symbol is simply the unity:
s(r) = 1. This is because there are two real even roots
and only one real odd root. Because r is positive, the
deformation function χ = g(φ) = φr maps the range
|χ| ≤ 1 in the range |φ| ≤ 1, and all the zeros of the
deformed potential are between −1 ≤ φ ≤ 1. Then,
to obtain finite energy static solutions of the deformed
model we need to start from the regular kink solution
η(x) = θ1(x), as given by Eq. (9).
We note that a general characteristic of the models

generated by the deformation function (4) with g(φ) =
φr, is that the number of topological and non-topological
static solutions is determinate only by a, as described
below. The potentials can be written in polynomial form,
for a integer or half-integer, as we show below.

A. The sine family of models for a integer

Here the family of models V a,r
sin is investigated for the

specific case of a being an integer. The polynomial form
of V a,1

sin , with its zeros (and multiplicities) is known, and
so performing the deformation g(φ) = φr we have, for a
odd

V a,r
sin (φ) =

1

2a2r2
φ2−2r

(a+1)/2
∏

j=1

(

1−
φ2r

Za
j
2

)2

, (18)

and for a even

V a,r
sin (φ) =

1

2r2
φ2

a/2
∏

j=1

(

1−
φ2r

Za
j
2

)2

, (19)

where Za
j = cos [(j − 1)π/a] under the restriction that

the potential be real and nonsingular. Henceforth, if a is
odd we can take only r ≤ 1. The sine potential V a,r

sin (φ)
can be written in terms of the Chebyshev polynomials of
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second kind in the φr variable:

V a,r
sin (φ) =

1

2a2r2
φ2−2r(1 − φ2r)2 U2

a−1(φ
r) , (20a)

Ua(θ) = sin[(a+ 1) arccos θ]/sin[arccos θ] . (20b)

The explicit forms of V a,r
sin (φ), for a = 1, 2, 3 are given by

V 1,r
sin (φ) =

1

2r2
φ2−2r (1− φ2r)2 , (21)

V 2,r
sin (φ) =

1

2r2
φ2 (1− φ2r)2 , (22)

V 3,r
sin (φ) =

8

9r2
φ2−2r (1− φ2r)2

(

1

4
− φ2r

)2

, (23)

which illustrate this new family of models. We see that,
in the cases for r > 1 integer and r > 1/2 half-integer,
we have to take a even.
The defects analytically described by the formula (16)

are classified in three distinct types: topological kink,
non-topological bell-shape lump, and topological dou-
ble kink. The defect classes depend on the potentials
V a,r
sin (φ). We have noticed in Ref. [2], that in the case for
r = 1 there are two classes of models: for a odd they
are φ4−like potentials – no zero at the origin – and for
a even they are φ6-like models – having a zero at the
origin. Hereafter, the new potentials are described and
compared with their predecessors in Ref. [2] case by case.
For a = even, r = n or r = n/m, n integer, and m

odd, the potentials are non-negative and symmetric with
respect to φ = 0, like the φ6- model, have a zero at the
origin, see Figures 1 and 3. The vacua and the static

-1.0 -0.5 0.0 0.5 1.0
Φ

0.025

0.05

FIG. 1. Plots of V 4,1
sin

(φ) and V
4,2
sin

(φ), depicted with dashed
(red) and solid (blue) lines, respectively.

solutions are

φjv = ± |cos [(j − 1)π/a] |
1

r , j = 1, . . . , 1 + a/2 , (24)

φkS(x) = ±
∣

∣

∣
cos
[

arccos(tanh(x))+(k−1)π)/a
] ∣

∣

∣

1

r

, (25)

k = 1, . . . , a. There are a + 1 vacua and a pairs of
kink/anti-kink, both for n even and odd. All the de-
fects are topological kink/anti-kink, interpolating be-
tween consecutive vacua of the potential.
For a even and r = n/2 > 1/2 half-integer, the po-

tentials are also non-negative but non symmetric with

-0.5 0.0 0.5 1.0
Φ
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FIG. 2. Plots of V
4,1/2
sin

(φ) and V
4,3/2
sin

(φ), depicted with
dashed (red) and solid (blue) lines, respectively.

respect to the zero at the origin, that is a minimum of
V . These potentials are not φ → −φ invariants and all
their critical points are non-negative, see Figure 2. The
vacua and the static solutions are

φjv =
(

cos2 [(j − 1)π/a]
)

1

n , j = 1, 2, . . . , 1 + a/2 , (26)

φkS(x) =
(

cos2 [(arccos(tanh(x)) + (k − 1)π)/a]
)

1

n ,
(27)

k = 1, 2, . . . , a. There are thus a/2+1 non-negative vacua
and a/2 couples of topological kink/anti-kink defects.
For a odd and r = 1/2, the potentials of the sine family

are non-negative only for φ ≥ 0, and the zero at φ = 0 is
not a critical point.
The vacua and the static solutions are respectively

φjv = cos2 [(j − 1)π/a] , j = 1, 2, . . . , (a+ 1)/2 , (28)

φkS(x) = cos2 [(arccos(tanh(x)) + (k − 1)π)/a] , (29)

k = 1, 2, . . . , a. There are (a + 1)/2 vacua and a total
of a defects - one non-topological lump and (a − 1)/2
couples of topological kink/anti-kink. The solutions cor-
responding to k < (a + 1)/2 are topological kinks in-
terpolating between two consecutive local minima. For
k > (a + 1)/2 we find topological anti-kinks that con-
nect the vacua in the opposite sense. The remaining so-
lution k = (a + 1)/2 asymptotically behaving as φ =
cos2 [(a− 1)π/2a] both at x = ±∞, is a non-topological
lump: in the mechanical analogy, the associated NTK
trajectory in the potential V a,1/2(φ) starts at x = −∞
from the “maximum” φ = cos2 [(a− 1)π/2a], bounces
back at the “turning” point φ = 0 and “finally” arrives
at φ = cos2 [(a+ 1)π/2a] = φ = cos2 [(a− 1)π/2a] at
x = ∞.
Finally, for a odd and r = n/m non integer, m odd,

and n = 1, 2, . . . ,m − 1, the potentials are non-negative
and symmetric with respect to the origin, where V = 0,
see Figure 3. A very interesting novelty arise in these
cases: the origin is not a vacuum of V , [dV /dφ]φ=0 does
not exist for r > 1/2, and [d2V /dφ2]φ=0 → ∞ for r <
1/2. This generate a defect connecting the two closest
neighbor minima near the origin, named double kink-like
solution. The vacua and the static solutions are

φjv = ± |cosm [(j − 1)π/a] |
1

n , j = 1, . . . , (a+ 1)/2 ,
(30)
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-1.0 -0.5 0.0 0.5 1.0
Φ
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0.4

FIG. 3. Plots of V
1,1/3
sin

(φ) and V
2,1/3
sin

(φ), depicted with
dashed (red) and solid (blue) lines, respectively

φkS(x) = ± |cosm [(arccos(tanh(x)) + (k − 1)π)/a] |
1

n ,
(31)

where k = 1, . . . , a, and k 6= (a+ 1)/2 for kink/anti-kink
defect, and

φkS(x) = ±sg(x) |cosm [(arccos(tanh(x)) + (k − 1)π)/a)|
1

n

(32)
where sg(x) = x/|x|, and k = (a + 1)/2 for double
kink/anti-kink defect. There are a+ 1 vacua and a cou-
ples of topological defects - (a-1) couples of kinks/anti-
kinks, and one couple of double kink/anti-kink around
the origin - both for n even and odd. For instance, let
us take n = 1, the k = (a + 1)/2 and k = a + 2 kinks
skip the origin and connect the closest minima to φ = 0:
φ = cosm [(a− 1)/2a] and φ = cosm [(a+ 1)/2a]. The
character is thus topological joining two different minima
but they have the shape of a double kink. This special
form of defect was introduced in Ref. [4], and one nicely
see its appearance again in the current context. In Figure
4 we plot the double kink and double anti-kink solutions
of the sine potential for a = 1 and r = 1/3.

-4 -2 2 4
x

-1.0

-0.5

0.5

1.0
ΦHxL

FIG. 4. Plots of kink (solid line) and anti-kink (dashed line)

solutions of V
1,1/3
sin

(blue) and V
1,1
sin

(red). The solutions of

V
1,1/3
sin

have the form of double kink/anti-kink.

B. The cosine family of models for a integer

Here is investigate the family of models given by V a,r
cos

for the specific case of a being an integer. As before,
the polynomial form of V a,1

cos , with its zeros (and mul-
tiplicities), is also known. Performing the deformation
g(φ) = φr we get to the new potentials: for a odd,

V a,r
cos (φ) =

1

2r2
φ2(1− φ2r)

a−1

2
∏

j=1

(

1−
φ2r

Za
j
2

)2

, (33)

and for a even,

V a,r
cos (φ) =

1

2a2r2
φ2−2r(1−φ2r)

a

2
∏

j=1

(

1−
φ2r

Za
j
2

)2

, (34)

where Za
j = cos

(

2j−1
2a π

)

. Again the restriction that the
potential be real and nonsingular means that for a even
we can take only r ≤ 1. The cosine potentials V a,r

cos (φ)
are given by Chebyshev polynomials of the first kind in
the φr variable:

V a,r
cos (φ) =

1

2a2r2
φ2−2r(1− φ2r) T 2

a (φ
r) , (35a)

Ta(θ) = cos[a arccos θ] . (35b)

The explicit forms of the potentials V a,r
cos (φ) for

a = 1, 2, 3 are given by

V 1,r
cos (φ) =

1

2r2
φ2 (1 − φ2r) , (36)

V 2,r
cos (φ) =

1

2r2
φ2−2r(1− φ2r)

(

1

2
− φ2r

)2

, (37)

V 3,r
cos (φ) =

8

9r2
φ2 (1 − φ2r)

(

3

4
− φ2r

)2

, (38)

which illustrate this new family of models. We see that,
in the cases for r > 1 integer and r > 1/2 half-integer,
we can take only a odd.
Here, the defects analytically described by the formula

(16) can be classified in three types: topological kink,
non-topological bell-shape lump, and topological dou-
ble kink. The defect classes depend on the potentials
V a,r
cos (φ). We recall that in the case for r = 1, there are

two classes of models: for a odd they are inverted φ4−like
models – having a zero at the origin –, and for a even they
are inverted φ6−like models. Hereafter, the new poten-
tials are described and compared with their predecessors
in the third work in Ref. [2] case by case.
For a = odd, r = n or r = n/m, n integer, and m odd,

the potentials are non-negative only for |φ| ≤ 1, and the
zeros φ = ±1 are not critical points, like the inverted
φ4− models – having a zero at the origin.
The vacua and the static solutions are

φjv = ± |cos [(2j − 1)π/2a] |
1

r , j = 1, . . . , (a+ 1)/2 ,
(39)

φkS(x) = ± |cos [(2 arccos(tanh(x)) + (2k − 1)π)/2a] |
1

r ,
(40)

where k = 1, . . . , a − 1 for kink/anti-kink defect, and
k = a for lump defect. There are a vacua and 2a defects
- (a − 1) couples of topological kink/anti-kink and two
non-topological lumps, both for n even and odd.
For a odd and r = n/2 > 1/2 half-integer, the poten-

tials are non-symmetric and non-negative only for φ ≤ 1,
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and the zero at φ = 1 is not a critical point, all their crit-
ical points are non-negative. The vacua and the static
solutions are given by

φjv =
(

cos2 [(2j − 1)π/2a]
)

1

n , j = 1, 2, . . . , (a+ 1)/2 ,
(41)

φkS(x) =
(

cos2 [(2 arccos(tanh(x)) + (2k − 1)π)/2a]
)

1

n ,
(42)

where k = 1, 2, . . . , a − 1, for kink/anti-kink defect, and
k = a, for lump defect. There are (a+1)/2 non-negative
vacua and a defects - (a − 1)/2 couples of topological
kink/anti-kink and one non-topological lump.
For a even and r = 1/2, the potentials of the cosine

family are non-negative only for 0 ≤ φ ≤ 1, and the zeros
at φ = 0, 1 are not critical points, all their critical points
are non-negative. The vacua and the static solutions are
respectively

φjv = cos2 [(2j − 1)π/2a] , j = 1, 2, . . . , a/2 , (43)

φkS(x) = cos2 [(2 arccos(tanh(x)) + (2 k − 1)π)/2a] ,
(44)

where k = 1, 2, . . . , (a− 1) ∀ k 6= a/2, for kink/anti-kink
defect, and k = a/2 or a, for lump defect. There are a/2
vacua and a total of a defects - two non-topological lumps
and (a− 2)/2 couples of topological kink/anti-kink.
Finally, for a even and r = n/m non integer, m odd,

and n = 1, 2, . . . ,m− 1, the potentials are non-negative
only for |φ| < 1 and symmetric with respect to the
origin, where V = 0, and the zeros φ = ±1 are not
critical points. In this case, the origin is not a vac-
uum of V , [dV /dφ]φ=0 does not exist for r > 1/2, and
[d2V /dφ2]φ=0 → ∞ for r < 1/2. Again, this generates
defects connecting the two closest minima to the origin,
in the form of double kink and double anti-kink. The
vacua and the static solutions are

φjv = ± |cosm [(2j − 1)π/2a] |
1

n , j = 1, . . . , a/2 , (45)

φkS(x) = ± |cosm [(2 arccos(tanh(x)) + (2k − 1)π)/2a] |
1

n ,
(46)

where k = 1, 2, . . . , (a− 1) ∀ k 6= a/2, for kink/anti-kink,
k = a for lump defects, and

φkS(x) = ±
x

|x|

∣

∣

∣

∣

cosm
[

2 arccos(tanh(x)) + (2k − 1)π

2a

]∣

∣

∣

∣

1

n

(47)
where k = a/2, for double kink/anti-kink defect. There
are a vacua and 2a defects – (a − 2) couples of topo-
logical kink/anti-kink, and one couple of topological
double kink/anti-kink around the origin, and two non-
topological lumps – both for n even and odd.
We can also choose a half-integer. This gives two new

families of models, which can be studied as before. More-
over, other possibilities for g(φ) can also be chosen, in
particular we can consider the case g(φ) = 1/φr, where

r = n/m. As before, r is a positive rational number, the
ratio of two nonzero natural numbers, i.e., n,m ∈ N

∗.
The investigation follows the same steps we just intro-
duced, so we omit it here.

IV. SUPERPOTENTIALS AND STABILITY

In general, when the potential is non negative, it is
possible to introduce superpotentials W = W (φ) such

that V (φ) = (dW/dφ)
2
/2 . This is the case for the sine

family of potentials with a integer. However, in the other
cases, for the cosine family of potential with a integer,
and for the sine and cosine families of potential with a
half-integer, the potentials may be non negative. Nev-
ertheless, we can follow the lines of [5] introducing su-
perpotentials, for both topological and non topological
solutions, and their energies.
Particularly, for r = 1, in the case of the sine and

cosine families, and a integer or half-integer, the super-
potentials can be written in terms of Chebyshev polyno-
mials as

W a,1
sin (φ) =

1

a2(a2 − 4)
[(a2(1− φ2)− 2) Ta(φ)

−2aφ(1− φ2) Ua−1(φ)] , (48a)

W a,1
cos (φ) =

√

1− φ2

a2(a2 − 4)
[(a2(1− φ2)− 2) Ua−1(φ)

+2aφ Ta(φ)] , (48b)

for a 6= 2, and

W 2,1
sin(φ) = (2φ2 − φ4)/4 , (49a)

W 2,1
cos(φ) =

(

(3φ− 2φ3)
√

1− φ2 + arcsin(φ)
)

/8 . (49b)

In the case of the sine family, for r 6= 2 we have

W 1,r
sin(φ) =

φ2−r

r

(

φ2r

r + 2
+

1

r − 2

)

, (50)

W 2,r
sin(φ) =

φ2

4r

(

φ2r

r + 1
− 1

)

. (51)

For r = 2, we have

W 1,2
sin(φ) = (φ4 − 4 ln |φ|)/8 (52)

W 3,2
sin(φ) = (2φ8 − 5φ4 + 4 ln |φ|)/24 . (53)

In the case of the cosine family, for r 6= 2 we find

W 1,r
cos(φ) =

φ2

2r(2 + r)

(

2
√

1− φ2r + r

× 2F1

[

1/2, 1/r, 1 + 1/r, φ2r
]

)

, (54)

W 2,r
cos(φ) =

φ2−r

8r(1 + r)(r − 2)

(

2
√

1− φ2r

×
(

1 + r + (r − 2)φ2r
)

+ (2r − 1)φr−2

× B
[

φ2r , 1/2 + 1/r, 1/2
]

)

, (55)
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where 2F1 is the Gaussian Hypergeometric function and
B the Euler incomplete beta function. For r = 2, how-
ever, we have

W 2,2
cos(φ) =

1

24

√

1− φ4 (5− 2φ4) +
1

8
ln(φ2)

−
1

8
ln
(

2 + 2
√

1− φ4
)

. (56)

In general, the superpotential simplify the calcula-
tions. Particularly, for computing the energy associ-
ated with the corresponding static solution φk we can
write, for the kinklike solutions connecting minima Zk

and Zk+1: Ea,r,k(φk) = |W a,r(Zk) − W a,r(Zk+1)| ,
and for the lumplike solution around the minimum Zk:
Ea,r,k(φk) = 2 |W a,r(Zk)−W a,r(φ(x = 0))| . Regarding

-4 -2 2 4
x

-3

1

5
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-4 -2 0 2 4
x

0.1

0.15

FIG. 5. The potential well U(x) (upper panel) and the trans-
lation mode (lower panel), as a function of x

the problem of linear stability most of the new solutions
obtained in this work are either ordinary kinks interpo-
lating between consecutive vacua or classical lumps con-
necting a vacuum at x = −∞ with itself at x = +∞.
We have profusely studied the stability of these solu-
tions in previous papers; ordinary kinks are stable and
classical lumps are unstable, and there is no need to re-
peat here the same calculations and arguments. There
is a third type of kink that arise in the new models
considered in this work when there are cuspidal points

in the potential. The newly found solutions resemble
double kinks and their stability properties are unclear.
Therefore, we shall only discuss the stability of dou-
ble kinks choosing as a completely generic example in

this class the potential V
2, 1

3

cos (φ), and the double kinks:

φS(x) = ±sinh3(x/2)/ cosh
3

2 (x) . The Schrödinger oper-
ator governing the small fluctuations around these kinks
is of the form K = −d2/dx2 +U(x), where the potential
well is given by U(x) = 1+1/2 sinh2(x/2)−5/2 cosh(x)−
35/4 cosh2(x) . Things are more clear in the Figure (5)
where U(x) is depicted. One notices the important lim-
its limx→±∞ U(x) = 1, limx=0U(x) = +∞ and realizes
the qualitative similarity with the Lennard-Jones poten-
tial [6] of molecular physics.
The main difference is that the U(x) well looks like

the Lennard-Jones well (living only in the positive real
half-line) plus its specular image with respect to the
ordinate axis, defined as a whole on the full real line.
In fact, the ground state wave function of zero en-
ergy is the translational mode ψ0(x) = dφK/dx =

3 sinh(x/2) sinh(x)/4 cosh
5

2 (x).
There is no negative energy eigenfunction because

the zero of the translational mode wave function is not
strictly a node, see Fig. (5). There is no change of sign in
the wave function which is simply telling us that the cen-
ter of the double kink, where the field reaches the value
of zero, cannot be perturbed, since it would cost infinite
energy. The other, higher in energy, eigenfunctions are
totally reflecting scattering waves with the threshold at
k2 = 1. Either coming from the left or from the right
the incoming waves are sent back by the infinite wall at
the origin which is perfectly opaque. There are no kink
fluctuations that cross the center of the double kink. One
spectrum like this is very peculiar but ensures the stabil-
ity of the double kink: there is no kink fluctuation with
negative energy.
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