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Abstract

The Choquet integral, credited to Gustave Choquet in 1954 [1], ini-
tially found its roots in decision making under uncertainty following Schmei-
dler’s pioneering work in this field [2]. Surprisingly, it was not until the
1990s that this integral gained recognition in the realm of multi-criteria
decision aid (MCDA) [3]. Nowadays, the Choquet integral boasts numer-
ous generalizations [4] and serves as a focal point for intensive research
and development across various domains [5, 6, 7].

Here we share our journey of utilizing ChatGPT as a helpful assistant
to delve into the computation of the discrete Choquet integral using Math-
ematica. Additionally, we have demonstrated our ChatGPT experience
by crafting a Beamer presentation with its assistance.

The ultimate aim of this exercise is to pave the way for the application
of the discrete Choquet integral in the context of N -soft sets [8].

Brief introduction

The computation of the Choquet integral for finite sets is a fundamental issue
in decision theory and mathematics that holds significant applications across
various fields. This mathematical tool allows us to capture and quantify the
importance of individual elements and their combinations within a set, offering
valuable insights into complex decision-making processes.

In this exploration, we will delve into the intricacies of computing the Cho-
quet integral for finite sets. We will not only unravel the theoretical foundations
but also showcase practical applications that demonstrate its versatility and rel-
evance.

These notes encompass the presentation of the paper titled “A ChatGPT-
driven experience for the computation of Choquet integral for finite sets, with
applications,” which was delivered by the author at the International congress
Mathematical Modelling in Engineering & Human Behaviour (MME&HB2023)
held in Valencia, Spain, on July 14th, 2023.

We supplement this presentation with a list of related articles.
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Capacities

Let X = {1, . . . , n}. X may represent either a set of n properties (in

multi-criteria decision making) or experts (in group decision making), or the

results of an event with n possible outcomes.

Definition. [Beliakov et al., 2007, Definition 2.75] A discrete fuzzy measure (or

a capacity) is a set function µ : 2X −→ [0, 1] which is monotonic (i.e.,

µ(S) ⩽ µ(T ) whenever S ⊆ T ⊆ X ) and satisfies µ(∅) = 0, µ(X ) = 1.

Additivity: when A, B ⊆ X are disjoint then µ(A ∪ B) = µ(A) + µ(B). An

additive capacity is a probability measure.

There are synergies between A and B, disjoint subsets of X , with respect to µ

when µ(A ∪ B) > µ(A) + µ(B).

There is redundancy between A and B when µ(A ∪ B) < µ(A) + µ(B).

There is no interaction between A and B when µ(A ∪ B) = µ(A) + µ(B). 4/17
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The discrete Choquet integral

Definition. The discrete Choquet integral with respect to a discrete capacity µ

is the function Cµ : Rn −→ R given by

Cµ(a1, . . . , an) =
∑n

i=1

[
a(i) − a(i−1)

]
µ(Hi ), where a↗ = (a(1), . . . , a(n)) is a

non-decreasing permutation of a = (a1, . . . , an), a(0) = 0 by convention, and

Hi = {(i), . . . , (n)} is the set of indices corresponding to the largest n − i + 1

components of a.

If µ(A) = µ(B) when A,B ⊆ N are such that |A| = |B|, then we say that µ is

symmetric.

If µ is symmetric, this definition produces an OWA operator (Yager, 1988).

OWA means ordered weighted averaging.

5/17
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The discrete Choquet integral: visual interpretation

An example with X = {1, 2, 3}: evaluating the vector (0.2, 0.6, 0.9).

6/17
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The discrete Choquet integral on {0, 1, 2, . . . , N}

Let N = {0, 1, 2, . . . ,N}.

By inspection of the standard formula, we can easily work out the following

procedure for the computation of the Choquet integral on vectors from Nn

9/17
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An example: scores for N-soft set I

Example. Suppose n = 3, X = {x1, x2, x3} represents properties.

We need to rank the alternatives whose evaluations are:

x1 x2 x3

o1 4 8 7

o2 10 3 6

o3 10 6 3

The importance of the properties satisfies:

µ({x1}) = µ({x2}) = 0.2, µ({x3}) = 0.25, µ({x1, x2}) = 0.7,

µ({x2, x3}) = µ({x1, x3}) = 0.4, and µ(X ) = 1.

There are synergies between x1 and x2.

There are redundancies both between x1 and x3, and x2 and x3.
10/17
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Implementation with Mathematica

11/17
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An example: scores for N-soft set II

We produce the following µ-Choquet scores:

Sµ(o1) = Cµ(4, 8, 7) = 4 · µ(1, 2, 3) + 3 · µ(2, 3) + 1 · µ(2) =

4 · 1 + 3 · 0.4 + 0.2 = 5.4

Sµ(o2) = Cµ(10, 3, 6) = 3 · µ(1, 2, 3) + 3 · µ(1, 3) + 4 · µ(1) =

3 · 1 + 3 · 0.4 + 4 · 0.2 = 5

Sµ(o3) = Cµ(10, 6, 3) = 3 · µ(1, 2, 3) + 3 · µ(1, 2) + 4 · µ(1) =

3 · 1 + 3 · 0.7 + 4 · 0.2 = 5.9

With this information, we conclude o3 ≻ o1 ≻ o2.

12/17
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Another example: aggregation of N-soft sets I

X represents a group of k experts that give their opinions in the form of the

next tables. The fuzzy measure captures the importances of their opinions.

c1 . . . . . . cn

o1 r1
11 . . . . . . r1

1n

...
...

. . .
...

op r1
p1 . . . . . . r1

pn

. . . . . .

c1 . . . . . . cn

o1 rk
11 . . . . . . rk

1n

...
...

. . .
...

op rk
p1 . . . . . . rk

pn

Each evaluation is in {0, 1, 2, . . . , N − 1}.

Target: produce one social or joint table with this information, that preserves

the structure (each evaluation must belong to {0, 1, 2, . . . , N − 1}).

13/17
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Another example: aggregation of N-soft sets II

Pessimistic and optimistic µ-Choquet aggregated tables that correspond to the

data in previous table, and a capacity µ on the set of agents.

c1 . . . cn

o1 ⌊Cµ(r1
11, . . . , r

k
11)⌋ . . . ⌊Cµ(r1

1n, . . . , r
k
1n)⌋

...
...

. . .
...

op ⌊Cµ(r1
p1, . . . , r

k
p1)⌋ . . . ⌊Cµ(r1

pn, . . . , r
k
pn)⌋

c1 . . . cn

o1 ⌈Cµ(r1
11, . . . , r

k
11)⌉ . . . ⌈Cµ(r1

1n, . . . , r
k
1n)⌉

...
...

. . .
...

op ⌈Cµ(r1
p1, . . . , r

k
p1)⌉ . . . ⌈Cµ(r1

pn, . . . , r
k
pn)⌉

Important: the Choquet integral is compensative.

14/17
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Another example: aggregation of N-soft sets III

Now the capacity defined before represents the values given to the opinions

expressed by three agents, X = {x1, x2, x3}.

We shall aggregate the next tables (one provided by each agent):

Agent 1 c1 c2

o1 3 10

o2 4 7

Agent 2 c1 c2

o1 5 3

o2 8 6

Agent 3 c1 c2

o1 4 6

o2 7 3

First we apply the µ-Choquet integral componentwise to the three tables.

15/17

16



Another example: aggregation of N-soft sets IV

v11 = Cµ(3, 5, 4) = 3 · µ({1, 2, 3}) + 1 · µ({2, 3}) + 1 · µ({2}) =

3 · 1 + 0.4 + 0.2 = 3.6

v12 = Cµ(10, 3, 6) = 3 · µ({1, 2, 3}) + 3 · µ({1, 3}) + 4 · µ({1}) =

3 · 1 + 3 · 0.4 + 4 · 0.2 = 5

v21 = Cµ(4, 8, 7) = 4 · µ({1, 2, 3}) + 3 · µ({2, 3}) + 1 · µ({2}) =

4 · 1 + 3 · 0.4 + 0.2 = 5.4

v22 = Cµ(7, 6, 3) = 3 · µ({1, 2, 3}) + 3 · µ({1, 2}) + 1 · µ({1}) =

3 · 1 + 3 · 0.7 + 0.2 = 5.3

Then these figures produce the outputs:

Pessimistic c1 c2

o1 3 5

o2 5 5

Optimistic c1 c2

o1 4 5

o2 6 6
16/17

17



My experience with ChatGPT: takeaways

Pros and cons

Helpful with initial steps with Mathematica.

Helpful with passing Mathematica outputs to LATEX.

Its utilization requires careful attention.

It is free

17/17
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Muhammad Aslam Noor, and Mohamed S Soliman. Some new concepts
in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings
and related inequalities. AIMS Mathematics, 8(3):6777–6803, 2023.

[13] Muhammad Akram, Usman Ali, Gustavo Santos-Garćıa, and Zohra Niaz.
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niques for interval-valued intuitionistic fuzzy sets: Applications to aggrega-
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