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Abstract

The Choquet integral, credited to Gustave Choquet in 1954 [1], ini-
tially found its roots in decision making under uncertainty following Schmei-
dler’s pioneering work in this field [2]. Surprisingly, it was not until the
1990s that this integral gained recognition in the realm of multi-criteria
decision aid (MCDA) [3]. Nowadays, the Choquet integral boasts numer-
ous generalizations [4] and serves as a focal point for intensive research
and development across various domains [5, 6, 7).

Here we share our journey of utilizing ChatGPT as a helpful assistant
to delve into the computation of the discrete Choquet integral using Math-
ematica. Additionally, we have demonstrated our ChatGPT experience
by crafting a Beamer presentation with its assistance.

The ultimate aim of this exercise is to pave the way for the application
of the discrete Choquet integral in the context of N-soft sets [8].

Brief introduction

The computation of the Choquet integral for finite sets is a fundamental issue
in decision theory and mathematics that holds significant applications across
various fields. This mathematical tool allows us to capture and quantify the
importance of individual elements and their combinations within a set, offering
valuable insights into complex decision-making processes.

In this exploration, we will delve into the intricacies of computing the Cho-
quet integral for finite sets. We will not only unravel the theoretical foundations
but also showcase practical applications that demonstrate its versatility and rel-
evance.

These notes encompass the presentation of the paper titled “A ChatGPT-
driven experience for the computation of Choquet integral for finite sets, with
applications,” which was delivered by the author at the International congress
Mathematical Modelling in Engineering & Human Behaviour (MME&HB2023)
held in Valencia, Spain, on July 14th, 2023.

We supplement this presentation with a list of related articles.
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| want to write a few slides with Beamer, a LaTeX package. | have used the metropolis
theme before. Can you recommend a more attractive theme with a similar layout?

Yes, there are many attractive themes available for Beamer. Here are a few options with a

similar layout to the metropolis them:

Fira: This theme features a modern and sleek design with a clean layout, similar to
metropolis. It also includes custom icons and bullet points that give it a unique look.

. Material: This theme is inspired by Google's Material Design and has a clean and
simple layout. It features bold colors and a flat design style that make it visually
appealing.

Frankfurt: This classic Beamer theme has a simple and clean layout with a traditional
color scheme. It is a good option if you prefer a more traditional look for your
presentation.
Warsaw: Another classic Beamer theme, Warsaw has a simple and clean layout with a
color scheme that is easy on the eyes. It is a good option if you want a classic look with
a slightly more modern feel than Frankfurt.

5. Montpellier: This theme features a clean and simple layout with a color scheme that is
easy on the eyes. It is a good option if you want a simple and classic look for your

presentation.

Ultimately, the theme you choose will depend on your personal preferences and the topic
of your presentation. You may want to experiment with a few different themes to see
which one works best for you.

| cannot find information about the Fira theme. Can you give a webpage for help with it?

Sure! The Fira theme for Beamer is actually part of the Fira LaTeX package, whichcanbe &9 G

found on CTAN (the Comprehensive TeX Archive Network) at the following link:

https://ctan.org/pkg/fira

The documentation for the Fira theme can be found in the file “beamerthemeFira.pdf",
which is included in the package. This file contains information on how to use the theme

and customize its appearance ‘S Regenerate response




Google

“fira latex package” X Y @ Q

Q Todo [ Imagenes ¢ Shopping [ Videos Q Maps i Mas Herramientas

Aproximadamente 2.110.000 resultados (0,50 segundos)

No se ha encontrado ningun resultado para "fira latex package".

Resultados de fira latex package (sin comillas):

© tug.org
https://tug.org » FontCatalogue » ... - Traducir esta pagina

Fira Sans - The LaTeX Font Catalogue
Font implementation. Fira Sans is available as Type 1. Fira Sans is available as OpenType or
TrueType. Part of TeX Live?

ctan.org
https://ctan.org > tex-archive » fira - Traducir esta pagina

CTAN: /tex-archive/fonts/fira

This package provides LaTeX, pdfLaTeX, XeLaTeX and LuaLaTeX support for the Fira Sans
family of fonts (version 4.3) and the Fira Mono family (version 3.2), ...

https://ctan.org » pkg > fira - Traducir esta pagina

Package fira - CTAN
fira — Fira fonts with LaTeX support. This package provides LaTeX, pdfLaTeX, XeLaTeX and
LuaLaTeX support for the Fira Sans and Fira Mono families of fonts ...

Documentation: READMEFont samples




Capacities

Let X ={1,...,n}. X may represent either a set of n properties (in
multi-criteria decision making) or experts (in group decision making), or the

results of an event with n possible outcomes.

Definition. [Beliakov et al., 2007, Definition 2.75] A discrete fuzzy measure (or
a capacity) is a set function  : 2X — [0, 1] which is monotonic (i.e.,
w(S) < u(T) whenever S C T C X) and satisfies (@) =0, u(X) = 1.

Additivity: when A, B C X are disjoint then u(AU B) = u(A) + u(B). An
additive capacity is a probability measure.

There are synergies between A and B, disjoint subsets of X, with respect to
when (AU B) > p(A) + u(B).

There is redundancy between A and B when p(AU B) < u(A) + u(B).

There is no interaction between A and B when (AU B) = u(A) + u(B).  4/17




The discrete Choquet integral

Definition. The discrete Choquet integral with respect to a discrete capacity u
is the function C* : R” — R given by

CH(ay,... an) = > i1 [ — ai—1)] n(H;i), where a » = (a1), ..., a(n) is a
non-decreasing permutation of a = (az, ..., a,), a() = 0 by convention, and

H; = {(i),...,(n)} is the set of indices corresponding to the largest n — i + 1

components of a.

If w(A) = u(B) when A, B C N are such that |A| = |B|, then we say that pu is

symmetric.

If p is symmetric, this definition produces an OWA operator (Yager, 1988).
OWA means ordered weighted averaging.

5/17




The discrete Choquet integral: visual interpretation

An example with X = {1,2,3}: evaluating the vector (0.2,0.6,0.9).
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Can you help me to solve problems about the discrete Choquet integral?

Of course, I'd be happy to help you with any problems you have regarding the discrete

Choquet integral. Please provide more details about the specific problem you're trying to

solve.

Write a Mathematica notebook that computes (but does not show) the subsets of {1, 2, 3,
4}. Then the notebook should generate a fuzzy measure or a normalized capacity on {1, 2,
3, 4}. The notebook should show the value that the capacity takes on each subset of {1, 2,
3,4}

Here is a Mathematica notebook that computes all the subsets of {1, 2, 3, 4} and
generates a fuzzy measure on {1, 2, 3, 4}. The fuzzy measure is constructed using the
Sugeno integral, which is a type of Choquet integral that is commonly used in fuzzy

systems.
mathematica [©) Copy code

(* Compute all the subsets of {1,2,3,4} *)
subsets = Subsets[{1, 2, 3, 4}];

(* Generate a random fuzzy measure on {1,2,3,4} *)
fuzzyMeasure = RandomReal[{0, 13}, Length[subsets]];
fuzzyMeasure = fuzzyMeasure/Total[fuzzyMeasure];

(* Compute the value of the fuzzy measure on each subset *)
TableForm[Transpose[{subsets, fuzzyMeasure}], TableAlignments -> Center]

This notebook first computes all the subsets of {1, 2, 3, 4} using the *Subsets" function in
Mathematica. It then generates a random fuzzy measure on {1, 2, 3, 4} using the
“RandomReal " function and normalizing it to ensure that the measure is a capacity. Finally,
it computes the value of the fuzzy measure on each subset and displays the results using
the “TableForm™ function. The “TableAlignments™ option is used to center the output in
the notebook.




Is this fuzzy measure always monotonic?

Yes, the fuzzy measure generated by the notebook I provided is always monotonic. Thisis ¢ &P
because the Sugeno integral used to construct the fuzzy measure is a Choquet integral
that satisfies the monotonicity property.

In general, a fuzzy measure is said to be monotonic if it satisfies the property that the
measure of any subset is not less than the measure of its subsets. In other words, if A and
B are subsets of X such that A is a subset of B, then the measure of A is less than or equal
to the measure of B.

The Sugeno integral satisfies this property because it is defined as a supremum over a set
of weighted minimums. That is, for any subset A of X, the value of the Sugeno integral is
equal to the maximum value that can be obtained by taking the minimum of the fuzzy
measure over all subsets of A, weighted by their cardinality. This means that the Sugeno
integral assigns a higher weight to subsets with more elements, which ensures that the

measure is monotonic.

I do not see the Sugeno integral anywhere. And | have done a numerical simulation with
Mathematica. The result is not monotonic.

| apologize for the confusion. The notebook | provided does not actually use the Sugeno & &P

integral to construct the fuzzy measure. Instead, it simply generates a random fuzzy

measure on the power set of {1,2,3,4}.

Regarding your numerical simulation, it is possible to construct a fuzzy measure that is
not monotonic using the Sugeno integral. This can happen if the weights of the minimums
in the Sugeno integral do not satisfy a certain condition called the "balancedness"

property. In this case, the resulting fuzzy measure may violate the monotonicity property.

If you would like, | can help you construct a fuzzy measure using the Sugeno integral that
satisfies the balancedness property and is therefore monotonic.




The discrete Choquet integral on {0,1,2,... N}

Let N ={0,1,2,..., N}.

By inspection of the standard formula, we can easily work out the following

procedure for the computation of the Choquet integral on vectors from N”

Algorithm 1 Computing the Choquet integral on N = {0,1,2,..., N}
Input: A capacity pon X = {1,...,n}.
A vector a = (ay,...,a,) € N™.
1: Compute A; = {j € X|a; >4} foreach i =1,...,N.
This step produces a list of N possibly repeated subsets of X, namely, (Aj1,...,An).
Let k£ be the number of distinct subsets in this list.
2: Define (X1,...,Xg) and (v1,...,vg) such that:
(X1,...,X})) contains all the subsets in (Aj, ..., Ay) without repetition, and
(v1,...,vg) is such that v; is the number of times that X; appears in (A1,...,An).
Output: C*a) = % | v; - u(X;).

9/17
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An example: scores for N-soft set |

Example. Suppose n = 3, X = {xy, x2, X3} represents properties.

We need to rank the alternatives whose evaluations are:

X1 X X3
oo 4 8 7
o 10 3

o3 10

The importance of the properties satisfies:

p(fxal) = p({xe}) = 0.2, u({xs}) = 0.25, u({x1,x}) = 0.7,
p({xe, x3}) = ({1, x3}) = 0.4, and p(X) = 1.

There are synergies between x; and x».

There are redundancies both between x; and x3, and x» and x3.

10/17
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Implementation with Mathematica

19
20
21
22
23
24

ClearAll;
X =q{1, 2, 3};
subsets = Subsets[X]; (* Defines all the subsets of attributes *)
(* Insert the capacity on {1,2,3} *)
fuzzyMeasure = ConstantArray[0, 2 Length[X]];
fuzzyMeasure[[1]] = 0; (* value of capacity at empty set *)
fuzzyMeasure[[2]] = 0.2; (* value of capacity at {1} *)
fuzzyMeasure[[3]] = 0.2; (* value of capacity at {2} *)
fuzzyMeasure[[4]] = 0.25; (x value of capacity at {3} *)
fuzzyMeasure[[6]] = 0.7; (x value of capacity at {12} x)
fuzzyMeasure[[6]] = 0.4; (* value of capacity at {13} *)
fuzzyMeasure[[7]] = 0.4; (* value of capacity at {23} *)
fuzzyMeasure[[8]] = 1; (* value of capacity at X *)
(* Now we insert the vector whose evaluations we want to compute *)
mylist = {4, 8, 7};
(* Below we generate a vector with 273 components -- 3 is the cardinality of X *)
vector = ConstantArray[0, 2" Length[X]];
(* Now we loop over all subsets of X and set the corresponding component of the vector to v_i if
it is one of the X_i *)
Do[pos = Position[mylist, x_ /; x >= k, 1];
Print [Union[Flatten[Position[mylist, x_ /; x >= k]111;
If [MemberQ[subsets, Union[Flatten[Position[mylist, x_ /; x >= k1111,
vector [[Position[subsets,Union[Flatten[Position[mylist, x_ /; x >= k]111[[1, 11111 +=1],
{k, 1, 10}]; (* The problem sets N to 10, although the largest evaluation of our vector is 8 *)
fuzzyMeasure.vector (* The output *)

Mathematica code for the computation of the Choquet integral in a case with 3
attributes 11 /17
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An example: scores for N-soft set Il

We produce the following u-Choquet scores:

® Si(o))=CH(4,8,7) =4 1u(1,2,3)+ 3 u(2,3) + 1 p(2) =
4.143-04+02=54

3:1+43-04+4-02=5

® 54(03) = C*(10,6,3) =3 - 1u(1,2,3) + 3 u(1,2) + 4 - (1) =
3.14+3-07+4-02=59

With this information, we conclude o3 = 01 = 05.

12/17

13




Another example: aggregation of N-soft sets |

X represents a group of k experts that give their opinions in the form of the

next tables. The fuzzy measure captures the importances of their opinions.

Gl  ococoocoa Cn Gl  coooos Ch

1 1 k k
O]_ rll ...... rln O]_ rll ...... rln
1 1 k k

G [l cavoco Fon G [ cavacs Fon

Each evaluation is in {0,1,2,..., N —1}.

Target: produce one social or joint table with this information, that preserves
the structure (each evaluation must belong to {0,1,2,..., N —1}).

13/17
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Another example: aggregation of N-soft sets Il

Pessimistic and optimistic pu-Choquet aggregated tables that correspond to the

data in previous table, and a capacity i on the set of agents.

C]_ 500 Cn
o1 Lcu(rllla"wril(l)J LCN(rllm"-?rlkn)J
OP LC“(I‘;]_,,,.,I‘FI;]_)J Lcu(r;na'--vr;fn”
C1 Cp
01 (Cu(rllla'-'arlkl)-l [Cu(rllna'“’r{(nﬂ
OP [C#(r;}lw"ur;l)(l)—‘ (Cu(r;}m"'?rlljn)]

Important: the Choquet integral is compensative.

14 /17
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Another example: aggregation of N-soft sets Ill

Now the capacity defined before represents the values given to the opinions

expressed by three agents, X = {x1,x2, x3}.

We shall aggregate the next tables (one provided by each agent):

Agentl ¢ o Agent2 ¢ o Agent3 ¢ o
o1 3 10 o1 5 3 01
(o)) 4 7 (@] 8 6 (o)

First we apply the p-Choquet integral componentwise to the three tables.

15/17

16



Another example: aggregation of N-soft sets IV

® vii=0C"(3,54)=3-p({1,2,3}) +1-p({2,3}) + 1 p({2}) =
3.1404+02=3.6

® vip=C"(10,3,6) =3 u({1,2,3}) +3- pu({1,3}) + 4 u({1}) =
3.1+3-04+4-02=5

o Vo1 = CM(478’ 7) =4. /"({17273}) S /‘({2’3}) +1- /’L({2}) -
4.1+3-04+02=54

® vy =CH(7,6,3) =3-p({1,2,3}) +3- p({1,2}) + 1- p({1}) =
3-14+3-07+0.2=53

Then these figures produce the outputs:

Pessimistic ¢ o Optimistic ¢ ©
[o;} 3 5 o5}
5 5 6 6
o © 16/17
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My experience with ChatGPT: takeaways

Pros and cons

 Helpful with initial steps with Mathematica.
Helpful with passing Mathematica outputs to IATEX.

v
X Its utilization requires careful attention.
v

It is free

17,17
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