

LA INTERACCIÓN DE *Micromonospora* CON SU PLANTA HUÉSPED Y EL MICROBIOMA CIRCUNDANTE

Dpto. de Microbiología y Genética

Autora: Maite Ortúzar Turza Directora: Martha E. Trujillo Toledo UNIVERSIDAD DE SALAMANCA

DPTO. DE MICROBIOLOGÍA Y GENÉTICA

LA INTERACCIÓN DE *Micromonospora* CON SU PLANTA HUÉSPED Y EL MICROBIOMA CIRCUNDANTE

UNRAVELLING *Micromonospora* INTERACTIONS WITH ITS HOST PLANT AND THE ASSOCIATED MICROBIOMA

-

Memoria presentada por **Maite Ortúzar Turza** para optar al Grado de Doctor con Mención Internacional por la Universidad de Salamanca

Fdo. Maite Ortúzar Turza

Salamanca, julio 2023

AUTORIZACIÓN DEL DIRECTOR

MARTHA E. TRUJILLO TOLEDO, CATEDRÁTICA DEL ÁREA DE MICROBIOLOGÍA DEL DEPARTAMENTO DE MICROBIOLOGÍA Y GENÉTICA DE LA UNIVERSIDAD DE SALAMANCA

CERTIFICA:

Que la memoria de la Tesis Doctoral titulada "La interacción de *Micromonospora* con su planta huésped y el microbioma circundante" ("Unravelling *Micromonospora* interactions with its host plant and the associated microbioma") presentada por Maite Ortúzar Turza para optar al grado de Doctor con Mención Internacional por la Universidad de Salamanca, ha sido realizada bajo su dirección en el Departamento de Microbiología y Genética, y se autoriza su depósito y presentación.

Y para que así conste, extiendo el presente certificado.

Salamanca, julio 2023

Fdo. Martha E. Trujillo Toledo

AGRADECIMIENTOS

Quisiera hacer constar mi más sincero agradecimiento a todas las personas que de una forma u otra han aportado para que esta tesis doctoral se haya podido llevar a cabo.

En primer lugar, a mi directora la Dra. Martha E. Trujillo, por todo el tiempo dedicado, la paciencia y esfuerzo infinitos, por enseñarme a buscar el lado bueno y la inspiración para continuar con el trabajo. A mi madre, pilar de apoyo incondicional y lugar de refugio; y a mi familia porque sois siempre un soplo de aire fresco. A mis compañeros de laboratorio, porque sin ellos no hubiera sido posible llevar a cabo todo el trabajo, está claro que cuatro manos hacen más que dos. A mis amigos, que me alegran los días y son vitamina.

A todos GRACIAS y esta tesis es también vuestra.

FINANCIACIÓN

Contrato predoctoral de la Junta de Castilla y León (Convocatoria Orden de 12 de diciembre de 2019, resuelta por la ORDEN EDU/601/2020, de 3 de julio de 2020).

FEMS Research and Training Grant (FEMS-GO-2021-085), para realizar una estancia de investigación en el Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Colonia (Alemania).

Proyectos de investigación del Ministerio de Ciencia e Innovación (PGC2018-096185-B-I00 y PID2021-124068NB-I00, IP: Martha E. Trujillo).

ENGLISH SUMMARY	6
RESUMEN	11
INTRODUCCIÓN GENERAL	
CAPÍTULO I	23
CAPÍTULO II	70
CAPÍTULO III	
MATERIALES Y MÉTODOS	
BIBLIOGRAFÍA	
ANEXO I	
ANEXO II	
ANEXO III	
ANEXO IV	

The European Union highly depends on soy imports (> 70%) as a protein source since local production barely covers 5% of its internal demand. Thus, it is necessary to explore alternative sources to reduce this dependency. Among legumes, *Lupinus angustifolius* is an important alternative given its high protein value and use for animal and human nutrition. This legume is a native plant of Europe, well adapted to the climatic conditions of many countries. It also thrives in poor soils due to its capacity to fix nitrogen. Plant adaptation may be partly due to the microorganisms associated with its roots, providing stability and resilience, in addition to plant growth promoting molecules and nutrients.

Plant-associated microbial communities are influenced by several factors such as host genotype/species, soil type, plant compartment and climatic season, among others. Separating these factors to understand which are the most influential in the association of microorganisms to plants is a very complex task as they do not occur independently. In the first chapter of this doctoral thesis, this topic was addressed by studying seasonal and geographical variations in the soil microbiota, and characterizing the microbiome associated with the plant Lupinus angustifolius under different cultivation conditions using an independent culture methodology. The results of the soil samples analysed suggest that the difference in the microbial community composition observed between the two sampling locations, Cabrerizos and Salamanca, was partly due to differences in soil conditions. None of the communities analysed (bacterial and fungal) showed differences in alpha diversity (Shannon index) between the climatic seasons in which the samples were collected. Beta diversity (Bray-Curtis-based principal coordinate analysis) for both microbial communities separated the samples into two groups according to soil type. In the case of bacteria, it was observed that, in addition, subgroups were formed according to the climatic seasons for the Salamanca soil. Interestingly, this also occurred with the fungal communities, where the samples were separated by season in both soil types. These results suggest that the main difference in soil microbial communities is due to edaphic properties, although environmental factors such as temperature, humidity or rainfall also influence the diversity of soil microbial communities.

In addition, the microbiome associated with the legume *Lupinus angustifolius* cultivated under natural and greenhouse conditions was also characterized. For this purpose, wild and greenhouse-grown plants were collected from the same locations and analysed by 16S rRNA gene and ITS-2 gene profiling. Bacterial communities were characterized in the different plant compartments (rhizosphere, roots, nodules and leaves) while ITS profiles were restricted to the soil and rhizosphere. As previously

reported for other plants, the highest richness was found in the rhizosphere, followed by the roots, leaves, and nodules. Within the rhizosphere, the bacterial richness in the in Salamanca plants was lower, especially for the field samples, probably affected by a pH below 7 and high amounts of P and K. In general, the compartments from the plants grown under greenhouse conditions showed a slightly higher bacterial diversity when compared to the wild plants. Within the fungal communities, the Shannon index was significantly higher in soil than rhizosphere samples (P<0.0001). In soils, diversity was similar for all seasons, except for spring, being lower in both locations, while in the rhizosphere, the field samples from Cabrerizos registered a significantly higher diversity than the greenhouse samples while the opposite occurred in Salamanca (P<0.0001). In both growing conditions and soils, the phyla with the highest cumulative relative abundance in all plant compartments were Pseudomonadota (Alphaproteobacteria - the most abundant taxon) and Mucoromycota. It was confirmed that *L. angustifolius* is a plant with a high bacterial and fungal diversity associated.

In the second chapter, the objective was the isolation and molecular identification of the bacterial community present in the different plant tissues of L. angustifolius, to generate a collection of strains for downstream studies. Based on the metagenomics results, we selected 52 target genera with a relative abundance >1% and designed several isolation protocols. A total of 722 bacterial strains were isolated. As expected, the highest number of isolates was obtained in the rhizosphere compartment and a similar pattern was observed with a decreasing diversity gradient starting from the rhizosphere followed by the roots, leaves and nodules. In total, 87 different genera were identified, of which 19 had more than 10 isolates. The most abundant strains were identified in the genera Pseudomonas. Streptomyces, Agrobacterium, Bacillus and Pseudoclavibacter. In this work, 51.9% of the searched genera were isolated, and 74.7% of the isolated genera were identified by metagenomics, but 19.6% could not be detected in any plant compartment by metagenomics. Plant pathogenicity assays showed that 29% of the L. angustifolius isolates were potentially pathogenic for Arabidopsis thaliana Col-0. In turn, 394 strains (55%) were found to be non-pathogenic and 116 (16%) promoted the growth of A. thaliana. Analysis of metagenomics and culturomics results identified a core microbiome of the host plant L. angustifolius that included Acidovorax, Bradyrhizobium, Caulobacter, Chitinophaga, Flavobacterium, Kribella, Massilia, Pseudomonas, Pseudoxanthomonas, Rhizobium, Sphingomonas, Streptomyces and Variovorax. The composition and diversity of the identified host plant-associated bacteriome varied slightly between sampling locations and growing

conditions. The genera identified as the core microbiome were present in more than 80% of the samples analysed.

In chapter three of this work, the aim was to decipher the interactions of Micromonospora with its host plant and the associated microbiome, using the information obtained in the previous two chapters. Seven different synthetic communities (SynComs) were designed using bacterial strains isolated from the rhizosphere and roots of L. angustifolius to study their effect on the root and rhizosphere of the plant. In addition, we wanted to learn if the selected strains had any effect on the host plant and the natural bacterial communities present in the cultivation soils. After obtaining the genomes of the bacterial strains included in the different SynComs, a comparative genomic analysis was carried out, confirming that all the selected strains had genes with functions related to plant association and growth promotion. Plants were grown for 8 weeks in unsterilised soil under greenhouse conditions, and several plant parameters were measured and compared against the control plants (uninoculated). The plants inoculated with SynCom_7 showed the best growth and development. Furthermore, 16S rRNA gene profiling showed that the soil samples were the most diverse, followed by rhizosphere and roots (alpha diversity) (Figs. 54 and 55).

Beta diversity grouped the samples into three clusters according to compartments: soil, rhizosphere and roots. In addition, a clustering pattern was observed for the SynComs inoculated in the root samples. All consortia that contained the nitrogen fixer, *Bradyrhizobium* sp. in the synthetic community formed one cluster, while the rest of the SynComs were recovered in a second cluster. The analysis of the bacterial composition of the bulk soil samples confirmed that the synthetic communities did not affect the composition of the soil where the plant was growing. However, when we studied the bacterial composition in the rhizosphere, a slight variation was observed, and the bacterial community of root samples was greatly influenced by the inoculated SynComs.

The second part of this chapter consisted in the evaluation of the different SynComs on *L. angustifolius* plants grown in sterile soil under a gnotobiotic system. As in the first experiment, several growth parameters were registered, observing that plants inoculated with SynCom_7 showed the highest growths, again. *Pseudomonas* sp. Strain CRA141 showed the closest association with the roots. This result is not unexpected as it is well known that many *Pseudomonas* sp. Lupac 08 was detected in the

rhizosphere and roots, and while this actinobacterium is not part of the core microbiome, it could be considered a "satellite" microorganism with important beneficial functions for the plant. Plant gene expression was related to the effect of the SynComs inoculated. When inoculated consortia included the *Bradyrhizobium* strain, very little differences were found when compared to the control plants, however, when only the *Micromonospora* strain and/or the other members of the SynComs were added, the differential gene expression increased threefold (Fig. 62). Gene ontology enrichment analyses revealed that those functions that were enriched by inoculating the different SynComs were clearly related to plant-microbe interaction functions. The same was observed for the enriched metabolic pathways when KEGG analysis was performed.

La Unión Europea depende en gran medida de las importaciones de soja (> 70%) como fuente de proteínas, ya que la producción local apenas cubre el 5% de la demanda interna. Por ello, es necesario explorar fuentes alternativas para reducir esta dependencia. Entre las leguminosas, *Lupinus angustifolius* es una opción dado su alto valor proteico y su uso para la alimentación animal y humana. Esta leguminosa es una planta autóctona del continente europeo, que está bien adaptada a las condiciones climáticas de otras regiones como puede ser Australia o América. También crece de forma silvestre en suelos pobres gracias a su capacidad para fijar nitrógeno en simbiosis con bacterias. La adaptación de dicha planta puede deberse en parte a los microorganismos asociados a sus raíces, que le proporcionan estabilidad y resistencia, además de moléculas promotoras del crecimiento vegetal y nutrientes.

Las comunidades microbianas asociadas a las plantas se ven influenciadas por diversos factores como son el genotipo/especie del huésped, el tipo de suelo, compartimento de la planta y estación climática, entre otros. Separar estos factores para saber cuáles son los que más influyen en la asociación de microorganismos a las plantas es una tarea muy complicada puesto que ninguno se da de forma independiente. En el primer capítulo de esta tesis doctoral, se abordó esta temática estudiando las variaciones estacionales y geográficas de la microbiota del suelo, y caracterizando el microbioma asociado a la planta Lupinus angustifolius en diferentes condiciones de cultivo mediante técnicas independientes de cultivo. En el segundo capítulo, el objetivo fue el aislamiento e identificación molecular de la comunidad bacteriana presente en los distintos tejidos de la planta y la generación de una colección de cepas asociada al microbioma de L. angustifolius. Con los resultados obtenidos en los dos primeros capítulos, se describió por primera vez el microbioma core de la planta L. angustifolius. En el tercer y último capítulo de esta tesis doctoral se trató de descifrar las interacciones de Micromonospora con su planta huésped y el microbioma asociado, empleando para tal fin la información obtenida en los capítulos anteriores. Se desarrollaron siete comunidades sintéticas que se inocularon en experimentos in planta, en condiciones de invernadero en un suelo con su comunidad natural, y en un sistema gnotobiótico con un sustrato estéril. Posteriormente se evaluó mediante técnicas independientes de cultivo cómo se ensamblaban los microorganismos a la raíz y cuál era el efecto de las distintas SynComs en la planta huésped y el microbioma circundante.

INTRODUCCIÓN GENERAL

1.	El estudio del microbioma	. 15
2.	Las comunidades microbianas asociadas a plantas	. 16
3.	Efecto del cambio climático sobre las comunidades microbianas	. 18
4.	Lupinus angustifolius como fuente alternativa de proteína en la Unión Europea.	. 20
5.	El género Micromonospora y su interacción con las plantas	.21

1. El estudio del microbioma

La microbiología comenzó con la visualización de microorganismos (Van Leeuwenhoek, 1683), y continuó con el aprendizaje del cultivo y crecimiento de los mismos. El concepto de que los microorganismos existen únicamente como células individuales comenzó a cambiar a medida que se hizo cada vez más evidente que los microorganismos habitan dentro de conjuntos complejos en los que las interacciones entre especies son fundamentales para la dinámica de población y las actividades funcionales (Bassler, 2002; McFall-Ngai et al., 2013). El descubrimiento del ADN, el desarrollo de tecnologías de secuenciación, PCR (reacción en cadena de la polimerasa) y técnicas de clonación permitieron la investigación de comunidades microbianas utilizando enfoques basados en secuenciación de ADN y ARN mediante técnicas independientes de cultivo, siendo de gran relevancia la introducción de marcadores filogenéticos como el gen ARNr 16S (Brul et al., 2023; Woese et al., 1990).

A inicios del siglo XXI se desarrollaron las nuevas tecnologías de secuenciación, aportando una gran información sobre las comunidades microbianas asociadas a organismos superiores, así como las funciones de estas comunidades (Lozupone et al., 2012). Estas nuevas posibilidades han revolucionado la ecología microbiana, porque el análisis de genomas y metagenomas proporciona métodos eficientes para abordar el potencial funcional de microorganismos individuales, así como de comunidades enteras en sus hábitats naturales (Liu et al., 2012; Venter et al., 2004). Hoy en día podemos identificar bacterias, arqueas, hongos, algas y protistas en sus hábitats naturales (Maritz et al., 2017; Purahong et al., 2016; Uksa et al., 2015). Las tecnologías multi-ómicas, como la metatranscriptómica, metaproteómica, o metabolómica brindan información detallada sobre las actividades microbianas en el medio ambiente (Knight et al., 2018; Stegen et al., 2018).

El cultivo de microorganismos, que a menudo se ignoró y subestimó en los últimos 20 años, ha cobrado nuevamente importancia, ya que tanto el aislamiento de microorganismos por técnicas básicas, como la culturómica de alto rendimiento, son ahora una parte importante para estudiar los microbiomas (Berg et al., 2020). La necesidad de disponer de colecciones de cultivo asociadas a los organismos huésped como pueden ser las plantas, son indispensables para poder estudiar en profundidad la dinámica de las comunidades microbianas (Bai et al., 2015; Lebeis et al., 2012).

Los últimos años ha ganado mucha importancia el desarrollo de comunidades sintéticas microbianas (SynComs) a partir de las colecciones de cultivo asociadas a

cada huésped. La construcción de SynComs es un paso esencial para verificar la función del microbioma y para estudiar la interacción entre el microbioma y el organismo huésped (Hassani et al., 2018; Ma et al., 2021). El alto potencial de combinar múltiples técnicas "ómicas" es el punto de inicio para analizar y conocer en profundidad las interacciones entre microorganismos y huésped-microorganismo (Knight et al., 2018; Stegen et al., 2018).

2. Las comunidades microbianas asociadas a plantas

Los microorganismos del suelo tienen un papel indispensable en el crecimiento y desarrollo de las plantas. Son cruciales para la descomposición y transformación de la materia orgánica, incluyendo la degradación de residuos animales y vegetales, la descomposición del humus y el reciclaje, y el aprovechamiento de nutrientes (Ge et al., 2021). La comunidad microbiana del suelo es la fuente de microorganismos para el ensamblaje de la microbiota asociada a las plantas (Figura 1). Las propiedades físico químicas del suelo, incluidos el pH, la humedad y la composición textural, afectan a los microorganismos del suelo, y en consecuencia a los microorganismos que se asocian con las plantas (Bai et al., 2022). Las enfermedades de las plantas se han correlacionado con cambios en la microbiota del suelo, que debido a un mal uso, favorece el crecimiento y desarrollo de microorganismos para las mismas (Cheng et al., 2020).

Figura 1. Estructura del ensamblaje del microbioma de la planta, desde el suelo hasta la raíz. Modificado de Bai et al., (2022).

La rizosfera comprende la capa de suelo de 1 mm de espesor que rodea las raíces de las plantas. Se caracteriza por altas concentraciones de exudados orgánicos, la liberación de mucílago de la cubierta y de células de la raíz (Figura 1). Las condiciones ambientales para las bacterias de la rizosfera difieren de las del suelo con respecto al pH, el agua, el oxígeno y el contenido en nutrientes, la composición y las concentraciones de los sustratos de crecimiento bacteriano, y la presencia de compuestos antimicrobianos y hormonas vegetales (DeAngelis et al., 2009; Hinsinger et al., 2009). Las comunidades bacterianas de la rizosfera también afectan el crecimiento de las plantas, inducen resistencia sistémica o inhiben directamente a los organismos fitopatógenos y contribuyen en el ciclo de nutrientes a través de la solubilización de los minerales del suelo (DeAngelis et al., 2009; Lopes et al., 2016; Reinhold-Hurek et al., 2015). Las condiciones dentro de la rizosfera seleccionan poblaciones microbianas específicas, que a menudo tienen una menor riqueza de especies y uniformidad (Bakker et al., 2012; Bulgarelli et al., 2018; Shi et al., 2015).

Las plantas viven de forma natural en asociación con una amplia variedad de microorganismos del suelo, que pueden clasificarse como patógenos, comensales o beneficiosos en función del impacto que causen en la planta huésped. Los impactos causados por estos, pueden ser generalizados o específicos de especies de plantas

(Delaux & Schornack, 2021). Las bacterias y los hongos en simbiosis con la planta huésped, pueden tener funciones beneficiosas ya que estimulan sustancias reguladoras del crecimiento, aumentan la fotosíntesis, mejoran la tolerancia al estrés y aumentan la resistencia a plagas. Algunos de estos microorganismos inducen resistencia sistémica a hongos, bacterias, virus y, nemátodos (Figura 1) (Berlanga-Clavero et al., 2022; Hang et al., 2022; Herpell et al., 2023; Sun et al., 2022; Tian et al., 2020).

3. Efecto del cambio climático sobre las comunidades microbianas

Los microorganismos tienen funciones clave en el ciclo del carbono y los nutrientes, la salud animal (incluida la humana) y vegetal, la agricultura y la red alimentaria mundial. Los microorganismos viven en todos los entornos de la Tierra, y aunque son cruciales para regular el cambio climático, rara vez son el foco de los estudios sobre el cambio climático y no se consideran en el desarrollo de políticas (Cavicchioli et al., 2019). Los cambios en las comunidades microbianas del suelo inducidos por el cambio climático pueden tener efectos sobre el desarrollo de las plantas y el equilibrio de los ciclos biogeoquímicos. Hoy en día, las interacciones entre las plantas y las comunidades microbianas del suelo, no se conocen en profundidad ni la velocidad a la que estas son capaces de adaptarse al cambio climático (Rudgers et al., 2020).

Las comunidades microbianas del suelo que están estrechamente relacionadas con las plantas pueden estar facilitando o retardando las transiciones de las comunidades de plantas y, por tanto, de los microorganismos asociados a ellas (Figura 2A). Las comunidades microbianas asociadas a las raíces pueden tener una fuerte influencia en la supervivencia de las plantas, la fenología y la expresión de rasgos funcionales (Wagner et al., 2014). Debido al calentamiento global, las especies de plantas están migrando a elevaciones y latitudes más altas, están variando los estadios de crecimiento y floración, y están alterando la expresión de rasgos funcionales. Algunas de estas plantas migran, pero posiblemente no lo hace su microbiota asociada (Figura 2B), y a pesar de que existen pocos estudios, se cree que afecta gravemente a la adaptación y el establecimiento de la planta en nuevos ambientes. Otras plantas migran con su microbiota asociada, lo que hace que la adaptación y el desarrollo de la planta sea mejor (Figura 2C) (Hudson et al., 2011; Nuñez et al., 2009; Parmesan & Yohe, 2003; Verheijen et al., 2015; Wolkovich et al., 2012).

Figura 2. Variaciones de las interacciones suelo-planta-microorganismo asociados al cambio climático. En cada viñeta se representan los posibles cambios que pueden darse entre las interacciones suelo-plantamicroorganismo. Las poblaciones microbianas están representadas con distintas formas y colores dependiendo de cada supuesto.

Las comunidades del suelo son muy diversas, así como las funciones que realizan; operan en escalas espaciales y temporales muy pequeñas (Fierer & Jackson, 2006; Gonzalez et al., 2012), por ello pueden aparecer nuevos microorganismos que cambien la comunidad alterando las interacciones suelo-planta-microorganismo de forma positiva o negativa (Figura 2D) o incluso que aparezcan nuevos microorganismos o poblaciones que desplacen totalmente la comunidad asociada a ese suelo y/o planta, resultando en ocasiones en un efecto negativo sobre el huésped (Figura 2E) (Palmer et al., 2010; Smit et al., 2001; Steinauer et al., 2015; Treseder, 2004; Yang et al., 2014).

4. *Lupinus angustifolius* como fuente alternativa de proteína en la Unión Europea

Las Naciones Unidas proyecta, como escenario medio, una población humana de 9.700 millones y 11.200 millones para mediados y finales del siglo XXI, respectivamente (United Nations, 2015). La producción de alimentos deberá aumentar aproximadamente un 70% para 2050 y duplicarse o triplicarse para 2100 (Clay, 2011). Así pues, el sistema alimentario mundial está bajo múltiples presiones. Los conflictos políticos, el agotamiento de recursos naturales, la pérdida de biodiversidad, y las consecuencias del cambio climático desafían la sostenibilidad del sistema alimentario, mientras la población mundial continúa creciendo (Herrero et al., 2020, 2021).

El cambio climático plantea una de las mayores amenazas para las sociedades humanas y exige acciones inmediatas y coordinadas en todos los sectores (Rosenzweig et al., 2020). Los sistemas alimentarios son uno de los contribuyentes más importantes al cambio climático (Crippa et al., 2021) y podrían comprometer los esfuerzos para lograr los objetivos del Acuerdo de París de 2015 (Clark et al., 2020). El último informe del Panel Intergubernamental sobre Cambio Climático muestra que este ya ha afectado negativamente la producción de alimentos en todo el mundo y ha contribuido a la desnutrición (Hennessy et al., 2022).

Por todo esto, es necesaria una transformación del sistema alimentario, que abarque la producción, el procesamiento, la distribución, la venta al por menor y el consumo, para respetar la salud humana y del planeta (Springmann et al., 2018). Los cambios en la nutrición hacia dietas más saludables pueden reducir los impactos ambientales, en particular cuando los productos animales se reemplazan por tipos de alimentos menos intensivos. Uno de esos cambios es el consumo de leguminosas como fuente de proteínas (Springmann et al., 2016; Tilman & Clark, 2014).

Existe una demanda creciente de proteínas derivadas de plantas como componentes de alimentos funcionales. Las leguminosas brindan una combinación única de granos ricos en proteínas para alimentos y piensos, su cultivo reduce el uso de fertilizantes minerales debido a la fijación biológica de nitrógeno, mejoran los sistemas de cultivo en términos de reducción de plagas y enfermedades, mejoran la calidad del suelo y respaldan impactos ambientales positivos, como la reducción de las emisiones de gases efecto invernadero y el aumento de la biodiversidad (Zander et al., 2016). La Unión Europea (UE) destacó ya en 2015 la importancia de aumentar la producción nacional de cultivos de leguminosas (European Commission, 2020; Häusling, 2011). Se plantearon dos razones: la necesidad de reducir la dependencia de la UE de las

importaciones de soja del continente americano, y la importancia de reducir los impactos ambientales negativos asociados con la producción intensiva de cereales.

Entre las leguminosas de la familia *Fabaceae* destaca *Lupinus angustifolius* (lupino azul o de hoja estrecha) como candidato a la sustitución de la soja debido a su extensa distribución a nivel mundial (Abraham et al., 2019). Las variedades dulces de esta planta se cultivan desde hace mucho tiempo en diversas partes del mundo como Europa, América del Sur y Australia (Ferchichi et al., 2021; Vogelsang-O'Dwyer et al., 2020). Hay alrededor de 200 variedades de *Lupinus*, pero sólo cuatro de estas se cultivan hoy para el consumo humano o animal. Estos son: *Lupinus albus* L. (lupino blanco), *Lupinus angustifolius* L. (lupino azul o de hoja estrecha), *Lupinus luteus* L. (lupino amarillo), y *Lupinus mutabilis* L. (lupino andino) (Aguilar-Acosta et al., 2020; Andor et al., 2016). En concreto, *Lupinus angustifolius* L., planta objeto de estudio en este trabajo, es una leguminosa con propiedades nutricionales y bioactivas muy interesantes, con un potencial elevado para la nutrición humana (Khan et al., 2015; Lima-Cabello et al., 2018). Es una planta autóctona del continente europeo, pero tiene una elevada resistencia para ser cultivada en suelos y climas diferentes de los nativos, por lo que presenta una alta resiliencia al cambio climático (Kohajdova et al., 2011).

5. El género *Micromonospora* y su interacción con las plantas

Micromonospora es una actinobacteria que ha sido frecuentemente aislada de distintos tejidos de plantas, en especial leguminosas (Benito et al., 2022; Riesco et al., 2022b; Trujillo et al., 2010). Su interacción con la planta ha sido estudiada ampliamente (Alonso-Vega et al., 2012; Benito et al., 2017, 2022; Ortúzar, 2017; Ortuzar et al., 2020; Riesco et al., 2022a; Trujillo et al., 2010, 2014), y aunque sea un microorganismo que no forme parte del microbioma central de ninguna leguminosa (Brown et al., 2020; Dai et al., 2020; Hartman et al., 2017; Wahdan et al., 2021; Wang et al., 2022), se ha podido comprobar su fuerte interacción con las bacterias responsables de la fijación del nitrógeno, formando una relación tripartita planta-rizobio-*Micromonospora* (Benito et al., 2017). Se trata de un género cosmopolita capaz de habitar en distintos ambientes como suelo o aire, además de leguminosas.

La modificación genética de *Micromonospora* permitió su detección dentro de los tejidos internos de nódulos de varias leguminosas a través de microscopía de fluorescencia e inmunoelectrónica (Benito et al., 2017; Trujillo et al., 2010), además, se

ha visto la capacidad de alguna cepa de dicho microorganismo de viajar desde las raíces hasta las hojas por el interior de la planta (Benito et al., 2022).

Varios estudios han demostrado que las cepas de *Micromonospora* degradan polímeros vegetales y tienen un papel importante en la renovación de materia orgánica (de Menezes et al., 2008; Ichiwaki et al., 2017). La capacidad de *Micromonospora* para infectar y colonizar distintas especies de leguminosas y actuar como promotora del crecimiento ya ha sido descrita. Esta bacteria es capaz de degradar polímeros vegetales, producir metalóforos, ácido indol-3-acético y sintetizar ACC desaminasa (Benito et al., 2022; Ortúzar, 2017; Ortúzar et al., 2020). Se ha comprobado que dicho microorganismo promueve la nodulación sin interferir negativamente con la bacteria fijadora de nitrógeno y que además se da una relación tripartita beneficiosa para la planta (Benito et al., 2017; Martínez-Hidalgo et al., 2015; Trujillo et al., 2014). Recientemente se analizó el genoma de 74 cepas de *Micromonospora* para identificar qué características podrían estar involucradas en la interacción entre dicho microorganismo y la planta huésped. Se identificaron unas firmas genómicas que podrían ayudar a seleccionar aquellas cepas con la mayor probabilidad de colonizar la planta con éxito y contribuir a su bienestar (Riesco et al., 2022a).

Las comunidades microbianas asociadas a las plantas se ven influenciadas por diversos factores como son el genotipo/especie del huésped, el tipo de suelo, compartimento de la planta y estación climática, entre otros. Separar estos factores para saber cuáles son los que más influyen en la asociación de microorganismos a las plantas es una tarea muy complicada puesto que ninguno se da de forma independiente. En el primer capítulo de esta tesis doctoral, se abordó esta temática estudiando las variaciones estacionales y geográficas en la microbiota del suelo, y caracterizando el microbioma asociado a la planta *Lupinus angustifolius* en diferentes condiciones de cultivo mediante una metodología independiente de cultivo. En el segundo capítulo, el objetivo fue el aislamiento e identificación molecular de la comunidad bacteriana presente en los distintos tejidos de la planta y la creación de una colección de cepas asociada al microbioma de *L. angustifolius*. En el tercer y último capítulo de esta tesis doctoral se trató de descifrar las interacciones de *Micromonospora* con su planta huésped y el microbioma asociado, empleando para tal fin la información obtenida en los capítulos anteriores.

CAPÍTULO I

CARACTERIZACIÓN DE LA MICROBIOTA ASOCIADA A Lupinus angustifolius

1.	INT	ROD	UCCIÓN	25
1 1 1	.1. .2. .3.	Influ Imp Con	iencia del cambio climático en los ecosistemas acto geográfico en las plantas y sus comunidades microbianas nposición de las comunidades microbianas asociadas a las plantas	25 28 29
2.	OB.	JETI	/OS	32
3.	RES	SULT	ADOS	33
3	.1. 3.1.	La r 1.	nicrobiota bacteriana asociada a <i>Lupinus angustifolius</i> Características físico-químicas de los suelos y condiciones climáticas	33 33
	3.1.	2.	Diversidad de las comunidades bacterianas	34
	3.1.	3.	Análisis a nivel de OTUs	40
	3.1.	4.	Abundancia de los taxones bacterianos	44
3	.2. 3.2.	Las 1.	comunidades fúngicas asociadas a la raíz de <i>L. angustifolius</i> Diversidad de las comunidades fúngicas	48 48
	3.2.	2.	Análisis a nivel de OTUs	51
	3.2.	3.	Abundancia de los taxones fúngicos	53
3	.3. 3.3.	Aná 1.	lisis de co-ocurrencia Comparación entre las comunidades bacterianas y fúngicas	55 55
	3.3.	2.	Comparación entre las comunidades bacterianas en plantas cultivad	las
	en c	camp	o e invernadero	60
4.	DIS	CUS	IÓN	64
5.	COI	NCLI	JSIONES / CONCLUSIONS	69

1. INTRODUCCIÓN

1.1. Influencia del cambio climático en los ecosistemas

El suelo presenta uno de los ecosistemas más diversos de nuestro planeta y cuando se combina con la influencia de las plantas y la fauna, así como con los cambios en la humedad, la temperatura y los estados redox fluctuantes, el entorno resulta muy dinámico. Sin embargo, el cambio climático está introduciendo cambios extremos en estos ecosistemas con consecuencias desconocidas sobre la estabilidad y la resiliencia del suelo (Kuzyakov & Blagodatskaya, 2015; Norby et al., 2016), y está alterando la distribución de especies y al mismo tiempo modificando las interacciones entre organismos (Van der Putten, 2012).

A lo largo del siglo pasado, los niveles de CO₂ aumentaron constantemente y debido a las variaciones de las temperaturas globales, se prevé un cambio en el clima siguiendo unos patrones cada vez más extremos (Langley & Hungate, 2014). En la Figura 3 pueden observarse los impactos directos derivados del cambio climático, que han sido estudiados en profundidad, y son: niveles elevados de dióxido de carbono atmosférico, temperatura elevada, aumento de la sequía destacando la desertización, aumento de las precipitaciones y/o inundaciones, aumento del deshielo y por consiguiente de la cantidad de agua salada, y mayor influencia de incendios (Bérard et al., 2015; Sheik et al., 2011; Tarnocai et al., 2009). Estos impactos directos tienen a su vez un impacto indirecto en los ecosistemas, ya que afectan a los ciclos biogeoquímicos, a la diversidad de especies y a las interacciones suelo-planta-microorganismo.

Figura 3. Respuestas microbianas del suelo al cambio climático. Se han representado los impactos directos e indirectos que provoca el cambio climático en los ecosistemas. En el centro del diagrama se representa una comunidad microbiana del suelo; bacterias (rojo), arqueas (azul) e hifas de hongos (verde) en ausencia de los factores asociados al cambio climático. Alrededor del centro se muestran los factores que afectan de forma directa al ecosistema, cuando los microorganismos se representan de color naranja, verde o morado significa que ha habido un cambio en la comunidad microbiana. A su vez, los aumentos o disminuciones en el carbono orgánico del suelo (SOC) se indican mediante flechas blancas hacia arriba y abajo, respectivamente (Modificado de Jansson & Hofmockel, 2020).

Varios estudios han demostrado que cuando aumenta el CO₂ ambiental, hay variaciones relacionadas con el ciclo del carbono y del nitrógeno, modificando la fijación de ambos elementos, el metabolismo del metano, y un incremento de la nitrificación y desnitrificación. Estos efectos a largo plazo en las reservas de carbono y nitrógeno del suelo, también dependen de la disponibilidad de agua y nutrientes que influyen en la fotosíntesis, la descomposición microbiana y la acumulación neta de carbono en el suelo (Hayden et al., 2012; Yu et al., 2018). Los cambios derivados del aumento de las concentraciones de CO₂, se ven incrementados cuando intervienen otras variables ambientales importantes como son: la temperatura, las precipitaciones y la disponibilidad de nutrientes.

La temperatura determina las tasas de crecimiento de los microorganismos. Algunas respuestas fisiológicas de los microorganismos a temperaturas más altas incluyen cambios en las composiciones lipídicas de las membranas celulares para reducir la fluidez de la membrana y la expresión de proteínas de choque térmico (Melillo et al., 2017; Romero-Olivares et al., 2017; Schindlbacher et al., 2011). Además, otros estudios muestran que hay variaciones en la respiración microbiana debido al aumento de temperaturas y esto ocasiona una variación indirecta en el aumento de carbono del suelo (Allison & Treseder, 2008; Guo et al., 2018).

Una de las consecuencias más graves del calentamiento global es el deshielo de los reservorios de agua dulce de los polos y por consecuencia el aumento de agua salada y del nivel del mar. Además, uno de los principales problemas es el deshielo de los suelos de permafrost en el Ártico, los cuales son un reservorio enorme de carbono y al deshelarse ese carbono es liberado a la atmósfera, retroalimentando así el aumento de cambio climático (Heimann & Reichstein, 2008; Turetsky et al., 2019).

La sequía se considera una de las principales consecuencias del cambio climático en los ecosistemas, ya que se prevé que en las próximas décadas haya un aumento de la desertificación en las regiones semiáridas o áridas (Cook et al., 2015; Huang et al., 2016). Como consecuencia derivada de la sequía se provocará una disminución de las funciones microbianas que son importantes para el correcto desarrollo del ecosistema. Los microorganismos del suelo han desarrollado diversas estrategias fisiológicas para hacer frente al estrés por sequía, tales como la osmorregulación, la latencia o la activación y la síntesis de enzimas extracelulares (Barnard et al., 2013; Boot et al., 2013; Kakumanu et al., 2013).

En contraposición, existen zonas donde se está experimentando un aumento en la humedad del suelo debido a inundaciones y/o precipitaciones severas erráticas. Esto da como resultado una reducción de la capa de nieve y un aumento de los ciclos de congelación-descongelación (Sorensen et al., 2016). También, a medida que aumenta la humedad del suelo, los poros se llenan de agua y se vuelven anaeróbicos, liberándose metano y óxido nitroso (Gedney et al., 2004; Chowdhury et al., 2019).

Los incendios están aumentando globalmente en frecuencia y/o intensidad como resultado de temporadas de incendios prolongadas y más sequías combinadas con prácticas insostenibles de gestión de la tierra (Knelman et al., 2019). Además del aumento de emisiones de CO₂, cuando la capa orgánica del suelo se quema puede generar más calor, y en suelos con mayor contenido en humedad, el calentamiento del suelo puede retrasarse, pero puede matar más microorganismos. Por su parte, los

incendios extremadamente intensos también pueden destruir la estructura de los agregados y reducir la aireación del suelo (Hart et al., 2005; Hui et al., 2015; Nave et al., 2011). Las consecuencias posteriores al incendio incluyen la degradación de la tierra y la erosión, lo que agrava los efectos sobre los ecosistemas del suelo y, además, el fuego también reduce las reservas de carbono y nitrógeno del mismo. Como consecuencia de todo esto, se ha demostrado que la biomasa microbiana disminuye después de un incendio debido al agotamiento de los recursos para mantener el crecimiento microbiano (Hinojosa et al., 2016).

Por todo esto, y como ya se ha indicado anteriormente, uno de los principales problemas procedente de estos impactos directos del cambio climático sobre los ecosistemas, son las variaciones en las interacciones suelo-planta-microorganismo. Conocer y estudiar dichas interacciones es necesario para entender y mitigar los impactos indirectos derivados del cambio climático.

1.2. Impacto geográfico en las plantas y sus comunidades microbianas

La distribución geográfica de las especies de plantas está determinada por una serie de factores bióticos y abióticos, así como por las interacciones entre ellos que, en última instancia, delimitan las áreas de distribución de las especies en todo el mundo. Estos mismos factores pueden actuar en conjunto para impulsar la diferenciación adaptativa entre poblaciones que pertenecen a la misma especie de planta, este fenómeno se conoce como adaptación local. Hay trabajos que han hablado sobre la ventaja de adaptación de los genotipos locales sobre los no locales en muchas especies de plantas (Ellis et al., 2021; Leimu & Fischer, 2008; Postma & Ågren, 2016; Thiergart et al., 2020).

La relación entre la variación basada genéticamente en el fenotipo y los factores ambientales pueden sugerir causas de selección diferentes, pero están determinados por el clima, las propiedades físico-químicas del suelo y el microbioma del mismo (Durán et al., 2022). Es difícil desvincular el efecto de las propiedades físico-químicas del suelo del efecto del microbioma, e identificar las variables climáticas que más contribuyen a la diferenciación adaptativa de las poblaciones (Hou et al., 2021; Lu et al., 2018; Van Nuland et al., 2021). Sin embargo, variaciones en el microbioma del suelo pueden impulsar la diferenciación adaptativa entre las poblaciones de plantas. La interacción con los microorganismos puede afectar en las estimaciones de la adaptación local de las plantas, aunque los efectos pueden variar entre entornos (Petipas et al., 2020).

Las condiciones ambientales también inducen la variación geográfica en las comunidades microbianas del suelo. Varios estudios identificaron un vínculo entre el ensamblaje de la comunidad microbiana y la distribución del huésped (Brundrett & Tedersoo, 2018; U'Ren et al., 2019), lo que sugiere que la historia evolutiva entre los simbiontes de la raíz y sus plantas huésped han dado forma a las poblaciones de plantas en todo el mundo (Tedersoo et al., 2020). Además, de la importancia en las relaciones entre los conjuntos de comunidades microbianas y la latitud (Thiergart et al., 2020; Větrovský et al., 2019) o las propiedades fisicoquímicas del suelo (Fierer & Jackson, 2006). Por ejemplo, se demostró que las variables climáticas explican la distribución global de los hongos comunes del suelo, así como la composición y diversidad de las comunidades fúngicas, mejor que los factores edáficos como el pH del suelo o la densidad aparente (Tedersoo et al., 2014; Větrovský et al., 2019). Por el contrario, el pH del suelo se identificó repetidamente como la variable principal que explica la diferenciación de la comunidad bacteriana en el suelo a escalas espaciales grandes y pequeñas (Fierer & Jackson, 2006; Karimi et al., 2018; Rousk et al., 2010).

1.3. Composición de las comunidades microbianas asociadas a las plantas

En la naturaleza, las plantas cohabitan con microorganismos tales como argueas, bacterias, hongos y protistas, además de virus y, que se denominan de forma conjunta microbiota vegetal. Estos forman consorcios microbianos complejos y afectan al crecimiento de la planta y su productividad (Berendsen et al., 2012; Buée et al., 2009; Lindow & Brandl, 2003; Vorholt, 2012). Las plantas por su parte han desarrollado mecanismos propios contra el estrés biótico y abiótico, aunque también dependen de su microbiota vegetal para sobrevivir y defenderse de dichos factores (Turner et al., 2013). Entre los efectos beneficiosos que la microbiota tiene sobre la planta se encuentran la supresión de enfermedades, preparación del sistema inmunológico de la planta, inducción de resistencia sistémica, aumento de la captación de nutrientes, mayor tolerancia al estrés abiótico o adaptación a las variaciones ambientales (Haney et al., 2015; Mendes et al., 2011; Ritpitakphong et al., 2016; Rolli et al., 2015; Van der Ent et al., 2009; Van der Heijden et al., 2016; Zamioudis et al., 2015). Las interacciones entre las plantas y sus comunidades microbianas asociadas no son unidireccionales, ya que la planta huésped también proporciona metabolitos a los microrganismos asociados. Esto da como resultado la adaptación de microrganismos a distintos nichos especializados y puede tener un efecto positivo (mutualismo), neutral (comensalismo) o perjudicial (patogénico) en la interacción con la planta (Hassani et al., 2018; Thrall et al., 2007).

La asociación de la comunidad bacteriana con las plantas no es aleatoria, por el contrario, están controladas por reglas de ensamblajes específicas (Bulgarelli et al., 2013; Reinhold-Hurek et al., 2015; Vorholt, 2012). Las comunidades bacterianas de las plantas, se ven influenciadas por factores como el tipo de suelo, compartimento de la planta, genotipo/especies del huésped, sistema inmunitario de la planta, variación de características de la planta/etapa de desarrollo y tiempo de residencia/temporada (Bai et al., 2015; Bodenhausen et al., 2013, 2014; Bouffaud et al., 2014; Boulard et al., 2020; Bulgarelli et al., 2012, 2015; Cardinale et al., 2015; Chaparro et al., 2014; Copeland et al., 2015; Dombrowski et al., 2017; Donn et al., 2015; Edwards et al., 2015; Horton et al., 2014; Kembel et al., 2014; Lebeis et al., 2015; Leff et al., 2015; Lundberg et al., 2012; Maignien et al., 2014; Ofek-Lalzar et al., 2014; Peiffer et al., 2013; Rastogi et al., 2012; Redford et al., 2010; Redford & Fierer, 2009; Schlaeppi et al., 2014; Shi et al., 2015; Tkacz et al., 2015; Zarraonaindia et al., 2015). En la naturaleza hay descritos una gran cantidad de filos bacterianos y a pesar de ello, la microbiota bacteriana de las plantas está dominada por tres filos principales (Pseudomonadota, Actinomycetota y Bacteroidota) tanto en los tejidos de las plantas superficiales como subterráneos (Bulgarelli et al., 2013; Hacquard et al., 2015; Hassani et al., 2018). Se ha descrito una superposición entre los miembros de la comunidad asociados a la raíz y la hoja a nivel de OTU (unidad taxonómica operativa) en diversas plantas como vid y la planta modelo Arabidopsis thaliana (Bai et al., 2015; Bodenhausen et al., 2013; Coleman-Derr et al., 2016; Wagner et al., 2016; Zarraonaindia et al., 2015). A pesar de las similitudes estructurales observadas entre las comunidades bacterianas asociadas a hojas y raíces en A. thaliana, la secuenciación del genoma de toda la colección de cultivos y la recolonización de plantas libres de gérmenes, revelaron que los miembros de la microbiota asociada al huésped están especializados y adaptados a sus respectivos órganos vegetales afines (Bai et al., 2015).

Aunque la microbiota fúngica de las plantas ha sido menos estudiada, los métodos independientes de cultivo (metagenómica) han revelado una asombrosa diversidad de hongos que colonizan los tejidos de las plantas, siendo los principales filos *Ascomycota* y *Basidiomycota* (Hardoim et al., 2015; Jumpponen & Jones, 2009; Toju et al., 2013). En las raíces los hongos arbusculares y ectomicorrícicos han sido ampliamente estudiados, pero los datos recientes indican que otros hongos endófitos también representan una fracción importante de la microbiota de la raíz fúngica (Bonito

et al., 2014; Santos-Medellín et al., 2017; Toju et al., 2013). Al igual que las bacterias, la estructura de las comunidades fúngicas asociadas a las plantas no es aleatoria (Davison et al., 2011; Lê Van et al., 2017; Toju et al., 2014) y varía según el tipo de suelo, el compartimento de la planta, las especies de plantas o las estaciones (Bálint et al., 2013; Coince et al., 2014; Coleman-Derr et al., 2016; Cordier et al., 2012; Gottel et al., 2011; Shakya et al., 2013). En comparación con la microbiota bacteriana, las comunidades fúngicas establecidas en el suelo y en las raíces de las plantas parecen estar más sujetas a variaciones estocásticas (Lekberg et al., 2012; Powell et al., 2015; Wang et al., 2013) y responden de manera diferente a los factores ambientales (Rousk et al., 2009; Thomson et al., 2015; Vacher et al., 2016). La limitación de la dispersión y el clima explican la distribución biogeográfica global de los hongos, favoreciendo un alto endemismo en las poblaciones fúngicas (Hacquard, 2016; Peay et al., 2010; Talbot et al., 2014; Tedersoo et al., 2014).

2. OBJETIVOS

Las comunidades microbianas asociadas a las plantas se ven influenciadas por diversos factores como son el genotipo/especie del huésped, el tipo de suelo, compartimento de la planta y estación climática, entre otros. Separar estos factores para saber cuáles son los que más influyen en la asociación de microorganismos a las plantas es una tarea muy complicada puesto que ninguno se da de forma independiente. En este capítulo se intentó dilucidar la influencia de alguno de dichos factores, y para ello se diseñaron los siguientes objetivos: (1) **Estudio de las variaciones estacionales y geográficas en la microbiota del suelo**, y (2) **Caracterización del microbioma asociado a la planta** *Lupinus angustifolius* **en diferentes condiciones de cultivo. Para poder cumplir dichos objetivos generales, se propusieron los siguientes objetivos específicos:**

- 1. Estudio de la microbiota bacteriana y fúngica de dos tipos de suelo.
- Análisis metagenómico de las poblaciones fúngicas y bacterianas del suelo en las diferentes estaciones climáticas: primavera, verano, otoño e invierno.
- Caracterización de la microbiota bacteriana asociada a *L. angustifolius*, en distintos compartimentos de la planta: asociados a la raíz (rizosfera, raíces y nódulos) y filosfera.
- 4. Comparación de la microbiota bacteriana de *L. angustifolius* en dos condiciones de cultivo: campo (plantas silvestres) e invernadero (condiciones controladas).
- 5. Co-ocurrencia de las poblaciones fúngicas y bacterianas en el suelo y rizosfera.

3. RESULTADOS

3.1. La microbiota bacteriana asociada a Lupinus angustifolius

3.1.1. Características físico-químicas de los suelos y condiciones climáticas

La textura de los dos suelos indicaba los diferentes materiales a partir de los cuales se desarrollaron. El suelo de Cabrerizos se desarrolló sobre arenisca y contenía grandes cantidades de arena (80%) y limo (6%), lo que dio lugar a una clase textural franco arenosa. Los suelos de Salamanca se desarrollaron sobre pizarras, tenían cantidades moderadas de arena (46%) y mayores cantidades de limo (39%) coincidiendo con una clase textural franca. En la Tabla 1 pueden observarse las propiedades físico-químicas medidas (ver Tabla S1 - Anexo I con valores por triplicado). El pH de los suelos fue ~7,98 para Cabrerizos y ~6,6 para Salamanca. Se registraron cantidades elevadas de Zn, Ca y K en los suelos de Cabrerizos, mientras que el Mn y Fe fueron mayores en las muestras de Salamanca. La cantidad de fosfato inorgánico fue muy diferente, siendo casi el doble en el suelo de Salamanca (4,3 - 5,1 mg/kg) en comparación con (0,06 - 0,1%).

	Cabrerizos	Salamanca
Mn (mg/kg)	5,26	9,11
Fe (mg/kg)	2,01	6,78
Cu (mg/kg)	0,70	0,26
Zn (mg/kg)	0,48	0,09
P (mg/kg)	2,54	4,80
Mg (mg/kg)	186,00	251,68
K (mg/kg)	195,95	22,40
Ca (mg/kg)	2.860,35	1.124,80
Materia orgánica (%)	0,93	0,68
Carbono orgánico (%)	0,54	0,39
N (%)	0,06	0,10
рН	7,98	6,66
Arena (%)	79,96	46,09
Limo (%)	6,07	38,54
Arcilla (%)	13,97	15,37

Tabla 1. Propiedades físico-químicas de los suelos de Cabrerizos y Salamanca.

Las muestras de suelo se recogieron en las anualidades 2020 y 2021, en las cuatro estaciones climáticas; correspondiendo con los días 7 de los meses de mayo 2020 (primavera), noviembre 2020 (otoño), febrero 2021 (invierno) y el 30 de julio de 2021 (verano). Se seleccionaron días, en los que la semana previa no hubo precipitaciones. Dichos días estaban en la media de todos los valores meteorológicos registrados en cada mes (Tabla S2 - Anexo I).

3.1.2. Diversidad de las comunidades bacterianas

El número de lecturas válidas totales para el gen ARN 16S de las muestras de suelo fue 1.022.833, siendo la media de 42.618. La muestra de Cabrerizos con mayor número de lecturas fue la de primavera (61.398), mientras que para Salamanca fue la de otoño (51.177). El menor número de lecturas correspondió a las muestras de suelo de invierno con 32.584 y 28.674 para Cabrerizos y Salamanca, respectivamente (Tabla 2). Las lecturas detalladas de todas las muestras y todas las réplicas se proporcionan la Tabla S3 (Anexo I).

Muestra	Localización	Estación	Lecturas válidas
SPC	Cabrerizos	Primavera	61.398
SVC	Cabrerizos	Verano	34.273
SOC	Cabrerizos	Otoño	50.203
SIC	Cabrerizos	Invierno	32.584
SPS	Salamanca	Primavera	50.469
SVS	Salamanca	Verano	32.167
SOS	Salamanca	Otoño	51.177
SIS	Salamanca	Invierno	28.674

Tabla 2. Lecturas de las muestras de suelo de los perfiles de ARNr 16S.

El número de lecturas que se obtuvieron en las muestras de todos los compartimentos de la planta fue 1.093.006, siendo la media por compartimento (por muestra): 53.315, 8.595, 29.061 y 113, para rizosfera, raíces, nódulos y hojas respectivamente, para ambas localizaciones. Las muestras de rizosfera presentaron el mayor número de lecturas, mientras que las muestras de hojas fueron las más bajas (Tabla 3). La información detallada de todas las lecturas se recoge en la Tabla S4 (Anexo I).

Tabla 3. Lecturas válidas del perfil bacteriano de las muestras de los compartimentos de la planta. Los compartimentos de la planta se dividen en rizosfera, raíces, nódulos y hojas; en las localizaciones de Cabrerizos y Salamanca; y las condiciones de cultivo de las muestras campo o invernadero.

Muestra	Compartimento	Localización	Condiciones cultivo	Lecturas válidas
RCC	Rizosfera	Cabrerizos	Campo	66.809
RIC	Rizosfera	Cabrerizos	Invernadero	51.615
RCS	Rizosfera	Salamanca	Campo	45.754
RIS	Rizosfera	Salamanca	Invernadero	49.084
RACC	Raíces	Cabrerizos	Campo	2.163
RAIC	Raíces	Cabrerizos	Invernadero	18.042
RACS	Raíces	Salamanca	Campo	2.504
RAIS	Raíces	Salamanca	Invernadero	11.670
NCC	Nódulos	Cabrerizos	Campo	30.550
NIC	Nódulos	Cabrerizos	Invernadero	30.150
NCS	Nódulos	Salamanca	Campo	35.735
NIS	Nódulos	Salamanca	Invernadero	19.808
HCC	Hojas	Cabrerizos	Campo	136
HIC	Hojas	Cabrerizos	Invernadero	112
HCS	Hojas	Salamanca	Campo	73
HIS	Hojas	Salamanca	Invernadero	132

La diversidad *alfa* de todas las muestras se calculó mediante el empleo de varios índices, que incluían Shannon, Simpson y Chao, entre otros (Tablas S5 y S6, Anexo I). En los suelos de Cabrerizos, según el índice de Shannon, la diversidad *alfa* fue significativamente mayor (P<0,0001) en las muestras de invierno, seguido en orden descendente de las muestras de primavera, otoño y verano. Para Salamanca, la diversidad *alfa* más alta (P<0,0001) correspondió a las muestras de primavera, seguidas de las de verano, otoño e invierno (Figura 4A).

En todas las muestras de los distintos compartimentos de la planta se vio un gradiente decreciente de diversidad *alfa* comenzando por las muestras de rizosfera, raíces, hojas y nódulos. Las muestras de rizosfera fueron significativamente las más diversas de todos los compartimentos. En todos los compartimentos de la planta destacaron las muestras de Cabrerizos sobre las de Salamanca (P<0,0001) (Figuras 4B).

Figura 4. Diagramas de diversidad alfa bacteriana. A) Representación del índice de Shannon de las muestras de suelo. B) Representación del índice de Shannon de las muestras de los compartimentos de la planta. Las letras sobre los diagramas de caja indican la agrupación de la muestra a una significancia de P<0,0001.
Para comparar las comunidades bacterianas entre suelos y compartimentos de la planta se representaron las matrices de distancia de diversidad *beta* utilizando el análisis de coordenadas principales (PCoA) basado en Bray-Curtis. Las comunidades bacterianas del suelo se separaron según la localización de recogida de muestras a lo largo del primer eje (38,3%), mientras que el segundo eje (23,2%) diferenció entre las cuatro estaciones (Figura 5). Se observó poca variación entre las muestras recogidas en las distintas estaciones climáticas del suelo de Cabrerizos, aunque las muestras de invierno aparecían ligeramente separadas del resto. En el caso de los suelos de Salamanca, se observó más variación siendo los de otoño y verano los que mostraron mayores diferencias (P=0,001).

Figura 5. Análisis de coordenadas principales (PCoA) de las diferencias Bray-Curtis de las comunidades bacterianas de los suelos analizados.

Las comunidades bacterianas de los compartimentos de la planta se separaron en la primera coordenada por condiciones de cultivo, mientras que la segunda coordenada diferenciaba por la localización de las muestras. Los PCoA de rizosfera, raíces, nódulos y hojas representan el 55,95, 58,66, 91,67 y 72,09 % respectivamente, de la inercia total del conjunto de datos. Se observó que las muestras de los compartimentos relacionados con la raíz (rizosfera, raíces y nódulos) seguían un patrón teniendo en cuenta el tipo de suelo y las condiciones de cultivo. Dicho patrón se

hizo más notable en las muestras de raíz y nódulos, mientras que no se detectó en las hojas. Las muestras asociadas a raíz se separaron de forma clara según el tipo de suelo, y mientras que las muestras de invernadero se separaron según la localización (coordenada 2), las muestras de campo de ambas localizaciones se mantenían en un mismo grupo (P=0,001) (Figura 6A). Por el contrario, en las muestras de hojas las diferencias mencionadas anteriormente no son significativas para el resultado del PERMANOVA (P=0,001). Cuando se combinaron todos los compartimentos de la planta en el mismo PCoA las muestras se agruparon significativamente según los compartimentos de la planta, excepto las muestras de raíces y rizosfera (Figura 6B). Al combinar las muestras de suelo y los compartimentos de planta en un PCoA, se separaron todas las muestras según el compartimento de forma significativa para un P=0,001 (Figura S1 – Anexo I).

Figura 6. Análisis de coordenadas principales (PCoA) de las diferencias Bray-Curtis de las comunidades bacterianas en los compartimentos de la planta. A) PCoA de cada compartimento de la planta representado de forma individual teniendo en cuenta las condiciones de cultivo y la localización. B) PCoA de todos los compartimentos de la planta teniendo en cuenta la localización y las condiciones de cultivo.

3.1.3. Análisis a nivel de OTUs

Utilizando un umbral de similitud de >97% de identidad de secuencia, la proporción de unidades taxonómicas operativas (OTUs) bacterianas en los suelos, en las estaciones climáticas fue 5.771 y 6.286 para Cabrerizos y Salamanca respectivamente (Tabla 4). La distribución de OTUs para los distintos suelos se representó en diagramas de Venn, observando que compartían 3.944 OTUs (48,6%) (Figura 7A). La distribución de OTUs fue similar para las estaciones correspondientes en ambos suelos, siendo comunes para cada localización 1646 (Cabrerizos) y 993 (Salamanca). También se observó que el suelo Cabrerizos de invierno tenía el mayor número de OTUs únicas (1025), mientras que otoño era el más bajo (211) (Figura 7B). Sin embargo, en Salamanca fue en primavera cuando más OTUs únicas se registraron (1203) e invierno, cuando menos (282) (Figura 7C).

CABRERIZOS		
	Primavera	3.760
	Verano	2.947
	Otoño	3.187
	Invierno	3.979
SALAMANCA		
	Primavera	4.348
	Verano	3.240
	Otoño	2.999
	Invierno	2.425
Total Cabrerizos		5.771
Total Salamanca		6.286
Total		8.113

Tabla 4. Número de OTUs bacterianas en cada uno de los suelos.

Figura 7. Diagramas de Venn de la distribución de las OTUs bacterianas en las muestras de suelo. A) Distribución de las OTUs en los dos tipos de suelos, y en cada uno de los tipos de suelos por estación climática; B) Cabrerizos y, C) Salamanca.

La distribución de OTUs en los distintos compartimentos de la planta, en ambos tipos de suelo y condiciones de cultivo, disminuyó siguiendo la secuencia rizosfera, raíces, nódulos y hojas. El número de OTUs de las plantas recogidas en el campo fue mayor que las cultivadas en invernadero con 4.824 y 3.986 para Cabrerizos y 3.710 y 2.595 para Salamanca, respectivamente (Tabla 5). La distribución de OTUs se representó en diagramas de Venn y ambas localizaciones compartían un total de 3.336 OTUs (45,3%) (Figura 8A). Las OTUs compartidas en Cabrerizos y en Salamanca en las distintas condiciones de cultivo fueron 2.714 y 1.705 (44,5 y 37,0%, respectivamente) (Figuras 8B y 8C). Cuando se estudiaron los compartimentos por separado, el número de OTUs para raíces y nódulos era mayor en las plantas cultivadas en el invernadero con respecto a las de campo, especialmente en las muestras de Cabrerizos (Figura 8D; y Figura S2 - Anexo I).

Tabla 5. Número de OTUs bacterianas en los compartimentos de la planta, en los distintos tipos de suelo y condiciones de cultivo.

CABRERIZOS		
CAMPO		
	Rizosfera	4.813
	Raíces	175
	Nódulos	63
	Hojas	21
INVERNA	ADERO	
	Rizosfera	3.819
	Raíces	754
	Nódulos	391
	Hojas	36
Total campo		4.824
Total invernadero		3.986
SALAMANCA		
CAMPO		
	Rizosfera	3.656
	Raíces	273
	Nódulos	76
	Hojas	16
INVERNA	ADERO	
	Rizosfera	2.498
	Raíces	371
	Nódulos	179
	Hojas	30
Total campo		3.710
Total invernadero		2.595
Total Cabrerizos		6.096
Total Salamanca		4.600
Total		7.360

Figura 8. Diagramas de Venn de la distribución de las OTUs bacterianas en los compartimentos de la planta. A) Distribución de las OTUs en los dos tipos de suelos. B) Distribución de las OTUs según las condiciones de cultivo en Cabrerizos y C) en Salamanca. D) Distribución de las OTUs según tipo de suelo y condición de cultivo en cada uno de los compartimentos de la planta.

3.1.4. Abundancia de los taxones bacterianos

Se identificaron dieciséis filos bacterianos para un corte de abundancia mayor a 0,5% (ECT >0,5) en las muestras de suelo en las cuatro condiciones climáticas. Los filos que tuvieron una mayor abundancia relativa acumulada en todas las muestras de suelo fueron: *Pseudomonadota, Acidobacteriota, Actinomycetota, Gemmatimonadota* y *Verrucomicrobiota*, representando más del 75% de las OTUs. En todas las estaciones de ambos suelos, Cabrerizos y Salamanca, los taxones más abundantes fueron *Acidobacteriota* y *Actinomycetota*. En el suelo de Cabrerizos en verano destacó como el taxón más abundante las *Betaproteobacteria* (Figura 9A).

Por debajo de nivel de phylum (Figura 9B), los taxones más abundantes sumando más de un 20% de la abundancia total acumulada en los suelos fueron *Vicinamibacteraceae*, *Gemmatimonadaceae*, *Pyrimnomonadaceae*, *Pseudomonadaceae* y *Gaiellaceae*, y también "Pedosphaera". En ambos suelos destacan los géneros *Pseudomonas*, *Gaiella*, *Tepidisphaera y Sphingomonas*. En Cabrerizos, además se encontraron en una abundancia acumulada >4% los géneros *Streptomyces*, *Nitrospira* y *Dongia*; y en Salamanca *Stenotrophobacter* y *Opitutus*. En el suelo de Cabrerizos en invierno, y en Salamanca en verano, destaca el género *Arenimicrobium* con un 2,5 y un 1,7% de abundancia respectivamente. *Bradyrhizobium*, el género simbionte de *Lupinus angustifolius* y responsable de la fijación de nitrógeno, se encontró presente en todas las muestras de suelo aumentando progresivamente de otoño a verano (Figura S3 – Anexo I).

Figura 9. Composición bacteriana de los suelos. A) Abundancias relativas acumuladas de los filos más abundantes y clases de Pseudomonadota. B) Taxones más abundantes por debajo de nivel de phylum.

En los compartimentos de la planta se identificaron un total de ocho filos bacterianos para una proporción mayor al 0,5%. Los filos que acumularon más del 90% de la abundancia total fueron: *Pseudomonadota* (clases *Alphaproteobacteria, Gammaproteobacteria* y *Betaproteobacteria*), *Berkelbacteria*, *Amatimonadota* y *Bacillota*. El filo *Pseudomonadota* representó el 79,3% de las OTUs (Figura 10A). Los géneros que se encontraron en una abundancia acumulada de todos los compartimentos >2% fueron en orden descendiente *Bradyrhizobium, Pseudomonas*, *Rhizobium, Sphingomonas* y *Duganella* (Figura 10B).

Las muestras de rizosfera para ambas localizaciones y condiciones de cultivo tuvieron una elevada proporción de los géneros *Duganella*, *Flavobacterium*, *Massilia*, *Pseudomonas* y *Sphingomonas*. Para ambas localizaciones en las muestras de campo destacaron también *Mucilaginibacter* y *Rhizobium*, mientras que en las muestras de invernadero fueron los géneros *Acidovorax* y *Methylotonera*. En las muestras de invernadero de Cabrerizos se encontró en más de un 2,3% *Rhizobacter* y en las de Salamanca, *Sphingobium* y *Stenotrophobacter* con un 4,4 y 2,4% respectivamente (Figura 10B).

En el caso de las raíces para ambos suelos y condiciones de cultivo destacaron los géneros *Bradyrhizobium*, *Duganella*, *Flavobacterium*, *Massilia*, *Pseudomonas*, *Rhizobium* y *Sphingomonas*. En el caso de las muestras de invernadero se encontró en proporciones elevadas *Caulobacter* (3,8 y 6,5% en Cabrerizos y Salamanca respectivamente), mientras que en las de campo fue *Variovorax* (8,2 y 4,4% en Cabrerizos y Salamanca respectivamente) (Figura 10B).

El género más abundante en los nódulos de las plantas, en ambos suelos, fue *Bradyrhizobium*, en el caso de las muestras de campo con más de un 98% de abundancia. Las muestras de nódulos de las plantas cultivadas en invernadero de Cabrerizos, incluían además (proporción >1%) los géneros *Pseudomonas*, *Pseudoxanthomonas*, *Rhizobium*, *Rhizobacter*, *Sphingomonas*, *Rhizobacter*, *Acidovorax* y *Rhodococcus*. En los nódulos de las plantas cultivadas en invernadero de Salamanca se identificaron los géneros *Pseudomonas*, *Duganella*, *Rhizobium*, *Massilia* y *Caulobacter* en una proporción >1% (Figura 10B).

Los taxones más abundantes de las hojas procedentes de las plantas de campo en ambas localizaciones fueron: *Pseudomonas*, *Bradyrhizobium* y *Rhodococcus* (>4% de abundancia). En el caso de las plantas de invernadero en ambas localizaciones, se registró una abundancia elevada de *Streptococcus*, *Prevotella* y *Neisseria*, sin embargo, estos no se detectaron en las muestras de campo (Figura S3 – Anexo I).

3.2. Las comunidades fúngicas asociadas a la raíz de L. angustifolius

3.2.1. Diversidad de las comunidades fúngicas

El número de lecturas válidas para la secuenciación de la región ITS fue de 797.624 para las muestras de suelo y 607.708 para las de rizosfera, siendo la media de lecturas por muestra 33.234 y 50.642 respectivamente. En el suelo de Cabrerizos la muestra con mayor número de lecturas fue la de primavera (34.841), y la menor, la de otoño (18.674). Por el contrario, en Salamanca la muestra con mayor número de lecturas fue otoño (47.651) y la más baja correspondió a invierno (23.052) (Tabla 6). En el caso de la rizosfera para ambas localizaciones fue mayor el número de lecturas en las muestras de campo que en las de invernadero (Tabla 6). En las Tablas S3 y S4 (Anexo I), puede verse en detalle las lecturas de todas las muestras y todas las réplicas.

Muestra	Compartimento	Localización	Estación/	Lecturas válidas
			Condición cultivo	
SPC	Suelo	Cabrerizos	Primavera	34.841
SVC	Suelo	Cabrerizos	Verano	34.040
SOC	Suelo	Cabrerizos	Otoño	18.674
SIC	Suelo	Cabrerizos	Invierno	33.243
SPS	Suelo	Salamanca	Primavera	41.939
SVS	Suelo	Salamanca	Verano	47.651
SOS	Suelo	Salamanca	Otoño	32.436
SIS	Suelo	Salamanca	Invierno	23.052
RCC	Rizosfera	Cabrerizos	Campo	62.097
RIC	Rizosfera	Cabrerizos	Invernadero	42.549
RCS	Rizosfera	Salamanca	Campo	51.326
RIC	Rizosfera	Salamanca	Invernadero	46.598

La diversidad *alfa* de los perfiles ITS fúngicos del suelo y rizosfera también se calculó aplicando varios índices (Tablas S5 y S6 - Anexo I). En ambas localidades, el índice de Shannon fue significativamente mayor en las muestras de suelo que en las de rizosfera (P<0,0001). En el caso del suelo, la diversidad fue similar para todas las estaciones climáticas, a excepción de primavera que fue menor en ambas localizaciones. En el caso de la rizosfera, las muestras de campo de Cabrerizos,

registraron una diversidad significativamente mayor que las de invernadero, mientras que en Salamanca ocurrió lo contrario (P<0,0001) (Figura 11).

Figura 11. Diversidad alfa fúngica de las muestras de suelo y rizosfera, correspondiente al índice de Shannon. Las letras sobre los diagramas de caja indican la agrupación de la muestra a una significancia de P<0,0001.

La comparación entre las comunidades fúngicas de los suelos se hizo representando las matrices de distancia de diversidad-β utilizando un PCoA basado en Bray-Curtis. Las comunidades fúngicas del suelo se separaron a lo largo del primer eje (22,6%) según la localización, mientras que el segundo eje (13,8%) diferenció entre las cuatro estaciones climáticas (Figura 12A). Ambos suelos formaron dos grupos bien diferenciados, en el caso del suelo de Salamanca se agruparon las muestras de primavera y verano y, por otro lado, las de otoño e invierno (P=0,001). Las muestras de Cabrerizos se agruparon también por estaciones climáticas, invierno y verano, y primavera y otoño. En el caso de las muestras de rizosfera, estas no se separaron ni por localización ni por condición de cultivo (Figura 12B). Se analizaron de forma conjunta en un análisis de coordenadas principales (PCoA) las muestras de suelo y rizosfera, y se distribuyeron en tres grupos bien diferenciados. Por una parte, el suelo de Salamanca, por otra el suelo de Cabrerizos, y finalmente todas las muestras de rizosfera agrupadas sin distinción entre el tipo de suelo (Figura 12C). Además, en las muestras de Salamanca se vio la misma agrupación entre las estaciones climáticas que en la Figura 12A, primavera y verano, por un lado, y otoño e invierno por otro.

С

Figura 12. Análisis de coordenadas principales (PCoA) de las diferencias Bray-Curtis de las comunidades fúngicas en los distintos compartimentos: A) suelo, B) rizosfera, y C) suelo y rizosfera.

3.2.2. Análisis a nivel de OTUs

Utilizando un umbral de similitud de >97% de identidad de secuencia, la proporción de OTUs fúngicas en los suelos, para las cuatro estaciones climáticas fue de 1.408, siendo 987 y 1.178 para Cabrerizos y Salamanca respectivamente. El número de OTUs totales en la rizosfera fue de 901, siendo 713 en Cabrerizos y 508 en Salamanca (Tabla 7). La distribución de las OTUs en los distintos suelos se representó en diagramas de Venn, observando que compartían 757 OTUs (53,8%) (Figura 13A). Las OTUs comunes fueron 114 y 205 en Cabrerizos y Salamanca respectivamente cuando al comparar la distribución de las 4 estaciones (Figuras 13B y 13C). Las muestras de rizosfera de las plantas de campo presentaron un mayor número de OTUs que las de invernadero para ambos tipos de suelo. En la rizosfera de ambas localizaciones se encontraron un total de 320 OTUs comunes, siendo el total de ambas 901 (Figura 13D). Las muestras de rizosfera de ambas localizaciones en distintas condiciones de cultivo compartieron 90 y 32 OTUs en Cabrerizos y Salamanca respectivamente (Figura 13E).

CABRERIZOS		
SUELO	Primavera	342
	Verano	480
	Otoño	340
	Invierno	602
RIZOSFERA	Campo	657
	Invernadero	364
SALAMANCA		
SUELO	Primavera	668
	Verano	601
	Otoño	624
	Invierno	504
RIZOSFERA	Campo	354
	Invernadero	281
Total Cabrerizos suelo		987
Total Salamanca suelo		1.178
TOTAL SUELO		1.408
Total Cabrerizos rizosfera		713
Total Salamanca rizosfera		508
TOTAL RIZOSFERA		901

Tabla 7. Número de OTUs fúngicas en cada uno de los suelos.

Figura 13. Diagramas de Venn de la distribución de las OTUs fúngicas. A) Distribución de las OTUs de las muestras de suelo en las dos localizaciones. B) Distribución de las OTUs por estación climática en Cabrerizos. C) Distribución de las OTUs por estación climática en Salamanca. D) Distribución de las OTUs de las muestras de rizosfera en los dos tipos de suelos. E) Distribución de las OTUs de rizosfera en función de las condiciones de cultivo y tipo de suelo.

3.2.3. Abundancia de los taxones fúngicos

Se identificaron ocho filos fúngicos tomando como referencia un corte de abundancia mayor a 0,5% (ECT >0,5) para todas las muestras analizadas (tipo de suelo, estaciones climáticas y condiciones de cultivo) (Figura 14A).

Ascomycota, Mortierellomycota, Glomeromycota, Basidiomycota y Mucuromycota fueron los taxones más abundantes en el suelo, representando más del 75% de las OTUs. En la rizosfera, los filos *Mucuromycota, Ascomycota y Basidiomycota* representaron más del 90% de los taxones en todas las condiciones de cultivo, excepto en las plantas de Cabrerizos cultivadas en invernadero, donde sólo se identificó el 65% de las OTUs. En los rangos taxonómicos inferiores, el género *Mortierella* fue el más abundante en la mayoría de las muestras de suelo, especialmente en los suelos de otoño de Cabrerizos (34%) y en los suelos de primavera de Salamanca (20,8%) (Figura 14A).

Los suelos de Cabrerizos también contenían altas proporciones (>3%) de miembros del orden *Pleosporales*, familia *Nectriaceae* (23,3 y 28,2%, invierno y primavera), y los géneros *Oidiodendron, Dendospora, Fusarium, Funneliformis, Cistella* y *Geomyces*. Además del género *Mortierella*, en los suelos de Salamanca se encontraron en abundancias altas los órdenes *Pleosporales, Sebacinales, Sordiaromycetes, Endogonales, Onygenales, Pezizomycetes,* miembros de la familia *Ceratobasidiaceae* y los géneros *Entoloma* y *Coprinelus*. Una elevada proporción de las secuencias fúngicas no pudo identificarse por debajo del rango de Orden (Figura 14B).

La mayor proporción de OTUs en las muestras de rizosfera, independientemente de las condiciones de cultivo (campo e invernadero), pertenecía al orden *Endogonales*, con un 72,9 y un 94,7% para las plantas de invernadero, en comparación con el 56,1 y el 66,2% para las muestras de campo en Salamanca y Cabrerizos, respectivamente. *Penicillium* también se encontró en una alta proporción en las plantas de campo de Cabrerizos (4%), mientras que el género *Fusarium* se encontró en la rizosfera de invernadero de Salamanca (3,6%), junto con miembros de la familia *Ceratobasidiaceae* (4,8%). En la rizosfera, la mayoría de las OTUs no pudieron identificarse a nivel de género. Al contrario que en los suelos, el género *Mortierella* se encontró en proporciones muy bajas (<1 en todas las muestras de rizosfera) (Figura 14B).

Figura 14. Composición de las comunidades fúngicas en las muestras de suelo y rizosfera. A) Nivel de phylum. B) Nivel de género.

3.3. Análisis de co-ocurrencia

3.3.1. Comparación entre las comunidades bacterianas y fúngicas

Se analizaron las matrices de co-ocurrencia entre las comunidades bacterianas y fúngicas en los suelos y la rizosfera. Para el análisis a nivel de filo, se seleccionaron todas las OTUs, mientras que para el resto de niveles taxonómicos (clase, orden, familia y género) se hizo un corte del 1% de la abundancia relativa. Se analizaron las correlaciones positivas o negativas con valores superiores a 0,3 o inferiores a -0,3. Se representaron en redes únicamente aquellos nodos con correlaciones positivas o negativas o negativas a -0,7 o inferiores a -0,7.

Cuando se estudió la co-ocurrencia en todas las muestras de suelo y rizosfera se observaron valores de correlación positiva con más de un 0,85 entre los filos bacterianos y fúngicos *Bacteroidota y Pseudomonadota* (0,89), *Pseudomonadota y Mucoromycota* (0,88) y, *Actinomycetota y Chloroflexota* (0,87). Se observaron correlaciones negativas con valores inferiores a -0,70 entre los filos fúngicos *Ascomycota y Mucoromycota* (-0,71) y, *Glomeromycota y Mucoromycota* (-0,70) (Figura 15A); mientras que los géneros con mayor correlación positiva fueron *Nitrospira, Rhizobium, Phenylobacterium, Duganella, Arenimicrobium, Brevitalea y Novosphingobium*. Por otro lado, los géneros con la mayor correlación negativa correspondieron a *Ramlibacter, Solicoccozyma, Mucilaginibacter, Mortierella* y dos géneros pertenecientes a los taxones *Deltaproteobacteria y Vicinamibacteraceae* (Figura 15B).

Al analizar la co-ocurrencia de las poblaciones bacterianas y fúngicas en las muestras de suelo, los filos *Actinomycetota* y *Chloroflexota* y, *Acidobacteriota* y *Bacillota* presentaron correlaciones positivas >0,8. Por su lado, *Chloroflexota* y *Parcubacteria; Actinomycetota* y *Parcubacteria;* y, *Armatimonadota* y *Nitrospirota* mostraron correlaciones negativas inferiores a -0,80 (Figura 15C). A nivel taxonómico más bajo las correlaciones positivas mayores se dieron entre las familias *Pyrinomonadaceae, Nitrospiraceae, Piskurozymaceae,* los órdenes *Blastocatellales* y *Frankiales,* y la clase *Deltaproteobacteria.* Por el contrario, las correlaciones negativas mayores fueron entre las familias *Sebacinales, Blastocatellaceae, Kickxellaceae, Acidomicrobiaceae, Solibacteriaceae, Thermoleophilaceae,* y los órdenes *Acidimicrobiales* y *Steroidobacter* (Figura 15D).

Cuando se analizó la co-ocurrencia de las muestras de rizosfera se observó que las mayores correlaciones se dieron entre los filos *Chytridiomycota* y *Mortierellomycota*; *Acidobacteriota* y *Gemmatimonadota*; *Actinomycetota* y *Saccharibacteria*, y

Planctomycetota y *Mucoromycota* con valores de correlación superiores a 0,85. Las correlaciones negativas más fuertes se dieron entre *Planctomycetota Ascomycota* y *Rozellomycota* (<-0,85) (Figura 15E). A niveles taxonómicos más bajos las correlaciones positivas más fuertes se dieron entre las familias *Chitinophagaceae*, *Gaiellaceae*, *Gemmatimonadaceae*, *Methylobacteriaceae* y *Sphingobacteriaceae*, y el orden *Endogonales*. Por su parte las correlaciones negativas dominantes fueron entre las familias *Chitinophagaceae*, *Mortierellaceae* y *Rhizobiaceae*, y el orden *Pleosporales* (Figura 15F).

Las redes están disponibles en el Anexo I para una mejor visualización.

Α

Figura 15. Redes de co-ocurrencia de las poblaciones de bacterias y hongos en las muestras de suelo y rizosfera. Red de todas las muestras de suelo y rizosfera: A) OTUs agrupadas a nivel de filo y B) OTUs agrupadas a nivel de género. Red de las muestras de suelo: C) OTUs agrupadas a nivel de filo y D) OTUs agrupadas a nivel de género. Red de las muestras de rizosfera: E) OTUs agrupadas a nivel de filo y F) OTUs agrupadas a nivel de género. Nodos de color azul representan los taxones fúngicos, nodos de color amarillo los taxones bacterianos, las líneas verdes la co-ocurrencia (correlación >0,70) y las líneas rojas la co-exclusión (correlación <-0,70).

3.3.2. Comparación entre las comunidades bacterianas en plantas cultivadas en campo e invernadero

Se analizaron las matrices de co-ocurrencia entre las comunidades bacterianas de plantas cultivadas en invernadero y en campo. Para el análisis a nivel de filo, se seleccionaron todas las OTUs, mientras que para género se hizo un corte del 1% de la abundancia relativa. Se analizaron las correlaciones positivas o negativas con valores superiores a 0,3 o inferiores a -0,3. Se representaron en redes únicamente aquellos nodos con correlaciones positivas o negativas con valores a -0,7.

Cuando se estudió la co-ocurrencia en todas las muestras de rizosfera, raíces, nódulos y hojas de plantas cultivadas en campo e invernadero, se observaron únicamente correlaciones positivas con más de un 0,71 entre los filos bacterianos *Acidobacteriota* y *Verrucomicrobiota* (0,78), *Acidobacteriota* y *Chloroflexota* (0,76), *Planctomycetota* y *Verrucomicrobiota* (0,76) y *Chloroflexota* y *Verrucomicrobiota* (0,76). Los géneros con correlaciones positivas más altas fueron: *Rothia*, *Streptococcus*, *Veillonella*, *Campylobacter*, *Neisseria*, *Phenylobacterium* y la familia *Comamonadaceae* (Figura 16B).

Al analizar la co-ocurrencia de las poblaciones bacterianas en las muestras de plantas cultivadas en campo, los filos *Acidobacteriota* y *Verrucomicrobiota*, *Acidobacteriota* y *Planctomycetota* y, *Planctomycetota* y *Verucomicrobiota* presentaron correlaciones positivas >0,85 (Figura 16C). Los géneros con mayor correlación positiva fueron *Tardiphaga, Variovorax, Chitinophaga, Phyllobacterium, Cutibacterium* y *Bifidobacterium*. Por otro lado, se dio una correlación negativa entre *Rhodococcus* y los géneros *Variovorax* y *Tardiphaga* (Figura 16D).

Cuando se analizó la co-ocurrencia de las muestras de invernadero se observó que las mayores correlaciones se dieron entre los filos *Bacteroidota y Bacillota*; *Bacteroidota y Pseudomonadota*; *Bacteroidota y Fusobacteriota*, y *Actinomycetota y Bacillota* con valores de correlación superiores a 0,85. Las correlaciones negativas más fuertes se dieron entre *Bacteroidota*, *Nitrospirota y Chloroflexota* (<-0,80) (Figura 16E). A nivel de género las correlaciones positivas más fuertes se dieron entre *Duganella*, *Massilia*, *Rothia*, *Streptococcus*, *Veillonella*, *Bacteroides*, *Flavobacterium*, *Methylotenera y Variovorax*. Por su parte las correlaciones negativas dominantes fueron entre los géneros *Pseudomonas*, *Diplosphaera*, *Methylotenera*, *Dongia*, *Flavobacterium*, *Rhodococcus* y la familia *Comamonadaceae* (Figura 16F).

Las redes están disponibles en el Anexo I para una mejor visualización.

A. Compartimentos planta ambas condiciones (filo)

B. Compartimentos planta ambas condiciones (género)

AD3 AF234118_p AY435510_p Acidobacteriota Actinomycetota Armatimonadota BRC1 Bacteria_uc Bacteroidota Berkelbacteria CU922841_p Chlamydiota Chlorobiota Chlorobiota
Cyanobacteria DQ499300_p DQ833500_p Deinococcota EF019318_p Elusimicrobiota Fibrobacterota Bacillota Fusobacteriota Gemmatimonadota Hydrogenedentes_NKB19 Kazan Latescibacteria_WS3 <i>Nitrospirota</i>
OMAN Omnitrophica_OP3 Parcubacteria_OD1 Peregrinibacteria Planctomycetota Pseudomonadota Saccharibacteria_TM7 Spirochaetota TM6 Tenericutes Verrucomicrobiota WS5

C. Compartimentos planta campo (filo)

D. Compartimentos planta campo (género)

AD3 AD3 AF234118_p AY435510_p Acidobacteriota Actinomycetota Armatimonadota BRC1 Bacteria_uc Bacteroidota Berkelbacteria CU922841_p Chlamydiota Chlorobiota Chloroflexota *Cyanobacteria* DQ499300_p DQ833500_p Deinococcota EF019318_p Elusimicrobiota Fibrobacterota Bacillota Fusobacteriota Gemmatimonadota Hydrogenedentes_NKB19 Kazan Latescibacteria_WS3 Nitrospirota OMAN Omnitrophica_OP3 Parcubacteria_OD1 Peregrinibacteria Planctomycetota Pseudomonadota Saccharibacteria_TM7 Spirochaetota TM6 Tenericutes Verrucomicrobiota WS5

E. Compartimentos planta invernadero (filo)

Figura 16. Redes de co-ocurrencia de las poblaciones de bacterias en los compartimentos de plantas L.angustifolius recogidas en campo e invernadero.Red de todas las muestras de plantas de campo einvernadero: A) OTUs agrupadas a nivel de filo y B) OTUs agrupadas a nivel de género.Red de lasmuestras de campo: C) OTUs agrupadas a nivel de filo y D) OTUs agrupadas a nivel de género.Red de lasmuestras de invernadero: E) OTUs agrupadas a nivel de filo y F) OTUs agrupadas a nivel de género.Los nodos están coloreados según el filo, las líneas verdes la co-ocurrencia (correlación >0,70) y laslíneasrojaslaco-exclusión(correlación<-0,70).</td>

4. DISCUSIÓN

Millones de microorganismos viven en asociaciones estrechas con las plantas. Estas comunidades son muy dinámicas y se ven alteradas por cambios en el medio ambiente, por lo tanto, conocer qué factores ambientales contribuyen dicha asociación es fundamental para predecir cómo afectará el cambio climático al ensamblaje del microbioma, y a la interacción entre las plantas y las comunidades microbianas asociadas (Hacquard et al., 2022; Petipas et al., 2021; Ramirez et al., 2019; Thiergart et al., 2020).

Con el objetivo de estudiar las variaciones estacionales y geográficas en la microbiota del suelo donde crece de forma silvestre la planta *Lupinus angustifolius*, en este trabajo se recogieron muestras en dos regiones cercanas, pero con una composición edáfica muy diferente. Tras el análisis físico-químico de ambos suelos, se realizaron los perfiles metagenómicos de las poblaciones bacterianas y fúngicas.

Los resultados de las muestras de suelo analizadas, sugirieren que la diferencia en la composición de la comunidad microbiana observada entre las dos localizaciones de muestreo, Cabrerizos y Salamanca, se debe en parte a las diferencias en las condiciones edáficas. La mayor diferencia se encontró en el pH de los suelos, siendo el de Cabrerizos moderadamente alcalino (pH 7,98) y el de Salamanca ligeramente ácido (pH 6,66), además la composición textural es muy diferente lo que influye en la capacidad de retención del agua de ambos suelos. El suelo de Salamanca tiene una capacidad mayor de retención de agua, lo que hace que la diferencia entre las estaciones sea marcada, mientras que en Cabrerizos estas diferencias no eran tan evidentes.

Ninguna de las comunidades analizadas (bacterianas como fúngicas) presentaron diferencias en la diversidad *alfa* (índice de Shannon) entre las estaciones climáticas en las que se recogieron las muestras. En ambos suelos, los índices de diversidad fueron mayores en las comunidades bacterianas (6-8) que en las fúngicas (2-5). La diversidad *beta* (análisis de coordenadas principales basado en Bray-Curtis) para ambas comunidades microbianas separó las muestras en dos grupos según el tipo de suelo. Aunque la principal diferencia en las comunidades microbianas del suelo fue debida a las propiedades edáficas, dentro de cada tipo de suelo, también pudimos ver diferencias según las estaciones climáticas, donde por ejemplo en las muestras de Salamanca tanto para las comunidades bacterianas como fúngicas, se vio esta separación. Como ya se ha descrito en trabajos anteriores, el factor principal para diferenciar las comunidades bacterianas en el suelo es el pH (Durán et al., 2022;

Fierer & Jackson, 2006; Kaiser et al., 2016). Sin embargo, con estos resultados también podemos observar que dependiendo de la estación climática en la que se estudien las poblaciones microbianas hay variaciones. Esto puede indicar que los factores ambientales como son temperatura, humedad o precipitaciones afectan a la diversidad de las comunidades microbianas en el suelo. En trabajos recientes, se han obtenido resultados similares que indican que las diferencias en los cambios estacionales de temperatura, duración del día y humedad, afectan a los ensamblajes de microbiomas (Hou et al., 2021; Hubbard et al., 2018; Zhao et al., 2021).

Al analizar la riqueza de OTUs únicas para todas las estaciones climáticas en ambos suelos, se observó que, en Cabrerizos la mayor riqueza de OTUs únicas era en invierno y la menor en otoño; mientras que en Salamanca correspondieron a las estaciones de primavera e invierno, respectivamente. Es interesante poder observar que, en ambos tipos de suelos, a lo largo de las estaciones climáticas hay mucha variedad entre los taxones que se encuentran en mayor abundancia. En el suelo, las comunidades bacterianas difieren entre estaciones debido a una combinación diferencial de factores deterministas y estocásticos que interactúan para diversificar el patrón de ensamblaje bacteriano y rotación de taxones. En los dos tipos de suelos se ve un incremento del filo *Acidobacteriota* en las estaciones más frías (invierno y primavera). A su vez pudo verse un patrón entre las abundancias de los taxones *Actinomycetota, Betaproteocabcteria* y *Gemmatimonadota*, y es que en las distintas estaciones climáticas cuando el primero disminuye aumentan significativamente los otros dos en ambos suelos.

En el caso de los hongos, se pudo observar que, en ambos tipos de suelo, en invierno aumentó mucho con respecto al resto de estaciones la abundancia de los filos *Glomeromycota* y *Chytridiomycota*, mientras que en verano fue el filo *Basidiomycota*, el más abundante. Esto posiblemente esté relacionado con el efecto de la estacionalidad y la heterogeneidad como ya se ha mencionado previamente (Averill et al., 2019; Hestrin et al., 2019).

Por otra parte, también se caracterizó el microbioma asociado a la planta *Lupinus angustifolius* en condiciones naturales. Para ello se recogieron plantas silvestres en las mismas localizaciones dónde se hizo el análisis de los suelos y se estudió el perfil bacteriano de los compartimentos de la planta (rizosfera, raíces, nódulos y hojas) y el perfil fúngico rizosférico. Asimismo, para determinar diferencias en la estructura del microbioma asociado a la planta cuando esta es cultivada en condiciones controladas, se recogieron los mismos suelos que previamente habían sido analizados y se cultivó

la planta *L. angustifolius* en invernadero, y se realizaron los mismos análisis metagenómicos que en las plantas naturales.

En los compartimentos de la planta, la microbiota cambia ligeramente con las condiciones de cultivo, en este trabajo se encontraron mayores valores de diversidad *alfa* (índice de Shannon) en las plantas cultivadas en invernadero con respecto a las cultivadas en campo. El nicho se selecciona para una diversidad microbiana constante y reducida, por lo que se encuentra menor riqueza y diversidad Shannon en los compartimentos según vamos analizando hacia el interior de la planta (rizosfera, raíces, hojas y nódulos), en comparación con el suelo. Estos resultados eran previsibles y son acordes a los registrados en estudios anteriores donde se observa una disminución en la biodiversidad de las comunidades microbianas desde la rizosfera a la endosfera en varias especies vegetales (Brown et al., 2020; Edwards et al., 2015; Santos-Medellín et al., 2017).

El estudio de la diversidad beta de las comunidades bacterianas mostró un patrón común para los compartimentos asociados a raíz y es que, la comunidad bacteriana se vio afectada principalmente por las diferentes condiciones de cultivo, plantas recogidas en el campo y plantas cultivadas en invernadero. La composición de la microbiota bacteriana de las plantas recogidas en campo, no tuvo diferencias importantes entre los dos tipos de suelo. Por el contrario, en las plantas cultivadas en invernadero, se registró una clara diferenciación entre los dos tipos de suelos. En el caso de la comunidad fúngica de la rizosfera no se observaron variaciones en la composición cuando las plantas fueron cultivadas en campo o en invernadero, ni en los distintos suelos. Estos resultados nos indican que las variables ambientales y climáticas que actúan en el campo como son humedad, precipitación y temperatura, son importantes para la diferenciación de la comunidad bacteriana (Hou et al., 2021; Hubbard et al., 2018; Zhao et al., 2021). Cuando estas variables ambientales se controlan y las plantas se cultivan en invernadero y en suelos diferentes, pueden verse diferencias en la microbiota bacteriana asociada a la raíz en ambos suelos, ya que las propiedades del suelo podrían ser las principales impulsoras de la diferenciación de la comunidad bacteriana en las raíces, como también se ha indicado previamente (Thiergart et al., 2020). Por el contrario, nuestros resultados sugieren que la comunidad fúngica asociada a la raíz de L. angustifolius es muy estable, ya que no se apreciaron diferencias.

La riqueza de OTUs únicas de las comunidades fúngicas y bacterianas en la rizosfera, fue mayor en el campo que en invernadero, mientras que en las raíces, nódulos y hojas fue al contrario. En ambas condiciones de cultivo y suelos, los filos con mayor abundancia relativa acumulada en todos los compartimentos de la planta fueron *Pseudomonadota* (siendo *Alphaproteobacteria* el taxón más abundante) y *Mucoromycota*.

En trabajos anteriores, se ha sugerido que la familia *Comamonadaceae* forma parte del microbioma radicular bacteriano central de varias plantas como *Arabidopsis thaliana*, maíz, arroz, cebada o vid (Hacquard et al., 2015; Lundberg et al., 2012), sin embargo, en este trabajo no se observó esta tendencia. Aunque la abundancia se vio incrementada en las muestras de raíz y rizosfera en plantas cultivadas en invernadero frente a las de campo es necesario analizar con más profundidad este grupo bacteriano. Trabajos anteriores han reportado que es una de las familias más afectadas por las condiciones climáticas (Durán et al., 2018, 2022; Finkel et al., 2020).

Cuando se analizó la microbiota bacteriana de los nódulos de las plantas crecidas en invernadero y en campo, se vio que esta era muy diferente en ambas condiciones de cultivo. En el caso de las plantas crecidas en campo, el simbionte Bradyrhizobium se encontraba en una abundancia >98%, mientras que en las plantas cultivadas en invernadero en ambos suelos la abundancia de dicho género disminuía considerablemente hasta una proporción de 72,5 y 82,9% en Cabrerizos y Salamanca, respectivamente. En este caso, aumentaban su proporción otros taxones como es el caso de Pseudomonas, Rhizobium, Duganella o Sphingomonas, entre otros. Teniendo en cuenta estudios previos, esto podría deberse a que, en el caso de campo, la semilla empieza a producir exudados desde la germinación y, además, se ve influenciada por las raíces de las plantas que hay en ese momento en el suelo. En invernadero, se siembran plántulas cuando ya están germinadas tras 5 días de crecimiento, por lo que la exudación inicial de la planta y el inicio de la colonización en ese tiempo es diferente; ya que, los factores abióticos modulan la productividad y la producción de los exudados de raíces, lo que impulsa la adaptación de los microorganismos (Gupta & Diwan, 2017; Marasco et al., 2022; Mugnai et al., 2018; Williams & de Vries, 2020). Junto con la estabilización mediada por exudados radiculares, los microorganismos asociados con las raíces precedentes y/o en descomposición también pueden desempeñar un papel importante en la selección del microbioma de los sistemas radiculares (Zhou et al., 2020).

El género *Micromonospora* aislado comúnmente de diferentes tejidos de la planta *L. angustifolius* (Benito et al., 2022; Riesco et al., 2022b; Trujillo et al., 2010), y que se sabe que tiene una alta interacción con la planta huésped (Benito et al., 2017; Trujillo

et al., 2014) no ha sido detectado en los compartimentos de *L. angustifolius* en abundancias altas. Dicha bacteria podría considerarse un microorgansimo "satélite", es decir, que no se encuentra en altas abundancias en asociación con la planta, pero que tiene una alta interacción con el huésped y su microbiota asociada, desempeñando funciones importantes (ver Capítulos 2 y 3).

El estudio de la co-ocurrencia y co-exclusión de las comunidades bacterianas y fúngicas en el suelo y la rizosfera de L. angustifolius, mostró que las comunidades microbianas en el suelo en las cuatro estaciones climáticas no presentan ningún patrón de co-ocurrencia y co-exclusión, mientras que, dichos patrones sí pueden apreciarse cuando se estudian en conjunto dichas estaciones y se hace una comparación entre los distintos tipos de suelo. Además, se ha visto que las bacterias dominan las redes en comparación a las comunidades fúngicas. Al analizar la coocurrencia en la rizosfera en ambos tipos de suelo y las diferentes condiciones de cultivo de forma independiente, se puede observar claramente una influencia del tipo de suelo en combinación con las condiciones de cultivo. La co-ocurrencia en la rizosfera del suelo de Cabrerizos está influenciada por el filo Amatimonadota, mientras que en la rizosfera del suelo de Salamanca es por el filo Actinomycetota. Asimismo, cuando se analizaron las matrices de co-ocurrencia de todos los compartimentos de las plantas cultivadas en invernadero y en campo, se pudo observar que los filos Bacteroidota. Bacillota. Pseudomonadota. Fusobacteriota. Actinomycetota, Chloroflexota y Phyllobacteriota fueron los más dominantes con correlaciones positivas. Por todo esto, para la interpretación ecológica de las redes de co-ocurrencia, se deben tener en cuenta varios factores, ya que las teorías ecológicas explican que las aristas negativas y positivas, mayoritariamente consideradas como competencia o cooperación, no tienen por qué ser así (Cobo-Díaz et al., 2019; Gao et al., 2022; Ritter et al., 2021). Los vínculos negativos en las redes pueden atribuirse tanto a la depredación como a la competencia; y los vínculos positivos pueden ser el resultado de una coexistencia estable debida a la heterogeneidad espaciotemporal y a la dinámica fuente-sumidero (Lee et al., 2022). En este trabajo se analizaron redes de co-ocurrencia en el momento exacto de recogida de muestras, siendo fotos del momento y no se intentó extrapolar estos resultados ni buscar funcionalidad, ya que el estudio y análisis de redes de co-ocurrencia debe tratarse con cuidado, puesto que las redes deben reconstruirse adecuadamente, sobre un conjunto de datos sólidos y con replicabilidad. Es decir, se necesitan validar experimentalmente las interacciones a escalas apropiadas para dar un contexto biológico y comprender la compleja arquitectura de la biodiversidad microbiana (Goberna & Verdú, 2022).

5. CONCLUSIONES / CONCLUSIONS

- Las comunidades microbianas de los suelos analizados se vieron afectadas por la naturaleza del suelo y los cambios de estacionalidad climática.
- La diversidad bacteriana registrada en los distintos compartimentos de la planta *Lupinus angustifolius,* que incluía la rizosfera, raíces, nódulos y hojas, puede considerarse altamente diversa.
- La diversidad y riqueza bacteriana disminuyó desde la exosfera a la endosfera de la planta, siendo la más diversa la correspondiente a la rizosfera y la menos diversa la registrada en los nódulos
- La composición bacteriana en los compartimentos de la planta se vio más afectada por las condiciones de cultivo (campo e invernadero), que por la localización de los suelos de cultivo (Cabrerizos y Salamanca).
- Las redes de co-ocurrencia y co-exclusión pueden dar una idea de la interacción entre las comunidades microbianas en el momento que se estudian, pero no es suficiente para determinar su papel ecológico, ya que este dependerá de los factores analizados.

CONCLUSIONS

- Microbial communities of the analyzed soils were affected by the soil composition and the climatic seasons.
- The bacterial diversity reported in the different compartments of the *Lupinus angustifolius* plant, which included the rhizosphere, roots, nodules and leaves, can be considered highly diverse.
- *Lupinus angustifolius* showed a high bacterial diversity decreasing from the exosphere to the endosphere, starting with rhizosphere and followed by the roots, nodules and leaves.
- Bacterial composition in the plant compartments was more affected by the growing conditions (field vs greenhouse), than by soil composition and location (Cabrerizos and Salamanca).
- The co-occurrence and co-exclusion networks can provide an idea of the interaction between the microbial communities present in an ecosystem, but they need to be carefully interpreted as these analyses are not sufficient on their own to determine the ecological role of the microbiota associated to the plant.

CAPÍTULO II

EL MICROBIOMA CULTIVABLE DE *Lupinus angustifolius*

1.	INTROD	DUCCIÓN	72
1 1	.1. Pap .2. Cole	el de los microorganismos asociados a plantas ecciones de cultivo de microorganismos relacionados con plantas	72 75
2.	OBJETI	VOS	77
3.	RESULT	TADOS	78
3 3 3	.1. Aisl .2. Ider .3. Gér 3.3.1.	amiento de las comunidades bacterianas asociadas a <i>L. angustifolius</i> ntificación de las cepas aisladas por secuenciación del gen ARNr 16S neros más abundantes en el microbioma cultivable de <i>L. angustifolius</i> Género <i>Agrobacterium</i>	78 82 87 87
	3.3.2.	Género Bacillus	89
	3.3.3.	Genero Bradyrhizobium	90
	3.3.4.	Género Curtobacterium	91
	3.3.5.	Género Enterobacter	92
	3.3.6.	Género Inquilinus	93
	3.3.7.	Género Luteibacter	94
	3.3.8.	Género Microbacterium	95
	3.3.9.	Género Micromonospora	96
	3.3.10.	Género Peribacillus	97
	3.3.11.	Género Phyllobacterium	98
	3.3.12.	Género Priestia	99
	3.3.13.	Género Pseudoclavibacter	100
	3.3.14.	Género Pseudomonas	101
	3.3.15.	Género Pseudoxanthomonas	103
	3.3.16.	Género Rhizobium	104
	3.3.17.	Género Stenotrophomonas	105
	3.3.18.	Género Streptomyces	106
	3.3.19.	Género Tardiphaga	108
3 3 d	.4. Estu .5. Los ependien	udios de patogenicidad géneros comunes detectados mediante técnicas independiente tes de cultivo	108 s y 109
4.	DISCUS	SIÓN	114
5.	CONCL	USIONES / CONCLUSIONS	118

1. INTRODUCCIÓN

1.1. Papel de los microorganismos asociados a plantas

Aunque invisibles a simple vista, los microorganismos son un componente esencial de la biota terrestre. Debido a sus innumerables roles y funciones ambientales, los microorganismos son componentes importantes de la biodiversidad del mundo, ya que catalizan transformaciones únicas e indispensables en los ciclos biogeoquímicos de la biosfera, producen componentes importantes de la atmósfera terrestre y representan una gran parte de la diversidad genética de la vida (Whitman et al., 1998). La diversidad microbiana se refiere a la riqueza y el grado de variabilidad entre especies dentro de un ecosistema (Fierer & Lennon, 2011; Sievers, 2013).

Los suelos albergan el microbioma más diverso y complejo de la Tierra. Las bacterias y los hongos son generalmente los microorganismos dominantes del suelo (Bar-On et al., 2018), y un componente esencial del subsistema de descomposición del suelo (Zhou et al., 2020). Así pues, se puede considerar el suelo como una fuente importante de microorganismos para las plantas en los ecosistemas terrestres (Banerjee & van der Heijden, 2023). Miles de microorganismos de las comunidades microbianas del suelo, se agrupan en la rizosfera de la planta y son reclutados principalmente por las raíces, y como resultado, las plantas reciben un subconjunto del microbioma del suelo (Edwards et al., 2015). El suelo y la rizosfera son muy diversos pero dominados por los filos *Pseudomonadota, Actinomycetota, Cyanobacteria y Acidobacteriota* (Bai et al., 2013, 2015; Bulgarelli et al., 2012, 2015; Edwards et al., 2015; Fierer, 2017; Santos-Medellín et al., 2017; Trivedi et al., 2020).

La contribución de los microorganismos del suelo al desarrollo y salud vegetal es indiscutible, ya que, de los aproximadamente 29 elementos esenciales para las plantas, 18 se obtienen del suelo y las comunidades microbianas juegan un papel esencial en la biodisponibilidad de estos elementos (Brevik et al., 2020). La rizosfera se forma a partir de microorganismos del suelo, las raíces de las plantas preferentemente estimulan o inhiben microorganismos concretos, lo que da como resultado una comunidad que se vuelve cada vez más distinta del suelo y, a menudo, es menos diversa (Figura 17) (Nuccio et al., 2020; Shengjing et al., 2015; Vieira et al., 2020). Las plantas a su vez, reclutan preferentemente microorganismos de la rizosfera, que son esenciales para su crecimiento y desarrollo. Las redes comunitarias de la rizosfera también se vuelven más grandes y más complejas que las del suelo a lo largo del tiempo, lo que sugiere que las interacciones microbianas influyen en el ensamblaje de la comunidad (Shi et al., 2016; Yan et al., 2017). El microbioma de la
rizosfera fortalece el repertorio metabólico de las plantas y facilita una variedad de procesos que incluyen la germinación de las semillas, el establecimiento de la plántula, la nutrición, la absorción de agua, la promoción de crecimiento, la supresión de patógenos, la tolerancia al estrés y la regulación hormonal (Berendsen et al., 2012; Lugtenberg & Kamilova, 2009; Trivedi et al., 2020; Van der Heijden et al., 2015).

Figura 17. Formación de la rizosfera. A medida que va creciendo una planta, se desarrolla una comunidad rizosférica, su diversidad a menudo disminuye en relación con el suelo, incluso mientras aumenta su biomasa y la complejidad de la red que se forma entre los microorganismos. Al mismo tiempo, se forma nueva materia orgánica del suelo (MOS) en la rizosfera. Modificada de Sokol et al., (2022).

Los microorganismos aportan hasta el 80% del nitrógeno y el 90% del fósforo vegetal (Van Der Heijden et al., 2008). Incluso en cultivos intensivos, los microorganismos del suelo pueden tener un gran impacto en las plantas. También indirectamente, los microorganismos en la rizosfera pueden influir en características funcionales importantes, como el área foliar, la longevidad de la hoja, los niveles de nutrientes y la relación entre el brote y la raíz (Berg et al., 2014). Bacterias como *Alcaligenes, Arthrobacter, Azospirillum, Bacillus, Methylobacterium, Pseudomonas, Rhizobium y Rhodococcus* entre otras, son conocidas por su papel en la nutrición de las plantas, la promoción del crecimiento, la regulación hormonal y el control del estrés (Banerjee & Van der Heijden, 2023). Uno de los ejemplos más conocidos de microorganismos beneficiosos para las plantas son los hongos micorrízicos, que forman asociaciones simbióticas con casi el 90% de las plantas terrestres, incluidos muchos cultivos (Van der Heijden et al., 2015). Es importante tener en cuenta que los microorganismos no funcionan de forma aislada y un número creciente de estudios demuestra que se

requiere un enfoque de sistemas para comprender el funcionamiento del microbioma. Los consorcios microbianos, en lugar de los microorganismos individuales pueden explicar mejor el impacto de los microbiomas en el crecimiento de las plantas y la absorción de nutrientes, la eficiencia en el uso del nitrógeno, el éxito en la supresión de patógenos y, en general, la multifuncionalidad del ecosistema (Van der Heijden et al., 2016; Van Elsas et al., 2012; Wagg et al., 2019; Zhang et al., 2019). De acuerdo con esto, el reclutamiento selectivo de microorganismos del suelo por parte de las plantas es clave para la supervivencia de las mismas, en gran parte por la diversidad de mecanismos que aportan un beneficio para el desarrollo y crecimiento, incluyendo la promoción del crecimiento, el control del estrés y la defensa contra patógenos y plagas (Figura 18) (Berg et al., 2014; Fitzpatrick et al., 2019; Zhang et al., 2019).

Figura 18. El microbioma asociado a la planta proporciona beneficios a la planta a través de varios mecanismos directos o indirectos. Estos beneficios incluyen la promoción del crecimiento (azul), el control del estrés (verde) y la defensa contra patógenos y plagas (rojo). Modificado de Trivedi et al., (2020).

1.2. Colecciones de cultivo de microorganismos relacionados con plantas

El campo de la microbiología comenzó con la visualización de microorganismos (Van Leeuwenhoek, 1683) y continuó con el aprendizaje del cultivo y crecimiento de los mismos. El desarrollo de la secuenciación de nueva generación revolucionó la microbiología debido a la posibilidad de análisis genómicos y de comunidades sin la necesidad de cultivar los microorganismos. Estas tecnologías han ampliado nuestro conocimiento del microbioma de distintos ecosistemas, identificando sus efectos en

estas comunidades complejas (Huttenhower et al., 2012; Rothschild et al., 2018; Spor et al., 2011; Turnbaugh et al., 2009). Los estudios independientes de cultivo han hecho contribuciones cruciales a la investigación de los microbiomas terrestres. Sin embargo, si no se dispone de un cultivo microbiano puro se pierden las ventajas de la microbiología clásica, lo que da como resultado una falta de estudios y un enfoque alternativo sobre la disbiosis microbiana, la diversidad y funcionalidad de los microbiomas (Olesen & Alm, 2016; Shade, 2017).

El perfilado de genes marcadores, como por ejemplo la secuenciación del gen ARNr 16S o de la región ITS, proporciona un método simple y rápido para evaluar parcialmente, la composición taxonómica de una comunidad microbiana. Además, el ensamblaje de metagenomas puede evaluar la capacidad funcional de un microbioma. La utilidad de estos datos depende de qué tan bien se puedan ensamblar las secuencias de lectura corta en *contigs*. La calidad del ensamblaje puede verse afectada por la complejidad de la comunidad, la tecnología de secuenciación y/o las proporciones de contaminación del ADN del huésped (Oh et al., 2014; Whelan et al., 2020; Zhang et al., 2015). A pesar de la cantidad de datos generada, una limitación importante en el estudio de las interacciones planta-microorganismo, es que la mayoría de estos últimos, no existen en colecciones de cultivo, dificultando su estudio, tanto de forma individual como en consorcios. Por lo tanto, es esencial contar con colecciones de cultivo que permitan estudiar de manera directa, estos procesos de asociación y función (Bai et al., 2015; Lebeis et al., 2012).

Las colecciones de cultivo existen desde que los microbiólogos pudieron aislar y cultivar por primera vez cultivos puros de microorganismos, y siempre han sido un aspecto importante de la microbiología, ya se utilicen como fuente de cepas con fines para la enseñanza, investigación, taxonómicos o patentes. Las colecciones de cultivos son un recurso genético muy valioso y una manera de conservación de la biodiversidad microbiana (Labeda, 2015).

En esta tesis se combinaron técnicas dependientes e independientes de cultivo para comprender mejor las comunidades microbianas y sus funciones asociadas a la planta huésped *Lupinus angustifolius*. Este capítulo se centra en el microbioma cultivable de *Lupinus angustifolius*.

2. OBJETIVOS

La importancia de disponer de los microorganismos asociados a una planta para estudiarlos, tanto a nivel genómico como fisiológico, así como para profundizar en los mecanismos de interacción con su huésped, hace necesario el aislamiento de los mismos y, su conservación en colecciones de cultivo especializadas. En la primera parte de este trabajo, se caracterizó con técnicas independientes de cultivo (metagenómica) las comunidades fúngicas y bacterianas asociadas a la planta *Lupinus angustifolius.* En este capítulo, el objetivo fue el aislamiento directo e identificación molecular de la comunidad bacteriana presente en los distintos tejidos de la planta y la creación de una colección de cepas asociada a *L. angustifolius.* Para ello, se plantearon los siguientes objetivos específicos:

- Selección de medios de cultivo para el aislamiento de bacterias asociadas a la planta *Lupinus angustifolius*, previamente detectadas mediante métodos metagenómicos.
- 7. Aislamiento, conservación e identificación a nivel de género de las cepas.
- 8. Identificación de los géneros más abundantes asociados al microbioma cultivable de *L. angustifolius*.
- 9. Ensayos preliminares de patogenicidad de las cepas bacterianas aisladas.
- 10. Comparación de los resultados obtenidos mediante los dos enfoques metodológicos: metagenómica y culturómica.

3. RESULTADOS

3.1. Aislamiento de las comunidades bacterianas asociadas a *L. angustifolius*

La caracterización de la microbiota bacteriana asociada a *Lupinus angustifolius* mediante técnicas independientes de cultivo (metagenómica) (Capítulo I), proporcionó información sobre los taxones más abundantes en cada uno de los compartimentos de la planta (rizosfera, raíces, nódulos y hojas). Estos resultados sirvieron para identificar aquellos géneros bacterianos que se encontraban en una abundancia relativa >1% (Tabla 8) y diseñar un proceso para el aislamiento selectivo de estos géneros (ver Materiales y Métodos).

Tabla 8. Géneros bacterianos y sus correspondientes familias identificados por metagenómica en una abundancia relativa >1%. Los compartimentos indicados son aquellos en que dichos taxones se encontraban en una abundancia relativa >1%.

Familia	Género	Compartimento de la planta (abundancia relativa >1%)
Comamonadaceae	Acidovorax	Rizosfera, raíces, nódulos
Actinomycetaceae	Actinomyces	Hojas
Micrococcaceae	Arthrobacter	Hojas
Boseaceae	Bosea	Raíces
Bradyrhizobiaceae	Bradyrhizobium	Rizosfera, raíces, nódulos y hojas
Campylobacteraceae	Campylobacter	Hojas
Caulobacteraceae	Caulobacter	Rizosfera, raíces, nódulos
Cellvibrionaceae	Cellvibrio	Raíces
Chitinophagaceae	Chitinophaga	Rizosfera, raíces
Flavobacteriaceae	Chryseobacterium	Raíces
Opitutaceae	Diplosphaera	Rizosfera, raíces
Rhodospirillaceae	Dongia	Rizosfera
Oxalobacteraceae	Duganella	Rizosfera, raíces, nódulos y hojas
Flavobacteriaceae	Flavobacterium	Rizosfera, raíces
Aerococcaceae	Granulicatella	Hojas
Pasteurellaceae	Haemophilus	Hojas
Oxalobacteraceae	Herbaspirillum	Hojas
Lactobacillaceae	Lactobacillus	Hojas
Comamonadaceae	Leptothrix	Raíces
Xanthomonadaceae	Luteibacter	Raíces
Xanthomonadaceae	Lysobacter	Rizosfera
Oxalobacteraceae	Massilia	Rizosfera, raíces, nódulos y hojas
Phyllobacteriaceae	Mesorhizobium	Raíces
Methylophilaceae	Methylophilus	Raíces
Methylophilaceae	Methylotenera	Rizosfera, raíces
Comamonadaceae	Mitsuaria	Rizosfera, raíces

Sphingobacteriaceae	Mucilaginibacter	Rizosfera, raíces
Neisseriaceae	Neisseria	Hojas
Chitinophagaceae	Niastella	Raíces
Sphingomonadaceae	Novosphingobium	Rizosfera
Erwiniaceae	Pantoea	Raíces
Burkholderiaceae	Paraburkholderia	Raíces
Sphingobacteriaceae	Pedobacter	Rizosfera
Caulobacteraceae	Phenylobacterium	Raíces
Phyllobacteriaceae	Phyllobacterium	Raíces
Prevotellaceae	Prevotella	Hojas
Oxalobacteraceae	Pseudoduganella	Rizosfera, raíces
Pseudomonadaceae	Pseudomonas	Rizosfera, raíces, nódulos y hojas
Xanthomonadaceae	Pseudoxanthomonas	Rizosfera, raíces, nódulos
Burkholderiaceae	Ralstonia	Hojas
Burkholderiaceae Comamonadaceae	Ralstonia Rhizobacter	Hojas Rizosfera, raíces, nódulos y hojas
Burkholderiaceae Comamonadaceae Rhizobiaceae	Ralstonia Rhizobacter Rhizobium	Hojas Rizosfera, raíces, nódulos y hojas Rizosfera, raíces, nódulos y hojas
Burkholderiaceae Comamonadaceae Rhizobiaceae Nocardiaceae	Ralstonia Rhizobacter Rhizobium Rhodococcus	Hojas Rizosfera, raíces, nódulos y hojas Rizosfera, raíces, nódulos y hojas Nódulos, hojas
Burkholderiaceae Comamonadaceae Rhizobiaceae Nocardiaceae Micrococcaceae	Ralstonia Rhizobacter Rhizobium Rhodococcus Rothia	Hojas Rizosfera, raíces, nódulos y hojas Rizosfera, raíces, nódulos y hojas Nódulos, hojas Hojas
Burkholderiaceae Comamonadaceae Rhizobiaceae Nocardiaceae Micrococcaceae Sphingomonadaceae	Ralstonia Rhizobacter Rhizobium Rhodococcus Rothia Sphingobium	HojasRizosfera, raíces, nódulos y hojasRizosfera, raíces, nódulos y hojasNódulos, hojasHojasRizosfera, raíces
Burkholderiaceae Comamonadaceae Rhizobiaceae Nocardiaceae Micrococcaceae Sphingomonadaceae Sphingomonadaceae	Ralstonia Rhizobacter Rhizobium Rhodococcus Rothia Sphingobium Sphingomonas	HojasRizosfera, raíces, nódulos y hojasRizosfera, raíces, nódulos y hojasNódulos, hojasHojasRizosfera, raícesRizosfera, raíces, nódulos y hojas
BurkholderiaceaeComamonadaceaeRhizobiaceaeNocardiaceaeMicrococcaceaeSphingomonadaceaeSphingomonadaceaeBlastocatellaceae	RalstoniaRhizobacterRhizobiumRhodococcusRothiaSphingobiumSphingomonasStenotrophobacter	HojasRizosfera, raíces, nódulos y hojasRizosfera, raíces, nódulos y hojasNódulos, hojasHojasRizosfera, raícesRizosfera, raíces, nódulos y hojasRizosferaRizosfera
BurkholderiaceaeComamonadaceaeRhizobiaceaeRhizobiaceaeNocardiaceaeMicrococcaceaeSphingomonadaceaeSphingomonadaceaeBlastocatellaceaeStreptococcaceae	RalstoniaRhizobacterRhizobiumRhodococcusRothiaSphingobiumSphingomonasStenotrophobacterStreptococcus	HojasRizosfera, raíces, nódulos y hojasRizosfera, raíces, nódulos y hojasNódulos, hojasHojasRizosfera, raícesRizosfera, raíces, nódulos y hojasRizosferaHojas
BurkholderiaceaeComamonadaceaeRhizobiaceaeRhizobiaceaeNocardiaceaeMicrococcaceaeSphingomonadaceaeSphingomonadaceaeBlastocatellaceaeStreptococcaceaeStreptomycetaceae	RalstoniaRhizobacterRhizobiumRhodococcusRothiaSphingobiumSphingomonasStenotrophobacterStreptococcusStreptomyces	HojasRizosfera, raíces, nódulos y hojasRizosfera, raíces, nódulos y hojasNódulos, hojasHojasRizosfera, raícesRizosfera, raíces, nódulos y hojasRizosferaHojasRizosferaHojasRizosferaHojasRizosfera, raíces
BurkholderiaceaeComamonadaceaeRhizobiaceaeRhizobiaceaeNocardiaceaeMicrococcaceaeSphingomonadaceaeSphingomonadaceaeBlastocatellaceaeStreptococcaceaeStreptomycetaceaeBradyrhizobiaceae	RalstoniaRhizobacterRhizobiumRhodococcusRothiaSphingobiumSphingomonasStenotrophobacterStreptococcusStreptomycesTardiphaga	HojasRizosfera, raíces, nódulos y hojasRizosfera, raíces, nódulos y hojasNódulos, hojasHojasRizosfera, raícesRizosfera, raíces, nódulos y hojasRizosferaHojasRizosferaRizosferaHojasRizosfera, raícesRizosferaRizosfera, raícesRizosferaRizosfera, raícesRizosfera, raícesRizosfera, raícesRizosfera, raíces
BurkholderiaceaeComamonadaceaeRhizobiaceaeRhizobiaceaeNocardiaceaeMicrococcaceaeSphingomonadaceaeSphingomonadaceaeBlastocatellaceaeStreptococcaceaeStreptomycetaceaeBradyrhizobiaceaeComamonadaceae	RalstoniaRhizobacterRhizobiumRhodococcusRothiaSphingobiumSphingomonasStenotrophobacterStreptococcusStreptomycesTardiphagaVariovorax	HojasRizosfera, raíces, nódulos y hojasRizosfera, raíces, nódulos y hojasNódulos, hojasHojasRizosfera, raícesRizosfera, raíces, nódulos y hojasRizosferaHojasRizosferaRizosferaHojasRizosfera, raícesRizosfera, raícesRizosfera, raícesRizosfera, raícesRizosfera, raícesRizosfera, raícesRaícesRizosfera, raíces

Tras dos meses de incubación a 28°C de las placas de aislamiento con los medios ISP2, NA, PYE, R2A, SCA, e YMA, y la selección de colonias cada 2 días, se aislaron un total de 722 cepas, que posteriormente fueron purificadas y conservadas en glicerol al 20% (v/v) y a -80°C. En la Figura 19 pueden observarse dos placas de aislamiento tras 30 días de incubación a 28°C, el medio de cultivo es YMA y las muestras pertenecen a aislamientos de nódulos (Figura 19A) y de raíces (Figura 19B).

Figura 19. Placa de aislamiento de bacterias tras 30 días de incubación a 28°C. El medio de cultivo es YMA y los aislamientos de: A) nódulos y, B) raíces.

Las 722 cepas se distribuyeron de la siguiente manera: 298 provenían de rizosfera, 212 de hojas, 137 de raíces y 75 de nódulos (Figura 20A). Un total de 415 cepas se aislaron de las plantas de Cabrerizos, de las cuales 228 correspondían a las recogidas en el campo y 187 a las cultivadas en invernadero. En el caso de Salamanca el número de aislados fue inferior, 307 (251 recuperadas de plantas de campo y 56 de plantas de invernadero). Por lo tanto, el mayor número de cepas aisladas correspondió a las plantas de campo de Salamanca con un 35% del total (Figura 20B). En cuanto a su distribución por medios de cultivo, el mayor aislamiento se obtuvo en el medio R2A (184), seguido de YMA (157), NA (109), PYE (94), ISP2 (36) y SCA (42) (Figura 20C). Toda la información de los aislamientos puede encontrarse detallada en la Tabla S1 – Anexo II.

Figura 20. Diagramas de sectores representando la distribución del número de aislados según: A) compartimento de la planta; B) la localización y condiciones de cultivo de las muestras; y C) medio de cultivo.

3.2. Identificación de las cepas aisladas por secuenciación del gen ARNr 16S

La identificación molecular a nivel de género de los aislados se realizó mediante la secuenciación del gen ARNr 16S y su posterior comparación en la base de datos EzBioCloud. En total se aislaron cepas de 87 géneros diferentes entre los que destacaron los géneros *Pseudomonas* (120), *Streptomyces* (69), *Agrobacterium* (36), *Bacillus y Pseudoclavibacter* (31), *Enterobacter y Microbacterium* (24), *Pseudoxanthomonas* (23) y *Stenotrophomonas* (22) por ser los más abundantes (Tabla S3 – Anexo II). Toda la información sobre las identificaciones se encuentra detallada en la Tablas S2 – Anexo II.

El mayor número de cepas aisladas (298) correspondió al compartimento denominado rizosfera y se identificaron un total de 52 géneros bacterianos diferentes. Los géneros *Pseudomonas*, *Streptomyces*, *Agrobacterium*, *Enterobacter*, *Pseudoxanthomonas* y *Stenotrophomonas* (38, 33, 28, 24, 23 y 18 cepas respectivamente) fueron los más abundantes (Figura 21).

Figura 21. Diversidad a nivel de género de las cepas aisladas de la rizosfera de Lupinus angustifolius.

Las 137 cepas recuperadas de las raíces fueron identificadas en 21 géneros diferentes, destacando *Pseudomonas* (35), *Phyllobacterium* (14), *Tardiphaga* (12), *Streptomyces* (11), *Inquilinus* (9), *Agrobacterium* (8), *Heyndrickxia* (6), *Luteibacter* (6) y *Rhizobium* (6) (Figura 22).

Figura 22. Diversidad a nivel de género de las cepas aisladas de la raíz de Lupinus angustifolius.

En los nódulos, se identificaron 22 géneros bacterianos. El género *Micromonospora* (16 cepas) fue el más abundante, seguido de *Priestia* (14), *Bacillus* (10), *Bradyrhizobium* (9), *Cytobacillus* (3), *Paenibacillus* (3) y *Brevibacterium*, *Cohonella*, *Niallia* y *Peribacillus* con 2 aislados cada uno (Figura 23).

Figura 23. Diversidad de los géneros bacterianos identificados en las muestras de nódulos de Lupinus angustifolius.

Las hojas fue el segundo compartimento con mayor número de aislados con 212 y distribuidos en 32 géneros diferentes. Los géneros con mayor número de representantes fueron *Pseudomonas* (47), *Pseudoclavibacter* (31), *Streptomyces* (25), *Microbacterium* (23), *Curtobacterium* (16), *Bacillus* (11), *Peribacillus* (11) y *Callulomonas* (8) (Figura 24).

Figura 24. Diversidad de los géneros bacterianos identificados en hojas de Lupinus angustifolius.

Tras la identificación de las 722 cepas aisladas de los distintos compartimentos de L. angustifolius, se realizó una comparación para determinar la distribución de géneros en las dos localizaciones muestreadas, Cabrerizos y Salamanca, así como también el efecto de las condiciones de cultivo en la composición de la microbiota bacteriana. Para ello se representó en diagramas de Venn aquellos géneros que pertenecían a cada localización y condición de cultivo, resultando que 7 de los géneros identificados eran comunes, teniendo en cuenta ambas variables. Dichos géneros fueron Agrobacterium, Bacillus, Paenibacillus, Pseudomonas, Rhizobium, Stenotrophomonas y Streptomyces (Figura 25). Para las plantas recogidas en el campo, se registró un mayor número de géneros únicos, 16 y 13, en Salamanca y Cabrerizos respectivamente. Por otra parte, al comparar la diversidad de las plantas obtenidas en invernadero, se encontró que las plantas de Cabrerizos incluían 9 géneros únicos (Acidovorax, Chryseobacterium, Cupriavidus, Enterobacter, Methylobacterium, Polaromonas, Rhizobacter, Sphingopyxis y Xanthomonas), mientras que las de Salamanca, únicamente tenían 3 (Allorhizobium, Herbaspirillum y Paraburkholderia). Al comparar las muestras de campo e invernadero de ambas localizaciones, se detectaron 17 y 5 géneros en común, respectivamente. También se destaca que las

plantas de Cabrerizos cultivadas en ambas condiciones tenían 2 géneros en común (*Mesorhizobium* y *Pseudoxanthomonas*), mientras que en las de Salamanca, el resultado fue 0.

Figura 25. Diagramas Venn de la distribución de los aislados en las localizaciones y condiciones de cultivo dónde se recogieron las plantas.

Al comparar la distribución de los géneros aislados en los diferentes compartimentos: rizosfera, raíces, nódulos y hojas; se observó que los géneros Bacillus y Peribacillus eran comunes a todos. El compartimento asociado a raíz fue el que presentó mayor número de géneros únicos (21), seguido de hojas (19), nódulos (12) y raíz (4). La suma de los géneros de la rizosfera y raíces dio un total de 10 (Agrobacterium, Bosea, Ensifer, Inquilinus, Luteibacter, Mesorhizobium, Neorhizobium, Pararhizobium, Rhizobium y Tardiphaga) géneros comunes, y 2 cuando se incluyeron también los nódulos (Phyllobacterium y Starkeya). El género común entre raíces y nódulos fue Bradyrhizobium. En las hojas se identificaron 6 géneros comunes con rizosfera (Agromyces, Flavobacterium, Kocuria, Lysobacter, Sphingomonas У Stenotrophomonas), 3 con nódulos (Cytobacillus, Microbacterium y Niallia) y 1 con raíces (Lysinibacillus) (Figura 26).

Figura 26. Diagramas Venn de la distribución de los aislados en los compartimentos de la planta.

3.3. Géneros más abundantes en el microbioma cultivable de L. angustifolius

En este estudio también se identificaron los géneros más abundantes, considerando un corte mínimo de 10 cepas aisladas. A continuación, se presenta la filogenia del gen ARNr 16S y una pequeña reseña de cada uno de estos géneros. Para facilitar su presentación, el orden seguido es el alfabético. Todos los árboles filogenéticos que se presentan a continuación, así como la tabla de similitudes de cada uno de los géneros están disponibles en un enlace del Anexo II en formato digital para una mejor visualización.

3.3.1. Género Agrobacterium

Un total de 36 cepas aisladas de la rizosfera y raíces fueron identificadas en el género *Agrobacterium*. Las cepas provenían de Cabrerizos y Salamanca, y de plantas recogidas tanto en invernadero como en campo. Se puede observar en el árbol filogenético que 31 cepas mostraron una similitud >99% con *Agrobacterium radiobacter* IAM 12048^T (Figura 27). Por su parte las cepas RO32 y CRA49, fueron recuperadas en ramas independientes del resto de las cepas tipo y registraron valores

de similitud con por debajo de 98,3 y 95,5, respectivamente. En el caso de la cepa CRA49, es posible que esta represente un género nuevo.

Algunas especies del género *Agrobacterium* son conocidas como fitopatógenos, ya que pueden causar tumores a una amplia gama de plantas debido a que albergan el plásmido Ti (inductor de tumores). La mayoría de trabajos sobre *Agrobacterium* se han centrado en el entorno del tumor de la planta, y los rasgos genéticos potencialmente involucrados en las interacciones bacteria-planta (Dessaux & Faure, 2018; Meyer et al., 2019; Nester, 2015).

Figura 27. Árbol filogenético construido con el gen ARNr 16S y basado en el método Maximum Likelihood con el modelo Kimura 2-parameter, donde se muestran las relaciones de las cepas identificadas como Agrobacterium y las especies relacionadas. El número de nucleótidos por secuencia es de 1295. Barra, 0,01 sustituciones por nucleótido.

3.3.2. Género Bacillus

Un total de 31 cepas del género *Bacillus* fueron aisladas de todos los compartimentos de la planta, localizaciones y condiciones de cultivo. Entre los aislados se puede encontrar una gran diversidad y las nuevas cepas se asocian con varias especies como, por ejemplo, *B. pumilus*, *B. cabrialesii* subsp. *tritici*, *B. mojavensis*, y *B. halotolerans*, entre otros (Figura 28). *Bacillus* es uno de los géneros más abundantes en el suelo. Se trata de una bacteria Gram positiva de rápido crecimiento, productora de endosporas y fácil de aislar (Blake et al., 2020). Es capaz de promover el crecimiento en plantas y controlar microorganismos fitopatógenos a través de diversos mecanismos, incluida la mejora de la disponibilidad de nutrientes y la alteración de la homeostasis de las fitohormonas, así como la producción de antimicrobianos y la activación de la resistencia sistémica inducida (Fita et al., 2015; Freitas et al., 2015; Woo et al., 2020; Xie et al., 2014).

Figura 28. Árbol filogenético construido con el gen ARNr 16S y basado en el método Maximum Likelihood con el modelo Kimura 2-parameter, donde se muestran las relaciones de las cepas identificadas como Bacillus y las especies relacionadas. El número de nucleótidos por secuencia es de 1280. Barra, 0,01 sustituciones por nucleótido.

3.3.3. Genero Bradyrhizobium

Un total de 9 cepas del género Bradyrhizobium fueron asiladas de muestras de nódulos de la localización de Salamanca y una de raíces de la localidad de Cabrerizos, todas de plantas recogidas en campo. Entre los aislados se puede ver que la cepa LUN108 se agrupa con *B. hipponense* aSej3^T. El resto de las cepas aisladas se agrupan todas en la misma rama siendo la especie más cercana *B. symbiodeficiens* (Figura 29). El género *Bradyrhizobium* es muy importante debido a que es el género

encargado de la fijación de nitrógeno en simbiosis con *Lupinus*. Además, se ha visto que este género, más concretamente la especie *B. japonicum* encargada de la fijación de nitrógeno en soja, promueve también el crecimiento de la planta (Agha et al., 2023; Kumawat et al., 2022). Se ha visto que dicha especie promueve la tolerancia a altas concentraciones de sal en *Arabidopsis thaliana* (Gomez et al., 2023).

Figura 29. Árbol filogenético construido con el gen ARNr 16S y basado en el método Maximum Likelihood con el modelo Kimura 2-parameter, donde se muestran las relaciones de las cepas identificadas como Bradyrhizobium y las especies relacionadas. El número de nucleótidos por secuencia es de 1346. Barra, 0,01 sustituciones por nucleótido.

3.3.4. Género Curtobacterium

Diez de las 16 cepas identificadas en género *Curtobacterium*, mostraron una similitud >99% con *Curtobacterium herbarum* P420/7^T (Figura 30). Las cepas fueron aisladas de hojas de las dos localidades muestreadas, pero únicamente en plantas recogidas en campo. Aunque algunas especies del género *Curtobacterium* son patógenos de plantas, muchos aislados se han caracterizado como promotores del crecimiento vegetal o endófitos que podrían aliviar el estrés abiótico del huésped (Cui et al., 2021; Hung et al., 2022; Seaton et al., 2021; Vimal et al., 2019; Yongjun & Xiang, 2021). La especie *Curtobacterium flaccumfaciens* es un patógeno vegetal que habita en el xilema y causa marchitez en una amplia gama de cultivos de leguminosas. Entra a través de la semilla contaminada, heridas y aberturas naturales y, posteriormente,

infecta el tejido vascular, impidiendo la translocación de agua y nutrientes (Hsieh et al., 2004; Osdaghi et al., 2020).

Figura 30. Árbol filogenético construido con el gen ARNr 16S y basado en el método Maximum Likelihood con el modelo Kimura 2-paramter, donde se muestran las relaciones de las cepas identificadas como Curtobacterium y las especies relacionadas. El número de nucleótidos por secuencia es de 1265. Barra, 0,01 sustituciones por nucleótido.

3.3.5. Género Enterobacter

El género *Enterobacter* fue identificado de aislados provenientes de muestras de rizosfera de plantas de invernadero cultivadas en suelo de Cabrerizos. Se identificaron un total de 24 cepas, todas ellas se recuperaron en la misma rama que *Enterobacter ludwigii* EN-119^T y tenían valores de similitud entre 98.6 -99.6%, con esta especie (Figura 31). El género *Enterobacter* pertenece a la familia *Enterobacteriaceae* y se ha asociado con mecanismos de promoción del crecimiento (PGP), tales como la solubilización de fosfato en plantas como el arroz (Andrés-Barrao et al., 2021; Haque et al., 2022; Lee et al., 2019; Sorokan et al., 2020).

Figura 31. Árbol filogenético construido con el gen ARNr 16S y basado en el método Maximum Likelihood con el modelo Kimura 2-parameter, donde se muestran las relaciones de las cepas identificadas como Enterobacter y las especies relacionadas. El número de nucleótidos por secuencia es de 1281. Barra, 0,01 sustituciones por nucleótido.

3.3.6. Género Inquilinus

Las cepas que se identificaron como *Inquilinus* sp. fueron un total de 10. Estas fueron aisladas de muestras de rizosfera y raíces, de ambas localizaciones y condiciones de cultivo. Teniendo en cuenta que actualmente sólo existen dos especies descritas, las cepas aisladas de *L. angustifolius* mostraron una gran diversidad pudiéndose observar que todos los aislados se agrupaban en ramas diferentes a las cepas tipo de dicho género y es posible que algunas representen nuevas especies ya que los valores de similitud con las especies *I. limosus* e *I. ginsengisoli* están por debajo de 99% (Figura

32). Algunas cepas de *Inquilinus* aisladas de raíz se han probado *in vitro* para confirmar su capacidad promotora del crecimiento vegetal, y además se ha registrado la producción de enzimas que degradan la pared celular (Rat et al., 2021).

Figura 32. Árbol filogenético construido con el gen ARNr 16S y basado en el método Maximum Likelihood con el modelo Kimura 2-parameter, donde se muestran las relaciones de las cepas identificadas como Inquilinus y las especies relacionadas. El número de nucleótidos de las secuencias es 1331. Barra, 0,01 sustituciones por nucleótido.

3.3.7. Género Luteibacter

Doce aislados de rizosfera y de raíz, de ambas localizaciones y condiciones de cultivo fueron identificados como *Luteibacter*. Estas cepas no presentan gran diversidad entre ellas, pero sí se agruparon de manera independiente al resto de las tres especies actualmente descritas, siendo la más próxima, *L. anthropi* (Figura 33). Cepas de *Luteibacter* sp. aisladas de *Piper nigrum* han sido estudiadas *in vitro* demostrando su potencial como PGP ya que, producen sideróforos, sintetizan amoniaco, solubilizan fosfato y fijan nitrógeno (Santhoshkumar et al., 2022). La cepa *Luteibacter rhizovicinus* MIMR1 promueve el desarrollo de raíces de cebada (Guglielmetti et al., 2013).

Figura 33. Árbol filogenético construido con el gen ARNr 16S y basado en el método Maximum Likelihood con el modelo Kimura 2-parameter, donde se muestran las relaciones de las cepas identificadas como Luteibacter y las especies relacionadas. El número de nucleótidos de las secuencias es de 1369. Barra, 0,01 sustituciones por nucleótido.

3.3.8. Género Microbacterium

Veinticuatro cepas aisladas de hojas y nódulos fueron identificadas como miembros del género *Microbacterium*. Las cepas fueron exclusivamente aisladas de plantas recogidas en campo, tanto en Salamanca como en Cabrerizos. Se observó una gran diversidad entre las cepas aisladas y, además, muchas de ellas formaron ramas independientes a las especies más próximas, como por ejemplo las cepas LUF241, LUF5, y LUF82, entre otras (Figura 34). Bacterias del *Microbacterium* has sido aisladas de distintas plantas y son consideradas como importantes promotoras del crecimiento vegetal (Ouertani et al., 2020).

Figura 34. Árbol filogenético construido con el gen ARNr 16S y basado en el método Maximum Likelihood con el modelo Kimura de 2-parameter, donde se muestran las relaciones de las cepas identificadas como Microbacterium y las especies relacionadas. El número de nucleótidos de las secuencias es de 1346. Barra, 0,01 sustituciones por nucleótido.

3.3.9. Género Micromonospora

Diecinueve cepas aisladas de nódulos provenientes de plantas de campo, recogidas en ambas localizaciones, fueron identificadas como *Micromonospora* sp. Cepas del género *Micromonospora* han sido aisladas previamente de diversas leguminosas y de distintos tejidos vegetales incluidas hojas, tallo, raíces y nódulos (Benito et al., 2022; Trujillo et al., 2010). Existen varios trabajos que demuestran la capacidad de promoción del crecimiento de estas bacterias en plantas, principalmente en leguminosas, y su potencial uso en fitorremediación asistida (Alonso-Vega et al., 2012; Ortúzar et al., 2020; Trujillo et al., 2015). Además, se ha descrito un importante

número de especies de este nicho (Carro et al., 2012, 2016; Riesco et al., 2022b; Trujillo et al., 2007). De igual manera, en este trabajo se observó una gran diversidad entre las cepas aisladas (Figura 35).

Figura 35. Árbol filogenético construido con el gen ARNr 16S y basado en el método Maximum Likelihood con el modelo Kimura 2-parameter, donde se muestran las relaciones de las cepas identificadas como Micromonospora y las especies relacionadas. El número de nucleótidos de las secuencias es de 1325. Barra, 0,01 sustituciones por nucleótido.

3.3.10. Género Peribacillus

El género *Peribacillus* contó con 17 cepas aisladas de todos los compartimentos. Estas cepas fueron aisladas en muestras de plantas recogidas tanto en campo como en invernadero en ambas localizaciones. Dentro de los aislados pudo observarse que 16 de estos se clasificaban en grupos en la misma rama que las especies *P. muralis* LMG 20238^T y *P. frigotolerans* DSM 880^T (Figura 36). Recientemente, se ha descrito la especie "P. castriliensis" como promotora del crecimiento vegetal y agente de biocontrol (Rodríguez et al., 2022).

3.3.11. Género Phyllobacterium

Dieciséis cepas aisladas de rizosfera, raíces y nódulos de plantas cultivadas en campo e invernadero en ambas localizaciones fueron identificadas en el género *Phyllobacterium*. La distribución de las cepas en el árbol filogenético mostró la diversidad de las mismas y su relación con las especies *P. endophyticum, P. sophorae, P. brassicaearum y P. bourgongense*. Además, las cepas LUR94 y LUR16, aisladas de raíces estaban localizadas en una rama independiente y con un valor de similitud por debajo del 98%, por lo que se puede concluir que estas bacterias pueden suponer nuevas especies (Figura 37). El género *Phyllobacterium* es una bacteria Gram negativa que está ampliamente asociado a plantas, especialmente a las hojas y además es considerado como un buen candidato para el desarrollo de bioinoculantes por su capacidad promotora del crecimiento vegetal entre el que se encuentra la solubilización de fosfato (Breitkreuz et al., 2020; Kechid et al., 2022).

Figura 37. Árbol filogenético construido con el gen ARNr 16S y basado en el método Maximum Likelihood con el modelo Kimura 2-parameter, donde se muestran las relaciones de las cepas identificadas como Phyllobacterium y las especies relacionadas. El número de nucleótidos de las secuencias es de 1279. Barra, 0,01 sustituciones por nucleótido.

3.3.12. Género Priestia

Bacterias identificadas en el género *Priestia* fueron aisladas de rizosfera, nódulos y hojas, en plantas recogidas en los 2 lugares de muestreo y en ambos tipos de plantas (campo e invernadero). Se identificaron un total de 17 cepas, muchas de ellas asociadas a la especie *P. arayabhattai* (Gupta et al., 2020). Por otro lado, la cepa LUN69 estaba ubicada en una rama distinta al resto (Figura 38). *Priestia* es un género que en la actualidad alberga microorganismos previamente clasificados en el género *Bacillus*, por lo tanto, se trata de bacterias Gram positivas y productoras de

endosporas con características de promoción de crecimiento vegetal similares a las descritas en el apartado del género *Bacillus*. Por ejemplo, induce la resistencia de las plantas a través de producción de ácido salicílico (Li et al., 2022).

Figura 38. Árbol filogenético construido con el gen ARNr 16S y basado en el método Maximum Likelihood con el modelo Kimura 2-parameter, donde se muestran las relaciones de las cepas identificadas como Priestia y las especies relacionadas. El número de nucleótidos de las secuencias es de 1336. Barra, 0,01 sustituciones por nucleótido.

3.3.13. Género Pseudoclavibacter

Un total de 31 cepas aisladas de plantas cultivadas en campo en Cabrerizos y Salamanca y, asiladas de hojas, fueron identificadas en el género *Pseudoclavibacter*. Las especies más próximas a los aislados fueron *P. helvolus* DSM 20419^T y *P. terrae* THG MD12^T, aunque se observó muy poca variabilidad entre las cepas aisladas ya que la mayoría fueron recogidas en un único *cluster* y compartían valores de similitud del gen ARNr 16S de 100% (Figura 39). El género *Pseudoclavibacter* pertenece al grupo de las actinobacterias no filamentosas de la familia *Microbacteriaceae*, es

altamente efectiva en la supresión de la pudrición de la raíz en habas (Saad et al., 2020).

Figura 39. Árbol filogenético construido con el gen ARNr 16S y basado en el método Maximum Likelihood con el modelo Kimura 2-parameter, donde se muestran las relaciones de las cepas identificadas como Pseudoclavibacter y las especies relacionadas. El número de nucleótidos de las secuencias es de 1272. Barra, 0,01 sustituciones por nucleótido.

3.3.14. Género Pseudomonas

El género más abundante fue *Pseudomonas* con 120 representantes aislados de todos los compartimentos de la planta, excepto de los nódulos. Las cepas fueron aisladas de plantas recogidas en ambas localizaciones, Cabrerizos y Salamanca y cultivadas tanto en campo como invernadero. Dentro del género se pudo ver que los aislados eran muy diversos y que se agrupaban dentro del árbol filogenético según el compartimento del que habían sido aislados, hojas, rizosfera y raíces (Figura 40). El género *Pseudomonas* es una proteobacteria ampliamente reconocida por su metabolismo versátil, capaz de utilizar más de 100 fuentes diversas de carbono. Además, su papel

ecológico en plantas tanto como promotora del crecimiento, como fitopatógeno está bien documentado (Adhikari et al., 2021; Kour et al., 2020; Orozco-Mosqueda et al., 2019; Rodríguez et al., 2020; Singh et al., 2022; Zhuang et al., 2021). Además de la importante diversidad encontrada en las secuencias del gen ARNr 16S, muchas de las cepas se asociaron con especies asociadas a plantas como *P. brassicacearum, P. rhizoryzae, P. lutea, P. bijieensis*, entre otras. Es muy interesante destacar que la mayoría de las cepas aisladas compartían valores de similitud por debajo del 100%, indicando que no eran clones.

Figura 40. Árbol filogenético construido con el gen ARNr 16S y basado en el método Maximum Likelihood con el modelo Kimura 2-parameter, donde se muestran las relaciones de las cepas identificadas como Pseudomonas y las especies relacionadas. El número de nucleótidos de las secuencias es de 1190. Barra, 0,01 sustituciones por nucleótido.

3.3.15. Género Pseudoxanthomonas

Las 23 cepas identificadas en el género *Pseudoxanthomonas* fueron aisladas de la rizosfera de plantas cultivadas tanto en campo como en invernadero, pero únicamente de Cabrerizos. Las cepas formaron dos *clusters* con 10 y 9 cepas asociadas a las especies *P. indica* y *P. japonensis*, mientras que las cepas CRA128, SO12 y CRA42A estaban más próximas a *P. sacheosensis, P. yeongjuensis* y *P. gei* (Figura 41). El género *Pseudoxanthomonas* se conoce por su capacidad de degradación de compuestos xenobióticos (Kim et al., 2008; Wang et al., 2011), y se ha visto que algunas cepas tienen capacidad de biocontrol contra nemátodos (Hu et al., 2019).

Figura 41. Árbol filogenético construido con el gen ARNr 16S y basado en el método Maximum Likelihood con el modelo Kimura 2-parameter, donde se muestran las relaciones de las cepas identificadas como Pseudoxanthomonas y las especies relacionadas. El número de nucleótidos de las secuencias es de 1317. Barra, 0,01 sustituciones por nucleótido.

3.3.16. Género Rhizobium

Catorce cepas aisladas de rizosfera y raíces de ambas localizaciones y condiciones de cultivo, fueron identificadas como *Rhizobium*. Dichas cepas eran muy diferentes y se asociaron filogenéticamente con al menos once especies diferentes (Figura 42). El nitrógeno es uno de los tres principales macronutrientes necesarios para el crecimiento de las plantas. Aunque este elemento es muy abundante en la atmósfera, las plantas no pueden utilizarlo directamente, sin embargo, se asocian con bacterias fijadoras de nitrógeno, especialmente aquellas del género *Rhizobium*, que convierten el dinitrógeno atmosférico en amoníaco, una forma disponible para las plantas. Esta relación mutualista se basa en interacciones complejas de señales moleculares entre el huésped y los rizobios (Oldroyd, 2013; Roy et al., 2020; Yang et al., 2022; Zhao et al., 2021).

Figura 42. Árbol filogenético construido con el gen ARNr 16S y basado en el método Maximum Likelihood con el modelo Kimura 2-parameter, donde se muestran las relaciones de las cepas identificadas como Rhizobium y las especies relacionadas. El número de nucleótidos de las secuencias es de 1313. Barra, 0,01 sustituciones por nucleótido.

3.3.17. Género Stenotrophomonas

Veintidós cepas aisladas de hojas y rizosfera, de los dos lugares de muestreo y de plantas en las dos condiciones de cultivo fueron identificadas en el género *Stenotrophomonas*. En base a la filogenia del gen ARNr 16S, las cepas se distribuyeron a lo largo del árbol filogenético donde se incluyeron también todas las especies con nombres validados, 17. La mayoría de las cepas nuevas formaron 3 grupos de 8, 6, y 7 cepas y que coincidían con el compartimento. Estos *clusters* estaban relacionados con las especies *S. bentonitica, S. rhizophila y S. nitritireducens,* mientras que las cepas RO44 y RO5 formaron ramas independientes (Figura 43). Los aislados de *Stenotrophomonas* asociados a plantas tienen un gran potencial para promover el crecimiento de las plantas, especialmente en condiciones de estrés, debido a su capacidad para promover la tolerancia a los estreses abióticos, como la salinidad o la sequía (Alexander et al., 2020; Ulrich et al., 2021).

3.3.18. Género Streptomyces

Un importante número de cepas, 69, fueron identificadas en el género *Streptomyces*, siendo el segundo grupo más abundante después de *Pseudomonas*. En este caso, las cepas se aislaron de todos los compartimentos, excepto de nódulos, de las plantas de campo e invernadero y recogidas en Salamanca y Cabrerizos. La Figura 44 muestra la distribución de las 69 cepas, donde claramente se aprecia la importante diversidad de las mismas. Además, un bajo número de cepas como, por ejemplo, LUR175A, LUR157, LUR158, y LUR167 mostraron una similitud del 100%. En algunos casos, los

valores de similitud estaban por debajo del 96%. Muchas cepas del género *Streptomyces* son capaces de colonizar la rizosfera. También pueden ser endófitos que colonizan tejidos internos de las plantas huésped (Olanrewaju & Babalola, 2019; Sousa & Olivares, 2016). Debido a su alta producción de compuestos bioactivos que se utilizan como mecanismos de defensa, son de gran importancia en biocontrol (Boukhatem et al., 2022; Cao et al., 2021; Jones & Elliot, 2017; Kim et al., 2019; Mun et al., 2020; Som et al., 2017; Vijayabharathi et al., 2015).

Figura 44. Árbol filogenético construido con el gen ARNr 16S y basado en el método Maximum Likelihood con el modelo Kimura 2-parameter, donde se muestran las relaciones de las cepas identificadas como Streptomyces y las especies relacionadas. El número de nucleótidos de las secuencias es de 1132 bp. Barra, 0,01 sustituciones por nucleótido.

3.3.19. Género Tardiphaga

т

El género *Tardiphaga* cuenta actualmente con una única especie. En este trabajo se identificaron un total de 13 cepas aisladas de rizosfera y raíces, en ambas localizaciones y condiciones de cultivo. En el árbol filogenético (Figura 45) se observó que las cepas mostraban una relación estrecha con la especie *Tardiphaga robiniae* LMG 26467^T, con valores de similitud del gen ARNr 16S entre 99.3-99.8%. *Tardiphaga robinae*, la única especie descrita y validada hasta ahora, es una bacteria Gramnegativa, con forma de bacilo que fue aislada en 2012 de nódulos de *Robinia pseudoacacia* (De Meyer et al., 2012). Este género está muy relacionado con el género *Bradyrhizobium*, el fijador de nitrógeno en *L. angustifolius*. Además, hay otra especie descrita pero todavía sin validar "Tardiphaga zeae" aislada de un cultivo de *Zea mays*.

ree scale: 0.001 +			(5
Asociado planta NO Sí	Asociado planta	Compartimento	Localización	Condiciones culti
Compartimento	"Tardiphaga zeae" SS122 ^T (OP556611)			
	Tardiphaga robiniae LMG 26467 ^T (FR753034)			
Raices	LUR148			
Rizosfera				
NA				
Localización				
Cabrerizos	2			
Salamanca	LUR126			
	LUR125			
	• LUR124			
	• LUR13			
Condiciones cultivo	ŧ			
Campo				_
Invernadero				
NA				

Figura 45. Árbol filogenético construido con el gen ARNr 16S y basado en el método Maximum Likelihood con el modelo Kimura 2-parameter parámetros, donde se muestran las relaciones de las cepas identificadas como Tardiphaga y las especies relacionadas. El número de nucleótidos de cada secuencia es de 1398. Barra, 0,01 sustituciones por nucleótido.

3.4. Estudios de patogenicidad

Todas las cepas aisladas fueron analizadas frente a la planta *Arabidopsis thaliana* Col-0 en un ensayo para determinar de forma preliminar si algunas de estas cepas eran potencialmente fitopatógenas. Tras 14 días de incubación de las plantas se pudo determinar que frente a un control positivo (planta inoculada únicamente con solución salina), 394 cepas no mostraron patogenicidad, 116 parecían promover el crecimiento
de la planta; mientras que 212 cepas fueron caracterizadas como potencialmente patógenas (Figura 46). La Figura 47 muestra una imagen del crecimiento de las plantas inoculadas con respecto a las plantas control.

Figura 46. Estudio preliminar de la patogenicidad de las cepas aisladas de Lupinus angustifolius en Arabidopsis thaliana Col-0.

Figura 47. Foto de las placas multipocillo donde se llevaron a cabo los ensayos preliminares de patogenicidad de los aislados. P=patógena; PGP=promotora del crecimiento vegetal; N=no patógena.

3.5. Los géneros comunes detectados mediante técnicas independientes y dependientes de cultivo

Los resultados obtenidos en el estudio de la microbiota asociada a *L. angustifolius* por técnicas independientes de cultivo mostraron que la diversidad bacteriana asociada a la planta era muy elevada, llegándose a identificar 2238 géneros bacterianos en los compartimentos de la planta. Como se ha indicado anteriormente, se hizo una relación de aquellos géneros que se encontraban en una abundancia relativa >1% en los

compartimentos de la planta, y se seleccionaron un total de 52 (Tabla 8). Tras la identificación de las cepas aisladas pudimos diferenciar 87 géneros, se pudo ver que 65 géneros coincidieron con los identificados por metagenómica (74,7%), de estos un 41,5% (27 géneros) fueron identificados en metagenómica en una abundancia >1% y un 58,5% (38 géneros) en una abundancia <1%. De los géneros seleccionados en la Tabla 8 con una abundancia en metagenómica >1%, 25 géneros (22,3%) no se consiguieron aislar y 22 (19,6%) únicamente fueron identificados en culturómica (Tabla 9).

Cepas representantes de todos los géneros fueron aisladas en los compartimentos que se detectaron por metagenómica a excepción de *Arthrobacter, Herbaspirillum* y *Neisseria*, que habían sido únicamente identificados en hojas en una abundancia relativa >1% y se aislaron de compartimentos asociados a la raíz (rizosfera, raíz y/ nódulos). Los géneros que se aislaron de todos los compartimentos fueron *Bacillus* y *Peribacillus*, y mientras que *Bacillus* fue identificado en proporciones <1% por metagenómica, *Peribacillus* no fue detectado. *Flavobacterium, Lysobacter* y *Streptomyces*, aislados además de compartimentos asociados a la raíz de hojas, no fueron identificados en las hojas por técnicas técnicas independientes de cultivo, considerando una proporción >1%.

Tabla 9. Relación de los géneros identificados en metagenómica en una abundancia relativa >1% y en culturómica. Se muestra en color morado aquellos géneros identificados únicamente por culturómica, en azul aquellos identificados en metagenómica, en naranja con ambas técnicas (culturómica y metagenómica abundancia >1%) y en verde con ambas técnicas (culturómica y metagenómica abundancia <1%). Además, se describe en qué compartimento de la planta se identifican.

Géneros	Detección	Metagenómica	Culturómica
Achromobacter		Rizosfera, raíces, hojas	Rizosfera
Acidovorax		Rizosfera, raíces, nódulos	Rizosfera
Actinomyces		Hojas	
Aeromonas		Rizosfera, raíces	Rizosfera
Agrobacterium			Rizosfera, raíces
Agromyces		Rizosfera, raíces	Rizosfera, hojas
Alkalihalobacillus			Nódulos
Allorhizobium		Rizosfera, raíces, nódulos	Rizosfera
Arthrobacter		Hojas	Rizosfera
Bacillus		Rizosfera, raíces, nódulos	Rizosfera, raíces, nódulos y hojas
Bosea		Raíces	Rizosfera, raíces
Bradyrhizobium		Rizosfera, raíces, nódulos y hojas	Raíces, nódulos
Brevibacterium			Nódulos
Campylobacter		Hojas	
Caulobacter		Rizosfera, raíces, nódulos	Rizosfera
Cellulomonas		Rizosfera, raíces, hojas	Hojas
Cellvibrio		Raíces	

Chitinophaga	Rizosfera, raíces	Rizosfera
Chryseobacterium	Raíces	Rizosfera
Clavibacter	Rizosfera, raíces	Hojas
Cohnella	Rizosfera, raíces	Nódulos
Corynebacterium	Rizosfera, raíces, nódulos y hojas	Hojas
Cupriavidus	Rizosfera, raíces, nódulos	Rizosfera
Curtobacterium	Rizosfera	Hoias
Cvtobacillus		Nódulos, hoias
Dermacoccus	Rizosfera	Nódulos
Diplosphaera	Rizosfera, raíces	
Dongia	Rizosfera	
Duganella	Rizosfera, raíces, nódulos y hojas	
Ensifer	Rizosfera, raíces, nódulos	Rizosfera, raíces
Enterobacter	Rizosfera, raíces, nódulos	Rizosfera
Flavobacterium	Rizosfera, raíces	Rizosfera, hojas
Frigoribacterium		Hojas
Granulicatella	Hoias	
Haemophilus	Hojas	
Herbaspirillum	Hojas	Rizosfera
Hevndrickxia		Raíces
Inquilinus	Rizosfera, raíces, nódulos	Rizosfera, raíces
Janthinobacterium	Rizosfera, raíces	Rizosfera
Kineococcus	Rizosfera	Hojas
Kocuria	Rizosfera, nódulos	Rizosfera, hojas
Kribbella	Rizosfera, raíces	Rizosfera
	Hoias	
Leptothrix	Raíces	
Luteibacter	Raíces	Rizosfera, raíces
Lysinibacillus	Rizosfera	Raíces, hojas
Lvsobacter	Rizosfera	Rizosfera, hoias
Mammaliicoccus		Hojas
Massilia	Rizosfera, raíces, nódulos y hojas	Hojas
Mesorhizobium	Raíces	Rizosfera, raíces
Metabacillus		Nódulos
Methylobacterium	Rizosfera, raíces, nódulos y hojas	Rizosfera
Methylophilus	Raíces	
Methylorubrum		Hojas
Methylotenera	Rizosfera, raíces	•
Microbacterium	Rizosfera, raíces	Nódulos, hojas
Microbispora		Nódulos
Micrococcus	Hojas	Nódulos
Microlunatus	Rizosfera	Rizosfera
Micromonospora	Rizosfera, raíces, nódulos	Rizosfera, nódulos
Microvirga	Rizosfera, raíces, nódulos y hojas	Hojas
Mitsuaria	Rizosfera, raíces	Rizosfera
Mucilaginibacter	Rizosfera, raíces	
Mycolicibacterium		Nódulos
Neisseria	Hojas	Nódulos
Neorhizobium		Rizosfera, raíces
Niallia		Nódulos, hojas
Niastella	Raíces	·
Nocardioides	Rizosfera, raíces, nódulos y hojas	Hojas

Novosphingobium	Rizosfera	
Oceanobacillus	Rizosfera	Nódulos
Paenarthrobacter	Rizosfera, raíces, nódulos y hojas	Rizosfera
Paenibacillus	Rizosfera, raíces, nódulos	Rizosfera, nódulos, hojas
Pantoea	Raíces	Raíces
Paraburkholderia	Raíces	Rizosfera
Pararhizobium	Rizosfera, raíces, nódulos	Rizosfera, raíces
Pedobacter	Rizosfera	
Peribacillus		Rizosfera, raíces, nódulos y hojas
Phenylobacterium	Raíces	
Phyllobacterium	Raíces	Rizosfera, raíces, nódulos
Plantibacter		Hojas
Polaromonas	Rizosfera, raíces, nódulos	Rizosfera
Prevotella	Hojas	
Priestia	-	Rizosfera, nódulos, hojas
Pseudarthrobacter		Rizosfera
Pseudoclavibacter		Hojas
Pseudoduganella	Rizosfera, raíces	
Pseudomonas	Rizosfera, raíces, nódulos y hojas	Rizosfera, raíces, hojas
Pseudoxanthomonas	Rizosfera, raíces, nódulos	Rizosfera
Ralstonia	Hojas	
Rhizobacter	Rizosfera, raíces, nódulos y hojas	Rizosfera
Rhizobium	Rizosfera, raíces, nódulos y hojas	Rizosfera, raíces
Rhodococcus	Nódulos, hojas	Rizosfera
Roseomonas	Rizosfera, raíces, nódulos	Raíces
Rothia	Hojas	
Sanguibacter		Hojas
Sphingobium	Rizosfera, raíces	
Sphingomonas	Rizosfera, raíces, nódulos y hojas	Rizosfera, hojas
Sphingopyxis	Rizosfera, raíces, nódulos	Rizosfera
Starkeya	Rizosfera	Rizosfera, raíces, nódulos
Stenotrophobacter	Rizosfera	
Stenotrophomonas	Rizosfera, raíces, nódulos	Rizosfera, hojas
Streptococcus	Hojas	
Streptomyces	Rizosfera, raíces	Rizosfera, raíces, hojas
Tardiphaga	Raíces	Rizosfera, raíces
Terrabacter	Rizosfera	Rizosfera
Terribacillus		Nódulos
Ureibacillus		Hojas
Variovorax	Rizosfera, raíces	Rizosfera
Veillonella	Hojas	
Williamsia	Rizosfera, nódulos	Hojas
Xanthomonas	Rizosfera, raíces, nódulos	Rizosfera

Así pues, observando los taxones más abundantes en más del 80% de las muestras analizadas en los compartimentos, condiciones de cultivo y localizaciones, los microorganismos que pueden considerarse como integrantes del microbioma *core* de la planta huésped *L. angustifolius* son: *Acidovorax, Bradyrhizobium, Caulobacter, Chitinophaga, Flavobacterium, Kribella, Massilia, Pseudomonas, Pseudoxanthomonas, Rhizobium, Sphingomonas, Streptomyces y Variovorax.*

4. DISCUSIÓN

El microbioma del suelo es la comunidad biológicamente más diversa de la biosfera y contiene al menos una cuarta parte de la biodiversidad total de la Tierra. Decenas de millones de especies de bacterias, hongos, virus y microorganismos eucariotas coexisten en este ecosistema, aunque solo unos cientos de miles han sido caracterizados en detalle (Guerra et al., 2021). A su vez, las plantas también albergan una microbiota abundante y diversa. Estas comunidades microbianas tienen funciones importantes para la salud de sus huéspedes (Bai et al., 2015; Berendsen et al., 2012). En ecología microbiana la diversidad taxonómica de un conjunto microbiano y la abundancia de sus miembros individuales se denomina "estructura comunitaria" (Sokol et al., 2022).

En este trabajo, el objetivo era el estudio de la microbiota asociada y la estructura comunitaria de la planta *Lupinus angustifolius*. En primer lugar, se estudió mediante técnicas independientes de cultivo la diversidad bacteriana que había en los distintos compartimentos de la planta huésped, y en el suelo circundante donde la planta crecía de forma silvestre. A su vez, también se analizó la diversidad fúngica asociada a la raíz y el suelo de cultivo. Se confirmó, que *L. angustifolius* es una planta con una gran diversidad bacteriana y fúngica asociada. Debido a la importancia de disponer de colecciones de cultivo asociadas a plantas, en la segunda parte de este trabajo se creó una colección de cepas bacterianas aisladas de los distintos compartimentos de la planta *L. angustifolius*.

Tras obtener los resultados de metagenómica, se hizo una selección de aquellos taxones bacterianos que tenían una abundancia relativa >1% en los distintos compartimentos de la planta, puesto que la proporción de abundancia era alta y sería más fácil aislarlos, seleccionándose un total de 52 géneros. Tras una búsqueda bibliográfica se seleccionaron los medios de cultivo más adecuados para el aislamiento de los 52 géneros seleccionados de las muestras de rizosfera, raíces, nódulos y hojas.

La diversidad bacteriana cultivable que se fue encontrando en las placas de cultivo tras dos días de incubación fue muy elevada, lo que nos confirmó que ciertamente, la diversidad bacteriana asociada a la planta *L. angustifolius* era alta. En total se aislaron 722 cepas bacterianas. Cabe destacar, que fue en el compartimento rizosfera donde se obtuvo el mayor número de aislados. Mientras que, de raíces se aislaron 137 cepas, y 75 de nódulos, lo que nos confirma al igual que en metagenómica que en los compartimentos asociados a la raíz, desde la rizosfera hasta los nódulos la diversidad

va disminuyendo. En cuanto a las localizaciones, de Cabrerizos se asilaron más cepas que de Salamanca, y en ambas localizaciones destacó el número de aislados de campo sobre los de invernadero, viéndose más notable esta diferencia en las muestras de Salamanca. En metagenómica las diversidades *alfa* en los compartimentos de la planta de las muestras de Cabrerizos fueron significativamente mayores que en Salamanca, lo que puede explicar que el número de aislados sea mayor (ver Capítulo I).

En total, se identificaron 87 géneros diferentes, de los cuales, 19 tenían más de 10 cepas aisladas. Los géneros que más destacaron fueron *Pseudomonas*, *Streptomyces*, *Agrobacterium*, *Bacillus* y *Pseudoclavibacter*. Todos estos géneros ya han sido previamente descritos como promotores del crecimiento vegetal y como agentes de biocontrol. Presentan un elevado número de genes relacionados con la producción de auxinas como el ácido indol-3-acético, sideróforos, síntesis de ACC desaminasa y/o solubilización de fosfato, entre otros (Herpell et al., 2023; Raman et al., 2022; Sun et al., 2022; Trivedi et al., 2020; Vesga et al., 2020; Yang et al., 2023). Además, el género *Streptomyces* ha sido ampliamente estudiado en su interacción con plantas y su posible uso en biocontrol de plagas en cultivos debido a la producción de metabolitos secundarios (Araujo et al., 2019; LeBlanc, 2022; Pacios-Michelena et al., 2021).

Un importante número de géneros incluía más de 10 cepas aisladas, observando, además, que existía una gran diversidad entre ellas. Fue llamativo que los géneros Enterobacter y Pseudoxanthomonas únicamente fueron identificados en aislados provenientes de muestras de Cabrerizos, mientras que el primero se aisló de plantas cultivadas en campo, el segundo se detectó también en plantas de invernadero. Los géneros Bacillus, Pseudomonas y Peribacillus se identificaron de cepas aisladas en todos los compartimentos. El género Micromonospora en los resultados de metagenómica se detectaba en los compartimentos asociados a la raíz en proporciones muy bajas (<0,005%), sin embargo, en este trabajo se lograron aislar 19 cepas, muy diversas filogenéticamente entre ellas. Este género, ha sido aislado previamente en nódulos fijadores de nitrógeno de distintas leguminosas, así como de otros tejidos de la planta entre los que están, hojas, raíces y tallo (Benito et al., 2022; Riesco et al., 2022b; Trujillo et al., 2010, 2015). Este género cohabita en los nódulos fijadores de nitrógeno con Bradyrhizobium y, además, tiene una importante interacción con la planta y otros microorganismos, pudiéndose utilizar como promotor de crecimiento vegetal, biocontrol o biorremediación (Alonso-Vega et al., 2012; Benito et al., 2017; Ortuzar et al., 2020; Riesco et al., 2022a).

En los ensayos de patogenicidad se observó que el 29% de las cepas aisladas de *L. angustifolius* eran potencialmente patógenas para *Arabidopsis thaliana* Col-0, este porcentaje es bastante elevado teniendo en cuenta que los aislados provienen de compartimentos asociados a las plantas y no hay trabajos que confirmen que cepas de dichos géneros sean patógenas. Por esta razón, no se puede definir que todas esas cepas sean patógenas, se deberían hacer ensayos más exhaustivos. A su vez, 394 cepas (55%) han resultado no ser patógenas y 116 (16%) promovían el crecimiento de *A. thaliana*. Estos ensayos se realizaron en la planta *A. thaliana* debido a su fácil manejo y, además, porque tiene un crecimiento más rápido en comparación con *L. angustifolius*. Estos ensayos se hicieron como un filtrado preliminar para identificar aquellas cepas que eran patógenas y, por el contrario, aquellas que promovían el crecimiento de la planta, para posteriormente poder diseñar comunidades sintéticas con distintos fines, como puede ser el biocontrol o la promoción de crecimiento de la planta huésped.

Al comparar los resultados obtenidos de la caracterización de la microbiota bacteriana mediante técnicas independientes de cultivo con los resultados de la microbiota bacteriana cultivable, se observó que L. angustifolius tiene una diversidad bacteriana alta en los distintos compartimentos. Los géneros que se detectaban en abundancias relativas >1% en metagenómica coincidieron con 27 de los géneros identificados en los aislamientos. En este trabajo se consiguió aislar un 51,9% de los géneros buscados, y un 74,7% de los géneros aislados se identificaron por metagenómica, sin embargo, un 19,6% no pudo detectarse en ningún compartimento de la planta en metagenómica. Si en un futuro se quiere completar la colección de cultivo bacteriana asociada a la planta L. angustifolius, se deberían hacer aislamientos realizando enriquecimientos de cultivo, ya que así se permite la proliferación bacteriana. También podrían utilizarse otras técnicas como el cultivo de alto rendimiento (Zhang et al., 2021). Estos resultados nos sugieren la importancia de combinar técnicas dependientes e independientes de cultivo para la caracterización de la microbiota asociada a una planta, ya que como podemos ver, se han aislado microorganismos que no se han conseguido identificar en metagenómica.

En el análisis de los resultados de metagenómica y culturómica se identificó un microbioma core de la planta huésped *L. angustifolius* (*Acidovorax, Bradyrhizobium, Caulobacter, Chitinophaga, Flavobacterium, Kribella, Massilia, Pseudomonas, Pseudoxanthomonas, Rhizobium, Sphingomonas, Streptomyces y Variovorax*). La composición y la diversidad de taxones de la microbiota asociada a la planta huésped identificados varió ligeramente entre las localizaciones de muestreo y las condiciones

de cultivo. Se mantuvieron en más del 80% de las muestras analizadas los géneros identificados como microbioma *core*. Dicho microbioma deberá estudiarse para definir sus funciones en asociación a la planta. Aunque no se definan como microbioma *core*, los microorganismos "satélite", es decir, aquellos que se encuentran en abundancias muy bajas y no en todas las muestras, también deberán tenerse en cuenta para estudios posteriores, ya que puede que tengan funciones muy específicas o desempeñen funciones moduladoras críticas en condiciones ambientales particulares (Compant et al., 2019; O'Banion et al., 2019).

En este trabajo no fue posible el aislamiento de la comunidad fúngica de la planta huésped *L. angustifolius*, debido a la difícil tarea de manejar tantos cultivos. En un futuro, para completar la colección bacteriana y poder definir un microbioma *core* tanto de bacterias como hongos, sería interesante el aislamiento de hongos asociados a la planta huésped. De esta forma se podrían estudiar y desarrollar comunidades sintéticas mixtas (bacterias y hongos) que promuevan el crecimiento y protejan a la planta contra el estrés abiótico generado entre otros factores, por el cambio climático.

5. CONCLUSIONES / CONCLUSIONS

- La microbiota bacteriana cultivable de *Lupinus angustifolius* es muy diversa considerando que en este trabajo se identificaron un total de 87 géneros distribuidos en 722 cepas aisladas de la planta.
- Los géneros más abundantes en la microbiota bacteriana cultivable de *L. angustifolius* fueron identificados como *Pseudomonas*, *Streptomyces*, *Agrobacterium*, *Bacillus* y *Pseudoclavibacter*.
- Los géneros *Bacillus*, *Pseudomonas* y *Peribacillus* se aislaron en todos los compartimentos de la planta.
- Los ensayos de patogenicidad en *Arabidopsis thaliana* Col-0 indicaron que la mayoría de las cepas aisladas no eran fitopatógenas (510).
- El 74,7% de los géneros identificados por metagenómica, fueron aislados en cultivo puro, indicando un alto grado de complementariedad entre ambas técnicas de caracterización.
- El 22,3% de los géneros detectados por metagenómica, no se consiguieron aislar por lo que deberán diseñarse nuevas estrategias de aislamiento para completar la colección.
- Los estudios resultados de los capítulos 1 y 2 de esta tesis han permitido definir por primera vez el microbioma *core* de *L. angustifolius*.

CONCLUSIONS

- The culturable bacterial microbiota of *Lupinus angustifolius* identified in this work can be considered highly diverse with a total of 722 isolated strains representing 87 genera.
- The most abundant genera in the culturable bacteriome of *L. angustifolius* were *Pseudomonas*, *Streptomyces*, *Agrobacterium*, *Bacillus* and *Pseudoclavibacter*.
- Strains representing the genera *Bacillus*, *Pseudomonas* and *Peribacillus* were isolated from all plant compartments.
- Pathogenicity assays against *Arabidopsis thaliana* Col-0 confirmed that most isolated strains were non-pathogen (510).
- 74.7% of the isolated genera were also identified by culture-independent techniques, indicating a high degree of correlation between both characterization protocols.
- 22.3% of the genera characterized by metagenomics were not obtained in pure cultures, therefore isolation strategies need to be revisited for improvement.
- The data obtained in chapters 1 and 2 led to the first description and identification of the *L. angustifolius* core microbiome.

CAPÍTULO III

DESCIFRANDO LAS INTERACCIONES DE *Micromonospora* CON SU PLANTA HUÉSPED Y EL MICROBIOMA ASOCIADO

1. INT	RODUCCIÓN122
1.1.	Las comunidades sintéticas como modelo de estudio del microbioma vegetal 122
1.2.	Importancia del género Micromonospora en interacción con leguminosas . 125
2. OB	JETIVOS
3. RE	SULTADOS
3.1. 3.2. 3.3. 3.4. esteril 3.4. 3.4.	Diseño de las comunidades sintéticas bacterianas (SynComs)129Secuenciación e identificación de las cepas129Características funcionales de los consorcios bacterianos (SynComs)130Efecto de las SynComs en la planta huésped cultivada en un suelo sin1341.Parámetros de crecimiento1342.Diversidad alfa y beta138
3.4.	3. Cambios en las comunidades bacterianas inducidas por las SynComs142
3.5. 3.5.	Ensamblaje del microbioma asociado a la raíz de <i>L. angustifolius</i>
3.5.	2. Abundancia de las SynComs inoculadas
3.6. SynCo	Análisis de la expresión génica de <i>L. angustifolius</i> bajo el efecto de las oms
4. DIS	CUSIÓN
5. CO	NCLUSIONES / CONCLUSIONS

1. INTRODUCCIÓN

1.1. Las comunidades sintéticas como modelo de estudio del microbioma vegetal

En el medio ambiente, los microorganismos se encuentran en comunidades de múltiples especies. Estas comunidades pueden estar compuestas por unas pocas especies, o por cientos, como ocurre en los microbiomas asociados a plantas (Bulgarelli et al., 2013; Flemming & Wuertz, 2019). Las raíces de las plantas se asocian con muchos microorganismos que son reclutados del bioma del suelo circundante y se ensamblan en comunidades estructuradas conocidas como la microbiota de la raíz (Sokol et al., 2022). Estas comunidades proporcionan a la planta huésped diferentes funciones beneficiosas, como la protección frente a patógenos o la movilización de nutrientes (Carrión et al., 2019; Durán et al., 2018; Zhang et al., 2019). La comparación de perfiles microbianos entre diversas plantas terrestres muestra una clara diferenciación según las especies huésped (Bulgarelli et al., 2012; Fitzpatrick et al., 2018; Lundberg et al., 2012; Yeoh et al., 2017). Estos patrones podrían explicarse por un proceso en el que la microbiota de la raíz se ensambla según nichos definidos por las características del suelo, clima y los exudados específicos de la planta.

Debido a la complejidad de estos sistemas, es difícil identificar los microorganismos que interactúan y, por tanto, dan forma a la comunidad microbiana asociada a una planta. Tradicionalmente, en microbiología, un microorganismo se aislaba y cultivaba como monocultivo para estudiar sus funciones de forma individual *in vitro* (Foster & Bell, 2012; Helfrich et al., 2018), pero es difícil traducir estas observaciones al contexto asociado con la planta huésped, debido a las diferencias en los entornos espaciales y nutricionales (Coyte & Rakoff-Nahoum, 2019).

Hasta hace unos años, la mayoría de los estudios de interacción plantamicroorganismo se centraban en analizar la interacción entre una cepa individual y la planta en condiciones estériles (Karkaria et al., 2021). Esto no ocurre en la naturaleza, donde la presencia del microbioma local implica un entorno no estéril. Esto explica el fracaso de una sola cepa en el campo, ya que debe enfrentarse a la competencia con el microbioma local (Baez-Rogelio et al., 2017; Bashan et al., 2014). Por lo tanto, en lugar de inocular los microorganismos de forma individual, una alternativa es crear las llamadas comunidades microbianas sintéticas (SynComs), que como comunidad tienen más probabilidades de sobrevivir y cumplir sus funciones en un entorno no estéril (Raaijmakers, 2015). La construcción y el diseño de comunidades sintéticas o consorcios es una alternativa para estudiar y verificar la función del microbioma y para estudiar la interacción entre el microbioma y la planta huésped (Durán et al., 2018; Ma et al., 2021).

La investigación y los fundamentos científicos hasta la fecha se han desarrollado utilizando estrategias reduccionistas u holísticas. El uso de SynComs, se plantea como un punto de vista intermedio, ya que puede reducir la brecha entre el conocimiento obtenido con el estudio de cepas individuales y el análisis de microbiomas complejos (Figura 48). En general, la complejidad de la experimentación y la certeza de los factores que interactúan son inversamente proporcionales; mientras que, la complejidad tiende a aumentar a medida que se añaden más cepas a la investigación, la certeza es mayor cuantas menos cepas se estudien. Además, los análisis de correlaciones y causalidades también aumentan y disminuyen inversamente (Marín et al., 2021).

Figura 48. Representación de las estrategias de procesamiento de la información y los enfoques en el diseño de comunidades sintéticas (SynComs). Modificado de Marín et al., (2021).

Los mecanismos que gobiernan el ensamblaje de la comunidad microbiana en la planta huésped sólo han comenzado a descifrarse. Los avances en ecología microbiana, impulsados por la secuenciación metagenómica, han dado información sobre los factores que implican el ensamblaje de la comunidad microbiana, así como las razones por las que algunos microorganismos utilizados como inoculantes no logran colonizar las plantas de manera efectiva. El microbioma vegetal comprende comunidades microbianas muy diversas y complejas que están influenciadas por muchos factores, como el genotipo del huésped, los cambios ambientales y el

desarrollo de la planta (Coleman-Derr et al., 2016; de Souza et al., 2016; Liu et al., 2019). Además de los factores del huésped, las interacciones microorganismomicroorganismo también contribuyen al ensamblaje de la comunidad, pero se sabe poco sobre el impacto general y los mecanismos específicos que prevalecen en la planta (Chen et al., 2020; Hassani et al., 2018; Müller et al., 2016; Pfeilmeier et al., 2021; Trivedi et al., 2020).

Una comunidad sintética exitosa, debe competir con los microorganismos autóctonos, colonizar eficientemente los órganos de la planta y establecer asociaciones estables y resistentes a pesar de los cambios en el medio ambiente y la composición microbiana del suelo (de Souza et al., 2016; Finkel et al., 2017). La combinación del estudio del microbioma asociado a una planta mediante técnicas dependientes e independientes de cultivo es clave para tratar de entender la interacción entre la microbiota y la planta huésped (Finkel et al., 2020). En contraste con la selección de microorganismos basada en actividades de promoción del crecimiento o taxonomía, el conjunto de datos generados mediante técnicas independientes de cultivo (metagenómica), el aislamiento de la microbiota cultivable asociados a plantas, pueden servir para diseñar SynComs que alberguen múltiples factores como: una colonización robusta (alta abundancia en los órganos de las plantas), prevalencia (consistencia en las etapas de desarrollo de las plantas) y funciones beneficiosas específicas (Figura 49) (de Souza et al., 2020).

Figura 49. Esquema para diseñar comunidades sintéticas (SynComs) estables y efectivas para estudiar el ensamblaje y función del microbioma de la planta huésped.

Los tamaños de las SynComs en distintos trabajos son muy variables, un consorcio pequeño (hasta 10 cepas) puede no ser tan representativo taxonómicamente como uno grande (>100 cepas). Las comunidades ricas en especies, por lo general suelen ser más eficientes y productivas que las comunidades pobres en especies, ya que utilizan los recursos de manera más eficiente (Toju et al., 2018). En algunos estudios, las SynComs están diseñadas para representar el microbioma *core* de una planta determinada (Bulgarelli et al., 2012, 2013; Kong et al., 2018; Lundberg et al., 2012), pero es importante tener en cuenta a los microorganismos "satélite", es decir, aquellos microorganismos cambiantes que generalmente no se encuentran en el microbioma *core*. Dichos microorganismos posiblemente desempeñan funciones moduladoras críticas en condiciones ambientales particulares (Compant et al., 2019; O'Banion et al., 2019; Shi et al., 2016). Por lo tanto, como los microorganismos de baja abundancia relativa pueden desempeñar un papel importante en el funcionamiento del ecosistema vegetal (Schulz-Bohm et al., 2015), las especies menos representadas no deben pasar desapercibidas a la hora de diseñar una SynCom.

1.2. Importancia del género Micromonospora en interacción con leguminosas

Micromonospora es una actinobacteria que ha sido frecuentemente aislada de distintos tejidos de plantas, en especial leguminosas (Benito et al., 2022; Riesco et al., 2022b; Trujillo et al., 2010). Su interacción con la planta ha sido estudiada

ampliamente (Alonso-Vega et al., 2012; Benito et al., 2017, 2022; Ortúzar, 2017; Ortuzar et al., 2020; Riesco et al., 2022a; Trujillo et al., 2010, 2014), y aunque es un microorganismo que no forma parte del microbioma central de ninguna leguminosa (Brown et al., 2020; Dai et al., 2020; Hartman et al., 2017; Wahdan et al., 2021; Wang et al., 2022), se ha podido comprobar su fuerte interacción con el rizobio encargado de la fijación del nitrógeno, formando una relación tripartita planta-rizobio-*Micromonospora* (Benito et al., 2017). Además de plantas, esta bacteria ha sido aislada de múltiples ambientes y por lo tanto se considera cosmopolita (Ørskov, 1923; Ren et al., 2013; Saygin et al., 2020; Supong et al., 2013; Tanasupawat et al., 2010; Thawai et al., 2008).

La presencia de *Micromonospora* en tejidos nodulares se confirmó por primera vez mediante hibridación fluorescente *in situ* (FISH) y microscopía electrónica de transmisión (MET), lo que sugiere una estrecha interacción entre la bacteria y la planta (Trujillo et al., 2010). La posterior monitorización del proceso de colonización en tres plantas diferentes, *Lupinus* sp., *Medicago* sp. y *Trifolium* sp., utilizando la cepa *Micromonospora lupini* Lupac 08 marcada con *gfp*, en combinación con el correspondiente fijador de nitrógeno (rizobio), y acoplada al marcaje con un inmunógeno confirmó la capacidad de *Micromonospora* para colonizar las células vegetales y sugirió una estrecha relación entre la bacteria y la planta (Benito et al., 2017). La cepa Lupac 08 se localizó en todos los tejidos nodulares, confirmando su capacidad para entrar y colonizar las tres plantas huésped. Posteriormente, se confirmó mediante técnicas moleculares y microscopía de fluorescencia que esta misma cepa era capaz de "viajar" desde las raíces hasta las hojas en la planta *Pisum sativum* (Benito et al., 2022).

La secuenciación del genoma de *M. lupini* Lupac 08, aislada de un nódulo de *L. angustifolius* (Trujillo et al., 2007), fue esencial para identificar características genómicas potencialmente implicadas en esta interacción planta-microorganismo (Alonso-Vega et al., 2012; Trujillo et al., 2014). El genoma anotado reveló varios rasgos potencialmente implicados en la capacidad de esta bacteria para alternar un estilo de vida como saprófito en el suelo y como endófito en el interior de los nódulos (Trujillo et al., 2014). Estas estrategias incluían varias características comúnmente encontradas en cepas endofíticas, como la presencia de sideróforos, fitohormonas y sistemas de supervivencia frente a las defensas de las plantas. Este estudio también resaltó la importancia de una amplia gama de enzimas degradadoras de polímeros vegetales, codificadas en el genoma. Sin embargo, como no se disponía de información genómica adicional, este estudio no pudo comparar estos resultados con

otras cepas de *Micromonospora*, y no se pudieron definir características genómicas comunes relacionadas con las plantas en otras cepas del género.

La realización de pruebas *in vitro* de promoción de crecimiento ensayándose un alto número de cepas y su posterior ensayo *in planta*, confirmó que *Micromonospora* tiene un alto potencial como promotor del crecimiento (Benito et al., 2022; Ortúzar, 2017; Trujillo et al., 2014). Además, se observó que esta bacteria puede ser utilizada en fitorremediación asistida, ya que es capaz de producir metalóforos para varios metales pesados (Ortúzar et al., 2020).

En los últimos años se ha secuenciado un número importante de genomas de *Micromonospora* (Riesco et al., 2018; Riesco et al., 2022a). La disponibilidad de estos datos permitió realizar análisis comparativos para buscar funciones relacionadas con plantas. Tras analizar el genoma de 74 cepas de *Micromonospora* para identificar cuáles eran las características genómicas involucradas en la interacción entre dicho microorganismo y la planta huésped, se identificaron unas firmas que podrían ayudar a seleccionar aquellas cepas con la mayor probabilidad de colonizar la planta con éxito y contribuir a su bienestar (Riesco et al., 2022a). Por lo tanto, *Micromonospora* podría ser considerada un componente satélite del microbioma de *Lupinus angustifolius*.

2. OBJETIVOS

Conocer cómo se ensambla el microbioma de una planta y sus funciones es de gran interés. El uso de comunidades sintéticas específicas donde conocemos los microorganismos y diseñadas según el objetivo de estudio: promoción del crecimiento, microbioma *core*, taxones más abundantes, etcétera, puede revelar información muy importante sobre cada miembro de la comunidad y las funciones que tiene, pudiéndose analizar la interacción con la planta e incluso entre los miembros de la comunidad. Además, el uso de SynComs permite la introducción de microorganismos poco abundantes que forman parte de la comunidad de la planta, pero se detectan en bajas proporciones, como es el caso de la actinobacteria *Micromonospora* en *L. angustifolius* y que se sabe que tiene una alta interacción con la planta huésped.

En la primera y segunda parte de este trabajo, se caracterizó con técnicas dependientes e independientes de cultivo la microbiota bacteriana y fúngica (rizosfera) asociada a la planta *L. angustifolius*. En este tercer capítulo el objetivo fue: **descifrar** las interacciones de *Micromonospora* con su planta huésped y el microbioma asociado. Para ello, se plantearon los siguientes objetivos específicos:

- 1. Diseño de comunidades sintéticas (SynComs) a partir de la colección de cultivos creada en el capítulo dos.
- Secuenciación y análisis genómico funcional de las cepas que componen las comunidades sintéticas.
- Efecto de las SynComs diseñadas en *L. angustifolius* y su interacción con las comunidades naturales del suelo.
- 4. Ensamblaje de la microbiota asociada a las raíces de L. angustifolius.
- 5. Análisis de la expresión génica de la planta huésped.

3. RESULTADOS

3.1. Diseño de las comunidades sintéticas bacterianas (SynComs)

En este trabajo se diseñaron un total de siete comunidades sintéticas (SynComs) (ver Materiales y Métodos) con cepas aisladas de rizosfera y raíz de la planta *L. angustifolius* en este mismo trabajo (ver Capítulo II). Para diseñar los consorcios bacterianos se tuvieron en cuenta aquellos taxones que formaban el microbioma *core* (ver Capítulo II), además de otros que podían tener un importante papel en el ensamblaje de la comunidad y funciones beneficiosas sobre la planta huésped. En total se seleccionaron 12 cepas, de las cuales 10, forman la comunidad sintética base y a las cuales se fueron adicionando las cepas *Bradyrhizobium* sp. CAR08 y *Micromonospora* sp. Lupac 08 creando diferentes combinaciones para ver el efecto tanto de *Bradyrhizobium* como de *Micromonospora* por separado y en conjunto sobre la comunidad bacteriana asociada a la raíz de *L. angustifolius*.

3.2. Secuenciación e identificación de las cepas

Se secuenció el genoma de todas las cepas seleccionadas para el diseño de las comunidades sintéticas. Tras la anotación genómica estas se identificaron en la base de datos TYSG (*Type Strain Genome Server*) (Tabla 10). El genoma de la cepa *Micromonospora lupini* Lupac 08 fue secuenciado previamente (Alonso-Vega et al., 2012). Como se puede observar en la Tabla 10, la diversidad de los consorcios era muy amplia e incluía bacterias del género *Pseudomonas*, que son bien conocidas por su capacidad de interactuar con plantas, pero también bacterias menos conocidas como *Kribbella*, una actinobacteria filamentosa. Destaca también el género *Variovorax* ya que su aislamiento es difícil, pero tiene una importante interacción con la planta. Todas las cepas pertenecían a los filos *Pseudomonadota* y *Actinomycetota*.

Сера	Identificación	Filo	dDDH (%)	Tamaño genoma (Mb)	GC (%)	Contigs
CAR08	Bradyrhizobium canariense BTA-1 [⊤]	Pseudomonadota	56,8	8,3	63,0	88
CRA71	Pseudoxanthomonas mexicana DSM 17121 [⊤]	Pseudomonadota	29,2	4,0	66,6	19
CRA73	Stenotrophomonas pictorum JCM 9942 [⊤]	Pseudomonadota	28,2	4,4	67,0	16
CRA80	Sphingopyxis italica DSM 25229 [†]	Pseudomonadota	30,5	4,5	65,2	26
CRA141	Pseudomonas zanjanensis SWRI12 ^T	Pseudomonadota	69,5	6,5	61,3	48
SO45	<i>Variovorax soli</i> NBRC 106424 [⊤]	Pseudomonadota	27,8	5,6	67,1	28
SOC14B	Streptomyces janthinus JCM 4387 [⊤]	Actinomycetota	78,6	8,8	70,8	31
SOC84	Streptomyces nojiriensis JCM 3382 [⊤]	Actinomycetota	33,7	8,3	72,0	41
SOC91	<i>Kribbella turkmenica</i> 16K104 [⊤]	Actinomycetota	32,3	9,3	67,9	38
SRA22	Caulobacter rhizosphaerae KCTC 52515 [™]	Pseudomonadota	30,4	5,5	68,8	46
SRA24	Rhizobium ruizarguesonis UPM1133 [⊤]	Pseudomonadota	54,6	6,7	60,8	68
Lupac 08	<i>Micromonospora lupini</i> Lupac 08	Actinomycetota	-	7,3	71,9	50

Tabla 10. Identificación de las cepas y características generales del genoma

3.3. Características funcionales de los consorcios bacterianos (SynComs)

Los doce genomas de la Tabla 10 se anotaron con la aplicación RASTtk utilizando la base de datos SEED, observando que la cepa Bradyrhizobium sp. CAR08 presentaba el mayor número de genes (1831), mientras que la cepa Pseudoxanthomonas sp. CRA71 registró el menor número (1104). Analizando los grupos de genes que tienen relación con plantas, las cepas CRA141, SRA24 y CAR08 fueron las que presentaron mayor número de genes relacionados con el metabolismo del nitrógeno. En el metabolismo del hierro destacó la cepa Pseudomonas sp. CRA141, y en el metabolismo de fósforo y potasio todas las cepas presentaron un número similar de genes. En el metabolismo de aminoácidos la cepa Pseudomonas sp. CRA141 fue la que mayor número de genes presentó (259), seguido de SOC84, SRA24 y CAR08, con 219, 215 y 203 genes, respectivamente. En transportadores de membrana destacaron con mayor número de genes, las cepas SRA22 (134) y CRA80 (116). En cuanto a regulación y señalización celular, las cepas CAR08 y SRA24 fueron las que mayor número de genes tuvieron, con 65 y 62 respectivamente. Finalmente, en el metabolismo de carbohidratos destacaron con más de 300 genes las cepas SOC91, SOC14B y SRA24 (426, 394 y 349) (Figura 50).

Figura 50. Heatmap de la representación del número de genes de las anotaciones en la aplicación RASTtk y visualizadas con SEED.

En la Tabla 11 se muestra el recuento de genes de cada cepa en cada una de las categorías, y en Anexo III se encuentra un enlace para ver de forma digital el recuento de cada uno de los genes que forman las categorías.

Tabla 11. Abundancia de genes de cada una de las cepas secuenciadas en las diferentes categorías de las anotaciones en la aplicación RASTtk y visualizadas con SEED.

	CAR08	CRA141	CRA71	CRA73	CRA80	Lupac 08	S045	SOC14B	SOC84	SOC91	SRA22	SRA24
Aminoácidos y derivados	203	259	122	134	146	171	193	199	219	198	140	215
Carbohidratos	266	243	130	120	149	263	214	394	260	426	296	349
División y ciclo celular	6	6	7	6	5	4	6	2	4	5	5	5
Pared celular y cápsula	90	69	50	47	43	58	61	70	68	57	63	80
Subsistemas basados en agrupaciones	30	32	30	31	27	39	34	45	34	44	31	34
Cofactores, vitaminas, grupos prostéticos y pigmentos	192	133	86	85	99	127	141	142	140	170	116	115
Metabolismo del ADN	84	76	72	65	56	73	74	85	79	101	60	91
Ácidos grasos, lípidos e isoprenoides	37	35	27	28	28	35	34	32	36	23	29	34
Adquisición y metabolismo del hierro	14	51	10	13	9	5	21	12	18	14	9	21
Transportadores de membrana	87	66	80	91	116	34	74	26	22	58	134	60
Metabolismo de compuestos aromáticos	70	53	13	24	36	28	81	48	29	74	39	37
Vaarios	20	16	12	9	12	21	15	13	8	15	16	19
Movilidad y quimiotaxis	60	62	45	49	34	1	45	1	2	0	60	56
Metabolismo del nitrógeno	54	37	16	8	18	19	19	28	36	17	17	24
Nucleósidos y nucleótidos	61	55	33	33	31	40	56	65	69	62	49	65
Fagos, profagos, elementos transponibles y plásmidos	5	4	3	6	2	3	2	3	4	4	3	3
Metabolismo del fósforo	27	18	21	23	22	22	30	23	21	31	28	29
Metabolismo del potasio	14	13	10	10	9	9	14	7	9	12	7	12
Metabolismo de proteínas	98	118	98	103	96	100	111	99	99	104	100	101
Metabolismo del ARN	56	69	55	50	44	57	58	52	55	66	51	68
Regulación y señalización ceular	65	23	11	14	11	19	37	18	16	28	13	62
Respiración	102	74	58	62	72	79	89	84	84	97	75	110
Metabolismo secundario	18	6	12	9	13	11	20	16	17	24	13	20
Respuesta al estrés	93	80	65	55	59	58	73	106	80	70	67	94
Metabolismo del azufre	24	16	10	7	10	16	17	16	14	14	11	8
Virulencia, enfermedad y defensa	55	36	28	29	49	49	39	52	50	52	39	39
TOTAL	1831	1650	1104	1111	1196	1341	1558	1638	1473	1766	1471	1751

Debido a la importancia del metabolismo de carbohidratos en los microorganismos que interaccionan con las plantas, se analizaron los genomas con la aplicación CAZy para buscar familias de enzimas activas de carbohidratos. En total, las cepas que mayor número de genes tuvieron fueron: SOC14B (728), SOC91 (560), Lupac 08 (552) y

SOC84 (433). Las cepas SOC14B, SOC91 y Lupac 08, fueron las que mayor número de genes presentaron de glucósido hidrolasa con 358, 319 y 275 respectivamente. En el grupo de glicosil transferasa la cepa SOC14B (51) seguida de SRA24 (43) y SOC84 (41) fueron las que mayor número de genes presentaron. En los módulos de unión a carbohidratos destacó la cepa *Micromonospora* sp. Lupac 08 con 45 genes. Tanto en carbohidrato esterasas como en polisacáridos lisasas, las cepas SOC14B y SOC91 fueron las que mayor número de genes tuvieron. En todas estas familias de enzimas, la cepa *Stenotrophomonas* sp. CRA73 tenía el número más bajo de genes (94) (Figura 51).

Figura 51. Heatmap de la representación del número de genes de las anotaciones con la aplicación CAZy de familias de enzimas activas de carbohidratos.

En la Tabla 12 se muestra el recuento de genes de cada cepa en cada una de las categorías, y en el Anexo III se encuentra un enlace para ver de forma digital el recuento de cada uno de los genes que forman las categorías.

	S045	Lupac 08	SOC91	CRA73	SRA24	CRA71	SOC14B	SOC84	SRA22	CRA141	CAR08	CRA80
Glucósido hidrolasas	66	275	319	40	147	119	358	220	260	85	108	47
Glicosil transferasas	19	38	30	14	43	22	51	41	24	24	32	10
Módulos de unión a carbohidratos	0	45	12	0	0	0	27	19	2	0	0	1
Carbohidrato esterasas	3	15	16	5	4	6	24	13	15	3	3	4
Polisacárido lisasas	9	26	39	0	3	3	55	10	11	10	2	11
Actividades auxiliares	31	16	26	8	25	14	31	24	16	15	35	10
TOTAL	128	415	442	67	222	164	546	327	328	137	180	83

Tabla 12. Recuento de genes de cada una de las cepas estudiadas en las diferentes categorías de familias de enzimas activas de carbohidratos anotadas con la aplicación CAZy.

3.4. Efecto de las SynComs en la planta huésped cultivada en un suelo sin esterilizar (comunidad natural)

3.4.1. Parámetros de crecimiento

El estudio del efecto de las SynComs en la planta huésped en una comunidad natural se realizó cultivando plantas de *L. angustifolius* en suelo sin esterilizar en invernadero (ver Materiales y Métodos). Dicho experimento se realizó en dos ocasiones, en la primera únicamente se inocularon cinco SynComs (SynCom_1, Syncom_2, SynCom_3, SynCom_5 y SynCom_7), y debido a que se obtuvieron resultados prometedores se repitió inoculando un total de siete SynComs además de plantas sin inocular y macetas sin planta como controles. Tras ocho semanas de cultivo, se procedió a registrar varios parámetros de crecimiento de la planta, para lo cual se midió el peso y la longitud aérea, el peso radicular, y el número de nódulos. Posteriormente, se recogieron muestras de raíces, rizosfera y suelo, para ver el efecto de las SynComs en las comunidades microbianas asociadas a la raíz de *L. angustifolius* mediante perfiles metagenómicos del gen ARNr 16S.

En la Figura 52, puede observarse el crecimiento de las plantas en ambos experimentos tras ocho semanas de cultivo.

B. EXPERIMENTO 2 (JULIO-SEPTIEMBRE 2022)

Figura 52. Plantas de Lupinus angustifolius cultivadas en invernadero en un suelo natural (sin esterilizar). El número 2 corresponde con las plantas sin inocular; 3 plantas inoculadas con la SynCom_1; 4 con la SynCom_2; 5 con la SynCom_3; 6 con la SynCom_4; 7 con la SynCom_5; 8 con la SynCom_6; y 9 con la SynCom_7. A) Experimento 1 realizado de mayo a julio 2022. B) Experimento 2 realizado de julio a septiembre 2022.

Los resultados registrados para los parámetros de crecimiento de la planta en ambos experimentos, indicaron que el tratamiento con la SynCom_7 era el más efectivo en cuanto a promoción de crecimiento de la planta, con resultados significativos tras estandarizar los resultados con *Z*-scores y analizarlos con un ANOVA, prueba posthoc de Tukey (*P*<0,001) (Figura 53A, experimento 1 y 53B, experimento 2). Además, con respecto a las plantas sin inocular, pudo observarse que todos los tratamientos con las distintas SynComs fueron efectivos con valores significativos. Cabe destacar que aquellas SynComs que contenían la cepa *Bradyrhizobium* sp. CAR08 tuvieron mejores valores significativos de promoción de crecimiento con respecto a aquellas que no lo incluían (SynCom_1, 3, 5 y 7). Los resultados fueron constantes y reproducibles en los dos experimentos.

Figura 53. Representación de los parámetros de crecimiento de la planta registrados en los dos experimentos de invernadero (efecto en comunidades naturales). Los valores se estandarizaron con Z-scores y las letras sobre los diagramas de cajas indican la agrupación de la muestra a una significancia de P<0,001. A) Experimento 1 realizado de mayo a julio 2022. B) Experimento 2 realizado de julio a septiembre 2022.

3.4.2. Diversidad alfa y beta

La diversidad *alfa* de todas las muestras se calculó mediante el empleo del índice de Shannon. Al analizar los resultados de ambos experimentos, se observaron diferencias significativas entre los tres compartimentos estudiados. La diversidad *alfa* fue significativamente mayor (*P*<0,0001) en las muestras de suelo, seguido de rizosfera y raíces (Figura 54).

Figura 54. Representación del índice de Shannon en los experimentos de invernadero (efecto en comunidades naturales del suelo) en las muestras de suelo, rizosfera y raíces. Las letras sobre los diagramas de cajas indican la agrupación de la muestra a una significancia de P<0,0001.

También se analizó la diversidad *alfa* (índice de Shannon) bacteriana por separado en cada uno de los compartimentos de la planta: suelo, rizosfera y raíces para determinar si había cambios en la diversidad alfa cuando se inoculaban las diferentes SynComs. En las muestras de suelo y rizosfera no hubo diferencias significativas (*P*<0,0001) cuando se añadieron las diferentes comunidades sintéticas (Figuras 55A y 55B). En las muestras de raíces, hay diferencias significativas entre los tratamientos (*P*<0,0001), siendo las plantas control sin inocular las que mayor diversidad *alfa* presentaban, seguido de la SynCom_1 y la SynCom_2, SynCom_3, SynCom_4, SynCom_6, SynCom_5 y SynCom_7 (Figura 55C).

Figura 55. Representación del índice de Shannon de las muestras de los distintos tratamientos en: A) muestras de suelo; B) muestras de rizosfera; y C) muestras de raíces. Las letras sobre los diagramas de caja indican la agrupación de la muestra a una significancia de P<0,0001.

Para comparar las comunidades bacterianas entre los distintos compartimentos (suelo, rizosfera y raíces), se representaron las matrices de distancia de diversidad *beta* utilizando un análisis de coordenadas principales (PCoA) basado en Bray-Curtis. Se representaron los dos experimentos juntos (Figura 56A), y por separado en las figuras 56B y 56C, respectivamente. Como pudo observarse en los tres PCoA, las muestras de cada compartimento se agruparon siguiendo las mismas distribuciones. Se pudo observar que entre las muestras de suelo y rizosfera había más relación que entre las de suelo y raíces, según los resultados del PERMANOVA (P=0,001), pero entre los tres compartimentos había diferencias significativas. En las muestras de suelo y rizosfera no hubo diferencias entre los tratamientos. Estas diferencias significativas entre tratamientos (PERMANOVA P=0,001) sí pudieron observarse en las muestras de los tratamientos con las SynCom_1, 3, 5 y 7; y las SynCom_2, 4 y 6 con las plantas sin inocular. El primer grupo se corresponde con comunidades sintéticas que incorporan la cepa *Bradyrhizobium* sp. CAR08.

Figura 56. Análisis de coordenadas principales (PCoA) de las diferencias Bray-Curtis de las comunidades bacterianas en cada uno de los compartimentos de la planta: suelo, rizosfera y raíces, con los distintos tratamientos. A) PCoA de los dos experimentos de invernadero. B) PCoA del experimento 1. C) PCoA del experimento 2.

3.4.3. Cambios en las comunidades bacterianas inducidas por las SynComs

Los resultados de los perfiles del gen ARNr 16S de los compartimentos inoculados con las diferentes SynComs (suelo, rizosfera y raíces), desveló que estos microorganismos afectaron de manera importante al ensamblaje y composición de la microbiota bacteriana de la raíz.

En la muestra de inóculo (*input*) secuenciada como control tanto de las cepas por separado como de todas las SynComs, se consiguieron detectar todas las bacterias introducidas.

En las muestras de suelo, la composición bacteriana se mantuvo constante en todos los tratamientos, es decir, que no hubo diferencias al añadir las diferentes SynComs (Figura 57A). En la rizosfera sí se observaron cambios en la composición bacteriana cuando se inocularon las SynCom_2 y 6, ya que la abundancia relativa de *Massilia* disminuyó de manera importante, en comparación con las plantas sin inocular y el resto de los tratamientos. Cuando se inocularon las SynCom_6 y 7, la abundancia relativa de *Flavobacterium* sp. también disminuyó (Figura 57B).

En las muestras de raíces se observaron muchas diferencias cuando se inocularon las distintas SynComs. En el caso de las SynComs 1, 3, 5 y 7 se vio un aumento en la abundancia de la familia *Nitrobacteraceae*. La SynCom_6 desplazó totalmente la comunidad bacteriana, siendo *Rhizobacter, Massilia* y la familia *Comammonadaceae* los taxones más abundantes. El género *Rhizobium* se encontró en abundancias muy bajas en las muestras inoculadas con la SynCom_4 y 6. En la SynCom_4 se vio un aumento de los taxones *Oxalobacteraceae* y *Pseudoduganella*. Las SynComs_5 y 6 presentaron unos perfiles de abundancia muy similares (Figura 57C).

Figura 57. Gráfico de barras de la composición bacteriana bajo el efecto de las SynComs en: A) suelo, B) rizosfera, y C) raíces.

3.5. Ensamblaje del microbioma asociado a la raíz de L. angustifolius

3.5.1. Parámetros de crecimiento

El estudio del efecto de las SynComs en la planta huésped en un sistema gnotobiótico se realizó cultivando plantas de *L. angustifolius* en una matriz turba vermiculita (2:1) estéril, en cámara climatizada (ver Materiales y Métodos). Dicho experimento se realizó en dos ocasiones, la primera en el Max Planck Institute for Plant Breeding Research (MPIPZ) y la segunda en la Universidad de Salamanca (USAL). Se inocularon un total de siete SynComs, además de plantas sin inocular y macetas sin planta, como controles. Tras seis semanas de cultivo, se procedió a registrar varios parámetros de crecimiento de la planta, para lo cual se midió el peso y la longitud aérea, y el número de nódulos. Posteriormente, se recogieron muestras de raíces y rizosfera, para estudiar el ensamblaje de las SynComs en las raíces de *L. angustifolius* mediante perfiles metagenómicos del gen ARNr 16S. Finalmente, para analizar el efecto de las SynComs sobre la planta, se hizo un análisis de RNA-seq de las raíces y se estudió la expresión génica de la planta en presencia de las distintas SynComs y el control sin inocular.

En la Figura 58, puede observarse el crecimiento de las plantas en ambos experimentos tras seis semanas de crecimiento. En la Figura 58A son fotos de las plantas del experimento 1 (MPIPZ), y en la Figura 58B, imágenes del experimento 2 (USAL).

A. EXPERIMENTO 1 (AGOSTO-SEPTIEMBRE 2022 MPIPZ)

B. EXPERIMENTO 2 (DICIEMBRE-ENERO 2023 USAL)

Figura 58. Plantas de Lupinus angustifolius cultivadas en un sistema gnotobiótico en condiciones controladas y en sustrato estéril. El número 2 corresponde con las plantas sin inocular; 3, plantas inoculadas con la SynCom_1; 4, con la SynCom_2; 5, con la SynCom_3; 6, con la SynCom_4; 7, con la SynCom_5; 8, con la SynCom_6; y 9, con la SynCom_7. A) Experimento 1 realizado de agosto a septiembre 2022 en MPIPZ. B) Experimento 2 realizado de diciembre a enero 2023 en USAL.

Los resultados de los parámetros de crecimiento de la planta en ambos experimentos, bajo condiciones controladas indicaron que el tratamiento con la SynCom_7 era el más efectivo en cuanto al desarrollo de la planta, con resultados significativos tras estandarizar los resultados con *Z*-scores y analizarlos con un ANOVA, prueba posthoc de Tukey (*P*<0,001) (Figura 59A y 59B). En el primer experimento, no se encontraron diferencias significativas entre el resto de los tratamientos (Figura 59A). Por otro lado, en el segundo experimento sí se vieron diferencias significativas cuando se inocularon las SynCom_5 y 6 obteniéndose resultados por encima de la media (Figura 59B).

Figura 59. Representación de los parámetros de crecimiento de la planta registrados en los dos experimentos realizados en un sistema gnotobiótico en condiciones controladas y en sustrato estéril. Los valores se estandarizaron en con Z- scores y las letras sobre los diagramas de cajas indican la agrupación de la muestra a una significancia de P<0,001. El número 2 corresponde con las plantas sin inocular; 3 plantas inoculadas con la SynCom_1; 4 con la SynCom_2; 5 con la SynCom_3; 6 con la SynCom_4; 7 con la SynCom_5; 8 con la SynCom_6; y 9 con la SynCom_7. A) Experimento 1 realizado de agosto a septiembre 2022 en MPIPZ. B) Experimento 2 realizado de diciembre a enero 2023 en USAL.

3.5.2. Abundancia de las SynComs inoculadas

El análisis para estudiar qué cepas de las SynComs se asociaban o no a las raíces se hizo mediante el perfil metagenómico del gen ARNr 16S de muestras de rizosfera y raíces. Solamente se secuenciaron aquellas muestras que estaban inoculadas con las SynComs con más de dos cepas.

En la rizosfera, la abundancia relativa de las cepas inoculadas en las diferentes SynComs fue similar, observando que en la SynCom_4 se detectó mayor abundancia de la cepa *Pseudomonas* sp. CRA141. En las raíces, la composición varió con respecto a la rizosfera. Se detectó una mayor abundancia de la cepa *Rhizobium* sp. SRA24 y menor de la cepa *Pseudoxanthomonas* sp. CRA71 con respecto a la rizosfera. También se pudo ver en las SynCom_5 y 7, que casi un 10% de la abundancia correspondía a la cepa *Bradyrhizobium* sp. CAR08. Por otro lado, en las SynCom_6 y 7 se detectó la presencia de la cepa *Micromonospora lupini* Lupac 08. Las cepas *Streptomyces* spp. SOC84 y SOC14B, se detectaron en abundancias muy bajas o incluso nulas en todas las SynComs de ambos compartimentos (Figura 60). Todas las abundancias pueden encontrarse en la Tabla S1 – Anexo III.

Figura 60. Abundancia de las cepas que forman las SynComs y que se asocian a la rizosfera y raíces de Lupinus angustifolius.

3.6. Análisis de la expresión génica de *L. angustifolius* bajo el efecto de las SynComs

En el estudio de la expresión génica de la planta para registrar el efecto de las SynComs, se observó mediante un análisis de componentes principales (PCA) que las muestras se dividían en dos grupos. El grupo 1 formado por las plantas sin inocular, la SynCom_1 y la 2, y el grupo dos compuestos por las SynComs_3, 4, 5, 6 y 7 (Figura 61).

Figura 61. Análisis de componentes principales de las muestras de raíces con las diferentes SynComs.

Los gráficos de volcanes muestran la distribución de genes expresados diferencialmente (Figura 62). En el eje x se muestra el cambio en la expresión génica entre las muestras, y en el eje y la estadística de las diferencias calculadas con el log2FoldChange para un *P*<0,05 realizado entre cada una de las SynComs con respecto del control. Los puntos rojos muestran genes sub-expresados y los verdes genes sobre-expresados. Se observó que el inoculó la SynCom_1 mostró una menor expresión diferencial (542 genes), mientras que la mayor expresión se registró con el inóculo de la SynCom_6 (3244 genes) (Figura 62).

Página 150 | Resultados | Capítulo III

dj<0.05 g2FoldChange|>1

UP 2925 DOWN 1958 NO 27191

15

-log10(padj)

Todos los genes expresados diferencialmente se agruparon como el conjunto de genes diferenciales (Figura 63). El análisis de conglomerados se llevó a cabo en diferentes conjuntos de genes. Se observó que la expresión génica de las plantas *L. angustifolius* sin inocular e inoculadas con las SynComs_1, 2 y 3 era similar, mientras que se detectaron muchas diferencias con respecto a las plantas inoculadas con las SynComs_5, 6 y 7. En el caso de la SynCom_4, la expresión génica fue diferente a los otros dos grupos.

Figura 63. Heatmap del agrupamiento de genes de expresión diferencial, de los resultados del análisis de conglomerados de FPKM agrupados con el valor log2(FPKM+1). El color rojo indica genes con altos niveles de expresión y el color verde indica genes con bajos niveles de expresión.

En el análisis de enriquecimiento de ontología génica (*Gene Ontology*, GO), se clasificaron los genes según su funcionalidad en: componentes celulares, funciones moleculares y procesos biológicos. En los resultados de enriquecimiento GO se seleccionaron las 30 clasificaciones más significativas para visualizarlas de una forma

más sencilla. Las muestras de todas las SynComs se enfrentaron al control de plantas sin inocular y se calculó la relación de genes diferenciales. Tras el análisis se pudo comprobar que las categorías de genes más enriquecidas con un P<0,05 en todas las SynComs fueron: proceso metabólico de las macromoléculas de la pared celular, transporte de iones metálicos divalentes, transporte de cationes inorgánicos divalentes, organización o biogénesis de la pared celular, y metabolismo de polisacáridos de la pared celular (Figura 64). Además, únicamente en las SynComs_1, 3, 5 y 7 se observó un enriquecimiento de los genes con funciones relacionadas con el proceso de nodulación.

GeneRatio

GeneRatio

Figura 64. Diagrama de dispersión de enriquecimiento GO (ontología de genes). La abscisa del gráfico es la relación entre el número de genes diferenciales en la vía KEGG y el número total de genes diferenciales. El tamaño de un punto representa el número de genes anotados en una función GO específica. El color de rojo a púrpura representa el nivel significativo del enriquecimiento.

Las interacciones de múltiples genes pueden estar involucradas en ciertas funciones biológicas, por ello se hizo un análisis de enriquecimiento de rutas metabólicas con KEGG (*Kyoto Encyclopedia of Genes and Genomes*). En los resultados de enriquecimiento KEGG se seleccionaron las 20 rutas más significativas para visualizarlas de una forma más sencilla. Las muestras de todas las SynComs se enfrentaron al control de plantas sin inocular y se calculó la relación de genes diferenciales. Tras el análisis, se comprobó que las vías más enriquecidas con un P<0,05 en todas las SynComs fueron: ruta de señalización MAPK-planta (*mitogenactivated protein kinase*), transducción de señales hormonales en plantas, interacción planta-patógeno, biosíntesis de carotenoides, biosíntesis de diterpenoides y metabolismo de la cisteína y la metionina (Figura 65).

Página 156 | Resultados | Capítulo III

Figura 65. Diagrama de dispersión de enriquecimiento de KEGG. La abscisa del gráfico es la relación entre el número de genes diferenciales en la ruta KEGG y el número total de genes diferenciales. El tamaño de un punto representa el número de genes anotados en una ruta KEGG específica. El color de rojo a púrpura representa el nivel significativo del enriquecimiento.

4. DISCUSIÓN

Identificar la naturaleza de las interacciones microbianas que se dan en la raíz, y las funciones que tiene sobre la planta sigue siendo un desafío. El uso de comunidades sintéticas (SynComs) para estudiar el ensamblaje de la microbiota asociada a la planta huésped nos da la oportunidad de establecer interacciones causales añadiendo o eliminando cepas, y así determinar de forma empírica la consecuencia de las interacciones entre cepas en el resto de la comunidad y con el huésped. En contraste con la selección de microorganismos basada en actividades de promoción del crecimiento o taxonomía, el conjunto de datos generados mediante técnicas independientes de cultivo (metagenómica), el aislamiento de la microbiota cultivable asociada a la planta para crear colecciones de cultivos de esos microorganismos asociados a plantas, pueden servir para diseñar SynComs que alberguen múltiples factores como: una colonización robusta (alta abundancia en los órganos de las plantas), prevalencia (consistencia en las etapas de desarrollo de las plantas) y funciones beneficiosas específicas (de Souza et al., 2020). Asimismo, se deben tener en cuenta los microorganismos "satélite" ya que, aunque su abundancia en las plantas no sea alta, pueden tener funciones muy específicas.

En este trabajo se diseñaron 7 comunidades sintéticas diferentes empleando cepas bacterianas aisladas de la rizosfera y raíces de *L. angustifolius,* con el objetivo de estudiar su asociación a la raíz y rizosfera de la planta. Además, se quería conocer si estas bacterias seleccionadas tenían algún efecto sobre la planta huésped y la comunidad bacteriana natural del suelo donde crecían las plantas. Tras obtener los genomas de las cepas bacterianas que formaban las distintas SynComs, se hizo un análisis de genómica comparativa, confirmando que todas las cepas seleccionadas presentaban genes de asociación con la planta, así como de crecimiento vegetal. La cepa *Pseudomonas* sp. CRA141 destacó por tener un elevado número de genes relacionado con la interacción positiva con plantas, mientras que la cepa *Streptomyces* sp. SOC14B fue la que mayor número de genes presentó para enzimas de degradación de polímeros vegetales, aunque no destacó en genes relacionados con plantas.

La primera parte de este trabajo consistió en estudiar el efecto de las SynComs diseñadas, en la planta huésped en una comunidad natural del suelo de cultivo. Para ello, se cultivaron plantas durante 8 semanas en suelo sin esterilizar en condiciones de invernadero, este experimento se realizó dos veces en momentos distintos y los resultados en ambos fueron consistentes. Aquí pudimos ver tras medir los parámetros

de crecimiento de las plantas que, con respecto al control sin inocular, las plantas inoculadas con la SynCom_7 tuvieron mayores valores relacionados con el crecimiento y desarrollo de la planta. Esta comunidad sintética compuesta por un total de 12 cepas era la más compleja. El efecto en la planta y el suelo se estudió mediante técnicas independientes de cultivo, para ello se hizo el perfil del gen ARNr 16S. La diversidad alfa de las muestras estudiadas con el índice de Shannon señaló que las muestras de suelo eran las más diversas, seguidas de rizosfera y raíces. Respecto al estudio de los distintos consorcios en suelo y rizosfera, no se detectaron diferencias significativas, mientras que en las raíces se observó mucha variación que podía relacionarse con la composición de la SynCom inoculada. Estos resultados indicaron que, cuando se inoculan las distintas SynComs la diversidad alfa va disminuyendo de forma significativa, ya que el ensamblaje de la microbiota con bacterias provenientes de la comunidad natural del suelo se ve afectada por las SynComs. Esto puede ser porque algunas cepas de las distintas SynComs ocuparon distintos nichos, lo que generó una disminución importante de la diversidad alfa (Brown et al., 2020; Hassani et al., 2018; Santos-Medellín et al., 2017).

La diversidad *beta* separó las muestras en tres grupos según los compartimentos, muestras de suelo, rizosfera y raíces. Además, en las muestras de raíces pudo verse una agrupación entre distintas SynComs. Se agruparon por una parte todas aquellas muestras que contenían en la comunidad sintética al fijador de nitrógeno, *Bradyrhizobium* sp., CAR08 y, por otro lado, el control de la planta sin inocular con el resto de las comunidades sintéticas que no tenían al fijador. Esto sugiere que la presencia de *Bradyrhizobium* modula la microbiota y que la planta en presencia del fijador de nitrógeno, exude moléculas diferentes lo que atrae otros microorganismos y por lo tanto, cambia la composición de la comunidad bacteriana (Liu et al., 2017).

La composición bacteriana de las muestras de suelo confirmó lo que revelaron los análisis de diversidad, y es que las comunidades sintéticas diseñadas no afectaban la composición del suelo dónde crecía la planta. Sin embargo, cuando se estudió la composición bacteriana en la rizosfera, se observó una ligera variación en las muestras inoculadas con la SynCom_2 y 6. Se detectó que la abundancia del género *Massilia* disminuía de manera importante. Cabe destacar que estas dos comunidades sintéticas contenían la bacteria Lupac 08 y no el fijador de nitrógeno, lo que puede sugerir un antagonismo entre *Massilia* y *Micromonospora*, o que *Micromonospora* haya ocupado el nicho de *Massilia*. Sería interesante en un futuro incluir cepas de *Massilia* o realizar ensayos de antagonismo *in vitro* y posteriormente *in planta* entre cepas de dichos géneros.

La composición bacteriana en las raíces se vio totalmente influenciada por las SynComs inoculadas. El aumento de la familia *Nitrobacteraceae* al inocular las SynComs_1, 3, 5 y 7, es un resultado esperable ya que esas comunidades sintéticas contenían la cepa *Bradyrhizobium* sp., CAR08. En las muestras inoculadas con las SynComs_4 y 6 el género *Rhizobium* se encontró en una abundancia baja, esto llama la atención puesto que ambas comunidades sintéticas contenían una cepa de *Rhizobium* sp. Cabe destacar que en aquellas comunidades sintéticas que incluían a *Micromonospora* sp., Lupac 08, la abundancia del género *Pseudoduganella* disminuyó de manera importante. *Micromonospora* es una bacteria bien conocida por su capacidad de producir una gran diversidad de metabolitos secundarios que pudieran afectar a bacterias de *Pseudoduganella*, pero este aspecto deberá estudiarse para confirmar este supuesto (Antal et al., 2005; Hifnawy et al., 2020; Qi et al., 2020).

La segunda parte de este trabajo consistió en evaluar las SynComs en plantas de L. angustifolius cultivadas en cámara climática en un sistema gnotobiótico y con suelo estéril. El objetivo era determinar qué cepas eran capaces de asociarse a la raíz de la planta y posteriormente estudiar cómo afectaban estos microorganismos a la expresión génica del huésped. Este experimento también se realizó en dos ocasiones y los resultados también fueron consistentes. Al igual que en los experimentos de invernadero, al registrar los parámetros de crecimiento de las plantas, se observó que aquellas inoculadas con la SynCom 7 fueron las que mayor crecimiento presentaron. El análisis de asociación de las SynComs con la planta reveló que las cepas SOC14B y SOC84 identificadas como Streptomyces y que fueron aisladas de manera abundante de los distintos compartimentos de la planta (ver capítulo 2) no se asociaban a la planta. La abundancia de estas cepas era muy baja en comparación con el control del inóculo añadido (input). Por otro lado, la cepa Pseudomonas sp. CRA141, fue la que mayor asociación tuvo con las raíces, y en el estudio de genómica comparativa, era la cepa que presentaba mayor número de genes relacionados con la interacción con plantas (Girard et al., 2020; Singh et al., 2022; Vesga et al., 2020). Además, se comprobó que la cepa Lupac 08 se detectaba siempre que se inoculaba en rizosfera y raíces, y destacar que, aunque esta cepa no forme parte del microbioma core y se considere un microorganismo "satélite" tiene funciones importantes sobre la planta, como va se ha demostrado en trabajos anteriores (Benito et al., 2017, 2022; Ortúzar, 2017; Ortuzar et al., 2020; Riesco et al., 2022a; Trujillo et al., 2010, 2014).

Como era de esperar, la expresión génica de la planta varió en función de las SynComs inoculadas. Cuando se inocularon los consorcios que incluían la cepa de *Bradyrhizobium* se observó que, con respecto al control había muy poca diferencia de genes diferenciales, sin embargo, cuando se añadía únicamente la cepa Lupac 08 o la SynCom base, la expresión de genes diferenciales se triplicaba. En un futuro, inocular estos microorganismos de forma individual y estudiar la expresión génica de la planta en respuesta a estos microorganismos nos ayudará a entender a qué se debe tanta disparidad entre la expresión diferencial de genes. El análisis de enriquecimiento de ontología génica reveló que aquellas funciones que se veían enriquecidas al inocular las distintas SynComs estaban claramente relacionadas con la interacción plantamicroorganismo. Esto mismo ocurría con las vías metabólicas enriquecidas cuando se hizo el análisis de KEGG. Se observaron resultados similares al hacer el análisis del transcriptoma de *Lotus japonicum* y *Arabidopsis thaliana* tras inocular comunidades sintéticas diseñadas a partir de la colección de cultivos generada de esas mismas plantas huésped (Wippel et al., 2021).

Adicionar un microorganismo considerado "satélite" como es *Micromonospora* y poder estudiar en distintas combinaciones su interacción con la planta nos ha revelado datos interesantes. Uno de los principales resultados que se ha visto a lo largo de todo este trabajo ha sido que la SynCom_7 tiene un efecto importante en el crecimiento de *L. angustifolius*. Al estudiar los parámetros de crecimiento de las plantas inoculadas con la SynCom_7 se registró un elevado número de nódulos con respecto al resto de tratamientos. Esta SynCom incluía las cepas *Bradyrhizobium* sp. CAR08 y *Mciromonospora* sp. Lupac 08, confirmando la relación tripartita que se da entre estos dos microorganismos y la planta (Benito et al., 2017).

Tras haber finalizado este trabajo, se puede confirmar la importancia de complementar las técnicas dependientes e independientes de cultivo para el estudio de la interacción planta-microorganismo y microorganismo-microorganismo. Sin la creación de una colección de cultivos bacterianos asociados a la planta huésped *L. angustifolius* no hubiera sido posible desarrollar este trabajo. Poder saber qué bacterias se asocian a las raíces de la planta, nos aporta conocimiento para seguir desarrollando comunidades sintéticas más complejas que nos ayuden a estudiar el papel que desarrollan en su interacción con el huésped. En este trabajo se estudiaron además de las comunidades bacterianas, las comunidades fúngicas de la rizosfera y el suelo de *L. angustifolius*. En un futuro, sería interesante estudiar las comunidades fúngicas de los distintos compartimentos de la planta y aislar dichos hongos. También sería de gran interés estudiar las comunidades bacterianas en asociación con hongos, creando comunidades sintéticas complejas, y otros componentes del microbioma asociado a plantas como pueden ser protozoos, arqueas o virus; ya que todos tienen un papel fundamental en el microbioma de *Lupinus angustifolius*.

5. CONCLUSIONES / CONCLUSIONS

- Las comunidades sintéticas diseñadas a partir de la colección de cultivos aislada de la planta *L. angustifolius* mostró claramente un efecto en el crecimiento de la planta, siendo la SynCom_7 la que mejor resultados arrojó.
- Las distintas comunidades sintéticas no afectaron a la composición bacteriana de los suelos donde se cultivó *Lupinus angustifolius*.
- La composición bacteriana asociada a las raíces es la que más afectada se vio al inocular las diferentes comunidades sintéticas, cambiando totalmente su composición.
- Las cepas de *Streptomyces* no se ensamblaron en la raíz de *L. angustifolius*, mientras que *Bradyrhizobium* sp. se detectó en la raíz, pero no en la rizosfera.
- *Micromonospora* puede considerase un microorganismo "satélite" que interactúa de manera muy estrecha con *L. angustifolius.*
- La expresión diferencial génica de la planta con respecto al control fue muy alta cuando esta bacteria formaba parte de la comunidad sintética inoculada.
- El transcriptoma de la planta reveló que las SynComs tenían un efecto en la expresión génica diferencial con respecto al control sin inocular, observando un enriquecimiento de genes y rutas metabólicas relacionados con la interacción planta-microorganismo.

CONCLUSIONS

- The synthetic communities designed from the bacterial culture collection generated from the plant *L. angustifolius* clearly showed an effect on plant growth, with SynCom_7 showing the best results.
- The different synthetic communities did not affect the bacterial composition of the soils where *Lupinus angustifolius* was cultivated.
- The bacterial microbiota associated with the roots was the most affected by the different synthetic communities inoculated, greatly affecting the overall composition.
- *Streptomyces* strains did not assemble in the root of *L. angustifolius*, while *Bradyrhizobium* sp. was detected in the roots, but not the rhizosphere.
- *Micromonospora* could be considered a "satellite" microorganism that highly interacts with *L. angustifolius.*
- The differential gene expression of the plant when *Micromonospora* was part of the SynCom inoculated was very high when compared to the control.
- The plant transcriptome revealed that the SynComs had an effect on the host's gene expression with respect to the uninoculated control, showing an enrichment of genes and metabolic pathways related to the plant-microorganism interaction.

1.	REC	COGIDA DE LAS MUESTRAS	166
	1.1. 1.2. 1.3. 1.4.	Suelo Propiedades físico-químicas Recogida de plantas Condiciones meteorológicas	166 167 168 169
2.	CUL	_TIVO DE PLANTAS	169
	2.1. 2.2.	Esterilización y germinación de semillas Condiciones de cultivo	169 170
3.	CAF	RACTERIZACIÓN DEL MICROBIOMA ASOCIADO A Lupinus angustifolius	170
	3.1. 3.2. 3.3.	Extracción de ADN Cuantificación del ADN Preparación de las librerías y secuenciación	170 171 172
4.	AIS	LAMIENTO E IDENTIFICACIÓN DE LOS MICROORGANISMOS	179
	4.1. 4.2. 4.3. 4.4.	Selección de los medios de aislamiento Aislamiento, purificación y conservación de las cepas Amplificación del gen ARNr 16S Secuenciación Sanger del gen ARNr 16S	179 180 181 183
5.	ENS	SAYOS DE PATOGENICIDAD	183
6.	DIS	EÑO DE LAS COMUNIDADES SINTÉTICAS (SynCom)	184
	6.1. 6.2. 6.3.	Selección de microorganismos para las SynCom Extracción ADN para genomas bacterianos Secuenciación de los genomas bacterianos	184 186 187
7.	INT	ERACCIÓN DE LAS SynComs Y Lupinus angustifolius	188
	7.1. 7.2.	Efecto de SynComs en comunidades naturales del suelo Reconstitución del microbioma asociado a raíz	188 190
8.	EXF	PRESIÓN GÉNICA DE LA PLANTA Lupinus angustifolius	192
	8.1. 8.2. 8.3.	Extracción de ARN Preparación de las librerías y secuenciación del ARN de <i>L. angustifolius</i> Análisis de datos RNA-seq	192 193 193
_			

1. RECOGIDA DE LAS MUESTRAS

Todas las muestras de este trabajo fueron recogidas en dos localidades de la provincia de Salamanca (Castilla y León, España). La primera de ellas Salamanca (40° 57' 38,7 "N; 5° 41' 34,8" O), y la segunda Cabrerizos (40° 58' 38,9" N; 5° 35' 47,7" O) (Figura 66). El tamaño y la altitud de las parcelas era de 13 x 33m y 777m; y 3 x 140m y 787m, respectivamente. Se seleccionaron estas dos parcelas puesto que eran localizaciones donde las plantas objeto de estudio de este trabajo, *Lupinus angustifolius*, crecían de forma silvestre.

Figura 66. Mapa de las localizaciones donde se realizaron los muestreos.

1.1. Suelo

El proceso de recogida de muestras de suelo se realizó en las cuatro estaciones climáticas del año: primavera, verano, otoño e invierno. Las muestras se recogieron durante los años 2020 (abril y noviembre), y 2021 (julio y enero).

Las parcelas se dividieron en subparcelas de 2x2m y se seleccionaron aleatoriamente tres de ellas en cada localización. Para obtener una mayor diversidad biológica y reproducibilidad de las muestras, de cada subparcela se recogieron 3 muestras (en total 72 muestras). Como puede observarse en la Figura 67, las muestras se mezclaron generando una réplica por subparcela, obteniéndose finalmente un total de 24 muestras (3 por localización y estación climática). Se pesaron 500 mg de cada

muestra en tubos de matriz de lisis E (MP Biomedicals®), se congelaron en nitrógeno líquido y se conservaron a -80°C hasta que se procesaron (apartado 3). Las muestras destinadas al aislamiento de microorganismos (apartado 4), se conservaron a 4°C y se procesaron en menos de 48 horas desde su recogida.

IOTAL = 24 muestras

Figura 67. Esquema de la recogida de muestras de suelo. Descripción del número de muestras recogidas por localización y estación climática.

1.2. Propiedades físico-químicas

Las muestras de suelo se secaron al aire y se tamizaron a 2 mm, y los análisis se realizaron con la fracción de tierra fina (<2 mm). El pH de los suelos se midió en una suspensión suelo-agua 1:1 (CRISON micropH 2001). La materia orgánica se determinó por oxidación con dicromato potásico (Walkley, 1947) y el nitrógeno (N) orgánico total se determinó por el método Kjeldahl (Bremner & Mulvaney, 1982). El calcio (Ca), magnesio (Mg) y potasio (K) disponibles, se extrajeron con acetato amónico 1 M mientras que los micronutrientes cobre (Cu), hierro (Fe), manganeso (Mn) y zinc (Zn) se extrajeron con ácido dietilentriaminopentaacético (DPTA) 0,005 M, trietanolamina (TEA) 0,1 M y CaCl₂·2H₂O 0,01 M (Lindsay & Norvell, 1978). En ambos casos, los minerales se midieron con un espectrómetro de plasma ICP-OES ULTIMA-2 Jobin-Yvon. Finalmente, el fósforo (P) disponible se cuantificó por el método Bray I modificado (Bray & Kurtz, 1945).

1.3. Recogida de plantas

Las plantas de *L. angustifolius* se recogieron en abril 2020 correspondiendo con la primavera, estación climática en que las plantas crecen de forma silvestre. Adicionalmente, se cultivaron plantas en suelos recogidos en las mismas localizaciones (y subparcelas) en condiciones controladas de invernadero para así, eliminar las variables ambientales y poder observar la influencia de los distintos tipos de suelo en los microbiomas asociados a la planta.

En el campo, se recogieron un total de 30 plantas silvestres, cinco plantas en cada una de las subparcelas mencionadas previamente, obteniéndose 15 plantas por localización, en grupos de 5 plantas (Figura 68). En invernadero, al igual que en el campo, se cultivaron un total de 30 plantas y se realizaron los mismos grupos que en el caso de las plantas silvestres (Figura 68). Las plantas se transportaron al laboratorio manteniendo unas condiciones de 4°C y se procesaron el mismo día que se recogieron. De cada planta se separaron los siguientes compartimentos: rizosfera, raíces, nódulos y hojas.

TOTAL = 48 muestras

Figura 68. Esquema de la recogida de muestras de planta. Descripción del número de muestras recogidas por localización, condiciones de cultivo y compartimento de la planta.

La rizosfera se recogió sacudiendo las plantas hasta que únicamente quedaban las partículas de suelo adheridas a la raíz. Estas, se sumergieron en 25 ml de una solución tampón de fosfato (PBS) (Anexo IV) y se agitaron para separar todas las partículas que estaban totalmente adheridas. Los tubos se centrifugaron a 4000 xg en

una centrífuga Eppendor[™] centrifuge 5804, se eliminaron 20 ml del sobrenadante, se resuspendió el pellet en el tampón PBS y se alicuotaron 300 µl en tubos de matriz de lisis E (MP Biomedicals®). Los nódulos se cortaron con la ayuda de un bisturí para separarlos de las raíces, y así obtener las muestras de raíz y nódulos. En el caso de las hojas, se cortaron del tallo. Las muestras de las raíces, nódulos y hojas se trituraron con la ayuda de un mortero y nitrógeno líquido, y se colocaron en tubos de matriz de lisis E (MP Biomedicals®).

Todas las muestras fueron congeladas en nitrógeno líquido y conservadas a -80°C hasta que se procesaron (apartado 3). En total se conservaron 48 muestras (12 muestras por compartimento) (Figura 68).

Para el aislamiento de microorganismos (apartado 4) los distintos compartimentos de las plantas (raíces, nódulos, hojas, rizosfera) se conservaron a 4ºC y se procesaron en menos de 48 horas desde la recogida de las muestras.

1.4. Condiciones meteorológicas

Los datos meteorológicos de los días y meses de recogida de las muestras, se buscaron en los informes meteorológicos METAR registrados por la estación meteorológica del Aeropuerto de Salamanca/Matacán, código IATA (*International Air Transport Association*): SLM, código ICAO (*International Civil Aviation Organization*): LESA, estación 82020. Los datos se recopilaron para el día exacto de la recogida de muestras, así como los valores medios mensuales.

2. CULTIVO DE PLANTAS

En este trabajo se utilizaron dos plantas, *Lupinus angustifolius*, planta principal de estudio y *Arabidopsis thaliana* Columbia-0, planta modelo utilizada en algunos experimentos debido a su rápido crecimiento y fácil manejo.

2.1. Esterilización y germinación de semillas

Las semillas de *L. angustifolius* fueron recogidas en las localizaciones mencionadas en el apartado 1 durante las anualidades 2020 y 2021. El protocolo de esterilización y germinación consistió en la escarificación de las semillas con lija, seguida de una inmersión en hipoclorito de sodio (NaClO) al 3,5% (v/v), durante 20 minutos. Posteriormente las semillas se lavaron con agua destilada estéril cinco veces para eliminar el exceso de NaClO y se dejaron reposar en agua destilada estéril durante 60 minutos. Finalmente, las semillas se colocaron en placas de agar agua al 1% (p/v), durante 5 días a temperatura ambiente en oscuridad, para su germinación.

En el caso de *A. thaliana* Col-0 el proceso de esterilización en superficie consistió en la inmersión de las semillas en etanol al 70% (v/v) durante 10 minutos, seguido de un breve lavado con etanol al 100% (1 minuto), un lavado con NaClO al 3% (v/v) (1 minuto) y cinco lavados posteriores con agua destilada estéril. Las semillas se sumergieron en agua destilada estéril durante cuatro días a 4 °C en oscuridad.

2.2. Condiciones de cultivo

Ambas plantas se cultivaron a 21°C durante el día y 19,5°C por la noche, 60% de humedad relativa y un fotoperiodo de 16-8 horas de luz y oscuridad, respectivamente.

3. CARACTERIZACIÓN DEL MICROBIOMA ASOCIADO A Lupinus angustifolius

3.1. Extracción de ADN

La extracción de ADN de todas las muestras (suelo, rizosfera, raíces, nódulos y hojas) se llevó a cabo con los reactivos *FastDNA™ Spin Kit for Soil DNA Extraction* (MP Biomedicals®). Esta se realizó siguiendo las instrucciones del fabricante. Para todos los protocolos se utilizó una centrífuga Eppendorf[™] centrifuge 5918 (a no ser que se indique lo contrario). El rotor de inversión utilizado para la homogenización de muestras era un *Tube revolver* 88881002 (ThermoScientific[™]).

Procedimiento:

- Poner la muestra en los tubos de matriz de lisis E (en este caso descongelar en frío, ya que previamente se habían guardado las muestras en la matriz de lisis E a -80°C (apartados 1.1 y 1.3)). Añadir 978 µl de tampón de fosfato de sodio, 122 µl de tampón MT y homogeneizar durante 1 minuto en vórtex. Centrifugar a 14000 xg durante 10 minutos.
- Transferir el sobrenadante a un tubo de microcentrífuga de 2 ml. Añadir 250 µl de la solución de precipitación de proteínas y homogeneizar invirtiendo el tubo 10 veces.

- 3. Centrifugar a 14000 xg durante 5 minutos y transferir el sobrenadante a un tubo de microcentrífuga de 15 ml.
- 4. Añadir 1 ml de la matriz de unión de ADN, homogeneizar por inversión en un rotor durante 2 minutos, dejar el tubo en reposo durante 3 minutos para que la matriz de sílice precipite.
- 5. Pipetear y eliminar 500 µl del sobrenadante. Resuspender la matriz de unión con el sobrenadante restante, transferir todo el contenido a un filtro SPIN[™] y centrifugar a 14000 xg durante 1 minuto.
- 6. Desechar el residuo y añadir 500 µl de la solución SEWS-M (solución de lavado previamente preparada añadiendo etanol 100%), resuspender y centrifugar a 14000 xg, 1 minuto.
- 7. Desechar el residuo y centrifugar el filtro SPIN[™] durante 2 minutos a 14000 xg para secar el ADN y dejarlo reposar 5 minutos al aire para completar el secado. Colocar el filtro en un nuevo tubo de microcentrífuga de 1,5ml.
- 8. Añadir 75 μl de la solución de elución (DES) y centrifugar 1 minuto a 14000 xg. Guardar el ADN a -80ºC.

3.2. Cuantificación del ADN

La cuantificación del ADN se realizó utilizando el equipo *Qubit*® *fluorometer* (Invitrogen life technologies[™]), siguiendo las instrucciones del fabricante:

- Preparar 200 µl/muestra de solución de trabajo (Qubit reagent-Qubit Buffer 1:199 (v/v)). Cada vez que se prepara una nueva solución de trabajo, se debe calibrar el fluorómetro Qubit® utilizando dos muestras estándar de ADN.
- 2. Preparar los tubos de ensayo utilizando tubos Qubit de 0,5 ml:
 - Para los estándares, se mezclan 10 µl del estándar con 190 µl de la solución de trabajo.
 - Para las muestras, se utilizan 1-20 µl de la muestra de ADN y se mezclan con la solución de trabajo hasta un volumen final de 200 µl. En este caso se utilizó un volumen de 3 µl.
- 3. Agitar con vórtex todos los tubos de ensayo durante 2-3 segundos e incubar a temperatura ambiente durante al menos 2 minutos para que se produzca la reacción entre el ADN y el reactivo Qubit®. La muestra se puede almacenar a temperatura ambiente durante un máximo de 2 horas.
- 4. Insertar los tubos en el fluorómetro Qubit y realizar las lecturas. Para el ADN, se utilizaron los parámetros de lectura "dsDNA" y "High sensitivity".

3.3. Preparación de las librerías y secuenciación

La calidad del ADN se comprobó mediante electroforesis en gel de agarosa al 1% y tampón Tris-Borato-EDTA (TBE) (Anexo IV) a 90V, 60 minutos. Como marcador se utilizó el *GeneRuler 100bp DNA Ladder* (Thermo Scientific[™]) (en todas las electroforesis se utilizó este marcador a no ser que se indique lo contrario). Además, se midió la relación de absorbancias A260/A280 con el espectrofotómetro Epoch[™] (BioTek).

Una vez que las muestras pasaron los parámetros de calidad establecidos se procedió a la preparación de las librerías siguiendo el esquema que se muestra en la Figura 69. En este caso, se prepararon dos tipos de librerías, una para la secuenciación de las poblaciones bacterianas (gen ARNr 16S región V3-V4) y otra para hongos (región Inter espaciada ITS, región ITS2). En el caso de las comunidades bacterianas, se prepararon de todas las muestras recogidas: suelo, rizosfera, raíces, nódulos y hojas; mientras que, para el caso de los hongos, sólo se seleccionaron las muestras de suelo y rizosfera. Para la identificación de bacterias y hongos, se prepararon un total de 72 y 36 librerías, respectivamente. Las librerías se prepararon según el protocolo descrito previamente por Durán et al., (2018) con algunas modificaciones.

Figura 69. Esquema del protocolo de preparación de las librerías.

En la primera reacción en cadena de la polimerasa (PCR), los oligonucleótidos utilizados para la amplificación de la región V3-V4 del gen ARNr 16S fueron la pareja 341F-805R (Anexo IV), y para la amplificación de la región ITS2 se utilizaron los

oligonucleótidos ITS3F-ITS4R (Anexo IV). Los reactivos y cantidades utilizados para la primera PCR están descritos en la Tabla 13 y las condiciones de PCR1 en la Tabla 14.

Reactivos	Volumen
Incomplete buffer* (10X – 1X)	2,5 µl
BIORON GmbH	
MgCl ₂	0,5 µl
Life technologies GmbH	
dNTPs (10 mM – 200 µM)	0,5 µl
Life technologies GmbH	
Oligonucleótido <i>Forward</i> (10 mM – 300 μM)	0,75 µl
Oligonucleótido <i>Reverse</i> (10 mM – 300 μM)	0,75 µl
DFS-Taq (500U – 2U) BIORON GmbH	0,4 µl
ADN	1 µl
H ₂ O libre de nucleasas	18,6 µl
Total	25 µl

Tabla 13. Reactivos y cantidades de la PCR1 (construcción de librerías). En los reactivos puede verse entre paréntesis la concentración inicial del reactivo y la concentración final de la mezcla.

*Incomplete buffer (10x): pH 8,8; 0,1% Tween 20, libre de MgCl₂.

Tabla 14. Condiciones de la PCR1 (construcción de librerías).

Paso	٥C	Minutos	Ciclos
Desnaturalización inicial	94	2:00	
Desnaturalización	94	0:30	
Anillamiento	55	0:30	25
Extensión	72	1:00	
Extensión final	72	10:00	

Los productos de la PCR1 posteriormente fueron tratados (por digestión) para eliminar los residuos de oligonucleótidos y desactivar las enzimas. Los reactivos y cantidades utilizados para la digestión, así como las condiciones están descritos en las Tablas 15 y 16, respectivamente.

Tabla 15. Reacción y cantidades digestión (construcción librerías).

Reactivos	Volumen	
Antartic phosphatase (5000U)		
Thermolabile Recombinant Antartic Phosphatase	1 µl	
(New England BioLabs® Inc.)		
Exol (15000U)		
	1 µl	
Exonuclease I <i>E. coli</i> (New England BioLabs® Inc.)		
Antartic phosphatase buffer	3 µl	
	25 µl	
Total	30 µl	
	· ·	

Tabla 16. Condiciones de digestión (construcción de librerías).

Paso	٥C	Minutos
Desfosforilación	37	30:00
Desactivación enzimática	85	15:00

Una vez terminada la digestión se procedió a realizar la PCR de indexado (PCR2). En este caso se utilizó la técnica de *primers "double barcoding*", es decir, oligonucleótidos directos e inversos con código de barras (Anexo IV). Los reactivos y cantidades utilizados para la PCR2 están descritos en la Tabla 17 y las condiciones de amplificación en la Tabla 18.

Tabla 17. Reactivos y cantidades para la PCR2 de indexado (construcción de librerías). En los reactivos puede verse entre paréntesis la concentración inicial del reactivo y la concentración final en la mezcla de PCR. Los oligonucleótidos forward y reverse son diferentes para cada una de las muestras (ver Anexo IV).

Reactivos	Volumen
Incomplete buffer* (10X – 1X)	2,5 µl
BIORON GmbH	
MgCl ₂	0,5 µl
Life technologies GmbH	
dNTPs (10 mM – 200 μM)	0,5 µl
Life technologies GmbH	
Oligonucleótido <i>Forward</i> (10 mM – 300 μM)	0,75 µl
Oligonucleótido <i>Reverse</i> (10 mM – 300 μM)	0,75 µl
DFS-Taq (500U – 2U) BIORON GmbH	0,4 µl
Producto digestión	3 µl
H ₂ O libre de nucleasas	16,6 µl
Total	25 µl

* Incomplete buffer (10x): pH 8,8; 0,1% Tween 20, libre de MgCl₂.

Tabla 18. Condiciones de PCR2-indexación (construcción de librerías).

Paso	٥C	Minutos	Ciclos
Desnaturalización inicial	94	2:00	
Desnaturalización	94	0:30	
Anillamiento	55	0:30	10
Extensión	72	1:00	
Extensión final	72	10:00	

Una vez finalizada la PCR de indexado, se comprobó mediante una electroforesis en gel de agarosa al 1% y tampón Tris-Acetato-EDTA (TAE) (Anexo IV) a 160V, 20 minutos, la correcta amplificación de las muestras. Se comprobó la concentración de ADN de las muestras revisando la intensidad de las bandas y se normalizaron todas las muestras a la misma concentración de ADN (~20 nM). Se verificó que la normalización de las muestras había sido correcta con una electroforesis en gel de agarosa al 1,5% y tampón TAE (Anexo IV) a 90V, 90 minutos. Se visualizó el gel y se cortaron aquellas bandas correspondientes al fragmento de ADN que se amplificó (en el caso de las muestras de plantas, para la amplificación de la región V3-V4 del gen ARNr 16S ~500 pb). Las bandas de ADN se purificaron con el kit comercial *QIAquick® Gel Extraction* (Qiagen®) siguiendo las instrucciones del fabricante.

Protocolo de purificación de ADN:

- Añadir 3 volúmenes del tampón QC para 1 volumen de gel (100 mg gel ~100 μl), en este caso se añadieron 300 μl.
- 2. Incubar a 50°C durante 10 minutos e ir mezclando con vórtex cada 2-3 minutos para una mejor disolución. Comprobar que el color de la mezcla es amarillo, en caso de que sea naranja o rosa, añadir 10 µl de acetato de sodio 3M a pH 5,0 y mezclar. La muestra vira a amarillo.
- 3. Añadir 1 volumen (100 µl) de isopropanol a la muestra y mezclar.
- 4. Transferir la muestra a una columna *QIAquick* y centrifugar 1 minuto a 14000 xg. Tirar el residuo.
- 5. Si el ADN es para secuenciación, añadir 500 μl del tampón QG a la columna y centrifugar 1 min a 14000 xg. Tirar el residuo.
- 6. Para lavar, añadir 750 µl del tampón PE (que previamente ha sido preparado añadiendo a la solución PE etanol 100%), y dejar reposar la columna durante 2-5 minutos a temperatura ambiente. Centrifugar a 14000 xg para eliminar el residuo de lavado.
- 7. Centrifugar 1 minuto adicional a 14000 xg para eliminar el residuo de lavado.
- 8. Colocar la columna Qlaquick en un tubo de microcentrífuga de 1,5 ml y añadir 50 µl del tampón EB (Tris·Cl 10 mM, pH 8,5). Dejar reposar 1 minuto a temperatura ambiente y centrifugar 1 minuto a 14000 xg. Guardar el ADN a -80°C.

En el caso de las librerías de ITS (hongos), únicamente se utilizó el gel de los productos de la PCR2 indexada para ver si se había amplificado o no el fragmento de ADN, no se purifica desde el gel. La purificación se llevó a cabo con el kit *Agencourt*

AMPure XP magnetic beads (Beckman Coulter®), siguiendo las instrucciones del fabricante:

- 1. Preparar etanol al 70% (v/v) utilizando agua libre de nucleasas.
- 2. Añadir 20 µl de *AMPure XP* y resuspender las perlas en 20 µl del producto de la PCR de indexado (PCR2) mezclando con pipeta. Incubar a temperatura ambiente 5 minutos.
- 3. Colocar la placa de PCR en la gradilla magnética y separar las perlas de la solución durante 3 minutos.
- 4. Eliminar el líquido y añadir 50 μl de etanol (70%), incubar en la gradilla magnética 1 minuto. Repetir el paso 4.
- 5. Eliminar el etanol completamente y dejar secar las perlas 5 min (asegurarse de que están bien secas).
- 6. Quitar la placa de la gradilla y añadir 50 μl de H₂O libre de nucleasas y mezclar por pipeteo (este protocolo de purificación de ADN también puede utilizarse para bacterias, en ese caso se añadirán 20 μl de H₂O libre de nucleasas).
- 7. Centrifugar la placa y colocar de nuevo en la gradilla hasta que se separe.
- 8. Transferir el sobrenadante a una placa nueva. Guardar el ADN a -80°C.

La cuantificación del ADN se llevó a cabo con dos técnicas. Por un lado, con el flurómetro Qubit® (ver apartado 3.2), y por el otro con el kit *Quanti-iT PicoGreen dsDNA Assay* (Invitrogen Life Technologies[™]), siguiendo las instrucciones del fabricante. El termociclador utilizado para la PCR cuantitativa (qPCR) fue el equipo qTOWER³ touch Biometra® - Analytik Jena®, y los reactivos utilizados *KAPA SYBR FAST Universal 2X qPCR Master KAPA Biosystems, Library Quantification DNA Standards only-Illumina* (KAPA Biosystems®).

Protocolo de cuantificación de ADN con Pico Green:

- Preparar diluciones seriadas utilizando 1X TE-buffer (concentraciones: 20, 10, 5, 1, 0.5, 0 ng/µl).
- 2. Diluir 20X TE en H₂O libre de nucleasas.
- 3. Diluir Pico Green 200X en 1X TE-buffer.
- 4. Añadir 40 µl de 1X Pico Green en cada pocillo de una placa qPCR.
- 5. Añadir 4 µl de ADN a los pocillos e incubar 5 minutos en oscuridad a temperatura ambiente.
- 6. Correr el programa de qPCR (Tabla 19) y medir la fluorescencia después de cada ciclo.

Paso	٥C	Minutos	Ciclos
1	25	1:00	1
2	25	0:30	3

Tabla 19. Condiciones de la PCR cuantivativa (qPCR) (construcción de librerías).

- 7. Restar el blanco de fluorescencia.
- 8. Calcular la curva estándar para medir la concentración de ADN para cada muestra (fluorescencia de la muestra/ curva estándar).

Una vez finalizada la cuantificación de ADN por cualquiera de los dos métodos, todas las librerías se mezclaron en un único tubo de microcentrífuga para normalizar la concentración de ADN (~20 nM). Se tuvo en cuenta que para preparar la muestra de secuenciación se necesita el ADN a una concentración final de 4nM.

Finalmente se llevó a cabo la secuenciación en la plataforma Illumina MiSeq, para 20000 lecturas por muestra de doble hebra (*paired-ends*), utilizando el kit de secuenciación *MiSeq Reagent v2* (500-cycles) (Illumina). La secuenciación se llevó a cabo en la empresa CJ Biosciences (Seúl, Corea del Sur).

El análisis de los datos de secuenciación metagenómica de la caracterización del microbioma asociado a *L. angustifolius*, se llevó a cabo con el *pipeline* descrito por la empresa CJ Biosciences.

4. AISLAMIENTO E IDENTIFICACIÓN DE LOS MICROORGANISMOS

4.1. Selección de los medios de aislamiento

Los medios para el aislamiento de bacterias se seleccionaron teniendo en cuenta los resultados obtenidos en los experimentos de metagenómica (muestras procesadas como se indica en el apartado 3). Para ello, se buscaron aquellos taxones que se encontraban en mayor proporción en las distintas muestras. Los medios de cultivo seleccionados para el aislamiento fueron: *Reasoner's R2* (R2A) (Reasoner & Geldreich, 1985), *yeast extract mannitol agar* (YMA) (Vincent, 1970), *International Streptomyces Project 2* (ISP2) (Shirling & Gottlieb, 1966), *peptone yeast extract agar* (PYE) (Shirling & Gottlieb, 1966), *starch casein agar* (SCA) (Küster & Williams, 1964) y agar nutritivo (NA) (Cross, 1968) (Anexo IV). Todos los medios de cultivo fueron

suplementados con 50 µg/ml de cicloheximida para inhibir el crecimiento de hongos. Además, para los medios ISP2 y SCA se añadieron 12 µg/ml de ácido nalidíxico para inhibir el crecimiento de bacterias Gram negativas de crecimiento rápido y permitir el aislamiento de bacterias de crecimiento lento.

4.2. Aislamiento, purificación y conservación de las cepas

Las muestras de suelo (5 g), se resuspendieron en 100 ml de solución salina al 0,85% (p/v) y los matraces se agitaron durante 3 horas a 180 rpm para desprender las células bacterianas de la matriz del suelo. Posteriormente, se realizaron diluciones seriadas hasta 10^{-8} excepto para las muestras de rizosfera (10^{-4}). Finalmente, se inocularon 100 µl de todas las diluciones en los distintos medios de cultivo seleccionados (apartado 4.1).

Las raíces y los nódulos se procesaron como se ha descrito anteriormente (Benito et al., 2021). Las raíces se esterilizaron en superficie y para ello se lavaron con etanol 70% (v/v) (1 minuto), se transfirieron a NaClO 3,5% (v/v) (5 minutos), y se lavaron cinco veces con agua destilada estéril. Los nódulos se esterilizaron con HgCl₂ 2,5% (p/v) (2 minutos) y se lavaron cinco veces con agua destilada estéril. Una vez esterilizados, tanto las raíces como los nódulos se homogenizaron y el macerado obtenido se sembró en los medios de aislamiento (apartado 4.1).

El aislamiento a partir de hojas siguió tres tratamientos diferentes: a) las hojas se esterilizaron en superficie sumergiéndolas en etanol 70% (v/v) (1 minuto), se transfirieron a una solución de NaCIO al 3,5% (p/v) (1 minuto) y se lavaron cinco veces con agua destilada estéril; b) las hojas se agitaron en tampón PBS durante 5 horas, con el agua de lavado se hicieron diluciones seriadas hasta 10^{-5} y se sembraron 100 µl de las diluciones; y c) hojas sin esterilizar. Las muestras de los tratamientos a y c se trituraron y el macerado resultante se sembró en los medios de aislamiento seleccionados (apartado 4.1).

Todas las placas de aislamiento se incubaron a 28° C, revisando y purificando cada 2 días las colonias que fueron apareciendo, a lo largo de tres semanas. Transcurrido este tiempo, las placas se mantuvieron en una estufa a 28° C hasta completar 2 meses y se revisaron y aislaron las colonias nuevas de bacterias de crecimiento lento. Posteriormente, todas las cepas aisladas y purificadas se almacenaron en glicerol al 20% (v/v) a - 80° C.
4.3. Amplificación del gen ARNr 16S

El ADN bacteriano se extrajo siguiendo dos protocolos diferentes. El primero, el kit *REDExtract-N-Amp™ Plant PCR* (Sigma-Aldrich®) siguiendo las instrucciones del fabricante.

Protocolo de extracción de ADN:

- En un tubo de microcentrífuga de 1,5 ml, resuspender una cantidad aproximada a un grano de arroz de biomasa en 500 µl de agua destilada estéril para lavarla. Centrifugar 3 minutos a 14000xg y eliminar el sobrenadante.
- Añadir 80 µl de la solución extracción a la biomasa. Calentar 10 minutos a 95°C.
- 3. Mezclar con vórtex y añadir 80 µl de la solución dilución. Mezclar con vórtex.
- En campana de extracción de gases, añadir 100 μl de una solución fenolcloroformo-ácido isoamílico (25:24:1). Mezclar con vórtex y centrifugar 10 minutos a 14000 xg.
- 5. Recuperar el sobrenadante y añadir 100 μl de una solución cloroformo-ácido isoamílico (24:1). Mezclar con el vórtex y centrifugar 10 minutos a 14000 xg.
- 6. Recoger el sobrenadante y conservar el ADN a -80°C.

El segundo protocolo de extracción de ADN es por lisis alcalina (Bai et al., 2015). Protocolo de extracción de ADN por lisis alcalina:

- 1. En un tubo de microcentrífuga de 1,5 ml, resuspender una cantidad aproximada a un grano de arroz de biomasa en 500 µl de agua destilada estéril.
- En un tubo de microcentrífuga del tamaño deseado (1,5 o 0,2 ml) añadir 10, 12 o 24 µl de la biomasa preparada previamente, o ese mismo volumen si el preinóculo se cultiva en líquido.
- Teniendo en cuenta el volumen de la muestra de biomasa, añadir 1,6 volúmenes del tampón I de extracción de ADN (NaOH 25 mM y Na-EDTA 0,2 mM; pH 12) en los tubos de microcentrífuga. Mezclar con vórtex.
- 4. Incubar las muestras a 95°C durante 30 minutos.
- Añadir 1,6 volúmenes (misma cantidad que el tampón I paso 3) del tampón II de extracción de ADN (Tris-HCI 40 mM; pH 7,46). Mezclar con vórtex.
- 6. Conservar el ADN a -80ºC.

La amplificación del gen ARNr 16S se llevó a cabo con una PCR en un termociclador TProfessional Basic Thermal Cycler (Biometra®). Los oligonucleótidos utilizados fueron SF1 y 1522R (Anexo IV). El kit utilizado para llevar a cabo la PCR fue *REDExtract-N-Amp™ Plant PCR* (Sigma-Aldrich®). Los reactivos y cantidades utilizados para la PCR están descritos en la Tabla 20 y las condiciones de PCR en la Tabla 21.

Reactivos	Volumen
REDExtract mix	12 µl
Extraction-Dilution (1:1 (v/v))	2,5 µl
Oligonucleótido Forward SF1 (20 µM)	0,8 µl
Oligonucleótido Reverse 1522R (20 μM)	0,8 µl
ADN	1 µl
H ₂ O libre de nucleasas	8 µl
Total	25 µl

Tabla 20. Reactivos y cantidades PCR (amplificación gen ARNr 16S).

Tabla 21. Condiciones de PCR (amplificación gen ARNr 16S).

Paso	°C	Minutos	Ciclos
Desnaturalización inicial	95	9:00	
Desnaturalización	94	1:00	
Anillamiento	56	1:00	35
Extensión	72	1:00	
Extensión final	72	7:00	

Se comprobó mediante una electroforesis en gel de agarosa al 1% y tampón TAE (Anexo IV) a 90V, 60 minutos, la correcta amplificación de ADN. Los fragmentos correspondientes a ~1500 pb se purificaron utilizando el kit *GEL/PCR Purification* (FavorPrep[™]) siguiendo las instrucciones del fabricante.

- Transferir como máximo 300 mg de la banda cortada en el gel de agarosa a un tubo de microcentrífuga de 1,5 ml y añadir 500 µl del tampón FADF.
- Incubar a 55°C hasta que se homogenice la muestra (5 a 10 minutos) y mezclar mediante vórtex cada 1-2 minutos.
- 3. Dejar que la muestra baje a temperatura ambiente y transferir la mezcla a una columna FADF. Centrifugar a 11000 xg 30 segundos y eliminar el residuo.
- 4. Añadir 750 μl del tampón de lavado (previamente preparado con etanol absoluto) y centrifugar 30 segundos a 11000 xg, descartar el residuo.
- 5. Centrifugar otros 3 minutos a 14000 xg para secar la columna.
- Colocar la columna en un tubo nuevo de microcentrífuga de 1,5 ml. Añadir 40 µl del tampón de elución, esperar 1 minuto y centrifugar a 18000 xg durante 1 minuto. Descartar la columna.
- 7. Conservar el ADN a -80°C.

4.4. Secuenciación Sanger del gen ARNr 16S

Los amplicones de ARNr 16S purificados se cuantificaron utilizando el fluorómetro Qubit® (ver apartado 3.2) y se procedió a su secuenciación en el servicio de secuenciación NUCLEUS en la Universidad de Salamanca. Los oligonucleótidos utilizados para la secuenciación fueron: SR2, SR3, SR4 y 1522R (Anexo IV). Todas las secuencias fueron corregidas utilizando el programa Chromas 2.5 y posteriormente las lecturas se ensamblaron con el programa DNAStar® SeqMan v5.0. La identificación se realizó utilizando el servicio de identificación de EzBioCloud (Yoon et al., 2017).

5. ENSAYOS DE PATOGENICIDAD

Para analizar si los microorganismos aislados en este trabajo eran o no patógenos de plantas, se llevaron a cabo ensayos de patogenicidad en *A. thaliana* Col-0. Las semillas se esterilizaron en superficie y se germinaron como se ha descrito previamente en el apartado 2.1. Posteriormente, las semillas se colocaron en placas con medio Murashige y Skoog (MS) (Murashige & Skoog, 1962) y se incubaron durante cinco días a temperatura ambiente suplementado con sacarosa 1% (p/v) y agar 1% (p/v) (Anexo IV) (Ortúzar et al., 2020). Después de cinco días, las plántulas se transfirieron a placas de 12 pocillos, cada uno con 3 ml de medio MS. Se colocó una plántula por pocillo.

Las cepas de ensayo se cultivaron en agar ISP2 o R2A (Anexo IV) durante cinco días a 28°C y se prepararon suspensiones bacterianas (10⁹ UFC/ml) en solución salina 0,85% (p/v) y se utilizaron para inocular 10 µl en cada planta. Todas las cepas se ensayaron por triplicado. Las plantas control se inocularon con solución salina. Las placas se incubaron en una cámara climatizada siguiendo las indicaciones del apartado 2.2. Al cabo de 14 días, se compararon las plantas con los controles y se comprobó si los tejidos estaban dañados o deteriorados, se mantenían similares a las plantas control, o tenían un crecimiento mayor.

6. DISEÑO DE LAS COMUNIDADES SINTÉTICAS (SynCom)

6.1. Selección de microorganismos para las SynCom

El diseño de las comunidades sintéticas bacterianas o SynComs se llevó a cabo teniendo en cuenta los resultados de los análisis de metagenómica (apartado 3), las bacterias aisladas (apartado 4), y los resultados de patogenicidad (apartado 5). Para ello, se seleccionaron aquellos taxones que se encontraban en una mayor proporción en las muestras metagenómicas y aislamientos asociados a la raíz (rizosfera y raíces) y se eligieron representantes que no fueran patógenos para plantas. Finalmente, se seleccionaron un total de 12 cepas (Tabla 22).

Tabla 22. Co	epas bacterianas	incluidas en	las SynComs.
--------------	------------------	--------------	--------------

ID	Código	Identificación
1	SRA22	Caulobacter sp.
2	SOC91	<i>Kribbella</i> sp.
3	CRA141	Pseudomonas sp.
4	CRA71	Pseudoxanthomonas sp.
5	SRA24	Rhizobium sp.
6	CRA80	Sphingopyxis sp.
7	CRA73	Stenotrophomonas sp.
8	SOC14B	Streptomyces sp.
9	SOC84	Streptomyces sp.
10	SO45	Variovorax sp.
11	Lupac 08	Micromonospora sp.
12	CAR08	Bradyrhizobium sp.

En la Tabla 22 puede verse que uno de los microrganismos seleccionados para las SynComs era la bacteria fijadora de nitrógeno y simbionte de *Lupinus*, *Bradyrhizobium canariensis* CAR08. Asimismo, se decidió estudiar el impacto de una cepa del género *Micromonospora*, *M. lupini* Lupac 08 en las comunidades asociadas a *Lupinus* ya que este microorganismo es un habitante habitual en los nódulos fijadores de nitrógeno. En este trabajo, se diseñaron siete comunidades sintéticas de acuerdo con los objetivos planteados (Tabla 23).

SynComs	IDs microorganismos
SynCom_1	12
SynCom_2	11
SynCom_3	11, 12
SynCom_4	1 – 10
SynCom_5	1 – 10, 12
SynCom_6	1 – 10, 11
SynCom_7	1 – 12

Tabla 23. Composición de las SynComs. El ID de los microorganismos corresponde al número asignado a cada microorganismo en la Tabla 22.

6.2. Extracción ADN para genomas bacterianos

La extracción de ADN para la secuenciación de los genomas de las cepas incluidas en las SynComs (Tabla 22) se llevó a cabo con el kit *Wizard*® *Genomic DNA Purification* (Promega®) siguiendo las instrucciones del fabricante. Todas las cepas se cultivaron en medio de cultivo *Trypticase Soy Agar (TSA)* (Anexo IV), excepto los IDs 1, 5 y 12 (Tabla 22) que se cultivaron en *Tryptone Yeast extract agar* (TY) (Anexo IV). Se incubaron a 28°C durante cinco días para recoger la biomasa.

Protocolo de extracción de ADN:

- 1. Añadir en un tubo de microcentrífuga de 1,5 ml, 1 ml de un cultivo de la cepa correspondiente con una densidad óptica (DO₆₀₀) de 1.
- Centrifugar a 13000-16000 xg durante 2 minutos y eliminar el sobrenadante.
 Para las bacterias Gram positivas continuar con el paso 3, para las bacterias Gram negativas ir directamente al paso 6.
- 3. Resuspender las células en 480 µl de EDTA 50 mM.
- Añadir la enzima o enzimas líticas correspondientes en un volumen total de 120 μl, en este caso: 48 μl lisozima (300 mg/ml), 36 μl proteinasa K (10 mg/ml) y 36 μl mutanolisina (1000 U/ml) en tampón Tris-HCl 10 mM pH 8. Mezclar con la pipeta.
- Incubar la muestra a 37°C durante 30-60 minutos. Centrifugar 2 minutos a 13000-16000 xg y eliminar el sobrenadante.

- Añadir 600 µl de la solución de lisis Nuclei y mezclar con la pipeta hasta que las células estén totalmente resuspendidas.
- Incubar a 80°C durante 5 minutos para lisar las células, después enfriar hasta temperatura ambiente.
- 8. Añadir 3 µl de la solución RNasa. Invertir el tubo 2-5 veces para mezclar.
- Incubar a 37°C durante 15-60 minutos. Dejar enfriar la muestra a temperatura ambiente.
- Añadir 200 μl de la solución de precipitación de proteínas al lisado tratado con RNasa. Mezclar con vórtex.
- 11. Incubar la muestra en hielo durante 5 minutos.
- 12. Centrifugar a 13000-16000 xg 3 minutos.
- 13. Transferir el sobrenadante a un tubo de microcentrífuga nuevo de 1,5 ml que contenga 600 µl de isopropanol a temperatura ambiente.
- 14. Mezclar invirtiendo el tubo.
- 15. Centrifugar a 13000-16000 xg 2 minutos.
- 16. Con cuidado verter y vaciar el tubo en un papel absorbente. Añadir 600 µl de etanol 70% a temperatura ambiente e invertir varias veces el tubo para lavar el pellet de ADN.
- 17. Centrifugar a 13000-16000 xg durante 2 minutos. Con cuidado eliminar el etanol (sobrenadante).
- 18. Verter el tubo en un papel absorbente y dejar el pellet de ADN secar al aire durante 10-15 minutos.
- 19. Añadir 50 μl de agua miliQ estéril (o de la solución de rehidratación del ADN, cuidado porque contiene EDTA). Incubar a 65ºC durante 1 hora.
- 20. Conservar el ADN a -80°C.
- El ADN se cuantifica con el flurómetro Qubit® (ver apartado 3.2).

6.3. Secuenciación de los genomas bacterianos

Los genomas de las cepas de estudio que formaban las SynComs (apartado 6.1) se secuenciaron en Novogene (UK Company Limited). Las librerías se prepararon con el kit *TruSeq™ llibrary* siguiendo las instrucciones del fabricante. La secuenciación se llevó a cabo en la plataforma Illumina® MiSeq (300 pb *paired-end*) con una profundidad superior a 100X.

Los datos de secuenciación de Illumina se ensamblaron con tres programas diferentes: 1) SOAP denovo (Li et al., 2008, 2010), 2) SPades (Bankevich et al., 2012), y 3) ABySS (Simpson et al., 2009) y fueron integrados con la herrameinta CISA (Lin & Liao, 2013), seleccionando el ensamblaje más completo (menos número de *scaffolds*). Las anotaciones se hicieron con los programas y herramientas GeneMarkS (Besemer et al., 2001), RepeatMasker, TRF (*Tamdem repeats finder*) (Benson, 1999), tRNAscan-SE (Schattner et al., 2005), rRNAmmer, Rfam (Nawrocki et al., 2015), IslandPath-DIOMB (Hsiao et al., 2003), Prodigal 2.6.2 (Hyatt et al., 2010), PHAST (Zhou et al., 2011) y CRIPRFinder (Grissa et al., 2007). La predicción funcional se infirió con la platafoma EggNOG-mapper (Huerta-Cepas et al., 2016) con modo de mapeo HMMER contra las bases de datos actNOG y bacterial HMM utilizando todos los ortólogos (Huerta-Cepas et al., 2016). Para confirmar la anotación, las secuencias codificadoras de proteínas (CDSs) anotadas se compararon con las bases de datos Swissprot (UniProt Consortium, 2018), KEGG (Kanehisa et al., 2014) y SEED (Overbeek et al., 2005) utilizando el programa UBLAST (Edgar, 2010).

7. INTERACCIÓN DE LAS SynComs Y Lupinus angustifolius

7.1. Efecto de SynComs en comunidades naturales del suelo

Con el objetivo de analizar el impacto de las diferentes SynComs (Tabla 23) en el microbioma asociado a la raíz de *L. angustifolius* y las comunidades naturales del suelo, se diseñó un experimento en suelo natural, en condiciones controladas de invernadero. Para ello se cultivaron plantas de *L. angustifolius* durante ocho semanas en suelo CAS (Suelo Agrícola de la ciudad de Colonia, Alemania (lotes mayo y julio 2022, respectivamente) siguiendo el esquema descrito en la Figura 70.

Figura 70. Esquema del experimento para estudiar el efecto de las SynComs en comunidades naturales del suelo.

Se realizaron 9 tratamientos, cada una de las siete SynComs descritas en la Tabla 23 corresponde con cada uno de los tratamientos, y además se añadieron dos controles negativos, plantas sin inocular y macetas sin planta. Para ello se utilizaron 9 bandejas (una bandeja por tratamiento) con 4 macetas de 7 x 7 cm (3 l) cada una. En cada tratamiento se sembraron 15 plantas, las semillas se trataron previamente como está descrito en el apartado 2.1, y se sembraron en las macetas una vez que las plántulas de *L. angustifolius* tenían 5 días. Se dejaron 3 días en las macetas para que se estabilizaran en las nuevas condiciones de cultivo.

Para preparar los inóculos de las SynComs, todas las cepas se cultivaron por separado en medio líquido TSB (Anexo IV), excepto los IDs 1, 5 y 12 que se cultivaron en TY (Anexo IV) durante 5 días a 200 rpm y 28°C. La biomasa de cada cepa se recogió y lavó con MgSO₄ 10 mM y se combinaron cantidades equivalentes de cada una para crear las diferentes SynComs. Asimismo, se recogió una alícuota de cada microorganismo, así como de cada SynCom como referencia de inicio del experimento (control) y se guardó a -80°C. La densidad óptica final (DO₆₀₀) a la que se inocularon las macetas fue de 0,0005. Ambos controles (suelo y plantas sin inocular) se inocularon con la misma cantidad de MgSO₄ 10 mM.

Tras inocular las plantas, se dejaron crecer ocho semanas, realizando riegos periódicamente cada semana con agua y con un fotoperiodo de 16 horas de luz y 8 horas de noche (periodo estival).

Transcurrido este tiempo, se recogieron 9 muestras de suelo de cada tratamiento, 9 de rizosfera y 9 de raíces para secuenciar la región V5-V7 del gen ARNr 16S. En total, se secuenciaron 81 muestras de suelo (72 muestras estudio y 9 muestras control), 72 de rizosfera y 72 de raíces (incluyendo los controles de plantas sin inocular). Paralelamente, al final del experimento, se registraron los parámetros de crecimiento de las plantas (longitud y peso húmedo de las partes radicular y aérea, y número de nódulos.

7.2. Reconstitución del microbioma asociado a raíz

Para estudiar qué taxones de los que componían las SynComs se asociaban a la raíz sin la influencia de otros microorganismos y qué efectos tenían sobre la planta de *L. angustifolius*, se diseñó un experimento en un sistema gnotobiótico de macetas flotantes (*FlowPots*) (Durán et al., 2018; Kremer et al., 2018). Algunas de las ventajas de este método entre otras son: la composición exacta de los microorganismos inoculados, mantenimiento de las plantas en condiciones asépticas y totalmente controladas, e inoculación de forma uniforme de los microorganismos en las macetas. El esquema de cómo se realizó este experimento puede verse en la Figura 71.

Figura 71. Esquema del experimento para realizar la reconstitución del microbioma asociado a raíz.

Al igual que los experimentos de invernadero, se realizaron 9 tratamientos, cada una de las SynComs descritas en la Tabla 23 que corresponden con cada uno de los tratamientos, y dos controles negativos, tal y como se explicó anteriormente (apartado 7.1). Como matriz de sustrato se utilizó una mezcla de turba y vermiculita (proporción 2:1).

El cultivo de las cepas bacterianas para la preparación de inóculos se realizó como se describe en el apartado 7.1. Tras 5 días de crecimiento, los microorganismos se recogieron y se lavaron con MgSO₄ 10 mM. Se combinaron cantidades equivalentes de cada cepa para crear las diferentes SynComs con una DO₆₀₀ de 1. Se recogió una alícuota de cada microorganismo, así como de cada SynCom como referencia de inicio del experimento (control) y se guardó a -80°C. Cada SynCom se añadió al medio de cultivo B&D (Broughton & Dilworth, 1971) (Anexo IV) hasta alcanzar una DO₆₀₀ final de 0,02. Los inóculos preparados posteriormente fueron empleados para "lavar" cada *FlowPot* con 50 ml (mezcla de medio B&D y SynCom) y de esa manera distribuir los microorganismos en la matriz de soporte.

Para cada tratamiento se sembraron 18 plantas, las semillas se trataron como está descrito previamente en el apartado 2.1. Las plántulas de 5 días, se colocaron en cada una de las macetas ya inoculadas y se incubaron durante seis semanas (ver condiciones de cultivo apartado 2.2).

Transcurrido ese tiempo, se recogieron 9 muestras de cada tratamiento de rizosfera y 9 de raíces, para secuenciar la región V5-V7 del gen ARNr 16S. En el caso del control sin planta, se recogieron 9 muestras de sustrato que se utilizaron como control para asegurarnos de que no había contaminaciones en el experimento. En total 9 muestras de suelo (control), 72 de rizosfera y 72 de raíces fueron recogidas. Asimismo, se recogieron las raíces de 9 plantas de cada tratamiento, se congelaron con nitrógeno líquido y se conservaron a -80°C, para estudiar mediante RNA-seq la expresión de la planta al inocular las diferentes SynComs (apartado 8).

Paralelamente, al final del experimento, se registraron los parámetros de crecimiento de las plantas (longitud y peso húmedo de las partes radicular y aérea, y número de nódulos).

En los experimentos de interacción de las SynComs con *L. angustifolius* el protocolo que se utilizó para extraer el ADN de los microorganismos guardados como control de inicio del experimento fue el descrito previamente en el apartado 4.3. Los protocolos para la extracción de ADN y preparación de las librerías de la región V5-V7 del gen ARNr 16S, son los descritos previamente en el apartado 3. La diferencia es que en la

PCR1 se utilizó la pareja de oligonucleótidos 799F-1192R (Anexo IV), para amplificar la región V5-V7 del gen ARNr 16S, en el resto de los protocolos y metodologías no hay variaciones. La secuenciación se llevó a cabo en el Max Planck Genome centre (Max Planck Institute for Plant Breeding Research, Colonia, Alemania).

El análisis de los datos de secuenciación metagenómica del efecto de las SynComs en comunidades naturales del suelo, así como de la reconstitución del microbioma, se llevó a cabo con el *pipeline* descrito previamente (Wippel et al., 2021; P. Zhang et al., 2021).

8. EXPRESIÓN GÉNICA DE LA PLANTA Lupinus angustifolius

8.1. Extracción de ARN

En el experimento de reconstitución del microbioma asociado a la raíz, además de conocer qué microorganismos de las SynComs se asociaban a la planta *L. angustifolius*, se estudió la expresión génica de la planta en respuesta a la interacción con las diferentes SynComs. Para ello, se determinaron perfiles de ARNm de la planta. La extracción de ARN se hizo con el kit *RNeasy Plant Mini* (Qiagen®) siguiendo las instrucciones del fabricante. Tras triturar las raíces con la ayuda de un mortero y nitrógeno líquido, el material se transfirió a un tubo de microcentrífuga de 1,5 ml.

Procedimiento:

- Añadir 450 µl de tampón RLT y *beta*-mercaptoetanol al triturado de raíz. Mezclar bien con vórtex y centrifugar 10 minutos a 14000 xg en una centrífuga a 4ºC.
- 2. Transferir el sobrenadante (~300 μl) a un filtro con columna morada. Centrifugar 2 minutos a 14000 xg.
- 3. Transferir la fase separada en la centrifugación a un nuevo tubo de microcentrífuga de 1,5 ml. Tirar la columna morada.
- 4. Añadir 150 µl de etanol 100% y mezclar por pipeteo.
- Transferir la mezcla a un filtro con columna rosa y centrifugar 30 segundos a 8000 xg. Tirar el residuo de centrifugación.
- 6. Añadir 350 µl del tampón RW1 y centrifugar 30 segundos a 8000 xg.
- Añadir 80 µl de la solución DNase I (10 µl DNase I stock + 70 µl de tampón RDD) (RNase-Free DNase Set, Qiagen®). Dejar incubar a temperatura ambiente durante 15 minutos.

- Añadir 350 μl del tampón RW1, dejar incubar 5 minutos a temperatura ambiente. Centrifugar 30 segundos a 8000 xg y eliminar el residuo.
- Añadir 500 µl del tampón RPE y centrifugar 30 segundos a 8000 xg y tirar el residuo.
- 10. Añadir 500 µl del tampón RPE y centrifugar a 8000 xg durante 2 minutos.
- 11. Centrifugar nuevamente durante 1 minuto a 8000 xg para secar y eliminar los restos del tampón. Retirar la columna y guardar el filtro.
- 12. Colocar el filtro rosa en un nuevo tubo de microcentrífuga 1,5 ml. Añadir 30 μl de agua libre de DNasas/RNasas y centrifugar 1 minuto a 8000 xg.
- 13. Guardar el ARN a -80ºC.

Tras confirmar la calidad del ARN con un equipo *5400 Fragment Analyzer* (Agilent Technologies, Inc. ©), la preparación de las librerías y secuenciación se llevó a cabo en la empresa Novogene (UK Company Limited).

8.2. Preparación de las librerías y secuenciación del ARN de L. angustifolius

El ARN mensajero se purificó a partir del ARN total utilizando perlas magnéticas unidas al oligo poli-T. Tras la fragmentación, se sintetizó el ADNc de la primera cadena utilizando cebadores hexaméricos aleatorios, seguido de la síntesis de la segunda cadena de ADNc utilizando dUTP para la biblioteca direccional o dTTP para la biblioteca no direccional.

La biblioteca se cuantificó con Qubit, PCR en tiempo real y bioanalizador para detección de la distribución de tamaños. El agrupamiento de las muestras codificadas por índices se realizó siguiendo las instrucciones del fabricante. Tras la generación de grupos, las preparaciones de bibliotecas se secuenciaron en una plataforma Illumina HiSeq3000, con una profundidad de lectura de 9M de lecturas por muestra y se generaron lecturas *paired-end*.

8.3. Análisis de datos RNA-seq

En el análisis de calidad de los datos se obtuvieron las lecturas limpias y de alta calidad. Para lo cual, partiendo de los datos brutos se eliminaron las lecturas que contenían adaptadores, poly-N y lecturas de baja calidad. Al mismo tiempo, se calculó el contenido de Q20, Q30 y GC de los datos curados.

El genoma de referencia y de la anotación del modelo genético se descargaron directamente del sitio web del genoma (número de acceso GCA_001865875, ID: ensemblplants_lupinus_angustifolius_lupangtanjil_v1_0_gca_001865875_1). El índice del genoma de referencia se construyó con Hisat2 v2.0.5 y las lecturas limpias *paired-end* se alinearon con el genoma de referencia utilizando Hisat2 v2.0.5. Seleccionamos Hisat2 como herramienta de mapeo.

El análisis de la expresión diferencial de dos condiciones/grupos (dos réplicas biológicas por condición) se realizó utilizando el paquete DESeq2 R (1.20.0). Los valores P resultantes se ajustaron utilizando el método de Benjamini-Hochberg. Los genes con un valor P ajustado $\leq 0,05$ encontrados por DESeq2 se asignaron como expresados diferencialmente.

El análisis de enriquecimiento de la ontología génica (GO) de los genes expresados diferencialmente se implementó mediante el paquete clusterProfiler R, en el que se corrigió el sesgo de longitud génica. Los genes GO con un valor *P* corregido inferior a 0,05 se consideraron significativamente enriquecidos. Se utilizó el paquete clusterProfiler R para comprobar el enriquecimiento estadístico de genes de expresión diferencial en las rutas KEGG.

El análisis de enriquecimiento de conjuntos de genes (GSEA) es un método computacional para determinar si un conjunto de genes predefinido puede mostrar una diferencia significativa consistente entre dos estados biológicos. Los genes se clasificaron según el grado de expresión diferencial en las muestras y, a continuación, se analizó el conjunto de genes predefinido para ver si estaban enriquecidos en la parte superior o inferior de la lista. El análisis de enriquecimiento de conjuntos de genes puede incluir cambios sutiles de expresión. Utilizamos la versión local de la herramienta de análisis GSEA http://www.broadinstitute.org/gsea/index.jsp, seleccionando el conjunto de datos GO y KEGG para GSEA de forma independiente.

Se utilizó el software GATK (v4.1.1.0) para realizar la búsqueda de SNP (single nucleotide polymorphisms). Los archivos vcf sin procesar se filtraron con el método de filtrado estándar de GATK y otros parámetros (cluster: 3; WindowSize: 35; QD < 2,0; FS > 30,0; DP < 10).

9. ESTADÍSTICA Y REPRODUCIBILIDAD

Todos los experimentos se realizaron con réplicas completas tanto biológicas como técnicas. Además, los experimentos de interacción *Lupinus angustifolius* con SynComs se repitieron varias veces utilizando comunidades bacterianas independientes (cultivos nuevos). Siempre que se compararon las abundancias bacterianas o los parámetros de crecimiento de las plantas, utilizamos la prueba no paramétrica de Mann-Whitney o, en el caso de comparaciones múltiples, la prueba de Kruskal-Wallis, seguida de una prueba *post hoc* de Tukey. Según el caso, los valores de *P* se ajustaron para pruebas múltiples utilizando el método de Benjamini-Hochberg ($\alpha = 0,005$).

Las pruebas estadísticas sobre los análisis de diversidad *beta* se realizaron utilizando una prueba PERMANOVA con 5000 permutaciones aleatorias y también con un análisis de coordenadas principales (PCoA) (paquete vegan v. 2.6-4 R v.4.2.2) (Oksanen et al., 2022; R Core Team, 2022). Siempre que se usaron diagramas de cajas (box-plots) en las figuras, los datos se representaron como valores medianos (línea horizontal), Q1 – 1,5 × rango intercuartílico (cajas) y Q3 + 1,5 × rango intercuartílico (bigotes). El estudio de comparación de OTUs se representó en diagramas de Venn (paquete ggvenn v.0.1.10 R v.4.2.2) (Yan, 2023). La caracterización del microbioma se representó en heatmap (paquete ComplexHeatmap R v.4.2.2) (Gu, 2022; R Core Team, 2022) y en diagramas de barras (paquete ggplot2 R v.4.2.2) (R Core Team, 2022; Wickham & Wickham, 2016).

Para el análisis de co-ocurrencia se utilizaron las tablas de recuento de OTUs bacterianas y fúngicas y se fusionaron con la taxonomía y los metadatos de muestreo en dos objetos phyloseq en R v.4.2.2 (McMurdie & Holmes, 2013; R Core Team, 2022). Ambos objetos phyloseq se normalizaron utilizando la mediana del número de recuentos de OTUs y se fusionaron en un único objeto phyloseq utilizando el paquete phyloseq v.1.42.0 (McMurdie & Holmes, 2013). El análisis de co-ocurrencia microbiana se realizó utilizando el paquete SpiecEasi v.1.1.2 y el método SparCC con 100 interacciones en el bucle externo y 20 interacciones en el bucle interno (Kurtz et al., 2015). Se utilizó Igraph v.1.4.2 para trazar el análisis de la red (Csardi & Nepusz, 2006). A nivel de filo se seleccionaron todas las OTUs, mientras que para género se hizo un corte al 1% de la abundancia relativa. Se analizaron las correlaciones positivas o negativas con valores superiores a 0,3 o inferiores a -0,3. Se representaron en redes únicamente aquellos nodos con correlaciones positivas o negativas con valores superiores a -0,7.

- Abraham, E. M., Ganopoulos, I., Madesis, P., Mavromatis, A., Mylona, P., Nianiou-Obeidat, I., Parissi, Z., Polidoros, A., Tani, E., & Vlachostergios, D. (2019). The Use of Lupin as a Source of Protein in Animal Feeding: Genomic Tools and Breeding Approaches. In International Journal of Molecular Sciences (Vol. 20, Issue 4). https://doi.org/10.3390/ijms20040851
- Adhikari, P., Jain, R., Sharma, A., & Pandey, A. (2021). Plant Growth Promotion at Low Temperature by Phosphate-Solubilizing *Pseudomonas* Spp. Isolated from High-Altitude Himalayan Soil. *Microbial Ecology*, 82(3), 677–687. https://doi.org/10.1007/s00248-021-01702-1
- Agha, M. S., Haroun, S. A., Abbas, M. A., Sofy, M. R., & Mowafy, A. M. (2023). Growth and Metabolic Response of Glycine max to the Plant Growth-Promoting Enterobacter Delta PSK and Bradyrhizobium japonicum Under Salinity Stress. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-023-10967-4
- Aguilar-Acosta, L. A., Serna-Saldivar, S. O., Rodríguez-Rodríguez, J., Escalante-Aburto, A., & Chuck-Hernández, C. (2020). Effect of Ultrasound Application on Protein Yield and Fate of Alkaloids during Lupin Alkaline Extraction Process. In *Biomolecules* (Vol. 10, Issue 2). https://doi.org/10.3390/biom10020292
- Alexander, A., Singh, V. K., & Mishra, A. (2020). Halotolerant PGPR Stenotrophomonas maltophilia BJ01 Induces Salt Tolerance by Modulating Physiology and Biochemical Activities of Arachis hypogaea. Frontiers in Microbiology (Vol. 11). https://www.frontiersin.org/articles/10.3389/fmicb.2020.568289
- Allison, S. D., & Treseder, K. K. (2008). Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. *Global Change Biology*, *14*(12), 2898–2909. https://doi.org/https://doi.org/10.1111/j.1365-2486.2008.01716.x
- Alonso-Vega, P., Normand, P., Bacigalupe, R., Pujic, P., Lajus, A., Vallenet, D., Carro, L., Coll, P., & Trujillo, M. E. (2012). Genome Sequence of *Micromonospora lupini* Lupac 08, Isolated from Root Nodules of *Lupinus angustifolius*. *Journal of Bacteriology*, 194(15), 4135 LP – 4135. https://doi.org/10.1128/JB.00628-12
- Andor, B., Danciu, C., Alexa, E., Zupko, I., Hogea, E., Cioca, A., Coricovac, D., Pinzaru, I., Pătraşcu, J. M., Mioc, M., Cristina, R. T., Soica, C., & Dehelean, C. (2016). Germinated and Ungerminated Seeds Extract from Two *Lupinus* Species: Biological Compounds Characterization and In Vitro and In Vivo Evaluations. *Evidence-Based Complementary and Alternative Medicine*, 2016, 7638542. https://doi.org/10.1155/2016/7638542
- Andrés-Barrao, C., Alzubaidy, H., Jalal, R., Mariappan, K. G., de Zélicourt, A., Bokhari, A., Artyukh,
 O., Alwutayd, K., Rawat, A., Shekhawat, K., Almeida-Trapp, M., Saad, M. M., & Hirt, H. (2021).
 Coordinated bacterial and plant sulfur metabolism in *Enterobacter* sp. SA187–induced plant salt
 stress tolerance. *Proceedings of the National Academy of Sciences*, *118*(46), e2107417118.
 https://doi.org/10.1073/pnas.2107417118
- Antal, N., Fiedler, H.-P., Stackebrandt, E., Beil, W., Ströch, K., & Zeeck, A. (2005). Retymicin, Galtamycin B, Saquayamycin Z and Ribofuranosyllumichrome, Novel Secondary Metabolites from *Micromonospora* sp. Tü 6368. *The Journal of Antibiotics*, 58(2), 95–102. https://doi.org/10.1038/ja.2005.12

- Araujo, R., Dunlap, C., Barnett, S., & Franco, C. M. M. (2019). Decoding Wheat Endosphere– Rhizosphere Microbiomes in *Rhizoctonia solani*–Infested Soils Challenged by *Streptomyces* Biocontrol Agents. *Frontiers in Plant Science* (Vol. 10). https://www.frontiersin.org/articles/10.3389/fpls.2019.01038
- Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D., & Kivlin, S. N. (2019). Global imprint of mycorrhizal fungi on whole-plant nutrient economics. *Proceedings of the National Academy of Sciences*, 116(46), 23163–23168. https://doi.org/10.1073/pnas.1906655116
- Baez-Rogelio, A., Morales-García, Y. E., Quintero-Hernández, V., & Muñoz-Rojas, J. (2017). Next generation of microbial inoculants for agriculture and bioremediation. *Microbial Biotechnology*, 10(1), 19–21. https://doi.org/https://doi.org/10.1111/1751-7915.12448
- Bai, B., Liu, W., Qiu, X., Zhang, J., Zhang, J., & Bai, Y. (2022). The root microbiome: Community assembly and its contributions to plant fitness. *Journal of Integrative Plant Biology*, 64(2), 230–243. https://doi.org/https://doi.org/10.1111/jipb.13226
- Bai, Y., Müller, D. B., Srinivas, G., Garrido-Oter, R., Potthoff, E., Rott, M., Dombrowski, N., Münch, P.
 C., Spaepen, S., Remus-Emsermann, M., Hüttel, B., McHardy, A. C., Vorholt, J. A., & Schulze-Lefert, P. (2015). Functional overlap of the *Arabidopsis* leaf and root microbiota. *Nature*, *528*(7582), 364–369. https://doi.org/10.1038/nature16192
- Bai, Y., Müller, D. B., Srinivas, G., Garrido-Oter, R., Potthoff, E., Rott, M., Dombrowski, N., Münch, P.
 C., Spaepen, S., Remus-Emsermann, M., Hüttel, B., McHardy, A. C., Vorholt, J. A., Schulze-Lefert, P., Bodenhausen, N., Horton, M. W., Bergelson, J., Bulgarelli, D., Schlaeppi, K., ...
 Hacquard, S. (2013). Structure and Functions of the Bacterial Microbiota of Plants. *Annual Review of Plant Biology*, *64*(1), e56329. https://doi.org/10.1186/s40168-018-0445-0
- Bakker, M. G., Manter, D. K., Sheflin, A. M., Weir, T. L., & Vivanco, J. M. (2012). Harnessing the rhizosphere microbiome through plant breeding and agricultural management. *Plant and Soil*, 360(1), 1–13. https://doi.org/10.1007/s11104-012-1361-x
- Bálint, M., Tiffin, P., Hallström, B., O'Hara, R. B., Olson, M. S., Fankhauser, J. D., Piepenbring, M., & Schmitt, I. (2013). Host Genotype Shapes the Foliar Fungal Microbiome of Balsam Poplar (*Populus balsamifera*). *PLOS ONE*, *8*(1), e53987. https://doi.org/10.1371/journal.pone.0053987
- Banerjee, S., & van der Heijden, M. G. A. (2023). Soil microbiomes and one health. *Nature Reviews Microbiology*, 21(1), 6–20. https://doi.org/10.1038/s41579-022-00779-w
- Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V, Sirotkin, A. V, Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. *Journal of Computational Biology*, *19*(5), 455–477. https://doi.org/10.1089/cmb.2012.0021
- Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences, 115(25), 6506–6511. https://doi.org/10.1073/pnas.1711842115
- Barnard, R. L., Osborne, C. A., & Firestone, M. K. (2013). Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. *The ISME Journal*, 7(11), 2229–2241.

https://doi.org/10.1038/ismej.2013.104

- Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J.-P. (2014). Advances in plant growthpromoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). *Plant* and Soil, 378(1), 1–33. https://doi.org/10.1007/s11104-013-1956-x
- Bassler, B. L. (2002). Small Talk: Cell-to-Cell Communication in Bacteria. *Cell*, *109*(4), 421–424. https://doi.org/https://doi.org/10.1016/S0092-8674(02)00749-3
- Benito, P., Alonso-Vega, P., Aguado, C., Luján, R., Anzai, Y., Hirsch, A. M., & Trujillo, M. E. (2017). Monitoring the colonization and infection of legume nodules by *Micromonospora* in co-inoculation experiments with rhizobia. *Scientific Reports*, 7(1), 11051. https://doi.org/10.1038/s41598-017-11428-1
- Benito, P., Carro, L., Bacigalupe, R., Ortúzar, M., & Trujillo, M. E. (2022). From Roots to Leaves: The Capacity of *Micromonospora* to Colonize Different Legume Tissues. *Phytobiomes Journal*, 6(1), 35– 44. https://doi.org/10.1094/PBIOMES-02-21-0015-R
- Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 27(2), 573–580. https://doi.org/10.1093/nar/27.2.573
- Bérard, A., M, B. S., Kaisermann, A., & Renault, P. (2015). Soil microbial community responses to heat wave components: drought and high temperature. *Climate Research*, *66*(3), 243–264. https://www.int-res.com/abstracts/cr/v66/n3/p243-264/
- Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and
plant health. Trends Plant Science, 17(8), 478–486.
https://doi.org/https://doi.org/10.1016/j.tplants.2012.04.001
- Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014). The plant microbiome and its importance for plant and human health. *Frontiers in Microbiology* (Vol. 0). https://www.frontiersin.org/articles/10.3389/fmicb.2014.00491
- Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M.-C. C., Charles, T., Chen, X., Cocolin, L.,
 Eversole, K., Corral, G. H., Kazou, M., Kinkel, L., Lange, L., Lima, N., Loy, A., Macklin, J. A.,
 Maguin, E., Mauchline, T., McClure, R., ... Schloter, M. (2020). Microbiome definition re-visited:
 old concepts and new challenges. *Microbiome*, 8(1), 103. https://doi.org/10.1186/s40168-020-00875-0
- Berlanga-Clavero, M. V, Molina-Santiago, C., Caraballo-Rodríguez, A. M., Petras, D., Díaz-Martínez, L., Pérez-García, A., de Vicente, A., Carrión, V. J., Dorrestein, P. C., & Romero, D. (2022). Bacillus subtilis biofilm matrix components target seed oil bodies to promote growth and anti-fungal resistance in melon. Nature Microbiology, 7(7), 1001–1015. https://doi.org/10.1038/s41564-022-01134-8
- Besemer, J., Lomsadze, A., & Borodovsky, M. (2001). GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. *Nucleic Acids Research*, 29(12), 2607–2618. https://doi.org/10.1093/nar/29.12.2607
- Blake, C., Christensen, M. N., & Kovács, Á. T. (2020). Molecular Aspects of Plant Growth Promotion and Protection by Bacillus subtilis. Molecular Plant-Microbe Interactions®, 34(1), 15–25.

https://doi.org/10.1094/MPMI-08-20-0225-CR

- Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M., & Vorholt, J. A. (2014). A Synthetic Community Approach Reveals Plant Genotypes Affecting the Phyllosphere Microbiota. *PLOS Genetics*, *10*(4), e1004283. https://doi.org/10.1371/journal.pgen.1004283
- Bodenhausen, N., Horton, M. W., & Bergelson, J. (2013). Bacterial Communities Associated with the Leaves and the Roots of *Arabidopsis thaliana*. *PLOS ONE*, *8*(2), e56329. https://doi.org/10.1371/journal.pone.0056329
- Bonito, G., Reynolds, H., Robeson II, M. S., Nelson, J., Hodkinson, B. P., Tuskan, G., Schadt, C. W.,
 & Vilgalys, R. (2014). Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. *Molecular Ecology*, 23(13), 3356–3370. https://doi.org/https://doi.org/10.1111/mec.12821
- Boot, C. M., Schaeffer, S. M., & Schimel, J. P. (2013). Static osmolyte concentrations in microbial biomass during seasonal drought in a California grassland. Soil Biology and Biochemistry, 57, 356– 361. https://doi.org/https://doi.org/10.1016/j.soilbio.2012.09.005
- Bouffaud, M.-L., Poirier, M.-A., Muller, D., & Moënne-Loccoz, Y. (2014). Root microbiome relates to plant host evolution in maize and other *Poaceae*. *Environmental Microbiology*, *16*(9), 2804–2814. https://doi.org/https://doi.org/10.1111/1462-2920.12442
- Boukhatem, Z. F., Merabet, C., & Tsaki, H. (2022). Plant Growth Promoting *Actinobacteria*, the Most Promising Candidates as Bioinoculants? *Frontiers in Agronomy* (Vol. 4). https://www.frontiersin.org/articles/10.3389/fagro.2022.849911
- Boulard, L., Dierkes, G., Schlüsener, M. P., Wick, A., Koschorreck, J., & Ternes, T. A. (2020). Spatial distribution and temporal trends of pharmaceuticals sorbed to suspended particulate matter of German rivers. Water Research, 171, 115366. https://doi.org/https://doi.org/10.1016/j.watres.2019.115366
- Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59(1). https://journals.lww.com/soilsci/Fulltext/1945/01000/DETERMINATION_OF_TOTAL,_ORGANIC,_A ND_AVAILABLE.6.aspx
- Breitkreuz, C., Buscot, F., Tarkka, M., & Reitz, T. (2020). Shifts Between and Among Populations of Wheat Rhizosphere Pseudomonas, Streptomyces and Phyllobacterium Suggest Consistent Phosphate Mobilization at Different Wheat Growth Stages Under Abiotic Stress. Frontiers in Microbiology (Vol. 10). https://www.frontiersin.org/articles/10.3389/fmicb.2019.03109
- Bremner, J., & Mulvaney, C. (1982). Total Nitrogen. Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties., 621–622.
- Brevik, E. C., Slaughter, L., Singh, B. R., Steffan, J. J., Collier, D., Barnhart, P., & Pereira, P. (2020). Soil and Human Health: Current Status and Future Needs. *Air, Soil and Water Research, 13,* 1178622120934441. https://doi.org/10.1177/1178622120934441
- Broughton, W. J., & Dilworth, M. J. (1971). Control of leghaemoglobin synthesis in snake beans. Biochemical Journal, 125(4), 1075–1080. https://doi.org/10.1042/bj1251075

- Brown, S. P., Grillo, M. A., Podowski, J. C., & Heath, K. D. (2020). Soil origin and plant genotype structure distinct microbiome compartments in the model legume *Medicago truncatula*. *Microbiome*, 8(1), 139. https://doi.org/10.1186/s40168-020-00915-9
- Brul, S., Kallemeijn, W., & Smits, G. (2023). Functional genomics for food microbiology: molecular mechanisms of weak organic acid preservative adaptation in yeast. In CABI Reviews. CABI Reviews. https://doi.org/10.1079/PAVSNNR20083005
- Brundrett, M. C., & Tedersoo, L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. *New Phytologist*, 220(4), 1108–1115. https://doi.org/https://doi.org/10.1111/nph.14976
- Buée, M., De Boer, W., Martin, F., van Overbeek, L., & Jurkevitch, E. (2009). The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. *Plant and Soil*, 321(1), 189–212. https://doi.org/10.1007/s11104-009-9991-3
- Bulgarelli, D., Garrido-Oter, R., Münch, P. C., Weiman, A., Dröge, J., Pan, Y., McHardy, A. C., & Schulze-Lefert, P. (2015). Structure and Function of the Bacterial Root Microbiota in Wild and Domesticated Barley. *Cell Host & Microbe*, *17*(3), 392–403. https://doi.org/https://doi.org/10.1016/j.chom.2015.01.011
- Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Gloeckner, F. O., Amann, R., Eickhorst, T., & Schulze-Lefert, P. (2012). Revealing structure and assembly cues for *Arabidopsis* root-inhabiting bacterial microbiota. *Nature*, 488(7409), 91–95. https://doi.org/10.1038/nature11336
- Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and Functions of the Bacterial Microbiota of Plants. *Annual Review of Plant Biology*, 64(1), 807–838. https://doi.org/10.1146/annurev-arplant-050312-120106
- Cao, L., Gao, Y., Yu, J., Niu, S., Zeng, J., Yao, Q., Wang, X., Bu, Z., Xu, T., Liu, X., & Zhu, Y. (2021). Streptomyces hygroscopicus OsiSh-2-induced mitigation of Fe deficiency in rice plants. Plant Physiology and Biochemistry, 158, 275–283. https://doi.org/https://doi.org/10.1016/j.plaphy.2020.11.013
- Cardinale, M., Grube, M., Erlacher, A., Quehenberger, J., & Berg, G. (2015). Bacterial networks and cooccurrence relationships in the lettuce root microbiota. *Environmental Microbiology*, *17*(1), 239–252. https://doi.org/https://doi.org/10.1111/1462-2920.12686
- Carrión, V. J., Perez-Jaramillo, J., Cordovez, V., Tracanna, V., de Hollander, M., Ruiz-Buck, D., Mendes, L. W., van Ijcken, W. F. J., Gomez-Exposito, R., Elsayed, S. S., Mohanraju, P., Arifah, A., van der Oost, J., Paulson, J. N., Mendes, R., van Wezel, G. P., Medema, M. H., & Raaijmakers, J. M. (2019). Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. *Science*, *366*(6465), 606–612. https://doi.org/10.1126/science.aaw9285
- Carro, L., Pukall, R., Sproër, C., Kroppenstedt, R. M., & Trujillo, M. E. (2012). *Micromonospora cremea* sp. nov. and *Micromonospora zamorensis* sp. nov., isolated from the rhizosphere of *Pisum sativum*. *International Journal of Systematic and Evolutionary Microbiology*. https://doi.org/10.1099/ijs.0.038695-0

- Carro, L., Riesco, R., Spröer, C., & Trujillo, M. E. (2016). *Micromonospora luteifusca* sp. nov. isolated from cultivated *Pisum sativum*. *Systematic and Applied Microbiology*, *39*(4), 237–242. https://doi.org/https://doi.org/10.1016/j.syapm.2016.04.003
- Cavicchioli, R., Ripple, W. J., Timmis, K. N., Azam, F., Bakken, L. R., Baylis, M., Behrenfeld, M. J., Boetius, A., Boyd, P. W., Classen, A. T., Crowther, T. W., Danovaro, R., Foreman, C. M., Huisman, J., Hutchins, D. A., Jansson, J. K., Karl, D. M., Koskella, B., Mark Welch, D. B., ... Webster, N. S. (2019). Scientists' warning to humanity: microorganisms and climate change. *Nature Reviews Microbiology*, *17*(9), 569–586. https://doi.org/10.1038/s41579-019-0222-5
- Chaparro, J. M., Badri, D. V., & Vivanco, J. M. (2014). Rhizosphere microbiome assemblage is affected by plant development. *ISME Journal*, 8(4), 790–803. https://doi.org/10.1038/ismej.2013.196
- Chen, T., Nomura, K., Wang, X., Sohrabi, R., Xu, J., Yao, L., Paasch, B. C., Ma, L., Kremer, J., Cheng,
 Y., Zhang, L., Wang, N., Wang, E., Xin, X.-F., & He, S. Y. (2020). A plant genetic network for
 preventing dysbiosis in the phyllosphere. *Nature*, 580(7805), 653–657.
 https://doi.org/10.1038/s41586-020-2185-0
- Cheng, H., Zhang, D., Huang, B., Song, Z., Ren, L., Hao, B., Liu, J., Zhu, J., Fang, W., Yan, D., Li, Y., Wang, Q., & Cao, A. (2020). Organic fertilizer improves soil fertility and restores the bacterial community after 1,3-dichloropropene fumigation. *Science of The Total Environment*, 738, 140345. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140345
- Chowdhury, T. R., Lee, J. Y., Bottos, E. M., Brislawn, C. J., White III, R. A., Bramer, L. M., ... & Jansson, J. K. (2019). Metaphenomic Responses of a Native Prairie Soil Microbiome to Moisture Perturbations. *MSystems*, 4(4), e00061-19. https://doi.org/10.1128/mSystems.00061-19
- Clark, M. A., Domingo, N. G. G., Colgan, K., Thakrar, S. K., Tilman, D., Lynch, J., Azevedo, I. L., & Hill, J. D. (2020). Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. *Science*, *370*(6517), 705–708. https://doi.org/10.1126/science.aba7357
- Clay, J. (2011). Freeze the footprint of food. Nature, 475(7356), 287-289.
- Cobo-Díaz, J. F., Baroncelli, R., Le Floch, G., & Picot, A. (2019). Combined Metabarcoding and Cooccurrence Network Analysis to Profile the Bacterial, Fungal and *Fusarium* Communities and Their Interactions in Maize Stalks. *Frontiers in Microbiology* (Vol. 10). https://www.frontiersin.org/articles/10.3389/fmicb.2019.00261
- Coince, A., Cordier, T., Lengellé, J., Defossez, E., Vacher, C., Robin, C., Buée, M., & Marçais, B. (2014). Leaf and Root-Associated Fungal Assemblages Do Not Follow Similar Elevational Diversity Patterns. *PLOS ONE*, *9*(6), e100668. https://doi.org/10.1371/journal.pone.0100668
- Coleman-Derr, D., Desgarennes, D., Fonseca-Garcia, C., Gross, S., Clingenpeel, S., Woyke, T., North, G., Visel, A., Partida-Martinez, L. P., & Tringe, S. G. (2016). Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytologist, 209(2), 798–811. https://doi.org/https://doi.org/10.1111/nph.13697
- Compant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. *Journal of Advanced Research*, *19*, 29–37. https://doi.org/https://doi.org/10.1016/j.jare.2019.03.004

- Cook, B. I., Ault, T. R., & Smerdon, J. E. (2015). Unprecedented 21st century drought risk in the American Southwest and Central Plains. *Science Advances*, 1(1), e1400082. https://doi.org/10.1126/sciadv.1400082
- Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W., & Guttman, D. S. (2015). Seasonal Community Succession of the Phyllosphere Microbiome. *Molecular Plant-Microbe Interactions®*, 28(3), 274–285. https://doi.org/10.1094/MPMI-10-14-0331-FI
- Cordier, T., Robin, C., Capdevielle, X., Fabreguettes, O., Desprez-Loustau, M.-L., & Vacher, C. (2012). The composition of phyllosphere fungal assemblages of European beech (*Fagus sylvatica*) varies significantly along an elevation gradient. *New Phytologist*, 196(2), 510–519. https://doi.org/https://doi.org/10.1111/j.1469-8137.2012.04284.x
- Coyte, K. Z., & Rakoff-Nahoum, S. (2019). Understanding Competition and Cooperation within the Mammalian Gut Microbiome. *Current Biology*, 29(11), R538–R544. https://doi.org/https://doi.org/10.1016/j.cub.2019.04.017
- Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F. N., & Leip, A. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. *Nature Food*, 2(3), 198– 209. https://doi.org/10.1038/s43016-021-00225-9
- Cross, T. (1968). Thermophilic actinomycetes. Journal of Applied Bacteriology, 31(1), 36–53.
- Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. *InterJournal, Complex Systems*, 1695(5), 1–9.
- Cui, Z., Steven, B., & Zeng, Q. (2021). Complete Genome Sequences of Curtobacterium, Pantoea, Erwinia, and Two Pseudomonas sp. Strains, Isolated from Apple Flower Stigmas from Connecticut, USA. Microbiology Resource Announcements, 10(19), 10.1128/mra.00154-21. https://doi.org/10.1128/mra.00154-21
- Dai, Y., Li, X.Y., Wang, Y., Li, C.X., He, Y., Lin, H.H., Wang, T., & Ma, X.R. (2020). The differences and overlaps in the seed-resident microbiome of four Leguminous and three Gramineous forages. *Microbial Biotechnology*, 13(5), 1461–1476. https://doi.org/https://doi.org/10.1111/1751-7915.13618
- Davison, J., Öpik, M., Daniell, T. J., Moora, M., & Zobel, M. (2011). Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. *FEMS Microbiology Ecology*, 78(1), 103– 115. https://doi.org/10.1111/j.1574-6941.2011.01103.x
- Dawson, W., Hör, J., Egert, M., van Kleunen, M., & Pester, M. (2017). A Small Number of Lowabundance Bacteria Dominate Plant Species-specific Responses during Rhizosphere Colonization. *Frontiers in Microbiology* (Vol. 8). https://www.frontiersin.org/articles/10.3389/fmicb.2017.00975
- de Menezes, A. B., Lockhart, R. J., Cox, M. J., Allison, H. E., & McCarthy, A. J. (2008). Cellulose Degradation by Micromonosporas Recovered from Freshwater Lakes and Classification of These Actinomycetes by DNA Gyrase B Gene Sequencing. *Applied and Environmental Microbiology*, 74(22), 7080–7084. https://doi.org/10.1128/AEM.01092-08
- De Meyer, S. E., Coorevits, A., & Willems, A. (2012). Tardiphaga robiniae gen. nov., sp. nov., a new
genus in the family Bradyrhizobiaceae isolated from Robinia pseudoacacia in Flanders (Belgium).
Systematic and Applied Microbiology, 35(4), 205–214.

https://doi.org/https://doi.org/10.1016/j.syapm.2012.02.002

- de Souza, R. S. C., Armanhi, J. S. L., & Arruda, P. (2020). From Microbiome to Traits: Designing Synthetic Microbial Communities for Improved Crop Resiliency. *Frontiers in Plant Science* (Vol. 11). https://www.frontiersin.org/articles/10.3389/fpls.2020.01179
- de Souza, R. S. C., Okura, V. K., Armanhi, J. S. L., Jorrín, B., Lozano, N., da Silva, M. J., González-Guerrero, M., de Araújo, L. M., Verza, N. C., Bagheri, H. C., Imperial, J., & Arruda, P. (2016). Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. *Scientific Reports*, 6(1), 28774. https://doi.org/10.1038/srep28774
- DeAngelis, K. M., Brodie, E. L., DeSantis, T. Z., Andersen, G. L., Lindow, S. E., & Firestone, M. K. (2009). Selective progressive response of soil microbial community to wild oat roots. *The ISME Journal*, 3(2), 168–178. https://doi.org/10.1038/ismej.2008.103
- Delaux, P.-M., & Schornack, S. (2021). Plant evolution driven by interactions with symbiotic and pathogenic microbes. *Science*, *371*(6531), eaba6605. https://doi.org/10.1126/science.aba6605
- Dessaux, Y., & Faure, D. (2018). Niche Construction and Exploitation by Agrobacterium: How to Survive and Face Competition in Soil and Plant Habitats. *Agrobacterium Biology: From Basic Science to Biotechnology* (S. B. Gelvin (ed.); pp. 55–86). Springer International Publishing. https://doi.org/10.1007/82_2018_83
- Dombrowski, N., Schlaeppi, K., Agler, M. T., Hacquard, S., Kemen, E., Garrido-Oter, R., Wunder, J., Coupland, G., & Schulze-Lefert, P. (2017). Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time. *The ISME Journal*, 11(1), 43–55. https://doi.org/10.1038/ismej.2016.109
- Donn, S., Kirkegaard, J. A., Perera, G., Richardson, A. E., & Watt, M. (2015). Evolution of bacterial communities in the wheat crop rhizosphere. *Environmental Microbiology*, 17(3), 610–621. https://doi.org/https://doi.org/10.1111/1462-2920.12452
- Durán, P., Ellis, T. J., Thiergart, T., Ågren, J., & Hacquard, S. (2022). Climate drives rhizosphere microbiome variation and divergent selection between geographically distant *Arabidopsis* populations. *New Phytologist*, 236(2), 608–621. https://doi.org/https://doi.org/10.1111/nph.18357
- Durán, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., & Hacquard, S. (2018). Microbial Interkingdom Interactions in Roots Promote *Arabidopsis* Survival. *Cell*, 175(4), 973-983.e14. https://doi.org/https://doi.org/10.1016/j.cell.2018.10.020
- Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. *Bioinformatics*, *26*(19), 2460–2461. https://doi.org/10.1093/bioinformatics/btq461
- Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., Eisen, J.
 A., & Sundaresan, V. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. *Proceedings of the National Academy of Sciences*, *112*(8), E911–E920. https://doi.org/10.1073/pnas.1414592112
- Ellis, T. J., Postma, F. M., Oakley, C. G., & Ågren, J. (2021). Life-history trade-offs and the genetic basis of fitness in *Arabidopsis thaliana*. *Molecular Ecology*, *30*(12), 2846–2858. https://doi.org/https://doi.org/10.1111/mec.15941

- **European Commission. (2020).** A New Circular Economy Action Plan Annex. *Communication from the European Commission*, 1–19. https://www.un.org/sustainabledevelopment/sustainable-consumption-production/
- Ferchichi, N., Toukabri, W., Vrhovsek, U., Nouairi, I., Angeli, A., Masuero, D., Mhamdi, R., & Trabelsi,
 D. (2021). Proximate composition, lipid and phenolic profiles, and antioxidant activity of different ecotypes of *Lupinus albus*, *Lupinus luteus* and *Lupinus angustifolius*. *Journal of Food Measurement and Characterization*, *15*(2), 1241–1257. https://doi.org/10.1007/s11694-020-00722-8
- Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. *Nature Reviews Microbiology*, *15*(10), 579–590. https://doi.org/10.1038/nrmicro.2017.87
- Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103(3), 626 LP – 631. https://doi.org/10.1073/pnas.0507535103
- Fierer, N., & Lennon, J. T. (2011). The generation and maintenance of diversity in microbial communities. *American Journal of Botany*, 98(3), 439–448. https://doi.org/https://doi.org/10.3732/ajb.1000498
- Finkel, O. M., Castrillo, G., Herrera Paredes, S., Salas González, I., & Dangl, J. L. (2017). Understanding and exploiting plant beneficial microbes. *Current Opinion in Plant Biology*, 38, 155– 163. https://doi.org/https://doi.org/10.1016/j.pbi.2017.04.018
- Finkel, O. M., Salas-González, I., Castrillo, G., Conway, J. M., Law, T. F., Teixeira, P. J. P. L., Wilson,
 E. D., Fitzpatrick, C. R., Jones, C. D., & Dangl, J. L. (2020). A single bacterial genus maintains root growth in a complex microbiome. *Nature*, 587(7832), 103–108. https://doi.org/10.1038/s41586-020-2778-7
- Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. *Frontiers in Plant Science* (Vol. 6). https://www.frontiersin.org/articles/10.3389/fpls.2015.00978
- Fitzpatrick, C. R., Copeland, J., Wang, P. W., Guttman, D. S., Kotanen, P. M., & Johnson, M. T. J. (2018). Assembly and ecological function of the root microbiome across angiosperm plant species. *Proceedings of the National Academy of Sciences*, *115*(6), E1157 LP-E1165. https://doi.org/10.1073/pnas.1717617115
- Fitzpatrick, C. R., Mustafa, Z., & Viliunas, J. (2019). Soil microbes alter plant fitness under competition and drought. *Journal of Evolutionary Biology*, 32(5), 438–450. https://doi.org/https://doi.org/10.1111/jeb.13426
- Flemming, H.-C., & Wuertz, S. (2019). Bacteria and archaea on Earth and their abundance in biofilms. Nature Reviews Microbiology, 17(4), 247–260. https://doi.org/10.1038/s41579-019-0158-9
- Foster, K. R., & Bell, T. (2012). Competition, Not Cooperation, Dominates Interactions among Culturable

 Microbial
 Species.
 Current
 Biology,
 22(19),
 1845–1850.

 https://doi.org/https://doi.org/10.1016/j.cub.2012.08.005
 Species.
 Species.
 Species.
 Species.
- Freitas, M. A., Medeiros, F. H. V, Carvalho, S. P., Guilherme, L. R. G., Teixeira, W. D., Zhang, H., & Paré, P. W. (2015). Augmenting iron accumulation in cassava by the beneficial soil bacterium

Bacillus subtilis (GBO3). Frontiers in Plant Science (Vol. 6). https://www.frontiersin.org/articles/10.3389/fpls.2015.00596

- Gao, C., Xu, L., Montoya, L., Madera, M., Hollingsworth, J., Chen, L., Purdom, E., Singan, V., Vogel, J., Hutmacher, R. B., Dahlberg, J. A., Coleman-Derr, D., Lemaux, P. G., & Taylor, J. W. (2022).
 Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities. *Nature Communications*, *13*(1), 3867. https://doi.org/10.1038/s41467-022-31343-y
- Ge, A.-H., Liang, Z.-H., Xiao, J.-L., Zhang, Y., Zeng, Q., Xiong, C., Han, L.-L., Wang, J.-T., & Zhang, L.-M. (2021). Microbial assembly and association network in watermelon rhizosphere after soil fumigation for *Fusarium* wilt control. *Agriculture, Ecosystems & Environment, 312*, 107336. https://doi.org/https://doi.org/10.1016/j.agee.2021.107336
- Gedney, N., Cox, P. M., & Huntingford, C. (2004). Climate feedback from wetland methane emissions. Geophysical Research Letters, 31(20). https://doi.org/https://doi.org/10.1029/2004GL020919
- Girard, L., Höfte, M., & Mot, R. De. (2020). Lipopeptide families at the interface between pathogenic and beneficial *Pseudomonas*-plant interactions. *Critical Reviews in Microbiology*, 46(4), 397–419. https://doi.org/10.1080/1040841X.2020.1794790
- Goberna, M., & Verdú, M. (2022). Cautionary notes on the use of co-occurrence networks in soil ecology.

 Soil
 Biology
 and
 Biochemistry,
 166,
 108534.

 https://doi.org/https://doi.org/10.1016/j.soilbio.2021.108534
- Gomez, M. Y., Schroeder, M. M., Chieb, M., McLain, N. K., & Gachomo, E. W. (2023). Bradyrhizobium japonicum IRAT FA3 promotes salt tolerance through jasmonic acid priming in Arabidopsis thaliana. BMC Plant Biology, 23(1), 60. https://doi.org/10.1186/s12870-022-03977-z
- Gonzalez, A., King, A., Robeson II, M. S., Song, S., Shade, A., Metcalf, J. L., & Knight, R. (2012). Characterizing microbial communities through space and time. *Current Opinion in Biotechnology*, 23(3), 431–436. https://doi.org/https://doi.org/10.1016/j.copbio.2011.11.017
- Gottel, N. R., Castro, H. F., Kerley, M., Yang, Z., Pelletier, D. A., Podar, M., Karpinets, T., Uberbacher,
 E., Tuskan, G. A., Vilgalys, R., Doktycz, M. J., & Schadt, C. W. (2011). Distinct Microbial Communities within the Endosphere and Rhizosphere of Populus deltoides Roots across Contrasting Soil Types. *Applied and Environmental Microbiology*, 77(17), 5934–5944. https://doi.org/10.1128/AEM.05255-11
- Grissa, I., Vergnaud, G., & Pourcel, C. (2007). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. *Nucleic Acids Research*, 35(suppl_2), W52–W57. https://doi.org/10.1093/nar/gkm360
- Gu, Z. (2022). Complex heatmap visualization. Imeta, 1(3), e43.
- Guerra, C. A., Bardgett, R. D., Caon, L., Crowther, T. W., Delgado-Baquerizo, M., Montanarella, L., Navarro, L. M., Orgiazzi, A., Singh, B. K., Tedersoo, L., Vargas-Rojas, R., Briones, M. J. I., Buscot, F., Cameron, E. K., Cesarz, S., Chatzinotas, A., Cowan, D. A., Djukic, I., van den Hoogen, J., ... Eisenhauer, N. (2021). Tracking, targeting, and conserving soil biodiversity. *Science*, 371(6526), 239–241. https://doi.org/10.1126/science.abd7926

- Guglielmetti, S., Basilico, R., Taverniti, V., Arioli, S., Piagnani, C., & Bernacchi, A. (2013). Luteibacter rhizovicinus MIMR1 promotes root development in barley (Hordeum vulgare L.) under laboratory conditions. World Journal of Microbiology and Biotechnology, 29(11), 2025–2032. https://doi.org/10.1007/s11274-013-1365-6
- Guo, X., Feng, J., Shi, Z., Zhou, X., Yuan, M., Tao, X., Hale, L., Yuan, T., Wang, J., Qin, Y., Zhou, A., Fu, Y., Wu, L., He, Z., Van Nostrand, J. D., Ning, D., Liu, X., Luo, Y., Tiedje, J. M., ... Zhou, J. (2018). Climate warming leads to divergent succession of grassland microbial communities. *Nature Climate Change*, 8(9), 813–818. https://doi.org/10.1038/s41558-018-0254-2
- Gupta, P., & Diwan, B. (2017). Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies. *Biotechnology Reports*, 13, 58–71. https://doi.org/https://doi.org/10.1016/j.btre.2016.12.006
- Gupta, R. S., Patel, S., Saini, N., & Chen, S. (2020). Robust demarcation of 17 distinct *Bacillus* species clades, proposed as novel *Bacillaceae* genera, by phylogenomics and comparative genomic analyses: description of *Robertmurraya kyonggiensis* sp. nov. and proposal for an emended genus *Bacillus* limiting it only to the members of the *Subtilis* and *Cereus* clades of species. *International Journal of Systematic and Evolutionary Microbiology*, 70(11), 5753–5798. https://doi.org/10.1099/ijsem.0.004475
- Hacquard, S. (2016). Disentangling the factors shaping microbiota composition across the plant holobiont. *New Phytologist*, 209(2), 454–457. https://doi.org/https://doi.org/10.1111/nph.13760
- Hacquard, S., Garrido-Oter, R., González, A., Spaepen, S., Ackermann, G., Lebeis, S., McHardy, A.
 C., Dangl, J. L., Knight, R., Ley, R., & Schulze-Lefert, P. (2015). Microbiota and Host Nutrition across Plant and Animal Kingdoms. *Cell Host & Microbe*, 17(5), 603–616. https://doi.org/https://doi.org/10.1016/j.chom.2015.04.009
- Hacquard, S., Wang, E., Slater, H., & Martin, F. (2022). Impact of global change on the plant microbiome. Special Issue, 234(6), 1907–1909.
- Haney, C. H., Samuel, B. S., Bush, J., & Ausubel, F. M. (2015). Associations with rhizosphere bacteria can confer an adaptive advantage to plants. *Nature Plants*, 1(6), 15051. https://doi.org/10.1038/nplants.2015.51
- Hang, X., Meng, L., Ou, Y., Shao, C., Xiong, W., Zhang, N., Liu, H., Li, R., Shen, Q., & Kowalchuk, G.
 A. (2022). *Trichoderma*-amended biofertilizer stimulates soil resident *Aspergillus* population for joint plant growth promotion. *Npj Biofilms and Microbiomes*, 8(1), 57. https://doi.org/10.1038/s41522-022-00321-z
- Haque, M. A., Hossain, M. S., Ahmad, I., Akbor, M. A., Rahman, A., Manir, M. S., Patel, H. M., & Cho,
 K. M. (2022). Unveiling chlorpyrifos mineralizing and tomato plant-growth activities of *Enterobacter* sp. strain HSTU-ASh6 using biochemical tests, field experiments, genomics, and in silico analyses.
 Frontiers in Microbiology (Vol. 13). https://www.frontiersin.org/articles/10.3389/fmicb.2022.1060554
- Hardoim, P. R., van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., Döring,
 M., & Sessitsch, A. (2015). The Hidden World within Plants: Ecological and Evolutionary
 Considerations for Defining Functioning of Microbial Endophytes. *Microbiology and Molecular Biology Reviews*, 79(3), 293–320. https://doi.org/10.1128/MMBR.00050-14

- Hart, S. C., DeLuca, T. H., Newman, G. S., MacKenzie, M. D., & Boyle, S. I. (2005). Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. *Forest Ecology and Management*, 220(1), 166–184. https://doi.org/https://doi.org/10.1016/j.foreco.2005.08.012
- Hartman, K., van der Heijden, M. G. A., Roussely-Provent, V., Walser, J.-C., & Schlaeppi, K. (2017). Deciphering composition and function of the root microbiome of a legume plant. *Microbiome*, *5*(1), 2. https://doi.org/10.1186/s40168-016-0220-z
- Hassani, M. A., Durán, P., & Hacquard, S. (2018). Microbial interactions within the plant holobiont. *Microbiome*, 6(1), 58. https://doi.org/10.1186/s40168-018-0445-0
- Häusling, M. (2011). REPORT The EU protein deficit: what solution for a long-standing problem? A7-0026/2011. http://www.europarl.europa.eu/sides/getDoc.do?type=REPORT&reference=A7-2011-0026&language=EN#title4
- Hayden, H. L., Mele, P. M., Bougoure, D. S., Allan, C. Y., Norng, S., Piceno, Y. M., Brodie, E. L., DeSantis, T. Z., Andersen, G. L., Williams, A. L., & Hovenden, M. J. (2012). Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO₂ and warming in an Australian native grassland soil. *Environmental Microbiology*, 14(12), 3081–3096. https://doi.org/https://doi.org/10.1111/j.1462-2920.2012.02855.x
- Heimann, M., & Reichstein, M. (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks. *Nature*, 451(7176), 289–292. https://doi.org/10.1038/nature06591
- Helfrich, E. J. N., Vogel, C. M., Ueoka, R., Schäfer, M., Ryffel, F., Müller, D. B., Probst, S., Kreuzer, M., Piel, J., & Vorholt, J. A. (2018). Bipartite interactions, antibiotic production and biosynthetic potential of the *Arabidopsis* leaf microbiome. *Nature Microbiology*, 3(8), 909–919. https://doi.org/10.1038/s41564-018-0200-0
- Hennessy, K., Lawrence, J., & Mackey, B. (2022). IPCC sixth assessment report (AR6): climate change 2022-impacts, adaptation and vulnerability: regional factsheet Australasia.
- Herpell, J. B., Alickovic, A., Diallo, B., Schindler, F., & Weckwerth, W. (2023). Phyllosphere symbiont promotes plant growth through ACC deaminase production. *The ISME Journal*. https://doi.org/10.1038/s41396-023-01428-7
- Herrero, M., Thornton, P. K., Mason-D'Croz, D., Palmer, J., Benton, T. G., Bodirsky, B. L., Bogard, J. R., Hall, A., Lee, B., Nyborg, K., Pradhan, P., Bonnett, G. D., Bryan, B. A., Campbell, B. M., Christensen, S., Clark, M., Cook, M. T., de Boer, I. J. M., Downs, C., ... West, P. C. (2020). Innovation can accelerate the transition towards a sustainable food system. *Nature Food*, *1*(5), 266–272. https://doi.org/10.1038/s43016-020-0074-1
- Herrero, M., Thornton, P. K., Mason-D'Croz, D., Palmer, J., Bodirsky, B. L., Pradhan, P., Barrett, C. B., Benton, T. G., Hall, A., Pikaar, I., Bogard, J. R., Bonnett, G. D., Bryan, B. A., Campbell, B. M., Christensen, S., Clark, M., Fanzo, J., Godde, C. M., Jarvis, A., ... Rockström, J. (2021). Articulating the effect of food systems innovation on the Sustainable Development Goals. *The Lancet Planetary Health*, *5*(1), e50–e62. https://doi.org/https://doi.org/10.1016/S2542-5196(20)30277-1
- Hestrin, R., Hammer, E. C., Mueller, C. W., & Lehmann, J. (2019). Synergies between mycorrhizal fungi

and soil microbial communities increase plant nitrogen acquisition. *Communications Biology*, 2(1), 233. https://doi.org/10.1038/s42003-019-0481-8

- Hifnawy, M. S., Fouda, M. M., Sayed, A. M., Mohammed, R., Hassan, H. M., AbouZid, S. F., Rateb, M.
 E., Keller, A., Adamek, M., Ziemert, N., & Abdelmohsen, U. R. (2020). The genus *Micromonospora* as a model microorganism for bioactive natural product discovery. *RSC Advances*, 10(35), 20939–20959. https://doi.org/10.1039/D0RA04025H
- Hinojosa, M. B., Parra, A., Laudicina, V. A., & Moreno, J. M. (2016). Post-fire soil functionality and microbial community structure in a Mediterranean shrubland subjected to experimental drought. *Science of The Total Environment*, 573, 1178–1189. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.03.117
- Hinsinger, P., Bengough, A. G., Vetterlein, D., & Young, I. M. (2009). Rhizosphere: biophysics, biogeochemistry and ecological relevance. *Plant and Soil*, 321(1), 117–152. https://doi.org/10.1007/s11104-008-9885-9
- Horton, M. W., Bodenhausen, N., Beilsmith, K., Meng, D., Muegge, B. D., Subramanian, S., Vetter, M.
 M., Vilhjálmsson, B. J., Nordborg, M., Gordon, J. I., & Bergelson, J. (2014). Genome-wide association study of *Arabidopsis thaliana* leaf microbial community. *Nature Communications*, 5(1), 5320. https://doi.org/10.1038/ncomms6320
- Hou, S., Thiergart, T., Vannier, N., Mesny, F., Ziegler, J., Pickel, B., & Hacquard, S. (2021). A microbiota-root-shoot circuit favours *Arabidopsis* growth over defence under suboptimal light. *Nature Plants*, 7(8), 1078–1092. https://doi.org/10.1038/s41477-021-00956-4
- Hsiao, W., Wan, I., Jones, S. J., & Brinkman, F. S. L. (2003). IslandPath: aiding detection of genomic islands in prokaryotes. *Bioinformatics*, 19(3), 418–420. https://doi.org/10.1093/bioinformatics/btg004
- Hsieh, T. F., Huang, H. C., & Conner, R. L. (2004). Bacterial wilt of bean: Current status and prospects. Recent Research Developments in Plant Science, 2, 181–206.
- Hu, Y., Li, J., Li, J., Zhang, F., Wang, J., Mo, M., & Liu, Y. (2019). Biocontrol efficacy of Pseudoxanthomonas japonensis against Meloidogyne incognita and its nematostatic metabolites. FEMS Microbiology Letters, 366(2), fny287. https://doi.org/10.1093/femsle/fny287
- Huang, J., Yu, H., Guan, X., Wang, G., & Guo, R. (2016). Accelerated dryland expansion under climate change. Nature Climate Change, 6(2), 166–171. https://doi.org/10.1038/nclimate2837
- Hubbard, C. J., Brock, M. T., van Diepen, L. T. A., Maignien, L., Ewers, B. E., & Weinig, C. (2018). The plant circadian clock influences rhizosphere community structure and function. *The ISME Journal*, 12(2), 400–410. https://doi.org/10.1038/ismej.2017.172
- Hudson, J. M. G., Henry, G. H. R., & Cornwell, W. K. (2011). Taller and larger: shifts in Arctic tundra leaf traits after 16 years of experimental warming. *Global Change Biology*, *17*(2), 1013–1021. https://doi.org/https://doi.org/10.1111/j.1365-2486.2010.02294.x
- Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D., Walter, M. C., Rattei, T., Mende, D. R., Sunagawa, S., Kuhn, M., Jensen, L. J., von Mering, C., & Bork, P. (2016). eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. *Nucleic Acids Research*, 44(D1), D286–D293. https://doi.org/10.1093/nar/gkv1248

- Hui, S., Minna, S., Jukka, P., Kajar, K., Frank, B., Tommaso, R., Ari, J., O., A. F., Jussi, H., & D., C. (2015). Fungal Community Shifts in Structure and Function across a Boreal Forest Fire Chronosequence. *Applied and Environmental Microbiology*, *81*(22), 7869–7880. https://doi.org/10.1128/AEM.02063-15
- Hung, S. H. W., Chiu, M. C., Huang, C. C., & Kuo, C. H. (2022). Complete Genome Sequence of *Curtobacterium* sp. C1, a Beneficial Endophyte with the Potential for In-Plant Salinity Stress Alleviation. *Molecular Plant-Microbe Interactions*®, 35(8), 731–735. https://doi.org/10.1094/MPMI-01-22-0027-A
- Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J. H., Chinwalla, A. T., & Giglio, M. (2012). Structure, function and diversity of the healthy human microbiome. *Nature*, 486(7402), 207.
- Hyatt, D., Chen, G.-L., LoCascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics*, *11*(1), 119. https://doi.org/10.1186/1471-2105-11-119
- Ichiwaki, S., Costa, A. C., Silva, E. G., Rada, L. R., Lima, F. R., Ortíz-Vera, M. P., Garrido, L. M., Sato,
 M. Z., Araújo, W. L., & Padilla, G. (2017). Genome Sequence of *Micromonospora* sp. NBS 11-29, an Antibiotic and Hydrolytic Enzyme Producer, Isolated from River Sediment in Brazil. *Genome Announcements*, 5(28), 10.1128/genomea.00552-17. https://doi.org/10.1128/genomea.00552-17
- Jansson, J. K., & Hofmockel, K. S. (2020). Soil microbiomes and climate change. *Nature Reviews Microbiology*, 18(1), 35–46. https://doi.org/10.1038/s41579-019-0265-7
- Jones, S. E., & Elliot, M. A. (2017). *Streptomyces* Exploration: Competition, Volatile Communication and New Bacterial Behaviours. *Trends in Microbiology*, 25(7), 522–531. https://doi.org/https://doi.org/10.1016/j.tim.2017.02.001
- Jumpponen, A., & Jones, K. L. (2009). Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate *Quercus macrocarpa* phyllosphere. *New Phytologist*, 184(2), 438–448. https://doi.org/https://doi.org/10.1111/j.1469-8137.2009.02990.x
- Kaiser, K., Wemheuer, B., Korolkow, V., Wemheuer, F., Nacke, H., Schöning, I., Schrumpf, M., & Daniel, R. (2016). Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. *Scientific Reports*, 6(1), 33696. https://doi.org/10.1038/srep33696
- Kakumanu, M. L., Cantrell, C. L., & Williams, M. A. (2013). Microbial community response to varying magnitudes of desiccation in soil: A test of the osmolyte accumulation hypothesis. Soil Biology and Biochemistry, 57, 644–653. https://doi.org/https://doi.org/10.1016/j.soilbio.2012.08.014
- Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2014). Data, information, knowledge and principle: back to metabolism in KEGG. *Nucleic Acids Research*, 42(D1), D199–D205. https://doi.org/10.1093/nar/gkt1076
- Karimi, B., Terrat, S., Dequiedt, S., Saby, N. P. A., Horrigue, W., Lelièvre, M., Nowak, V., Jolivet, C., Arrouays, D., Wincker, P., Cruaud, C., Bispo, A., Maron, P.-A., Bouré, N. C. P., & Ranjard, L. (2018). Biogeography of soil bacteria and archaea across France. *Science Advances*, 4(7), eaat1808. https://doi.org/10.1126/sciadv.aat1808
- Karkaria, B. D., Fedorec, A. J. H., & Barnes, C. P. (2021). Automated design of synthetic microbial

communities. Nature Communications, 12(1), 672. https://doi.org/10.1038/s41467-020-20756-2

- Kechid, M., Desbrosses, G., Gamet, L., Castaings, L., Varoquaux, F., Djekoun, A., & Touraine, B. (2022). Arabidopsis Growth-Promotion and Root Architecture Responses to the Beneficial Rhizobacterium Phyllobacterium brassicacearum Strain STM196 Are Independent of the Nitrate Assimilatory Pathway. Plants (Vol. 11, Issue 1). https://doi.org/10.3390/plants11010128
- Kembel, S. W., O'Connor, T. K., Arnold, H. K., Hubbell, S. P., Wright, S. J., & Green, J. L. (2014). Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. *Proceedings of the National Academy of Sciences*, 111(38), 13715–13720. https://doi.org/10.1073/pnas.1216057111
- Khan, M. K., Karnpanit, W., Nasar-Abbas, S. M., Huma, Z., & Jayasena, V. (2015). Phytochemical composition and bioactivities of lupin: a review. *International Journal of Food Science & Technology*, 50(9), 2004–2012. https://doi.org/https://doi.org/10.1111/ijfs.12796
- Kim, D. R., Cho, G., Jeon, C. W., Weller, D. M., Thomashow, L. S., Paulitz, T. C., & Kwak, Y. S. (2019). A mutualistic interaction between *Streptomyces* bacteria, strawberry plants and pollinating bees. *Nature Communications*, 10(1), 4802. https://doi.org/10.1038/s41467-019-12785-3
- Kim, J. M., Le, N. T., Chung, B. S., Park, J. H., Bae, J. W., Madsen, E. L., & Jeon, C. O. (2008). Influence of Soil Components on the Biodegradation of Benzene, Toluene, Ethylbenzene, and o-, m-, and p-Xylenes by the Newly Isolated Bacterium *Pseudoxanthomonas spadix* BD-a59. *Applied and Environmental Microbiology*, 74(23), 7313–7320. https://doi.org/10.1128/AEM.01695-08
- Knelman, J. E., Schmidt, S. K., Garayburu-Caruso, V., Kumar, S., & Graham, E. B. (2019). Multiple, Compounding Disturbances in a Forest Ecosystem: Fire Increases Susceptibility of Soil Edaphic Properties, Bacterial Community Structure, and Function to Change with Extreme Precipitation Event. *Soil Systems* (Vol. 3, Issue 2). https://doi.org/10.3390/soilsystems3020040
- Knight, R., Vrbanac, A., Taylor, B. C., Aksenov, A., Callewaert, C., Debelius, J., Gonzalez, A., Kosciolek, T., McCall, L.-I., McDonald, D., Melnik, A. V, Morton, J. T., Navas, J., Quinn, R. A., Sanders, J. G., Swafford, A. D., Thompson, L. R., Tripathi, A., Xu, Z. Z., ... Dorrestein, P. C. (2018). Best practices for analysing microbiomes. *Nature Reviews Microbiology*, *16*(7), 410–422. https://doi.org/10.1038/s41579-018-0029-9
- Kohajdova, Z., Karovicova, J., & Schmidt, S. (2011). Lupin composition and possible use in bakery a review. Czech Journal of Food Sciences, 29(3), 203–211. https://cjfs.agriculturejournals.cz/artkey/cjf-201103-0001.php
- Kong, Z., Hart, M., & Liu, H. (2018). Paving the Way From the Lab to the Field: Using Synthetic Microbial Consortia to Produce High-Quality Crops. *Frontiers in Plant Science* (Vol. 9). https://www.frontiersin.org/articles/10.3389/fpls.2018.01467
- Kour, D., Rana, K. L., Sheikh, I., Kumar, V., Yadav, A. N., Dhaliwal, H. S., & Saxena, A. K. (2020).
 Alleviation of Drought Stress and Plant Growth Promotion by *Pseudomonas libanensis* EU-LWNA-33, a Drought-Adaptive Phosphorus-Solubilizing Bacterium. *Proceedings of the National Academy of Sciences, India Section B: Biological Sciences*, *90*(4), 785–795. https://doi.org/10.1007/s40011-019-01151-4

- Kremer, J. M., Paasch, B. C., Rhodes, D., Thireault, C., Froehlich, J. E., Schulze-Lefert, P., Tiedje, J.
 M., & He, S. Y. (2018). FlowPot axenic plant growth system for microbiota research. *BioRxiv*, 254953.
- Kumawat, K. C., Singh, I., Nagpal, S., Sharma, P., Gupta, R. K., & Sirari, A. (2022). Co-inoculation of indigenous *Pseudomonas oryzihabitans* and *Bradyrhizobium* sp. modulates the growth, symbiotic efficacy, nutrient acquisition, and grain yield of soybean. *Pedosphere*, 32(3), 438–451. https://doi.org/https://doi.org/10.1016/S1002-0160(21)60085-1
- Kurtz, Z. D., Müller, C. L., Miraldi, E. R., Littman, D. R., Blaser, M. J., & Bonneau, R. A. (2015). Sparse and Compositionally Robust Inference of Microbial Ecological Networks. *PLOS Computational Biology*, 11(5), e1004226. https://doi.org/10.1371/journal.pcbi.1004226
- Küster, E., & Williams, S. T. (1964). Selection of Media for Isolation of Streptomycetes. Nature, 202(4935), 928–929. https://doi.org/10.1038/202928a0
- Kuzyakov, Y., & Blagodatskaya, E. (2015).Microbial hotspots and hot moments in soil: Concept &
review.review.SoilBiologyandBiochemistry,83,184–199.https://doi.org/https://doi.org/10.1016/j.soilbio.2015.01.025
- Labeda, D. P. (2015). Culture Collections: An Essential Resource for Microbiology. Bergey's Manual of Systematics of Archaea and Bacteria (pp. 1–5). https://doi.org/https://doi.org/10.1002/9781118960608.bm00007
- Langley, J. A., & Hungate, B. A. (2014). Plant community feedbacks and long-term ecosystem responses to multi-factored global change. AoB PLANTS, 6. https://doi.org/10.1093/aobpla/plu035
- Lê Van, A., Quaiser, A., Duhamel, M., Michon-Coudouel, S., Dufresne, A., & Vandenkoornhuyse, P.
 (2017). Ecophylogeny of the endospheric root fungal microbiome of co-occurring *Agrostis* stolonifera. PeerJ, 5, e3454.
- Lebeis, S. L., Paredes, S. H., Lundberg, D. S., Breakfield, N., Gehring, J., McDonald, M., Malfatti, S., Glavina del Rio, T., Jones, C. D., Tringe, S. G., & Dangl, J. L. (2015). Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. *Science*, 349(6250), 860–864. https://doi.org/10.1126/science.aaa8764
- Lebeis, S. L., Rott, M., Dangl, J. L., & Schulze-Lefert, P. (2012). Culturing a plant microbiome community at the cross-Rhodes. *New Phytologist*, *196*(2), 341–344. https://doi.org/https://doi.org/10.1111/j.1469-8137.2012.04336.x
- LeBlanc, N. (2022). Bacteria in the genus *Streptomyces* are effective biological control agents for management of fungal plant pathogens: a meta-analysis. *BioControl*, 67(1), 111–121. https://doi.org/10.1007/s10526-021-10123-5
- Lee, K. E., Adhikari, A., Kang, S. M., You, Y. H., Joo, G. J., Kim, J. H., Kim, S. J., & Lee, I. J. (2019). Isolation and Characterization of the High Silicate and Phosphate Solubilizing Novel Strain *Enterobacter ludwigii* GAK2 that Promotes Growth in Rice Plants. In *Agronomy* (Vol. 9, Issue 3). https://doi.org/10.3390/agronomy9030144
- Lee, K. K., Kim, H., & Lee, Y. H. (2022). Cross-kingdom co-occurrence networks in the plant microbiome: Importance and ecological interpretations. *Frontiers in Microbiology* (Vol. 13).

https://www.frontiersin.org/articles/10.3389/fmicb.2022.953300

- Leff, J. W., Del Tredici, P., Friedman, W. E., & Fierer, N. (2015). Spatial structuring of bacterial communities within individual *Ginkgo biloba* trees. *Environmental Microbiology*, 17(7), 2352–2361. https://doi.org/https://doi.org/10.1111/1462-2920.12695
- Leimu, R., & Fischer, M. (2008). A Meta-Analysis of Local Adaptation in Plants. *PLOS ONE*, *3*(12), e4010. https://doi.org/10.1371/journal.pone.0004010
- Lekberg, Y., Schnoor, T., Kjøller, R., Gibbons, S. M., Hansen, L. H., Al-Soud, W. A., Sørensen, S. J.,
 & Rosendahl, S. (2012). 454-sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. *Journal of Ecology*, *100*(1), 151–160. https://doi.org/https://doi.org/10.1111/j.1365-2745.2011.01894.x
- Li, Q., Hou, Z., Zhou, D., Jia, M., Lu, S., & Yu, J. (2022). A plant growth-promoting bacteria *Priestia megaterium* JR48 induces plant resistance to the crucifer black rot via a salicylic acid-dependent signaling pathway. *Frontiers in Plant Science* (Vol. 13). https://www.frontiersin.org/articles/10.3389/fpls.2022.1046181
- Li, R., Li, Y., Kristiansen, K., & Wang, J. (2008). SOAP: short oligonucleotide alignment program. Bioinformatics, 24(5), 713–714. https://doi.org/10.1093/bioinformatics/btn025
- Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G., & Kristiansen, K. (2010). De novo assembly of human genomes with massively parallel short read sequencing. *Genome Research*, 20(2), 265–272.
- Lima-Cabello, E., Morales-Santana, S., León, J., Alché, V., Clemente, A., Alché, J. D., & Jimenez-Lopez, J. C. (2018). Narrow-leafed lupin (*Lupinus angustifolius* L.) seed β-conglutins reverse the induced insulin resistance in pancreatic cells. *Food* & *Function*, 9(10), 5176–5188. https://doi.org/10.1039/C8FO01164H
- Lin, S. H., & Liao, Y. C. (2013). CISA: Contig Integrator for Sequence Assembly of Bacterial Genomes. *PLOS ONE*, *8*(3), e60843. https://doi.org/10.1371/journal.pone.0060843
- Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the Phyllosphere. Applied and Environmental Microbiology, 69(4), 1875–1883. https://doi.org/10.1128/AEM.69.4.1875-1883.2003
- Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Science Society of America Journal, 42(3), 421–428. https://doi.org/https://doi.org/10.2136/sssaj1978.03615995004200030009x
- Liu, F., Hewezi, T., Lebeis, S. L., Pantalone, V., Grewal, P. S., & Staton, M. E. (2019). Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. *BMC Microbiology*, 19(1), 201. https://doi.org/10.1186/s12866-019-1572-x
- Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L., & Law, M. (2012). Comparison of Next-Generation Sequencing Systems. *Journal of Biomedicine and Biotechnology*, 2012, 251364. https://doi.org/10.1155/2012/251364
- Liu, Y., Jiang, X., Guan, D., Zhou, W., Ma, M., Zhao, B., Cao, F., Li, L., & Li, J. (2017). Transcriptional analysis of genes involved in competitive nodulation in *Bradyrhizobium diazoefficiens* at the

presence of soybean root exudates. *Scientific Reports*, 7(1), 10946. https://doi.org/10.1038/s41598-017-11372-0

- Lopes, L. D., Pereira e Silva, M. de C., & Andreote, F. D. (2016). Bacterial Abilities and Adaptation Toward the Rhizosphere Colonization. *Frontiers in Microbiology* (Vol. 7). https://www.frontiersin.org/articles/10.3389/fmicb.2016.01341
- Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K., & Knight, R. (2012). Diversity, stability and resilience of the human gut microbiota. *Nature*, *489*(7415), 220–230. https://doi.org/10.1038/nature11550
- Lu, T., Ke, M., Lavoie, M., Jin, Y., Fan, X., Zhang, Z., Fu, Z., Sun, L., Gillings, M., Peñuelas, J., Qian,
 H., & Zhu, Y. G. (2018). Rhizosphere microorganisms can influence the timing of plant flowering. *Microbiome*, 6(1), 231. https://doi.org/10.1186/s40168-018-0615-0
- Lugtenberg, B., & Kamilova, F. (2009). Plant-Growth-Promoting Rhizobacteria. Annual Review of Microbiology, 63(1), 541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918
- Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Rio, T. G. del, Edgar, R. C., Eickhorst, T., Ley, R. E., Hugenholtz, P., Tringe, S. G., & Dangl, J. L. (2012). Defining the core *Arabidopsis thaliana* root microbiome. *Nature*, 488(7409), 86–90. https://doi.org/10.1038/nature11237
- Ma, K. W., Niu, Y., Jia, Y., Ordon, J., Copeland, C., Emonet, A., Geldner, N., Guan, R., Stolze, S. C., Nakagami, H., Garrido-Oter, R., & Schulze-Lefert, P. (2021). Coordination of microbe–host homeostasis by crosstalk with plant innate immunity. *Nature Plants*, 7(6), 814–825. https://doi.org/10.1038/s41477-021-00920-2
- Maignien, L., DeForce, E. A., Chafee, M. E., Eren, A. M., & Simmons, S. L. (2014). Ecological Succession and Stochastic Variation in the Assembly of *Arabidopsis thaliana* Phyllosphere Communities. *MBio*, 5(1), e00682-13. https://doi.org/10.1128/mBio.00682-13
- Marasco, R., Fusi, M., Mosqueira, M., Booth, J. M., Rossi, F., Cardinale, M., Michoud, G., Rolli, E.,
 Mugnai, G., Vergani, L., Borin, S., De Philippis, R., Cherif, A., & Daffonchio, D. (2022).
 Rhizosheath-root system changes exopolysaccharide content but stabilizes bacterial community
 across contrasting seasons in a desert environment. *Environmental Microbiome*, 17(1), 14.
 https://doi.org/10.1186/s40793-022-00407-3
- Marín, O., González, B., & Poupin, M. J. (2021). From Microbial Dynamics to Functionality in the Rhizosphere: A Systematic Review of the Opportunities With Synthetic Microbial Communities. *Frontiers in Plant Science* (Vol. 12). https://www.frontiersin.org/articles/10.3389/fpls.2021.650609
- Maritz, J. M., Rogers, K. H., Rock, T. M., Liu, N., Joseph, S., Land, K. M., & Carlton, J. M. (2017). An 18S rRNA Workflow for Characterizing Protists in Sewage, with a Focus on Zoonotic *Trichomonads*. *Microbial Ecology*, 74(4), 923–936. https://doi.org/10.1007/s00248-017-0996-9
- Martínez-Hidalgo, P., García, J. M., & Pozo, M. J. (2015). Induced systemic resistance against Botrytis cinerea by *Micromonospora* strains isolated from root nodules. *Frontiers in Microbiology* (Vol. 6, p. 922). https://www.frontiersin.org/article/10.3389/fmicb.2015.00922

McFall-Ngai, M., Hadfield, M. G., Bosch, T. C. G., Carey, H. V, Domazet-Lošo, T., Douglas, A. E.,

Dubilier, N., Eberl, G., Fukami, T., Gilbert, S. F., Hentschel, U., King, N., Kjelleberg, S., Knoll,
A. H., Kremer, N., Mazmanian, S. K., Metcalf, J. L., Nealson, K., Pierce, N. E., ... Wernegreen, J.
J. (2013). Animals in a bacterial world, a new imperative for the life sciences. *Proceedings of the National Academy of Sciences*, *110*(9), 3229–3236. https://doi.org/10.1073/pnas.1218525110

- McMurdie, P. J., & Holmes, S. (2013). phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLOS ONE, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217
- Melillo, J. M., Frey, S. D., DeAngelis, K. M., Werner, W. J., Bernard, M. J., Bowles, F. P., Pold, G., Knorr, M. A., & Grandy, A. S. (2017). Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. *Science*, 358(6359), 101 LP – 105. https://doi.org/10.1126/science.aan2874
- Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H. M., Piceno, Y. M., DeSantis, T. Z., Andersen, G. L., Bakker, P. A. H. M., & Raaijmakers, J. M. (2011). Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria. *Science*, 332(6033), 1097–1100. https://doi.org/10.1126/science.1203980
- Meyer, T., Thiour-Mauprivez, C., Wisniewski-Dyé, F., Kerzaon, I., Comte, G., Vial, L., & Lavire, C.(2019). Ecological Conditions and Molecular Determinants Involved in Agrobacterium Lifestyle in
Tumors. Frontiers in Plant Science (Vol. 10).
https://www.frontiersin.org/articles/10.3389/fpls.2019.00978
- Mugnai, G., Rossi, F., Felde, V. J. M. N. L., Colesie, C., Büdel, B., Peth, S., Kaplan, A., & De Philippis,
 R. (2018). Development of the polysaccharidic matrix in biocrusts induced by a cyanobacterium inoculated in sand microcosms. *Biology and Fertility of Soils*, 54(1), 27–40. https://doi.org/10.1007/s00374-017-1234-9
- Müller, D. B., Vogel, C., Bai, Y., & Vorholt, J. A. (2016). The plant microbiota: systems-level insights and perspectives. Annu. Rev. Genet, 50(1), 211–234.
- Mun, B.-G., Lee, W.-H., Kang, S.-M., Lee, S.-U., Lee, S.-M., Lee, D. Y., Shahid, M., Yun, B.-W., & Lee,
 I.-J. (2020). Streptomyces sp. LH 4 promotes plant growth and resistance against Sclerotinia sclerotiorum in cucumber via modulation of enzymatic and defense pathways. Plant and Soil, 448(1), 87–103. https://doi.org/10.1007/s11104-019-04411-4
- Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. *Physiologia Plantarum*, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
- Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2011). Fire effects on temperate forest soil C and N storage. *Ecological Applications*, 21(4), 1189–1201. https://doi.org/https://doi.org/10.1890/10-0660.1
- Nawrocki, E. P., Burge, S. W., Bateman, A., Daub, J., Eberhardt, R. Y., Eddy, S. R., Floden, E. W., Gardner, P. P., Jones, T. A., Tate, J., & Finn, R. D. (2015). Rfam 12.0: updates to the RNA families database. *Nucleic Acids Research*, 43(D1), D130–D137. https://doi.org/10.1093/nar/gku1063

Nester, E. W. (2015). Agrobacterium: nature's genetic engineer. Frontiers in Plant Science (Vol. 5).

https://www.frontiersin.org/articles/10.3389/fpls.2014.00730

- Norby, R. J., De Kauwe, M. G., Domingues, T. F., Duursma, R. A., Ellsworth, D. S., Goll, D. S., Lapola, D. M., Luus, K. A., MacKenzie, A. R., Medlyn, B. E., Pavlick, R., Rammig, A., Smith, B., Thomas, R., Thonicke, K., Walker, A. P., Yang, X., & Zaehle, S. (2016). Model–data synthesis for the next generation of forest free-air CO₂ enrichment (FACE) experiments. *New Phytologist*, 209(1), 17–28. https://doi.org/https://doi.org/10.1111/nph.13593
- Nuccio, E. E., Starr, E., Karaoz, U., Brodie, E. L., Zhou, J., Tringe, S. G., Malmstrom, R. R., Woyke,
 T., Banfield, J. F., Firestone, M. K., & Pett-Ridge, J. (2020). Niche differentiation is spatially and
 temporally regulated in the rhizosphere. *The ISME Journal*, 14(4), 999–1014.
 https://doi.org/10.1038/s41396-019-0582-x
- Nuñez, M. A., Horton, T. R., & Simberloff, D. (2009). Lack of belowground mutualisms hinders *Pinaceae* invasions. *Ecology*, 90(9), 2352–2359. https://doi.org/https://doi.org/10.1890/08-2139.1
- O'Banion, B. S., O'Neal, L., Alexandre, G., & Lebeis, S. L. (2019). Bridging the Gap Between Single-Strain and Community-Level Plant-Microbe Chemical Interactions. *Molecular Plant-Microbe Interactions*®, 33(2), 124–134. https://doi.org/10.1094/MPMI-04-19-0115-CR
- Ofek-Lalzar, M., Sela, N., Goldman-Voronov, M., Green, S. J., Hadar, Y., & Minz, D. (2014). Niche and host-associated functional signatures of the root surface microbiome. *Nature Communications*, 5(1), 4950. https://doi.org/10.1038/ncomms5950
- Oh, J., Byrd, A. L., Deming, C., Conlan, S., Barnabas, B., Blakesley, R., Bouffard, G., Brooks, S., Coleman, H., Dekhtyar, M., Gregory, M., Guan, X., Gupta, J., Han, J., Ho, S., Legaspi, R., Maduro, Q., Masiello, C., Maskeri, B., ... Program, N. C. S. (2014). Biogeography and individuality shape function in the human skin metagenome. *Nature*, *514*(7520), 59–64. https://doi.org/10.1038/nature13786
- Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O'hara, R., Solymos, P., Stevens, M., & Szoecs, E. (2022). Vegan: Community Ecology Package, R Package Version 2.6-4. 2022.
- Olanrewaju, O. S., & Babalola, O. O. (2019). *Streptomyces*: implications and interactions in plant growth promotion. *Applied Microbiology and Biotechnology*, *103*(3), 1179–1188. https://doi.org/10.1007/s00253-018-09577-y
- **Oldroyd, G. E. D. (2013).** Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. *Nature Reviews Microbiology*, *11*(4), 252–263. https://doi.org/10.1038/nrmicro2990
- Olesen, S. W., & Alm, E. J. (2016). Dysbiosis is not an answer. *Nature Microbiology*, 1(12), 16228. https://doi.org/10.1038/nmicrobiol.2016.228
- Orozco-Mosqueda, M. del C., Duan, J., DiBernardo, M., Zetter, E., Campos-García, J., Glick, B. R., & Santoyo, G. (2019). The Production of ACC Deaminase and Trehalose by the Plant Growth Promoting Bacterium *Pseudomonas* sp. UW4 Synergistically Protect Tomato Plants Against Salt Stress. *Frontiers in Microbiology* (Vol. 10). https://www.frontiersin.org/articles/10.3389/fmicb.2019.01392
Ørskov, J. (1923). Investigations into the Morphology of the Ray Fungi. Levin & Munksgaard.

Ortúzar, M. (2017). Study of the PGPB potencial of Micromonospora. Universidad de Salamanca.

- Ortúzar, M., Trujillo, M. E., Román-Ponce, B., & Carro, L. (2020). *Micromonospora* metallophores: A plant growth promotion trait useful for bacterial-assisted phytoremediation? *Science of The Total Environment*, 739, 139850. https://doi.org/10.1016/j.scitotenv.2020.139850
- Osdaghi, E., Young, A. J., & Harveson, R. M. (2020). Bacterial wilt of dry beans caused by *Curtobacterium flaccumfaciens* pv. *flaccumfaciens*: A new threat from an old enemy. *Molecular Plant Pathology*, 21(5), 605–621. https://doi.org/https://doi.org/10.1111/mpp.12926
- Ouertani, R., Ouertani, A., Mahjoubi, M., Bousselmi, Y., Najjari, A., Cherif, H., Chamkhi, A., Mosbah,
 A., Khdhira, H., Sghaier, H., Chouchane, H., Cherif, A., & Neifar, M. (2020). New Plant Growth-Promoting, Chromium-Detoxifying *Microbacterium* Species Isolated From a Tannery Wastewater: Performance and Genomic Insights. *Frontiers in Bioengineering and Biotechnology* (Vol. 8). https://www.frontiersin.org/articles/10.3389/fbioe.2020.00521
- Overbeek, R., Begley, T., Butler, R. M., Choudhuri, J. V, Chuang, H.-Y., Cohoon, M., de Crécy-Lagard, V., Diaz, N., Disz, T., Edwards, R., Fonstein, M., Frank, E. D., Gerdes, S., Glass, E. M., Goesmann, A., Hanson, A., Iwata-Reuyl, D., Jensen, R., Jamshidi, N., ... Vonstein, V. (2005). The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes. *Nucleic Acids Research*, *33*(17), 5691–5702. https://doi.org/10.1093/nar/gki866
- Pacios-Michelena, S., Aguilar González, C. N., Alvarez-Perez, O. B., Rodriguez-Herrera, R., Chávez-González, M., Arredondo Valdés, R., Ascacio Valdés, J. A., Govea Salas, M., & Ilyina, A.

 (2021). Application of Streptomyces Antimicrobial Compounds for the Control of Phytopathogens.

 Frontiers
 in
 Sustainable
 Food
 Systems
 (Vol.
 5).

 https://www.frontiersin.org/articles/10.3389/fsufs.2021.696518
- Palmer, T. M., Doak, D. F., Stanton, M. L., Bronstein, J. L., Kiers, E. T., Young, T. P., Goheen, J. R., & Pringle, R. M. (2010). Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism. *Proceedings of the National Academy of Sciences*, 107(40), 17234 LP – 17239. https://doi.org/10.1073/pnas.1006872107
- Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. *Nature*, 421(6918), 37–42. https://doi.org/10.1038/nature01286
- Peay, K. G., Garbelotto, M., & Bruns, T. D. (2010). Evidence of dispersal limitation in soil microorganisms: Isolation reduces species richness on mycorrhizal tree islands. *Ecology*, 91(12), 3631–3640. https://doi.org/https://doi.org/10.1890/09-2237.1
- Peiffer, J. A., Spor, A., Koren, O., Jin, Z., Tringe, S. G., Dangl, J. L., Buckler, E. S., & Ley, R. E. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. *Proceedings of the National Academy of Sciences*, 110(16), 6548–6553. https://doi.org/10.1073/pnas.1302837110
- Petipas, R. H., Geber, M. A., & Lau, J. A. (2021). Microbe-mediated adaptation in plants. *Ecology Letters*, 24(7), 1302–1317. https://doi.org/https://doi.org/10.1111/ele.13755

Petipas, R. H., Wruck, A. C., & Geber, M. A. (2020). Microbe-mediated local adaptation to limestone

barrens is context dependent. *Ecology*, 101(8), e03092. https://doi.org/https://doi.org/10.1002/ecy.3092

- Pfeilmeier, S., Petti, G. C., Bortfeld-Miller, M., Daniel, B., Field, C. M., Sunagawa, S., & Vorholt, J. A. (2021). The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. *Nature Microbiology*, 6(7), 852–864. https://doi.org/10.1038/s41564-021-00929-5
- **Postma, F. M., & Ågren, J. (2016).** Early life stages contribute strongly to local adaptation in *Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 113*(27), 7590–7595. https://doi.org/10.1073/pnas.1606303113
- Powell, J. R., Karunaratne, S., Campbell, C. D., Yao, H., Robinson, L., & Singh, B. K. (2015). Deterministic processes vary during community assembly for ecologically dissimilar taxa. *Nature Communications*, 6(1), 8444. https://doi.org/10.1038/ncomms9444
- Purahong, W., Wubet, T., Lentendu, G., Schloter, M., Pecyna, M. J., Kapturska, D., Hofrichter, M., Krüger, D., & Buscot, F. (2016). Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. *Molecular Ecology*, 25(16), 4059–4074. https://doi.org/https://doi.org/10.1111/mec.13739
- Qi, S., Gui, M., Li, H., Yu, C., Li, H., Zeng, Z., & Sun, P. (2020). Secondary Metabolites from Marine *Micromonospora*: Chemistry and Bioactivities. *Chemistry & Biodiversity*, 17(4), e2000024. https://doi.org/https://doi.org/10.1002/cbdv.202000024
- **R Core Team. (2022).** *R: A Language and Environment for Statistical Computing* (2023.06.0-421). https://www.r-project.org/
- Raaijmakers, J. M. (2015). The Minimal Rhizosphere Microbiome BT Principles of Plant-Microbe Interactions: Microbes for Sustainable Agriculture (B. Lugtenberg (ed.); pp. 411–417). Springer International Publishing. https://doi.org/10.1007/978-3-319-08575-3_43
- Raman, V., Rojas, C. M., Vasudevan, B., Dunning, K., Kolape, J., Oh, S., Yun, J., Yang, L., Li, G., Pant, B. D., Jiang, Q., & Mysore, K. S. (2022). Agrobacterium expressing a type III secretion system delivers *Pseudomonas* effectors into plant cells to enhance transformation. *Nature Communications*, 13(1), 2581. https://doi.org/10.1038/s41467-022-30180-3
- Ramirez, K. S., Snoek, L. B., Koorem, K., Geisen, S., Bloem, L. J., ten Hooven, F., Kostenko, O., Krigas, N., Manrubia, M., Caković, D., van Raaij, D., Tsiafouli, M. A., Vreš, B., Čelik, T., Weser, C., Wilschut, R. A., & van der Putten, W. H. (2019). Range-expansion effects on the belowground plant microbiome. *Nature Ecology & Evolution*, *3*(4), 604–611. https://doi.org/10.1038/s41559-019-0828-z
- Rastogi, G., Sbodio, A., Tech, J. J., Suslow, T. V, Coaker, G. L., & Leveau, J. H. J. (2012). Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. *The ISME Journal*, 6(10), 1812–1822. https://doi.org/10.1038/ismej.2012.32
- Rat, A., Naranjo, H. D., Krigas, N., Grigoriadou, K., Maloupa, E., Alonso, A. V., Schneider, C., Papageorgiou, V. P., Assimopoulou, A. N., Tsafantakis, N., Fokialakis, N., & Willems, A. (2021). Endophytic Bacteria From the Roots of the Medicinal Plant *Alkanna tinctoria* Tausch (*Boraginaceae*): Exploration of Plant Growth Promoting Properties and Potential Role in the

Production of Plant Secondary Metabolites. *Frontiers in Microbiology* (Vol. 12). https://www.frontiersin.org/articles/10.3389/fmicb.2021.633488

- Reasoner, D. J., & Geldreich, E. E. (1985). A new medium for the enumeration and subculture of bacteria from potable water. *Applied and Environmental Microbiology*, *49*(1), 1 LP 7.
- Redford, A. J., Bowers, R. M., Knight, R., Linhart, Y., & Fierer, N. (2010). The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. *Environmental Microbiology*, 12(11), 2885–2893. https://doi.org/https://doi.org/10.1111/j.1462-2920.2010.02258.x
- Redford, A. J., & Fierer, N. (2009). Bacterial Succession on the Leaf Surface: A Novel System for Studying Successional Dynamics. *Microbial Ecology*, 58(1), 189–198. https://doi.org/10.1007/s00248-009-9495-y
- Reinhold-Hurek, B., Bünger, W., Burbano, C. S., Sabale, M., & Hurek, T. (2015). Roots Shaping Their Microbiome: Global Hotspots for Microbial Activity. *Annual Review of Phytopathology*, 53(1), 403– 424. https://doi.org/10.1146/annurev-phyto-082712-102342
- Ren, J., Li, L., Wei, B., Tang, Y. L., Deng, Z. X., Sun, M., & Hong, K. (2013). Micromonospora wenchangensis sp. nov., isolated from mangrove soil. International Journal of Systematic and Evolutionary Microbiology, 63(Pt_7), 2389–2395. https://doi.org/10.1099/ijs.0.045476-0
- Riesco, R., Carro, L., Román-Ponce, B., Prieto, C., Blom, J., Klenk, H.-P., Normand, P., & Trujillo, M.
 E. (2018). Defining the Species *Micromonospora saelicesensis* and *Micromonospora noduli* Under the Framework of Genomics. *Frontiers in Microbiology*, (Vol. 9, p. 1360). https://www.frontiersin.org/article/10.3389/fmicb.2018.01360
- Riesco, R., Ortúzar, M., Fernández-Ábalos, J. M., & Trujillo, M. E. (2022a). Deciphering Genomes: Genetic Signatures of Plant-Associated *Micromonospora*. *Frontiers in Plant Science* (Vol. 13). https://www.frontiersin.org/articles/10.3389/fpls.2022.872356
- Riesco, R., Ortúzar, M., Román-Ponce, B., Sánchez-Juanes, F., Igual, J. M., & Trujillo, M. E. (2022b). Six novel Micromonospora species associated with the phyllosphere and roots of leguminous plants: Micromonospora alfalfae sp. nov., Micromonospora cabrerizensis sp. nov., Micromonospora foliorum sp. nov., Micromonospora hortensis sp. nov., Micromonospora salmantinae sp. nov., and Micromonospora trifolii sp. nov.. International Journal of Systematic and Evolutionary Microbiology, 72(11), 005680. https://doi.org/10.1099/ijsem.0.005680
- Ritpitakphong, U., Falquet, L., Vimoltust, A., Berger, A., Métraux, J.-P., & L'Haridon, F. (2016). The microbiome of the leaf surface of *Arabidopsis* protects against a fungal pathogen. *New Phytologist*, 210(3), 1033–1043. https://doi.org/10.1111/nph.13808
- Ritter, C. D., Forster, D., Azevedo, J. A. R., Antonelli, A., Nilsson, R. H., Trujillo, M. E., & Dunthorn,
 M. (2021). Assessing Biotic and Abiotic Interactions of Microorganisms in Amazonia through Co-Occurrence Networks and DNA Metabarcoding. *Microbial Ecology*, 82(3), 746–760. https://doi.org/10.1007/s00248-021-01719-6
- Rodríguez, M., Reina, J. C., Sampedro, I., Llamas, I., & Martínez-Checa, F. (2022). Peribacillus castrilensis sp. nov.: A Plant-Growth-Promoting and Biocontrol Species Isolated From a River Otter

in Castril, Granada, Southern Spain. *Frontiers in Plant Science* (Vol. 13). https://www.frontiersin.org/articles/10.3389/fpls.2022.896728

- Rodríguez, M., Torres, M., Blanco, L., Béjar, V., Sampedro, I., & Llamas, I. (2020). Plant growthpromoting activity and quorum quenching-mediated biocontrol of bacterial phytopathogens by *Pseudomonas segetis* strain P6. *Scientific Reports*, 10(1), 4121. https://doi.org/10.1038/s41598-020-61084-1
- Rolli, E., Marasco, R., Vigani, G., Ettoumi, B., Mapelli, F., Deangelis, M. L., Gandolfi, C., Casati, E., Previtali, F., Gerbino, R., Pierotti Cei, F., Borin, S., Sorlini, C., Zocchi, G., & Daffonchio, D. (2015). Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. *Environmental Microbiology*, *17*(2), 316–331. https://doi.org/https://doi.org/10.1111/1462-2920.12439
- Romero-Olivares, A. L., Allison, S. D., & Treseder, K. K. (2017). Soil microbes and their response to experimental warming over time: A meta-analysis of field studies. Soil Biology and Biochemistry, 107, 32–40. https://doi.org/https://doi.org/10.1016/j.soilbio.2016.12.026
- Rosenzweig, C., Mbow, C., Barioni, L. G., Benton, T. G., Herrero, M., Krishnapillai, M., Liwenga, E. T., Pradhan, P., Rivera-Ferre, M. G., Sapkota, T., Tubiello, F. N., Xu, Y., Mencos Contreras, E., & Portugal-Pereira, J. (2020). Climate change responses benefit from a global food system approach. *Nature Food*, 1(2), 94–97. https://doi.org/10.1038/s43016-020-0031-z
- Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., Costea, P. I., Godneva, A., Kalka, I. N., Bar, N., Shilo, S., Lador, D., Vila, A. V., Zmora, N., Pevsner-Fischer, M., Israeli, D., Kosower, N., Malka, G., Wolf, B. C., ... Segal, E. (2018). Environment dominates over host genetics in shaping human gut microbiota. *Nature*, *555*(7695), 210–215. https://doi.org/10.1038/nature25973
- Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Knight, R., & Fierer, N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. *The ISME Journal*, 4(10), 1340–1351. https://doi.org/10.1038/ismej.2010.58
- Rousk, J., Brookes, P. C., & Bååth, E. (2009). Contrasting Soil pH Effects on Fungal and Bacterial Growth Suggest Functional Redundancy in Carbon Mineralization. *Applied and Environmental Microbiology*, 75(6), 1589–1596. https://doi.org/10.1128/AEM.02775-08
- Roy, S., Liu, W., Nandety, R. S., Crook, A., Mysore, K. S., Pislariu, C. I., Frugoli, J., Dickstein, R., & Udvardi, M. K. (2020). Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation. *The Plant Cell*, 32(1), 15–41. https://doi.org/10.1105/tpc.19.00279
- Rudgers, J. A., Afkhami, M. E., Bell-Dereske, L., Chung, Y. A., Crawford, K. M., Kivlin, S. N., Mann,
 M. A., & Nuñez, M. A. (2020). Climate Disruption of Plant-Microbe Interactions. *Annual Review of Ecology, Evolution, and Systematics*, 51(1), 561–586. https://doi.org/10.1146/annurev-ecolsys-011720-090819
- Saad, M. M. G., Kandil, M., & Mohammed, Y. M. M. (2020). Isolation and Identification of Plant Growth-Promoting Bacteria Highly Effective in Suppressing Root Rot in Fava Beans. *Current Microbiology*, 77(9), 2155–2165. https://doi.org/10.1007/s00284-020-02015-1

- Santhoshkumar, R., Akash, P., Viswam, P., & Soniya, E. V. (2022). Imprints of PGPB association on the metabolic dynamism of *Piper nigrum*. *Journal of Plant Interactions*, *17*(1), 967–979. https://doi.org/10.1080/17429145.2022.2117867
- Santos-Medellín, C., Edwards, J., Liechty, Z., Nguyen, B., & Sundaresan, V. (2017). Drought Stress Results in a Compartment-Specific Restructuring of the Rice Root-Associated Microbiomes. *MBio*, *8*(4), e00764-17. https://doi.org/10.1128/mBio.00764-17
- Saygin, H., Ay, H., Guven, K., Cetin, D., & Sahin, N. (2020). *Micromonospora deserti* sp. nov., isolated from the Karakum Desert. *International Journal of Systematic and Evolutionary Microbiology*, *70*(1), 282–291. https://doi.org/10.1099/ijsem.0.003752
- Schattner, P., Brooks, A. N., & Lowe, T. M. (2005). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic Acids Res*, 33, W686–W689.
- Schindlbacher, A., Rodler, A., Kuffner, M., Kitzler, B., Sessitsch, A., & Zechmeister-Boltenstern, S. (2011). Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biology and Biochemistry, 43(7), 1417–1425. https://doi.org/https://doi.org/10.1016/j.soilbio.2011.03.005
- Schlaeppi, K., Dombrowski, N., Oter, R. G., Ver Loren van Themaat, E., & Schulze-Lefert, P. (2014). Quantitative divergence of the bacterial root microbiota in *Arabidopsis thaliana* relatives. *Proceedings of the National Academy of Sciences*, 111(2), 585–592. https://doi.org/10.1073/pnas.1321597111
- Schöps, R., Goldmann, K., Herz, K., Lentendu, G., Schöning, I., Bruelheide, H., Wubet, T., & Buscot,
 F. (2018). Land-Use Intensity Rather Than Plant Functional Identity Shapes Bacterial and Fungal Rhizosphere Communities. *Frontiers in Microbiology* (Vol. 9). https://www.frontiersin.org/articles/10.3389/fmicb.2018.02711
- Schulz-Bohm, K., Zweers, H., de Boer, W., & Garbeva, P. (2015). A fragrant neighborhood: volatile mediated bacterial interactions in soil. *Frontiers in Microbiology* (Vol. 6). https://www.frontiersin.org/articles/10.3389/fmicb.2015.01212
- Seaton, S., Lemaire, J., Inderbitzin, P., Knight-Connoni, V., White, J. F., & Trujillo, M. E. (2021). Curtobacterium glycinis sp. nov. from Glycine max, Curtobacterium gossypii sp. nov. from Gossypium hirsutum and Curtobacterium oryzae sp. nov. from Oryza sativa. BioRxiv, 2021.03.18.434777. https://doi.org/10.1101/2021.03.18.434777
- Shade, A. (2017). Diversity is the question, not the answer. *The ISME Journal*, 11(1), 1–6. https://doi.org/10.1038/ismej.2016.118
- Shakya, M., Gottel, N., Castro, H., Yang, Z. K., Gunter, L., Labbé, J., Muchero, W., Bonito, G., Vilgalys, R., Tuskan, G., Podar, M., & Schadt, C. W. (2013). A Multifactor Analysis of Fungal and Bacterial Community Structure in the Root Microbiome of Mature *Populus deltoides* Trees. *PLOS ONE*, 8(10), e76382. https://doi.org/10.1371/journal.pone.0076382
- Sheik, C. S., Beasley, W. H., Elshahed, M. S., Zhou, X., Luo, Y., & Krumholz, L. R. (2011). Effect of warming and drought on grassland microbial communities. *The ISME Journal*, 5(10), 1692–1700. https://doi.org/10.1038/ismej.2011.32

- Shengjing, S., Erin, N., J., H. D., Ruud, R., Katerina, E., Jiabao, L., Nunes, da R. U., Zhili, H., Jennifer, P.-R., L., B. E., Jizhong, Z., & Mary, F. (2015). Successional Trajectories of Rhizosphere Bacterial Communities over Consecutive Seasons. *MBio*, 6(4), 10.1128/mbio.00746-15. https://doi.org/10.1128/mbio.00746-15
- Shi, S., Nuccio, E. E., Shi, Z. J., He, Z., Zhou, J., & Firestone, M. K. (2016). The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. *Ecology Letters*, 19(8), 926–936. https://doi.org/https://doi.org/10.1111/ele.12630
- Shi, S., Nuccio, E., Herman, D. J., Rijkers, R., Estera, K., Jiabao, L., da Rocha, U. N., He, Z., Pett-Ridge, J., Brodie, E. L., Zhou, J., & Firestone, M. (2015). Successional Trajectories of Rhizosphere Bacterial Communities over Consecutive Seasons. *MBio*, 6(4), e00746-15. https://doi.org/10.1128/mBio.00746-15
- Shirling, E. B. T., & Gottlieb, D. (1966). Methods for characterization of *Streptomyces* species. *International Journal of Systematic Bacteriology*, *16*(3), 313–340.
- Sievers, M. (2013). Culture Collections in the Study of Microbial Diversity, Importance BT Encyclopedia of Metagenomics (K. E. Nelson (ed.); pp. 1–5). Springer New York. https://doi.org/10.1007/978-1-4614-6418-1_741-4
- Simpson, J. T., Wong, K., Jackman, S. D., Schein, J. E., Jones, S. J. M., & Birol, I. (2009). ABySS: a parallel assembler for short read sequence data. *Genome Research*, 19(6), 1117–1123.
- Singh, P., Singh, R. K., Zhou, Y., Wang, J., Jiang, Y., Shen, N., Wang, Y., Yang, L., & Jiang, M. (2022). Unlocking the strength of plant growth promoting *Pseudomonas* in improving crop productivity in normal and challenging environments: a review. *Journal of Plant Interactions*, 17(1), 220–238. https://doi.org/10.1080/17429145.2022.2029963
- Smit, E., Leeflang, P., Gommans, S., van den Broek, J., van Mil, S., & Wernars, K. (2001). Diversity and Seasonal Fluctuations of the Dominant Members of the Bacterial Soil Community in a Wheat Field as Determined by Cultivation and Molecular Methods. *Applied and Environmental Microbiology*, 67(5), 2284–2291. https://doi.org/10.1128/AEM.67.5.2284-2291.2001
- Sokol, N. W., Slessarev, E., Marschmann, G. L., Nicolas, A., Blazewicz, S. J., Brodie, E. L., Firestone, M. K., Foley, M. M., Hestrin, R., Hungate, B. A., Koch, B. J., Stone, B. W., Sullivan, M. B., Zablocki, LLNL Soil Microbiome Consortium, & Pett-Ridge, J.(2022). Life and death in the soil microbiome: how ecological processes influence biogeochemistry. *Nature Reviews Microbiology*, 20(7), 415–430. https://doi.org/10.1038/s41579-022-00695-z
- Som, N. F., Heine, D., Holmes, N., Knowles, F., Chandra, G., Seipke, R. F., Hoskisson, P. A., Wilkinson, B., & Hutchings, M. I. (2017). The MtrAB two-component system controls antibiotic production in *Streptomyces coelicolor* A3(2). *Microbiology*, 163(10), 1415–1419. https://doi.org/10.1099/mic.0.000524
- Sorensen, P. O., Templer, P. H., & Finzi, A. C. (2016). Contrasting effects of winter snowpack and soil frost on growing season microbial biomass and enzyme activity in two mixed-hardwood forests. *Biogeochemistry*, 128(1–2), 141–154.

Sorokan, A. V, Burkhanova, G. F., Benkovskaya, G. V, & Maksimov, I. V. (2020). Colorado potato

beetle microsymbiont *Enterobacter* BC-8 inhibits defense mechanisms of potato plants using crosstalk between jasmonate- and salicylate-mediated signaling pathways. *Arthropod-Plant Interactions*, *14*(2), 161–168. https://doi.org/10.1007/s11829-019-09732-w

- Sousa, J. A. de J., & Olivares, F. L. (2016). Plant growth promotion by streptomycetes: ecophysiology, mechanisms and applications. *Chemical and Biological Technologies in Agriculture*, *3*(1), 24. https://doi.org/10.1186/s40538-016-0073-5
- Spor, A., Koren, O., & Ley, R. (2011). Unravelling the effects of the environment and host genotype on the gut microbiome. *Nature Reviews Microbiology*, 9(4), 279–290. https://doi.org/10.1038/nrmicro2540
- Springmann, M., Clark, M., Mason-D'Croz, D., Wiebe, K., Bodirsky, B. L., Lassaletta, L., de Vries, W., Vermeulen, S. J., Herrero, M., Carlson, K. M., Jonell, M., Troell, M., DeClerck, F., Gordon, L. J., Zurayk, R., Scarborough, P., Rayner, M., Loken, B., Fanzo, J., ... Willett, W. (2018). Options for keeping the food system within environmental limits. *Nature*, 562(7728), 519–525. https://doi.org/10.1038/s41586-018-0594-0
- Springmann, M., Godfray, H. C. J., Rayner, M., & Scarborough, P. (2016). Analysis and valuation of the health and climate change cobenefits of dietary change. *Proceedings of the National Academy of Sciences*, *113*(15), 4146–4151. https://doi.org/10.1073/pnas.1523119113
- Stegen, J. C., Bottos, E. M., & Jansson, J. K. (2018). A unified conceptual framework for prediction and control of microbiomes. *Current Opinion in Microbiology*, 44, 20–27. https://doi.org/https://doi.org/10.1016/j.mib.2018.06.002
- Steinauer, K., Tilman, D., Wragg, P. D., Cesarz, S., Cowles, J. M., Pritsch, K., Reich, P. B., Weisser, W. W., & Eisenhauer, N. (2015). Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. *Ecology*, 96(1), 99–112. https://doi.org/https://doi.org/10.1890/14-0088.1
- Sun, X., Xu, Z., Xie, J., Hesselberg-Thomsen, V., Tan, T., Zheng, D., Strube, M. L., Dragoš, A., Shen,
 Q., Zhang, R., & Kovács, Á. T. (2022). Bacillus velezensis stimulates resident rhizosphere
 Pseudomonas stutzeri for plant health through metabolic interactions. The ISME Journal, 16(3), 774–787. https://doi.org/10.1038/s41396-021-01125-3
- Supong, K., Suriyachadkun, C., Pittayakhajonwut, P., Suwanborirux, K., & Thawai, C. (2013). *Micromonospora spongicola* sp. nov., an actinomycete isolated from a marine sponge in the Gulf of Thailand. *The Journal of Antibiotics*, 66(9), 505–509. https://doi.org/10.1038/ja.2013.35
- Talbot, J. M., Bruns, T. D., Taylor, J. W., Smith, D. P., Branco, S., Glassman, S. I., Erlandson, S., Vilgalys, R., Liao, H.-L., Smith, M. E., & Peay, K. G. (2014). Endemism and functional convergence across the North American soil mycobiome. *Proceedings of the National Academy of Sciences*, 111(17), 6341–6346. https://doi.org/10.1073/pnas.1402584111
- Tanasupawat, S., Jongrungruangchok, S., & Kudo, T. (2010). *Micromonospora marina* sp. nov., isolated from sea sand. *International Journal of Systematic and Evolutionary Microbiology*, *60*(3), 648–652. https://doi.org/10.1099/ijs.0.014068-0

Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., & Zimov, S. (2009). Soil

organic carbon pools in the northern circumpolar permafrost region. *Global Biogeochemical Cycles*, 23(2). https://doi.org/https://doi.org/10.1029/2008GB003327

- Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., Ruiz, L. V., Vasco-Palacios, A. M., Thu, P. Q., Suija, A., Smith, M. E., Sharp, C., Saluveer, E., Saitta, A., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Põldmaa, K., ... Abarenkov, K. (2014). Global diversity and geography of soil fungi. *Science*, *346*(6213), 1256688. https://doi.org/10.1126/science.1256688
- Tedersoo, L., Bahram, M., & Zobel, M. (2020). How mycorrhizal associations drive plant population and community biology. *Science*, 367(6480), eaba1223. https://doi.org/10.1126/science.aba1223
- Thawai, C., Tanasupawat, S., & Kudo, T. (2008). *Micromonospora pattaloongensis* sp. nov., isolated from a Thai mangrove forest. *International Journal of Systematic and Evolutionary Microbiology*, 58(7), 1516–1521. https://doi.org/10.1099/ijs.0.65410-0
- Thiergart, T., Durán, P., Ellis, T., Vannier, N., Garrido-Oter, R., Kemen, E., Roux, F., Alonso-Blanco, C., Ågren, J., Schulze-Lefert, P., Hacquard, S., Fierer, N., & Jackson, R. B. (2020). Root microbiota assembly and adaptive differentiation among European *Arabidopsis* populations. *Proceedings of the National Academy of Sciences of the United States of America*, 4(1), 122–131. https://doi.org/10.1038/s41559-019-1063-3
- Thomson, B. C., Tisserant, E., Plassart, P., Uroz, S., Griffiths, R. I., Hannula, S. E., Buée, M., Mougel, C., Ranjard, L., Van Veen, J. A., Martin, F., Bailey, M. J., & Lemanceau, P. (2015). Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Biology and Biochemistry, 88, 403–413. https://doi.org/https://doi.org/10.1016/j.soilbio.2015.06.012
- Thrall, P. H., Hochberg, M. E., Burdon, J. J., & Bever, J. D. (2007). Coevolution of symbiotic mutualists and parasites in a community context. *Trends in Ecology & Evolution*, 22(3), 120–126. https://doi.org/https://doi.org/10.1016/j.tree.2006.11.007
- Tian, B., Xie, J., Fu, Y., Cheng, J., Li, B., Chen, T., Zhao, Y., Gao, Z., Yang, P., Barbetti, M. J., Tyler, B. M., & Jiang, D. (2020). A cosmopolitan fungal pathogen of dicots adopts an endophytic lifestyle on cereal crops and protects them from major fungal diseases. *The ISME Journal*, 14(12), 3120–3135. https://doi.org/10.1038/s41396-020-00744-6
- Tilman, D., & Clark, M. (2014). Global diets link environmental sustainability and human health. *Nature*, *515*(7528), 518–522. https://doi.org/10.1038/nature13959
- Tkacz, A., Cheema, J., Chandra, G., Grant, A., & Poole, P. S. (2015). Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. *The ISME Journal*, 9(11), 2349–2359. https://doi.org/10.1038/ismej.2015.41
- Toju, H., Guimarães, P. R., Olesen, J. M., & Thompson, J. N. (2014). Assembly of complex plantfungus networks. *Nature Communications*, *5*(1), 5273. https://doi.org/10.1038/ncomms6273
- Toju, H., Peay, K. G., Yamamichi, M., Narisawa, K., Hiruma, K., Naito, K., Fukuda, S., Ushio, M., Nakaoka, S., Onoda, Y., Yoshida, K., Schlaeppi, K., Bai, Y., Sugiura, R., Ichihashi, Y., Minamisawa, K., & Kiers, E. T. (2018). Core microbiomes for sustainable agroecosystems. *Nature Plants*, *4*(5), 247–257. https://doi.org/10.1038/s41477-018-0139-4

- Toju, H., Yamamoto, S., Sato, H., & Tanabe, A. S. (2013). Sharing of Diverse Mycorrhizal and Root-Endophytic Fungi among Plant Species in an Oak-Dominated Cool–Temperate Forest. *PLOS ONE*, 8(10), e78248. https://doi.org/10.1371/journal.pone.0078248
- **Treseder, K. K. (2004).** A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO₂ in field studies. *New Phytologist*, *164*(2), 347–355. https://doi.org/https://doi.org/10.1111/j.1469-8137.2004.01159.x
- Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., & Singh, B. K. (2020). Plant-microbiome interactions: from community assembly to plant health. *Nature Reviews Microbiology*, *18*(11), 607–621. https://doi.org/10.1038/s41579-020-0412-1
- Trujillo, M. E., Alonso-Vega, P., Rodríguez, R., Carro, L., Cerda, E., Alonso, P., & Martínez-Molina, E.
 (2010). The genus *Micromonospora* is widespread in legume root nodules: the example of *Lupinus* angustifolius. *The ISME Journal*, 4(10), 1265–1281. https://doi.org/10.1038/ismej.2010.55
- Trujillo, M. E., Bacigalupe, R., Pujic, P., Igarashi, Y., Benito, P., Riesco, R., Médigue, C., & Normand,
 P. (2014). Genome features of the endophytic actinobacterium *Micromonospora lupini* strain Lupac 08: on the process of adaptation to an endophytic life style? *PloS One*, *9*(9), e108522–e108522. https://doi.org/10.1371/journal.pone.0108522
- Trujillo, M. E., Kroppenstedt, R. M., Fernandez-Molinero, C., Schumann, P., & Martinez-Molina, E. (2007). Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. International Journal of Systematic and Evolutionary Microbiology, 57(12), 2799–2804. https://doi.org/10.1099/ijs.0.65192-0
- Trujillo, M. E., Riesco, R., Benito, P., & Carro, L. (2015). Endophytic *Actinobacteria* and the Interaction of *Micromonospora* and Nitrogen Fixing Plants. *Frontiers in Microbiology* (Vol. 6, p. 1341). https://www.frontiersin.org/article/10.3389/fmicb.2015.01341
- Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D., Schuur, E. A. G., Koven,
 C., McGuire, A. D., Grosse, G., & Kuhry, P. (2019). Permafrost collapse is accelerating carbon release. Nature Publishing Group.
- Turnbaugh, P. J., Ridaura, V. K., Faith, J. J., Rey, F. E., Knight, R., & Gordon, J. I. (2009). The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice. *Science Translational Medicine*, 1(6), 6ra14-6ra14. https://doi.org/10.1126/scitranslmed.3000322
- Turner, T. R., James, E. K., & Poole, P. S. (2013). The plant microbiome. *Genome Biology*, *14*(6), 209. https://doi.org/10.1186/gb-2013-14-6-209
- U'Ren, J. M., Lutzoni, F., Miadlikowska, J., Zimmerman, N. B., Carbone, I., May, G., & Arnold, A. E. (2019). Host availability drives distributions of fungal endophytes in the imperilled boreal realm. *Nature Ecology & Evolution*, 3(10), 1430–1437. https://doi.org/10.1038/s41559-019-0975-2
- Uksa, M., Schloter, M., Endesfelder, D., Kublik, S., Engel, M., Kautz, T., Köpke, U., & Fischer, D. (2015). Prokaryotes in Subsoil—Evidence for a Strong Spatial Separation of Different Phyla by Analysing Co-occurrence Networks. *Frontiers in Microbiology* (Vol. 6). https://www.frontiersin.org/articles/10.3389/fmicb.2015.01269

Ulrich, K., Kube, M., Becker, R., Schneck, V., & Ulrich, A. (2021). Genomic Analysis of the Endophytic

StenotrophomonasStrain169RevealsFeaturesRelated toPlant-GrowthPromotion andStressTolerance.FrontiersinMicrobiology(Vol.12).https://www.frontiersin.org/articles/10.3389/fmicb.2021.687463

- **UniProt Consortium, T. (2018).** UniProt: the universal protein knowledgebase. *Nucleic Acids Research*, 46(5), 2699. https://doi.org/10.1093/nar/gky092
- **United Nations. (2015).** World population prospects: The 2015 revision. *United Nations Econ Soc Aff*, 33(2), 1–66.
- Vacher, C., Cordier, T., & Vallance, J. (2016). Phyllosphere Fungal Communities Differentiate More Thoroughly than Bacterial Communities Along an Elevation Gradient. *Microbial Ecology*, 72(1), 1–3. https://doi.org/10.1007/s00248-016-0742-8
- Van der Ent, S., Van Hulten, M., Pozo, M. J., Czechowski, T., Udvardi, M. K., Pieterse, C. M. J., & Ton, J. (2009). Priming of plant innate immunity by rhizobacteria and β-aminobutyric acid: differences and similarities in regulation. *New Phytologist*, *183*(2), 419–431. https://doi.org/https://doi.org/10.1111/j.1469-8137.2009.02851.x
- Van Der Heijden, M. G. A., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. *Ecology Letters*, 11(3), 296–310. https://doi.org/https://doi.org/10.1111/j.1461-0248.2007.01139.x
- Van der Heijden, M. G. A., Bruin, S. de, Luckerhoff, L., van Logtestijn, R. S. P., & Schlaeppi, K. (2016). A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. *The ISME Journal*, *10*(2), 389–399. https://doi.org/10.1038/ismej.2015.120
- Van der Heijden, M. G. A., Martin, F. M., Selosse, M. A., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. *New Phytologist*, 205(4), 1406–1423. https://doi.org/https://doi.org/10.1111/nph.13288
- Van der Putten, W. H. (2012). Climate Change, Aboveground-Belowground Interactions, and Species' Range Shifts. *Annual Review of Ecology, Evolution, and Systematics*, 43(1), 365–383. https://doi.org/10.1146/annurev-ecolsys-110411-160423
- Van Elsas, J. D., Chiurazzi, M., Mallon, C. A., Elhottovā, D., Krištůfek, V., & Salles, J. F. (2012). Microbial diversity determines the invasion of soil by a bacterial pathogen. *Proceedings of the National Academy of Sciences*, 109(4), 1159–1164. https://doi.org/10.1073/pnas.1109326109
- Van Leeuwenhoek, A. (1683). Microscopical observations about animals in the scurf of the teeth. *Philos. Trans. R. Soc. Lond. B Biol. Sci,* 14, 568–574.
- Van Nuland, M. E., Ware, I. M., Schadt, C. W., Yang, Z., Bailey, J. K., & Schweitzer, J. A. (2021). Natural soil microbiome variation affects spring foliar phenology with consequences for plant productivity and climate-driven range shifts. *New Phytologist*, 232(2), 762–775. https://doi.org/https://doi.org/10.1111/nph.17599
- Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., Wu, D., Paulsen, I., Nelson, K. E., Nelson, W., Fouts, D. E., Levy, S., Knap, A. H., Lomas, M. W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R., ... Smith, H. O. (2004). Environmental Genome Shotgun Sequencing of the Sargasso Sea. Science, 304(5667), 66–74.

https://doi.org/10.1126/science.1093857

- Verheijen, L. M., Aerts, R., Brovkin, V., Cavender-Bares, J., Cornelissen, J. H. C., Kattge, J., & van Bodegom, P. M. (2015). Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. *Global Change Biology*, 21(8), 3074–3086. https://doi.org/https://doi.org/10.1111/gcb.12871
- Vesga, P., Flury, P., Vacheron, J., Keel, C., Croll, D., & Maurhofer, M. (2020). Transcriptome plasticity underlying plant root colonization and insect invasion by *Pseudomonas protegens*. *The ISME Journal*, 14(11), 2766–2782. https://doi.org/10.1038/s41396-020-0729-9
- Větrovský, T., Kohout, P., Kopecký, M., Machac, A., Man, M., Bahnmann, B. D., Brabcová, V., Choi, J., Meszárošová, L., Human, Z. R., Lepinay, C., Lladó, S., López-Mondéjar, R., Martinović, T., Mašínová, T., Morais, D., Navrátilová, D., Odriozola, I., Štursová, M., ... Baldrian, P. (2019). A meta-analysis of global fungal distribution reveals climate-driven patterns. *Nature Communications*, *10*(1), 5142. https://doi.org/10.1038/s41467-019-13164-8
- Vieira, S., Sikorski, J., Dietz, S., Herz, K., Schrumpf, M., Bruelheide, H., Scheel, D., Friedrich, M. W.,
 & Overmann, J. (2020). Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. *The ISME Journal*, *14*(2), 463–475. https://doi.org/10.1038/s41396-019-0543-4
- Vijayabharathi, R., Sathya, A., & Gopalakrishnan, S. (2015). Plant Growth-Promoting Microbes from Herbal Vermicompost BT - Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants (D. Egamberdieva, S. Shrivastava, & A. Varma (eds.); pp. 71–88). Springer International Publishing. https://doi.org/10.1007/978-3-319-13401-7_4
- Vimal, S. R., Patel, V. K., & Singh, J. S. (2019). Plant growth promoting *Curtobacterium albidum* strain SRV4: An agriculturally important microbe to alleviate salinity stress in paddy plants. *Ecological Indicators*, 105, 553–562. https://doi.org/https://doi.org/10.1016/j.ecolind.2018.05.014
- Vincent, J. M. (1970). A manual for the practical study of the root-nodule bacteria. A Manual for the Practical Study of the Root-Nodule Bacteria.
- Vogelsang-O'Dwyer, M., Bez, J., Petersen, I. L., Joehnke, M. S., Detzel, A., Busch, M., Krueger, M., Ispiryan, L., O'Mahony, J. A., Arendt, E. K., & Zannini, E. (2020). Techno-Functional, Nutritional and Environmental Performance of Protein Isolates from Blue Lupin and White Lupin. In *Foods* (Vol. 9, Issue 2). https://doi.org/10.3390/foods9020230
- Vorholt, J. A. (2012). Microbial life in the phyllosphere. *Nature Reviews Microbiology*, 10(12), 828–840. https://doi.org/10.1038/nrmicro2910
- Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E. E., & van der Heijden, M. G. A. (2019). Fungalbacterial diversity and microbiome complexity predict ecosystem functioning. *Nature Communications*, 10(1), 4841. https://doi.org/10.1038/s41467-019-12798-y
- Wagner, M. R., Lundberg, D. S., Coleman-Derr, D., Tringe, S. G., Dangl, J. L., & Mitchell-Olds, T. (2014). Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. *Ecology Letters*, 17(6), 717–726. https://doi.org/https://doi.org/10.1111/ele.12276

- Wagner, M. R., Lundberg, D. S., del Rio, T. G., Tringe, S. G., Dangl, J. L., & Mitchell-Olds, T. (2016). Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. *Nature Communications*, 7(1), 12151. https://doi.org/10.1038/ncomms12151
- Wahdan, S. F. M., Tanunchai, B., Wu, Y. T., Sansupa, C., Schädler, M., Dawoud, T. M., Buscot, F., & Purahong, W. (2021). Deciphering *Trifolium pratense* L. holobiont reveals a microbiome resilient to future climate changes. *MicrobiologyOpen*, 10(4), e1217. https://doi.org/https://doi.org/10.1002/mbo3.1217
- Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils—effect of variations in digestion conditions and of inorganic soil constituents. *Soil Science*, *63*(4). https://journals.lww.com/soilsci/Fulltext/1947/04000/A_CRITICAL_EXAMINATION_OF_A_RAPID_M ETHOD_FOR.1.aspx
- Wang, G., Bi, M., Liang, B., Jiang, J., & Li, S. (2011). Pseudoxanthomonas jiangsuensis sp. Nov., a DDT-Degrading Bacterium Isolated from a Long-Term DDT-Polluted Soil. Current Microbiology, 62(6), 1760–1766. https://doi.org/10.1007/s00284-011-9925-1
- Wang, J., Shen, J., Wu, Y., Tu, C., Soininen, J., Stegen, J. C., He, J., Liu, X., Zhang, L., & Zhang, E. (2013). Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. *The ISME Journal*, 7(7), 1310–1321. https://doi.org/10.1038/ismej.2013.30
- Wang, L., Gong, L., Gan, D., Li, X., Yao, J., Wang, L., Qu, J., Cong, J., & Zhang, Y. (2022). Diversity, function and assembly of the *Trifolium repens* L. root-associated microbiome under lead stress. *Journal* of *Hazardous Materials*, 438, 129510. https://doi.org/https://doi.org/10.1016/j.jhazmat.2022.129510
- Whelan, F. J., Waddell, B., Syed, S. A., Shekarriz, S., Rabin, H. R., Parkins, M. D., & Surette, M. G. (2020). Culture-enriched metagenomic sequencing enables in-depth profiling of the cystic fibrosis lung microbiota. *Nature Microbiology*, 5(2), 379–390. https://doi.org/10.1038/s41564-019-0643-y
- Whitman, W. B., Coleman, D. C., & Wiebe, W. J. (1998). Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences, 95(12), 6578–6583. https://doi.org/10.1073/pnas.95.12.6578
- Wickham, H., & Wickham, H. (2016). Data analysis. Springer.
- Williams, A., & de Vries, F. T. (2020). Plant root exudation under drought: implications for ecosystem functioning. New Phytologist, 225(5), 1899–1905. https://doi.org/https://doi.org/10.1111/nph.16223
- Wippel, K., Tao, K., Niu, Y., Zgadzaj, R., Kiel, N., Guan, R., Dahms, E., Zhang, P., Jensen, D. B., Logemann, E., Radutoiu, S., Schulze-Lefert, P., & Garrido-Oter, R. (2021). Host preference and invasiveness of commensal bacteria in the *Lotus* and *Arabidopsis* root microbiota. *Nature Microbiology*, 6(9), 1150–1162. https://doi.org/10.1038/s41564-021-00941-9
- Woese, C. R., Kandler, O., & Wheelis, M. L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences, 87(12), 4576–4579. https://doi.org/10.1073/pnas.87.12.4576
- Wolkovich, E. M., Cook, B. I., Allen, J. M., Crimmins, T. M., Betancourt, J. L., Travers, S. E., Pau, S., Regetz, J., Davies, T. J., Kraft, N. J. B., Ault, T. R., Bolmgren, K., Mazer, S. J., McCabe, G. J.,

McGill, B. J., Parmesan, C., Salamin, N., Schwartz, M. D., & Cleland, E. E. (2012). Warming experiments underpredict plant phenological responses to climate change. *Nature*, *485*(7399), 494–497. https://doi.org/10.1038/nature11014

- Woo, O. G., Kim, H., Kim, J. S., Keum, H. L., Lee, K. C., Sul, W. J., & Lee, J. H. (2020). Bacillus subtilis strain GOT9 confers enhanced tolerance to drought and salt stresses in Arabidopsis thaliana and Brassica campestris. Plant Physiology and Biochemistry, 148, 359–367. https://doi.org/https://doi.org/10.1016/j.plaphy.2020.01.032
- Xie, S. S., Wu, H. J., Zang, H. Y., Wu, L. M., Zhu, Q. Q., & Gao, X. W. (2014). Plant Growth Promotion by Spermidine-Producing *Bacillus subtilis* OKB105. *Molecular Plant-Microbe Interactions*®, 27(7), 655– 663. https://doi.org/10.1094/MPMI-01-14-0010-R
- Yan, L. (2023). ggvenn: Draw Venn Diagram by "ggplot2" (R package version 0.1.10). https://cran.rproject.org/package=ggvenn
- Yan, Y., Kuramae, E. E., de Hollander, M., Klinkhamer, P. G. L., & van Veen, J. A. (2017). Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. *The ISME Journal*, 11(1), 56–66. https://doi.org/10.1038/ismej.2016.108
- Yang, G., Liu, N., Lu, W., Wang, S., Kan, H., Zhang, Y., Xu, L., & Chen, Y. (2014). The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. *Journal of Ecology*, 102(4), 1072–1082. https://doi.org/https://doi.org/10.1111/1365-2745.12249
- Yang, J., Lan, L., Jin, Y., Yu, N., Wang, D., & Wang, E. (2022). Mechanisms underlying legume– rhizobium symbioses. Journal of Integrative Plant Biology, 64(2), 244–267. https://doi.org/https://doi.org/10.1111/jipb.13207
- Yang, R., Shi, Q., Huang, T., Yan, Y., Li, S., Fang, Y., Li, Y., Liu, L., Liu, L., Wang, X., Peng, Y., Fan, J., Zou, L., Lin, S., & Chen, G. (2023). The natural pyrazolotriazine pseudoiodinine from *Pseudomonas mosselii* 923 inhibits plant bacterial and fungal pathogens. *Nature Communications*, 14(1), 734. https://doi.org/10.1038/s41467-023-36433-z
- Yeoh, Y. K., Dennis, P. G., Paungfoo-Lonhienne, C., Weber, L., Brackin, R., Ragan, M. A., Schmidt, S., & Hugenholtz, P. (2017). Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. *Nature Communications*, 8(1), 215. https://doi.org/10.1038/s41467-017-00262-8
- Yongjun, W., & Xiang, G. (2021). Complete Genome Sequence of *Curtobacterium* sp. Strain YC1, Isolated from the Surface of Nostoc flagelliforme Colonies in Yinchuan, Ningxia, China. *Microbiology Resource Announcements*, 10(10), 10.1128/mra.01467-20. https://doi.org/10.1128/mra.01467-20
- Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. *International Journal of Systematic and Evolutionary Microbiology*, 67(5), 1613–1617. https://doi.org/10.1099/ijsem.0.001755
- Yu, H., Deng, Y., He, Z., Van Nostrand, J. D., Wang, S., Jin, D., Wang, A., Wu, L., Wang, D., Tai, X., &
 Zhou, J. (2018). Elevated CO₂ and Warming Altered Grassland Microbial Communities in Soil Top-

Layers.FrontiersinMicrobiology(Vol.9,p.1790).https://www.frontiersin.org/article/10.3389/fmicb.2018.01790

- Zamioudis, C., Korteland, J., Van Pelt, J. A., van Hamersveld, M., Dombrowski, N., Bai, Y., Hanson, J., Van Verk, M. C., Ling, H.-Q., Schulze-Lefert, P., & Pieterse, C. M. J. (2015). Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in *Arabidopsis* roots during onset of induced systemic resistance and iron-deficiency responses. *The Plant Journal*, 84(2), 309–322. https://doi.org/https://doi.org/10.1111/tpj.12995
- Zander, P., Amjath-Babu, T. S., Preissel, S., Reckling, M., Bues, A., Schläfke, N., Kuhlman, T., Bachinger, J., Uthes, S., Stoddard, F., Murphy-Bokern, D., & Watson, C. (2016). Grain legume decline and potential recovery in European agriculture: a review. Agronomy for Sustainable Development, 36(2), 26. https://doi.org/10.1007/s13593-016-0365-y
- Zarraonaindia, I., Owens, S. M., Weisenhorn, P., West, K., Hampton-Marcell, J., Lax, S., Bokulich, N.
 A., Mills, D. A., Martin, G., Taghavi, S., van der Lelie, D., & Gilbert, J. A. (2015). The Soil Microbiome Influences Grapevine-Associated Microbiota. *MBio*, 6(2), e02527-14. https://doi.org/10.1128/mBio.02527-14
- Zhang, C., Cleveland, K., Schnoll-Sussman, F., McClure, B., Bigg, M., Thakkar, P., Schultz, N., Shah,
 M. A., & Betel, D. (2015). Identification of low abundance microbiome in clinical samples using whole genome sequencing. *Genome Biology*, *16*(1), 265. https://doi.org/10.1186/s13059-015-0821-z
- Zhang, J., Liu, Y.-X., Guo, X., Qin, Y., Garrido-Oter, R., Schulze-Lefert, P., & Bai, Y. (2021). Highthroughput cultivation and identification of bacteria from the plant root microbiota. *Nature Protocols*, 16(2), 988–1012. https://doi.org/10.1038/s41596-020-00444-7
- Zhang, J., Liu, Y.-X., Zhang, N., Hu, B., Jin, T., Xu, H., Qin, Y., Yan, P., Zhang, X., Guo, X., Hui, J., Cao, S., Wang, X., Wang, C., Wang, H., Qu, B., Fan, G., Yuan, L., Garrido-Oter, R., ... Bai, Y. (2019). NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. *Nature Biotechnology*, *37*(6), 676–684. https://doi.org/10.1038/s41587-019-0104-4
- Zhang, P., Spaepen, S., Bai, Y., Hacquard, S., & Garrido-Oter, R. (2021). Rbec: a tool for analysis of amplicon sequencing data from synthetic microbial communities. *ISME Communications*, 1(1), 73. https://doi.org/10.1038/s43705-021-00077-1
- Zhao, K., Ma, B., Xu, Y., Stirling, E., & Xu, J. (2021). Light exposure mediates circadian rhythms of rhizosphere microbial communities. *The ISME Journal*, 15(9), 2655–2664. https://doi.org/10.1038/s41396-021-00957-3
- Zhao, Y., Zhang, R., Jiang, K.-W., Qi, J., Hu, Y., Guo, J., Zhu, R., Zhang, T., Egan, A. N., Yi, T.-S., Huang, C.-H., & Ma, H. (2021). Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in *Fabaceae*. *Molecular Plant*, 14(5), 748–773. https://doi.org/https://doi.org/10.1016/j.molp.2021.02.006
- Zhou, Y., Coventry, D. R., Gupta, V. V. S. R., Fuentes, D., Merchant, A., Kaiser, B. N., Li, J., Wei, Y., Liu, H., Wang, Y., Gan, S., & Denton, M. D. (2020). The preceding root system drives the composition and function of the rhizosphere microbiome. *Genome Biology*, 21(1), 89. https://doi.org/10.1186/s13059-020-01999-0

- Zhou, Y., Liang, Y., Lynch, K. H., Dennis, J. J., & Wishart, D. S. (2011). PHAST: A Fast Phage Search Tool. Nucleic Acids Research, 39(suppl_2), W347–W352. https://doi.org/10.1093/nar/gkr485
- Zhou, Z., Wang, C., & Luo, Y. (2020). Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. *Nature Communications*, 11(1), 3072. https://doi.org/10.1038/s41467-020-16881-7
- Zhuang, L., Li, Y., Wang, Z., Yu, Y., Zhang, N., Yang, C., Zeng, Q., & Wang, Q. (2021). Synthetic community with six *Pseudomonas* strains screened from garlic rhizosphere microbiome promotes plant growth. *Microbial Biotechnology*, 14(2), 488–502. https://doi.org/https://doi.org/10.1111/1751-7915.13640

Las redes de co-ocurrencia y co-exclusión en formato digital para una mejor visualización pueden encontrarse en el siguiente enlace: https://drive.google.com/drive/folders/1AEsGu_2d-S3D35K9EyyMCYBuiyDp1Cw9?usp=sharing

Figura S 1. PCoA de las diferencias Bray-Curtis de las comunidades bacterianas en los compartimentos de la planta y los suelos. Representación según las condiciones de cultivo y la localización de las muestras.

Figura S 2. Diagramas de Venn con la distribución de las OTUs en cada tipo de suelo. A) En Cabrerizos, en cada condición de cultivo cada uno de los compartimentos de la planta, y B) en Salamanca.

Figura S 3. Gráficos de barras de la abundancia bacteriana a nivel de género de los suelos y los compartimentos de la planta.

Figura S 4. Gráficos de barras de la abundancia fúngica a nivel de género de los suelos y la rizosfera.

	C_1	C_2	C_3	S_1	S_2	S_3
Mn (mg/kg)	5,22	6,08	4,49	11,41	8,33	7,60
Fe (mg/kg)	2,77	1,59	1,68	8,03	6,81	5,51
Cu (mg/kg)	0,75	0,83	0,51	0,26	0,21	0,31
Zn (mg/kg)	0,62	0,44	0,39	0,13	0,08	0,06
P (mg/kg)	2,84	2,10	2,69	4,99	4,33	5,09
Mg (mg/kg)	132,30	226,20	199,50	260,30	249,25	245,50
K (mg/kg)	149,55	299,55	138,75	25,10	21,20	20,90
Ca (mg/kg)	1974,25	3741,10	2865,70	1146,85	1136,15	1091,40
Materia orgánica (%)	0,96	0,94	0,91	0,70	0,68	0,65
Carbono orgánico (%)	0,55	0,54	0,53	0,41	0,39	0,37
N (%)	0,06	0,06	0,06	0,10	0,10	0,10
рН	7,98	7,97	8,00	6,62	6,66	6,69
Arena (%)	79,96	79,96	79,96	46,09	46,09	46,09
Limo (%)	6,07	6,07	6,07	38,54	38,54	38,54
Arcilla (%)	13,97	13,97	13,97	15,37	15,37	15,37

Tabla S 1. Propiedades físico-químicas de los suelos medidas por triplicado. La letra C corresponde a la localización de Cabrerizos y la letra S a la localización de Salamanca.

Tabla S 2. Condiciones meteorológicas en la toma de muestras. Se muestran las condiciones meteorológicas del día concreto en que se recogieron las muestras, así como la media del mes correspondiente.

	Мауо	2020	Noviembre	2020	Febrero	2021	Julio	2021
	07-may	Media	07-nov	Media	07-feb	Media	30-jul	Media
Temperatura media (ºC)	17,6	16,4	10,6	8,9	4,7	7,5	21,1	20,2
Humedad relativa media (%)	61	62,7	84	80,4	85	78,3	47	52,5
Precipitación (mm)	0	34,29	5,33	24,89	1,78	79	0	17,02
Visibilidad media (Km)	10	10	9,8	9	9,8	9,6	10	9,7
Velocidad viento (Km/h)	7,2	9,6	11,5	8	13,1	14,3	10,9	8,8
Días Iluvia	-	14	-	15	-	11	-	4
Días tormenta	-	1	-	10	-	1	-	1
Días nieve	-	-	-	-	-	1	-	-
Días niebla	-	-	-	-	-	2	-	-

Tabla S 3. Información de las muestras y los metagenomas del suelo. En esta tabla se describe en detalle la información de las muestras de suelo (cada una por triplicado), de la localización que fueron recogidas y en la estación climática. Además, se da información sobre los metagenomas: las lecturas totales válidas, las lecturas antes de ser filtradas, los amplicones eliminados de baja calidad, no objetivo y quiméricos, y la longitud media de las lecturas.

Sample	Compartment	Location	Season	Amplicon	Total valid reads	Total reads after pre-filter	Removed_low quality amplicons	Removed_non- target amplicons	Removed_chimeric amplicons	Average read lengths
SPC_1_B	Soil	Cabrerizos	Spring	Bacteria	32124	35419	2812	130	353	419,5
SPC_2_B	Soil	Cabrerizos	Spring	Bacteria	77457	84131	3036	310	3328	419,4
SPC_3_B	Soil	Cabrerizos	Spring	Bacteria	74613	79866	2799	197	2257	419,3
SVC_1_B	Soil	Cabrerizos	Summer	Bacteria	34470	37651	2560	169	452	417,9
SVC_2_B	Soil	Cabrerizos	Summer	Bacteria	36309	39347	2257	144	637	418,5
SVC_3_B	Soil	Cabrerizos	Summer	Bacteria	32039	35091	2505	60	487	419,1
SOC_1_B	Soil	Cabrerizos	Autumn	Bacteria	59055	62613	2377	351	830	419,2
SOC_2_B	Soil	Cabrerizos	Autumn	Bacteria	54990	58365	2136	251	988	419,8
SOC_3_B	Soil	Cabrerizos	Autumn	Bacteria	36564	40000	2800	141	495	420,4
SIC_1_B	Soil	Cabrerizos	Winter	Bacteria	29762	33003	2705	70	466	418,8
SIC_2_B	Soil	Cabrerizos	Winter	Bacteria	31269	34874	3104	108	393	419,8
SIC_3_B	Soil	Cabrerizos	Winter	Bacteria	36721	40632	3039	145	727	419
SPS_1_B	Soil	Salamanca	Spring	Bacteria	21780	24829	2679	96	274	419,9
SPS_2_B	Soil	Salamanca	Spring	Bacteria	62320	73828	3177	334	7997	419,2
SPS_3_B	Soil	Salamanca	Spring	Bacteria	67308	77068	3622	494	5644	418,9
SVS_1_B	Soil	Salamanca	Summer	Bacteria	30143	34320	3534	265	378	416,2
SVS_2_B	Soil	Salamanca	Summer	Bacteria	33128	35894	1934	458	374	415,6
SVS_3_B	Soil	Salamanca	Summer	Bacteria	33229	35944	2088	144	483	415,9
SOS_1_B	Soil	Salamanca	Autumn	Bacteria	31256	33451	1818	37	340	420,4
SOS_2_B	Soil	Salamanca	Autumn	Bacteria	65827	70510	3005	39	1639	419,3

SOS_3_B	Soil	Salamanca	Autumn	Bacteria	56447	60733	3074	56	1156	419,4
SIS_1_B	Soil	Salamanca	Winter	Bacteria	25859	28310	1912	142	397	418,7
SIS_2_B	Soil	Salamanca	Winter	Bacteria	28237	30358	1680	119	322	416,4
SIS_3_B	Soil	Salamanca	Winter	Bacteria	31926	34458	2014	164	354	417,9
SPC_1_E	Soil	Cabrerizos	Spring	Eukarya	36245	38290	172	1838	35	336,8
SPC_2_E	Soil	Cabrerizos	Spring	Eukarya	36863	37066	138	0	65	379,1
SPC_3_E	Soil	Cabrerizos	Spring	Eukarya	31414	31626	145	0	67	349,3
SVC_1_E	Soil	Cabrerizos	Summer	Eukarya	36386	38402	207	1653	156	352,8
SVC_2_E	Soil	Cabrerizos	Summer	Eukarya	39387	41491	220	1716	168	335,8
SVC_3_E	Soil	Cabrerizos	Summer	Eukarya	26347	27345	160	782	56	347,6
SOC_1_E	Soil	Cabrerizos	Autumn	Eukarya	12768	14195	144	0	1283	362,9
SOC_2_E	Soil	Cabrerizos	Autumn	Eukarya	25039	27480	176	0	2265	358,1
SOC_3_E	Soil	Cabrerizos	Autumn	Eukarya	18214	19190	85	364	527	353,3
SIC_1_E	Soil	Cabrerizos	Winter	Eukarya	32553	36224	386	3231	54	356,5
SIC_2_E	Soil	Cabrerizos	Winter	Eukarya	28874	33027	255	3820	78	336,4
SIC_3_E	Soil	Cabrerizos	Winter	Eukarya	38301	42730	300	4068	61	365,9
SPS_1_E	Soil	Salamanca	Spring	Eukarya	32604	34211	202	1352	53	371,8
SPS_2_E	Soil	Salamanca	Spring	Eukarya	49717	51073	440	0	916	350,6
SPS_3_E	Soil	Salamanca	Spring	Eukarya	43497	44790	444	0	849	352
SVS_1_E	Soil	Salamanca	Summer	Eukarya	44845	46671	240	1404	182	328,5
SVS_2_E	Soil	Salamanca	Summer	Eukarya	40543	43016	186	2155	132	334,8
SVS_3_E	Soil	Salamanca	Summer	Eukarya	57564	60137	354	1664	555	343,2
SOS_1_E	Soil	Salamanca	Autumn	Eukarya	22716	24972	195	1898	163	346,2

SOS_2_E	Soil	Salamanca	Autumn	Eukarya	36813	37433	455	0	165	344,9
SOS_3_E	Soil	Salamanca	Autumn	Eukarya	37778	38401	327	0	296	344
SIS_1_E	Soil	Salamanca	Winter	Eukarya	18358	27711	345	8451	557	356,6
SIS_2_E	Soil	Salamanca	Winter	Eukarya	29697	33671	258	3702	14	346,6
SIS_3_E	Soil	Salamanca	Winter	Eukarya	21101	30764	306	9281	76	351,8

Tabla S 4. Información de las muestras y los metagenomas de los compartimentos de la planta. En esta tabla se describe en detalle la información de las muestras de los compartimentos de la planta (cada una por triplicado), de la localización que fueron recogidas (Cabrerizos o Salamanca) y en las condiciones de cultivo (campo o invernadero). Además, se da información sobre los metagenomas: las lecturas totales válidas, las lecturas antes de ser filtradas, los amplicones eliminados de baja calidad, no objetivo y quiméricos, y la longitud media de las lecturas.

Sample	Compartment	Location	Conditions	Amplicon	Total valid reads	Total reads after pre-filter	Removed_low quality amplicons	Removed_non- target amplicons	Removed_chimeric amplicons	Average read lengths
RPC_1_B	Rhizosphere	Cabrerizos	Field	Bacteria	74997	86016	9493	518	1008	416,5
RPC_2_B	Rhizosphere	Cabrerizos	Field	Bacteria	70115	80039	8226	801	897	416,2
RPC_3_B	Rhizosphere	Cabrerizos	Field	Bacteria	55314	77960	2094	11887	8665	411,4
ROC_1_B	Rhizosphere	Cabrerizos	Greenhouse	Bacteria	33719	37148	2679	136	614	419,4
ROC_2_B	Rhizosphere	Cabrerizos	Greenhouse	Bacteria	66683	77710	2157	1098	7772	418,1
ROC_3_B	Rhizosphere	Cabrerizos	Greenhouse	Bacteria	54442	60368	2300	379	3247	418,3
RPS_1_B	Rhizosphere	Salamanca	Field	Bacteria	30971	36303	1651	3376	305	409,3
RPS_2_B	Rhizosphere	Salamanca	Field	Bacteria	55836	68682	6353	5428	1065	410,9
RPS_3_B	Rhizosphere	Salamanca	Field	Bacteria	50455	70648	5181	14510	502	408,3
ROS_1_B	Rhizosphere	Salamanca	Greenhouse	Bacteria	32807	36187	2709	216	455	418,4
ROS_2_B	Rhizosphere	Salamanca	Greenhouse	Bacteria	61745	70704	1503	2275	5181	419,6
ROS_3_B	Rhizosphere	Salamanca	Greenhouse	Bacteria	52700	61596	1453	5031	2412	418,8
RAPC_1_B	Roots	Cabrerizos	Field	Bacteria	3345	38416	180	34719	172	404,9
RAPC_2_B	Roots	Cabrerizos	Field	Bacteria	1240	36573	70	35105	158	404,3
RAPC_3_B	Roots	Cabrerizos	Field	Bacteria	1903	41162	80	38966	213	404,5
RAOC_1_B	Roots	Cabrerizos	Greenhouse	Bacteria	17601	35199	1211	15191	1196	412,3
RAOC_2_B	Roots	Cabrerizos	Greenhouse	Bacteria	24141	40246	895	10862	4348	416,7
RAOC_3_B	Roots	Cabrerizos	Greenhouse	Bacteria	12385	39868	428	23577	3478	408,6
RAPS_1_B	Roots	Salamanca	Field	Bacteria	2027	42217	171	39800	219	404,7

RAPS_2_B	Roots	Salamanca	Field	Bacteria	1915	40746	147	38518	166	404,6
RAPS_3_B	Roots	Salamanca	Field	Bacteria	3570	34879	158	31024	127	405,6
RAOS_1_B	Roots	Salamanca	Greenhouse	Bacteria	3772	41467	121	37481	93	405,2
RAOS_2_B	Roots	Salamanca	Greenhouse	Bacteria	15609	36041	723	16535	3174	409,7
RAOS_3_B	Roots	Salamanca	Greenhouse	Bacteria	15630	39704	769	21193	2112	410,3
NPC_1_B	Nodules	Cabrerizos	Field	Bacteria	33128	34483	259	1025	71	402,1
NPC_2_B	Nodules	Cabrerizos	Field	Bacteria	27799	29251	336	1014	102	402,2
NPC_3_B	Nodules	Cabrerizos	Field	Bacteria	30723	31565	294	505	43	402,1
NOC_1_B	Nodules	Cabrerizos	Greenhouse	Bacteria	29516	31491	638	1266	71	406,9
NOC_2_B	Nodules	Cabrerizos	Greenhouse	Bacteria	30047	33986	437	3288	214	406,1
NOC_3_B	Nodules	Cabrerizos	Greenhouse	Bacteria	30886	37790	478	6220	206	406,6
NPS_1_B	Nodules	Salamanca	Field	Bacteria	34195	34962	279	399	89	402,3
NPS_2_B	Nodules	Salamanca	Field	Bacteria	32888	40657	395	7185	189	402,4
NPS_3_B	Nodules	Salamanca	Field	Bacteria	40121	41306	419	638	128	402,3
NOS_1_B	Nodules	Salamanca	Greenhouse	Bacteria	20513	37899	356	16783	247	404
NOS_2_B	Nodules	Salamanca	Greenhouse	Bacteria	17206	35581	335	17512	528	404,8
NOS_3_B	Nodules	Salamanca	Greenhouse	Bacteria	21704	32397	393	10083	217	404,6
HPC_1_B	Leaves	Cabrerizos	Field	Bacteria	83	49112	44	48870	115	404
HPC_2_B	Leaves	Cabrerizos	Field	Bacteria	173	43345	22	43047	103	404
HPC_3_B	Leaves	Cabrerizos	Field	Bacteria	153	43084	24	42764	143	404
HOC_1_B	Leaves	Cabrerizos	Greenhouse	Bacteria	110	28979	6	28742	121	404
HOC_2_B	Leaves	Cabrerizos	Greenhouse	Bacteria	81	31872	5	31710	76	404
HOC_3_B	Leaves	Cabrerizos	Greenhouse	Bacteria	145	39500	5	39245	105	404

HPS_1_B	Leaves	Salamanca	Field	Bacteria	68	38372	28	38188	88	404
HPS_2_B	Leaves	Salamanca	Field	Bacteria	61	31354	23	32197	73	404
HPS_3_B	Leaves	Salamanca	Field	Bacteria	89	41164	16	40948	111	404
HOS_1_B	Leaves	Salamanca	Greenhouse	Bacteria	97	39318	5	39122	94	404
HOS_2_B	Leaves	Salamanca	Greenhouse	Bacteria	243	32572	16	32245	68	404,1
HOS_3_B	Leaves	Salamanca	Greenhouse	Bacteria	55	34861	2	34692	112	404
RPC_1_E	Rhizosphere	Cabrerizos	Field	Eukarya	62788	63039	224	0	27	341,5
RPC_2_E	Rhizosphere	Cabrerizos	Field	Eukarya	54705	54905	165	0	35	349,6
RPC_3_E	Rhizosphere	Cabrerizos	Field	Eukarya	68797	69015	200	0	18	363,3
ROC_1_E	Rhizosphere	Cabrerizos	Greenhouse	Eukarya	29533	36454	173	6734	25	359,9
ROC_2_E	Rhizosphere	Cabrerizos	Greenhouse	Eukarya	50684	50949	252	0	13	363
ROC_3_E	Rhizosphere	Cabrerizos	Greenhouse	Eukarya	47429	47738	296	0	13	364,6
RPS_1_E	Rhizosphere	Salamanca	Field	Eukarya	41533	46784	135	5064	52	362,2
RPS_2_E	Rhizosphere	Salamanca	Field	Eukarya	59069	59237	125	0	43	361,6
RPS_3_E	Rhizosphere	Salamanca	Field	Eukarya	53376	53508	101	0	31	363,1
ROS_1_E	Rhizosphere	Salamanca	Greenhouse	Eukarya	27607	30977	161	3195	14	353,2
ROS_2_E	Rhizosphere	Salamanca	Greenhouse	Eukarya	59294	59605	304	0	7	363,5
ROS_3_E	Rhizosphere	Salamanca	Greenhouse	Eukarya	52893	53102	201	0	8	362,8

Sample	Compartment	Location	Season	Amplicon	No OTUs fund in the sample	Good's coverage of the library (%)	ACE	Chao1	Jackknife	Shannon	Simpson	DI_Phylogenetic diversity
SPC_1_B	Soil	Cabrerizos	Spring	Bacteria	2902	98,3	3277,1	3122,9	3463	6,558	0,005	3676
SPC_2_B	Soil	Cabrerizos	Spring	Bacteria	4216	99,5	4403,6	4295,1	4613	6,863	0,003	4341
SPC_3_B	Soil	Cabrerizos	Spring	Bacteria	4163	99,5	4364,1	4241,8	4566	6,842	0,003	4332
SVC_1_B	Soil	Cabrerizos	Summer	Bacteria	3204	98,1	3666	3505,2	3874	6,623	0,009	3978
SVC_2_B	Soil	Cabrerizos	Summer	Bacteria	2847	98,4	3252,4	3117,4	3428	6,511	0,006	3584
SVC_3_B	Soil	Cabrerizos	Summer	Bacteria	2790	98,2	3188	3068,3	3366	6,643	0,004	3554
SOC_1_B	Soil	Cabrerizos	Autumn	Bacteria	3568	99,3	3767,7	3664,6	3958	6,798	0,003	3956
SOC_2_B	Soil	Cabrerizos	Autumn	Bacteria	3278	99,4	3438,1	3354,9	3611	6,704	0,004	3705
SOC_3_B	Soil	Cabrerizos	Autumn	Bacteria	2716	98,6	3051,9	2931	3227	6,204	0,012	3461
SIC_1_B	Soil	Cabrerizos	Winter	Bacteria	3896	97,4	4397,6	4194,3	4670	7,225	0,002	4457
SIC_2_B	Soil	Cabrerizos	Winter	Bacteria	3824	97,7	4267,3	4099,5	4548	7,138	0,003	4378
SIC_3_B	Soil	Cabrerizos	Winter	Bacteria	4218	98	4641,9	4466,7	4936	7,248	0,002	4668
SPS_1_B	Soil	Salamanca	Spring	Bacteria	2731	96,9	3251,5	3072	3412	6,576	0,007	3443
SPS_2_B	Soil	Salamanca	Spring	Bacteria	4936	99,1	5220,2	5044,6	5494	6,868	0,005	4691
SPS_3_B	Soil	Salamanca	Spring	Bacteria	5377	99,2	5660,5	5485,7	5946	7,076	0,004	5046
SVS_1_B	Soil	Salamanca	Summer	Bacteria	3398	97,5	3913,9	3750	4141	6,918	0,005	3923
SVS_2_B	Soil	Salamanca	Summer	Bacteria	2980	98,3	3351,6	3214,5	3544	6,577	0,008	3488
SVS_3_B	Soil	Salamanca	Summer	Bacteria	3341	98	3799,3	3658,1	4020	6,977	0,003	3862
SOS_1_B	Soil	Salamanca	Autumn	Bacteria	1902	98,6	2260,2	2165,8	2353,1	5,788	0,012	2742
SOS_2_B	Soil	Salamanca	Autumn	Bacteria	3682	99,2	3963,4	3819,6	4189	6,461	0,005	4112

Tabla S 5. Información de la diversidad alfa de las muestras y los metagenomas del suelo. En esta tabla se describe en detalle la información de las muestras de suelo (cada una por triplicado), y los distintos índices de diversidad alfa que se calcularon.

SOS_3_B	Soil	Salamanca	Autumn	Bacteria	3414	99,1	3712,6	3561,3	3922	6,434	0,005	3867
SIS_1_B	Soil	Salamanca	Winter	Bacteria	2576	97,6	3056,9	2901,2	3196	6,374	0,009	3376
SIS_2_B	Soil	Salamanca	Winter	Bacteria	2071	98,5	2365,8	2284,5	2496	6,218	0,007	2659
SIS_3_B	Soil	Salamanca	Winter	Bacteria	2628	98,3	3006,8	2861,6	3165	6,527	0,005	3224
SPC_1_E	Soil	Cabrerizos	Spring	Eukarya	406	99,9	428,5	418	449	3,159	0,108	558
SPC_2_E	Soil	Cabrerizos	Spring	Eukarya	245	99,9	253,4	249,6	265	1,154	0,688	387
SPC_3_E	Soil	Cabrerizos	Spring	Eukarya	374	99,9	380,3	376,4	391	3,644	0,069	499
SVC_1_E	Soil	Cabrerizos	Summer	Eukarya	555	99,9	574,3	564,8	598	3,91	0,063	757
SVC_2_E	Soil	Cabrerizos	Summer	Eukarya	483	99,8	521,3	512,1	550	3,595	0,067	711
SVC_3_E	Soil	Cabrerizos	Summer	Eukarya	402	99,8	444,3	435	466	3,982	0,041	635
SOC_1_E	Soil	Cabrerizos	Autumn	Eukarya	363	99,8	370,9	366,9	385	4,141	0,054	546
SOC_2_E	Soil	Cabrerizos	Autumn	Eukarya	418	99,9	429,3	423,3	446	3,96	0,062	567
SOC_3_E	Soil	Cabrerizos	Autumn	Eukarya	239	99,8	255,7	250,3	271	2,504	0,205	454
SIC_1_E	Soil	Cabrerizos	Winter	Eukarya	752	99,7	816	793,4	859	4,502	0,036	928
SIC_2_E	Soil	Cabrerizos	Winter	Eukarya	455	99,8	496,1	479,5	523	3,04	0,159	641
SIC_3_E	Soil	Cabrerizos	Winter	Eukarya	598	99,8	630,5	615,4	662	3,324	0,168	731
SPS_1_E	Soil	Salamanca	Spring	Eukarya	338	99,8	384,3	370,5	404	2,461	0,306	591
SPS_2_E	Soil	Salamanca	Spring	Eukarya	813	99,9	833	819,2	859	4,419	0,044	900
SPS_3_E	Soil	Salamanca	Spring	Eukarya	854	99,8	890,2	869,3	930	4,435	0,033	941
SVS_1_E	Soil	Salamanca	Summer	Eukarya	673	99,8	725,6	704,2	759	4,58	0,024	943
SVS_2_E	Soil	Salamanca	Summer	Eukarya	426	99,8	470,8	451,4	489	3,586	0,095	645
SVS_3_E	Soil	Salamanca	Summer	Eukarya	705	99,8	757,2	740,1	798	4,337	0,035	957
SOS_1_E	Soil	Salamanca	Autumn	Eukarya	395	99,8	420,3	406	441	3,732	0,051	596

SOS_2_E	Soil	Salamanca	Autumn	Eukarya	797	99,9	814,7	803,5	842	4,67	0,023	885
SOS_3_E	Soil	Salamanca	Autumn	Eukarya	679	99,9	692,6	684	715	4,355	0,03	738
SIS_1_E	Soil	Salamanca	Winter	Eukarya	636	99,5	682,5	660,5	720	4,383	0,039	774
SIS_2_E	Soil	Salamanca	Winter	Eukarya	364	99,8	400,9	390	418	3,909	0,039	496
SIS_3_E	Soil	Salamanca	Winter	Eukarya	512	99,8	533,3	522,8	559	4,497	0,024	597

Sample	Compartment	Location	Conditions	Amplicon	No OTUs fund in the sample	Good's coverage of the library (%)	ACE	Chao1	Jackknife	Shannon	Simpson	Phylogenetic diversity
RPC_1_B	Rhizosphere	Cabrerizos	Field	Bacteria	5106	99	5492	5279,7	5819	6,562	0,007	5349
RPC_2_B	Rhizosphere	Cabrerizos	Field	Bacteria	4994	99	5346,1	5153	5662	6,781	0,004	5411
RPC_3_B	Rhizosphere	Cabrerizos	Field	Bacteria	4338	98,9	4664,2	4493,3	4953	5,688	0,087	4868
ROC_1_B	Rhizosphere	Cabrerizos	Greenhouse	Bacteria	3808	97,8	4302,4	4117,2	4566	7,053	0,003	4581
ROC_2_B	Rhizosphere	Cabrerizos	Greenhouse	Bacteria	3904	99,2	4216,2	4048,1	4456	6,008	0,021	4424
ROC_3_B	Rhizosphere	Cabrerizos	Greenhouse	Bacteria	3744	98,9	4082,1	3909,8	4327	6,303	0,014	4354
RPS_1_B	Rhizosphere	Salamanca	Field	Bacteria	2812	97,3	3528,6	3308,5	3651,3	4,342	0,221	3761
RPS_2_B	Rhizosphere	Salamanca	Field	Bacteria	4419	98,8	4780,6	4591,6	5070	5,507	0,115	4951
RPS_3_B	Rhizosphere	Salamanca	Field	Bacteria	3736	98,9	4035,2	3887,3	4291	4,627	0,214	4184
ROS_1_B	Rhizosphere	Salamanca	Greenhouse	Bacteria	2817	98	3299,6	3134,7	3469	6,151	0,013	3530
ROS_2_B	Rhizosphere	Salamanca	Greenhouse	Bacteria	2194	99,4	2445	2339,5	2579	5,414	0,016	2916
ROS_3_B	Rhizosphere	Salamanca	Greenhouse	Bacteria	2484	99,2	2765,9	2659	2930	5,686	0,014	3282
RAPC_1_B	Roots	Cabrerizos	Field	Bacteria	212	97,7	305	287,1	303	3,166	0,138	468
RAPC_2_B	Roots	Cabrerizos	Field	Bacteria	166	93,5	442	267,3	282	3,702	0,062	384
RAPC_3_B	Roots	Cabrerizos	Field	Bacteria	146	97,3	201,4	191,7	200,9	3,247	0,102	327
RAOC_1_B	Roots	Cabrerizos	Greenhouse	Bacteria	845	98,4	1141,4	1083,2	1147,7	4,594	0,038	1375
RAOC_2_B	Roots	Cabrerizos	Greenhouse	Bacteria	829	98,9	1112,3	1046,6	1108,4	4,203	0,052	1329
RAOC_3_B	Roots	Cabrerizos	Greenhouse	Bacteria	587	98,5	789,9	746,1	783,3	4,608	0,027	1009
RAPS_1_B	Roots	Salamanca	Field	Bacteria	289	92,2	875,8	570,9	658,7	4,117	0,05	613
RAPS_2_B	Roots	Salamanca	Field	Bacteria	295	91,7	804,6	536,6	651	4,011	0,067	645

Tabla S 6. Información de la diversidad alfa de las muestras y los metagenomas de los compartimentos de la planta. En esta tabla se describe en detalle la información de las muestras de los compartimentos de la planta (cada una por triplicado), y los distintos índices de diversidad alfa que se calcularon.

RAPS_3_B	Roots	Salamanca	Field	Bacteria	235	96,9	543	375,1	416,4	3,316	0,099	539
RAOS_1_B	Roots	Salamanca	Greenhouse	Bacteria	265	97,6	367,3	350,2	363,2	3,814	0,074	572
RAOS_2_B	Roots	Salamanca	Greenhouse	Bacteria	383	99,1	561,4	524,2	592,4	3,367	0,097	701
RAOS_3_B	Roots	Salamanca	Greenhouse	Bacteria	465	99,1	610,5	555	601,6	4,119	0,031	799
NPC_1_B	Nodules	Cabrerizos	Field	Bacteria	53	99,9	157,8	145,6	151,9	0,027	0,995	130
NPC_2_B	Nodules	Cabrerizos	Field	Bacteria	70	99,9	107	93,3	101	0,1	0,977	179
NPC_3_B	Nodules	Cabrerizos	Field	Bacteria	65	99,9	91,6	81,4	93	0,049	0,99	164
NOC_1_B	Nodules	Cabrerizos	Greenhouse	Bacteria	241	99,7	377,4	330,7	343,2	1,071	0,588	510
NOC_2_B	Nodules	Cabrerizos	Greenhouse	Bacteria	430	99,5	623	575,7	604,2	1,601	0,556	840
NOC_3_B	Nodules	Cabrerizos	Greenhouse	Bacteria	501	99,5	670,2	644,3	683	1,974	0,469	902
NPS_1_B	Nodules	Salamanca	Field	Bacteria	80	99,9	138,8	123,3	122,9	0,099	0,976	207
NPS_2_B	Nodules	Salamanca	Field	Bacteria	97	99,9	165,2	144	146,1	0,108	0,977	255
NPS_3_B	Nodules	Salamanca	Field	Bacteria	52	99,9	110,3	94,3	94,1	0,08	0,977	144
NOS_1_B	Nodules	Salamanca	Greenhouse	Bacteria	189	99,7	246,7	227,5	245	0,821	0,77	427
NOS_2_B	Nodules	Salamanca	Greenhouse	Bacteria	200	99,6	275	271,5	295	1,351	0,604	416
NOS_3_B	Nodules	Salamanca	Greenhouse	Bacteria	149	99,8	208,8	194	198,5	0,976	0,7	308
HPC_1_B	Leaves	Cabrerizos	Field	Bacteria	20	79,5	173	88	96,5	1,699	0,316	67
HPC_2_B	Leaves	Cabrerizos	Field	Bacteria	22	89,6	193	98,5	107,2	1,598	0,3	83
HPC_3_B	Leaves	Cabrerizos	Field	Bacteria	22	88,9	98,3	67,3	67,6	1,468	0,415	74
HOC_1_B	Leaves	Cabrerizos	Greenhouse	Bacteria	38	80,9	61,4	64,3	73,3	2,844	0,128	126
HOC_2_B	Leaves	Cabrerizos	Greenhouse	Bacteria	26	85,2	41	32,6	38	2,516	0,16	97
HOC_3_B	Leaves	Cabrerizos	Greenhouse	Bacteria	43	81,4	153,6	78,1	76,9	2,45	0,252	149
HPS_1_B	Leaves	Salamanca	Field	Bacteria	15	80,9	106	54	58,4	1,105	0,605	62

HPS_2_B	Leaves	Salamanca	Field	Bacteria	16	78,7	370,1	94	64,1	1,713	0,31	71
HPS_3_B	Leaves	Salamanca	Field	Bacteria	17	87,6	127,1	44,5	74,1	1,819	0,252	66
HOS_1_B	Leaves	Salamanca	Greenhouse	Bacteria	19	89,7	59,9	25,4	29	1,886	0,245	70
HOS_2_B	Leaves	Salamanca	Greenhouse	Bacteria	50	87,7	159,5	93,5	101,2	2,423	0,226	148
HOS_3_B	Leaves	Salamanca	Greenhouse	Bacteria	21	80	31,3	34,8	45,7	2,514	0,131	79
RPC_1_E	Rhizosphere	Cabrerizos	Field	Eukarya	681	99,9	720	704,4	758	2,824	0,26	1047
RPC_2_E	Rhizosphere	Cabrerizos	Field	Eukarya	636	99,8	683,9	663,7	722	2,192	0,436	962
RPC_3_E	Rhizosphere	Cabrerizos	Field	Eukarya	299	99,9	342,1	320,1	359	0,329	0,927	552
ROC_1_E	Rhizosphere	Cabrerizos	Greenhouse	Eukarya	371	99,8	408	390,4	429	1,636	0,563	598
ROC_2_E	Rhizosphere	Cabrerizos	Greenhouse	Eukarya	297	99,9	314,1	303,3	330	0,667	0,834	424
ROC_3_E	Rhizosphere	Cabrerizos	Greenhouse	Eukarya	425	99,9	449,8	434	473	1,009	0,75	563
RPS_1_E	Rhizosphere	Salamanca	Field	Eukarya	299	99,8	374,2	363,6	390,4	0,44	0,898	575
RPS_2_E	Rhizosphere	Salamanca	Field	Eukarya	442	99,9	473,2	458,5	500	0,749	0,826	766
RPS_3_E	Rhizosphere	Salamanca	Field	Eukarya	321	99,9	344,2	333,5	367	0,489	0,883	538
ROS_1_E	Rhizosphere	Salamanca	Greenhouse	Eukarya	285	99,9	307,8	297,4	324	2,279	0,29	476
ROS_2_E	Rhizosphere	Salamanca	Greenhouse	Eukarya	306	99,9	321,3	312,8	338	0,994	0,695	360
ROS_3_E	Rhizosphere	Salamanca	Greenhouse	Eukarya	252	99,9	271,9	263,3	289	1,036	0,588	382

La tabla de similitudes de cada uno de los géneros, así como los árboles en formato digital pueden encontrarse en el siguiente enlace:

https://drive.google.com/drive/folders/1AEsGu_2d-S3D35K9EyyMCYBuiyDp1Cw9?usp=sharing

Tabla S 7. Listado de cepas bacterianas aisladas en este trabajo. Se describe la fuente de aislamiento, la localización y las condiciones de cultivo de dónde fueron recogidas las muestras, así como el medio de cultivo en el que se aislaron las cepas.

	Código	Fuente aislamiento	Localización	Condiciones de cultivo	Medio de aislamiento
1	LUF2	Hojas	Cabrerizos	Campo	NA
2	LUF3	Hojas	Cabrerizos	Campo	NA
3	LUF4	Hojas	Cabrerizos	Campo	NA
4	LUF5	Hojas	Cabrerizos	Campo	NA
5	LUF6	Hojas	Cabrerizos	Campo	NA
6	LUF7	Hojas	Cabrerizos	Campo	NA
7	LUF8	Hojas	Cabrerizos	Campo	NA
8	LUF9	Hojas	Cabrerizos	Campo	NA
9	LUF11	Hojas	Cabrerizos	Campo	NA
10	LUF13	Hojas	Cabrerizos	Campo	NA
11	LUF17	Hojas	Cabrerizos	Campo	NA
12	LUF18	Hojas	Cabrerizos	Campo	NA
13	LUF21	Hojas	Cabrerizos	Campo	NA
14	LUF22	Hojas	Cabrerizos	Campo	NA
15	LUF23	Hojas	Cabrerizos	Campo	NA
16	LUF24	Hojas	Cabrerizos	Campo	NA
17	LUF26	Hojas	Cabrerizos	Campo	NA
18	LUF27	Hojas	Cabrerizos	Campo	NA
19	LUF28	Hojas	Cabrerizos	Campo	NA
20	LUF32	Hojas	Cabrerizos	Campo	NA
21	LUF34	Hojas	Cabrerizos	Campo	NA
22	LUF35	Hojas	Cabrerizos	Campo	NA
23	LUF36	Hojas	Cabrerizos	Campo	NA
24	LUF37	Hojas	Cabrerizos	Campo	NA
25	LUF39	Hojas	Cabrerizos	Campo	NA
26	LUF40	Hojas	Cabrerizos	Campo	NA
27	LUF41	Hojas	Cabrerizos	Campo	NA

28	LUF43	Hojas	Cabrerizos	Campo	NA
29	LUF44	Hojas	Salamanca	Campo	NA
30	LUF46	Hojas	Salamanca	Campo	NA
31	LUF47	Hojas	Salamanca	Campo	NA
32	LUF48	Hojas	Salamanca	Campo	NA
33	LUF49	Hojas	Salamanca	Campo	NA
34	LUF52	Hojas	Salamanca	Campo	NA
35	LUF53	Hojas	Salamanca	Campo	NA
36	LUF54	Hojas	Salamanca	Campo	NA
37	LUF55	Hojas	Salamanca	Campo	NA
38	LUF56	Hojas	Salamanca	Campo	NA
39	LUF57	Hojas	Salamanca	Campo	NA
40	LUF58	Hojas	Salamanca	Campo	NA
41	LUF59	Hojas	Salamanca	Campo	NA
42	LUF61	Hojas	Salamanca	Campo	NA
43	LUF62	Hojas	Salamanca	Campo	NA
44	LUF63	Hojas	Salamanca	Campo	NA
45	LUF64	Hojas	Salamanca	Campo	NA
46	LUF65	Hojas	Salamanca	Campo	NA
47	LUF66	Hojas	Salamanca	Campo	NA
48	LUF68	Hojas	Salamanca	Campo	NA
49	LUF69	Hojas	Cabrerizos	Campo	ISP2
50	LUF70	Hojas	Cabrerizos	Campo	ISP2
51	LUF71	Hojas	Cabrerizos	Campo	ISP2
52	LUF72	Hojas	Cabrerizos	Campo	ISP2
53	LUF73	Hojas	Cabrerizos	Campo	ISP2
54	LUF74	Hojas	Cabrerizos	Campo	ISP2
55	LUF75	Hojas	Cabrerizos	Campo	ISP2
56	LUF79	Hojas	Cabrerizos	Campo	ISP2
57	LUF80	Hojas	Cabrerizos	Campo	ISP2
58	LUF82	Hojas	Cabrerizos	Campo	ISP2
59	LUF83	Hojas	Cabrerizos	Campo	ISP2
60	LUF85	Hojas	Cabrerizos	Campo	ISP2
61	LUF87B	Hojas	Cabrerizos	Campo	ISP2
62	LUF89	Hojas	Cabrerizos	Campo	ISP2
----	---------	-------	------------	-------	------
63	LUF90	Hojas	Salamanca	Campo	ISP2
64	LUF91	Hojas	Salamanca	Campo	ISP2
65	LUF92	Hojas	Salamanca	Campo	ISP2
66	LUF93	Hojas	Salamanca	Campo	ISP2
67	LUF95	Hojas	Salamanca	Campo	ISP2
68	LUF96	Hojas	Salamanca	Campo	ISP2
69	LUF98	Hojas	Salamanca	Campo	ISP2
70	LUF99	Hojas	Salamanca	Campo	ISP2
71	LUF100	Hojas	Salamanca	Campo	ISP2
72	LUF101	Hojas	Salamanca	Campo	ISP2
73	LUF102	Hojas	Salamanca	Campo	ISP2
74	LUF104	Hojas	Salamanca	Campo	ISP2
75	LUF111	Hojas	Salamanca	Campo	ISP2
76	LUF112	Hojas	Salamanca	Campo	ISP2
77	LUF113	Hojas	Salamanca	Campo	ISP2
78	LUF114	Hojas	Cabrerizos	Campo	YMA
79	LUF115	Hojas	Cabrerizos	Campo	YMA
80	LUF116	Hojas	Cabrerizos	Campo	YMA
81	LUF117	Hojas	Cabrerizos	Campo	YMA
82	LUF118	Hojas	Cabrerizos	Campo	YMA
83	LUF120	Hojas	Cabrerizos	Campo	YMA
84	LUF121	Hojas	Cabrerizos	Campo	YMA
85	LUF122	Hojas	Cabrerizos	Campo	YMA
86	LUF123	Hojas	Cabrerizos	Campo	YMA
87	LUF124	Hojas	Cabrerizos	Campo	YMA
88	LUF125	Hojas	Cabrerizos	Campo	YMA
89	LUF126	Hojas	Cabrerizos	Campo	YMA
90	LUF127	Hojas	Cabrerizos	Campo	YMA
91	LUF128	Hojas	Cabrerizos	Campo	YMA
92	LUF129	Hojas	Cabrerizos	Campo	YMA
93	LUF129B	Hojas	Cabrerizos	Campo	YMA
94	LUF130	Hojas	Cabrerizos	Campo	YMA
95	LUF131	Hojas	Cabrerizos	Campo	YMA

96	LUF132	Hojas	Cabrerizos	Campo	YMA
97	LUF134	Hojas	Cabrerizos	Campo	YMA
98	LUF135	Hojas	Cabrerizos	Campo	YMA
99	LUF137	Hojas	Cabrerizos	Campo	YMA
100	LUF139	Hojas	Cabrerizos	Campo	YMA
101	LUF140	Hojas	Cabrerizos	Campo	YMA
102	LUF141	Hojas	Cabrerizos	Campo	YMA
103	LUF143	Hojas	Cabrerizos	Campo	YMA
104	LUF145	Hojas	Salamanca	Campo	YMA
105	LUF146	Hojas	Salamanca	Campo	YMA
106	LUF147	Hojas	Salamanca	Campo	YMA
107	LUF148	Hojas	Salamanca	Campo	YMA
108	LUF149	Hojas	Salamanca	Campo	YMA
109	LUF151	Hojas	Salamanca	Campo	YMA
110	LUF154	Hojas	Salamanca	Campo	YMA
111	LUF158	Hojas	Salamanca	Campo	YMA
112	LUF161	Hojas	Salamanca	Campo	YMA
113	LUF162	Hojas	Salamanca	Campo	YMA
114	LUF163	Hojas	Salamanca	Campo	YMA
115	LUF164	Hojas	Salamanca	Campo	YMA
116	LUF165A	Hojas	Salamanca	Campo	YMA
117	LUF165B	Hojas	Salamanca	Campo	YMA
118	LUF167	Hojas	Salamanca	Campo	YMA
119	LUF169	Hojas	Salamanca	Campo	YMA
120	LUF170	Hojas	Salamanca	Campo	YMA
121	LUF172B	Hojas	Salamanca	Campo	YMA
122	LUF173	Hojas	Salamanca	Campo	YMA
123	LUF175	Hojas	Salamanca	Campo	YMA
124	LUF176	Hojas	Salamanca	Campo	YMA
125	LUF178	Hojas	Salamanca	Campo	YMA
126	LUF179	Hojas	Salamanca	Campo	YMA
127	LUF183B	Hojas	Salamanca	Campo	YMA
128	LUF187B	Hojas	Salamanca	Campo	YMA
129	LUF184	Hojas	Salamanca	Campo	YMA

130	LUF185	Hojas	Salamanca	Campo	YMA
131	LUF188	Hojas	Salamanca	Campo	YMA
132	LUF189	Hojas	Salamanca	Campo	YMA
133	LUF190A	Hojas	Salamanca	Campo	YMA
134	LUF190B	Hojas	Salamanca	Campo	YMA
135	LUF192	Hojas	Salamanca	Campo	YMA
136	LUF196	Hojas	Cabrerizos	Campo	R2A
137	LUF198	Hojas	Cabrerizos	Campo	R2A
138	LUF201	Hojas	Cabrerizos	Campo	R2A
139	LUF202	Hojas	Cabrerizos	Campo	R2A
140	LUF207	Hojas	Cabrerizos	Campo	R2A
141	LUF208	Hojas	Cabrerizos	Campo	R2A
142	LUF210	Hojas	Cabrerizos	Campo	R2A
143	LUF213	Hojas	Cabrerizos	Campo	R2A
144	LUF216	Hojas	Cabrerizos	Campo	R2A
145	LUF221	Hojas	Cabrerizos	Campo	R2A
146	LUF223A	Hojas	Cabrerizos	Campo	PYE
147	LUF223B	Hojas	Cabrerizos	Campo	PYE
148	LUF227	Hojas	Cabrerizos	Campo	R2A
149	LUF240	Hojas	Salamanca	Campo	R2A
150	LUF241	Hojas	Salamanca	Campo	R2A
151	LUF250	Hojas	Salamanca	Campo	R2A
152	LUF254	Hojas	Salamanca	Campo	R2A
153	LUF256	Hojas	Salamanca	Campo	R2A
154	LUF260	Hojas	Salamanca	Campo	R2A
155	LUF263	Hojas	Salamanca	Campo	R2A
156	LUF266	Hojas	Salamanca	Campo	R2A
157	LUF271	Hojas	Salamanca	Campo	R2A
158	LUF271B	Hojas	Salamanca	Campo	R2A
159	LUF274	Hojas	Salamanca	Campo	R2A
160	LUF275	Hojas	Salamanca	Campo	R2A
161	LUF277	Hojas	Salamanca	Campo	R2A
162	LUF278	Hojas	Salamanca	Campo	R2A
163	LUF281	Hojas	Cabrerizos	Campo	PYE

164	LUF282	Hojas	Cabrerizos	Campo	PYE
165	LUF283	Hojas	Cabrerizos	Campo	PYE
166	LUF284	Hojas	Cabrerizos	Campo	PYE
167	LUF285	Hojas	Cabrerizos	Campo	PYE
168	LUF286	Hojas	Cabrerizos	Campo	PYE
169	LUF288	Hojas	Cabrerizos	Campo	PYE
170	LUF289	Hojas	Cabrerizos	Campo	PYE
171	LUF290	Hojas	Cabrerizos	Campo	PYE
172	LUF291	Hojas	Cabrerizos	Campo	PYE
173	LUF292	Hojas	Cabrerizos	Campo	PYE
174	LUF293	Hojas	Cabrerizos	Campo	PYE
175	LUF295	Hojas	Cabrerizos	Campo	PYE
176	LUF300	Hojas	Cabrerizos	Campo	PYE
177	LUF301A	Hojas	Cabrerizos	Campo	PYE
178	LUF302	Hojas	Cabrerizos	Campo	PYE
179	LUF307	Hojas	Salamanca	Campo	PYE
180	LUF311	Hojas	Salamanca	Campo	PYE
181	LUF312	Hojas	Salamanca	Campo	PYE
182	LUF314	Hojas	Salamanca	Campo	PYE
183	LUF315	Hojas	Salamanca	Campo	PYE
184	LUF316	Hojas	Salamanca	Campo	PYE
185	LUF322	Hojas	Salamanca	Campo	PYE
186	LUF326	Hojas	Salamanca	Campo	PYE
187	LUF327	Hojas	Salamanca	Campo	PYE
188	LUF328	Hojas	Salamanca	Campo	PYE
189	LUF329	Hojas	Salamanca	Campo	PYE
190	LUF330	Hojas	Salamanca	Campo	PYE
191	LUF331	Hojas	Salamanca	Campo	PYE
192	LUF335	Hojas	Salamanca	Campo	PYE
193	LUF338	Hojas	Salamanca	Campo	PYE
194	LUF340	Hojas	Salamanca	Campo	PYE
195	LUF341	Hojas	Salamanca	Campo	PYE
196	LUF342	Hojas	Salamanca	Campo	PYE
197	LUF343	Hojas	Salamanca	Campo	PYE

198	LUF344	Hojas	Salamanca	Campo	PYE
199	LUF345	Hojas	Salamanca	Campo	PYE
200	LUF346	Hojas	Salamanca	Campo	PYE
201	LUF347	Hojas	Salamanca	Campo	PYE
202	LUF350	Hojas	Salamanca	Campo	PYE
203	LUF351	Hojas	Salamanca	Campo	PYE
204	LUF352	Hojas	Salamanca	Campo	PYE
205	LUF353	Hojas	Salamanca	Campo	PYE
206	LUF356	Hojas	Salamanca	Campo	PYE
207	LUF360A	Hojas	Salamanca	Campo	PYE
208	LUF360B	Hojas	Salamanca	Campo	PYE
209	LUF362	Hojas	Cabrerizos	Campo	SCA
210	LUF365	Hojas	Salamanca	Campo	SCA
211	LUF369A	Hojas	Salamanca	Campo	SCA
212	LUF369B	Hojas	Salamanca	Campo	SCA
213	LUN1	Nódulos	Cabrerizos	Campo	R2A
214	LUN3	Nódulos	Cabrerizos	Campo	R2A
215	LUN4	Nódulos	Cabrerizos	Campo	R2A
216	LUN5	Nódulos	Cabrerizos	Campo	R2A
217	LUN6B	Nódulos	Cabrerizos	Campo	R2A
218	LUN7	Nódulos	Cabrerizos	Campo	R2A
219	LUN9A	Nódulos	Salamanca	Campo	R2A
220	LUN10A	Nódulos	Salamanca	Campo	R2A
221	LUN16A	Nódulos	Salamanca	Campo	R2A
222	LUN16BA	Nódulos	Salamanca	Campo	R2A
223	LUN18	Nódulos	Salamanca	Campo	R2A
224	LUN19A	Nódulos	Cabrerizos	Campo	YMA
225	LUN20	Nódulos	Cabrerizos	Campo	YMA
226	LUN22	Nódulos	Cabrerizos	Campo	YMA
227	LUN23	Nódulos	Cabrerizos	Campo	YMA
228	LUN27	Nódulos	Cabrerizos	Campo	YMA
229	LUN28	Nódulos	Cabrerizos	Campo	YMA
230	LUN30	Nódulos	Cabrerizos	Campo	YMA
231	LUN34	Nódulos	Cabrerizos	Campo	YMA

232	LUN35	Nódulos	Cabrerizos	Campo	YMA
233	LUN36A	Nódulos	Cabrerizos	Campo	YMA
234	LUN36B	Nódulos	Cabrerizos	Campo	YMA
235	LUN37	Nódulos	Cabrerizos	Campo	YMA
236	LUN38	Nódulos	Cabrerizos	Campo	YMA
237	LUN39A	Nódulos	Cabrerizos	Campo	YMA
238	LUN39B	Nódulos	Cabrerizos	Campo	YMA
239	LUN40	Nódulos	Cabrerizos	Campo	YMA
240	LUN45	Nódulos	Cabrerizos	Campo	YMA
241	LUN46	Nódulos	Cabrerizos	Campo	YMA
242	LUN47	Nódulos	Cabrerizos	Campo	YMA
243	LUN48	Nódulos	Cabrerizos	Campo	YMA
244	LUN49	Nódulos	Cabrerizos	Campo	YMA
245	LUN50	Nódulos	Cabrerizos	Campo	YMA
246	LUN51	Nódulos	Cabrerizos	Campo	YMA
247	LUN52	Nódulos	Cabrerizos	Campo	YMA
248	LUN55A	Nódulos	Salamanca	Campo	YMA
249	LUN55B	Nódulos	Salamanca	Campo	YMA
250	LUN56	Nódulos	Salamanca	Campo	YMA
251	LUN57	Nódulos	Salamanca	Campo	YMA
252	LUN58	Nódulos	Salamanca	Campo	YMA
253	LUN62	Nódulos	Salamanca	Campo	YMA
254	LUN64	Nódulos	Salamanca	Campo	YMA
255	LUN65A	Nódulos	Salamanca	Campo	YMA
256	LUN65B	Nódulos	Salamanca	Campo	YMA
257	LUN69	Nódulos	Salamanca	Campo	YMA
258	LUN70	Nódulos	Salamanca	Campo	YMA
259	LUN71	Nódulos	Salamanca	Campo	YMA
260	LUN74	Nódulos	Salamanca	Campo	YMA
261	LUN75	Nódulos	Salamanca	Campo	YMA
262	LUN76	Nódulos	Salamanca	Campo	YMA
263	LUN77	Nódulos	Salamanca	Campo	YMA
264	LUN79B	Nódulos	Salamanca	Campo	YMA
265	LUN80	Nódulos	Salamanca	Campo	YMA

266	LUN87B	Nódulos	Salamanca	Campo	YMA
267	LUN88	Nódulos	Salamanca	Campo	YMA
268	LUN90	Nódulos	Salamanca	Campo	YMA
269	LUN91	Nódulos	Salamanca	Campo	YMA
270	LUN92	Nódulos	Salamanca	Campo	YMA
271	LUN93	Nódulos	Salamanca	Campo	YMA
272	LUN94A	Nódulos	Salamanca	Campo	NA
273	LUN95	Nódulos	Salamanca	Campo	NA
274	LUN97A	Nódulos	Salamanca	Campo	NA
275	LUN97B	Nódulos	Salamanca	Campo	NA
276	LUN98	Nódulos	Salamanca	Campo	NA
277	LUN101	Nódulos	Salamanca	Campo	NA
278	LUN6B	Nódulos	Salamanca	Campo	NA
279	LUN102	Nódulos	Salamanca	Campo	YMA
280	LUN103	Nódulos	Salamanca	Campo	YMA
281	LUN104	Nódulos	Salamanca	Campo	YMA
282	LUN105	Nódulos	Salamanca	Campo	YMA
283	LUN106	Nódulos	Salamanca	Campo	YMA
284	LUN107	Nódulos	Salamanca	Campo	YMA
285	LUN108	Nódulos	Salamanca	Campo	YMA
286	LUN109	Nódulos	Salamanca	Campo	YMA
287	LUN110	Nódulos	Salamanca	Campo	YMA
288	LUR1	Raíces	Cabrerizos	Campo	R2A
289	LUR2	Raíces	Cabrerizos	Campo	R2A
290	LUR3	Raíces	Cabrerizos	Campo	R2A
291	LUR4	Raíces	Cabrerizos	Campo	R2A
292	LUR5	Raíces	Cabrerizos	Campo	R2A
293	LUR6	Raíces	Cabrerizos	Campo	R2A
294	LUR8	Raíces	Cabrerizos	Campo	R2A
295	LUR11	Raíces	Cabrerizos	Campo	R2A
296	LUR12	Raíces	Cabrerizos	Campo	R2A
297	LUR13	Raíces	Cabrerizos	Campo	R2A
298	LUR14	Raíces	Cabrerizos	Campo	R2A
299	LUR15	Raíces	Cabrerizos	Campo	R2A

300	LUR16	Raíces	Cabrerizos	Campo	R2A
301	LUR17	Raíces	Cabrerizos	Campo	R2A
302	LUR18	Raíces	Cabrerizos	Campo	R2A
303	LUR21	Raíces	Cabrerizos	Campo	R2A
304	LUR22	Raíces	Cabrerizos	Campo	R2A
305	LUR24	Raíces	Cabrerizos	Campo	R2A
306	LUR25	Raíces	Cabrerizos	Campo	R2A
307	LUR26	Raíces	Salamanca	Campo	R2A
308	LUR27	Raíces	Salamanca	Campo	R2A
309	LUR29	Raíces	Salamanca	Campo	R2A
310	LUR30	Raíces	Salamanca	Campo	R2A
311	LUR31	Raíces	Salamanca	Campo	R2A
312	LUR32	Raíces	Salamanca	Campo	R2A
313	LUR33	Raíces	Salamanca	Campo	R2A
314	LUR34	Raíces	Salamanca	Campo	R2A
315	LUR35	Raíces	Salamanca	Campo	R2A
316	LUR36	Raíces	Salamanca	Campo	R2A
317	LUR37	Raíces	Salamanca	Campo	R2A
318	LUR39	Raíces	Salamanca	Campo	R2A
319	LUR40	Raíces	Salamanca	Campo	R2A
320	LUR42	Raíces	Salamanca	Campo	R2A
321	LUR44	Raíces	Salamanca	Campo	R2A
322	LUR45	Raíces	Cabrerizos	Campo	SCA
323	LUR47	Raíces	Cabrerizos	Campo	SCA
324	LUR50	Raíces	Cabrerizos	Campo	SCA
325	LUR51	Raíces	Cabrerizos	Campo	SCA
326	LUR53	Raíces	Cabrerizos	Campo	SCA
327	LUR54	Raíces	Cabrerizos	Campo	SCA
328	LUR55	Raíces	Cabrerizos	Campo	SCA
329	LUR56	Raíces	Cabrerizos	Campo	SCA
330	LUR57	Raíces	Cabrerizos	Campo	SCA
331	LUR58	Raíces	Cabrerizos	Campo	SCA
332	LUR59	Raíces	Salamanca	Campo	SCA
333	LUR60	Raíces	Salamanca	Campo	SCA

334	LUR61	Raíces	Salamanca	Campo	SCA
335	LUR63	Raíces	Salamanca	Campo	SCA
336	LUR64	Raíces	Salamanca	Campo	SCA
337	LUR65	Raíces	Salamanca	Campo	SCA
338	LUR66	Raíces	Salamanca	Campo	SCA
339	LUR67	Raíces	Salamanca	Campo	SCA
340	LUR68	Raíces	Salamanca	Campo	SCA
341	LUR70	Raíces	Salamanca	Campo	SCA
342	LUR71	Raíces	Salamanca	Campo	SCA
343	LUR77	Raíces	Salamanca	Campo	SCA
344	LUR78	Raíces	Cabrerizos	Campo	YMA
345	LUR85	Raíces	Cabrerizos	Campo	YMA
346	LUR86	Raíces	Cabrerizos	Campo	YMA
347	LUR87	Raíces	Cabrerizos	Campo	YMA
348	LUR88	Raíces	Cabrerizos	Campo	YMA
349	LUR89	Raíces	Cabrerizos	Campo	YMA
350	LUR90	Raíces	Cabrerizos	Campo	YMA
351	LUR91	Raíces	Cabrerizos	Campo	YMA
352	LUR92	Raíces	Cabrerizos	Campo	YMA
353	LUR93	Raíces	Cabrerizos	Campo	YMA
354	LUR94	Raíces	Cabrerizos	Campo	YMA
355	LUR95	Raíces	Cabrerizos	Campo	YMA
356	LUR96	Raíces	Salamanca	Campo	YMA
357	LUR97	Raíces	Salamanca	Campo	YMA
358	LUR98	Raíces	Salamanca	Campo	YMA
359	LUR99	Raíces	Salamanca	Campo	YMA
360	LUR100	Raíces	Salamanca	Campo	YMA
361	LUR102	Raíces	Salamanca	Campo	YMA
362	LUR103	Raíces	Salamanca	Campo	YMA
363	LUR105	Raíces	Salamanca	Campo	YMA
364	LUR106	Raíces	Salamanca	Campo	YMA
365	LUR107	Raíces	Salamanca	Campo	YMA
366	LUR108	Raíces	Salamanca	Campo	YMA
367	LUR109	Raíces	Salamanca	Campo	YMA

368	LUR110	Raíces	Salamanca	Campo	YMA
369	LUR111	Raíces	Salamanca	Campo	YMA
370	LUR112	Raíces	Salamanca	Campo	YMA
371	LUR113	Raíces	Cabrerizos	Campo	NA
372	LUR114	Raíces	Cabrerizos	Campo	NA
373	LUR115	Raíces	Cabrerizos	Campo	NA
374	LUR116	Raíces	Cabrerizos	Campo	NA
375	LUR117	Raíces	Cabrerizos	Campo	NA
376	LUR118	Raíces	Cabrerizos	Campo	NA
377	LUR119	Raíces	Cabrerizos	Campo	NA
378	LUR120	Raíces	Cabrerizos	Campo	NA
379	LUR121	Raíces	Cabrerizos	Campo	NA
380	LUR122	Raíces	Cabrerizos	Campo	NA
381	LUR123	Raíces	Cabrerizos	Campo	NA
382	LUR124	Raíces	Cabrerizos	Campo	NA
383	LUR125	Raíces	Cabrerizos	Campo	NA
384	LUR126	Raíces	Cabrerizos	Campo	NA
385	LUR127	Raíces	Cabrerizos	Campo	NA
386	LUR128	Raíces	Cabrerizos	Campo	NA
387	LUR129	Raíces	Cabrerizos	Campo	NA
388	LUR130	Raíces	Cabrerizos	Campo	NA
389	LUR131	Raíces	Cabrerizos	Campo	NA
390	LUR132	Raíces	Salamanca	Campo	NA
391	LUR133	Raíces	Salamanca	Campo	NA
392	LUR134	Raíces	Salamanca	Campo	NA
393	LUR135	Raíces	Salamanca	Campo	NA
394	LUR136	Raíces	Salamanca	Campo	NA
395	LUR137	Raíces	Cabrerizos	Campo	ISP2
396	LUR143	Raíces	Cabrerizos	Campo	ISP2
397	LUR144	Raíces	Cabrerizos	Campo	ISP2
398	LUR145	Raíces	Cabrerizos	Campo	ISP2
399	LUR147	Raíces	Cabrerizos	Campo	ISP2
400	LUR148	Raíces	Cabrerizos	Campo	ISP2
401	LUR149	Raíces	Cabrerizos	Campo	ISP2

402	LUR150	Raíces	Cabrerizos	Campo	ISP2
403	LUR152	Raíces	Cabrerizos	Campo	ISP2
404	LUR153	Raíces	Cabrerizos	Campo	ISP2
405	LUR154	Raíces	Salamanca	Campo	ISP2
406	LUR155	Raíces	Salamanca	Campo	ISP2
407	LUR156	Raíces	Salamanca	Campo	ISP2
408	LUR157	Raíces	Salamanca	Campo	PYE
409	LUR158	Raíces	Salamanca	Campo	PYE
410	LUR159	Raíces	Salamanca	Campo	PYE
411	LUR160	Raíces	Salamanca	Campo	PYE
412	LUR161	Raíces	Salamanca	Campo	PYE
413	LUR162	Raíces	Salamanca	Campo	PYE
414	LUR163	Raíces	Salamanca	Campo	PYE
415	LUR165	Raíces	Salamanca	Campo	PYE
416	LUR167	Raíces	Salamanca	Campo	PYE
417	LUR169	Raíces	Salamanca	Campo	PYE
418	LUR170	Raíces	Salamanca	Campo	PYE
419	LUR171	Raíces	Salamanca	Campo	PYE
420	LUR172	Raíces	Salamanca	Campo	PYE
421	LUR173	Raíces	Salamanca	Campo	PYE
422	LUR174	Raíces	Salamanca	Campo	PYE
423	LUR175A	Raíces	Salamanca	Campo	PYE
424	LUR175B	Raíces	Salamanca	Campo	PYE
425	CRA1	Rizosfera	Cabrerizos	Invernadero	PYE
426	CRA2	Rizosfera	Cabrerizos	Invernadero	PYE
427	CRA3	Rizosfera	Cabrerizos	Invernadero	PYE
428	CRA4	Rizosfera	Cabrerizos	Invernadero	PYE
429	CRA5	Rizosfera	Cabrerizos	Invernadero	PYE
430	CRA8	Rizosfera	Cabrerizos	Invernadero	PYE
431	CRA11	Rizosfera	Cabrerizos	Invernadero	PYE
432	CRA12	Rizosfera	Cabrerizos	Invernadero	PYE
433	CRA13	Rizosfera	Cabrerizos	Invernadero	PYE
434	CRA14	Rizosfera	Cabrerizos	Invernadero	PYE
435	CRA15	Rizosfera	Cabrerizos	Invernadero	PYE

436	CRA16A	Rizosfera	Cabrerizos	Invernadero	PYE
437	CRA16B	Rizosfera	Cabrerizos	Invernadero	PYE
438	CRA17	Rizosfera	Cabrerizos	Invernadero	PYE
439	CRA20	Rizosfera	Cabrerizos	Invernadero	PYE
440	CRA23	Rizosfera	Cabrerizos	Invernadero	PYE
441	CRA24B	Rizosfera	Cabrerizos	Invernadero	PYE
442	CRA25A	Rizosfera	Cabrerizos	Invernadero	PYE
443	CRA25BA	Rizosfera	Cabrerizos	Invernadero	PYE
444	CRA26A	Rizosfera	Cabrerizos	Invernadero	PYE
445	CRA26B	Rizosfera	Cabrerizos	Invernadero	PYE
446	CRA27A	Rizosfera	Cabrerizos	Invernadero	PYE
447	CRA27B	Rizosfera	Cabrerizos	Invernadero	PYE
448	CRA31	Rizosfera	Cabrerizos	Invernadero	NA
449	CRA32	Rizosfera	Cabrerizos	Invernadero	NA
450	CRA33	Rizosfera	Cabrerizos	Invernadero	NA
451	CRA34	Rizosfera	Cabrerizos	Invernadero	NA
452	CRA35	Rizosfera	Cabrerizos	Invernadero	NA
453	CRA37	Rizosfera	Cabrerizos	Invernadero	NA
454	CRA38	Rizosfera	Cabrerizos	Invernadero	NA
455	CRA39	Rizosfera	Cabrerizos	Invernadero	NA
456	CRA40	Rizosfera	Cabrerizos	Invernadero	NA
457	CRA41	Rizosfera	Cabrerizos	Invernadero	NA
458	CRA42A	Rizosfera	Cabrerizos	Invernadero	NA
459	CRA43	Rizosfera	Cabrerizos	Invernadero	NA
460	CRA44A	Rizosfera	Cabrerizos	Invernadero	NA
461	CRA44BA	Rizosfera	Cabrerizos	Invernadero	NA
462	CRA45	Rizosfera	Cabrerizos	Invernadero	NA
463	CRA46	Rizosfera	Cabrerizos	Invernadero	NA
464	CRA47	Rizosfera	Cabrerizos	Invernadero	NA
465	CRA48	Rizosfera	Cabrerizos	Invernadero	NA
466	CRA49	Rizosfera	Cabrerizos	Invernadero	NA
467	CRA50A	Rizosfera	Cabrerizos	Invernadero	NA
468	CRA50BA	Rizosfera	Cabrerizos	Invernadero	NA
469	CRA51	Rizosfera	Cabrerizos	Invernadero	R2A

470	CRA52	Rizosfera	Cabrerizos	Invernadero	R2A
471	CRA53	Rizosfera	Cabrerizos	Invernadero	R2A
472	CRA54A	Rizosfera	Cabrerizos	Invernadero	R2A
473	CRA54BA	Rizosfera	Cabrerizos	Invernadero	R2A
474	CRA54BB	Rizosfera	Cabrerizos	Invernadero	R2A
475	CRA55A	Rizosfera	Cabrerizos	Invernadero	R2A
476	CRA56A	Rizosfera	Cabrerizos	Invernadero	R2A
477	CRA56B	Rizosfera	Cabrerizos	Invernadero	R2A
478	CRA57A	Rizosfera	Cabrerizos	Invernadero	R2A
479	CRA57B	Rizosfera	Cabrerizos	Invernadero	R2A
480	CRA58A	Rizosfera	Cabrerizos	Invernadero	R2A
481	CRA58B	Rizosfera	Cabrerizos	Invernadero	R2A
482	CRA60A	Rizosfera	Cabrerizos	Invernadero	R2A
483	CRA60B	Rizosfera	Cabrerizos	Invernadero	R2A
484	CRA62A	Rizosfera	Cabrerizos	Invernadero	R2A
485	CRA62B	Rizosfera	Cabrerizos	Invernadero	R2A
486	CRA63	Rizosfera	Cabrerizos	Invernadero	R2A
487	CRA64A	Rizosfera	Cabrerizos	Invernadero	R2A
488	CRA68	Rizosfera	Cabrerizos	Invernadero	R2A
489	CRA69	Rizosfera	Cabrerizos	Invernadero	R2A
490	CRA71	Rizosfera	Cabrerizos	Invernadero	R2A
491	CRA72	Rizosfera	Cabrerizos	Invernadero	R2A
492	CRA73	Rizosfera	Cabrerizos	Invernadero	R2A
493	CRA76	Rizosfera	Cabrerizos	Invernadero	R2A
494	CRA77	Rizosfera	Cabrerizos	Invernadero	R2A
495	CRA79	Rizosfera	Cabrerizos	Invernadero	R2A
496	CRA80	Rizosfera	Cabrerizos	Invernadero	R2A
497	CRA82	Rizosfera	Cabrerizos	Invernadero	R2A
498	CRA83	Rizosfera	Cabrerizos	Invernadero	R2A
499	CRA84	Rizosfera	Cabrerizos	Invernadero	R2A
500	CRA85	Rizosfera	Cabrerizos	Invernadero	R2A
501	CRA86	Rizosfera	Cabrerizos	Invernadero	R2A
502	CRA87	Rizosfera	Cabrerizos	Invernadero	R2A
503	CRA88	Rizosfera	Cabrerizos	Invernadero	R2A

504	CRA89	Rizosfera	Cabrerizos	Invernadero	R2A
505	CRA90	Rizosfera	Cabrerizos	Invernadero	R2A
506	CRA91	Rizosfera	Cabrerizos	Invernadero	R2A
507	CRA92	Rizosfera	Cabrerizos	Invernadero	R2A
508	CRA93	Rizosfera	Cabrerizos	Invernadero	R2A
509	CRA94	Rizosfera	Cabrerizos	Invernadero	R2A
510	CRA96	Rizosfera	Cabrerizos	Invernadero	R2A
511	CRA98	Rizosfera	Cabrerizos	Invernadero	R2A
512	CRA99	Rizosfera	Cabrerizos	Invernadero	R2A
513	CRA100	Rizosfera	Cabrerizos	Invernadero	R2A
514	CRA100B	Rizosfera	Cabrerizos	Invernadero	R2A
515	CRA101	Rizosfera	Cabrerizos	Invernadero	R2A
516	CRA102	Rizosfera	Cabrerizos	Invernadero	R2A
517	CRA103	Rizosfera	Cabrerizos	Invernadero	R2A
518	CRA104	Rizosfera	Cabrerizos	Invernadero	R2A
519	CRA105	Rizosfera	Cabrerizos	Invernadero	R2A
520	CRA106	Rizosfera	Cabrerizos	Invernadero	R2A
521	CRA107B	Rizosfera	Cabrerizos	Invernadero	R2A
522	CRA110	Rizosfera	Cabrerizos	Invernadero	YMA
523	CRA112	Rizosfera	Cabrerizos	Invernadero	YMA
524	CRA113	Rizosfera	Cabrerizos	Invernadero	YMA
525	CRA114	Rizosfera	Cabrerizos	Invernadero	YMA
526	CRA118	Rizosfera	Cabrerizos	Invernadero	YMA
527	CRA119	Rizosfera	Cabrerizos	Invernadero	YMA
528	CRA120	Rizosfera	Cabrerizos	Invernadero	YMA
529	CRA121	Rizosfera	Cabrerizos	Invernadero	YMA
530	CRA122	Rizosfera	Cabrerizos	Invernadero	YMA
531	CRA123	Rizosfera	Cabrerizos	Invernadero	YMA
532	CRA124	Rizosfera	Cabrerizos	Invernadero	SCA
533	CRA125	Rizosfera	Cabrerizos	Invernadero	SCA
534	CRA126	Rizosfera	Cabrerizos	Invernadero	SCA
535	CRA127B	Rizosfera	Cabrerizos	Invernadero	SCA
536	CRA128	Rizosfera	Cabrerizos	Invernadero	SCA
537	CRA129A	Rizosfera	Cabrerizos	Invernadero	SCA

538	CRA129B	Rizosfera	Cabrerizos	Invernadero	SCA
539	CRA130AA	Rizosfera	Cabrerizos	Invernadero	SCA
540	CRA130AB	Rizosfera	Cabrerizos	Invernadero	SCA
541	CRA131	Rizosfera	Cabrerizos	Invernadero	SCA
542	CRA132	Rizosfera	Cabrerizos	Invernadero	SCA
543	CRA133AA	Rizosfera	Cabrerizos	Invernadero	SCA
544	CRA133BA	Rizosfera	Cabrerizos	Invernadero	ISP2
545	CRA134A	Rizosfera	Cabrerizos	Invernadero	ISP2
546	CRA134B	Rizosfera	Cabrerizos	Invernadero	ISP2
547	CRA135	Rizosfera	Cabrerizos	Invernadero	ISP2
548	CRA138	Rizosfera	Cabrerizos	Invernadero	ISP2
549	CRA139	Rizosfera	Cabrerizos	Invernadero	ISP2
550	CRA140	Rizosfera	Cabrerizos	Invernadero	ISP2
551	CRA141	Rizosfera	Cabrerizos	Invernadero	ISP2
552	CRA143	Rizosfera	Cabrerizos	Invernadero	ISP2
553	CRA144	Rizosfera	Cabrerizos	Invernadero	ISP2
554	CRA145A	Rizosfera	Cabrerizos	Invernadero	ISP2
555	CRA145B	Rizosfera	Cabrerizos	Invernadero	ISP2
556	CRA146AB	Rizosfera	Cabrerizos	Invernadero	ISP2
557	CRA149	Rizosfera	Cabrerizos	Invernadero	ISP2
558	CRA150	Rizosfera	Cabrerizos	Invernadero	ISP2
559	CRA154	Rizosfera	Cabrerizos	Invernadero	ISP2
560	CRA155A	Rizosfera	Cabrerizos	Invernadero	ISP2
561	CRA155B	Rizosfera	Cabrerizos	Invernadero	ISP2
562	CRA156	Rizosfera	Cabrerizos	Invernadero	ISP2
563	CRA157	Rizosfera	Cabrerizos	Invernadero	ISP2
564	CRA158BB	Rizosfera	Cabrerizos	Invernadero	ISP2
565	CRA160	Rizosfera	Cabrerizos	Invernadero	ISP2
566	CRA162	Rizosfera	Cabrerizos	Invernadero	ISP2
567	CRA163	Rizosfera	Cabrerizos	Invernadero	ISP2
568	CRA164	Rizosfera	Cabrerizos	Invernadero	ISP2
569	CRA165	Rizosfera	Cabrerizos	Invernadero	ISP2
570	CRA190	Rizosfera	Cabrerizos	Invernadero	ISP2
571	CRAM1	Rizosfera	Cabrerizos	Invernadero	ISP2

572	CRAM2	Rizosfera	Cabrerizos	Invernadero	ISP2
573	CRAM3	Rizosfera	Cabrerizos	Invernadero	ISP2
574	CRAM4	Rizosfera	Cabrerizos	Invernadero	ISP2
575	CRAM5	Rizosfera	Cabrerizos	Invernadero	ISP2
576	CRAM6	Rizosfera	Cabrerizos	Invernadero	ISP2
577	CRAM7	Rizosfera	Cabrerizos	Invernadero	ISP2
578	CRAM8	Rizosfera	Cabrerizos	Invernadero	ISP2
579	CRAM10	Rizosfera	Cabrerizos	Invernadero	ISP2
580	RO1	Rizosfera	Cabrerizos	Invernadero	R2A
581	RO2	Rizosfera	Cabrerizos	Invernadero	R2A
582	RO3	Rizosfera	Cabrerizos	Invernadero	R2A
583	RO4	Rizosfera	Cabrerizos	Invernadero	R2A
584	RO5	Rizosfera	Cabrerizos	Invernadero	R2A
585	RO6	Rizosfera	Cabrerizos	Invernadero	R2A
586	RO7	Rizosfera	Cabrerizos	Invernadero	R2A
587	RO8	Rizosfera	Cabrerizos	Invernadero	R2A
588	RO9	Rizosfera	Cabrerizos	Invernadero	R2A
589	RO10	Rizosfera	Cabrerizos	Invernadero	R2A
590	RO11	Rizosfera	Cabrerizos	Invernadero	R2A
591	RO12	Rizosfera	Cabrerizos	Invernadero	R2A
592	RO13	Rizosfera	Cabrerizos	Invernadero	R2A
593	RO14	Rizosfera	Cabrerizos	Invernadero	R2A
594	RO15	Rizosfera	Cabrerizos	Invernadero	R2A
595	RO17	Rizosfera	Cabrerizos	Invernadero	R2A
596	RO18	Rizosfera	Cabrerizos	Invernadero	R2A
597	RO19	Rizosfera	Cabrerizos	Invernadero	R2A
598	RO20	Rizosfera	Cabrerizos	Invernadero	R2A
599	RO21	Rizosfera	Cabrerizos	Invernadero	R2A
600	RO22	Rizosfera	Cabrerizos	Invernadero	R2A
601	RO23	Rizosfera	Cabrerizos	Invernadero	R2A
602	RO25	Rizosfera	Cabrerizos	Invernadero	R2A
603	RO24A	Rizosfera	Cabrerizos	Invernadero	R2A
604	RO24B	Rizosfera	Cabrerizos	Invernadero	R2A
605	RO26A	Rizosfera	Cabrerizos	Invernadero	R2A

606	RO26B	Rizosfera	Cabrerizos	Invernadero	R2A
607	RO26C	Rizosfera	Cabrerizos	Invernadero	R2A
608	RO27A	Rizosfera	Cabrerizos	Invernadero	R2A
609	RO27B	Rizosfera	Cabrerizos	Invernadero	R2A
610	RO28A	Rizosfera	Cabrerizos	Invernadero	R2A
611	RO28B	Rizosfera	Cabrerizos	Invernadero	R2A
612	RO30	Rizosfera	Salamanca	Invernadero	R2A
613	RO31	Rizosfera	Salamanca	Invernadero	R2A
614	RO32	Rizosfera	Salamanca	Invernadero	R2A
615	RO33	Rizosfera	Salamanca	Invernadero	R2A
616	RO34	Rizosfera	Salamanca	Invernadero	R2A
617	RO35	Rizosfera	Salamanca	Invernadero	R2A
618	RO36	Rizosfera	Salamanca	Invernadero	R2A
619	RO37	Rizosfera	Salamanca	Invernadero	R2A
620	RO38	Rizosfera	Salamanca	Invernadero	R2A
621	RO39	Rizosfera	Salamanca	Invernadero	R2A
622	RO40	Rizosfera	Salamanca	Invernadero	R2A
623	RO41	Rizosfera	Salamanca	Invernadero	R2A
624	RO42	Rizosfera	Salamanca	Invernadero	R2A
625	RO43	Rizosfera	Salamanca	Invernadero	R2A
626	RO44	Rizosfera	Salamanca	Invernadero	R2A
627	RO45	Rizosfera	Salamanca	Invernadero	R2A
628	RO46	Rizosfera	Salamanca	Invernadero	R2A
629	RO47	Rizosfera	Salamanca	Invernadero	R2A
630	RO48	Rizosfera	Salamanca	Invernadero	R2A
631	RO49	Rizosfera	Salamanca	Invernadero	R2A
632	RO51	Rizosfera	Salamanca	Invernadero	R2A
633	SO3	Rizosfera	Cabrerizos	Campo	ISP2
634	SO4	Rizosfera	Cabrerizos	Campo	ISP2
635	SO5	Rizosfera	Cabrerizos	Campo	ISP2
636	SO6	Rizosfera	Cabrerizos	Campo	ISP2
637	SO8	Rizosfera	Cabrerizos	Campo	ISP2
638	SO9	Rizosfera	Cabrerizos	Campo	ISP2
639	SO10	Rizosfera	Cabrerizos	Campo	ISP2

640	SO12	Rizosfera	Cabrerizos	Campo	ISP2
641	SO14	Rizosfera	Cabrerizos	Campo	ISP2
642	SO17	Rizosfera	Cabrerizos	Campo	ISP2
643	SO18	Rizosfera	Cabrerizos	Campo	ISP2
644	SO19	Rizosfera	Cabrerizos	Campo	ISP2
645	SO22	Rizosfera	Salamanca	Campo	ISP2
646	SO23	Rizosfera	Salamanca	Campo	ISP2
647	SO26	Rizosfera	Salamanca	Campo	ISP2
648	SO27	Rizosfera	Salamanca	Campo	ISP2
649	SO29	Rizosfera	Salamanca	Campo	ISP2
650	SO30	Rizosfera	Salamanca	Campo	ISP2
651	SO32	Rizosfera	Salamanca	Campo	ISP2
652	SO33	Rizosfera	Salamanca	Campo	ISP2
653	SO34	Rizosfera	Salamanca	Campo	ISP2
654	SO37	Rizosfera	Salamanca	Campo	ISP2
655	SO44	Rizosfera	Salamanca	Campo	ISP2
656	SO45	Rizosfera	Salamanca	Campo	ISP2
657	SO48	Rizosfera	Salamanca	Campo	ISP2
658	SO47A	Rizosfera	Salamanca	Campo	ISP2
659	SO47B	Rizosfera	Salamanca	Campo	ISP2
660	SO47C	Rizosfera	Salamanca	Campo	ISP2
661	SOC13	Rizosfera	Cabrerizos	Campo	ISP2
662	SOC14	Rizosfera	Cabrerizos	Campo	ISP2
663	SOC16	Rizosfera	Cabrerizos	Campo	ISP2
664	SOC17	Rizosfera	Cabrerizos	Campo	ISP2
665	SOC37	Rizosfera	Cabrerizos	Campo	ISP2
666	SOC71	Rizosfera	Cabrerizos	Campo	ISP2
667	SOC73	Rizosfera	Cabrerizos	Campo	ISP2
668	SOC75	Rizosfera	Cabrerizos	Campo	ISP2
669	SOC82A	Rizosfera	Cabrerizos	Campo	ISP2
670	SOC82B	Rizosfera	Cabrerizos	Campo	ISP2
671	SOC83A	Rizosfera	Cabrerizos	Campo	ISP2
672	SOC83B	Rizosfera	Cabrerizos	Campo	ISP2
673	SOC84	Rizosfera	Cabrerizos	Campo	ISP2

674	SOC91	Rizosfera	Cabrerizos	Campo	ISP2
675	SOC95	Rizosfera	Cabrerizos	Campo	ISP2
676	SOC14B	Rizosfera	Cabrerizos	Campo	ISP2
677	SOC72A	Rizosfera	Cabrerizos	Campo	ISP2
678	SOC72B	Rizosfera	Cabrerizos	Campo	ISP2
679	SOHO25	Rizosfera	Salamanca	Campo	ISP2
680	SOHO28	Rizosfera	Salamanca	Campo	ISP2
681	SOHO38	Rizosfera	Salamanca	Campo	ISP2
682	SOHO49	Rizosfera	Salamanca	Campo	ISP2
683	SOHO50	Rizosfera	Salamanca	Campo	ISP2
684	SOHO18B	Rizosfera	Salamanca	Campo	ISP2
685	SOHO30B	Rizosfera	Salamanca	Campo	ISP2
686	SOHO5A	Rizosfera	Salamanca	Campo	ISP2
687	SOHO5B	Rizosfera	Salamanca	Campo	ISP2
688	SRA1	Rizosfera	Salamanca	Invernadero	NA
689	SRA2	Rizosfera	Salamanca	Invernadero	NA
690	SRA3	Rizosfera	Salamanca	Invernadero	NA
691	SRA4	Rizosfera	Salamanca	Invernadero	NA
692	SRA7	Rizosfera	Salamanca	Invernadero	NA
693	SRA12	Rizosfera	Salamanca	Invernadero	NA
694	SRA15	Rizosfera	Salamanca	Invernadero	NA
695	SRA17	Rizosfera	Salamanca	Invernadero	NA
696	SRA18	Rizosfera	Salamanca	Invernadero	NA
697	SRA20	Rizosfera	Salamanca	Invernadero	R2A
698	SRA22	Rizosfera	Salamanca	Invernadero	R2A
699	SRA24	Rizosfera	Salamanca	Invernadero	R2A
700	SRA26	Rizosfera	Salamanca	Invernadero	R2A
701	SRA27	Rizosfera	Salamanca	Invernadero	R2A
702	SRA29	Rizosfera	Salamanca	Invernadero	R2A
703	SRA31	Rizosfera	Salamanca	Invernadero	R2A
704	SRA32	Rizosfera	Salamanca	Invernadero	R2A
705	SRA42	Rizosfera	Salamanca	Invernadero	PYE
706	SRA51	Rizosfera	Salamanca	Invernadero	PYE
707	SRA56A	Rizosfera	Salamanca	Invernadero	PYE

708	SRA64	Rizosfera	Salamanca	Invernadero	PYE
709	SRA74	Rizosfera	Salamanca	Invernadero	PYE
710	SRA740	Rizosfera	Salamanca	Invernadero	PYE
711	SRA200	Rizosfera	Salamanca	Invernadero	SCA
712	SRA201	Rizosfera	Salamanca	Invernadero	SCA
713	SRA203	Rizosfera	Salamanca	Invernadero	SCA
714	SRA204	Rizosfera	Salamanca	Invernadero	SCA
715	SRAM1	Rizosfera	Salamanca	Invernadero	YMA
716	SRAM2	Rizosfera	Salamanca	Invernadero	YMA
717	SRAM3	Rizosfera	Salamanca	Invernadero	YMA
718	SRAM6	Rizosfera	Salamanca	Invernadero	YMA
719	SRAM7	Rizosfera	Salamanca	Invernadero	YMA
720	SRI1	Rizosfera	Salamanca	Invernadero	ISP2
721	SRI2	Rizosfera	Salamanca	Invernadero	ISP2
722	SRI3	Rizosfera	Salamanca	Invernadero	ISP2

Tabla S 8. Listado de cepas bacterianas aisladas e identificadas genéticamente con la amplificación del gen ARNr 16S a nivel de género en este trabajo. En la tabla se muestra el código de los aislados, la identificación a nivel de género y la cepa tipo, el porcentaje de similitud, el tamaño de secuencia y la cobertura de integridad de la secuencia.

	Código	Identificación	Cepa tipo	Similitud (%)	Tamaño secuencia	Cobertura (%)
1	LUF2	Pseudomonas abietaniphila	ATCC 700689	98,35	1465	99,4
2	LUF3	Peribacillus frigoritolerans	DSM 8801	99,93	1466	99,4
3	LUF4	Pseudomonas ficuserectae	JCM 2400	99,93	1401	95,9
4	LUF5	Microbacterium lemovicicum	ViU22	98,68	1461	99,7
5	LUF6	Streptomyces ambofaciens	ATCC 23877	100	1458	100
6	LUF7	Mammaliicoccus sciuri	DSM 20345	99,93	1476	99,6
7	LUF8	Pseudomonas congelans	DSM 14939	100	1462	99,9
8	LUF9	Microbacterium foliorum	DSM 12966	100	1455	99,7
9	LUF11	Microbacterium foliorum	DSM 12966	100	1460	99,6
10	LUF13	Paenibacillus lautus	NBRC 15380	99,46	1485	99,5
11	LUF17	Bacillus pumilus	ATCC 7061	99,93	1474	99,5
12	LUF18	Bacillus pumilus	ATCC 7061	99,93	1486	99,7
13	LUF21	Mammaliicoccus sciuri	DSM 20345	97,68	1484	99,4
14	LUF22	Streptomyces zaomyceticus	NBRC 13348	99,93	1455	99,6
15	LUF23	Streptomyces anulatus	NRRL B-2000	99,86	1453	99,7
16	LUF24	Pseudomonas ficuserectae	JCM 2400	99,86	1401	99,5
17	LUF26	Corynebacterium casei	LMG S-19264	99,93	1444	99,5
18	LUF27	Pseudomonas caspiana	FBF102	99,72	1467	99,5
19	LUF28	Pseudomonas lutea	DSM 17257	99,93	1457	99,7
20	LUF32	Stenotrophomonas rhizophila	DSM 14405	99,57	1381	93,9
21	LUF34	Pseudomonas lutea	DSM 17257	99,93	1450	99,4
22	LUF35	Mammaliicoccus sciuri	DSM 20345	99,93	1474	99,4
23	LUF36	Pseudomonas caspiana	FBF102	99,79	1466	99,5
24	LUF37	Microbacterium phyllosphaerae	DSM 13468	99,93	1452	99,7
25	LUF39	Peribacillus frigoritolerans	DSM 8801	99,93	1479	99,5
26	LUF40	Sphingomonas insulae	DS-28	98,65	1422	99,7
27	LUF41	Microbacterium hatanonis	JCM 14558	99,51	1447	99,4
28	LUF43	Streptomyces setonii	NRRL ISP-5322	99,65	1457	99,4
29	LUF44	Pseudomonas caspiana	FBF102	97,92	675	46,6
30	LUF46	Microbacterium phyllosphaerae	DSM 13468	99,93	1457	99,8

31	LUF47	Microbacterium phyllosphaerae	DSM 13469	99,93	1461	99,9
32	LUF48	Bacillus halotolerans	ATCC 25096	99,93	1454	98,8
33	LUF49	Pseudoclavibacter helvolus	DSM 20419	99,79	1436	99,6
34	LUF52	Microbacterium phyllosphaerae	DSM 13468	98,96	1456	99,9
35	LUF53	Pseudoclavibacter helvolus	DSM 20419	99,79	1454	99,9
36	LUF54	Pseudoclavibacter helvolus	DSM 20419	99,79	1450	99,7
37	LUF55	Peribacillus frigoritolerans	DSM 8801	99,93	1474	99,5
38	LUF56	Pseudoclavibacter helvolus	DSM 20419	99,79	1444	99,6
39	LUF57	Microbacterium oxydans	DSM 20578	99,51	1449	99,8
40	LUF58	Pseudoclavibacter helvolus	DSM 20419	99,79	1447	99,6
41	LUF59	Pseudoclavibacter helvolus	DSM 20419	99,79	1446	99,7
42	LUF61	Streptomyces flaveolus	NBRC 3715	99,78	1392	96,1
43	LUF62	Peribacillus simplex	NBRC 15720	99,93	1475	99,6
44	LUF63	Microbacterium oxydans	DSM 20578	99,51	1450	99,9
45	LUF64	Pseudoclavibacter helvolus	DSM 20419	99,79	1443	99,6
46	LUF65	Pseudoclavibacter helvolus	DSM 20419	99,79	1440	99,6
47	LUF66	Pseudoclavibacter helvolus	DSM 20419	99,72	1440	99,8
48	LUF68	Peribacillus frigoritolerans	DSM 8801	99,93	1475	99,6
49	LUF69	Streptomyces flaveolus	NBRC 3715	99,86	1450	99,7
50	LUF70	Streptomyces cirratus	NRRL B-3250	99,79	1412	97,6
51	LUF71	Curtobacterium herbarum	P 420/07	99,58	1444	99,7
52	LUF72	Curtobacterium flaccumfaciens	LMG 3645	100	1447	99,6
53	LUF73	Plantibacter flavus	VKM Ac-2504	100	1414	98
54	LUF74	Microbacterium saperdae	DSM 20169	99,44	1447	99,7
55	LUF75	Microbacterium saperdae	DSM 20169	99,44	1447	99,5
56	LUF79	Curtobacterium flaccumfaciens	LMG 3645	99,79	1446	99,7
57	LUF80	Streptomyces zaomyceticus	NBRC 13348	99,93	1452	99,7
58	LUF82	Microbacterium testaceum	NBRC 12675	99,85	1375	95,2
59	LUF83	Streptomyces canus	DSM 40017	99,93	1446	99,2
60	LUF85	Microbacterium oxydans	DSM 20578	99,3	1444	99,6
61	LUF87B	Microbacterium saperdae	DSM 20169	99,44	1438	99,7
62	LUF89	Curtobacterium flaccumfaciens	LMG 3645	99,79	1449	99,5
63	LUF90	Frigoribacterium faeni	NBRC 103066	98,81	1434	99,3
64	LUF91	Sphingomonas glacialis	C16y	99	1411	99,6

65	LUF92	Microbacterium oxydans	DSM 20578	99,51	1436	99,4
66	LUF93	Streptomyces flaveolus	NBRC 3715	100	1460	99,5
67	LUF95	Frigoribacterium faeni	NBRC 103066	98,89	1463	99,7
68	LUF96	Streptomyces globisporus	NBRC 12867	99,65	1450	99,8
69	LUF98	Streptomyces asenjonii	KNN 35.1b	99,78	1452	99,8
70	LUF99	Streptomyces levis	NBRC 15423	99,44	1447	99,4
71	LUF100	Pseudoclavibacter helvolus	DSM 20419	99,65	1425	98,8
72	LUF101	Streptomyces flaveolus	NBRC 3715	99,79	1434	98,9
73	LUF102	Curtobacterium flaccumfaciens	LMG 3645	99,79	1440	99,6
74	LUF104	Curtobacterium flaccumfaciens	LMG 3645	99,79	1446	99,5
75	LUF111	Curtobacterium flaccumfaciens	LMG 3645	99,77	1302	90,2
76	LUF112	Curtobacterium flaccumfaciens	LMG 3645	99,09	1424	98,6
77	LUF113	Curtobacterium flaccumfaciens	LMG 3645	99,58	1429	99
78	LUF114	Pseudomonas caspiana	FBF102	99,79	1409	96,4
79	LUF115	Pseudomonas piscium	P50	99,03	1454	99,6
80	LUF116	Cellulomonas pakistanensis	JCM 18755	98,95	1427	98,9
81	LUF117	Cellulomonas pakistanensis	JCM 18755	99,03	1456	99,6
82	LUF118	Pseudomonas congelans	DSM 14939	99,66	1458	99,5
83	LUF120	Cellulomonas pakistanensis	JCM 18755	99,03	1458	99,8
84	LUF121	Pseudomonas caspiana	FBF102	99,66	1463	99,5
85	LUF122	Pseudomonas lutea	DSM 17257	99,93	1461	99,5
86	LUF123	Pseudomonas ficuserectae	JCM 2400	99,79	1458	99,7
87	LUF124	Pseudomonas caspiana	FBF102	99,79	1460	99,5
88	LUF125	Williamsia limnetica	L1505	100	1446	100
89	LUF126	Curtobacterium flaccumfaciens	LMG 3645	99,79	1440	99,6
90	LUF127	Curtobacterium flaccumfaciens	LMG 3645	99,79	1441	99,6
91	LUF128	Curtobacterium herbarum	P 420/07	99,51	1443	99,6
92	LUF129	Kocuria rhizophila	TA68	99,86	1459	99,5
93	LUF129B	Kocuria rhizophila	TA68	99,86	1468	99,8
94	LUF130	Kineococcus radiotolerans	SRS30216	99,56	1376	95,4
95	LUF131	Pseudoclavibacter terrae	THG-MD12	98,5	798	55,6
96	LUF132	Microbacterium oxydans	DSM 20578	99,51	1445	99,7
97	LUF134	Microbacterium oxydans	DSM 20578	99,51	1445	99,6
98	LUF135	Microbacterium oxydans	DSM 20578	99,51	1442	99,7

99	LUF137	Curtobacterium flaccumfaciens	LMG 3645	99,79	1461	99,7
100	LUF139	Sphingomonas faeni	MA-olki	99,78	1350	95,8
101	LUF140	Curtobacterium flaccumfaciens	LMG 3645	99,79	1440	99,7
102	LUF141	Frigoribacterium faeni	NBRC 103066	99,09	1431	99,1
103	LUF143	Plantibacter flavus	VKM Ac-2504	99,93	1458	99,7
104	LUF145	Pseudomonas ficuserectae	JCM 2400	99,93	1464	99,5
105	LUF146	Pseudomonas ficuserectae	JCM 2400	99,93	1456	99,6
106	LUF147	Pseudomonas caspiana	FBF102	99,79	1466	99,6
107	LUF148	Pseudomonas ficuserectae	JCM 2400	99,93	1473	99,5
108	LUF149	Pseudomonas avellanae	BPIC 631	99,86	1400	95,8
109	LUF151	Streptomyces cirratus	NRRL B-3250	99,53	448	29,6
110	LUF154	Cellulomonas pakistanensis	JCM 18755	98,96	1455	99,7
111	LUF158	Pseudomonas ficuserectae	JCM 2400	99,93	1449	99
112	LUF161	Pseudomonas rhizosphaerae	DSM 16299	98,97	1456	99,7
113	LUF162	Agromyces terreus	DS-10	98,68	1458	99,7
114	LUF163	Curtobacterium flaccumfaciens	LMG 3645	99,79	1445	99,8
115	LUF164	Pseudomonas congelans	DSM 14939	99,93	1465	99,6
				100	1204	00 F
116	LUF165A	Pseudomonas atacamensis	M7D1	100	1394	99,5
116 117	LUF165A LUF165B	Pseudomonas atacamensis Pseudomonas atacamensis	M7D1 M7D1	100	1456	99,5
116 117 118	LUF165A LUF165B LUF167	Pseudomonas atacamensis Pseudomonas atacamensis Sanguibacter keddieii	M7D1 M7D1 DSM 10542	100 100 99,01	1456 1436	99,5 99,5 98,3
116 117 118 119	LUF165A LUF165B LUF167 LUF169	Pseudomonas atacamensis Pseudomonas atacamensis Sanguibacter keddieii Pseudomonas syringae	M7D1 M7D1 DSM 10542 KCTC 12500	100 100 99,01 99,57	1456 1436 1390	99,5 99,5 98,3 95,1
116 117 118 119 120	LUF165A LUF165B LUF167 LUF169 LUF170	Pseudomonas atacamensis Pseudomonas atacamensis Sanguibacter keddieii Pseudomonas syringae Pseudomonas congelans	M7D1 M7D1 DSM 10542 KCTC 12500 DSM 14939	100 100 99,01 99,57 99,66	1394 1456 1436 1390 1462	99,5 99,5 98,3 95,1 99,6
116 117 118 119 120 121	LUF165A LUF165B LUF167 LUF169 LUF170 LUF172B	Pseudomonas atacamensis Pseudomonas atacamensis Sanguibacter keddieii Pseudomonas syringae Pseudomonas congelans Pseudomonas ficuserectae	M7D1 M7D1 DSM 10542 KCTC 12500 DSM 14939 JCM 2400	100 100 99,01 99,57 99,66 99,86	1394 1456 1436 1390 1462 1449	99,5 99,5 98,3 95,1 99,6 99,2
116 117 118 119 120 121 122	LUF165A LUF165B LUF167 LUF169 LUF170 LUF172B LUF173	Pseudomonas atacamensisPseudomonas atacamensisSanguibacter keddieiiPseudomonas syringaePseudomonas congelansPseudomonas ficuserectaePseudomonas lutea	M7D1 M7D1 DSM 10542 KCTC 12500 DSM 14939 JCM 2400 DSM 17257	100 100 99,01 99,57 99,66 99,86 99,79	1394 1456 1436 1390 1462 1449 1459	99,5 99,5 98,3 95,1 99,6 99,2 99,9
116 117 118 119 120 121 122 123	LUF165A LUF165B LUF167 LUF169 LUF170 LUF172B LUF173 LUF175	Pseudomonas atacamensisPseudomonas atacamensisSanguibacter keddieiiPseudomonas syringaePseudomonas congelansPseudomonas ficuserectaePseudomonas luteaPseudomonas ficuserectae	M7D1 M7D1 DSM 10542 KCTC 12500 DSM 14939 JCM 2400 DSM 17257 JCM 2400	100 100 99,01 99,57 99,66 99,86 99,79 99,86	1394 1456 1436 1390 1462 1449 1459 1411	99,5 98,3 95,1 99,6 99,2 99,9 96,4
116 117 118 119 120 121 122 123 124	LUF165A LUF165B LUF167 LUF169 LUF170 LUF172B LUF173 LUF175 LUF176	Pseudomonas atacamensisPseudomonas atacamensisSanguibacter keddieiiPseudomonas syringaePseudomonas congelansPseudomonas ficuserectaePseudomonas luteaPseudomonas ficuserectaePseudomonas caspiana	M7D1 M7D1 DSM 10542 KCTC 12500 DSM 14939 JCM 2400 DSM 17257 JCM 2400 FBF102	100 100 99,01 99,57 99,66 99,86 99,79 99,86 99,79	1394 1456 1436 1390 1462 1449 1459 1411 1461	99,5 98,3 95,1 99,6 99,2 99,9 96,4 99,5
116 117 118 119 120 121 122 123 124 125	LUF165A LUF165B LUF167 LUF169 LUF170 LUF172B LUF173 LUF175 LUF176 LUF178	Pseudomonas atacamensisPseudomonas atacamensisPseudomonas atacamensisSanguibacter keddieiiPseudomonas syringaePseudomonas congelansPseudomonas ficuserectaePseudomonas luteaPseudomonas ficuserectaePseudomonas caspianaFlavobacterium bizetiae	M7D1 M7D1 DSM 10542 KCTC 12500 DSM 14939 JCM 2400 DSM 17257 JCM 2400 FBF102 CIP 105534	100 100 99,01 99,57 99,66 99,86 99,79 99,86 99,79 99,86 99,79	1394 1456 1436 1390 1462 1449 1459 1411 1461 1449	99,5 98,3 95,1 99,6 99,2 99,9 96,4 99,5 99,7
116 117 118 119 120 121 122 123 124 125 126	LUF165A LUF165B LUF167 LUF169 LUF170 LUF172B LUF173 LUF175 LUF176 LUF178 LUF179	Pseudomonas atacamensisPseudomonas atacamensisPseudomonas atacamensisSanguibacter keddieiiPseudomonas syringaePseudomonas congelansPseudomonas congelansPseudomonas ficuserectaePseudomonas luteaPseudomonas ficuserectaePseudomonas caspianaFlavobacterium bizetiaePseudomonas caspiana	M7D1 M7D1 DSM 10542 KCTC 12500 DSM 14939 JCM 2400 DSM 17257 JCM 2400 FBF102 CIP 105534 FBF102	100 100 99,01 99,57 99,66 99,86 99,79 99,86 99,79 98,68 99,79	1394 1456 1436 1390 1462 1449 1459 1411 1461 1449 1461	99,5 98,3 95,1 99,6 99,2 99,9 96,4 99,5 99,5
116 117 118 119 120 121 122 123 124 125 126 127	LUF165A LUF165B LUF167 LUF169 LUF170 LUF172B LUF173 LUF175 LUF176 LUF178 LUF179 LUF183B	Pseudomonas atacamensisPseudomonas atacamensisPseudomonas atacamensisSanguibacter keddieiiPseudomonas syringaePseudomonas congelansPseudomonas congelansPseudomonas ficuserectaePseudomonas luteaPseudomonas ficuserectaePseudomonas caspianaFlavobacterium bizetiaePseudomonas caspianaStenotrophomonas rhizophila	M7D1 M7D1 DSM 10542 KCTC 12500 DSM 14939 JCM 2400 DSM 17257 JCM 2400 FBF102 CIP 105534 FBF102 DSM 14405	100 100 99,01 99,57 99,66 99,86 99,79 99,86 99,79 98,68 99,79 98,68	1394 1456 1436 1390 1462 1449 1459 1411 1461 1449 1449	99,5 98,3 95,1 99,6 99,2 99,9 96,4 99,5 99,5 99,5 99,5 99,5 99,5 99,5
116 117 118 119 120 121 122 123 124 125 126 127 128	LUF165A LUF165B LUF167 LUF169 LUF170 LUF172B LUF173 LUF175 LUF176 LUF178 LUF179 LUF183B LUF187B	Pseudomonas atacamensisPseudomonas atacamensisSanguibacter keddieiiPseudomonas syringaePseudomonas congelansPseudomonas ficuserectaePseudomonas luteaPseudomonas ficuserectaePseudomonas caspianaFlavobacterium bizetiaePseudomonas caspianaStenotrophomonas rhizophilaCellulomonas denverensis	M7D1 M7D1 DSM 10542 KCTC 12500 DSM 14939 JCM 2400 DSM 17257 JCM 2400 FBF102 CIP 105534 FBF102 DSM 14405 W6929	100 100 99,01 99,57 99,66 99,86 99,79 99,86 99,79 98,68 99,79 98,68 99,79 99,79	1394 1456 1436 1390 1462 1449 1459 1411 1461 1449 1461 1449 1455	99,5 98,3 95,1 99,6 99,2 99,9 96,4 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,6
116 117 118 119 120 121 122 123 124 125 126 127 128 129	LUF165A LUF165B LUF167 LUF169 LUF170 LUF172B LUF173 LUF175 LUF176 LUF178 LUF179 LUF183B LUF187B LUF184	Pseudomonas atacamensisPseudomonas atacamensisSanguibacter keddieiiPseudomonas syringaePseudomonas congelansPseudomonas congelansPseudomonas ficuserectaePseudomonas luteaPseudomonas ficuserectaePseudomonas caspianaFlavobacterium bizetiaePseudomonas caspianaStenotrophomonas rhizophilaCellulomonas denverensisPseudomonas meliae	M7D1 M7D1 DSM 10542 KCTC 12500 DSM 14939 JCM 2400 DSM 17257 JCM 2400 FBF102 CIP 105534 FBF102 DSM 14405 W6929 CFBP 3225	100 100 99,01 99,57 99,66 99,86 99,79 99,86 99,79 98,68 99,79 98,68 99,79 99,79 99,79 99,79 99,79	1394 1456 1436 1390 1462 1449 1459 1411 1461 1449 1461 1449 1455 1461 1455 1456 1352	99,5 98,3 95,1 99,6 99,2 99,9 96,4 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5 95,3 99,6 92,5
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130	LUF165A LUF165B LUF167 LUF169 LUF170 LUF172B LUF173 LUF175 LUF176 LUF178 LUF178 LUF183B LUF183B LUF184 LUF185	Pseudomonas atacamensisPseudomonas atacamensisPseudomonas atacamensisSanguibacter keddieiiPseudomonas syringaePseudomonas congelansPseudomonas congelansPseudomonas ficuserectaePseudomonas luteaPseudomonas ficuserectaePseudomonas caspianaFlavobacterium bizetiaePseudomonas caspianaStenotrophomonas rhizophilaCellulomonas denverensisPseudomonas meliaePseudomonas caspiana	M7D1 M7D1 DSM 10542 KCTC 12500 DSM 14939 JCM 2400 DSM 17257 JCM 2400 FBF102 CIP 105534 FBF102 DSM 14405 W6929 CFBP 3225 FBF102	100 100 99,01 99,57 99,66 99,86 99,79 99,86 99,79 98,68 99,79 98,68 99,79 99,79 99,79 99,79 99,79 99,79 99,79	1394 1456 1436 1390 1462 1449 1459 1441 1461 1449 1461 1449 1461 1459 1461 1456 1352 1465	99,5 98,3 95,1 99,6 99,2 99,9 96,4 99,5 99,5 95,3 99,6 92,5 99,5 99,5 99,5 95,3 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131	LUF165A LUF165B LUF167 LUF169 LUF170 LUF172B LUF173 LUF175 LUF176 LUF178 LUF178 LUF183B LUF183B LUF184 LUF185 LUF188	Pseudomonas atacamensisPseudomonas atacamensisSanguibacter keddieiiPseudomonas syringaePseudomonas congelansPseudomonas ficuserectaePseudomonas luteaPseudomonas ficuserectaePseudomonas caspianaFlavobacterium bizetiaePseudomonas caspianaStenotrophomonas rhizophilaCellulomonas meliaePseudomonas caspianaSanguibacter keddieii	M7D1 M7D1 DSM 10542 KCTC 12500 DSM 14939 JCM 2400 DSM 17257 JCM 2400 FBF102 CIP 105534 FBF102 DSM 14405 W6929 CFBP 3225 FBF102 DSM 10542	100 100 99,01 99,57 99,66 99,86 99,79 99,86 99,79 98,68 99,79 98,68 99,79 99,79 99,79 99,79 99,79 99,79 99,79 99,79 99,79 99,79	1394 1456 1436 1390 1462 1449 1459 1441 1461 1449 1461 1449 1461 1459 1461 1456 1352 1465 1456	99,5 98,3 95,1 99,6 99,2 99,9 96,4 99,5 99,5 99,5 99,6 92,5 99,5 99,5 99,6 92,5 99,6 99,5 99,6 99,6

133	LUF190A	Microvirga aerilata	5420S-16	98,79	1425	99,6
134	LUF190B	Curtobacterium flaccumfaciens	LMG 3645	99,79	1461	99,9
135	LUF192	Clavibacter michiganensis	LPPA 982	100	1397	96,3
136	LUF196	Pseudomonas congelans	DSM 14939	100	1463	99,5
137	LUF198	Pseudomonas caspiana	FBF102	98,83	1466	99,6
138	LUF201	Pseudomonas caspiana	FBF102	99,79	1468	99,7
139	LUF202	Methylorubrum extorquens	IAM 12631	100	1422	99,5
140	LUF207	Lysinibacillus pakistanensis	JCM 18776	99,43	1399	94,8
141	LUF208	Agromyces salentinus	20-5	99,71	1464	99,6
142	LUF210	Stenotrophomonas rhizophila	DSM 14405	99,73	1469	99,5
143	LUF213	Pseudomonas baetica	a390	99,72	1464	99,6
144	LUF216	Streptomyces finlayi	NRRL B-12114	98,53	272	18,8
145	LUF221	Pseudomonas ficuserectae	JCM 2400	97,55	1464	99,5
146	LUF223A	Cellulomonas denverensis	W6929	95,98	1433	99,3
147	LUF223B	Cellulomonas denverensis	W6929	99,01	1441	99,7
148	LUF227	Sphingomonas aerolata	NW12	99,35	1419	99,4
149	LUF240	Streptomyces ambofaciens	ATCC 23877	100	416	28,8
150	LUF241	Microbacterium yannicii	G72	95,69	1462	99,6
151	LUF250	Lysobacter dokdonensis	DS-58	98,97	1465	99,7
152	LUF254	Pseudomonas caspiana	FBF102	99,79	1471	99,5
153	LUF256	Priestia aryabhattai	B8W22	99,93	1425	96,7
154	LUF260	Nocardioides cavernae	YIM A1136	99,51	1450	99,7
155	LUF263	Pseudomonas ficuserectae	JCM 2400	98,71	1405	96,3
156	LUF266	Peribacillus frigoritolerans	DSM 8801	99,79	1451	98,6
157	LUF271	Pseudomonas ficuserectae	JCM 2400	99,79	1475	98,7
158	LUF271B	Streptomyces hawaiiensis	NBRC 12784	99,79	1461	99,5
159	LUF274	Pseudomonas avellanae	BPIC 631	99,78	472	30,9
160	LUF275	Streptomyces setonii	NRRL ISP-5322	97,55	327	22,6
161	LUF277	Microvirga makkahensis	SV1470	98,5	1421	99,6
162	LUF278	Massilia neuiana	PTW21	97,42	1438	98,9
163	LUF281	Bacillus mobilis	0711P9-1	99,93	1462	99,2
164	LUF282	Microbacterium phyllosphaerae	DSM 13468	99,79	1433	99,2
165	LUF283	Pseudoclavibacter terrae	THG-MD12	99,79	1462	99,9
166	LUF284	Bacillus mobilis	0711P9-1	100	1484	99,5

167	LUF285	Streptomyces flaveolus	NBRC 3715	99,93	1461	99,9
168	LUF286	Cellulomonas xylanilytica	XIL11	99,51	1445	99,6
169	LUF288	Ureibacillus chungkukjangi	2RL3-2	99,37	1439	97,74
170	LUF289	Microbacterium foliorum	DSM 12966	99,65	1460	99,4
171	LUF290	Streptomyces flaveolus	NBRC 3715	99,74	1402	96,8
172	LUF291	Bacillus albus	N35-10-2	100	1485	99,5
173	LUF292	Bacillus cereus	ATCC 14579	88,22	628	42,29
174	LUF293	Pseudoclavibacter helvolus	DSM 20419	99,79	1462	99,9
175	LUF295	Pseudoclavibacter helvolus	DSM 20419	99,72	1451	99,5
176	LUF300	Pseudoclavibacter terrae	THG-MD12	99,64	1442	98,6
177	LUF301A	Peribacillus frigoritolerans	DSM 8801	100	1467	99,3
178	LUF302	Pseudomonas orientalis	CFML 96-170	99,66	1471	99,5
179	LUF307	Pseudoclavibacter helvolus	DSM 20419	99,79	1412	97,9
180	LUF311	Pseudoclavibacter helvolus	DSM 20419	99,79	1455	99,6
181	LUF312	Pseudoclavibacter helvolus	DSM 20419	99,2	251	17,3
182	LUF314	Pseudoclavibacter helvolus	DSM 20419	99,79	1453	99,4
183	LUF315	Pseudoclavibacter helvolus	DSM 20419	99,79	1455	99,6
184	LUF316	Peribacillus frigoritolerans	DSM 8801	99,86	1484	99,5
185	LUF322	Pseudoclavibacter helvolus	DSM 20419	99,58	1453	99,4
186	LUF326	Peribacillus frigoritolerans	DSM 8801	99,93	1478	99,5
187	LUF327	Pseudoclavibacter helvolus	DSM 20419	99,79	1455	99,6
188	LUF328	Pseudoclavibacter helvolus	DSM 20419	99,16	1312	91,1
189	LUF329	Bacillus mobilis	0711P9-1	99,93	1433	97,2
190	LUF330	Bacillus mobilis	0711P9-1	99,86	1465	99,4
191	LUF331	Bacillus mobilis	0711P9-1	100	1459	99
192	LUF335	Pseudoclavibacter helvolus	DSM 20419	99,79	1451	99,4
193	LUF338	Pseudoclavibacter helvolus	DSM 20419	99,79	1452	99,4
194	LUF340	Cytobacillus oceanisediminis	H2	99,43	1480	99,5
195	LUF341	Pseudomonas ficuserectae	JCM 2400	99,93	1477	99,7
196	LUF342	Pseudoclavibacter helvolus	DSM 20419	95,99	1421	98,6
197	LUF343	Peribacillus frigoritolerans	DSM 8801	99,93	1470	99
198	LUF344	Peribacillus frigoritolerans	DSM 8801	99,93	1480	99,6
199	LUF345	Pseudoclavibacter helvolus	DSM 20419	99,58	1452	99,4
200	LUF346	Pseudoclavibacter helvolus	DSM 20419	99,79	1457	99,5

201	LUF347	Pseudoclavibacter helvolus	DSM 20419	99,79	1458	99,8
202	LUF350	Mammaliicoccus sciuri	DSM 20345	99,86	1479	99,7
203	LUF351	Pseudoclavibacter helvolus	DSM 20419	99,79	1456	99,7
204	LUF352	Pseudoclavibacter helvolus	DSM 20419	99,79	1456	99,7
205	LUF353	Stenotrophomonas rhizophila	DSM 14405	99,79	1469	99,5
206	LUF356	Stenotrophomonas rhizophila	DSM 14405	99,66	1473	99,6
207	LUF360A	Streptomyces ambofaciens	ATCC 23877	99,93	1454	99,8
208	LUF360B	Streptomyces ambofaciens	ATCC 23877	100	1454	99,6
209	LUF362	Microbacterium foliorum	DSM 12966	99,65	1454	99,7
210	LUF365	Pseudomonas avellanae	BPIC 631	99,86	1473	99,7
211	LUF369A	Streptomyces flaveolus	NBRC 3715	99,93	1459	99,4
212	LUF369B	Niallia taxi	M5HDSG1-1	99,66	1482	99,4
213	LUN1	Priestia aryabhattai	B8W22	100	1478	99,5
214	LUN3	Bacillus halotolerans	ATCC 25096	99,86	1475	99,6
215	LUN4	Bacillus tequilensis	KCTC 13622	99,9	1483	99,9
216	LUN5	Bacillus halotolerans	ATCC 25096	99,78	1373	93,3
217	LUN6B	Bacillus halotolerans	ATCC 25096	99,93	1465	99,4
218	LUN7	Bacillus halotolerans	ATCC 25096	99,93	1466	99,6
219	LUN9A	Brevibacterium casei	NCDO 2048	99,37	1463	99,7
220	LUN10A	Brevibacterium casei	NCDO 2048	99,37	1465	99,9
221	LUN16A	Paenibacillus illinoisensis	NRRL NRS-1356	99,36	1470	99,5
222	LUN16BA	Dermacoccus nishinomiyaensis	DSM 20448	99,79	1453	99,4
223	LUN18	Peribacillus frigoritolerans	DSM 8801	99,93	1373	93,2
224	LUN19A	Micromonospora vinacea	GUI63	99,72	1451	99,7
225	LUN20	Priestia megaterium	NBRC 15308	99,66	1484	99,4
226	LUN22	Micromonospora saelicesensis	Lupac 09	99,93	1453	99,6
227	LUN23	Micrococcus luteus	NCTC 2665	99,72	1446	99,5
228	LUN27	Mycolicibacterium arabiense	YIM 121001	98,4	1462	99,7
229	LUN28	Micromonospora saelicesensis	Lupac 09	99,63	1345	93,5
230	LUN30	Bacillus tequilensis	KCTC 13622	99,93	1477	99,6
231	LUN34	Micromonospora zamorensis	DSM 45600	99,72	1452	99,5
232	LUN35	Priestia aryabhattai	B8W22	100	1483	99,9
233	LUN36A	Micromonospora saelicesensis	Lupac 09	99,86	1447	99,7
234	LUN36B	Niallia taxi	M5HDSG1-1	99,8	1473	99,5

235	LUN37	Niallia taxi	M5HDSG1-1	99,8	1474	99,6
236	LUN38	Micromonospora saelicesensis	Lupac 09	99,86	1449	99,5
237	LUN39A	Micromonospora palomenae	NEAU-CX1	99,58	1445	99,4
238	LUN39B	Micromonospora palomenae	NEAU-CX1	99,65	1451	99,6
239	LUN40	Microbispora clausenae	CLES2	99,6	1003	68,9
240	LUN45	Priestia megaterium	NBRC 15308	99,93	1484	99,6
241	LUN46	Micromonospora palomenae	NEAU-CX1	99,16	1456	99,7
242	LUN47	Micromonospora palomenae	NEAU-CX1	99,1	1441	100
243	LUN48	Priestia megaterium	NBRC 15308	99,86	1470	99,6
244	LUN49	Priestia megaterium	NBRC 15308	99,86	1398	94,8
245	LUN50	Priestia megaterium	NBRC 15308	99,86	1463	99,3
246	LUN51	Priestia megaterium	NBRC 15308	99,93	1425	96,7
247	LUN52	Priestia megaterium	NBRC 15308	99,86	1471	99,5
248	LUN55A	Cytobacillus solani	FJAT-18043	98,7	1312	89,1
249	LUN55B	Cytobacillus solani	FJAT-18043	99,46	1304	88,5
250	LUN56	Cytobacillus solani	FJAT-18043	98,79	1320	89,6
251	LUN57	Cohnella boryungensis	BR-29	99,05	1477	99,6
252	LUN58	Micromonospora zamorensis	DSM 45600	100	1455	99,6
253	LUN62	Micromonospora saelicesensis	DSM 45600	100	1452	99,7
254	LUN64	Cohnella boryungensis	BR-29	98,78	1486	99,7
255	LUN65A	Paenibacillus illinoisensis	NRRL NRS-1356	99,71	1427	96,7
256	LUN65B	Paenibacillus illinoisensis	NRRL NRS-1356	99,41	1424	96,6
257	LUN69	Priestia megaterium	NBRC 15308	99,86	1486	99,3
258	LUN70	Alkalihalobacillus plakortidis	P203	100	1490	99,5
259	LUN71	Priestia aryabhattai	B8W22	99,66	1492	99,7
260	LUN74	Starkeya novella	DSM 506	98,64	1409	99,5
261	LUN75	Phyllobacterium brassicacearum	STM 196	99,86	1486	99,5
262	LUN76	Bacillus tequilensis	KCTC 13622	99,93	1462	99,3
263	LUN77	Bacillus mojavensis	RO-H-1	98,48	1320	90,1
264	LUN79B	Micromonospora arida	LB32	99,79	1450	99,5
265	LUN80	Bacillus halotolerans	ATCC 25096	99,86	1483	99,5
266	LUN87B	Microbacterium phyllosphaerae	DSM 13468	99,93	1456	99,5
267	LUN88	Micromonospora noduli	GUI43	100	1451	99,4
268	LUN90	Peribacillus frigoritolerans	DSM 8801	99,93	1488	99,6

269	LUN91	Terribacillus saccharophilus	002-048	99,43	1407	94,7
270	LUN92	Micromonospora saelicesensis	Lupac 09	99,72	1450	99,5
271	LUN93	Micromonospora saelicesensis	Lupac 09	99,86	1448	99,7
272	LUN94A	Neisseria perflava	U15	99,7	1470	99,6
273	LUN95	Oceanobacillus sojae	Y27	100	1473	99,3
274	LUN97A	Priestia aryabhattai	B8W22	100	1483	99,3
275	LUN97B	Priestia aryabhattai	B8W22	100	1482	99,5
276	LUN98	Priestia aryabhattai	B8W22	99,93	1479	99,6
277	LUN101	Metabacillus niabensis	4T19	99,73	1473	99,5
278	LUN6B	Bacillus halotolerans	ATCC 25096	99,93	1465	99,4
279	LUN102	Bradyrhizobium canariense	BTA-1	99,72	1425	99,6
280	LUN103	Bradyrhizobium canariense	BTA-1	99,8	1412	99,5
281	LUN104	Bradyrhizobium canariense	BTA-1	99,65	1434	100
282	LUN105	Bradyrhizobium canariense	BTA-1	99,5	1436	100
283	LUN106	Bradyrhizobium canariense	BTA-1	99,37	1406	99,5
284	LUN107	Bradyrhizobium canariense	BTA-1	99,57	1434	100
285	LUN108	Bradyrhizobium canariense	BTA-1	99,7	1431	95,7
286	LUN109	Bradyrhizobium canariense	BTA-1	99,72	1426	99,9
287	LUN110	Bradyrhizobium canariense	BTA-1	99,72	1436	100
288	LUR1	Agrobacterium radiobacter	ATCC 19358	100	1417	99,5
289	LUR2	Pararhizobium herbae	CCBAU 83011	99,17	1402	99,5
290	LUR3	Pararhizobium herbae	CCBAU 83011	99,39	1420	99,5
291	LUR4	Agrobacterium radiobacter	ATCC 19358	100	1422	99,5
292	LUR5	Pararhizobium giardinii	H152	99,71	1408	99,5
293	LUR6	Ensifer morelensis	Lc04	99,93	1422	99,5
294	LUR8	Rhizobium favelukesii	LPU83	99,57	1416	99,5
295	LUR11	Pseudomonas atacamensis	M7D1	99,86	1474	99,5
296	LUR12	Inquilinus ginsengisoli	Gsoil 080	99,06	1418	99,5
297	LUR13	Tardiphaga robiniae	LMG 26467	99,93	1410	99,5
298	LUR14	Luteibacter rhizovicinus	LJ96	98,97	1461	99,5
299	LUR15	Luteibacter rhizovicinus	LJ96	98,97	1468	99,5
300	LUR16	Phyllobacterium zundukense	Tri-48	96,49	1465	99,5
301	LUR17	Luteibacter rhizovicinus	LJ96	98,97	1468	99,5
302	LUR18	Luteibacter rhizovicinus	LJ96	98,97	1463	99,3

303	LUR21	Pseudomonas lactis	DSM 29167	100	1454	99,5
304	LUR22	Luteibacter rhizovicinus	LJ96	98,97	1462	99,5
305	LUR24	Rhizobium grahamii	CCGE 502	99,5	1398	99,5
306	LUR25	Rhizobium grahamii	CCGE 502	98,8	1386	98,8
307	LUR26	Bosea eneae	34614	99,29	1413	99,5
308	LUR27	Rhizobium grahamii	CCGE 502	99,43	1397	99,5
309	LUR29	Pseudomonas atacamensis	M7D1	100	1464	99,5
310	LUR30	Pseudomonas bijieensis	L22-9	99,93	1467	99,5
311	LUR31	Pseudomonas atacamensis	M7D1	100	1454	99,5
312	LUR32	Neorhizobium alkalisoli	CCBAU 01393	99,62	1407	99,5
313	LUR33	Rhizobium sullae	IS123	99,71	1404	99,5
314	LUR34	Luteibacter rhizovicinus	LJ96	98,97	1455	99,2
315	LUR35	Agrobacterium radiobacter	ATCC 19358	100	1406	99,5
316	LUR36	Phyllobacterium brassicacearum	STM 196	100	1403	99,5
317	LUR37	Pseudomonas bijieensis	L22-9	99,93	1475	99,7
318	LUR39	Pseudomonas bijieensis	L22-9	99,86	1454	99,5
319	LUR40	Neorhizobium alkalisoli	CCBAU 01393	99,77	1407	99,5
320	LUR42	Pseudomonas atacamensis	M7D1	100	1454	99,5
321	LUR44	Rhizobium sullae	IS123	100	1397	99,5
322	LUR45	Mesorhizobium ciceri	UPM-Ca7	100	1383	98,3
323	LUR47	Mesorhizobium ciceri	UPM-Ca7	100	1408	99,5
324	LUR50	Agrobacterium radiobacter	ATCC 19358	100	1422	99,5
325	LUR51	Heyndrickxia sporothermodurans	M215	99,18	1477	99,6
326	LUR53	Peribacillus frigoritolerans	DSM 8801	100	1475	99,6
327	LUR54	Starkeya novella	DSM 506	98,64	1422	99,5
328	LUR55	Heyndrickxia sporothermodurans	M215	99,17	1469	99,1
329	LUR56	Starkeya novella	DSM 506	98,64	1419	99,3
330	LUR57	Inquilinus ginsengisoli	Gsoil 080	99,06	1410	99,5
331	LUR58	Bradyrhizobium canariense	BTA-1	99,72	1426	99,5
332	LUR59	Heyndrickxia sporothermodurans	M215	98,95	1423	96,5
333	LUR60	Pseudomonas atacamensis	M7D1	99,93	1474	99,5
334	LUR61	Inquilinus ginsengisoli	Gsoil 080	99,06	1423	99,5
335	LUR63	Inquilinus ginsengisoli	Gsoil 080	99,06	1409	99,5
336	LUR64	Lysinibacillus pakistanensis	JCM 18776	99,52	1465	99,5

337	LUR65	Inquilinus limosus	DSM 16000	93,57	1356	96
338	LUR66	Lysinibacillus capsici	PB300	98,24	1418	96,1
339	LUR67	Phyllobacterium brassicacearum	STM 196	100	1351	96
340	LUR68	Starkeya novella	DSM 506	98,64	1422	99,5
341	LUR70	Phyllobacterium brassicacearum	STM 196	99,86	1491	99,5
342	LUR71	Phyllobacterium brassicacearum	STM 196	99,86	1498	99,5
343	LUR77	Starkeya novella	DSM 506	98,64	1408	99,5
344	LUR78	Starkeya novella	DSM 506	98,64	1417	99,5
345	LUR85	Phyllobacterium zundukense	Tri-48	98,29	1388	96,4
346	LUR86	Phyllobacterium endophyticum	PEPV15	100	1424	99,6
347	LUR87	Pantoea agglomerans	DSM 3493	99,79	1464	99,4
348	LUR88	Pantoea agglomerans	DSM 3493	99,5	1466	99,5
349	LUR89	Pseudomonas marginalis	ATCC 10844	99,85	1454	99,5
350	LUR90	Pseudomonas cedrina	CFML 96-198	99,79	1454	99,5
351	LUR91	Pseudomonas lactis	DSM 29167	100	1455	99,5
352	LUR92	Pseudomonas grimontii	CFML 97-514	98,89	1467	99,2
353	LUR93	Phyllobacterium bourgognense	STM 201	99,78	1343	95,3
354	LUR94	Phyllobacterium endophyticum	PEPV15	97,85	1314	92,5
355	LUR95	Pseudomonas cedrina	CFML 96-198	99,79	1454	99,5
356	LUR96	Phyllobacterium bourgognense	STM 201	99,93	1408	99,5
357	LUR97	Phyllobacterium bourgognense	STM 201	99,78	1353	96
358	LUR98	Phyllobacterium zundukense	Tri-48	98,29	1451	99,1
359	LUR99	Phyllobacterium bourgognense	STM 201	99,64	1493	99,5
360	LUR100	Phyllobacterium bourgognense	STM 201	99,93	1410	99,5
361	LUR102	Pseudomonas atacamensis	M7D1	99,93	1474	99,5
362	LUR103	Pseudomonas frederiksbergensis	JAJ28	99,66	1459	99,5
363	LUR105	Pseudomonas frederiksbergensis	JAJ28	99,66	1436	99,6
364	LUR106	Inquilinus ginsengisoli	Gsoil 080	98,34	1420	99,5
365	LUR107	Pseudomonas frederiksbergensis	JAJ28	99,66	1457	99,5
366	LUR108	Pseudomonas bijieensis	L22-9	99,86	1458	99,5
367	LUR109	Pseudomonas frederiksbergensis	JAJ28	99,65	1452	99,2
368	LUR110	Pseudomonas bijieensis	L22-9	99,86	1463	99,5
369	LUR111	Pseudomonas frederiksbergensis	JAJ28	99,66	1459	99,5
370	LUR112	Pseudomonas frederiksbergensis	JAJ28	99,66	1465	99,5

371	LUR113	Roseomonas pecuniae	N75	99,35	1414	99,5
372	LUR114	Tardiphaga robiniae	LMG 26467	99,93	1410	99,5
373	LUR115	Heyndrickxia sporothermodurans	M215	99,17	1443	97,8
374	LUR116	Pseudomonas bijieensis	L22-9	99,86	1456	99,5
375	LUR117	Pseudomonas baetica	a390	99,79	1466	99,5
376	LUR118	Peribacillus frigoritolerans	DSM 8801	99,93	1471	99,3
377	LUR119	Heyndrickxia sporothermodurans	M215	99,18	1457	98,8
378	LUR120	Bacillus paranthracis	Mn5	99,93	1474	99,5
379	LUR121	Streptomyces sioyaensis	NRRL B-5408	99,31	1460	99,9
380	LUR122	Streptomyces angustmyceticus	NRRL B-2347	99,93	1453	99,6
381	LUR123	Streptomyces sioyaensis	NRRL B-5408	99,31	1453	99,6
382	LUR124	Tardiphaga robiniae	LMG 26467	99,93	1416	99,5
383	LUR125	Tardiphaga robiniae	LMG 26467	99,93	1424	99,5
384	LUR126	Tardiphaga robiniae	LMG 26467	99,93	1424	99,5
385	LUR127	Tardiphaga robiniae	LMG 26467	99,86	1424	99,5
386	LUR128	Pseudomonas baetica	a390	99,79	1463	99,5
387	LUR129	Tardiphaga robiniae	LMG 26467	99,93	1425	99,6
388	LUR130	Pantoea agglomerans	DSM 3493	99,86	1415	96,8
389	LUR131	Tardiphaga robiniae	LMG 26467	99,93	1426	99,6
390	LUR132	Agrobacterium radiobacter	ATCC 19358	100	1399	99,4
391	LUR133	Pantoea agglomerans	DSM 3493	99,79	1449	99,1
392	LUR134	Pseudomonas atacamensis	M7D1	99,93	1465	99,5
393	LUR135	Pantoea agglomerans	DSM 3493	99,79	1478	99,5
394	LUR136	Pseudomonas baetica	a390	99,72	1466	99,5
395	LUR137	Tardiphaga robiniae	LMG 26467	99,93	1398	99,3
396	LUR143	Inquilinus ginsengisoli	Gsoil 080	99,06	1420	99,4
397	LUR144	Inquilinus ginsengisoli	Gsoil 080	99,06	1414	99,5
398	LUR145	Tardiphaga robiniae	LMG 26467	99,93	1413	99,6
399	LUR147	Tardiphaga robiniae	LMG 26467	99,86	1405	99,5
400	LUR148	Tardiphaga robiniae	LMG 26467	99,93	1413	99,7
401	LUR149	Inquilinus ginsengisoli	Gsoil 080	99,57	1410	99,6
402	LUR150	Pseudomonas helmanticensis	OHA11	99,93	1456	99,5
403	LUR152	Agrobacterium radiobacter	ATCC 19358	100	1408	99,5
404	LUR153	Streptomyces noursei	ATCC 11455	99,1	1450	99,5

405	LUR154	Agrobacterium radiobacter	ATCC 19358	100	1408	99,8
406	LUR155	Agrobacterium radiobacter	ATCC 19359	100	1408	99,6
407	LUR156	Pseudomonas baetica	a390	99,79	1453	99,5
408	LUR157	Streptomyces wuyuanensis	CGMCC 4.7042	100	1453	99,6
409	LUR158	Streptomyces wuyuanensis	CGMCC 4.7042	100	1443	99,7
410	LUR159	Bosea caraganae	RCAM04680	99,35	1411	99,7
411	LUR160	Pseudomonas frederiksbergensis	JAJ28	99,66	1456	99,5
412	LUR161	Peribacillus frigoritolerans	DSM 8801	99,86	1460	99,1
413	LUR162	Pseudomonas baetica	a390	99,79	1460	99,5
414	LUR163	Pseudomonas baetica	a390	99,79	1453	99,5
415	LUR165	Heyndrickxia sporothermodurans	M215	99,18	1471	99,4
416	LUR167	Streptomyces wuyuanensis	CGMCC 4.7042	100	1401	97,2
417	LUR169	Bosea eneae	34614	99,14	1418	99,4
418	LUR170	Streptomyces noursei	ATCC 11455	99,31	1470	99,9
419	LUR171	Pseudomonas orientalis	CFML 96-170	99,59	1463	99,7
420	LUR172	Streptomyces wuyuanensis	CGMCC 4.7042	99,93	1450	99,4
421	LUR173	Streptomyces wuyuanensis	CGMCC 4.7042	100	1436	99,4
422	LUR174	Bosea caraganae	RCAM04680	99,49	1407	99,6
422 423	LUR174 LUR175A	Bosea caraganae Streptomyces wuyuanensis	RCAM04680 CGMCC 4.7042	99,49 100	1407 1445	99,6 99,6
422 423 424	LUR174 LUR175A LUR175B	Bosea caraganae Streptomyces wuyuanensis Pseudomonas ficuserectae	RCAM04680 CGMCC 4.7042 JCM 2400	99,49 100 99,72	1407 1445 1476	99,6 99,6 99,5
422 423 424 425	LUR174 LUR175A LUR175B CRA1	Bosea caraganaeStreptomyces wuyuanensisPseudomonas ficuserectaePseudoxanthomonas arseniciresistens	RCAM04680 CGMCC 4.7042 JCM 2400 KAs 5-3	99,49 100 99,72 99,73	1407 1445 1476 1467	99,6 99,6 99,5 99,5
422 423 424 425 426	LUR174 LUR175A LUR175B CRA1 CRA2	Bosea caraganaeStreptomyces wuyuanensisPseudomonas ficuserectaePseudoxanthomonas arseniciresistensPseudoxanthomonas arseniciresistens	RCAM04680 CGMCC 4.7042 JCM 2400 KAs 5-3 KAs 5-3	99,49 100 99,72 99,73 99,73	1407 1445 1476 1467 1468	99,6 99,6 99,5 99,5 99,6
422 423 424 425 425 426 427	LUR174 LUR175A LUR175B CRA1 CRA2 CRA3	Bosea caraganaeStreptomyces wuyuanensisPseudomonas ficuserectaePseudoxanthomonas arseniciresistensPseudoxanthomonas arseniciresistensPseudoxanthomonas arseniciresistensEnterobacter ludwigii	RCAM04680 CGMCC 4.7042 JCM 2400 KAs 5-3 KAs 5-3 EN-119	99,49 100 99,72 99,73 99,73 99,66	1407 1445 1476 1467 1468 1476	99,6 99,6 99,5 99,5 99,6 99,7
422 423 424 425 425 426 427 428	LUR174 LUR175A LUR175B CRA1 CRA2 CRA3 CRA4	Bosea caraganaeStreptomyces wuyuanensisPseudomonas ficuserectaePseudoxanthomonas arseniciresistensPseudoxanthomonas arseniciresistensPseudoxanthomonas arseniciresistensEnterobacter ludwigiiAgrobacterium radiobacter	RCAM04680 CGMCC 4.7042 JCM 2400 KAs 5-3 KAs 5-3 EN-119 ATCC 19358	99,49 100 99,72 99,73 99,73 99,66 100	1407 1445 1476 1467 1468 1476 1417	99,6 99,6 99,5 99,5 99,6 99,7 99,4
422 423 424 425 425 426 427 428 429	LUR174 LUR175A LUR175B CRA1 CRA2 CRA3 CRA4 CRA5	Bosea caraganaeStreptomyces wuyuanensisPseudomonas ficuserectaePseudoxanthomonas arseniciresistensPseudoxanthomonas arseniciresistensEnterobacter ludwigiiAgrobacterium radiobacterEnterobacter ludwigii	RCAM04680 CGMCC 4.7042 JCM 2400 KAs 5-3 KAs 5-3 EN-119 ATCC 19358 EN-119	99,49 100 99,72 99,73 99,73 99,66 100 99,66	1407 1445 1476 1467 1468 1476 1417 1465	99,6 99,6 99,5 99,5 99,6 99,6 99,7 99,4 99,8
422 423 424 425 425 426 427 428 429 430	LUR174 LUR175A CRA1 CRA2 CRA3 CRA4 CRA5 CRA8	Bosea caraganaeStreptomyces wuyuanensisPseudomonas ficuserectaePseudoxanthomonas arseniciresistensPseudoxanthomonas arseniciresistensEnterobacter ludwigiiAgrobacterium radiobacterEnterobacter ludwigiiPseudomonas brassicacearum	RCAM04680 CGMCC 4.7042 JCM 2400 KAs 5-3 KAs 5-3 EN-119 ATCC 19358 EN-119 ATCC 49054	99,49 100 99,72 99,73 99,73 99,66 100 99,66 99,66 99,79	1407 1445 1476 1467 1468 1476 1417 1465 1467	99,6 99,6 99,5 99,5 99,6 99,7 99,4 99,8 99,5
422 423 424 425 425 426 427 428 429 430 431	LUR174 LUR175A LUR175B CRA1 CRA2 CRA3 CRA4 CRA5 CRA8 CRA11	Bosea caraganaeStreptomyces wuyuanensisPseudomonas ficuserectaePseudoxanthomonas arseniciresistensPseudoxanthomonas arseniciresistensEnterobacter ludwigiiAgrobacterium radiobacterEnterobacter ludwigiiPseudomonas brassicacearumEnterobacter ludwigii	RCAM04680 CGMCC 4.7042 JCM 2400 KAs 5-3 KAs 5-3 EN-119 ATCC 19358 EN-119 ATCC 49054 EN-119	99,49 100 99,72 99,73 99,73 99,66 100 99,66 99,79 99,07	1407 1445 1476 1467 1468 1476 1417 1465 1467 1417	99,6 99,6 99,5 99,5 99,6 99,7 99,4 99,8 99,5 99,5 99,6
422 423 424 425 426 427 428 429 430 431 432	LUR174 LUR175A CRA1 CRA2 CRA3 CRA4 CRA5 CRA8 CRA11 CRA12	Bosea caraganaeStreptomyces wuyuanensisPseudomonas ficuserectaePseudoxanthomonas arseniciresistensPseudoxanthomonas arseniciresistensEnterobacter ludwigiiAgrobacterium radiobacterEnterobacter ludwigiiPseudomonas brassicacearumEnterobacter ludwigiiMitsuaria noduli	RCAM04680 CGMCC 4.7042 JCM 2400 KAs 5-3 KAs 5-3 EN-119 ATCC 19358 EN-119 ATCC 49054 EN-119 HZ7	99,49 100 99,72 99,73 99,73 99,66 100 99,66 99,79 99,79 99,79 99,79 99,79	1407 1445 1476 1467 1468 1476 1417 1465 1467 1417 1458	99,6 99,6 99,5 99,5 99,6 99,7 99,4 99,8 99,5 96,1 99,4
422 423 424 425 426 427 428 429 430 431 432 433	LUR174 LUR175A LUR175B CRA1 CRA2 CRA3 CRA4 CRA5 CRA4 CRA5 CRA8 CRA11 CRA12 CRA13	Bosea caraganaeStreptomyces wuyuanensisPseudomonas ficuserectaePseudoxanthomonas arseniciresistensPseudoxanthomonas arseniciresistensEnterobacter ludwigiiAgrobacterium radiobacterEnterobacter ludwigiiPseudomonas brassicacearumEnterobacter ludwigiiMitsuaria noduliEnterobacter ludwigii	RCAM04680 CGMCC 4.7042 JCM 2400 KAs 5-3 KAs 5-3 EN-119 ATCC 19358 EN-119 ATCC 49054 EN-119 HZ7 EN-119	99,49 100 99,72 99,73 99,73 99,66 100 99,66 99,79 99,79 99,79 99,79 99,79 99,79 99,79 99,79 99,79 99,79 99,79	1407 1445 1476 1467 1468 1476 1417 1465 1467 1417 1458 1388	99,6 99,6 99,5 99,5 99,6 99,7 99,4 99,8 99,5 96,1 99,4 99,4 99,5 96,1 99,4 99,4
422 423 424 425 426 427 428 429 430 431 432 433 434	LUR174 LUR175A LUR175B CRA1 CRA2 CRA3 CRA4 CRA5 CRA8 CRA11 CRA12 CRA13 CRA14	Bosea caraganaeStreptomyces wuyuanensisPseudomonas ficuserectaePseudoxanthomonas arseniciresistensPseudoxanthomonas arseniciresistensPseudoxanthomonas arseniciresistensEnterobacter ludwigiiAgrobacterium radiobacterEnterobacter ludwigiiPseudomonas brassicacearumEnterobacter ludwigiiMitsuaria noduliEnterobacter ludwigiiEnterobacter ludwigii	RCAM04680 CGMCC 4.7042 JCM 2400 KAs 5-3 KAs 5-3 EN-119 ATCC 19358 EN-119 ATCC 49054 EN-119 HZ7 EN-119 EN-119	99,49 100 99,72 99,73 99,73 99,66 100 99,66 99,79 99,79 99,79 99,79 99,79 99,57 99,66	1407 1445 1476 1467 1468 1476 1417 1465 1467 1417 1458 1388 1388 1464	99,6 99,6 99,5 99,5 99,6 99,7 99,7 99,8 99,5 96,1 99,4 99,4 99,5 96,1 99,4 99,5 96,1 99,5 99,5 99,5
422 423 424 425 426 427 428 429 430 431 432 433 434 435	LUR174 LUR175A LUR175B CRA1 CRA2 CRA3 CRA4 CRA5 CRA4 CRA5 CRA8 CRA11 CRA12 CRA13 CRA14 CRA15	Bosea caraganaeStreptomyces wuyuanensisPseudomonas ficuserectaePseudoxanthomonas arseniciresistensPseudoxanthomonas arseniciresistensPseudoxanthomonas arseniciresistensEnterobacter ludwigiiAgrobacterium radiobacterEnterobacter ludwigiiPseudomonas brassicacearumEnterobacter ludwigiiMitsuaria noduliEnterobacter ludwigiiEnterobacter ludwigiiPseudoxanthomonas brassicacearumEnterobacter ludwigiiPseudoxanthomonas indica	RCAM04680 CGMCC 4.7042 JCM 2400 KAs 5-3 KAs 5-3 EN-119 ATCC 19358 EN-119 ATCC 49054 EN-119 HZ7 EN-119 P15	99,49 100 99,72 99,73 99,73 99,66 100 99,66 99,79 99,79 99,79 99,79 99,79 99,57 99,66 99,66	1407 1445 1476 1467 1468 1476 1445 1468 1476 1445 1445 1465 1447 1465 1447 1465 1447 1464 1470	99,6 99,5 99,5 99,6 99,7 99,7 99,7 99,7 99,7 99,7 99,7 99,7 99,7 99,4 99,5 96,1 99,4 99,4 99,5 96,1 99,5 99,5 99,5 99,5 99,5 99,5 99,5 99,5
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436	LUR174 LUR175A LUR175B CRA1 CRA2 CRA3 CRA4 CRA4 CRA5 CRA4 CRA5 CRA11 CRA12 CRA12 CRA13 CRA14 CRA15 CRA16A	Bosea caraganaeStreptomyces wuyuanensisPseudomonas ficuserectaePseudoxanthomonas arseniciresistensPseudoxanthomonas arseniciresistensPseudoxanthomonas arseniciresistensEnterobacter ludwigiiAgrobacterium radiobacterEnterobacter ludwigiiPseudomonas brassicacearumEnterobacter ludwigiiMitsuaria noduliEnterobacter ludwigiiPseudoxanthomonas indicaPseudoxanthomonas indica	RCAM04680 CGMCC 4.7042 JCM 2400 KAs 5-3 KAs 5-3 EN-119 ATCC 19358 EN-119 ATCC 49054 EN-119 HZ7 EN-119 P15 P15	99,49 100 99,72 99,73 99,73 99,66 100 99,66 99,79 99,07 99,79 99,57 99,66 99,66 99,66	1407 1445 1476 1467 1468 1476 1445 1467 1445 14470 1445	99,6 99,5 99,5 99,6 99,7 99,7 99,4 99,5

438	CRA17	Enterobacter ludwigii	EN-119	98,9	1476	99,6
439	CRA20	Pseudomonas moorei	RW10	97,76	1443	99
440	CRA23	Rhizobacter dauci	H6	100	1450	99,1
441	CRA24B	Rhizobacter dauci	H6	100	1457	99,5
442	CRA25A	Rhizobacter dauci	H6	100	1454	99,4
443	CRA25BA	Bosea vestrisii	34635	99,79	1416	99,9
444	CRA26A	Rhizobium leguminosarum	USDA 2370	99,78	1403	99,4
445	CRA26B	Streptomyces hiroshimensis	NBRC 3839	97,18	1437	99,5
446	CRA27A	Starkeya novella	DSM 506	98,71	1408	99,3
447	CRA27B	Polaromonas ginsengisoli	Gsoil 115	100	1460	100
448	CRA31	Agrobacterium radiobacter	ATCC 19358	100	1407	99,5
449	CRA32	Agrobacterium radiobacter	ATCC 19358	100	1421	99,4
450	CRA33	Agrobacterium nepotum	39/7	100	1422	99,5
451	CRA34	Lysobacter soli	DCY21	98,83	1466	99,4
452	CRA35	Acidovorax radicis	N35	98,96	1465	99,5
453	CRA37	Enterobacter ludwigii	EN-119	99,65	1445	98,8
454	CRA38	Agrobacterium nepotum	39/7	99,93	1422	99,5
455	CRA39	Enterobacter ludwigii	EN-119	99,73	1463	99,5
456	CRA40	Pseudoxanthomonas indica	P15	99,66	1465	99,5
457	CRA41	Xanthomonas translucens	DSM 18974	99,93	1468	99,5
458	CRA42A	Pseudoxanthomonas sacheonensis	BD-c54	99,59	1474	99,5
459	CRA43	Rhizobacter dauci	H6	100	1453	99,4
460	CRA44A	Acidovorax radicis	N35	98,96	1452	99,5
461	CRA44BA	Acidovorax radicis	N35	98,96	1450	99,4
462	CRA45	Enterobacter ludwigii	EN-119	99,66	1471	99,9
463	CRA46	Pseudoxanthomonas indica	P15	99,66	1468	99,5
464	CRA47	Pseudoxanthomonas arseniciresistens	KAs 5-3	99,73	1481	99,5
465	CRA48	Enterobacter ludwigii	EN-119	99,73	1463	99,5
466	CRA49	Agrobacterium radiobacter	ATCC 19358	95,7	1402	99,2
467	CRA50A	Xanthomonas translucens	DSM 18974	99,93	1468	99,5
468	CRA50BA	Enterobacter ludwigii	EN-119	99,73	1468	99,5
469	CRA51	Pseudomonas brassicacearum	ATCC 49054	99,79	1472	99,4
470	CRA52	Pseudomonas frederiksbergensis	JAJ28	99,66	1476	99,7
471	CRA53	Enterobacter ludwigii	EN-119	99,66	1465	99,5

472	CRA54A	Variovorax paradoxus	NBRC 15149	99,86	1463	99,5
473	CRA54BA	Chitinophaga ginsengisegetis	Gsoil 040	98,66	1439	98,6
474	CRA54BB	Enterobacter ludwigii	EN-119	99,66	1485	99,8
475	CRA55A	Enterobacter ludwigii	EN-119	99,73	1474	100
476	CRA56A	Stenotrophomonas nitritireducens	DSM 12575	99,79	1473	99,5
477	CRA56B	Caulobacter soli	Ji-3-8	99,26	1417	99,5
478	CRA57A	Enterobacter ludwigii	EN-119	99,66	1472	99,8
479	CRA57B	Stenotrophomonas nitritireducens	DSM 12575	99,79	1480	99,5
480	CRA58A	Pseudoxanthomonas indica	P15	99,59	1465	99,6
481	CRA58B	Pseudoxanthomonas indica	P15	99,66	1473	99,5
482	CRA60A	Enterobacter ludwigii	EN-119	99,73	1465	99,5
483	CRA60B	Chitinophaga ginsengisegetis	Gsoil 040	99,03	1462	99,5
484	CRA62A	Pseudoxanthomonas indica	P15	99,66	1473	99,5
485	CRA62B	Enterobacter ludwigii	EN-119	99,38	1476	99,6
486	CRA63	Stenotrophomonas nitritireducens	DSM 12575	99,66	1464	99,5
487	CRA64A	Stenotrophomonas nitritireducens	DSM 12575	99,79	1467	99,5
488	CRA68	Enterobacter ludwigii	EN-119	99,72	1472	99,5
489	CRA69	Pseudomonas lini	CFBP 5737	99,93	1464	99,5
490	CRA71	Pseudoxanthomonas arseniciresistens	KAs 5-3	99,73	1477	99,9
491	CRA72	Stenotrophomonas nitritireducens	DSM 12575	99,8	1473	99,9
492	CRA73	Stenotrophomonas nitritireducens	DSM 12575	99,73	1465	99,9
493	CRA76	Pseudoxanthomonas arseniciresistens	KAs 5-3	99,73	1467	99,5
494	CRA77	Enterobacter ludwigii	EN-119	99,66	1481	99,8
495	CRA79	Agrobacterium radiobacter	ATCC 19358	100	1426	99,8
496	CRA80	Sphingopyxis chilensis	S37	99,29	1411	99,4
497	CRA82	Ensifer morelensis	Lc04	99,93	1405	99,8
498	CRA83	Agrobacterium radiobacter	ATCC 19358	100	1422	99,6
499	CRA84	Pseudomonas thivervalensis	DSM 13194	99,79	1464	99,5
500	CRA85	Agrobacterium radiobacter	ATCC 19358	100	1420	99,5
501	CRA86	Agrobacterium radiobacter	ATCC 19358	100	1423	99,6
502	CRA87	Enterobacter ludwigii	EN-119	99,66	1475	99,5
503	CRA88	Pseudomonas brassicacearum	ATCC 49054	99,86	1466	99,9
504	CRA89	Pseudoxanthomonas indica	P15	99,66	1471	99,9

505	CRA90	Rhizobacter dauci	H6	100	1448	99,1
506	CRA91	Pararhizobium herbae	CCBAU 83011	99,7	1419	99,4
507	CRA92	Rhizobium azooxidifex	Po 20/26	100	1422	99,5
508	CRA93	Pseudoxanthomonas arseniciresistens	KAs 5-3	99,73	1480	99,6
509	CRA94	Rhizobium mongolense subsp. loessense	CGMCC 1.3401	99,86	1413	100
510	CRA96	Pseudomonas brassicacearum	ATCC 49054	99,78	1392	95,4
511	CRA98	Agrobacterium radiobacter	ATCC 19358	100	1423	99,6
512	CRA99	Rhizobacter dauci	H6	99,93	1454	99,5
513	CRA100	Mitsuaria noduli	HZ7	99,79	1457	99,9
514	CRA100B	Agrobacterium radiobacter	ATCC 19358	100	1422	99,5
515	CRA101	Rhizobacter dauci	H6	100	1453	99,4
516	CRA102	Agrobacterium radiobacter	ATCC 19358	100	1427	99,7
517	CRA103	Rhizobacter dauci	H6	100	1454	99,5
518	CRA104	Xanthomonas translucens	DSM 18974	99,79	1467	99,5
519	CRA105	Pseudoxanthomonas arseniciresistens	KAs 5-3	99,73	1471	99,5
520	CRA106	Enterobacter ludwigii	EN-119	99,73	1475	99,5
521	CRA107B	Pseudoxanthomonas arseniciresistens	KAs 5-3	99,66	1473	99,5
522	CRA110	Inquilinus ginsengisoli	Gsoil 080	99,49	1419	99,5
523	CRA112	Xanthomonas translucens	DSM 18974	99,78	1336	91,1
524	CRA113	Enterobacter ludwigii	EN-119	99,66	1481	99,8
525	CRA114	Pseudomonas brassicacearum	ATCC 49054	99,86	1474	99,5
526	CRA118	Enterobacter ludwigii	EN-119	99,73	1469	99,5
527	CRA119	Pseudomonas piscium	P50	99,68	1478	99,9
528	CRA120	Pseudomonas brassicacearum	ATCC 49054	99,86	1472	99,5
529	CRA121	Enterobacter ludwigii	EN-119	99,66	1475	99,4
530	CRA122	Xanthomonas translucens	DSM 18974	99,93	1481	99,5
531	CRA123	Xanthomonas translucens	DSM 18974	99,93	1475	99,5
532	CRA124	Rhizobium mongolense	USDA 1844	99,93	1420	99,9
533	CRA125	Neorhizobium tomejilense	T17_20	99,5	1416	99,3
534	CRA126	Neorhizobium tomejilense	T17_20	100	1411	99,5
535	CRA127B	Methylobacterium marchantiae	JT1	99,86	1418	99,4
536	CRA128	Pseudoxanthomonas sacheonensis	BD-c54	99,38	1469	99,5
537	CRA129A	Acidovorax radicis	N35	98,27	1463	99,3
-----	----------	--	--------------	-------	------	------
538	CRA129B	Pseudoxanthomonas arseniciresistens	KAs 5-3	99,73	1481	99,6
539	CRA130AA	Methylobacterium marchantiae	JT1	99,86	1419	99,5
540	CRA130AB	Pseudoxanthomonas mexicana	AMX 26B	99,12	1039	70,1
541	CRA131	Cupriavidus necator	N-1	99,45	1470	99,6
542	CRA132	Agrobacterium radiobacter	ATCC 19358	100	1421	99,4
543	CRA133AA	Cupriavidus necator	N-1	99,45	1461	99,5
544	CRA133BA	Xanthomonas maliensis	M97	99,5	1478	99,4
545	CRA134A	Agrobacterium radiobacter	ATCC 19358	100	1421	100
546	CRA134B	Agrobacterium radiobacter	ATCC 19358	100	1423	100
547	CRA135	Agrobacterium radiobacter	ATCC 19358	100	1421	100
548	CRA138	Pseudomonas lini	CFBP 5737	100	1459	99,5
549	CRA139	Pseudomonas thivervalensis	DSM 13194	99,72	1460	99,5
550	CRA140	Agrobacterium radiobacter	ATCC 19358	100	1423	100
551	CRA141	Pseudomonas brassicacearum subsp. neoaurantiaca	ATCC 49054	99,86	1466	99,6
552	CRA143	Methylobacterium marchantiae	JT1	99,78	1425	99,7
553	CRA144	Agrobacterium radiobacter	ATCC 19358	100	1419	99,5
554	CRA145A	Agrobacterium radiobacter	ATCC 19358	100	1422	100
555	CRA145B	Agrobacterium radiobacter	ATCC 19358	100	1422	100
556	CRA146AB	Stenotrophomonas nitritireducens	DSM 12575	99,79	1477	99,4
557	CRA149	Pseudoxanthomonas indica	P15	99,52	1484	99,7
558	CRA150	Bosea psychrotolerans	1131	99,41	1421	99,4
559	CRA154	Caulobacter segnis	ATCC 21756	99,07	1419	99,4
560	CRA155A	Chitinophaga ginsengisegetis	Gsoil 040	99,03	1463	99,4
561	CRA155B	Pseudomonas thivervalensis	DSM 13194	99,86	1473	99,4
562	CRA156	Agrobacterium nepotum	39/7	100	1421	99,4
563	CRA157	Sphingomonas asaccharolytica	NBRC 15499	98,22	1423	99,4
564	CRA158BB	Bosea psychrotolerans	1131	99,41	1424	99,5
565	CRA160	Sphingopyxis chilensis	S37	99,29	1421	99,3
566	CRA162	Rhizobium mongolense subsp. loessense	CGMCC 1.3401	99,86	1416	99,5
567	CRA163	Phyllobacterium endophyticum	PEPV15	100	1423	99,4
568	CRA164	Bosea caraganae	RCAM04680	99,49	1423	99,6
569	CRA165	Mesorhizobium cantuariense	ICMP 19515	99,63	1420	99,5

570	CRA190	Pseudomonas brassicacearum	ATCC 49054	99,86	1474	99,5
571	CRAM1	Agrobacterium radiobacter	ATCC 19358	100	1410	99,5
572	CRAM2	Variovorax paradoxus	NBRC 15149	99,45	1458	99,5
573	CRAM3	Agrobacterium radiobacter	ATCC 19358	100	1416	99,5
574	CRAM4	Caulobacter henricii	ATCC 15253	99,36	1410	99,9
575	CRAM5	Chryseobacterium aahli	T68	97,52	1449	99,7
576	CRAM6	Chryseobacterium aahli	T68	97,52	1441	99,6
577	CRAM7	Agrobacterium radiobacter	ATCC 19358	100	1411	99,4
578	CRAM8	Agrobacterium radiobacter	ATCC 19358	100	1416	99,4
579	CRAM10	Agrobacterium radiobacter	ATCC 19358	100	1409	99,5
580	RO1	Bacillus mobilis	0711P9-1	100	1486	99,3
581	RO2	Pseudomonas thivervalensis	DSM 13194	99,86	1475	99,6
582	RO3 Bacillus albus N35-10-2		N35-10-2	100	1490	99,6
583	RO4	Bacillus mobilis	0711P9-1	100	1470	99,1
584	RO5	Stenotrophomonas indicatrix	WS40	99,86	1482	99,7
585	RO6	Paenarthrobacter aurescens	NBRC 12136	97,21	1442	99,3
586	RO7	Pseudomonas bijieensis	L22-9	99,86	1473	99,5
587	RO8	Bacillus albus	N35-10-2	100	1488	99,5
588	RO9	Peribacillus frigoritolerans	DSM 8801	99,93	1473	99,7
589	RO10	Rhodococcus erythropolis	NBRC 15567	100	1459	99,8
590	RO11	Bacillus mobilis	0711P9-1	99,93	1489	99,7
591	R012	Pseudomonas thivervalensis	DSM 13194	99,86	1474	99,7
592	RO13	Rhodococcus erythropolis	NBRC 15567	100	1448	99,9
593	RO14	Bacillus albus	N35-10-2	100	1486	99,3
594	RO15	Paenibacillus peoriae	DSM 8320	99,66	1493	99,3
595	R017	Priestia megaterium	NBRC 15308	99,93	1486	99,3
596	RO18	Stenotrophomonas rhizophila	DSM 14405	99,73	1481	99,3
597	RO19	Pseudarthrobacter oxydans	DSM 20119	99,24	1451	99,5
598	RO20	Bacillus mobilis	0711P9-1	99,93	1489	99,5
599	RO21	Rhodococcus erythropolis	NBRC 15567	100	1460	100
600	RO22	Rhodococcus erythropolis	NBRC 15567	100	1453	99,5
601	RO23	Pseudomonas brassicacearum	ATCC 49054	99,86	1474	99,5
602	RO25	Stenotrophomonas rhizophila	DSM 14405	99,66	1485	99,6
603	RO24A	Rhodococcus erythropolis	NBRC 15567	99,28	1392	96,6

604	RO24B	Paenibacillus lautus	NBRC 15380	99,39	1494	99,6
605	RO26A	Stenotrophomonas rhizophila	DSM 14405	99,73	1485	99,6
606	RO26B	Stenotrophomonas rhizophila	DSM 14405	99,73	1483	99,6
607	RO26C	Stenotrophomonas rhizophila	DSM 14405	99,73	1484	99,7
608	RO27A	Stenotrophomonas rhizophila	DSM 14405	99,73	1484	99,5
609	RO27B	Stenotrophomonas rhizophila	DSM 14405	99,79	1482	99,4
610	RO28A	Achromobacter marplatensis	B2	99,85	1469	99,6
611	RO28B	Achromobacter marplatensis	B2	99,85	1428	99,5
612	RO30	Bacillus albus	N35-10-2	99,93	1466	99,4
613	RO31	Pseudomonas thivervalensis	DSM 13194	99,59	1475	99,7
614	RO32	Agrobacterium radiobacter	ATCC 19358	98,36	1422	99,6
615	RO33	Ensifer morelensis	Lc04	99,63	1346	95,5
616	RO34	Achromobacter marplatensis	B2	99,49	1449	94,8
617	RO35	Pseudomonas thivervalensis	DSM 13194	99,86	1474	100
618	RO36	Pseudomonas piscium	P50	99,76	1452	98,8
619	RO37	Achromobacter marplatensis	B2	99,35	1447	94,8
620	RO38	Pseudomonas juntendi	BML3	99,32	1457	100
621	RO39	Paenibacillus profundus	SI 79	99,31	1470	99,9
622	RO40	Stenotrophomonas rhizophila	DSM 14405	99,86	1467	99,5
623	RO41	Pseudomonas marginalis	ATCC 10844	94,76	1440	92,7
624	RO42	Ensifer morelensis	Lc04	99,86	1416	100
625	RO43	Paenarthrobacter nitroguajacolicus	G2-1	100	1452	99,9
626	RO44	Stenotrophomonas lactitubi	M15	99,73	1467	100
627	RO45	Rhodococcus erythropolis	NBRC 15567	100	1445	99,3
628	RO46	Streptomyces drozdowiczii	NBRC 101007	99,38	1459	99,9
629	RO47	Rhodococcus qingshengii	JCM 15477	100	1453	100
630	RO48	Paenarthrobacter nitroguajacolicus	G2-1	98,8	1443	99,3
631	RO49	Streptomyces anulatus	NRRL B-2000	99,86	1457	99,7
632	RO51	Stenotrophomonas rhizophila	DSM 14405	98,49	1481	100
633	SO3	Pseudomonas lini	CFBP 5737	99,66	1479	99,7
634	SO4	Bacillus nakamurai	NRRL B-41091	99,93	1468	99
635	SO5	Arthrobacter pascens	DSM 20545	99,38	1451	99,9
636	SO6	Agromyces albus	VKM Ac-1800	99,31	1461	99,9
637	SO8	Pseudomonas lini	CFBP 5737	99,93	1455	99,6

638	SO9	Flavobacterium piscis	CCUG 60099	99,02	1448	99,5
639	SO10	Mesorhizobium tamadayense	DSM 28320	99,93	1422	99,7
640	SO12	Pseudoxanthomonas sacheonensis	BD-c54	99,57	1410	95,9
641	SO14	Streptomyces staurosporininus	BK179	99,44	1467	99,9
642	SO17	Janthinobacterium lividum	FT58W	99,58	1426	99,9
643	SO18	Streptomyces lunaelactis	MM109	99,15	1460	99,9
644	SO19	Pseudomonas avellanae	BPIC 63	95,45	1485	99,7
645	SO22	Aeromonas hydrophila	ATCC 7966	98,34	1382	94,12
646	SO23	Pseudomonas silesiensis	A3	98,27	1447	98,8
647	SO26	Pseudomonas laurylsulfatiphila	AP3_16	99,66	1445	99,7
648	SO27	Terrabacter tumescens	DSM 20308	99,51	1450	99,4
649	SO29	Pseudomonas laurylsulfatiphila	AP3_16	99,79	1471	99,6
650	SO30	Pararhizobium giardinii	H152	98,93	1422	99,5
651	SO32	Pseudarthrobacter oxydans	DSM 20119	99,23	1446	99,3
652	SO33	Pseudomonas laurylsulfatiphila	AP3_16	99,79	1462	99,5
653	SO34	Pseudomonas lini	CFBP 5737	98,94	1418	97,1
654	SO37	Streptomyces lasiicapitis	3H-HV17(2)	97,76	1476	99,7
655	SO44	Arthrobacter pascens	DSM 20545	98,96	1459	99,6
656	SO45	Variovorax ureilyticus	UCM-2	99,52	1453	99,6
657	SO48	Kocuria indica	NIO-1021	100	1029	69,8
658	SO47A	Pseudomonas oryzihabitans	NBRC 102199	99,66	1468	99,5
659	SO47B	Sphingomonas aerolata	NW12	99,71	1424	99,6
660	SO47C	Streptomyces staurosporininus	BK179	99,3	1462	99,9
661	SOC13	Streptomyces ureilyticus	YC419	99,56	1372	93,5
662	SOC14	Streptomyces violaceus	NRRL B-2867	99,76	1399	96,1
663	SOC16	Streptomyces aureus	NBRC 100912	99,72	1453	99,4
664	SOC17	Micromonospora halotolerans	CR18	99,76	1443	99,4
665	SOC37	Microlunatus parietis	12-Be-011	99,63	1449	99,7
666	SOC71	Streptomyces albicerus	TRM68295	99,16	1450	99,3
667	SOC73	Streptomyces turgidiscabies	ATCC 700248	99,03	1456	99,4
668	SOC75	Streptomyces albicerus	TRM68295	97,77	1454	99,3
669	SOC82A	Streptomyces turgidiscabies	ATCC 700248	99,03	1454	99,4
670	SOC82B	Streptomyces turgidiscabies	ATCC 700248	99,03	1455	99,4
671	SOC83A	Streptomyces seymenliensis	B1041	98,47	1448	99,4

672	SOC83B	Priestia megaterium	NBRC 15308	99,93	1485	99,5
673	SOC84	Streptomyces xanthophaeus	NRRL B-5414	99,86	1451	99,4
674	SOC91	Kribbella italica	BC637	99,51	1447	99,9
675	SOC95	Streptomyces albospinus	NBRC 13846	99,51	1451	99,4
676	SOC14B	Streptomyces violaceus	NRRL B-2867	99,93	1399	96,1
677	SOC72A	Streptomyces seymenliensis	B1041	98,89	1455	99,5
678	SOC72B	Streptomyces seymenliensis	B1041	98,89	1454	99,4
679	SOHO25	Streptomyces lasiicapitis	3H-HV17(2)	99,79	1451	99,4
680	SOHO28	Streptomyces cinnabarinus	NRRL B-12382	98,41	1460	99,9
681	SOHO38	Rhodococcus qingshengii	JCM 15477	100	1449	99,4
682	SOHO49	Streptomyces ureilyticus	YC419	99,49	1452	99,3
683	SOHO50	Micromonospora chaiyaphumensis	DSM 45246	99,72	1438	99,4
684	SOHO18B	Janthinobacterium lividum	DSM 1522	99,86	1453	99,4
685	SOHO30B	Micromonospora orduensis	S2509	99,65	1435	99,4
686	SOHO5A	Streptomyces lasiicapitis	3H-HV17(2)	99,79	1452	99,4
687	SOHO5B	Streptomyces lasiicapitis	3H-HV17(2)	99,79	1454	99,4
688	SRA1	Herbaspirillum aquaticum	IEH 4430	100	1448	99,5
689	SRA2	Tardiphaga robiniae	LMG 26467	99,93	1376	96,2
690	SRA3	Chitinophaga silvisoli	K20C18050901	98,68	1458	99,4
691	SRA4	Paraburkholderia graminis	C4D1M	99,72	1464	99,5
692	SRA7	Allorhizobium taibaishanense	ATCC 14971	100	1410	99,6
693	SRA12	Caulobacter segnis	ATCC 21756	99,07	1411	99,4
694	SRA15	Paraburkholderia terricola	LMG 20594	99,93	1455	99,4
695	SRA17	Streptomyces netropsis	NBRC 3723	99,93	1455	100
696	SRA18	Luteibacter rhizovicinus	LJ96	98,97	1471	99,4
697	SRA20	Streptomyces netropsis	NBRC 3723	99,93	1450	99,4
698	SRA22	Caulobacter soli	Ji-3-8	99,19	1414	99,9
699	SRA24	Rhizobium leguminosarum	USDA 2370	99,79	1409	100
700	SRA26	Paraburkholderia graminis	C4D1M	99,72	1469	99,5
701	SRA27	Luteibacter jiangsuensis	JW-64-1	99,73	1482	99,5
702	SRA29	Paraburkholderia terricola	LMG 20594	99,93	1467	99,7
703	SRA31	Luteibacter rhizovicinus	LJ96	98,97	1470	99,5
704	SRA32	Paraburkholderia terricola	LMG 20594	99,93	1451	99,5
705	SRA42	Pseudomonas bijieensis	L22-9	99,86	1473	99,5

706	SRA51	Rhizobium rhizogenes	NBRC 13257	99,79	1416	99,5
707	SRA56A	Paraburkholderia terricola	LMG 20594	99,93	1450	99,5
708	SRA64	Mitsuaria noduli	HZ7	99,79	1465	99,4
709	SRA74	Streptomyces netropsis	NBRC 3723	99,93	1451	99,8
710	SRA740	Streptomyces netropsis	NBRC 3723	99,93	1451	99,7
711	SRA200	Luteibacter rhizovicinus	LJ96	98,97	1472	99,4
712	SRA201	Streptomyces tunisialbus	S2	99,93	1463	99,7
713	SRA203	Luteibacter rhizovicinus	LJ96	98,97	1470	99,5
714	SRA204	Luteibacter rhizovicinus	LJ96	98,97	1469	99,6
715	SRAM1	Paraburkholderia graminis	C4D1M	99,2	1467	99,3
716	SRAM2	Paraburkholderia graminis	C4D1M	99,72	1471	99,6
717	SRAM3	Streptomyces canus	DSM 40017	100	1467	100
718	SRAM6	Streptomyces kronopolitis	NEAU-ML8	99,24	1453	99,4
719	SRAM7	Pseudomonas bijieensis	L22-9	99,93	1475	99,6
720	SRI1	Pseudomonas bijieensis	L22-9	99,93	1469	99,3
721	SRI2	Rhizobium rhizogenes	NBRC 13257	99,79	1419	99,6
722	SRI3	Pseudomonas bijieensis	L22-9	99,93	1472	99,4

Género	Número de cepas
Pseudomonas	120
Streptomyces	69
Agrobacterium	36
Bacillus	31
Pseudoclavibacter	31
Enterobacter	24
Microbacterium	24
Pseudoxanthomonas	23
Stenotrophomonas	22
Micromonospora	19
Peribacillus	17
Priestia	17
Curtobacterium	16
Phyllobacterium	16
Rhizobium	14
Tardiphaga	13
Luteibacter	12
Inquilinus	10
Bradyrhizobium	10
Bosea	8
Cellulomonas	8
Paraburkholderia	8
Rhizobacter	8
Rhodococcus	8
Paenibacillus	7
Starkeya	7
Xanthomonas	7
Heyndrickxia	6
Sphingomonas	6
Caulobacter	5
Pantoea	5
Pararhizobium	5

Tabla S 9. Listado de los géneros bacterianos aislados en este trabajo.

Achromobacter	4
Acidovorax	4
Chitinophaga	4
Cytobacillus	4
Ensifer	4
Mammaliicoccus	4
Mesorhizobium	4
Neorhizobium	4
Agromyces	3
Frigoribacterium	3
Kocuria	3
Lysinibacillus	3
Methylobacterium	3
Mitsuaria	3
Niallia	3
Paenarthrobacter	3
Variovorax	3
Arthrobacter	2
Brevibacterium	2
Chryseobacterium	2
Cohnella	2
Cupriavidus	2
Flavobacterium	2
Janthinobacterium	2
Lysobacter	2
Microvirga	2
Plantibacter	2
Pseudarthrobacter	2
Sanguibacter	2
Sphingopyxis	2
Aeromonas	1
Alkalihalobacillus	1
Allorhizobium	1
Clavibacter	1

Corynebacterium	1
Dermacoccus	1
Herbaspirillum	1
Kineococcus	1
Kribbella	1
Massilia	1
Metabacillus	1
Methylorubrum	1
Microbispora	1
Micrococcus	1
Microlunatus	1
Mycolicibacterium	1
Neisseria	1
Nocardioides	1
Oceanobacillus	1
Polaromonas	1
Roseomonas	1
Terrabacter	1
Terribacillus	1
Ureibacillus	1
Williamsia	1

Tabla S 10. Abundancia relativa de las SynComs detectadas mediante el perfilado del gen ARNr 16S en las muestras de rizosfera y raíces en el experimento de ensamblaje del microbioma asociado a la raíz (sistema gnotobiótico, condiciones controladas y soporte estéril).

		Rizo	sfera		Raíces			
Cepas	SynCom_4	SynCom_5	SynCom_6	SynCom_7	SynCom_4	SynCom_5	SynCom_6	SynCom_7
CAR08	0,00	0,04	0,10	0,22	0,04	0,03	2,36	3,91
Lupac 08	0,00	0,01	0,26	0,35	0,00	0,00	0,55	0,61
SRA22	6,06	8,41	9,17	8,55	3,14	7,67	7,75	8,11
CRA141	76,04	61,21	62,64	65,33	91,05	73,75	74,37	69,15
CRA71	2,55	3,77	4,77	4,29	0,27	1,16	1,87	2,30
SRA24	0,64	0,92	0,74	0,59	2,55	7,01	3,32	4,76
CRA80	7,82	16,13	12,71	13,39	0,89	4,67	3,38	3,07
CRA73	2,80	3,41	3,32	2,70	0,81	2,27	1,90	3,41
SOC91	0,66	0,80	0,93	0,50	0,64	0,47	1,29	1,04
SOC84	0,01	0,02	0,02	0,01	0,00	0,00	0,01	0,00
SO45	3,43	5,26	5,33	4,04	0,98	2,70	3,13	3,64
SOC14B	0,01	0,01	0,00	0,02	0,04	0,00	0,07	0,00

I. SOLUCIONES TAMPÓN

Tampón fosfato (PBS)

Reactivo	Concentración (g/l)
NaCl	8
KCI	0,20
Na ₂ HPO ₄	1,44
KH ₂ PO ₄	0,24

Disolver las sales en 800 ml de agua destilada estéril, ajustar el pH a 7,4 y añadir agua hasta completar 1 l.

Tampón TBE (Tris-Borato-EDTA)

Reactivo	Concentración (mM)
Tris-base	100
H ₃ BO ₃	83
EDTA	1

Tampón TAE (Tris-Acetato-EDTA)	
Reactivo	Concentración (mM)
Tris-acetato	40
EDTA	1

Tampón MES

Para preparar el MES a 0,5 M, se disuelven 97,62 g de MES (ácido 2-(N-morfolino) etanosulfónico) en agua destilada. Ajustar el pH a 6 con NaOH 10N. Añadir agua destilada hasta completar un volumen de 1 l.

II. MEDIOS DE CULTIVO

Todos los medios de cultivo se esterilizaron en autoclave húmedo 121°C y 1 atm, durante 20 minutos.

Reactivo	Concentración (g/l)
Extracto de levadura	0,5
Peptona	0,5
Cas-aminoácidos	0,5
Glucosa	0,5
Almidón	0,5
Piruvato de sodio	0,3
K ₂ HPO ₄	0,3
MgSO ₄ · 7H ₂ O	0,05
Agar	15

Reasoner's R2 agar (R2A)

Yeast extract mannitol agar (YMA)

Reactivo	Concentración (g/l)
Manitol	10
Extracto de levadura	0,3
NaCl	0,05
K ₂ HPO ₄	0,2
MgSO ₄ · 7H ₂ O	0,2
Agar	18

International Streptomyces Project 2 (ISP2)

Reactivo	Concentración (g/l)
Extracto de levadura	4
Extracto de malta	10
Glucosa	4
Agar	18

Peptone yeast extract agar (PYE)

Reactivo	Concentración (g/l)
Extracto de levadura	3
Peptona de caseína	3
Agar	15

Starch casein agar (SCA)

Reactivo	Concentración (g/l)
Caseina	0,3
Almidón	10
NaCl	2
KNO ₃	2
K ₂ HPO ₄	10 ml*
MgSO ₄ · 7H ₂ O	0,05
$FeSO_4 \cdot 7H_2O$	0,01
CaCO ₃	0,02
Agar	15

*Preparar una solución stock de K_2HPO_4 al 20% (p/v).

Agar nutritivo (NA)

Reactivo	Concentración (g/l)
Peptona	5
Extracto de carne	3
Agar	15

Trypticase Soy Broth (TSB)

Reactivo	Concentración (g/l)
Digerido pancreático de caseína	17
Digerido papínico de soja	3
NaCl	5
K ₂ HPO ₄	2,5
Glucosa	2,5

En este caso, se utiliza el medio BBL™ Trypticase™ Soy Broth (BD® Becton, Dickinson and Company). En caso necesario suplementar con 15 g/l de agar.

Tryptone Yeast extract (TY)	
Reactivo	Concentración (g/l)
Triptona	5
Extracto de levadura	3
CaCl ₂	0,5

En caso necesario suplementar con 15 g/l de agar.

Murashige y Skoog (MS)

Reactivo	Concentración (mg/l)
NH ₄ NO ₃	1650
CaCl ₂ · H2O	440
MgSO ₄ · 7H ₂ 0	370
K ₂ HPO ₄	170
KNO ₃	1900
H ₃ BO ₃	6,54
$CoCl_2 \cdot 6H_2O$	0,025
FeSO ₄ · 7H ₂ O	27,8
$MnSO_4 \cdot 4H_2O$	22,3
KI	0,83
$Na_2MoO_4 \cdot 2H_2O$	0,25
$ZnSO_4 \cdot 7H_2O$	8,6
$CuSO_4 \cdot 5H_2O$	0,025
Na Fe-EDTA	5 ml/l*
Vitaminas	1 ml*

*Preparar una solución de: 5,57 g/l FeSO₄·7H₂O y 7,45 g/l Na₂EDTA.

Vitaminas

Reactivo	Concentración (mg/l)
Mioinositol	100
Ácido nicotínico	0,5
Piridoxina-HCI	0,5
Tiamina-HCI	0,1
Glicina	2
Hidrolizado de lactoalbúmina	1000
Ácido indol acético	20
Kinetina	1

La solución de vitaminas se prepara a una concentración 100X y se esteriliza por filtración. Se añade al medio una vez que ya se haya esterilizado.

El medio MS se suplementa en ocasiones (indicado en el manuscrito) con 500 mg/l de MES buffer, 1% sacarosa y 1% agar.

Broughton & Dilworth (B&D)

Reactivo	Concentración (mM)
CaCl ₂	1
MgSO ₄	0,25
KH ₂ PO ₄	0,5
Citrato Fe	0,01
H ₃ BO ₃	0,002
CoSO ₄	0,0001
K ₂ SO ₄	0,25
ZnSO ₄	0,0005
Na ₂ MoO ₄	0,0001
MnSO ₄	0,001
CuSO ₄	0,0002

III. PRIMERS

Nombre primer	Secuencia (5' – 3')
341F	CCTACGGGNGGCWGCAG
805R	GACTACHVGGGTATCTAATCC
ITS3F	GCATCGATGAAGAACGCAGC
ITS4R	TCCTCCGCTTATTGATATGC
799F	AACMGGATTAGATACCCKG
1192R	ACGTCATCCCCACCTTCC
SF1	AGAGTTTGATCMTGGCTCAG
SR2	GWATTACCGCGGCKGCTG
SR3	CCGTCAATTCMTTTRAGTTT
SR4	GGGTTGCGCTCGTTG
1522R	AAGGAGGTGWTCCARCC

Barcodes PCR2 CJ Biosciences

Reverse	Secuencia	Forward	Secuencia
N701	TCGCCTTA	S502	CTCTCTAT
N702	CTAGTACG	S503	ТАТССТСТ
N703	TTCTGCCT	S505	GTAAGGAG
N704	GCTCAGGA	S506	ACTGCATA
N705	AGGAGTCC	S507	AAGGAGTA
N706	CATGCCTA	S508	CTAAGCCT
N707	GTAGAGAG	S510	CGTCTAAT
N710	CAGCCTCG	S511	TCTCTCCG
N711	TGCCTCTT	S513	TCGACTAG
N712	TCCTCTAC	S515	TTCTAGCT
N714	TCATGAGC	S516	CCTAGAGT
N715	CCTGAGAT	S517	GCGTAAGA
N716	TAGCGAGT	S518	CTATTAAG
N718	GTAGCTCC	S520	AAGGCTAT
N719	TACTACGC	S521	GAGCCTTA
N720	AGGCTCCG	S522	TTATGCGA
N721	GCAGCGTA		
N722	CTGCGCAT		
N723	GAGCGCTA		
N724	CGCTCAGT		
N726	GTCTTAGG		
N727	ACTGATCG		
N728	TAGCTGCA		
N729	GACGTCGA		

Barcodes PCR2 Max Planck Genome Center (Durán et al., 2018)

Forward	Secuencia
B5-F-01	GATTTAGAGGCT
B5-F-02	CTGGCATCTAGC
B5-F-03	GTTCCCAACGGT
B5-F-04	TTCCCTTCTCCG
B5-F-05	ACAGGAGGGTGT
B5-F-06	CGCTCTTAACGG

Reverse	Secuencia	Reverse	Secuencia
B5-1	тсссттдтстсс	B5-49	CGGATCTAGTGT
B5-2	ACGAGACTGATT	B5-50	TTCTCCATCACA
B5-3	ACCGGTATGTAC	B5-51	ATTTAGGACGAC
B5-4	TGCATACACTGG	B5-52	GGTTTAACACGC
B5-5	TGGTCAACGATA	B5-53	AGACAGTAGGAG
B5-6	ATCGCACAGTAA	B5-54	GCAGATTTCCAG
B5-7	GTCGTGTAGCCT	B5-55	AGATGATCAGTC
B5-8	TACAGCGCATAC	B5-56	TATCACCGGCAC
B5-9	ATCCTTTGGTTC	B5-57	CCAGATATAGCA

B5-10	AGTCGAACGAGG	B5-58	GGTCTCCTACAG
B5-11	ACCAGTGACTCA	B5-59	ACAGCTCAAACA
B5-12	CCAATACGCCTG	B5-60	ATAGCGAACTCA
B5-13	GCAACACCATCC	B5-61	AACCGCATAAGT
B5-14	AGTCGTGCACAT	B5-62	CTTGAGAAATCG
B5-15	AGTTACGAGCTA	B5-63	CAGTCGTTAAGA
B5-16	TTGCGTTAGCAG	B5-64	CTTCCAACTCAT
B5-17	TACGAGCCCTAA	B5-65	AATAGCATGTCG
B5-18	TGTCGCAAATAG	B5-66	AAGTCACACACA
B5-19	ACAATAGACACC	B5-67	CACACAAAGTCA
B5-20	TCTCTACCACTC	B5-68	GTTCCTCCATTA
B5-21	CGATCGAACACT	B5-69	CATCAAGCATAG
B5-22	ATTGCAAGCAAC	B5-70	CAAGCCCTAGTA
B5-23	AGCGCTCACATC	B5-71	CCTCTGAGAGCT
B5-24	TCGACCAAACAC	B5-72	ACAAGAACCTTG
B5-25	TGTGTTACTCCT	B5-73	TCATTCCACTCA
B5-26	TGCACAGTCGCT	B5-74	ACCATCCAACGA
B5-27	TTCTAGAGTGCG	B5-75	ATGCCGGTAATA
B5-28	ACACCTGCGATC	B5-76	TCAACCCGTGAA
B5-29	ATTCCTCTCCAC	B5-77	TCTGTAGAGCCA

B5-30	CATCGACGAGTT	B5-78	TCGGATCTGTGA
B5-31	CACCACAGAATC	B5-79	ACTACCTCTTCA
B5-32	GGTCTTAGCACC	B5-80	CTATCCAAGTGG
B5-33	TATCGCGCGATA	B5-81	AGCCAGTCATAC
B5-34	CTCTACGAACAG	B5-82	GAGTTAGCATCA
B5-35	CTCCTCCCTTAC	B5-83	TAAGACTACTGG
B5-36	CGTGTTATGTGG	B5-84	GTCTCCTCCCTT
B5-37	ATTAGCAGCGTA	B5-85	CTTAGCTACTCT
B5-38	CAAGTTTCCGCG	B5-86	ATCGAATCGAGT
B5-39	CCTTGTTCACCT	B5-87	CGCGTCAAACTA
B5-40	AACCAGCAGATT	B5-88	GATCAACCCACA
B5-41	CTAGAGCTCCCA	B5-89	AGTGTCGATTCG
B5-42	CACGCAGTCTAC	B5-90	TCCGAGTCACCA
B5-43	ACAAACATGGTC	B5-91	AGTCTGTCTGCG
B5-44	TCGAAACATGCA	B5-92	AGACAAGCTTCC
B5-45	TTCCCACCCATT	B5-93	GATCTAATCGAG
B5-46	AGCAGAACATCT	B5-94	TAAACGCGACTC
B5-47	GAAACATCCCAC	B5-95	TCACGAGTCACA
B5-48	CTGTCAGTGACC	B5-96	TTGAACAAGCCA