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With the aim to improve the steel rolling process performance, this research presents a novel hybrid sys-
tem for selecting the best parameters for tuning in open loop a PID controller. The novel hybrid system
combines rule based system and Artificial Neural Networks. With the rule based system, it is modeled the
existing knowledge of the PID controller tuning in open loop and, with Artificial Neural Network, it is
completed the rule based model that allow to choose the optimal parameters for the controller. This
hybrid model is tested with a long dataset to obtain the best fitness. Finally, the novel research is vali-
dated on a real steeling roll process applying the hybrid model to tune a PID controller which set the
input speed in each of the gearboxes of the process.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that there are a lot of industrial process far
away from the optimal point of operation (Marlin, 2000). This fact
is due to a lot of reasons, but only some of them are very significant
in order to get a better performance (Marlin, 2000). Astrom and
Hagglud in Åström and Hägglund (2009) indicate that one of the
most important fact is to choose the adequate control technique.
In this sense, several works have been developed with the aim to
improve the behavior and consequently make the process more
optimal. For instance (Ko et al., 2011) proposes an efficient control
method to minimize process error and to reduce process variance
in semiconductor manufacturing, in Chen et al. (2008) is described
an intelligent adaptive control system for multiple-input multiple-
output (MIMO) uncertain nonlinear systems and, in Etik et al.
(2009) is showed a controlled fuzzy expert system to provide the
conditions necessary for operating rooms. Depending of the control
technique used different results are achieved. These techniques
must be selected based on the desired response of the system.
Some of these typical control methods are: PID control is the most
common solution for the practical control loops (Åström and
Hägglund, 2009), non-linear control (Haddad and Chellaboina,
2011), it would be used when the process is non linear; adaptive
control (Sastry and Bodson, 2011), it would be used for process that
are non-linear or changes are introduced on it during the opera-
tion; Model Predictive Control, it would be used to address process
with difficult dynamics (Camacho and Bordons, 2004).
Despite PID controller is applicable in most control loops cases,
but for certainly processes it has some limitations. For these pro-
cesses it is possible to make changes in the controller topol-
ogy achieving good results. For instance in Astrom and
Wittenmark (1994) an adaptive PID controller is implemented
for non linear systems or changes in it are made; (Rugh, 1991)
introduces the Gain Scheduling concept for non linear systems
with predicted variations in the process; in Bahill (1983) is showed
the predictive PID controllers to address non-minimum phase
systems.

The experience of human experts is used to create rule based
systems models (Hayes-Roth et al., 1983; Cimino et al., 2012). Ex-
pert people extract rules from a system operation and then they
structure it according to the system performance (Hayes-Roth
et al., 1983). These methods allow the developed model to emulate
the experts behavior in a certain field (Hayes-Roth et al., 1983;
Hayes-Roth, 1985), and have been one of the most used methods
in both research and operation (Hayes-Roth, 1985). There are sev-
eral examples of those models, for instance: (Olugu and Wong,
2012) shows an expert fuzzy rule-based system applied to the
automotive industry; (Chang et al., 2011) makes a comparison be-
tween a rule-based expert system and optimization models in a
small drinking water network; in Liu et al. (2010) a rule-based con-
trol system design for smart grids were developed. It is possible to
create models based on Intelligent Systems. In particular models
based on Artificial Neural Networks (ANN) are usually used to im-
prove the fitting of some models (Bishop, 2006). As examples of
works where ANN are used to create models are: (Garliauskas,
2004) describes the model created for mapping the evaluation of
transmitted information in the biological area; in Stanikunas and
Vaitkevicius (2000) is showed the model developed for color con-
stancy based on Four-layer neural network; (Alvarez-Huerta et al.,
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Fig. 1. Architecture of Multilayer Perceptron with 1 hidden layer.
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2011) shows the model developed to predict the drywell tempera-
ture of a nuclear power plant.

Many are the methods and applications that combine rule-
based systems and models based on (ANN). For instance (Ferreiro-
Garcia, 2012) shows a model to improve the heat exchanger
supervision using neural networks and rule based techniques. In
Srivastava et al. (1999) a knowledge-based conceptual neural
network is developed for fast voltage contingency selection and
ranking. Chaoui et al. (2004) proposes a control strategy based
on Artificial Neural Networks for a positioning system with a flex-
ible transmission element, with a rule-based supervisor for online
adaptation of the parameters of the reference model.

Usually, the control loops of steel rolling process are conven-
tional, and the operators therefore require no ongoing training
and updating. Thus, it is necessary that the improvements should
aim to complement the monitoring and control applications with
which the operators are fully familiar. There are several previous
works which tries to get this improvements (Chen et al., 2010;
Wan et al., 2008; Maheral et al., 1995; Sbarbaro-Hofer et al.,
1993). In this work a novel hybrid intelligent system for PID con-
troller tuning in open loop is proposed. It is based on a rule based
expert system combined with Artificial Neural Networks. With the
proposal it is possible to tuning the PID controller with the optimal
parameters according with the operation point of the steel rolling
process on load.

One approach, to solve the above problems, is to create a gener-
ic decision method, based on a conceptual model describing the
necessary steps to be achieved in order to obtain the PID controller
parameters for open-loop empirical adjustment method. The novel
model presented in this study was developed based on six different
sets of expressions with highly satisfactory results commonly used
in control systems.

The rest of the paper is organized as follows: first, the different
intelligent classification method used in this study are describe in
Section 2. Section 3 describes the procedure to tune a PID control-
ler in open loop and the different expressions considered for select-
ing the PID parameters. Section 4 describes the novel hybrid
system; its components, dataset, experiments and results are pre-
sented. Section 5 presents the empirical application of the novel
hybrid system on steel rolling process. Finally the conclusions
and future work are present.

2. Classification methods

In this section is described briefly the classification techniques
are used in the model approach. Three methods were taken into
account.

2.1. Artificial Neural Networks, ANN

The ANNs (Artificial Neural Networks) are computational algo-
rithms based on the functioning of the human brain. Once of the
most used ANN is the MLP (Multilayer Perceptron) (Bishop,
2006). The MLP is composed by one input layer, one or more
hidden layers and one output layer (see Fig. 1), all of them made
of neurons and pondered connections between neurons of each
layer. Applying the Theorem of Universal Approximation (Hornik
et al., 1989), can be demonstrated that only one hidden layer is
needed to model a nonlinear projection between input and output
layer.

A MLP with one hidden layer, can be written mathematically as
show in the Eq. (1).

yp
k ¼ Fk
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Where:

Fk? Activation function of neurons of the output layer.
wik? Weight vector of connections from neurons of hidden
layer to neurons of output layer.
bk? Bias of neurons of the output layer.
k? Number of neurons of the output layer.
Fi? Activation function of neurons of the hidden layer.
wji? Weight vector of connections from neurons of input layer
to neurons of hidden layer.
bi? Bias of neurons of the hidden layer.
i? Number of neurons of the hidden layer.
xp

j ! p-th input pattern.
j? Number of neurons of the input layer (equals to dimension
of the input data).
yp

k ! Predicted output for the p-th input pattern.

2.2. Support Vector Machines, SVM

SVM is described as a statistical learning method based on a
structural risk minimization procedure (Cristianini and Scholkopf,
2002). The basic concept of the algorithm is a mapping of the input
space into a higher dimensional feature space. Mapping can be
done either linearly or non-linearly, according to the used kernel
function. In the new feature space, the SVM constructs separating
hyperplanes that are optimal in the sense that the classes are sep-
arated with the largest margin and minimum classification error.
The optimal hyperplane can be written as a combination of a few
Fig. 2. SVM classification with � � insensitive loss function.
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feature points, which are called the support vectors of the optimal
hyper plane (Fig. 2).

Classification of the test sample x is performed by the Eq. (2),
where N is the number of training samples, yi is the class label, ai

is the Lagrangian multiplier, the elements xi for which ai > 0 are
the support vectors, and K(si,x) is the function kernel.

y ¼ sgn
XN

i¼1

ai yi Kðsi; xÞ
 !

ð2Þ
2.2.1. Least Squares SVM (LS-SVM)
Least Square formulation of SVM, are called LS-SVM, in the

approximation the solution is obtained by solving a system of
linear equations, and it is comparable to SVM in terms of general-
ization performance Ye and Xiong (2008). In LS-SVM, the � � insen-
sitive loss function is replaced by a classical squared loss function,
which constructs the Lagrangian by solving the linear Karush–
Kuhn–Tucker (KKT) system (Eq. (3)).
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Where In is a [n � 1] vector of ones, T means transpose of a matrix or
vector, c a weight vector, b regression vector and b0 is the model
offset.

In LS-SVM, only 2 parameters (c,r) are needed. Where r is the
width of the used kernel (Rud and Mining, 2000).

2.3. Fisher’s Linear Discriminant Analysis, FLDA

This method with Fishers Discriminant Criterion (Belhumeur
et al., 1997) is better than other techniques for Discriminant Anal-
ysis (Swets and Weng, 1996). It is important to highlight that with
this method good results are obtained in many cases, where linear
classification is possible. The FLDA carry out discrimination of clas-
ses by hyperplanes which are derived from the training data. In the
event that there are two classes, the classification of test vector x is
given by projecting x onto the weight vector w as shown in Eq. (4).

y ¼ wT xtest ð4Þ

Given a training set of data vectors x, a projection that maxi-
mizes the class separation for two classes C1 and C2 is obtained
to find w. A good separation should be given, when the projections
of the class means exposing a long distance along the direction of
w. These projections are given by Eq. (5), where mi represents the
mean vectors of the two classes, and w their projections onto w.

l1 � l2 ¼ wT ðm1 �m2Þ ð5Þ

The classification of a test dataset with FLDA provides each
sample, first of all, with the projection of the sample onto w and
the class label. The first output corresponds to a gradual decision
and the second to a binary decision. The projection is a scalar value
that gives a measure of the distance in the projection between the
sample and the hyperplane. This distance can be interpreted as a
measure for the distinctness of the sample from samples of the
other class. The FLDA finds the best separation of two classes by
maximizing the quotient of the class mean distance and the class
variance. To achieve a good separation, it is desirable to have a
large distance between the means.
Fig. 3. System Response to step input.
3. Open loop tuning for PID controller

This section describes the procedure to tune a PID controller
using the open loop method.
There are a lot of technics to make this aim O’Dwyer (2008), but
this article is centered in the one describes in the next point; one of
the difference between the technics are the way to study the
respond of a system. The result of the open loop tuning, is not
achieved directly; it is necessary to process the respond of the
system, and use a variety of expression to find the correct con-
stants to define the controller. As the controller is a PID controller,
the necessary constants are K, Ti, and Td.
3.1. First Order Lag Plus Delay system

The key to find good results of the parameters for the PID con-
troller is to ensure that the system is a First Order Lag Plus Delay
(FOLPD). The open loop tuning consist on introduce and step in
the system to change its set point. The respond of the system to
this new set point, should be anything like the responses in the
Fig. 3.

The characteristics of the response K System Gain, L Lag time,
and T Response time are obtained (Fig. 3) for a unit step input.

This research use the relation between L and T to decide the best
tuning method to the PID controller, according to the parameter of
the system that is necessary to perform. The method in this work is
only applied to a range from 0 to 1 of the parameter L/T.
3.2. Expressions to define the constants of the PID

There are a lot of expression to define the constants of a PID
controller, base on the empirical open loop tuning respond of a sys-
tem. As this paper is oriented to an industrial environmental, it is
decided to focus only in the load disturbance expressions (Åström
and Hägglund, 2009).

The expressions can be grouped depending of the parameter
studied by the author to achieved them. Fig. 4 shows the total of
expressions used, and the corresponding parameter which are base
the authors.

The expressions used to improve the overshoot ratio as a 1/4
per overshoot, mean that every overshoot will be a maximum of
1/4 of the previous overshoot. The expressions in this group are
the Ziegler Nichols (Z& N) and the Chien, Hrones and Reswick
(CHR) expressions. It is necessary to remark that there are two dif-
ferent expressions of CHR depending of the theoretical overshoot
allowed to the system.

The Kaya and Scheib (K& S) expressions are three depending of
the factor to improve. IAE means that they studied the integral of
the absolute error in the system respond. In ISE, the studied param-
eter was the integral value of the square of the error. ITAE means
they studies the integral of the absolute error multiplied by the
time.



Fig. 4. Expressions used for tuning the PID. Fig. 5. General structure of the Control System.

J.L. Calvo-Rolle et al. / Expert Systems with Applications 40 (2013) 5188–5196 5191
The expressions used in this article are defined in Table 1.
Fig. 6. General struture of the Hybrid System.
4. Hybrid system

The general structure of the control system is shown in Fig. 5,
where the input of the system is applied to the controller selected
by the hybrid system.

The Hybrid System is composed by 2 main blocks (Fig. 6):

� The ‘‘Knowledge of existing rules’’: This block organize the
existing knowledge about the systems in a general flow-chart,
which determines which intelligent model must be applied
for selecting the best controller.
� The ‘‘Intelligent models’’: This block is composed by 2 intelli-

gent models. The first one considers the controllers ‘‘K& S_IAE,
K& S_ISE, K& S_ITAE’’ and the second one considers the control-
lers ’’Z& N, CHR0%, CHR20%’’.

4.1. Knowledge of existing rules block

The general flow-chart of this block is shown in Figs. 7 and 8. In
this part of the general flow-chart (Fig. 7), the first task to be done
is to inquire whether the system is apt for PID open loop tuning
methods. Then in both cases it is checked whether the response
system is a First Order Lag Plus Delay (FOLPD), if it is not the case,
it would not be possible to carry out controller tuning with this
method. After having checked if it is a first order with time delay
system response, if it is not the case, this design method will not
be applied.

If it is a FOLD system, ‘‘L/T’’ (dimensionless) is checked to see if
it is bigger than 0.1 (empirical value (Åström and Hägglund,
2009)), if positive, it can be used the expressions contemplated
in the first rule rg.1 (Z& N, CHR0%, CHR20%). If it is lower than
0.1 only the expression contemplated in the second rule can be
used (K& S_IAE, K& S_ISE, K& S_ITAE).
Table 1
Expressions used in the study (K& S).

Expressions Kp

Z& N Ziegler and Nichols (1993) 1:2 T
K L

CHR0% Mp Chien et al. (1952) 0:95
a

CHR20% Mp Chien et al. (1952) 1:2
a

K&S_IAE Kaya and Scheib (1988) 0:98089
K

T
L

� �0:76167

K&S_ISE Kaya and Scheib (1988) 1:11907
K

T
L

� �0:89711

K&S_ITAE Kaya and Scheib (1988) 0:77902
K

T
L

� �1:06401
The corresponding part of the diagram of Fig. 8 is employed to
discover if the system response is a first order lag plus time delay
(FOLPD) system. Two steps are necessary followed for it. The first
step is to check if the system stabilizes at a constant value with a
unit step input, and that there is no oscillation. If so, the next step
is to make sure if there is a system of FOLPD type. If both condi-
tions are met, it can be concluded that the system is of this type,
otherwise it is not.
4.2. Intelligent models block

This block contains the best models classifiers generated by
using ANN, SVR-LR and FLDA. During the training process, these
models receives 2 inputs ‘‘L/T’’ and ‘‘parameter to improve’’ and
one output ‘‘best controller’’ selected by an expert empirically.
All algorithms are trained for both rules (rg.1 and rg.2):
Ti Td

2 L 0.5 L

2.4 L 0.42 L

2 L 0.42 L

T
0:91032

T
L

� �1:05221 0:59974 T L
T

� �0:89819

T
0:7987

T
L

� �0:9548 0:54766 T L
T

� �0:87798

T
1:14311

T
L

� �0:70949 0:57137 T L
T

� �1:03826
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� Rule 1 (rg.1): When the ‘‘Knowledge of existing rules block’’
determines that rule 1 must be applied, in this case only con-
trollers ’’K& S_IAE, K& S_ISE, K& S_ITAE’’ are applicable.
� Rule 2 (rg.2): When the ‘‘Knowledge of existing rules block’’

determines that rule 2 must be applied, in this case only con-
trollers Z& N, CHR0%, CHR20%, are applicable.

For both situations, all algorithms are trained and the best mod-
el, in terms of minimum error is selected as the model to use in the
‘‘models block’’.

4.3. Dataset

The following datasets were used for developing each model for
rg.1 and rg.2:

� For rg.1: The complete dataset consists of 2408 samples, two
third of them are used for training (1605), while the remaining
third is used for testing (803).
� For rg.2: The complete dataset consists of 7144 samples, two

third of them are used for training (4763), while the remaining
third is used for testing (2381).

Both datasets have the following inputs:

� L/T: Ratio from 0 to 0.1 for rg.1 and from 0.1 to 1 for rg.2.
Once the parameters have 
been found L and T. The

condition 0<L/T<1 is satisfied?

Is L/T < 0.1 ?

Yes

No

Not all the methods for tunning 
in open loop cannot be 

contenplated in this study

Yes No

Rule rg.1 Rule rg.2

Apply step input

Tuning is not possible for open loop 
design

It is a FOLPD system?
(See figure 1.a)

Yes

No

Open Loop Tuning

Fig. 7. First Part of General Flow-Chart of Knowledge.
� Parameter to improve: Is de parameter for which the selected
controller has to get the best result (Response time = 1, Over-
shoot = 2, Peak time = 3, Settling time = 4).

And one output:

� Best controller: Z& N = 1, CHR0% = 2, CHR20% = 3, K& S_IAE = 4,
K& S_ISE = 5, K& S_ITAE = 6. The selection of the best controller
was performed by an expert basing on the response of the sys-
tem comparing all possible controllers.

4.4. Experiments and results

For each rule, all algorithms (ANN, LS-SVM and FLDA) were
trained using a cross validation of 10 folds.

� ANN: MLP was used. It was tested with 5, 10 and 15 neurons in
the hidden layer, log sigmoidal and tangent sigmoidal transfer
functions for the hidden layer, and linear for the output layer.
To train the MLP, the Levenberg–Marquardt optimization algo-
rtihm (Levenberg, 1944) was used to update the weights and
bias of the network, as it is often faster than classical error back-
propagation algorithm (Matworks, 2013). Finally the best
results were obtained using 10 neurons and a sigmoidal transfer
function for the hidden layer.
� SVM: LS-SVM (Least Square Support Vector Machine)

(DeBrabanter, 2013) Matlab toolbox was used. In this toolbox,
the tuning of the parameters is conducted in two steps. First,
a state-of-the-art global optimization technique, Coupled Simu-
lated Annealing (CSA) (Xavier de Souza, 2010), determines suit-
able parameters according to specific criterion. These
parameters are then given to a second optimization procedure
(simplex or gridsearch) to perform a fine-tuning step.

Following, the results of the three algorithms are shown in
Table 2 (confusion matrices for rg.1) and Table 3 (confusion matri-
ces for rg.2).
It is stabiliced to a constant 
value before an input step and it 

has overshoot?

Does it show delay?

It is NOT a FOLPD system It is a FOLPD system

Yes

Yes

No

No

FOLPD

Fig. 8. Second Part of the General Flow-Chart of Knowledge to find out if a system is
a FOLD system type.



Fig. 9. Outline of the laminating rollers.

Table 2
Results for rule rg.1.

Desired method Method chosen by model

K& S_IAE K& S_ISE K& S_ITAE

(a) FLDA
K& S_IAE 146 58 63
K& S_ISE 65 150 53
K& S_ITAE 63 49 156
SE 0.547 0.560 0.582
ACC 0.690 0.720 0.716

(b) LS-SVM
K& S_IAE 214 30 23
K& S_ISE 34 207 27
K& S_ITAE 32 24 212
SE 0.801 0.772 0,791
ACC 0.852 0.857 0.868

(c) MLP
K& S_IAE 253 6 8
K& S_ISE 6 260 2
K& S_ITAE 2 5 261
SE 0.948 0.970 0.974
ACC 0.973 0.976 0.979

Table 3
Results for rule rg.2.

Desired method Method chosen by model

Z& N CHR%0 CHR%20

(a) FLDA
Z& N 461 167 165
CHR%0 163 492 139
CHR%20 161 194 439
SE 0.581 0.620 0.553
ACC 0.724 0.722 0.723

(b) LS-SVM
Z& N 642 79 72
CHR%0 56 671 67
CHR%20 93 54 647
SE 0.810 0.845 0.815
ACC 0.874 0.892 0.880

(c) MLP
Z& N 756 17 20
CHR%0 17 765 12
CHR%20 19 34 741
SE 0.953 0.963 0.933
ACC 0.969 0.966 0.964
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These matrices also show the Sensitivity (SE) and the Accuracy
(ACC).

SE ¼ TP
ðTP þ FNÞ ð6Þ

ACC ¼ TP þ TN
ðTP þ TN þ FP þ FNÞ ð7Þ

Where TP is the number of True Positive, TN is the number of True
Negative, FN is the number of False Negative and FP is the number
of False Positive.

Results show that the best classifier in both situations (rg.1 and
rg.2) is the MLP, obtaining good results in terms of ACC and SE. The
worst classifier is FLDA with a great difference with respect to the
ohter two classifiers.

5. Empirical verification on steel rolling process

Through the steel foundry cast profile shapes are obtained ingot
(billet) as well as through continuous casting machines. Usually
this product is stored for further processing according to customer
demand.
The transformation of this product consists essentially of the
material lamination into profiles directly useable, commercial
shapes that have certain properties. Lamination is a volumetric
deformation process which reduces the initial section of the mate-
rial worked by the compressive forces exerted on a piece of metal
in between two rollers.

The rollers rotate in opposite directions for the flow of material
between them, exerting compressive forces and shearing caused
by the friction produced between the rolls and metal. In Fig. 9
shows a simplified diagram of what happens in each of the roll
stands of the disposal of the rolling mill.

Following the implementation of the process it has to be per-
formed the speed control, which is a critical parameter for a correct
rolling.

The speeds to be programmed into the cylinders of different
boxes have to be very precise and adjusted to prevent disturbances
in order to achieve an optimum material output quality. For
explanation and correct comprehension of the so adopted
solution it is necessary to take into account that the relationship
between the area of the incoming section (Si) and the area of the
outgoing section (So), it is proportional to the occurring elongation
of the material as it passes in between the two rollers of the box.
Thus the section is reduced at the expense of making longer the
piece.

Since the amount of material does not vary, it is defined the
reduction factor R as the ratio between the area of material enter-
ing and leaving the rollers. The same factor can be obtained by
relating the linear speeds of input and output of material. In Eq.
(8) both discussed relationships are stated.

R ¼ Si

So
¼ Vo

Vi
ð8Þ
5.1. Control case study

On this issue it is proposed that the reduction factor R is the
data that allows for the speed setting point of the different boxes
of a rolling mill. Thus, if the reduction factors of the different boxes
R train have been carefully selected simply by varying the factors if
necessary, the speed setting points will be automatically updated
at all points.

In the rolling mill to be monitored there are seven gearboxes.
The feeding of the process is performed with material whose

section is 22500 square millimeters, and it is intended a production
speed of the final product of 2.30 meters per second.

Based on the desired speed, the characteristics of the starting
material and the reduction factors of each of the boxes of the roll-
ing train, taking into account the expression (8), we obtain the lin-
ear speeds of input and output of material to rollers.



Table 4
Summary of reduction factor, sections and mill speeds.

R Factor Input mm2 Output mm2 Input m/s Output m/s

Box 1 1.456 22500.0 15453.0 0.40 0.58
Box 2 1.425 15453.0 10844.0 0.58 0.83
Box 3 1.375 10844.0 7886.9 0.83 1.14
Box 4 1.311 7886.9 6015.9 1.14 1.49
Box 5 1.258 6015.9 4782.1 1.49 1.87
Box 6 1.123 4782.1 4257.3 1.87 2.10
Box 7 1.094 4257.3 3892.1 2.10 2.30

Fig. 10. Diagram of rolling mill with boxes and reduction factors.
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Table 4 lists all the parameters of the rolling mill.
The speed control is carried out upstream in the opposite direc-

tion to the flowing material.
The starting point is the output speed indicated by the designer

and mechanical installation, based on the reductions of the boxes,
where different linear velocities of the material at all points are ob-
tained. These velocities correspond to the section reductions that
occur as the material progresses in line for the various boxes.

In Fig. 10 different boxes are shown as an example, where it is
indicated for the box No. 6, sections and input and output speeds of
the material. Also in all of them, apart from the identification the
Fig. 11. Example of response measur
different real reduction factors obtained after the different tests
applied to the process are shown.

It is important to highlight that the reduction factor need not be
stable, in fact, what is occurring is a ‘‘flattening’’ of the material
and, for example, its value depends on the temperature.

Thus for example if the temperature of the leaving bar from the
reheating furnace is slightly higher than usual, that bar tends to de-
form in a different way and, consequently, the output speed will be
different. This means that the boxes must be perfectly synchro-
nized regarding speeds, otherwise there are two possible cases:

1. The following box is faster: If this is the case there will be a slid-
ing of the roller that performs the laminate, with the conse-
quent wear and increase in temperature among the others.

2. The following box is slower: If this is happened the material will
be bent and deformed in a different direction to the displace-
ment of the rolling mill and can form dangerous accumulations.

5.2. Results - findings

Depending on the diameter of the gearbox and the target linear
speed, we can obtain the speed at which the actuator must rotate,
and that means the velocity to be programmed in each of them.

This method ensures that varying one factor reduction rates are
automatically updated throughout, and thus will not have the
problems that had been occurring in these processes, i.e. the need
to retrain all speeds separately.

The adjustment of the servos are to be carried out with the
loaded plant in operation, otherwise the installation would not
perform well.

The adjustment of PID controllers of the servos are to be per-
formed in an open loop, through a procedure that favors distur-
bance rejection. It is to be loaded and set to the velocity for
which the train has been designed.

In addition to applying the model of this developed knowledge,
they have been taken into account the following principles in order
to standardize the response and for the results to be optimal:

1. Only terms whose criterion is related to disturbance rejection
have been taken into account, in spite that apparently would
bring a worse answer, but nevertheless, it provides much better
results against possible disturbances or load variations. This is
the reason why the terms used are listed in Table 1.
ement for adjusting servomotor.
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2. In all cases the same expressions are applied across the rolling
mill even though better specifications could be achieved
through different expressions for every box in the mill.

3. Although the model is general, it has expressions to be followed
for setting point and disturbance rejection purposes. It was
designed ad hoc for the last case as it is crucial in this system
we intend to adjust.

4. Although the rolling mill is dimensioned from a mechanical
point of view for an output speed of material 2.3 meters per sec-
ond, synchronizing tests have been carried out starting at 2
meters per second.

A probe is put under load (with material between the rollers) of
a known magnitude which will produce the parameters to be
introduced into the expressions.

Adjustments are made for material output speeds of 2.0, 2.1, 2.2
and 2.3 m/s.

For every case the starting point is a steady speed slightly lower
than the laminate one and subsequently turned onto the corre-
sponding rolling speed.
Fig. 12. Speed and current in BOX 6 w

Fig. 13. Speed and current in BOX 6 w
An example in Fig. 11 BOX 6 corresponding to the rolling train is
shown.

After analyzing the graph of Fig. 11 it is obtained a lag L of 1.2 s
and a rise time T of 3.4 s. There is thus a parameter L/T of 0.353,
which is applied as input to model knowledge.

The expressions for the disturbance rejection criterion that indi-
cates this knowledge model are those of Chien, Hrones & Reswick.

If you were to perform a test in which a rod is inserted in the
rolling mill BOX 6 the answer would be according to Fig. 12.

In the Fig. 12 it is observed that the linear velocity correspond-
ing to the rotation before entering the bar is greater than the re-
quired 1.87 m/s. To perform the adjustment test it is given as
setting guidance of 1.869 m/s and when approximately half of
the bar has been rolled then is set regularly to 1.8702 m/s.

As for the motor current can be observed that consumption is
very low when unloaded, while in load is very high, and although
slightly increased the speed it is not perceived any change in the
current consumption.

It should be noted that with respect to the reference set, the
speed decreases instantaneously when a bar comes in and drags,
hen a bar enters tuned by CHR.

hen it enters a bar tuned by Z& N.
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and when a bar is released there is also a considerable acceleration,
but after the transient setting point it follows correctly and
satisfactorily.

If the parameters in the controller were typical of Ziegler–Nic-
hols, the answer would be according to Fig. 13, which as it can
be seen, it is not as satisfactory as the selected model.

6. Conclusions

The proposed method allows to obtain the optimal performance
of the steel rolling process by selecting the best parameters of the
PID controller. The system, based on knowledge rules and ANN, se-
lects the most adequate expression for calculating the PID param-
eters in an automatic way, without the knowledge of expert
operators. It makes easier to start up the process on which the
developed system is applied.

The model was tested on real steeling roll process with a un-
known transfer function. The results obtained are presented in
the Results - Findings section to fulfill the initial objectives by ver-
ifying the correct behavior of the developed system. Therefore, the
Hybrid Model allows to improve the transient and permanent re-
gimes of the process response.

From a general point of view of the Hybrid Model, three useful
contributions were made. Firstly, greater clarity was achieved for
various stages in the adjustment of a PID design. Secondly, certain
contradictions were shown up between different methods, these
being solved by the use of the model. Thirdly, a method for the
automatic tuning of PID to control systems in open loop has been
described, allowing to get a finer grain model based on data-min-
ing and techniques.
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