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SUMMARY

The likelihood calculation of a vast number of particles forms the computational bottleneck for the particle
filter in applications where the observation model is complicated, especially when map or image processing
is involved. In this paper, a numerical fitting approach is proposed to speed up the particle filter in which the
likelihood of particles is analytically inferred/fitted, explicitly or implicitly, based on that of a small number
of so-called fulcrums. It is demonstrated to be of fairly good estimation accuracy when an appropriate
fitting function and properly distributed fulcrums are used. The construction of the fitting function and
fulcrums are addressed respectively in detail. To avoid intractable multivariate fitting in multi-dimensional
models, a nonparametric kernel density estimator such as the nearest neighbor smoother or the uniform
kernel average smoother can be employed for implicit likelihood fitting. Simulations based on a benchmark
one-dimensional model and multi-dimensional mobile robot localization are provided. Copyright © 2015
John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper concerns the design of a high-speed particle filter (PF) for a variety of nonlinear state
estimation problems such as localization, positioning, and tracking. Computing efficiency is a
critical requirement in the industry but is particularly challenging for the application of the PF. In
brief, the nonlinear filtering problem is formulated in the form of the discrete dynamic state-space
model (SSM).
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To estimate the state based on the noisy observations over time, a standard solution to the SSM-
based filtering problem is the Recursive Bayesian estimation, which is based on two assumptions
as follows:

(A.1) The states follow a first-order Markov process
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(A.2) The observations are independent of the given states
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The recursive Bayes estimation comprises two steps that form one iteration:

(Step.1) Prediction (Chapman–Kolmogorov equation)
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(Step.2) Updating or correction (Bayes’ rule)
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where p.y
t
jx
t
/ is the likelihood, which is calculated based on the observation function

However, these two steps are only conceptual, and the involved integration is generally incom-
putable except in the linear Gaussian system and a few finite state-space hidden Markov models.
To solve the integration, we have to resort to suboptimal simulation-based methods, such as the
point-mass (PM) filter [1, 2], the unscented filter [3], and the Monte Carlo methods. The Monte
Carlo method has become one of the most prevailing tools for sophisticated models, typically includ-
ing particle flow [4], Markov chain Monte Carlo [5], and sequential Monte Carlo (often called PF)
[6, 7], etc.

Specifically, the PF approximates the posterior density that can be of any distribution by a set
of particles with associated weights, and its computation complexity is proportional to the number
of particles used. Therefore, it suffers from heavy computation when a vast number of particles
are necessarily used for complicated systems. To speed up the PF, we propose a numerical fitting
approach to calculate the likelihood of particles that does not need to reduce the number of particles.
Numerical fitting has been proven a powerful and a universal method for data prediction and has
been used in a range of statistical applications where adequate analytical solutions may not exist.
In the context of Kalman filtering, the unscented transform technique is a proven type of statistical
linear regression [3]. To our knowledge, this is the first attempt to employ the numerical fitting tool
for likelihood calculation for PF.

The remainder of this paper is organized as follows. A brief review of the state of the art
development of fast processing PF is presented in section 2. The conceptual framework and
implementation details of the proposed approach are given in section 3. Simulations on typical
one/multi-dimensional models and further discussion are given in section 4 and 5, respectively. The
conclusion is offered in section 6.

2. RELATED WORK: FAST PARTICLE FILTERING

The primary challenge for the application of the PF is from its computational inefficiency. When the
rate of incoming sensor data is higher than the updating rate of the filter, then the sensor data cannot
be used fully but has to be abandoned some. To avoid this, considerable efforts have been devoted
to improve the computing speed of the PF to meet the real-time computing requirement. One of the
most effective solutions is to reduce the number of particles used, e.g. [8–10]. However, caution
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has to be exercised on reducing the number of particles as a smaller number of particles make it
hard to approximate the underlying probability distribution function (PDF) properly and to cope
with the information imprecision. Several advanced forms of the particle filter have been proposed
to work with fewer samples, but it is seldom possible to obtain a win-win situation in general. For
example, the importance density has been modified to pull the particles close to the observations in
order to reduce the number of particles required in [11]. The box particle [12] occupies a small and
controllable rectangular region in the state space, which reduces the number of particles required in
high-dimensional problems and is suitable for parallel processing.

In many real-life applications, the weight updating that is sensor-sensitive is much more compu-
tationally intensive than the state prediction, especially when map or image processing is involved
in the observation model. This is particularly true for robot localization/tracking [13, 14], high-
dimensional tracking [11], and visual tracking and prediction [15]. In these cases, the filter accuracy
and computing speed are both restricted heavily by the updating step. Because of this, efforts have
been made to increase the filtering speed by simplifying the updating step, especially for com-
plex observation models that involves images/maps and creates the main computational burden,
in two ways. One way is to reduce the number of updating cycles and the other is to reduce the
computation of each updating cycle. In the first way, only observations that fall inside a specific
scope around the particle have significant impact to the weight of the particle, while those outside
of the scope have negligible impact and are therefore not taken into account [16]. In the second
way, the weight of each particle is determined by employing the incremental likelihood calculation
in [17].

Real-time techniques such as parallel processing and dimension decomposition provide possibili-
ties for fast processing of the PF. Given the fast development and popularity of computers, multicore
platforms and general purpose graphics processing units, parallel computing becomes prevailing
for the PF, for example, [18, 19]. One of the biggest challenges for developing parallel PF is the
resampling operation that requires the joint processing of all particles and therefore prevents paral-
lelization of PFs. Therefore, various solutions for parallel/fast resampling and parallel PF have been
proposed, [20, 21]. For the particle implementation of the probability hypothesis density filter for
multi-target tracking, normalization is not needed in resampling which provides much convenience
for parallel implementation [22].

The dimension decomposition idea of Rao–Blackwellization (RB) [23] is to divide the state so
that the Kalman filter is used for the part of the state that is linear, and PF is used for the other part
that is nonlinear, which inspires many similar developments. For example, the proposed method
estimates orientation by using a particle filter, while the position and velocity are estimated by
using Kalman filter [13]. Furthermore, to remove the linearity limitation imposed by the Kalman
filter, the Decentralized PF ([24] splits the filtering problem into two nested sub-problems and
handles each individually using PFs. This differs from RB as two parts are all approximated by
conditional PFs.

Furthermore, one may partition the state space into more subspaces to combat the curse of
dimensionality and run separate PFs in each subspace [25]. A similar idea is implemented in [6],
which represents each component as a single chain Bayesian network and uses PF to track each
component for multi-component tracking. Splitting the state space is also an appealing and even
necessary way to deal with high dimensionality [26]. Meanwhile, the time scale separation exhibited
in [27] allows two simplifications of the PF: (i) to use the averaging principle for the dimensional
reduction of the dynamics for each particle during the prediction step and (ii) to factorize the tran-
sition probability for the RB of the update step. The resulting PF has improved computing speed
and reduced variance. It is fair to say that high dimensionality remains challenging for the applica-
tion of PFs [15, 28]. More effective and efficient speed-up solutions for the general SSM, whether
low-dimensional or high-dimensional, are still required, especially when it has a complicated
observation model.
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3. NUMERICAL FITTING FOR LIKELIHOOD CALCULATION

3.1. The conceptual framework

The PF approximates the posterior PDF by a set of particles x.i/
t

with associated non-negative weight
w.i/
t

that internally employs the strong law of large numbers, that is,
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where ı .�/ is the Dirac delta impulse and N is the number of particles.
The essence of the PF is to evaluate how well each particle conforms to the dynamic model and

explains the measurements, using this assessment to generate a weighted particulate approximation
to the posterior distribution, and hence form state estimates. More precisely, given a proposal impor-
tance density q.�/ (that shall incorporate the state process model and the newest observations [6, 7]),
the weight is determined as
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, which is critical to the

PF and is the core of our approach.
Moreover, resampling is often applied to reset the weights [20] to be equal or approximately to

combat weight degeneracy, that is, sampling importance resampling (SIR) or sequential importance
sampling and resampling, which shall not significantly change the posterior distribution [21].

In this paper, we concern the SSM in which the likelihood function is computationally intensive,
or even intractable [29] and has to be approximated. For this reason, we propose a numerical fitting
approach to speed up the likelihood calculation of particles, as referred to as likelihood fitting (Li-
fitting). Basically, the task of numerical fitting is to recover yDf .xIC/, where C are the parameters
that are to be determined by using given data based on the belief that the data contains a slowly
varying component, which captures the trend about, y, and a varying component of comparatively
small amplitude that is the error/noise in the data. We here implicitly assume that the likelihood
function is continuous and has a smooth distribution, which is the case in most applications. Our
approach is based on the situation that the direct likelihood calculation is computationally more
intensive than the numerical fitting employed.

As the first step, a number of fulcrums are created as detailed in Section 3.2. Then, the Likelihood
function (Li-function) L

t
.�/ is constructed based on the likelihoods of fulcrums that are directly

calculated by utilizing the observation at time t , which will be used to infer the likelihood of the
particles, i.e.
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Here, the Li-function can be thought of as a sufficient statistic for calculation of the likelihood
of each particle. In the implicit Li-fitting form, the likelihoods of particles are fitted directly from
that of the nearby fulcrums via smoothing and the Li-function will not be obtained explicitly; see
section 3.4 for details.

For illustration purposes, the idea of the Li-fitting approach can be described in Figure 1. The
horizontal axis and the vertical axis represent the state and likelihood respectively. Circles represent
the particles while boxes represent the specific fulcrums and their likelihoods (the red dotted lines)
are known. In the explicit Li-fitting form, the likelihoods of the fulcrums are fitted with their states
to obtain the Li-function, as represented by the red curve. This curve is then used to obtain the
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Figure 1. Schematic diagram of the fitting-based particle likelihood calculation.

particles’ likelihood i.e. the height of black lines. In the implicit Li-fitting way, we may not obtain
the red curve but just use the nearby fulcrums to infer the likelihood of the particle by utilizing a
smoothing estimator. In both, no matter how many particles there are, we can fit or smooth all of
them to obtain their likelihoods from the fulcrums.

The framework of the explicit Li-fitting based particle filter is described in Algorithm 1. The
details of the algorithm are given in the following subsections.

Remark 1
Our approach does not have to be based on the SIR filter but it can be also combined with advanced
PFs such as Auxiliary PF [30] and Gaussian PF [31].

Remark 2
It has become a common idea to develop analytic technologies to improve the PF, including the
regularized PF (RPF) [32], kernel PF (KPF) [33], convolution PF [34] and feedback PF [35] but
with very different implementations and purposes. In addition, Gaussian mixtures (GMs) are used
[36] to represent the posterior PDF and the observation likelihood function. However, these PFs do
not run faster than the basic SIR PF if the same number of particles is used.
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3.2. Non-negligible support fulcrums

There are two methods to construct fulcrums: One method is to simply use some particles from
the particle set (non-uniformly distributed) as fulcrums and the other is to create new data-points in
the state space (uniformly distributed). The more fulcrums are more likely to obtain a better fitting
approximation, but at the higher cost of computation. The fulcrums should be distributed appropri-
ately so that they can correctly infer the likelihoods of all the particles. In our approach, a grid-based
method is adopted to generate uniformly distributed fulcrums that cover the non-negligible region.

By partitioning the state space into rectangular cells, the fulcrums can be easily created by the
centers or the corners of those cells. This method of approximating the probability density by rectan-
gular delimited data-points is flexible and convenient for implementation (the data structure created
is easy to handle in computers). This data model has also been employed in the PM filter. Specif-
ically, the anticipative boundary-based grid and the non-negligible support principle proposed in
[1, 2] are readily suitable for our approach by a sensible albeit convenient conversion from the
predictive PDF in the PM filter to the PF.

In contrast to interpolation, which predicts within the range of values in the dataset used for model
fitting, prediction outside this range of the data is known as extrapolation. The further the extrapo-
lation goes outside the data, the more likely it is for the model to fail due to differences between the
fitting assumptions and the sample data or the true values. To avoid this, the fulcrums are constructed
in the state space I

t
to cover the complete state-space of particles with a boundary margin r
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where xŒl�
t

is the state value in the l th coordinate, min and max functions are calculated with respect
to all particles, dx is the total dimensionality of the state, r Œl� is the l th dimension boundary margin
which will be determined on the state noise covariance matrix as in [1]
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where a is a parameter that determines the non-negligible level, NQŒl�
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matrix composed of the eigenvectors of the estimate of the predictive covariance matrix; for detailed
explanation see [1, 2]. In fact, as long as r Œl� is a small positive value, it does not affect much the
fitting result. For simplicity, we suggest to determine it simply based on the width of the particle
distribution, e.g.
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where M Œl�
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is the number of grids to partition in dimension l . It will finally determine the number
of fulcrums to obtain. A lower bound of it is given in [1] as follows
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where�
t

is a significant support of the predictive PDF p.x
t
jy
t�1
/, h.x/ is the observation function,

�> 0 is the second design parameter. This is determined according to the user’s preference of the
accuracy.

Since the fulcrum is the crossing point of the partitioning of each dimension, the total number of
fulcrums is just the product of the partitioning times of all dimensions
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If we delimit the fulcrums with a fixed interval d Œl�, i.e.
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Then, the fulcrums can be defined at the space crossing of the following coordinates:
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Choosing a sensible number of fulcrums with respect to the state noise is important in our approach.
For simplicity and fast online computation in multiple dimension situations, the following number
M Œl�is suggested in our application such that

8l 2 Œ1; dx� WM
Œl�
t
D p or 1 (16)

where p is a specified value loosely satisfying (13), M Œl� D 1 means that the l th dimension is not
partitioned.

To note, fulcrums can be added into the particle set. This will not increase additional likeli-
hood computation as it has already been calculated. However, the total number of particles will be
increased, which can be reduced in the process of resampling [10, 20, 21].

Remark 3
The primary limitation of the grid partitioning is due to the sensitivity to the dimensionality of the
state space. To mitigate this limitation, partitioning the state space only in primary dimensions is
recommended. For example, in the case of the state that consists of position, velocity, etc., the grid
partitioning can be realized only in the position space (as shown in Section 4.2).

3.3. Least squares numerical fitting

Numerical fitting is accomplished in practice by selecting a linear or nonlinear function
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that depends on certain parameters c
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k
. There are two forms of numerical fitting: regres-

sion and interpolation, which are distinguished from one another based on whether the function
works on the data (that is interpolation) or not (regression). In this paper, we concern with the regres-
sion for which the fitting data may not strictly work on the function, instead a fitting error generally
exists, i.e.
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where y
m

is the measured value of the dependent variable, c
1
; c
2
; : : : ; c

k
are the required param-

eters. In our approach, the given data .x
m
; y
m
/, m D 1; 2 : : : ;M are fulcrums, x is the state, y

is the likelihood, and f .�/ is the required Li-function. The dependence of the likelihood function
on the parameters can be either linear or nonlinear. For the nonlinear likelihood function, solutions
include approximate linearization with tolerable errors (see Appendix) and conversion methods of
the nonlinearity (see subsection 3.5). Otherwise, a nonlinear regression method is required, such as
the Gauss-Newton method.

In what follows, we first consider the basic univariate variable fitting, while the intractable multi-
variate fitting will be described in subsection 3.4 where a local smoothing strategy (implicit Li-fitting
approach) is proposed for convenient implementation.
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Normally, one will try to select a function L.x/ that depends linearly on the parameters, in the
form of
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the set of trigonometric functions ¹sin�ixº, and ¹c
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º are parameters which must be determined. In

this paper, we call k the order of the fitting function. In over-determined systems, as in our case, k
is much smaller than the number Mof fulcrums

M >> k (20)

To specify the form of the functions in (19), the best case is when the function is known in advance.
Otherwise, reasonable assumptions and offline searching for the optimal fitting model is necessary.
To find the optimal fitting model, offline study might be helpful. Once the approximating func-
tion form and fulcrums have been defined, the next step is to determine the population parameters
c
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This leads to a linear system of equations to determine the minimum Oc
k

’s. The resulting approxima-
tion L.xI Oc

1
; Oc
2
; : : : ; Oc

k
/ is known as the least squares approximation to the given data and Oc

k
’s are

called least squares estimates of the population parameters.
An appropriate fitting model and proper distributed fulcrums are two critical factors needed to

achieve good fitting results. The Goodness-of-fit could be tested to decide whether it is possible to
proceed or search for a more suitable Li-function model, one that will better represent the true obser-
vation. Available Goodness-of-fit tests include the Kolmogorov-Smirnov test, Anderson-Darling
test, Chi-Square test, etc. [37].

3.4. Piecewise fitting and smoothing: Implicit Li-fitting

Often, however, it is difficult or even impossible to find a single function to represent the likelihood
function in the entire state space, especially for intractable multivariate fitting (namely, Hyper-
surface problem). As such, a flexible piecewise constant form could be chosen where the fitting
function is of lower order. Accompanied with the piecewise fitting/local smoothing strategy, the
linearization of the nonlinear dependence on parameters will be more theoretically tenable and
easier to implement. This can also reduce the required fitting function order that promises a smaller
linearization error; see the analysis given in Appendix.

To perform the Piecewise/Segmented fitting, the independent variable is partitioned into intervals,
and then a separate segment is fitted to each interval and the boundaries between the segments.
It is shown in [38] that the piecewise constant approximations are the best when the densities are
reasonably smooth in the scale of the grid. This indicates that the piecewise intervals should be
partitioned such that the likelihood function in each interval is reasonably smooth.

We reiterate that our goal is to calculate the likelihood of particles but not the Li-function, which
is only an intermediate process. If we can calculate the likelihood directly and accurately, we do
not need to burden the Li-function. Thus, in the piecewise fitting, we can use nonparametric local
smoothing techniques, e.g. Kernel Density Estimator (KDE), to derive the likelihood of particles by

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2015)
DOI: 10.1002/acs



NUMERICAL FITTING-BASED LIKELIHOOD CALCULATION

using the fulcrums without explicitly obtaining the Li-function. This method, termed the implicit
Li-fitting approach, will greatly simplify the multivariate fitting for convenient implementation.
Next, we will illustrate how it works. For a particle with state x.j /

t
, denoting its nearestMj fulcrums

in a limited scale and their likelihoods as ¹x
i
; L

i
ºiD1;2;:::;Mj , the required likelihood p

�
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�
can be defined as the Nadaraya-Watson kernel-weighted average of the likelihoods of these fulcrums
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where K.�/ the kernel function. Two quite convenient kernel smoothers are available: the nearest
neighbor smoother and the uniform kernel average smoother. The idea of the nearest neighbor (NN)
smoother is as follows. For each point x.j /

t
, take Mj nearest neighbor fulcrums x

i
and estimate

the likelihood of the particle p
�
y.j /
t
jx.j /
t

�
by averaging the values of these neighbors likelihood.

Formally,
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In contrast to this, the uniform kernel function can be defined as
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As the estimate of this uniform kernel smoother, every fulcrum x
i

in the bounded interval h con-
tributes to the likelihood of particle x.j /

t
in a manner inversely proportional to their distance from the

particle. The NN smoother and the uniform kernel smoother will be both applied in our simulations
in Section 4.

3.5. A polynomial fitting example

While boosting the processing speed of the PF, it is important to guarantee the estimate accuracy.
In order to have an intuitive understanding of the numerical fitting process and its results, the fol-
lowing popular univariate SSM is considered. The system dynamic and observation equations are,
respectively,
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where u
t

and v
t

are zero mean Gaussian random variables with variance 10 and 1 respectively.
Assuming the unknown observation equation is y.i/
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x.i/
t

�
, the likelihood function can be

obtained through one more step, i.e. the following Gaussian model

L
t

�
y.i/
t

�
D

1
p
2�

exp

�
�
1

2

�
y
t
� y.i/

t

�2�
(28)

where y
t

is the real observations and y.i/
t

is the observation of x.i/
t

. As shown, the likelihood
function is in fact nonlinear (most commonly it belongs to the exponential family). Instead of
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Figure 2. Observations and Equation (30)-based fitting function using different number of fulcrums.

using nonlinear fitting methods that are sometimes quite complex to implement, one may choose to
linearize the nonlinearity. Equation (28) can be linearized by taking its natural logarithm to yield

lnL
t

�
y.i/
t

�
D ln

1
p
2�
�
1

2

�
y
t
� y.i/

t

�2
(29)

Thus, the function lnL
t
.x/ with independent variable x has a linear dependence on the parameters

(substituting y.i/
t
D g

�
x.i/
t

�
into the equation); refer to (19). However, for this model we only fit the

observation function y.i/
t
D g

�
x.i/
t

�
. Fulcrums can be uniformly distributed with parameter r D 1

and the 2-order polynomial in the following trinomial form is assumed as the observation equation

y D c
3
x2 C c

2
x C c

1
(30)

Then we obtain the Li-function .L
t
ıg/

�
x.i/
t

�
, which is

L
t

�
x.i/
t

�
D

1
p
2�

exp

�
�
1

2

�
y
t
� c

3
x.i/2
t
� c

2
x.i/
t
� c

1

�2�
(31)

This is known as a nonlinear conversion that changes the nonlinear fitting function to a linear one,
which has high potential to apply to SSM with Gaussian observation noise. In Figure 2, the ‘ideal’
true observations.y D 0:05x2/ without noise are shown in ‘black’ curve and its noisy observations
in (27) of 100 random samples are shown in red circles. The least squares fitting results of the noisy
observations in (30) of M fulcrums (M D 5; 10; 30; 50 separately; for 2-order function, M>> 2
according to the condition (20)) are shown with respective colored lines.

The results show that the proposed fitting approach obtains more accurate observations than direct
observation. These good results benefit from our pre-knowledge that the observation equation is
a 2-order polynomial, although this is a fairly weak assumption. Obviously, the fitting results can
grow stronger as the knowledge of the observation model improves. This will be further shown in
our simulation section 4.1. For example, if we know the fitting function is in the monomial form

y D c
3
x2 (32)

then more precise fitting results can be obtained (as shown in Figure 3) by using the same ful-
crums. For example, in one trial, we obtain: c

3
D 0:0570 (5 fulcrums), c

3
D 0:0518 (10 fulcrums),

c
3
D 0:0530 (30 fulcrums), c

3
D 0:0487 (50 fulcrums).

The previous example has just exhibited a potential application of the numerical fitting to estimate
the observation function if it is unknown and needs to be estimated. Furthermore, if the observation
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Figure 3. Observations with noise and Equation (32)-based fitting function using different numbers
of fulcrums.

equation is known (as the case of most SSMs), the numerical fitting method can be applied in a batch
manner in which it does not need to online fit the equation of (30) or (32) for each step. The fitted
observation function or even the exact function y D 0:05x2 can be taken as granted in the subsequent
filtering steps to infer the likelihood of particles for saving computation. We refer to this form of
fitting method as the batch fitting in which the function of interest is constant. We will demonstrate
this in our simulations. However, we reiterate that, the Li-fitting approach is not intended to apply
for such a model with known and simple observation function for which the likelihood calculation is
extremely simple and is hard to be speeded up further. Instead, it is primarily targeted for cases such
as robot localization (and visual tracking) where the likelihood calculation often involve complicated
map/image processing which is much more computational intensive.

4. SIMULATIONS

For the sake of verifying the validity of our approach, typical SSMs including the aforemen-
tioned one-dimensional (1D) model and multiple dimensional robot localization are considered in
this section.

4.1. One-dimensional model: Fitting observation function

For the nonlinear system described in (26)–(27), the root mean square error (RMSE) in the time
series is used to evaluate the estimation accuracy, which is calculated by

RMSE D

 
1

T

TX
tD1

.x
t
� Ox

t
/2

!1=2
(33)

where Ox is the estimate of the state, T is the sum of iterations. A big T D10,000 is chosen and a
sequence number of particles from 10 to 500 with interval of 10 is separately used.

First, different orders of polynomial with 10 fulcrums are used in the regression model (30) to fit
the observation function. The RMSE results of the Li-fitting based PFs are given in Figure 4, which
shows that the 1st-order polynomial fitting result is really poor whereas 2nd-order and higher form
polynomials obtain much better estimation accuracy. This indicates that a proper (no smaller than
the true order) fitting function is critically important for our approach.

Secondly, the RMSE of the basic PF and the Li-fitting based PFs using different numbers of
fulcrums (for 2nd-order fitting polynomial) is given in Figure 5. The results indicate that the Li-
fitting PF can obtain a comparable estimation accuracy with the SIR filter, as long as an enough
number of fulcrums are used.
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Figure 4. Root mean square error of the basic sampling importance resampling particle filter and the Li-
fitting based PFs that use different orders of polynomials.

Figure 5. Root mean square error of the basic sampling importance resampling particle filter and the Li-
fitting based PFs that use different numbers of fulcrums.

Thirdly, the comparison of the Li-fitting PF (including the batch form) with several other known
nonlinear filters including the SIR PF, auxiliary PF (APF) [30], Gaussian PF (GPF) [31], Kernel
PF (KPF) [33] and unscented Kalman filter (UKF, with the unscented transform parameter set as
˛ D 1; ˇ D 0; � D 2/ [39] are given in Figures 6 and 7 for the RMSE and processing time,
respectively. Here, the Li-fitting PF uses 10 fulcrums and fitting function (32) at all steps, while
the batch Li-fitting PF uses 100 fulcrums and fitting function (32) at the first step. The average
performance over different numbers of particles is given in Table I where the weight updating is not
vectorized in Matlab as explained later.

The results show that the UKF does not work for this highly nonlinear model as its RMSE is high
(the same as [31] shows) while all PFs perform very similarly. In detail, the GPF and the APF is
somewhat inferior to the (batch) Li-fitting PFs, the SIR, and the KPF on average. When the number
of particles is small, the batch Li-fitting PFs performs better than others.

The Matlab programming itself can highly affect the computing speed. Especially, the vectoriza-
tion, that is, the data are processed in the unit of matrix can highly speed up the computation. The
processing time of all filters are given in Figure 7 for the case without vectorization of the weight
updating step and are given in Figure 8 for the case of using vectorization for updating. To note,
when dimensions are correlated, vectorization might be infeasible. Then, the computational demand
of the PFs (including GPF, KPF, APF, and SIR) will unsurprisingly increase in proportion with the
growth of the number of particles used as shown in Figure 7; see our next simulation. For this gen-
eral case, the UKF is obviously the fastest. The batch Li-fitting based PF is the second, GPF is the
third (no resampling is needed), and the Li-fitting PF is the fourth. All of them are highly faster than
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Figure 6. Root mean square error of different filters against the number of particles used.

Figure 7. Computing time of different filters for 10,000 steps (the weight updating of particles is not
vectorized).

the KPF, APF, and SIR especially when the number of particles is large. In contrast, in the Li-fitting
PFs, the number of fulcrums is constant, and the calculation does not necessarily increase with the
number of particles. This exactly demonstrates the superiority of our approach that releases the high
dependence of the computational time on the number of particles used.

To note, the processing speed of the Li-fitting PF can only be improved when the time cost for the
fitting is lesser than the likelihood computation it has saved. Because the updating step (27) when
the vectorization is employed is nothing more than the job of solving (30), it is not surprising that
the computing speed of the Li-fitting PF has not been improved but instead reduced in such a simple
simulation when vectorization is utilized or when the number of particles is very small. However, in
multiple dimensional model, the multi-dimensional state is often unable for the vectorization of the
weight updating; see our next simulation.

In particular, in such a 1D model, the resampling will take a large part of the computation in the
PF, and therefore, the GPF is very fast, which does not need to perform resampling. However, in
high-dimension models where the weight updating is much more computation-consuming than the
resampling and the state prediction, the computation advantage of the GPF will not be so obvious,
but the Li-fitting will further speed up the PF. This will be demonstrated in our next simulation.

4.2. Robot localization

In general, the SIR PF seems to be the fastest computationally while existing variant PFs are often
more computationally intensive except for the GPF which does not need to perform resampling.
Therefore, in our second simulation, our comparison has not included all of these advanced PFs
except SIR and GPF.
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Table I. Average performance of filters (without vectorization).

N D 50 N D 200

RMSE Time RMSE Time

UKF 7.641 3.491 7.641 3.427
SIR 5.623 10.840 4.895 38.196
APF 5.805 18.044 5.060 66.885
KPF 5.706 12.514 4.896 42.910
GPF 5.821 2.412 5.038 5.955
Li-fitting 5.546 12.210 5.004 13.906
Batch Li-fitting 5.548 1.704 4.883 3.170

RMSE, root mean square error; UKF, unscented Kalman filter; SIR,
sampling importance resampling; APF, auxiliary PF ; KPF, kernel
PF; GPF, Gaussian PF.

Figure 8. Computing time of different filters for 10,000 steps (the weight updating of particles is vectorized).

The application of the PF to mobile robot localization is usually referred to as the Monte Carlo
localization (MCL) [13]. In this section, we present a typical MCL application via simulation for
accurate comparison and analysis. In order to develop the details of MCL, let x

t
D .x; y; �/T be the

robot’s position in Cartesian space .x; y/ along with its heading direction � denotes the robot’s state
at time instant t , y

t
is the observation at time t , and u

t
is the odometer data (control observation)

between time t � 1 and t . Supposing u
t�1

has a movement effect .	s;	�/T on the robot,	s is the
translational distance, and 	� the change of robot’s heading direction from time t � 1 to t . Then,
the motion model p.x

t
jx
t�1
; u

t
/ can be easily obtained as

x
t
D x

t�1
C

2
4 cos �

t�1
0

sin �
t�1

0

0

1

3
5	 	s

	�



C ut (34)

where ut is the system uniform noise with zero mean and diagŒ	s � 20%; 	™ � 5%�T variance in
our case. In particular, the particle, which falls into obstructs, will be discarded (by setting its weight
to zero) in resampling.

The observation model depends on the map of the environment (given in Figure 9) and the sensor
data. Here, we assume the use of a single laser radar (having an arc view field of 180°) that measures
a serial of (denoted as n) distances between the sensor and the surrounding obstacles (black areas
in the figure) in different bearings/azimuths, forming a fan of multiple ‘distance-lines’ (as shown
by blue lines in Figure 9 for one position). This involves map processing when calculating the
observation Oy.i/

t
of each particle x.i/

t
, which needs to calculate the lengths of all these ‘distances’ in

n bearings. Then one can compute the likelihood for each particle based on Oy.i/
t

and y
t
. Here, we

assume the observation noise is Gaussian, and the nearest-neighbor data association is used for scan
data matching in our simulation, which can be described as
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Figure 9. The robot trajectory and the distribution of particles (black point) when the robot is at the second
stop; A fan of blue lines represent the scanning distances of a particle (simulated) in a view field of [0, 180°].

p
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D g

�
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�
(35)

where Si;j is the covariance matrix of the difference Oy.i/
t
� y

t
; the Gaussian observation noise is

s�N .0; 5/ for each scanning distance. We choose n D 36 and 180, respectively, in our case. A
bigger n indicates a higher resolution and is more time-consuming. The map processing as well
as (35) indicate that it is impossible to apply vectorization for weight updating as is done in the
one-dimensional SSM like (26)–(27).

The Li-functions could facilitate the entire state space .x; y; �/T or simplify the Cartesian space
.x; y/T only. This simplification is possible because the direction � relies strongly on its position
.x; y/T if the covariance matrix Si;j can be known based on the observations. In this case, we set
a constant boundary margin r Œl� D 1 in (10), p D 10 in (16) so that 100 fulcrums are used in
the position space .x; y/T , and the linear uniform fitting method is adopted. In addition, the Li-
fitting approach is applied after t D 3, since at the starting stage, (t 6 3/ particles are very widely
distributed (e.g., the case is plotted in Figure 9 for t D 2/ which is unsuitable for constructing the
Li-function. To determine whether it becomes suitable for fitting, one suggestion here is to measure
the variance of the particle distribution. Here, we use the threshold method.

To evaluate the filtering performance, the Euclidean distance (ED) is defined between the position
estimate . Ox; Oy/T and the ground truth .x; y/T that is calculated by

ED D
q
.x � Ox/2 C .y � Oy/2 (36)

The path of the robot is from ‘S ’ to ‘T ’ in Figure 9. The points represent particles, and the rectan-
gle boxes represent the stops of robot. To gain more insights, the distribution of particles, and the
surfaces of Li-function are given in Figure 10 for one trial when 500 particles and 100 fulcrums are
used and n D 36. As shown, the particles concentrate in local areas, and their likelihood distribution
is relatively smooth in the planar position space.
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Figure 10. Distribution of particles (upper row), Li-fitting surfaces (bottom row) in two stops (N D500,
M D100, n D36).

Both the number N of particles and the number M of fulcrums are critical to the performance of
PFs. To capture the average performance, 100 MC trials were run. The EDs when different numbers
N of particles are used are plotted by time steps in Figure 11, which indicates that the Li-fitting
approach has indeed reduced the estimation accuracy somewhat as compared with the SIR PF and
the GPF (the latter two perform similarly). For a large number of particles,for example, 500, a
small number of fulcrums, for example, 100, can fit the likelihood efficiently. Furthermore, it can be
seen that for the same number of fulcrums, applying more particles does not always generate better
results. This indicates that it is not suitable to use too few fulcrums to fit the likelihood of too many
particles; instead, the ratio of the number of fulcrums to the number of particles should be set in a
reasonable scope. Too small a ratio (too few fulcrums) leads to worse results, while too high a ratio
does not benefit the filter speed.

The mean ED from stop 3 to 24 against the number M of fulcrums is plotted in Figure 12, which
shows that the larger the number of fulcrums, the more accurate is the approximation. The reason
that the result is better for a larger number of particles is because of the very first steps (while in
the latter steps, a greater number of particles leads to worse estimation accuracy). Note that the
Li-fitting approach does not fit during the initial stage where particles are distributed broadly in
the state space. The computing time of the Li-fitting based PF, SIR, and GPF against the number
of particles are given in Table II and III respectively for the scanning data size n D 36 and 180.
The results demonstrate again the fast processing advantage of our Li-fitting approaches, especially
when informational-rich observations (n D 180/ are applied.

The resampling that is dimension-free takes a large part of computation in the simple 1D model
but not in this complicated multi-dimensional models. Here, the weight updating of particles is
the primary computation of the PF. Therefore, the GPF is faster than the SIR but is much slower
than the Li-fitting MCL. Comparably, the Li-fitting approach is qualified to significantly reduce the
computation while maintaining approximation quality.
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Figure 11. Estimation error by steps when different numbers of particles are used (n D36, M D100 in
Li-fitting particle filters).

Figure 12. Mean Euclidean distance against the number of fulcrums used (n D36).

Table II. Real-time performance of PFs (second) when the
sensor data size n D36.

Number of particles 100 500 1000

Basic SIR PF 0.593 3.668 10.078
Gaussian PF 0.594 3.654 9.5165
Li-fitting PF 0.787 2.140 4.1419

PF, particle filter; SIR PF, sampling importance resampling
particle filter.

There is a trade-off between increasing the processing speed by reducing likelihood calcula-
tion and improving the estimation accuracy by maintaining accurate likelihood calculation. The
choice depends on the practitioner’s preference between the estimation accuracy and the processing
speed. The Li-fitting approach provides a choice for applications in which a fast processing speed is
much preferred.

5. DISCUSSIONS

The simulations have demonstrated the validity of the Li-fitting approach but also exhibited its extra
limitations for the likelihood calculation for which counter measures are needed.
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Table III. Real-time performance of PFs (second) when the
sensor data size n D180.

Number of particles 100 500 1000

Basic SIR PF 3.417 20.937 50.768
Gaussian PF 3.566 15.707 47.321
Li-fitting PF 3.806 6.547 11.871

PF, particle filter; SIR PF, sampling importance resampling
particle filter.

(1) Straightforward numerical fitting may give negative likelihoods, which is not reasonable to
update the particle weight that must be positive. To correct this, the negative likelihood can be
set to zero.

(2) The implicit Li-fitting approach in the form of smoothing does not need to obtain the like-
lihood function directly and only needs two parameters: the number of fulcrums M and the
boundary margin r . The latter can be set as a relatively small positive constant or determined
by the distribution of particles as given in (11).

(3) When a fixed number of fulcrums are used, more particles do not always lead to better esti-
mation. To obtain the optimal approximation, the ratio of the number of fulcrums used, M , to
the number of particles N should be set within a reasonable scope, for which we suggest the
scope of [1/5, 1/2].

(4) The Li-fitting approach is more suitable for “relatively stable tracking” stage in which the
state transition is stable and the variance of the particle distribution is relatively small. Finding
an ingenious solution to apply the numerical fitting approach to complicated state dynamics
models still requires further research.

(5) Current Li-fitting applications use a fixed number of fulcrums and a constant form of fitting/
smoothing function, which are simple but may not always be satisfactory because the com-
plexity of the likelihood function often vary over time. Therefore, advanced/adaptive Li-fitting
approaches that are able to adjust the number of fulcrums and the fitting/smoothing function
according to the system requirement would be valuable.

6. CONCLUSIONS

This paper has proposed a numerical fitting approach for calculating the particle likelihood to speed
up the particle filter, termed the Li-fitting approach. It uses a relatively small number of fulcrums to
infer the likelihood of particles and is particularly efficient when the observation/likelihood function
is complicated and computationally intensive. The Li-fitting approach alleviates the proportional
dependence of the computational demand of the PF on the number of particles used, exhibiting a
significant mollification of the contradiction between the computational cost and the approximation
accuracy. It has been detailed how the numerical fitting method can be implemented in explicit fitting
and implicit smoothing forms. Meanwhile, an awareness of the limitations concerning the Li-fitting
approach was also discussed with potential solutions provided. Simulation results have demon-
strated that the processing speed of the PF has been highly accelerated by the Li-fitting approach
without significantly losing the estimation accuracy.

The future work will be twofold: further development of advanced adaptive Li-fitting approaches
that are capable of adjusting the number of fulcrums and the fitting function for more challenging
environments; and the employment of the numerical fitting tool for parameter estimation within the
context of statistical signal processing.

APPENDIX: LINEARIZATION ERROR OF LI-FITTING

For engineering convenience, one may directly assume the likelihood function having linear depen-
dence on the parameters as in (19). However, the assumption of the linearity dependence does not
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hold for most practical systems. This appendix gives the linearization error of converting a nonlinear
fitting model to be one linear function. The analysis is based on the Taylor series expansion.

A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series
of a real function f .x/ about a point x D x0 is given by

f .x/ D f .x0/C f
0 .x0/ .x � x0/C � � � C

f .n/.x0/

nŠ
.x � x0/

n CRn (A.1)

where R
n

is a remainder term known as the Lagrange remainder (or truncation error), which is
given by

R
n
D
f .nC1/ .x�/

.nC 1/Š

�
x � x

0

�nC1
(A.2)

where x� 2[x0, x] lies somewhere in the interval from x0 to x.
Thus, if we use the engineering-friendly monomials function as in (19), there is at least an error

of Rn occurring. The expression Rn in (A.2) indicates that the closer the prediction data x is with
x0 (the smaller (x-x0/ is), the more feasible it is to express the function in that interval in a lower
order and with a smaller Rn. That is to say, the closer the particle is to the fulcrums (i.e., the smaller
the piecewise interval), the more accurate and reliable the Li-fitting approach will be. This explains
why the piecewise fitting is suggested in our approach to deal with the trade-off between better
estimation accuracy and faster computing speed.
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