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our approach, we have used four important and public gene 
expression datasets, two Lung cancer datasets, Colon and 
Leukemia cancer dataset. The achieved results have been 
validated through cluster validity measures, visual analyt-
ics, a classifier and compared with other gene selection 
methods, proving the reliability of our proposal.

Keywords  Gene selection · Filter method · Multi-agent 
system · Clustering · Classification · Machine learning · 
Visual analytics · DNA-microarray

1  Introduction

Colorectal cancer (CRC) is the third most common type of 
malignancies worldwide and the second cause of cancer 
death among adults [1, 2]. CRC is originated by cell dam-
age accumulation and mutations in genes affecting a series 
of major signalling pathways. About 5% of all cases of this 
disease are caused by a hereditary syndrome [3]. Summa-
rizing, the incidence and severity of this disease under-
stood as a health problem is beyond doubt, demanding fur-
ther research for better detection [4]. At its origin, CRC is 
a benign adenomatous polyp, then it gradually progresses 
to an adenoma before turning into an invasive cancer [2]. 
Thus, advances leading to understanding molecular pro-
cesses taking place in CRC result essential for a suitable 
knowledge management on the part of both doctors and 
researchers [4].

Meanwhile, Lung cancer is one of the most common 
types of malignancies worldwide and one of the most fre-
quent causes of death in developed countries, constituting 
27% of all cancer deaths [5]. Thus, early diagnosis is essen-
tial for the patient’s survival. Unfortunately, most patients 
are diagnosed at an advanced stage of the disease, in which 
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they have already developed metastases [6]. Such an event 
is a consequence of the lack of early symptoms, which do 
not appear until the disease is in a critical condition. Hence, 
this proliferative syndrome presents a high risk of metasta-
sis which binds to the absence of effective treatments. This 
has led researchers to develop classifiers based on microar-
ray technology which are able to support metastasis diag-
nosis and prognosis toward different organs [7].

Leukemia cancer is also one of the most common types 
of malignancies worldwide, it starts in the stem cells of the 
bone marrow making blood cells. Leukemia is basically a 
cancerous disorder of the blood cells for which the cells 
are not properly formed. Blood cells cannot be divided or 
reproduced as somatic cells do because they do not have 
DNA. There exist many kinds of leukemias, each with its 
own peculiar signs. The leukemia dataset has been taken 
from a collection of leukemia patient samples reported in 
[8]. It contains gene expressions corresponding to acute 
lymphoblast leukemia (ALL) and acute myeloid leukemia 
(AML) samples from bone marrow and peripheral blood.

The molecular complexity involved in cancer consti-
tutes a major problem for clinical research. This is one of 
the main reasons why these types of cancer require a fur-
ther molecular characterization for better understanding 
of mechanisms affected in tumor cell invasion [9]. Major 
research efforts are aimed at the discovery of new biomark-
ers as well as an early diagnosis and identification of spe-
cific mutations [10]. In this context, DNA-microarrays pro-
vide a means of identification for new genes being key in 
the genesis and development of diseases [11]. However, the 
exploration of these large datasets looking for a small sub-
set of significant genes is a crucial but very difficult issue. 
The use of data mining techniques along with information 
visualization technology can help to cope with this problem 
for improving the data analysis process [12].

Feature/gene selection involves an important research 
topic in gene expression data, dealing with the gene discov-
ery relevant for a particular target annotation. Those genes 
are called informative genes or differentially expressed 
genes since they are able to differentiate samples from dif-
ferent populations [13]. They are the basis for developing 
classifiers in the study of disease diagnosis and prognosis 
[14, 15]. Although a wide number of methods have been 
proposed to face the gene selection problem, there is not 
a single method able to solve all the underlying issues. 
Multi-agent systems (MAS) are an alternative for build-
ing analysis software in Bioinformatics. MAS are endowed 
with learning and adaptation, allowing us the deployment 
of autonomous and proactive softwares [16]. Hence, their 
ability to adapt to the environment, facing highly complex 
systems.

In consequence with all of the above, this paper pro-
poses a clustering-based MAS for gene selection from gene 

expression data. The MAS coordinates tasks as gene filter-
ing, gene clustering and cluster visualization components, 
which cooperate with each other to reach a common goal, 
a subset of informative genes from an input dataset. We 
want to stress that the main novelty of the current approach 
which makes it different to other proposals in the litera-
ture is that it includes a MAS and the calculation of clus-
ter boundary gene-points for the discovery of informative 
genes. Finally, the remainder of this paper has been divided 
into the following sections: Sect. 2 deals with the existing 
approaches related to gene selection and their difference 
with respect to our proposal. Section 3 explains the com-
ponents and the operation of the MAS in the gene selection 
process. Section  4 develops a case study on three public 
datasets and explains the results. Section 5 states the con-
clusions of this research, whereas references are listed at 
the end of this paper.

2 � Related Work

Gene selection (GS) can be generically defined as the pro-
cess of extracting gene subsets whose expression level 
values are representative of a particular target feature, i.e., 
clinical or biological annotation [13–15]. GS is a very 
active research area in the analysis of gene expression 
microarray, which is contributing to the development of 
the field as a result of involved data mining and machine 
learning techniques. Particularly, GS from microarrays 
is addressed to identify/discover those genes which are 
expressed differentially according to a determined target 
disease (namely informative genes).

GS methods have been divided into the following four 
categories: filters, wrappers, embedded and ensemble. Fil-
ter methods have been directed to discriminate or filter fea-
tures/genes based on the intrinsic properties of the dataset. 
They do this by estimating their relevance scores to state 
a cut-off schema where an upper/lower bound is imposed 
to choose features with the best scores [13, 27]. Wrap-
per methods use a classifier to find the most discriminant 
feature subset by minimizing an error prediction function 
[21, 28, 29]. Embedded methods are similar to wrapper but 
additionally they interact with the learning model, which 
reduces the runtime taken by wrapper methods [13, 22, 
30]. Ensemble methods are relatively new and recombine 
results from different FS techniques to achieve a more sta-
ble feature subset, since small perturbations in the training 
set can have effects on the results of a GS method applied 
individually [23, 24, 31].

According to the reviewed literature, filter methods have 
been widely used in the GS process complex in compari-
son with the remaining methods. However, the application 
of a single standard method to find informative genes, i.e., 
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assigning relevance indices to genes using some of the sta-
tistical tests and then, ranking them to select the top k genes 
is not the best option since they are often highly correlated 
[32, 33]. Hence, we propose a multi-agent system (MAS) 
developing successive filtering of genes by applying differ-
ent techniques of GS and data mining. In this sense, Table 1 
lists the features of methods used in the GS process in com-
parison with our proposal, which has also been added to the 
table. This table outlines ten of the main methods used in 
GS and describes their proposals as well as main features. 
Column main features describes the category of the method 
(filter, wrapper, embedded or ensemble) and whether the 
method is simple or compound by several techniques. As 
shown in this table, none of the proposals use MAS or clus-
ter boundary genes for GS as done in our approach.

3 � An Agent Approach for Gene Selection

The goal of using agents for gene selection in this 
research has been to automate and plan the different tasks 
involved in the gene selection process conducted by our 
proposal. Such tasks are usually executed sequentially 
and manually in a computer system by the user. This 
implies that the user should run every operation and 
modify the statistical parameter values according to the 
used statistical test. The possibility of committing errors 
is greater and we would waste time, especially when the 
dataset is large. In that sense, our approach takes advan-
tage from MAS, i.e., task automation, behavior, exten-
sibility and flexibility. Hence, the paradigm that best 
adjusts to the automation process of our proposal, in the 

Table 1   Comparative table with the main features of gene selection approaches

Proposal Main features Explanation

Methods GS1 and GS2 in [17] Filter (simple methods) GS1 and GS2 use two gene scoring functions which incorporate 
the means and the variations of the expression values of genes 
in the samples belonging to a common class

Three methods in [18] Filter and clustering (simple methods) Two clustering-based methods and a correlation-based method 
are defined. Statistical tests are applied to each similar gene 
group

Entropy-based method in [19] Filter (compound method) This method maximizes the relevance and minimizes redun-
dancy (entropy) of selected genes. The Battitis’s greedy 
algorithm and simulated annealing have also been used in this 
process

Hybrid approach in [20] Filter (compound method) A hybrid approach merging Genetic Ant Colony Optimization 
(GACO) and FBA is proposed to identify genes to be knocked 
out

Random forest method in [21] Wrapper (simple method) At each iteration, the method builds a new forest after discarding 
those genes with the smallest variable importance; the selected 
set of genes is the one that yields the smallest OOB error rate

Embedded approach in [22] Embedded (compound method) This method works in two stages: first, it makes pre-selection 
leading to a reduced gene subset space. Second, it carries out a 
search ensured by a specialized Genetic Algorithm which uses 
(among other things) a SVM classifier

Random forest method in [23] Ensemble (compound method) This method uses random forest, bagging, boostrap for gene 
selection and classification

Modified AHP in [24] Ensemble (compound method) This method builds a hierarchy of factors for gene selection from 
different tests of gene ranking and a fuzzy system with genetic 
algorithms for classification

Unsupervised feature selection in [25] Ensemble (compound method) This approach partitions the initial feature set into clusters 
guided by a new measure called maximal information com-
pression index. After that a single feature is selected from 
each cluster. The propose of making clusters is to minimize 
information loss and redundancy

Attribute clustering for grouping [26] Ensemble (compound method) This method applies a correlation conducted method to obtain 
clusters whose attributes show high correlation and inter-
dependence to reduce the search dimension for a reduced 
attribute set

Our proposal, a MAS Ensemble (compound method) A multi-agent system manages the gene selection process 
through different agent layers applying different approaches: 
ranking methods, cluster analysis, visual analytics and bound-
ary gene computation as a novel approach for gene selection
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range of current techniques is a MAS. Moreover, the 
employment of MAS, additionally allows for the inclu-
sion of solutions in future versions; such functions as 
case-based reasoning (CBR) allows to solve learning 
complex problems on the basis of past solutions. This 
learning adjustment would not be possible without the 
extensibility capabilities of MAS.

This section explains the MAS proposed for gene selec-
tion, which consists of several layers responsible for car-
rying out different gene filtering and clustering tasks. The 
MAS deals with two filtering processes (through agents) 
before applying clustering techniques. Once the data have 
been clustered by means of agents operating as hierarchi-
cal clustering methods. Other agents are executed, they are 
in charge of visually exploring the resulting dendrograms 
and applying statistical techniques of cluster validation to 
choose the most suitable clustering. Finally, the boundary 
genes for each cluster from the selected clustering are com-
puted and assumed as informative genes. Note that bound-
ary genes are data points that are located at the margin of 
densely distributed data, and are very useful in data mining 
applications, representing a subset of the population that 
possibly belongs to two or more classes [34]. Awareness 
of these points is also useful in classification tasks, since 
they can potentially be misclassified [35]. In consequence, 
boundary points are good candidates to be informative 
genes.

Finally, we want to stress that an important feature of our 
MAS is its ability to add, change or remove components, 
such as, the filter, clustering, boundary point and classifier 
methods making our proposal extensible.

3.1 � Multi‑Agent System

The agent model pursued by our approach consists of four 
filtering processes and a cluster analysis process, which are 
performed by the MAS being able to leverage its skills, 
such as adaptation, scalability and cooperation between 
agents. The use of MAS in gene expression analysis has 
already been used in other studies with satisfactory results 
[36]. JADE (Java Agent DEvelopment Framework) has 
been used to design and implement our MAS. So the strat-
egy followed to reach an informative gene subset consists 
of four linked layers: workflow layer, filtering layer, cluster 
analysis layer, and boundary gene layer as shown in Fig. 1.

Workflow is the main layer of the MAS and has a sin-
gle agent (MA agent) which is in charge of organizing the 
information flow of the remaining layers. It also states the 
order for each agent activity, collects information on set-
tings and repeats sequences performed for gene expression 
analysis, making it possible to automate repetitive analysis 
tasks. The remaining layers are explained below:

1.	 Filtering layer: This is the initial layer applied to the 
target dataset. This layer is responsible for carrying out 
two gene filtering processes to reduce noise in the input 
dataset. Therefore, the layer (FA agent) coordinates 
the agents for data normalization, significance test by 
relating genes to the studied disease and the objective 
function, which combines significance with variance to 
capture those genes whose variation of their expression 
levels is meaningful with respect to the rest, whereas 
high significance is also kept. The Mann–Whitney test 
has been the significance test applied as a nonpara-
metric test, which states the null hypothesis relating 
samples to the same population, whereas the alterna-
tive hypothesis relates samples to different populations 
[37]. Thus, once the Mann–Whitney agent has been 
applied, genes with p value under 0.05 are filtered out 
towards the next process. Note that such genes are who 
reject the null hypothesis and in consequence, they 
have the greatest statistical significance. The following 
filtering process selects genes with high variation of 
their expression levels at the same time that high sig-
nificance for the context is kept. Hence, we combine 
the variance agent to measure such variations with the 
significance (p value) assigned to genes into an objec-
tive function (score function agent) to filter out those 
relevant genes. Then, the score given to a gene g holds 
the following objective function: 

where �1 and �2 are scalars which can be defined as 
�1 = −1 since it is in real interval [0,  1], whereas 
�2 =

1

maxvar
. maxvar is the maximum gene variance 

in the dataset. In consequence, the larger the values 
of function Score the higher the gene relevance. This 
means finding small values for Significance against big 
values for Variance as a maximization process. Then, 
by assigning a score to each gene based on this func-
tion and defining a threshold to filter out those genes 
with high score, we achieve a reduced dataset as a 
result of this layer to the workflow layer.

2.	 Cluster analysis layer: This layer has a dataset as input, 
filtered by the filtering layer and is responsible for 
choosing a clustering favorable for the next layer. To 
do this, three agents representing hierarchical cluster-
ing methods commonly used in cluster analysis of 
DNA-microarray data have been coordinated through 
the clustering agent (CA). This last agent is in charge 
of comparing the results (dendrograms) of the three 
clustering agents to finally selected the most suitable 
clustering as the end result. Then, the CA agent first 
uses global cluster validity measures (through the 
cluster validity agent, CVA for short) to compare the 

(1)
Score(g): = �1 × Significance(g) + �2 × Variance(g),
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quality of the dendrograms built by its agents. Second, 
through the cluster visualization agent (CViA), the user 
visually selects a clustering for each dendrogram with 
the help of the CVA agent. This last agent assists the 
CViA agent by assigning a score to each clustering 
of the visualized dendrogram (based on the clustering 
homogeneity and separation measures), which allows 
the user to have an additional statistical criterion of 
the clustering quality in the dendrogram. Finally, the 
CA agent selects the best clustering among the ones 

selected from the user using local cluster validity 
measures given by the CVA agent. The result of this 
layer is passed to the workflow layer. Note that in this 
layer, the variance agent is given apart of the Score 
agent, although both cooperate to reach the goal of the 
objective function of the Score agent. This is so done 
because the variance agent can change its role without 
affecting the goal of the Score agent. That is, instead of 
carrying out the variance, it could run another statisti-
cal indicator.

Fig. 1   Multi-agent system for gene selection. There are four linked 
layers performing specific tasks in the gene selection process. That is, 
linked processes for gene filtering, cluster analysis and validity, visual 

analytics and boundary gene calculation. The workflow layer (MA 
agent) is responsible for managing the information flow with the rest 
of agent layers (FA, CA and BA agents)
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–– used clustering methods: The Eisen clustering 
method carries out an agglomerative hierarchi-
cal clustering in which each cluster is represented 
by the mean vector for data in the cluster [38]. 
Furthermore, this method has been one of the first 
methods bringing a visualization coupling heatmap 
with dendrogram. The HybridHclust method is a 
divisive hierarchical clustering, which is applied to 
the data with constraint that mutual clusters cannot 
be divided. Within each mutual cluster, the divisive 
strategy is re-applied to yield a top-down hybrid 
in which mutual cluster structure is retained [39]. 
Meanwhile, HCGA is an agglomerative hierarchical 
clustering based on genetic algorithms as the search 
method. Hence, it uses the evolutionary force to alter 
and recombine dendrograms from generation to gen-
eration to achieve the most favorable dendrograms 
[40].

3.	 Boundary gene layer: In this layer, the clustering 
selected from the cluster analysis layer is processed 
by the boundary gene agent (BGA) to compute the 
boundary genes for each of its clusters. Moreover, the 
informative gene agent (IGA) is responsible for con-
verting the resulting boundary gene clustering to a set 
of informative genes, formatting it to make it under-
standable to the user and carrying out classification 
tasks as well as a last gene filtering process. This agent 
uses a k-nearest neighbor classifier (kNN), which is 
one of the simplest but effective classification mod-
els [41]. Both agents (BGA and IGA) are coordinated 
by the filter agent, which returns the informative gene 
subset to the workflow layer. The BGA agent uses 
the ClusterBoundary algorithm to compute boundary 
genes from clusters as defined in [12]. Although due to 
the importance of boundary genes, we consider them 
informative genes, the IGA agent adds a last filter-
ing process from the boundary gene set. IGA applies 
a greedy strategy to remove non-significant genes for 
kNN. This strategy consists of removing those bound-
ary genes that improve or remain the same accuracy of 
the classifier when they are not included in the clas-
sification process. Such a strategy allows us to reduce 
the size of the final informative gene set and improve 
the accuracy of the classifier. To conclude, we want to 
stress some concepts of boundary points and important 
features of the boundary point algorithm used by BGA, 
i.e., ClusterBoundary. As explained at the beginning 
of this paper, boundary points are data points located 
at the margin of densely distributed data and possibly 
belonging to two or more classes [34]. ClusterBound-
ary is based on the boundary definition in terms of the-
oretical notions from metric spaces. This way, bound-
ary points focus on the set of points at the closure of a 

cluster that do not belong to the interior of the cluster. 
In consequence, ClusterBoundary computes cluster 
boundary points in a four-staged approach: (1) carry 
out a search for extreme points of the cluster. At each 
iteration of the algorithm, the cluster boundary is incre-
mentally built from the extreme points. (2) Compute 
the centroid from the extreme points, which will be the 
center to built a ball to remove the interior points of 
the cluster. (3) Compute the mid-points between each 
extreme point-pair of the cluster. (4) Determine the 
radius of the a ball with the center already computed 
in stage (2). The goal of these four stages is to itera-
tively remove the interior points of the cluster while its 
extreme points incrementally create the boundary.

4 � Case Study

This section outlines the results of applying our approach to 
four public datasets, two datasets for Lung cancer and two 
datasets for Colon and Leukemia cancer. The first dataset 
of Lung cancer (Lung-dataset#1, repository NCBI, http://
www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS3627), 
which comes from an Affymetrix Human Genome U133 
Plus 2.0 Array, discloses a comparison study of two non-
small cell lung cancer histological subtypes: adenocar-
cinomas (AC) and squamous cell carcinomas (SCC). 
The results provide insight into the molecular differences 
between AC and SCC [42]. The size of the dataset is deter-
mined by 54,675 gene probes against 58 tumor tissue sam-
ples, which are divided into 18 tissue samples for SCC and 
40 ones for AC. The second dataset of Lung cancer (Lung-
dataset#2, repository NCBI at https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE37745) comes from the 
same chip as the one used for Lung-dataset#1, but outlining 
a gene expression matrix with 54,613 gene probes × 172 
tissue samples, which are divided into two classes: 66 squa-
mous samples and 106 adeno samples. The dataset above 
has been used in this paper to validate the results achieved 
on Lung-dataset#1 since both datasets are related to the 
same disease.

Meanwhile, colorectal cancer (CRC-dataset) is available 
at http://genomics-pubs.princeton.edu/oncology/affydata/
index.html. Gene expression in 40 tumor and 22 normal 
colon tissue samples from 40 patients have been processed 
on an Affymetrix oligonucleotide array complementary for 
more than 6500 human genes [43]. Finally, a gene expres-
sion matrix with 2000 gene probes × 62 tissue samples has 
been achieved. Leukemia cancer (Leukemia-dataset) is 
available at http://cilab.ujn.edu.cn/datasets.htm. This data-
set has a matrix with 7129 genes × 72 tissue samples which 
have been divided into 49 samples of ALL (acute lymph-
oblast leukemia sample) and 23 samples of AML (acute 

http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS3627
http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS3627
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37745
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37745
http://genomics-pubs.princeton.edu/oncology/affydata/index.html
http://genomics-pubs.princeton.edu/oncology/affydata/index.html
http://cilab.ujn.edu.cn/datasets.htm
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myeloid leukemia sample). The three datasets have been 
normalized by columns to mean 0 and variance 1. Once 
the case study has been described, we are going to show 
the results reached in each layer after applying the MAS (to 
each dataset) given in Fig. 1, namely:

1.	 Filtering layer: This layer includes a data normaliza-
tion process (normalization agent) before applying the 
Mann–Whitney test agent. Then, after applying the 
test, the probe selection agent ranks the current dataset 
in ascending order through the p value of each gene-
probe and selects those gene probes whose p value 
is <0.05. In this case, we have achieved a new data-
set with 13,141 probes from 54,675 probes of Lung-
dataset#1, 387 probes have been filtered out from 2000 
probes of CRC-dataset and 3979 genes have been fil-
tered out from 7129 genes of Leukemia-dataset.

	 After that, the variance and Score function agents 
are run on the probes of the new dataset to achieve a 
score for each probe. Next, the current dataset has 
been ranked in descending order of the values given by 
Score (probe selection agent). At this point, a threshold 
to make the filtering cutoff, based on the Score func-
tion, has been fixed in the midpoint between the maxi-
mum and minimum values reached by Score. Thus, 
probes with score above the midpoint are filtered out 
to form a new dataset from Lung-dataset#1 with 999 
probes. Note that those probes present the greatest 
expression level variation against 58 tumor tissue sam-
ples at the same time that their statistical significance 
(the p value) is high, too. Applying the same process to 
Leukemia-dataset, 527 genes has been filtered out from 
3979 genes. Finally, this process has not been applied 
to CRC-dataset because it has been reduced sufficiently 
in the above task by the Mann–Whitney test agent.

2.	 Cluster analysis layer: This layer has three reduced 
datasets as its input, i.e., Lung-dataset#1 with 999 
probes, CRC-dataset with 387 probes and Leukemia-
dataset with 527 genes. Besides, this layer involves 
three main processes of cluster analysis, which consist 

of setting the clustering method agents to use, run-
ning them on the dataset and comparing their results to 
select a single clustering according to the used cluster 
validity measures and the dendrograms of the selected 
methods. Then, each of these processes has been per-
formed in the following way:

–– Settings: The Euclidean distance between data has 
been used for all methods. In the case of HCGA, we 
must choose a fitness function and prefix values of a 
parameter set. So such a fitness function is based on 
the tradeoff of cluster homogeneity and separation to 
be defined as: 

––

––  where � is a dendrogram, ℭi is the clustering of 
level i in � and fc is the recurrent fitness function to 
evaluate a clustering of �, which is defined as, 

 where S∗
1
(ℭi+1) and ∗

1
(ℭi+1) are separation and homo-

geneity for clustering ℭi+1, respectively, being defined 
in [40], k = |ℭi| and g =

(
k

2

)
, being the number of dis-

tances among the clusters of ℭi+1. max� is the maxi-
mum distance from proximity matrix � of the current 
dataset. Once the fitness function has been introduced, 
the HCGA parameters have been initialized as listed 
in Table  2. The crossover and mutation operators are 
given by default from the method [40].

–– Method comparison: To compare the results of the three 
methods, we have used the cluster validity measures, 
homogeneity (Homog), separation (Separ) and silhou-
ette width (SilhoW) [12], which have been applied by 
the cluster validity agent to the dendrograms of each 
method. Keep in mind that the smaller the homogeneity 
value the higher the cluster quality, whereas the bigger 
the separation and silhouette width value the higher the 
cluster quality. Tables 3, 4 and 5 list the scores reached 
by each method on each dataset with respect to the used 

(2)fd(𝔊) =
1

|𝔊| − 1

|𝔊|−1∑

i=1

fc(ℭi),

(3)fc(ℭi+1) =
S∗
1
(ℭi+1)

g − k + 1
−


∗
1
(ℭi+1)

k − 1
+max𝔇,

Table 2   Parameter settings of HCGA for Lung-dataset#1, CRC-data-
set and Leukemia-dataset

Parameter Lung-dataset#1 CRC-dataset and 
Leukemia-dataset

Value (or interval) Value (or interval)

Crossover probability [0.60, 0.75] [0.50, 0.65]
Mutation probability [0.10, 0.20] [0.05, 0.15]
Number of individuals 30 20
Number of generations [103, 106] [103, 105]

Table 3   Comparison of global cluster validity based on separa-
tion and homogeneity for methods HybridHclust, Eisen and HCGA 
applied to Lung-dataset#1

Method Homog Separ SilhoW

HybridHclust 6.240 ± 0.074 10.490 ± 0.038 0.077 ± 0.005
Eisen 8.728 ± 0.108 13.018 ± 0.213 −0.026 ± 0.011
HCGA 6.435 ± 0.120 10.657 ± 0.070 0.085 ± 0.003
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cluster validity measures. The scores are the result of 
computing the mean cluster validity values from apply-
ing each measure to each clustering of the dendrograms. 
The standard error has also been shown for each score 
and the best scores for each measure have been stressed. 
Note that these tables perform the first overview of 
overall quality, although we need to visually explore 
each dendrogram (with the help of the statistical infor-
mation given by the cluster validity agent) from each 
table to finally select a single clustering for each dataset. 
With the results underlined in Table  3, we cannot yet 
decide which is the best method. However, in Table 4, it 
appears to be more clear what method performed better, 
i.e., the Eisen method, although from the local point of 
view (to a clustering level), this result can change.

According to the above, we have carried out a visual 
inspection (using heatmap, dendrogram and scatterplot 

visualizations given by the cluster visualization agent, 
CViA for short) based on cluster validity measures from 
the cluster validity agent (CVA). Those measures are 
applied to all achieved dendrograms to select the most suit-
able clustering for each method of each table. Note that 
both agents, CViA and CVA, cooperate to assist the user in 
the process of clustering selection. After that, a single clus-
tering is selected for each dataset using the same cluster 
validity measures on the resulting clusterings. Tables 6, 7 
and 8 show the results for each dataset. The Cluster column 
represents the number of clusters for the clustering selected 
from each dendrogram. The number of clusters is an addi-
tional criterion to finally select a single clustering for each 
dataset. According to Table 6, the clustering selected from 
Lung-dataset#1 has been that of the HCGA method, which 
presents the best silhouette width and whose separation is 
very similar to the one of the Eisen method, which reached 
the best separation. As for Table 7, the clustering selected 
from CRC-dataset has been that of the Eisen method, which 
presents the best scores for separation and silhouette width.

Supporting the results shown in Tables 6, 7 and 8, Figs. 2 
and 3 display the clusterings selected for each dataset. Fig-
ure  2 shows visualizations of dendrograms with heatmap 
for each dataset, whereas Fig. 3 shows the selected cluster-
ings in form of 3D-points representing genes (3D-scatter-
plots for each dataset). Points with the same color represent 
genes of the same cluster. The graphics given in Fig. 3 have 
been achieved by reducing the dimensionality of the gene 
space to three features for each gene. Principal component 
analysis (applied correlation analysis) has been used to lin-
early project genes into the first three principal components 
[44]. Finally, note that this layer combines three processes 
of result validation to select the most suitable clustering for 
each dataset, namely global cluster validity, visual cluster 
validity and local cluster validity.

–– Boundary point layer: Once the clusterings represent-
ing each dataset have been achieved, the next task is 
to run the boundary gene agent (BGA) to compute the 
cluster boundary genes for each clustering. After that, 
the informative gene agent (IGA) is in charge of for-

Table 4   Comparison of global cluster validity based on separa-
tion and homogeneity for methods HybridHclust, Eisen and HCGA 
applied to CRC-dataset

Underline values represent the best score reached by the measures 
used in each column ofthe tables

Method Homog Separ SilhoW

HybridHclust 2.261 ± 0.104 9.992 ± 0.428 0.236 ± 0.236
Eisen 04.698 ± 0.148 20.186 ± 1.012 0.500 ± 0.019
HCGA 5.859 ± 0.153 17.747 ± 1.781 0.027 ± 0.074

Table 5   Comparison of global cluster validity based on separa-
tion and homogeneity for methods HybridHclust, Eisen and HCGA 
applied to Leukemia-dataset

Underline values represent the best score reached by the measures 
used in each column ofthe tables

Method Homog Separ SilhoW

HybridHclust 1.681 ± 0.022 3.862 ± 0.020 0.226 ± 0.008
Eisen 2.023 ± 0.013 4.357 ± 0.013 0.139 ± 0.014
HCGA 2.081 ± 0.021 4.338 ± 0.006 0.193 ± 0.011

Table 6   Comparison of local cluster validity based on separation and 
homogeneity for each selected clustering of HybridHclust, Eisen and 
HCGA in Lung-dataset#1

Underline values represent the best score reached by the measures 
used in each column ofthe tables

Method Cluster Homog Separ SilhoW

HybridHclust 9 6.748 10.728 0.116
Eisen 39 8.191 11.853 −0.040
HCGA 8 7.192 11.034 0.156

Table 7   Comparison of local cluster validity based on separation and 
homogeneity for each selected clustering of HybridHclust, Eisen and 
HCGA in CRC-dataset

Underline values represent the best score reached by the measures 
used in each column ofthe tables

Method Cluster Homog Separ SilhoW

HybridHclust 11 2.353 9.400 0.206
Eisen 18 4.418 19.965 0.495
HCGA 19 5.510 9.592 0.061
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matting the resulting boundary gene clustering, evalu-
ating and filtering those genes by means of a classifier. 
In this case, kNN (k-nearest neighbors, [45]) has been 
used for that propose. Both agents (BGA and IGA) are 
coordinated by the boundary agent (BA) to reach com-
mon goal for this layer, the subset of informative genes. 
Once the computation of boundary genes has been per-
formed, 76 gene probes belonging to 63 genes have 
been achieved for Lung-dataset#1, CRC-dataset has 
achieved 46 boundary genes and Leukemia-dataset has 
achieved 57 boundary genes. These three gene subsets 
can already be considered sets of informative genes. 

However, one of the roles of the IGA agent is to apply a 
kNN-based greedy strategy to reduce the gene number 
given in the subsets above without losing their predic-
tive ability. In that sense, each subset above has been 
reduced as follows: Lung-dataset#1 has been reduce to 
4 genes, CRC-dataset has been reduced to 19 genes and 
Leukemia-dataset has been reduced 3 genes.

To evaluate the significance of such gene subsets, we have 
evaluated the accuracy of the kNN classifier for each found 
subset. Table  9 lists the accuracy reached for each gene 
subset, before and after of applying the greedy strategy of 
gene reduction (or gene filtering). Because there are no 
available test data from selected datasets to evaluate the 
classifier, we have adopted methodology stratified tenfold 
cross-validation [46]. As shown in this table, the three 
informative gene subsets reached high accuracy through the 
kNN classifier, which proves the significance of the subsets 
to be used in classification tasks. As shown in this table, 
the accuracy for each boundary gene subset was improved 
and the number of genes was decreased after applying the 
kNN-based greedy strategy of the IGA agent. This proves 
that in the boundary gene subsets are the informative genes.

Table 8   Comparison of local cluster validity based on separation and 
homogeneity for each selected clustering of HybridHclust, Eisen and 
HCGA in Leukemia-dataset

Underline values represent the best score reached by the measures 
used in each column ofthe tables

Method Cluster Homog Separ SilhoW

HybridHclust 12 1.857 3.948 0.276
Eisen 8 2.040 4.427 0.450
HCGA 10 2.039 4.428 0.490

Fig. 2   Dendrograms on heatmaps representing the selected clustering for each dataset. The Eisen method has been selected for CRC-dataset, 
whereas the HCGA method has been selected for Lung-dataset#1 and Leukemia-dataset
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In accordance with the above, Table  10 displays the 
results reached on Lung-dataset#2 by choosing (from it) 
the same boundary genes and genes filtered from such 
boundary genes given in Table  9 for Lung-dataset#1. 
The goal of this table is to validate the results reached on 

Lung-dataset#1 through another different dataset of the 
same cancer, i.e., Lung-dataset#2. Then, the second row 
of this table shows two results: the accuracy (kNN classi-
fier) of the 76 boundary genes identified in Lung-dataset#2, 
which have been discovered in Lung-dataset#1. The other 
result assesses the four genes identified in Lung-dataset#2, 
which have been filtered from the 76 boundary genes given 
in Lung-dataset#1. The last row of the table lists the results 
reached when the gene filtering strategy used in Table  9 
(kNN-based greedy strategy) is applied to the gene sets 
given in the second row (76 and 4 genes).

As shown in Table  10, the accuracy of the boundary 
genes discovered from Lung-dataset#1 increased its value 
in Lung-dataset#2, which proves that the boundary genes 
found by our approach are meaningful beyond the data-
set selected to study the same disease. In the case of the 
4 genes discovered for Lung-dataset#1, we have that they 
have shown a decrease in accuracy for Lung-dataset#2. 

Fig. 3   3D-Scatterplots (principal component analysis) representing the selected clustering for each dataset and clustering methods Eisen and 
HCGA. Each gene cluster is represented by gene-points with the same color

Table 9   Accuracy of the kNN classifier applied to the three informa-
tive gene subsets found for Lung-dataset#1, CRC-dataset and Leuke-
mia-dataset

Informative genes Dataset Number 
of genes

K Accuracy (%)

Boundary genes Lung-dataset#1 76 7 87.930
CRC-dataset 46 9 85.484
Leukemia-dataset 57 16 90.278

Genes filtered 
from boundary 
genes

Lung-dataset#1 4 1 98.276
CRC-dataset 19 4 90.322
Leukemia-dataset 3 13 97.222
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Nevertheless, this resulting accuracy has not been low. On 
the other hand, the results shown at the end of this table 
show that the accuracy of the gene selected from both, the 
76 boundary genes and 4 genes given in the second row 
from Lung-dataset#2 increased. All of this confirms our 
hypothesis that boundary genes contain a reduced set of 
informative genes.

To conclude this section, Table 11 shows a comparison 
of our approach (MAS) with respect to five recent gene 
selection methods. The accuracy reached by the selected 
genes of each method is listed along with the number of 
neighbors (K) used in the classification process of kNN, 
number of genes achieved for each method, name of the 

methods and the dataset used in each case. The gene selec-
tion methods used are: propOverlap given in [47, 48], 
Boruta in [49, 50], kofnGA in [51, 52], SDA in [53, 54] 
and Spikeslab in [55, 56]. For the case of kofnGA which 
is a genetic algorithm, its main parameters have been ini-
tialized as follows, Lung-dataset#1: population size = 100, 
for all datasets, number of generation = 10,000, the fitness 
function used for all datasets has been correlation between 
the genes, the remaining parameters have been initialized 
as stated by the method, for all datasets. CRC-dataset: num-
ber of generation = 5248, whereas for Leukemia-dataset, 
the number of generation was initialized to 5000. The 
remaining methods have been initialized with their default 
values. As shown in Table 11, our proposal reached the best 
results for Lung-dataset#1 and CRC-dataset. For the case 
of Leukemia-dataset, the accuracy reached by our proposal 
was close to the one of the methods that achieved the best 
results. Furthermore, our method along with propOverlap 
achieved the lowest number of genes.

5 � Conclusions

This paper has presented a MAS for gene selection and tis-
sue samples classification from DNA-microarray data. The 
main goal of this approach has been to automate the pro-
cesses of clustering selection, visual and analytical cluster 
validity, gene filtering and classification through a MAS. 

Table 10   This table selects the same genes discovered by our 
approach from Lung-dataset#1 (Table 9) in Lung-dataset#2 to evalu-
ate their accuracy through the kNN classifier

Furthermore, the same filtering process used in Table  9 is also 
applied to such genes identified in Lung-dataset#2

Meaning Number of genes 
(Lung-dataset#2)

K Accuracy (%)

Boundary genes discovered 
in Lung-dataset#1 that have 
been identified in Lung-
dataset#2

76 3 96.512
4 31 88.372

Genes filtered from the genes 
identified above for each 
case of Lung-dataset#2

16 1 97.674
3 18 90.698

Table 11   Comparative table 
of our proposal (MAS) with 
respect to five methods of gene 
selection which have been 
executed on the three used 
datasets

The accuracy of the kNN classifier for each method is listed along with its parameter K, number of genes 
and name of each method
Underline values represent the best score reached by the measures used in each column ofthe tables

Dataset Gene selection method Number of genes K Accuracy (%)

Lung-dataset#1 propOverlap 1824 2 89.654
Boruta 30 1 98.276

kofnGA 100 2 68.965
SDA 40 1 96.552
Spikeslab 74 4 91.378
MAS 4 1 98.276

CRC-dataset propOverlap 550 8 80.644
Boruta 16 3 83.871
kofnGA 20 2 70.968
SDA 20 3 88.710
Spikeslab 51 3 88.710
MAS 19 4 90.322

Leukemia-dataset propOverlap 2 1 97.222
Boruta 58 1 98.610

kofnGA 30 2 70.832
SDA 10 4 98.610

Spikeslab 93 4 94.443
MAS 3 13 97.222



12	 Interdiscip Sci Comput Life Sci (2017) 9:1–13

1 3

Within this approach, the practical goal has been to target 
the selected genes to classification tasks in Lung, Colon, 
and Leukemia cancer. According to that, we have achieved 
a subset with 4 informative genes for Lung cancer, a subset 
with 19 informative genes for Colon cancer and a subset 
with 3 informative genes for Leukemia cancer. The three 
subsets have been evaluated in a classifier and compared 
with other gene selection methods, for which a high accu-
racy was reached. In the case of Lung cancer, we have used 
two different datasets representing this disease (Lung-
dataset#1 and Lung-dataset#2). Since both datasets repre-
sent the same cancer, we have assessed the significance of 
the informative gene subsets discovered from Lung-data-
set#1 in Lung-dataset#2. The results on the second data-
set showed good accuracy, which proves that our proposal 
finds genes meaningful for the studied disease and that such 
genes are regardless of the dataset used. Therefore, those 
genes can be used in classification tasks related to the stud-
ied disease. Hence, these promising results prove the reli-
ability of our approach.
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