

Intelligent business processes composition based on multi-agent
systems

José A. García Coriaa, José A. Castellanos-Garzónb, Juan M. Corchadoc*

Department of Computers and Automation, University of Salamanca, Plaza de la Merced s/n, 37008
Salamanca, Spain

Abstract

This paper proposes a novel model for automatic construction of business processes called

IPCASCI (Intelligent business Processes Composition based on multi-Agent systems,

Semantics and Cloud Integration). The software development industry requires agile

construction of new products able to adapt to the emerging needs of a changing market. In

this context, we present a method of software component reuse as a model (or methodology),

which facilitates the semi-automatic reuse of web services on a cloud computing

environment, leading to business process composition. The proposal is based on web service

technology, including: (i) Automatic discovery of web services; (ii) Semantics description of

web services; (iii) Automatic composition of existing web services to generate new ones; (iv)

Automatic invocation of web services. As a result of this proposal, we have presented its

implementation (as a tool) on a real case study. The evaluation of the case study and its

results are proof of the reliability of IPCASCI.

Keywords: Multi-agent system, Web service, Cloud computing, Software component reuse,

Software engineering, Business process composition, Machine learning.

* Corresponding author. E-mail address:{jalbertoa, jantoniob, corchadoc}@usal.es

Preprint submitted to Expert Systems with Applications August 29 2013

2

1. Introduction

The software development industry is constantly evolving and looking for new

technologies, languages and tools that are increasingly powerful, efficient and safe. In this

process, it is essential to build models, architectures and agile technologies able to introduce

new tools as simply and economically as possible. Component reuse is actually one of the

techniques that more clearly contribute to such a development by providing efficient

mechanisms to create quality software [1-6]. Reuse increases software reliability (because it

uses tested software components), development productivity and implies a clear cost

reduction [6-8]. Since the recent increasing of the volume and complexity of software

products, reuse has been a field taken into great consideration, being a fundamental stage in

design and quality models as CMMI (Capability Maturity Model Integration) [9].

In this context, web service reuse appears as an interesting alternative with respect to code

classical reuse. Indeed, a web service is a software component representing a service

deployed on a web platform and supporting automatic interactions between machines on a

computer network [10]. In this framework, arises SOA (Service-Oriented Architecture) as a

new architecture leading to conventional software development [11-13]. SOA introduces a

new method to create distributed applications where their basic services can be discovered,

published, and linked in order to achieve more complex services. Applications interact

through the existing services from entry points on an interface rather than at the level of

implementation [14].

Software development can be analyzed from different perspectives, offering us a wide

variety of alternatives to a methodological, functional and instrumental level, among others.

One of the paradigms revolutionizing this industry in recent years has been cloud computing

[15-19]. The cloud represents a novel concept of service and information distribution,

providing many possibilities of scaling solutions, facilitating the use of relatively simple and

economic terminals (interesting models of pay per use, and multi-platform accessibility, etc).

However, this model has certain drawbacks related to maintenance complexity and

application development [20, 21]. Moreover, the number of experienced engineers in this

field is relatively low and the development time is significantly high [22-24].

3

Starting from all the above, this research proposes a methodology (IPCASCI, Intelligent

business Processes Composition based on multi-Agent systems, Semantics and Cloud

Integration) that facilitates the business process construction on cloud computing

environments in an agile and efficient way from developed components. It deals with the

development of a proposal that facilitates the creation of such processes in form of web

services from other semi-automatic functional services. All this is carried out on the

framework of a computer system guided by relatively inexpert programmers. The process of

business process construction is guided by a multi-agent architecture based on virtual

organizations [25-27], which is able to implement the intelligent behavior needed for process

management by using ontology [28-32]. The goal of this research is then to provide a model

allowing the automatic construction of a business process from specifications in text format

(with some constraints) of the process concerning us. The multi-agent system based on

virtual organizations will facilitate the process composition by using standard BPEL

(Business Process Execution Language). This standard allows the automatic composition of

web services in an easy way by adding the advantage of a direct projection to a diagram

BPMN (Business Process Management Notation) [33].

To reach the goals proposed in this research, the remainder of the present paper has been

structured into the following sections: Section 2 outlines information and works related to

this research. Section 3 deals with an overview of the different components coupled to our

proposal to make the web service composition, that is, architecture IPCASCI. This section

gives a general idea of the whole composition process from IPCASCI. Section 4 presents

cloud computing and web service technology, which have been included in our proposal. On

one hand, we describe the advantages of developing IPCASCI on a cloud environment and

provide two cloud functionalities to support its performance. On the other hand, we

introduce web services technology and explain the inclusion of semantics to the web services

through ontology to later facilitate the process of discovery and composition from a multi-

agent system. Section 5 describes the agent-based virtual organizations defined in the multi-

agent system of IPCASCI to make the discovery of the web services fit the specifications of

the user to compose them and obtain the solution web service. Section 6 develops a real case

4

study to give an implementation of IPCASCI, which is evaluated through software metrics.

Conclusions, Appendix A with information supporting our proposal and the references of

this research have been given at the end of this paper.

2. Related work

As previously explained, we have introduced an architecture (IPCASCI) aimed at

composing web services to obtain new ones in an automatic way by starting from

requirements given by the user. This process is carried out in such a way that the service

automatic construction be efficient and has an intelligent behavior. Intelligent behavior is

intended as the ability of processing of the input requirements introduced by the user, that is,

the system be able to: (i) analyze the input, (ii) find the web services allowing to hold the

requirements, and (iii) carry out an automatic composition of web services for their

corresponding business processes. Thus, as a final result, new web services implementing

the provided requirements will be achieved in an automatic process of discovery and

composition. In this sense, there exist several approximations of architectures based on

semantic web services. In [34], a solution focused on fuzzy logic to discover semantic web

services has been proposed. In [35], a solution based on agents and ontological language

DAML-S has been proposed, and in [36], a proposal based on queries SPARQL and

ontological language OWL-S has also been used. In general terms, most of the proposals on

architectures of semantic web services are based on language OWL-S. The proposal given in

this paper differs from the existing ones in the following:

• Design of a global platform, which is embedded in a cloud environment and whose

structure has been provided for an agile and efficient running.

• The semantics information of the web services does not depend on the internal

structure of the ontology, which allows reusing ontologies regardless of their

formats.

• We have included a multi-agent system based on virtual organizations that

facilitates requirement analysis of the user and the discovery process of web

services.

5

• The solution web service has been built from a simple definition given through a

set of specifications introduced by the client.

3. Architecture IPCASCI for business process composition

This section describes the different components integrated to our proposal IPCASCI,

which allow carrying out the automatic composition of web services. So Figure 1 shows a

conceptual diagram of the components integrating the proposed architecture. This figure

describes the following items:

1. Cloud system: Platform of cloud computing on which is supported our proposal.

The platform provides an environment for running and storage.

2. Web services: The web services existing in the architecture that will be used by the

process of web service composition.

3. UDDI register: Universal register system where used web services are registered.

This allows us an open access to the web services of the architecture. This way, the

web services implemented on the architecture may be reused regardless of our

proposal.

4. Multi-agent system based on virtual organization: This system supports

functionalities to make the discovery and the composition of web services:

a. Analysis system: Analyze the semantic content introduced by the user in

order to structure it in computable items.

b. Search system: Discover the web services that hold the semantics as

syntactic constraints given by the user.

c. Composition system: Once determined the web services and their

relationships holding the user semantic requirements, a service composition

is applied on such web services to obtain the new web service.

5. Ontologies: Distinct ontologies modeling the semantic knowledge that can be

included in the web services.

6. BPEL file: Store the composition of the web services that meet the requirements

indicated by the user to obtain the desired solution.

6

*** Figure 1 here ***

As a general schema of working, IPCASCI accepts the requirements of the user through

the assistant software to raise the processes of discovery and composition. The steps

followed by IPCASCI have been given the following algorithm and represented in Figure 2:

3.1. Algorithm for web service discovery and composition (AWSDC).

1. The user introduces the requirements of the web service to build by means of an

assisted system. Such a system allows users to define a list of terms (in form of

modules) representing the requirements of the new web service. The list of terms is

bounded by the web service repository in the cloud system. The result of this

process is a set of related modules (analysis system) in such a way that each

module registers the following information:

a. Name;

b. Input;

c. Output;

d. Process carried out by the module (semantic concept it represents);

e. Domain of the semantic concept represented by the module (ontological

domain);

f. Preconditions of running;

g. Relationship with other modules.

2. For each module of the above step, an automatic search (search system) for the

web services that include the requirements of the module is carried out. Moreover,

the search is made in syntactic and semantics form.

3. From the information of the above step, a reduced BPD diagram (Business Process

Diagram, [37]) is built through of graphic standard BPMN (Business Process

Management Notation), on which each web service is represented as an activity

and also showing the interactions existing between the web services.

7

4. The BPD diagram is then displayed by the assistant software to the user, because

could exist several web services implementing a single activity. In this case, the

user can select another web service different from the one given by default in the

diagram.

5. From the BPD diagram, a composition BPEL (Business Process Execution

Language, [38]) is carried out in such a way that the service specified by the user

is built and can later be invoked (composition system) as one more service in the

platform. See Figure 2 and 3 to summarize the whole process.

As shown in Figure 3, the assistant software interprets the requirements introduced by the

user (the requirements are restricted to the ontological domain defined on the addressed

problem) to build the new web service. These requirements are later processed by IPCASCI

in the cloud system, which runs a multi-agent system based on virtual organizations to

discover and compose the web services including the requirements of the user. As a result, a

BPMN (Business Process Management Notation) solution is obtained which represents,

through activities, the functionalities of the required web service. Such a solution can be

fixed by the user to confirm the diagram. Finally, the new web service is generated and

included in the platform, so that users/clients can use it.

*** Figure 2 here ***

*** Figure 3 here ***

Note that with respect to standards BPMN and BPEL, we have that the first one specifies

a diagram of business process (BPD), offering several advantages [37] as modeling business

processes in a simple way, to be readable by nontechnical users, providing tools to model

complex business processes and simple mapping to business execution languages as BPEL.

This way, BPEL is the standard to provide business process specifications for a web service

8

environment. It allows composing web services, representing them as an operation flow in a

diagram, and states such a composition as a new web service.

4. Cloud computing and web services in IPCASCI

This section describes the functionalities provided by the cloud system and web service

technology coupled to architecture IPCASCI. The idea is to give a more detailed description

of the associated points of the algorithm presented in the above section needing further

background.

4.1. Cloud system

We have defined an architecture for web service composition on a cloud computing

environment, which implies that the software generated from it will be of shared and

distributed use. Moreover, its management should be efficient, reliable and the access to it

should be from any platform [22, 24, 39]. These characteristics provide the development of

scalable, dynamic and distributed software, representing advantages on the current

distributed systems [40]. All this, allows us integrates components as a multi-agent system

and SOA (service-oriented architecture, [11-13]) to our architecture [41, 42].

According to the above, the services offered by the proposed model through cloud

computing are focused on the layers of infrastructure and software. The infrastructure

layer provides services as file storage, which relieves the client for the liability of

acquiring the corresponding storage systems and maintenance. On the other hand, the

software layer provides a set of services REST [43], allowing managing operations for

automatic discovery and composition of web services. Particularly, the proposed model

provides two functionalities, namely: analyze&Discover and composeService. The first

functionality accepts as input a XML document (Extensible Markup Language, [44])

representing the requirements of the user for which will be generated a diagram according

to standard BPMN that models the input, Figure 4. For each activity of the diagram, there

is a set of web services fixed the semantic and syntactic requirements of the concept

9

represented by the activity (module/concept introduced by the user). Therefore, the output

of this functionality is another XML document representing a mapping of the input to a

BPMN graphic. The second functionality accepts as an input a diagram BPMN in a XML

document, which is a reduced diagram, that is, each activity of the diagram is associated

with a single web service. From this input, the composition of the web services associated

with each activity will be carried out to finally build the required web service by means of

BPEL (Business Process Execution Language). Note that both functionalities encapsulate

the multi-agent system for discovering web services and the composition of such services,

respectively. This allows us an abstraction level from the different components coupled to

the architecture from the implementation point of view.

*** Figure 4 here ***

4.2. Web services and inclusion of semantics

The main goal of our proposal is web service reuse for its composition in order to generate

new web services, automatically. Starting from this, we have focused on SOA technology

(Service Oriented Architecture, [45]) to represent web services by means of description

WSDL, register UDDI, messaging common protocols (SOAP). The choosing of web service

reuse is due to its modular nature uncoupling the interface of the service from the

implementation, and the ability of linking dynamically services.

As previously explained, the engine of web service discovery and analysis has been given

by a multi-agent system (MAS), for which has been developed several works integrating it to

SOA technology [46, 47]. Hence, we integrate web services and SOA following the diagram

in Figure 5. As shown in this figure, the MAS represents the ontology concepts (modeled by

an ontology defined in box Ontologies, [48, 49]) that will include the new web service, and

is linked to register UDDI where the web services of the platform have been published. The

description (WSDL files) of such web services has been given in box WSDL, which has

been linked to box Ontologies, implying that each description WSDL of web services

10

includes the ontological concept it represents. Note that the inclusion of ontology to

represent concepts is the basis of the discovery and analysis process of web services

(machine learning). In this sense, the MAS given in Figure 5 creates an agent for each

ontological concept to assist the discovery process of web services, which is based on

semantic concepts.

Based then on the above, we have used language WSDL-S (Web Service Semantics, [50])

to make semantics annotations on descriptions WSDL of the web services. WSDL-S

introduces an association mechanism of semantics annotations for web services described

using WSDL. Thus, WSDL-S defines a domain ontology on web services. This means that

the ontology provides labels to add semantics to web services through insertions

(annotations) into files WSDL [51, 52], and includes three sub-ontologies for this purpose,

that is: service profile, service grounding and process model. Summarizing, WSDL is the

means of description for web services. On the basis of its descriptive ability, a mechanism to

annotate abilities and requirements referenced from a semantic model (ontology WSDL-S)

has been provided. Such characteristics allow the architecture to automate the discovery

process of web services (semantic matching of user requirements with web services). Hence,

we use a MAS to model the ontology, which create agents representing each ontological

concept, connecting them (communication lines between agents) by equivalent concepts. In

addition, each agent also builds a list of links to entries to the UDDI register, whose web

services include the concept it represents, as shown in Figure 6.

*** Figure 5 here ***

*** Figure 6 here ***

5. Multi-agent sytem (MAS) for service discovery and composition in IPCASCI

This section outlines the structure and performance of the MAS involved in our

architecture. As explained in Section 2 and now shown in Figure 7, this MAS consists of

three agent-based virtual organization subsystems, which have been classified in analysis,

11

search and composition system. These systems have been built in form of black box

whereby, they do not depend on other systems, and there are not communication lines

between them. Hence, any commutation between them is scheduled by agent manager. This

way, these agent-based virtual organizations can apart be modified or adapted without

affecting the performance of the remaining systems in the architecture.

*** Figure 7 here ***

5.1. Analysis system

 The analysis system manages the requirements introduced as input by the user. It

processes the requirements by converting them into computable information and achieving

enough semantics information to later carry out a search and composition of web services.

This system is integrated by a main agent called analysis coordinator. The requirement

input of the user has been made through a graphic assistant (software) that integrates each

generated module. We have introduced the module concept to encapsulate the attributes

representing a semantic concept, and it has been defined on the following characteristics:

1. Functionality: It describes the functionality to be carried out by the module and is

introduced in text format by means of a list of semantic concepts associated with the

module. Optionally, it is possible to include preconditions to hold by the module

before the running.

2. Domain: From the definition of each module the assistant allows the user to choose

the domain name of a list of existing domains. The domain classifies the workspace

where we are going to perform the task and the ontology to use.

3. Input: The user determines the number of inputs of the module based on the concept it

represents.

4. Output: By a similar way as the input, the user specifies the output generated by the

module.

12

5. Interconnection: The assistant guides the user to define the connection of the current

module with the previously defined modules. In this sense, the following instructions

of flow control to connect modules have been defined to represent the information

given by the user:

a. [Module_i] If [Condition] then [Module_j]

b. [Module_i] If [Condition] then [Module_j] else [Module_k]

c. [Module_i] Parallel output to [Module_j], [Module_k]

d. [Module_i] Follows [Module_j]

When the user completes the module definition and their relationships, the assistant builds

a flow diagram with computable information aimed at generating the new web service and so

the assistant stores the diagram in an XML document and passes to the next step. The

assistant then invokes cloud functionality analyze&Discover (see Section 4.1), having as an

input the flow diagram in XML format. Thus, this functionality runs the analysis system (and

later runs the search system) of the architecture by passing a message to the manager agent

to run the analysis coordinator agent, Figure 8. Hence, the analysis coordinator agent is

responsible for interpreting the information of the XML document (by running a parser) to

create an agent-based virtual organization representing the flow diagram saved in XML

format by the assistant. To this end, each built agent by this virtual organization has been

associated with a single module in the input XML document, representing in that way, the

semantic concept assigned to such a module. Between the agents of this new virtual

organization have also been created communication lines (conditional flow control) based on

the module relationships described in the diagram given by the XML document. So that the

flow diagram has been modeled as a graph, where nodes are agents, edges are

communication lines and the whole graph represents the domain ontology. Then, each agent

in this virtual organization manages input, output and description (preconditions and effects)

for the module it represents, Figure 9. Moreover, as explained in the next subsection (search

system), each agent will also be responsible for creating a list of links to the UDDI register

for the web services that include the ontological concept it represents.

13

*** Figure 8 here ***

Completed the construction of the agent subsystem to represent the domain ontology,

diagram BPD (Business Process Diagram) based on graphic standard BPMN (Business

Process Management Notation) will be generated. In this case, every activity in the diagram

has been associated with an agent of the ontology, and the flow control lines of the diagram

have also been associated with the communication lines between the agents. All this process

is intended to store diagram BPD to later convert it into a BPEL file (Business Process

Execution Language), which will be run to build the expected web service. Basically, the

transformations to convert the agent subsystem into a diagram BPD have been given in

Table 1.

*** Figure 9 here ***

*** Table 1 here ***

In Section A.1 of Appendix A, an example of converting the agent subsystem into the

BPD diagram has been given by basing on Table 1. As shown in Figure A2 of this example,

the BPD diagram has been obtained from the agent subsystem given in Figure A1. In the

next step, it would be generated an XML document (BPEL file) with the structure of the

diagram in Figure A2 and the semantics information early given by the user. Note also that

each activity on the BPD diagram will later be associated with the list of web services

implementing the semantic concept (a web service of the list has been assigned by default) it

represents by running the search system.

5.2. Search system

The search system is responsible for finding a list of web services from the semantic

concepts and their syntaxes received from the manager agent. That is, a discovery process of

14

web services will be carried out through semantic matching. That is, a search for the web

services whose semantics annotations on theirs descriptions WSDL match the ones

previously defined in the modules. Thus, functionality analyze&Discover also runs the

search system by passing diagram BPD (XML document) that the analysis system has built

through the manager agent. The search system will also complete such a diagram BPD with

the web services found. Then, the discovery process has been carried out once for each agent

of the agent subsystem created by the analysis system. Thus, each agent in this subsystem

invokes its skill discover to achieve a list of web services representing its semantics

description. Figure 10 shows the agents integrating the search system and their connections.

As displayed in this figure, the search system consists of several agents responsible for

reaching the following aims:

1. Search coordinator: It receives as input the description of a module (from the

agent representing the concept associated with the module), which is provided by

the manager agent. Therefore, the search coordinator agent is responsible for

coordinating the whole search process of web services. It returns as a result, a list

of web services that fits the input description.

2. Semantic coordinator: It receives the semantic concepts that most include the web

services from the search coordinator agent. Then, for each concept, it sends a

message to the localizer agent (that belongs to the register subsystem), which

returns a list of links to register UDDI with the web services implementing such

concepts. Note that through of this process the semantic matching is carried out

from the concepts processed by the semantic coordinator agent and the semantics

annotations previously made on files WSDL of the web services.

3. Checking coordinator: It receives the WSDL file of a web service and the

conditions to be fulfilled by the service from the search coordinator agent. Then, it

communicates with the checking subsystem, which determines whether such a web

service holds the given syntactic requirements. Finally, it returns the checking

result to the search coordinator agent.

15

*** Figure 10 here ***

Summarizing on the search system, we have that its first part consists of finding the web

services associated with a semantic content. To do this, the search coordinator agent

communicates with the semantic coordinator agent, who requests to the localizer agent

(which is based on register subsystem), the list of links to the UDDI register for the web

services that include the given concept. This process is done once for each provided

concept. Then, when the semantic coordinator agent has found the web services associated

with each concept, it carries out a filtering process to extract the services that implement all

concepts. These last web services will be returned to the search coordinator agent as shown

in Figure 11. Note that the inclusion of attribute domain in the ontological concepts classifies

the web services into groups in such a way that the semantics search is made only on a

specific group of services that match their domain, which improves the runtime of the

search. Finally, the search coordinator agent passes the list of web services to the checking

coordinator agent, which filters, through the checking subsystem, the ones that hold the

syntactic constraints. The final list of web services associated with the given concept is

assigned to the activity representing such a concept in diagram BPMN (BPD).

*** Figure 11 here ***

5.2.1. Register subsystem

As previously explained, the ontological information given by the user has been mapped

on an agent subsystem, that is, a graph of interconnected agents. In this sense, the localizer

agent of the register subsystem in Figure 10 sends a broadcast message asking to the agent

subsystem (representing the ontology) for the web services that implement a determined

concept. The agents that represent such a concept will respond by returning a list of web

service links in the UDDI register. The localizer agent registers the received responses and

returns all results.

16

5.2.2. Checking subsystem

The checking subsystem is responsible for verifying that the web services previously

obtained hold the constraints imposed by the user, from the information given by the

checking coordinator. This process develops three stages of checking to reach the desired

filtering:

1. Input checking: It determines whether the input format of a web service fits the

description given by the user.

2. Output checking: It determines whether the output format of a web service fits the

description given by the user.

3. Checking of the process: It determines whether the exchange of SOAP messages

for the web service is coherent with the description of the user.

5.3. Composition system

Once obtained diagram BPMN with the web services associated with each activity in the

diagram, the composition of web services through the composition system will be run to

achieve the solution web service by using standard WS-BPEL 2.0 [52]. The composition

system runs in response to the called from cloud-functionality composeService given in

Section 4.1. composeService receives as input an XML document with diagram BPMN and

runs the composition system by passing a message to the manager agent.

There are several alternatives to carry out the composition process of web services, such

as the variants explained in [53-56]. We have assumed the variant given in [56], which

makes a mapping from graphic standard BPMN to language BPEL by extracting the

information from the WSDL files corresponding to the web services associated with each

activity in the diagram and the input XML document. To define the remaining properties of

the WS-BPEL composition, we have used the method developed in [56], which defines the

following steps:

1. Definition of the beginning of the process.

2. Definition of the end of the process.

17

3. Mapping of the parallel flow.

4. Synchronization of the parallel flow and

5. Mapping of loops.

Summarizing, the process of composing web services to obtain the required solution is

carried out by the composition system. It receives the start request from the manager agent,

for which the composition coordinator agent creates an agent for each activity (or service),

Figure 12. These agents retrieve the needed information from the WSDL files of the

associated web services and return such information to the composition coordinator agent,

which generates the WS-BPEL by basing on the method given in [56]. Note that this process

has an additional improvement since it performs on a distributed environment of cloud

computing.

*** Figure 12 here ***

5.4. Insertion of new web services to the platform

The platform on which lies architecture IPCASCI is scalable with respect to the registered

web services. That is, it is possible inserting and registering new web services in such a way

that in a later running, they can be available to use. Since the whole system is included in a

cloud environment, there is no a limitation with respect to the size of the service repository

and it can grow up indefinitely. Then, to insert a new web service in the platform and can be

localized, we must have the following items:

1. A file with description WSDL of the web service;

2. To be registered in the UDDI register;

3. File WSDL must have the ontological annotations corresponding to the semantic

content it represents;

4. In case that the references to the semantics annotations do not appear in the

ontologies defined in the platform, then a new ontology should be added and

running a process to transform its content into computable one.

18

To insert the new web service in the platform, the register subsystem given by the search

system is responsible for carrying out the operations allowing the localization of such a

service through semantics search. Additionally, the semantics annotations inserted into the

web service will be obtained from the WSDL file and for each annotation, the agent that

implements the ontological concept will be found. The reference to such a web service in the

UDDI register will be added to the list of services associated with the agent.

6. A case study for arquitecture IPCASCI

In this section we have given an implementation of architecture IPCASCI on a practical

case study. The goal of this study is to evaluate our proposal on a real environment and in

this way, to develop a practical tool representing the case study and using Algorithm

AWSDC given in Section 3. In this sense, a set of parameters of such a tool has been

evaluated to achieve results giving us a general overview of the reliability of architecture

IPCASCI. Then, we can start by introducing the proposal of the case study in the following

way:

This case study develops a tool to build a web service (in automatic way) to reserve a

book through the book lending system in a library. The web service must have as input the

identifier of the user that carries out the request and the required book. The task of the

web service is then to check whether the user is registered in the system and its

subscription has not expired. After successfully checking the above, the web service must

then verify that if the book is available for loan. Moreover, it would also check whether

the user has not exceeded the maximum number of books loaned by the library. If all the

above conditions are held, then the loan is carried out. Otherwise, the user will be notified

(for example, by e-mail) that the request has been denied along with the reason for it.

19

Hereinafter, we are going to show the processes included in the tool to convert the

requirements of the user into modules and relationships oriented to the composition of

existing web services to build the solution web service.

6.1. Requirements of the user

To implement the above case study we have developed a tool called LibraryBookReserve

(or LBR for short) that has been implemented on the Java language. This tool couples an

assistant for the requirement input of the user in order to process such information to later

obtain the solution web service. Thus, the assistant allows the user to introduce the

specifications through a graphic interface where possible to define the modules that will

integrate the solution web service. Additionally, for every single module, the assistant also

provides an interface to introduce its functionality (semantic concepts) and the relationship

with other modules. Particularity, a module has been represented by a set of attributes, such

as: name, type, action, domain, input, output and interconnection with other modules. In this

sense, the modules generated from the case study have been defined in Table 2.

*** Table 2 here ***

As explained, the modules have been described by an ontology to define their behavior

and actions. Therefore, for each module in the above table has been introduced its

semantics as shown in Tables from A1 to A4 (Section A.2 in Appendix A). The attributes

of the relationships between these modules have been given in Tables A5-A6 (Section A.2

in Appendix A). Figures A3, A4 (Section A.2 in Appendix A) and a general view in

Figure 13 show definition examples of module and relationship from tool

LibraryBookReserve. Note that we can build a flow diagram representing the information

of the user from the defined modules and relationships. Thus, such a diagram has been

generated and stored in an XML file by the tool assistant in order to start the analysis

process.

20

*** Figure 13 here ***

6.2. Analysis process of the input requirements

As previously stated, the input requirements are passed (in XML format) to agent-based

virtual organization analysis system. To do this, the tool calls functionality

analyze&Discover (see Section 4.1), which in turn calls the analysis system in order to build

the agent subsystem (Section 5.1) representing the domain ontology from the modules and

relationships given as input to the functionality. As a result, a diagram BPMN (BPD) is

generated by converting the agents into activities. Finally, it is achieved an XML file with

the information of diagram BPMN. This diagram will later be completed by the information

given from agent-based virtual organization search system (Section 5.2). Thus, functionality

analyze&Discover returns the final result in an XML document.

6.3. The discovery process

The discovery process of the web services related to the agents of the agent subsystem

(built by the analysis system) is started from search system and has two parts:

1. Finding the web services associated with the semantic concepts for each agent.

2. From the achieved web services, will be filtered those that meet the syntax given

by the agents representing the ontological concepts (that is, holding the syntax for

input, output and preconditions).

According to this, Table A7 (Section A.2 in Appendix A) shows the web services

available in the platform of the case study, which can be used in the web service composition

process. Then, once obtained the web services associated with the ontological concepts for

every agent, the filtering process is run as a second part. The goal is to extract those services

fitting the format given in the description of each agent, that is: by checking input, output

and the process each one carries out. Particularly, to check a web service meets the

ontological requirements, its file WSDL is also analyzed to verify the list of input and output

semantic concepts, preconditions and actions. The web services filtered by the search system

have been shown in Table A8 (Section A.2 in Appendix A). With the above filtered process

21

is completed the process of analysis and discovery invoked by functionality

analyze&Discover, which returns diagram BPMN and the list of web services associated

with each activity.

6.4. Validation of the solution

When functionality analyze&Discover completes its task, the tool has found the web

services associated with the modules defined by the user and has built diagram BPMN.

Then, to build the solution web service it is necessary:

1. For every activity, selecting the web service to use in diagram BPMN (note that in

Table A8, Section A.2 in Appendix A, there is more than one web service for a

module).

2. Connecting inputs and outputs for each activity in diagram BPMN.

Hence, the user should select a web service from list associated with each activity in the

diagram BPMN by using the graphic assistant of the tool. That is, the graphic assistant of the

diagram BPMN has three sections representing the information to process by the tool (see

example in Figure 14):

1. Diagram BPMN: This section displays diagram BPMN from the XML file

returned by analyze&Discover. The tool graphic interface allows us selecting and

moving the components present in the diagram.

2. List of activities: This section displays the list of activities integrating diagram

BPMN (associated with the modules defined by the user). For every activity has

been included the following information:

a. Activity name

b. Performed action

c. Domain

d. Input list

e. Output list

f. List of preconditions to meet for the activity performs well.

22

3. Found web services: List of web services available for the selected activity. By

default, the first web service in the list has been selected by tool, but the user can

select any other from the list.

*** Figure 14 here ***

The web services selected for each activity/module of our case study have been shown in

Table A9 (Section A.2 in Appendix A). To complete the validation process of the solution

proposed by the tool and build the expected web service, the assistant of the diagram BPMN

creates the data flow between the activities of such a diagram. That is, each activity in the

diagram receives certain inputs that can come from the before activity or the input of the web

service to build.

6.5. Composition of the solution web service

Completed the association process of web services with the activities of diagram BPMN

and stated their connections; the tool can carry out the web service composition by calling

functionality composeService (see Section 4.1). This functionality applies standard WS-

BPEL and the algorithm given in [56] to make the composition process. Basically,

composeService invokes the manager agent by passing diagram BPMN. The manager agent

processes the information and calls the composition coordinator agent of the composition

system. The above agent builds an agent for each web service (or activity) of diagram

BPMN. These new agents are responsible for achieving the necessary data from files WSDL

(web service description) for the composition process (see Figure 12). Finally, the

composition coordinator agent receives all the information from files WSDL to generate file

WS-BPEL. This file has been generated by modeling the components in composition BPEL

for the solution web service, namely:

1. Flow control;

2. Beginning of the service;

23

3. Exchange of massages and

4. Events.

6.6. Evaluation of the case study

In this subsection we evaluate tool LibraryBookReserve and the solution web service

generated from the composition process. The evaluation has been made taking into account

concepts of software engineering to check the internal quality of the composition process.

The internal quality of a computer program is related to white-box testing [57], which is the

examination of procedural details of the software. It evaluates logical paths in the software

by providing specific sets of conditions and/or loops. Moreover, the state of the software on

different points of its implementation can be verified in order to determine whether the

current state of the software matches the expected state.

For our case study, we have used basis path testing as a white-box testing. This test has

been introduced to evaluate the different logical paths of the flow diagram used to build the

solution web service through tool LibraryBookReserve. Therefore, it measures the

performance of the internal logic structure of the solution web service that has automatically

been built by the tool. With this test we want to prove that the automatic process of web

service composition performs well.

6.6.1. Basis path testing for the solution web service (white-box testing)

Basis path testing is a technique of white-box testing proposed in [58], which allows test

case designers to create a measure evaluating the logic complexity of a procedural design

and uses it as a guide in the definition of a basis set of running paths. The goal of this test is

to determine the number of independent paths for a set of statements (in our case, the flow

diagram of the solution web service) to create test cases ensuring the running of each logical

path, at least once. This will prove correctness and completeness of the reached solution.

To evaluate the flow diagram of the solution web service as shown in Figure 15, it has

been created a test case for every possible path of such a diagram. This figure displays the

flow diagram connecting the web services that integrate the service composition (see Tables

24

A5, A6 and A9; Section A.2 in Appendix A) to obtain the solution specified by the user.

Note that this flow diagram represents the tasks created by the tool to run the solution web

service, being these tasks, the web services integrating the service composition. Then, from

this diagram, all possible logical paths have been computed by building the associated flow

graph given in Figure 16.

*** Figure 15 here ***

Graph G in Figure 16 shows the flow graph associated with the flow diagram in Figure 15.

Thus, this graph represents a logic control structure more suitable than the flow diagram to

compute all logical paths [57]. In general terms, nodes in the graph mean one or more

procedural statements and numbers identify such statements in the flow diagram. Contiguous

statements can be in the same node. Arcs represent the control flow and mean the same as in

the flow diagram. Predicate nodes represent conditional statements from the flow diagram

and can be identify because two or more arcs emerge from them as shown in Figure 15. In

this case, the predicate nodes have been identified in the graph with numbers 2, 7 and 8.

Then, from this graph we can compute cyclomatic complexity in order to determine the

number of running independent paths of the flow diagram. Cyclomatic complexity is a

software metrics providing an upper bound for the number of tests that must be conducted to

ensure that all statements have been executed at least once. An independent path is any path

in the graph (or flow diagram) that introduces, at least, a new set of statements.

*** Figure 16 here ***

In consequence with the above, cyclomatic complexity V of graph G in Figure 16 can be

computed according to [57], from expression V(G) = A – N + 2, where A is the number of

arcs in the graph and N is the number of nodes. Then, V(G) = 11 arcs – 8 nodes + 2 = 5.

Hence, we can now determine the basis set of linearly independent paths (which has 5

25

paths). Table 3 lists the five linearly independent paths from the flow graph, for which we

have prepared a test case for each.

*** Table 3 here ***

For each path in Table 3, a test case has been prepared in order to force the solution web

service to run it. As a result, the test cases have proven that each path has successfully been

run at least once and the results reached in each case match the expected ones. Therefore, the

logic implanted by the flow diagram in Figure 15 (which is based on the user requirements)

and the selected web services have performed well. Additionally, all the previous process of

white-box testing has also been applied to each flow diagram different from the one given in

Figure 15, for which the same results have been obtained. Note that in the process of web

service composition (diagram BPMN); the tool allows us to choose a web service different

from the current one, which generates a new flow diagram to check.

6.7. Results

In this section we have introduced a case study to present an implementation of our

proposal, architecture IPCASCI, which states a model to automatically compose business

process. As a first result of the case study, we have given an implementation of IPCASCI as

tool LibraryBookReserve, which creates new web services from the composition of web

services existing in the platform to reserve books in a library. This result proves the

reliability of our proposal, architecture IPCASCI, on a real environment of cloud computing.

On the other hand, we have also introduced a validation process of the case study by

evaluating the internal logical structure that the solution web service has to run (white-box

testing). Since in our case, white-box testing focuses on the control structure of the solution

web service; we have also proven the completeness and correctness of tasks performed by

the flow diagram run from the process of web service composition (diagram BPMN, Figure

15) to obtain the expected solution. In this sense, the solution web service generated by the

tool fits the requirements introduced by the user. Finally, all these results also prove the

26

goodness and reliability of the logic structure of the multi-agent system coupled to

IPCASCI, which is aimed at the discovery and refinement of web services taking place in the

services composition process.

7. Conclusions

This paper has proposed an architecture called IPCASCI for agile and automatic

composition of business processes on a cloud computing environment. This proposal is able

to fit the technological environment, being accessible and useful for the business world. For

this approach, the software components to reuse in the composition process have been web

services. In this sense, the main characteristic of our proposal is that from a set of

specifications (in text format) given by an inexperienced user to build a business process;

IPCASCI is able to develop the product as a web service from the ones existing in the

platform. To do this, IPCASCI has provided a web service repository in a cloud computing

environment; an ontology system in order to represent the necessary knowledge to endow

semantics (WSDL-S, Web Service Semantics Language) to the existing web services, and so

later facilitate their discovery process and composition; a multi-agent system coupling agent-

based virtual organizations aimed at discovering and composing the web services fitting the

requirements initially given by the user.

To prove the performance of this proposal, we have presented an implementation of

IPCASCI as a tool from a real case study. Therefore, our first result of the case study has

been to develop tool LibraryBookReserve to automatically build web services from

specifications of the user to reserve books in a library. According to the requirements of the

user, this tool provides a graphic interface to introduce such specifications in a simple,

intuitive and agile way. In this context, we have also proven through a white-box testing

(software metrics), that the internal logic structure of the solution web service (in this case,

its flow diagram) built by LibraryBookReserve performs well on the selected application

domain. Moreover, by simple modifications of the tool, we can add other application

domains, extending its use and so providing reusability. Consequently, this proves that

27

architecture IPCASCI is not only useful for the presented case study; it is also useful for any

other application domain. Hence, our proposal adapts to the current needs of software

development, for which it is possible to create new products in very short time, at a reduced

cost and without going through an arduous and external development process.

Finally, keep in mind that our approach has been benefited from the potential of a cloud

environment, which introduces a change in the way of exploiting and marketing the

company’s products [59]. Hence, IPCASCI deals with the following advantages present in

systems based on cloud computing: (i) Resources in a cloud environment can be allocated

and dissallocated according to needs at any given time; (ii) Resources can be shared or/and

allocated to each customer depending on their needs; (iii) Services stored in the cloud are

generally based on web technology, a fact that makes them accessible to a broad range of

devices with Internet connection; (iv) Once cloud service infrastructure is outsourced, the

service provider transfers its business risks (as for example, hardware failures) to the

infrastructure providers that are usually more experienced and better equipped to handle such

risks.

Author contributions

JAGC designed and implemented the proposed architecture supervised by JMC. JAGC and

JAC-G wrote the paper. JMC and JAC-G provided the comments and the discussion. All

authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Appendix A. Information supporting architecture IPCASCI

A.1. Example of converting the agent subsystem into a BPD diagram

28

This example shows the transformation of the modules and their relationships defined by

the user into an agent subsystem and later into the BPD diagram. Then, in this case we have

defined seven modules, from Module1 to Module7, where modules 1 and 7 are the ones of

startup and end respectively. The following relationships between the introduced modules

have been defined:

1. Modulo1 Parallel output to Modulo2, Modulo3

2. Modulo2 If [Condition] Modulo4 Else Modulo5

3. Modulo6 Follows Modulo4

4. Modulo6 Follows Modulo5

5. Modulo7 Follows Modulo6

6. Modulo7 Follows Modulo3

The agent subsystem created by the analysis system corresponding to the above input has

been shown in Figure A1. This agent subsystem has been mapped to standard BPMN in

Figure A2 by applying the transformations given in Table 1, Section 5.1.

*** Figure A1 here ***

*** Figure A2 here ***

A.2. Complementary information of the case study

*** Table A1 here ***

*** Table A2 here ***

*** Table A3 here ***

*** Table A4 here ***

29

*** Table A5 here ***

*** Table A6 here ***

*** Table A7 here ***

*** Table A8 here ***

*** Table A9 here ***

*** Figure A3 here ***

*** Figure A4 here ***

References	
 	

[1] K. Schmid, Top Productivity through Software Reuse, 12th International Conference on Software Reuse,

Lecture Notes in Computer Science, ICSR, Springer 6727, 2011.

[2] J. S. Poulin, Measuring software reuse. Principles, practices, and economic models, Addison-Wesley-

Longman, ISBN-978-0-201-63413-6, 1997.

[3] J. S. Poulin, The Business Case for Software Reuse: Reuse Metrics, Economic Models, Organizational

Issues, and Case Studies, Lecture Notes in Computer Science, Springer 4039 (2006) 439.

[4] M. Lemley and D. O'Brien, Encouraging Software Reuse, Stanford Law Review 49 (1997) 255.

[5] R. D. Shang, K. Mohan, K. R. Lang, R. Vragov, A market mechanism for software component reuse:

opportunities and barriers, Proceedings of the 14th Annual International Conference on Electronic

Commerce (ICEC '12), ACM (2012) 62-69.

[6] H. Rehesaar, Capability Assessment for Introducing Component Reuse, Lecture Notes in Computer

Science, Springer-Verlag 6727 (2011) 87-101.

[7] Y. Xu, N. Singh, S. Deshpande, Reuse by Placement: A Paradigm for Cross-Domain Software Reuse with

High Level of Granularity, Lecture Notes in Computer Science, Springer 6727 (2011) 69-77.

30

[8] V. C. Garcia, D. Lucrédio, A. Alvaro, E. S. de Almeida, R. P. de Mattos, S. R. de Lemos, Towards a

maturity model for a reuse incremental adoption, In: The 1st Brazilian Symposium on Software

Components, Architecture and Reuse, Campinas, Sâo Paulo, Brazil (2007) 61-74.

[9] L. Osiecki, M. Phillips, J. Scibilia, Understanding and Leveraging a Supplier’s CMMI Efforts: A

Guidebook for Acquirers, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,

Pennsylvania, Technical Report CMU/SEI-2011-TR-023, 2011

[10] A.E. Walsh, UDDI, SOAP, and WSDL: The Web Services Specification, Pearson Education, 1st edition,

2002.

[11] T. Erl, SOA Design Patterns, The Prentice Hall Service-Oriented Computing Series, 2009.

[12] J. Ralyté, I. Mirbel, R. Deneckère, Engineering Methods in the Service-Oriented Context, 4th IFIP WG 8.1

Working conference on method engineering, 2011.

[13] K. Alizadeh, M. Seyyedi, M. Mohsenzadeh, A Service Identification Method based on Enterprise

Ontology in Service Oriented Architecture, International Journal of Information Processing and

Management (IJIPM) 3 (2012).

[14] M. Papazoglou, Web Services: Principles and Technology, Pearson Education, Prentice Hall, 2008.

[15] N. Antonopoulos, A. Anjum and L. Gillam, Intelligent techniques and architectures for autonomic clouds,

Journal of Cloud Computing: Advances, Systems and Applications (2012) 1-12.

[16] A. Stage and T. Setzer, Network-aware migration control and scheduling of differentiated virtual machine

workloads, In: Proceedings of the ICSE Workshop on Software Engineering Challenges of Cloud

Computing (CLOUD '09), IEEE Computer Society, Washington, DC, USA (2009) 9-14.

[17] T. Duy, Y. Sato, Y. Inoguchi, A prediction-based green scheduler for datacenters in clouds, IEICE Trans

Inf Syst E94-D 9 (2011) 1731-1741.

[18] Cloud Computing, Retrieved at June 03, [http:/ / fclose.com/ b/ cloud-computing/ article/ mrcc-a-

distributed-c-compiler-syste m-on-mapreduce/], 2011.

[19] EuroCloud Deutschland_eco eV, Eurocloud star audit saas certificate, http://www.saas-audit.de, 2011.

[20] P. T. Jaeger, J. Lin, J. M.Grimes, S. N. Simmons, Where is cloud? Geography, Economics, Environment,

and Jurisdiction in Cloud Computing. ISSN-1396–0466, 4 (2009).

[21] F. Dölitzscher, C. Reich, A. Sulistio, Designing Cloud Services Adhering to Government Privacy Laws,

In: Proceedings of 10th IEEE International Conference on Computer and Information Technology (CIT),

Furtwangen, Germany (2010) 930-935.

[22] P. Massonet, S. Naqvi, C. Ponsard, J. Latanicki, B. Rochwerger, M. Villari, A Monitoring and Audit

Logging Architecture for Data Location Compliance in Federated Cloud Infrastructures, In Parallel and

Distributed Processing Workshops and Phd Forum (IPDPSW), IEEE International Symposium on (2011)

1510-1517.

31

[23] M. Schaaf, A. Koschel, S .G. Grivas, I. Astrova, An active DBMS style activity service for cloud

environments. Cloud Computing: The First International Conference on Cloud Computing, GRIDs, and

Virtualization in Cloud Computing, ComputationWorld IARIA, ISBN: 978-1-61208-106-9 (2010) 80-85.

[24] A. Sulistio, C. Reich and F. Dölitzscher, Cloud Infrastructure & Applications – CloudIA, In: Proceedings

of the 1st International Conference on Cloud Computing (CloudCom), Beijing, China (2009) 583-588.

[25] S. Rodríguez, Y. de Paz, J. Bajo and J. M. Corchado, Social-based Planning Model for Multiagent

Systems, Expert Systems with Applications 38 (2011) 13005-13023.

[26] V. Dignum, J. Vazquez-Salceda, F. Dignum, OMNI: Introducing Social Structure, Norms and Ontologies

into Agent Organizations. Proceeding of 3rd International Workshop on Programming Multi-Agent

Systems, Utretch, The Netherlands (2005) 181-198.

[27] M. Escriva, J. Palanca, G. Aranda, A. García, V. Julian, V. Botti, A Jabber-Based Multi-Agent System

Platform, Proceeding of 5th International Joint Conference on Autonomous Agents and Multiagent

Systems, Hakodate, Japan (2006) 1282-1284.

[28] A. Maedche and S. Staab, Learning Ontologies for the Semantic Web, In Semantic Web Workshop,

Hongkong, China, 2001.

[29] B. Chandrasekaran and J. R. Josephson, What Are Ontologies, and Why Do We Need Them?, Ohio State

University V. Richard Benjamins, University of Amsterdam, 1999.

[30] N. Noy and D. McGuinness, Ontology development 101: A guide to creating your first ontology,

Technical Report SMI-2001-0880, Stanford Medical Informatics (SMI), Department of Medicine, Stanford

University School of Medicine, 2001.

[31] N. Guarino, Formal Ontology in Information Systems, Proceedings of FOIS’98, Trento, Italy, 6-8 June,

Amsterdam, IOS Press, 1998.

[32] F. López, Overview of Methodologies for Building Ontologies, In Proceedings of IJCAI-99 workshop on

Ontologies and Problem-Solving Methods (KRR5) in Stockholm Sweden, August 2, 1999.

[33] C. Pedrinaci, C. Brelage, T. Van Lessen, J. Domingue, D. Karastoyanova, F. Leymann, Semantic business

process management: scaling up the management of business processes, In: 2nd IEEE International

Conference on Semantic Computing (ICSC), 4-7 Aug 2008, Santa Clara, CA, USA, 2008.

[34] Z. Su, H. Chen, L. Zhu, Y. Zeng, Framework of Semantic Web Service Discovery Based on Fuzzy Logic

and Multi-phase Matching, Journal of Information & Computational Science 9:1 (2012) 203-214.

[35] K. Sycara, M. Paolucci, A. Ankolekar, N. Srinivasan, Automated discovery, interaction and composition

of Semantic Web services. Web Semantics: Science, Services and Agents on the World Wide Web,

Elsevier 1 (2003) 27-46.

[36] J. M. García, D. Ruiz, A. Ruiz-Cortés, Improving Semantic Web Services Discovery Using SPARQL-

Based Repository Filtering, Web Semantics: Science, Services and Agents on the World Wide Web,

Elsevier 17 (2012) 12-24.

32

[37] M. Owen and J. Raj, BPMN and Business Process Management. Introduction to the New Business

Process Modeling Standard, Popkin Software, www.popkin.com, 2003.

[38] J. Pasley, How BPEL and SOA Are Changing Web Services Development, Published by the IEEE

Computer Society, IEEE Internet Computing (2005) 60-67.

[39] M. Schaaf, A. Koschel, S. G. Grivas, I. Astrova, An active DBMS style activity service for cloud

environments. Cloud Computing: The First International Conference on Cloud Computing, GRIDs, and

Virtualization in Cloud Computing, in ComputationWorld IARIA (2010) 80-85.

[40] S. Rodríguez, D. Tapia, E. Sanz, C. Zato, F. de la Prieta, O. Gil, Cloud Computing Integrated into Service-

Oriented Multi-Agent Architecture, Balanced Automation Systems for Future Manufacturing Networks,

IFIP Advances in Information and Communication Technology, Springer 322 (2010) 251-259.

[41] B. Cao, B. Li, Q. Xia, A Service-Oriented Qos-Assured and Multi-Agent Cloud Computing Architecture,

Cloud Computing, Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg 5931 (2009)

644-649.

[42] J. Bajo, C. Zato, F. de la Prieta, A. de Luis, D. Tapia, Cloud Computing in Bioinformatics, Distrib.

Computing & Artif. Intell., AISC, Springer-Verlag Berlin Heidelberg 79 (2010) 147-155.

[43] IBM, RESTful Web services: The basics, http://www.ibm.com/developerworks/webservices/library/ws-

restful/, 2008.

[44] E. Newcomer. Understanding Web Services: XML, WSDL, SOAP, and UDDI (independent Technology

Guides). Addison Wesley, 2002.

[45] E. Cerami. Web services Essentials – Distributed Applications with XML-RPC, SOAP, UDDI & WSDL.

O’RELLY, 2002.

[46] F. M. T. Brazier, V. Dignum, M. N. Huhns, C. Derksen, F. Dignum, T Lessner, J. A. Padget, T. B.

Quillinan, M. P. Singh, Agent-based organisational governance of services, Multiagent and Grid Systems 8

(2012) 3-18

[47] D. Tapia, S. Rodríguez, J. Bajo and J. M. Corchado. FUSION@, A SOA-Based Multi-agent Architecture.

International Symposium on Distributed Computing and Artificial Intelligence (DCAI), Springer-Verlag

Berlin Heidelberg 50 (2009) 99-107.

[48] J. Hendler, T. Berners-Lee, E. Miller, Integrating Applications on the Semantic Web, Journal of the

Institute of Electrical Engineers of Japan 10 (2002) 676-680.

[49] M. d’Aquin and N. Noy, To publish and find ontologies? A survey of ontology libraries, Web Semantics:

Science, Services and Agents on the World Wide Web, Elsevier 11 (2012) 96-111.

[50] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S. Narayanan, M. Paolucci, B.

Parsia, T. Payne, E. Sirin, N. Srinivasan, K. Sycara, OWL-S: Semantic Markup for Web Services, W3C

Member Submission, http://www.w3.org/Submission/OWL-S, 2004.

33

[51] J. Miller, K. Verma, P. Rajasekaran, A. Sheth, R. Aggarwal, K. Sivashanmugam, WSDL-S: Adding

Semantics to WSDL, LSDIS Lab, University of Georgia, http://lsdis.cs.uga.edu/projects/meteor-s/, 2004.

[52] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. Schmidt, A. Sheth, K. Verma, Web Service Semantics

- WSDL-S, W3C Member Submission, http://www.w3.org/Submission/WSDL-S/, 2005.

[52] A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, K. Liu, S. Thatte, P. Yendluri and A.

Yiu, Web Services Business Process Execution Language, Version 2.0 OASIS, 2004.

[53] C. Ouyang, W. van der Aalst, M. Dumas, A. Hofstede, Translating BPMN to BPEL, Digital Repository,

Queensland University of Technology, Australia, 2006.

[54] R. Jan and M. Jan, On the Translation between BPMN and BPEL: Conceptual Mismatch between Process

Modeling Languages, In Latour, Thibaud & Petit, Michael (Eds.), The 18th International Conference on

Advanced Information Systems Engineering, Proceedings of Workshops and Doctoral Consortium, Namur

University, 2006

[55] C. Ouvans, M. Dumas, A. Hofstede, W. van der Aalst, From BPMN Process Models to BPEL Web

Services, ICWS '06 Proceedings of the IEEE International Conference on Web Services, IEEE Computer

Society Washington, DC, USA (2006) 285-292.

[56] S. White, Using BPMN to Model a BPEL Process, BPTrends, http://www.bptrends.com, 2005.

[57] R. Pressman, Software Engineering: A Practitioner’s Approach, Seventh Edition, Ph.D., McGraw-Hill

Companies, 2005.

[58] T. McCabe, A Software Complexity Measure, IEEE Trans. Software Engineering, SE-2 (1976) 308-320.

[59] V. Chang, D. Bacigalupo, G. Wills, D. De-Roure, A Categorisation of Cloud Computing Business

Models, 10th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (2010) 509-

512.

34

Web service execution

Input requirements

BPEL file Web services UDDI register

Multi-agent system

Analysis system Search system Composition System

Ontologies

Figure 1: Description of architecture IPCASCI for composition of bussiness processes (web services).

Requirements

Requirement
analysis

Search for
services

Service
composition

New available
service

Multi-agent system

Figure 2: Stages of architecture IPCASCI to obtain the solution web service from the discovery and

composition process of web services.

35

Figure 3: Alternative view (Figure 2) of the process of obtaining the solution web service by architecture

IPCASCI.

Web services

Input.xml bpmn.xml

analyze&Discover

Figure 4: analyze&Discover cloud functionality interacting with components of architecture IPCASCI.

1 - Input

Assistant

4 - Registers

2 - Generates

3 - Confirms

User

BPMN solution

Platform

36

References

Ontologies
Web services

Registered

UDDI register

Links

Multi-agent system

Represents

References

Figure 5: Integration diagram of web services and SOA.

Figure 6: Connecting semantic concepts with entries in register UDDI (web services) through agents.

Agent
Ontological concept

Represented by

Associated with

UDDI register

37

Multi-agent sistem

Manager

Analysis system Search system Composition system

Figure 7: Structure of the multi-agent system (MAS) to represent the domain ontology and manage the

requirement input, search and composition of web services.

Figure 8: Agent-based virtual organization of the analysis system to analyze and discover the web services

associated with the requirements of the user.

Input.xml

XML parser

analyze&Discover

Manager Analysis
coordinator

User

38

Figure 9: Relationship module-agent and the agent-based graph associated with associated with the modules

defined by the user.

Table 1: Relationships between items in the BPMN diagram and items in the agent subsystem.

BPMN diagram Agent subsystem

Activity Agent

XOR gate (“X”) [Module_i] If [Condition] then [Module_j] or

[Module_i] If [Condition] then [Module_j] else [Module_k]

AND gate (“+”) [Module_i] Parallel output to [Module_j], [Module_k]

startup and end events agents marked as startup and end process

any other connector [Module_i] Follows [Module_j]

Module

Input

Output

Description

39

Search coordinator

Semantic coordinator
Checking coordinator

Localizer

Register
subsystem

Checking
subsystem

Figure 10: Agent-based virtual organization representing the structure of the search system.

40

Figure 11: Process of semantics search for the web services associated with a list of ontological concepts.

Figure 12: Agent-based composition system to obtain the solution web service.

Search
coordinator

Semantic
coordinator Localizer

Search(ConceptList)

Search(Concept)

Found[UDDI Registers]

ComparingResults
Found[RegisterList]

BPEL

Composition coordinator

41

Table 2: Definition and meaning of the modules to build the solution web service.

Module Description
CheckingRecord Determine whether the user is registered in the system.
NotifyState Notify to the user that the connection has not been

established and the reason.
CheckingBook Verify the existence of the requested book.
ChekingLoan Verify the maximum number of loans stated for the user.
NotifynoStock Notify to the user that there is no existence of the requested

book.
NotifyLoanExceed Notify to the user that the maximum number of loans has

been exceeded.
MakeLoan Carry out and register the book loan.
CheckedRecord Auxiliary module useful for the later construction of

diagram BPD of graphic standard BPMN. This module is
defined by the system.

Modules

New Remove New Remove

Accept Cancel

CheckingRecord NotifyState CheckingBook

ChekingLoan NotifynoStock NotifyLoanExceed

MakeLoan CheckedRecord

Relationships

Type Startup Destination #1 Destination #2 Name
If/Else
Parallel
If/Else
If/Else

CheckingRecord
CheckedRecord
CheckingBook
ChekingLoan

CheckedRecord
CheckingBook
MakeLoan
MakeLoan

NotifyState
ChekingLoan
NotifynoStock
NotifyLoanEx...

Relation1
Relation2
Relation3
Relation4

Figure 13: View of tool LibraryBookReserve showing on the left side, the modules defined by the user and

on the right, the relationships defined between them.

42

File Edit Project Help

CheckedRecord

CheckingRecord

Startup

RegisterState = false

RegisterState = true

End

CheckingBook

CheckingLoan

Ready...

BookState = false

BookState = true

LoanState = false

LoanState = true

NotifynoStock

MakeLoan

NotifyLoanExceed

End

Web services Connec...

Activities

Available web services

BookExists
ganizationExists

Person (Person)
Organization (Organiz

Output
LoanState (Logical)

Preconditions
PersonExists
OrganizationExists

NotifynoStock
NotifyLoanExceed
MakeLoan

MakingLoan
Input

Person (Person)
Book (Book)

Output
Preconditions

PersonExists
BookExists

ckingLoan
eckingLoan

put

Figure 14: View of tool LibraryBookReserve showing an example where on Part 1 is diagram BPMN of the

case study, on Part 2, the list of activities and on Part 3, the available web services.

43

Figure 15: Flow diagram of the web service composition to obtain the solution web service. Rectangles

represent the web services selected for the composition.

44

Figure 16: Flow graph associated with the flow diagram in Figure 15. Nodes and numbers represent tasks in

the flow diagram.

Table 3: Linearly independent logic paths found in the flow graph in Figure 16.

Logical paths
Path #1: 1 – 2 – 4 – 7 – 6 – 11
Path #2: 1 – 2 – 4 – 7 – 10 – 11
Path #3: 1 – 2 – 5 – 8 – 10 – 11
Path #4: 1 – 2 – 5 – 8 – 9 – 11
Path #5: 1 – 2 – 3 – 11

45

Figure A1: Agent subsystem representing a domain ontology built by the analysis system.

Figure A2: Diagram BPMN (BPD) mapped from the Agent subsystem in Figure A1.

Table A1: Semantics description of the attributes for modules CheckingRecord and NotifyState.

Name: CheckingRecord Name: NotifyState
Input: Person

Organization
Input: person

Output: recordState Output: -

[Condition] = true

Parallel

Parallel

[Condition] = false

[Condition] = true

[Condition] = false

46

Precondition: organizationExists Precondition: personExists
Action: verifyRecord Action: sendEmail

Domain: authentication Domain: message
Type: startup Type: end

Table A2: Semantics description of the attributes for modules CheckingBook and ChekingLoan.

Name: CheckingBook Name: ChekingLoan
Input: book

Organization
Input: person

organization
Output: bookState Output: loanState

Precondition: bookExists
organizationExists

Precondition: personExists

Action: checkingAvailableBook Action: checkingLoan
Domain: Library Domain: library

Type: Intermediate Type: intermediate

Table A3: Semantics description of the attributes for modules NotifynoStock and NotifyLoanExceed.

Name: NotifynoStock Name: NotifyLoanExceed
Input: person

book
Input: person

Output: - Output: -

Precondition: bookExists
personExists

Precondition: personExists

Action: notifyNoBooks Action: notifyNoLoan
Domain: library Domain: library

Type: end Type: end

Table A4: Semantics description of the attributes for module MakeLoan.

Name: MakeLoan
Input: person

47

book
Output: -

Precondition: personExists
bookExists

Action: makeLoan
Domain: library

Type: End

Table A5: Semantics description of relationships Relation1 and Relation2 defined on the modules

introduced by the user.

Name: Relation1 Name: Relation2
Type: If/Else Type: Parallel

Startup: CheckingRecord Startup: CheckedRecord
Destination1: NotifyState Destination1: CheckingBook
Destination2: CheckedRecord Destination2: ChekingLoan

Condition: registerState Condition: -

Table A6: Semantics description of relationships Relation3 and Relation4 defined on the modules

introduced by the user.

Name: Relation3 Name: Relation4
Type: If/Else Type: If/Else

Startup: CheckingBook Startup: ChekingLoan
Destination1: MakeLoan Destination1: MakeLoan
Destination2: NotifynoStock Destination2: NotifyLoanExceed

Condition: bookState Condition: loanState

Table A7: Web services available in the platform for the case study of architecture IPCASCI.

Web services Function

checkPersonRegister
checkOrgRegister

Check whether a user is registered in the system.

48

SendMail
sendEMail
emailManager

Send and manage the electronic mail (e-mail).

libraryManager
checkBook
compHLib

Identify books and manage their availability in the library.

stockManager
loanManager
checkLoans
loanController

Check and manage the (maximum) number of books
loaned to a user.

sendNotAvaliableBook
notifyBookError

Notify that there is not availability of a book or any other
problem preventing the loan.

loanPassed
notifyLoans
libraryLoanError

Notify that the maximum number of book loans has been
reached.

doLoan
libraryLoanEffect
bookStoreDoLoan

They are used to register a book loan by the library.

Table A8: Web services found and checked by the search system for each module defined by the user.

Modules Found web services

CheckingRecord checkPersonRegister
checkOrgRegister

NotifyState sendMail
sendEMail

CheckingBook compHLib

ChekingLoan checkLoans

NotifynoStock sendNotAvaliableBook
notifyBookError

NotifyLoanExceed notifyLoans
libraryLoanError

49

Table A9: Web services selected for each defined module.

Activity/Module Found web services

CheckingRecord checkPersonRegister

NotifyState sendEMail

CheckingBook compHLib

ChekingLoan checkLoans

NotifynoStock notifyBookError

NotifyLoanExceed libraryLoanError

Global
Name CheckingPerson

Options

Icons

Input

Output

Preconditions

Action

Type

User

State

UserExists

Cheking
Person

Intermediate Initial End

Accept Cancel

Figure A3: View of tool LibraryBookReserve showing an example to define a module and its semantics.

50

Relationship
Type

Initial module

Destination 1

Destination 2

Condition

If/Else

Module1

Module2

Module3

PersonExists

Graphic

Accept Cancel

Modulo1 If/Else

TRUE

FALSE

Modulo2

Modulo3

Figure A4: View of tool LibraryBookReserve showing an example to define the relationships between the

built modules.

