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Abstract

Nowadays, cloud computing is revolutionizing the services provided through the Internet to
adapt itself in order to keep the quality of its services. Recent research foresees the advent of a
new discipline of agent-based cloud computing systems that can make decisions about adaption
in an uncertain environment. This paper discusses the role of argumentation in the next
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generation of agreement technologies and its use in cloud computing environments.
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1 Introduction

Nowadays, the cloud computing paradigm has emerged as a key component of the Future
Internet [1]. Concurrent research in the new area of cloud computing is putting an end on the
everlasting problem of limited availability of computing resources. A cloud computing system
must readjust its resources by taking into account the demand for its services. At technological
level, the difficulties have been overcome in large part due to the use of virtualization of
hardware resources [2]. However, how to assign the physical infrastructure among virtual
machines is a current topic in some research fields [3]. This raises the need for designing
protocols that provide the individual components of the cloud architecture with the ability to self-
adapting and of reach agreements in order to deal with the changes in the demand of services.

In order to solve this problem, recent research has led to the advent of a new discipline of agent-
based cloud computing systems for the Future Internet [4]. The possibility of applying multi-
agent systems (MAS), based on virtual organization (VO), leans to countless advantages due to
the ability of these systems to adaption based on incomplete information of an open environment.
Thus, the infrastructure resources will be managed in an elastic and intelligent way. Moreover,
recent developments in argumentation-based agreement models have provided the necessary
technology to allow agents to engage in argumentation dialogues, harmonize beliefs, negotiate,
collaboratively solve problems, etc. [5]. In these argumentation frameworks agents are able to
argue and reach agreements. The time has now come to bring the new developments of the
Future Internet into the picture.

Conventional diagrams found on the Internet (and many computational models for reaching
agreements) leave out the most numerous and important routers of all-people [6]. Taking systems
of people and agents operating at a large scale into consideration offers an enormous potential for
tackling complex applications and new business models. Therefore, in the next generation of
agreement technologies, humans and agents should have the ability to establish a series of
relationships, forming what might be called human-agent societies [7], and to reach agreements
using the unlimited computational resources provided by cloud computing systems.

Mutual contributions in agreement technologies, multi-agent systems and cloud computing can
advance research in these areas to the final establishment of the Future Internet.

This paper introduces the potential role of argumentation in the next generation of agreement
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technologies for cloud computing environments. Among the potential applications of
argumentation in this area, the main focus here will be in the specific domain of the re-
distribution of resources in cloud computing systems. Section 2 presents +Cloud, a new cloud
computing system based on MAS. The section explains our argumentation and provides an
example of operation. Then, Sect. 4 introduces related works and future challenges and
summarizes the results of this study.

2 Argumentation-based approach for resource re-
distribution in a cloud computing environment

2.1 Preliminaries

As shown in Fig. 1, a cloud computing environment can be analyzed from two points of view.
From an external viewpoint, which is the perspective of the users (developers, manager,
administrators, or end users), and from an internal viewpoint that includes all technical and
deploy details about the computation environment.

At the external level, a cloud computing system is composed of a set of services which
are offered to the users. These services can be of three types: software, platform and
infrastructure; commonly known as XaaS (X as a Service) [8]. The software and
platform services can be considered as web applications with special features with
regards to how they store their state or information. In this study, we use the term
service to refer to each of these application. Infrastructure services, on the other hand,
are not web applications, but they are a way of offering computational resources.

At the internal level, the system consists of a set of physical machines (servers) which
contribute to the system by means of their computational resources (processing
capacity, volatile memory, etc.). Physical machines have basically two states: available
or turn on or not available or turn off. The available physical machines host abstractions
of hardware called virtual machines.

Finally, it should be noted that it is necessary to have not only the physical machines but also the
virtual machines as well have to be connected among them through an internal network. The
features and topology of this network are not taken into account in this study.



Fig. 1

External and internal view in a cloud computing environment

A cloud computing environment by definition is a high availability system, which means that the
quality of the services has to keep regular independently of their demand. In practice, this means
that each of the services at the PaaS or SaaS level has to deploy in n virtual machines. These
virtual machines have to be distributed among m physical machines ( ). In this context, the
services, which are deployed among several virtual machines, consume the resources of the own
virtual machines (and hence, of the physical ones) depending on the demand at each moment. In
order to maintain a quality level of the service, the number of virtual machines (and physical
servers) must grow or decrease according to demand, which is referred to as elastic services.

The latest generation of virtualization environments allows the resources available in the physical
machines to be dynamically distributed among the virtual machines according to the current
needs [2]. Therefore, it is possible to re-distribute the resources of each physical machine not
only among its virtual machines but also at a global level among the entire cloud system. This
means, for example that it is possible to switch on or switch off virtual machines in a specific
physical server at any given moment, or even, to migrate virtual machines in execution between
physical servers.

Nowadays, the greatest challenge in a cloud environment is how to efficiently re-distribute the
available resources offered by physical machines among a variable set of virtual machines,
taking into account the demand for the services offered by the system. In this section, we propose
an argumentation-based approach to deal with the problem of resource re-distribution during a
peak service demand in a cloud computing -platform.

2.2 +Cloud architecture

m ≥ 2



+Cloud is a platform based on the cloud computing paradigm. This platform allows services to
be offered at the PaaS (Platform as a Service) and SaaS (Software as a Service) levels. The SaaS
services are offered to the final users in terms of web applications, while the PaaS services are
offered as web services. Both PaaS and SaaS layers are deployed using an IaaS (Infrastructure as
a service) layer, which provides a virtual hosting service with automatic scaling and functions for
balancing workload. The IaaS layer is composed of the physical environment (the internal view)
which allows the abstraction of resources shaped as virtual machines; however, the system does
not offer this kind of service to the end users. A more detailed description of each layer is
provided below:

SaaS Layer. This layer hosts a wide set of cloud applications. +Cloud as environment
offers a set of native applications to manage the complete cloud environment: virtual
desktop, user control panel and administration panel. At this level, users have a
personalized virtual desktop from which they can access their applications in the cloud
environment, and other more general third party applications that use the services from
the PaaS layer in order to save its state, enabling the elasticity of each application and
the cloud environment in general.

PaaS layer. The PaaS layer is oriented to offer services to the upper layer, and is
supported by the lower IaaS layer. The PaaS layer provides services through RESTful
web services [9] in an API format. One of the more notable services among the APIs is
the identification of users and applications, a simple non-relational database service and
a file storage area that controls versions and simulates a directory structure. The
components of this layer are:

The Identity Manager is the module of +Cloud in charge of offering
authentication services to clients and applications.

The File Storage Service (FSS) provides an interface for a container of files,
emulating a directory structure in which the files are stored with a set of
metadata, thus facilitating retrieval, indexing, search, etc. The implementation
is based on the combination of several technologies such as GlusterFS [10]
and MongoDB [11].

Object Storage Service (OSS) provides a simple and flexible schemaless data
base service oriented towards documents.

IaaS layer. The objective of this layer is to offer this infrastructure service to upper
layers of +Cloud (SaaS and PaaS). The key characteristic on a cloud environment is that
the hardware layer includes the physical infrastructure layer and the virtual one (in
terms of virtual machines). The virtual resources (number and performance of the
processors, memory, disk space, etc.) are shown as unlimited, but they are supported by
a limited number of physical resources, although the final user has the view of
unlimited resources.



   The virtual and physical resources are managed dynamically. To this end, a virtual organization
of intelligent agents that monitor and manage the platform resources is used. This organization
implements an argumentation-based agreement technology in order to achieve the distribution of
resources depending on the needs of the whole system.

2.3 +Cloud multiagent system

The re-distribution of resources can be seen from two points of view, from a micro level, and
from a macro level. At the micro level, the system contains the re-distribution of resources
among virtual machines hosted within a single host. That is, a physical server has a number of
available physical resources (processing, memory and disk) that have to be shared between
different hosts virtual machines, leaving a minimal set of resources available to the host itself. At
this level, the main objective is to maximize the use of resources; therefore, the intention is take
out the underutilized resources of the system. Consequently, the physical machine and the hosted
virtual machines will each make high use of physical resources available. At the macro level,
however, the system contains the global re-distribution of resources within the Cloud. This
means that start or stop virtual machines on physical servers, or even migrate machines between
physical servers, are available at all times. At the macro level, the goal is to minimize the use of
resources, so that the largest number of machines remain disabled, but always maintaining the
goal of high availability as a priority. Thus, power consumption and cooling requirements are
reduced and the lifetime of physical machines is extended, which in turn makes it possible to
reduce the maintenance cost of the cloud environment as well.

In +Cloud, the elastic management of the available resources was done by a multi-agent system
(MAS) based on virtual organizations (VO), see Fig. 1. With this approach it is easier to design
the overall system [12]. In the +Cloud VO there is a set of agents that are especially involved in
the adaptation of the system resources in view of the changing demand of the offered services.
Figure 2 presents the different roles that +Cloud agents can play. These are the following:

Service demand monitor (SDM) is in charge of monitoring each demand service which
is offered by +Cloud, which means service at SaaS and PaaS levels. There is one agent
of this type per each kind of service. These agents will be able to offer information
about not only the current demand but also the history of demands as well. They
incorporate a load balancer to redirect the request to the different virtual machine which
are offering the service at each time.

Service supervisor (SS) is responsible for making decisions about each individual
service. It receives information from the SDM of the same type of service, and is
responsible for taking action if the quality level is not what is intended or if an error is
occurring. There is one for each service and it is in the same virtual machine hosting the
SDM of the same service, which in turn incorporates the load balancer service.

Local resource monitor (LRM) is in charge of knowing the usage level of the virtual



resources for each virtual machine. There is one in each physical server and each one
has all the knowledge about the physical resource and its virtual machine. However, it
does not have any knowledge about other nodes in the cloud environment.

Local Manager (LM) is in charge of allocating the resources of a single physical
machine among its virtual machines and its own physical machine. There is one in each
physical server and the knowledge is provided by the LRM of the same physical
machine. It is able to re-distribute the resources among the virtual machines based on its
own knowledge, it also can turn on or shutdown a virtual machine of a give service. It
can make autonomous decisions based on its knowledge.

Global regulator (GR) is in charge of negotiating the re-distribution the resources at
global level with its peers. This includes (1) migration of virtual machines between
physical servers, (2) creation/destruction of physical resources (turn on/turn off physical
servers), as well as virtual resources (instantiating/ stopping virtual machines), or
simply (3) re-distribution of the resources in each physical server among its virtual
resources. There is one in each physical server.

Global supervisor (GS) oversees and ensures that the other agents of the VO work
correctly. In the event of something failing, or that one of the agents does not respond
to its messages, this role should take the necessary actions to restore the system to a
functioning state. Also, it may act as a judge in the event that GR that actors cannot
agree on a particular service.

Hardware Manager (HM), the goal of this role is to manage the hardware that is in use
and on standby at all times. It is able to start and stop hardware, as well as know the
status for each system.

Network monitor (NM), this role can monitor the network from the point of view of
each single physical machine. This information allows the algorithm to make better
decisions in an argument.

In this system, a peak in the demand of a specific service can give rise to an overload of one or
more of the virtual machines that provide this service. Therefore, the system has to re-distribute
its virtual and physical resources to cope with this problem. As indicated, resource re-distribution
can be done at the micro and macro levels; let us call them intra-machine and inter-machine,
respectively.



Fig. 2

Virtual organizations for elastic management of resources

Although the intra-machine level is not within the scope of this study, it is noteworthy that the re-
distribution of resources is made by the LM agent based on information provided by the LRM
agent. Both agents are located in the physical machine. A model case-based reasoning that has a
level of total knowledge is used to perform resource allocation.

When an LM agent detects that the physical server has insufficient resources to meet the demand
for the service, or when an SS agent detects that the quality of service is not adequate, it is
necessary to distribute to the macro level (inter-machine). It can also happen that the LM agent
detects that the physical machine is underutilized, at which point it may try to offer its resources
or even turn off the physical machine to save energy.

In these situations, the GR agents can implement several potential agreement processes in order
to decide the best option for re-distributing physical resources among existing virtual machines
in the overall cloud environment. Several types of solutions can be identified as potential
outcomes of the agreement processes established:

Basic solution consists of determining a set of physical machines that have to re-
distribute their internal resources to resolve the performance issues on their virtual
machines.

Easy solution consists of instantiating (starting) a new virtual machine of a particular
service on a server that has sufficient resources. In most cases this also involves the
basic solution in the machine that hosts the new virtual machine.

Complex solution consists of migrating one or more virtual machines (running) between
physical machines, resulting in a re-distribution of global resources. This solution is
only possible if the network load level is not high.

Expensive solution consists of starting a new physical machine and migrating virtual
machines from other physical machines to this new available server. This solution is



only possible if the network load level is not high.

Half solution consists of starting a new physics machine, and instantiating a new virtual
machine for a particular service.

Cheap solution consists of migrating all virtual machines from one physical server to
other physical machines so that the physical machine can be turned off.

Cheap and easy solution consists of turning off the virtual machines from one physical
server so that the physical machine can be turned off.

Any of these solutions entails an underlaying negotiation process to allocate virtual and physical
resources among services to solve the overload problem. However, it is not our aim in this study
to discuss the best negotiation mechanism to implement the solution itself, but to provide the
agents of the system with the ability of engaging in an argumentation dialogue to collaboratively
decide which would be the best solution to make before starting the negotiation. Our hypothesis
is that agents may make the most of their experience and help each other to avoid complex
negotiation processes that have a lower probability of ending in a successful allocation of
resources in view of similar previous experiences. In this sense, our approach can be viewed as a
model to guide the negotiation process and maximize its success.

3 Argumentation model for cloud computing paradigm

In [5, Chapter 3], we presented a computational case-based argumentation framework that agents
can use to engage in an agreement process to make a decision about a problem at hand [13]. We
assume that a problem can be characterized by a set of features that describe it. In this study, we
apply this framework to model the argumentation dialogue among agents in the +Cloud platform.

This section summarizes the main components of the framework, introduces the communication
protocol that agents use to exchange their positions and arguments and finally, shows the
preliminary evaluation results of the system presented in this work. In this system, agents are
able to have an argumentation dialogue with their peers and learn from the experience by
following a case-based reasoning process (i.e. saving the knowledge acquired as cases in case-
bases). Also, the agents of our framework use an argumentation protocol to manage positions and
arguments during the argumentation dialogue. By this protocol, agents exchange ACL messages
with specific locutions trying to reach an agreement about the best solution to apply for a specific
problem. The full explanation about the reasoning process that agents use to generate, select and
evaluate their positions and arguments is outside of the scope of this paper and can be found at
[14]. Furthermore, the entire communication protocol is defined in [5, Chapter 4].

3.1 Argumentation framework



Our case-based argumentation framework defines two types of knowledge resources that the
agents can use to manage arguments (see Sect. 3.2 for specific examples in our application
domain):

A case-base with domain-cases represents previous problems and their solutions.
Agents can use this knowledge resource to generate their positions in a dialogue and
arguments to support them by reusing the solutions applied to previous similar
problems. Therefore, the position of an agent represents the solution that this agent
proposes. Also, the acquisition of new domain-cases increases the knowledge of agents
about the domain under discussion. The structure of domain-cases that an
argumentation system implements our framework depends on the application domain.

A case-base with argument-cases stores the information about a previous argument that
an agent posed in a certain step of a dialogue with other agents. Agents in our
framework can use argument-cases (1) to generate new arguments, (2) to select the best
position to put forward in view of past argumentation experiences, and (3) to store the
new argumentation knowledge gained in each agreement process, improving the agents’
argumentation skills. Their structure is generic and domain-independent.

A set of argumentation-schemes represents stereotyped patterns of reasoning [15].
Argumentation-schemes consist of a set of premises from which agents can draw
specific conclusions. In this sense, argumentation-schemes represent general rules that
hold in the domain under discussion (e.g. regarding exceptional situations that force
agents to select an specific type of solution). In addition, argumentation-schemes
include a set of critical questions that represent possible ways of attacking the
conclusion drawn from the scheme (e.g. exceptions to the rule, other sources of
information that invalidate the rule, etc.).

In our proposal, arguments that agents exchange are tuples of the form \(\mathrm{Arg} = \{\phi ,
v, \langle S \rangle \}\), where  is the conclusion of the argument,  is the value that the agent
wants to promote and  is a set of elements that justify the argument (the support set).
Therefore, we follow the approach of value-based argumentation frameworks [16], which
assume that arguments promote values and those values are the reason that an agent may have to
prefer one type of argument to another. Values in this work can be considered as types of
solutions. Then, an agent could prefer to promote the quality of solutions and, for instance,
propose an EasySolution over a BasicSolution, since it knows by experience that the former type
of solutions achieve more successful results, for instance, in re-distributing resources for a
specific service. On the other hand, another agent could prefer to promote more economic
solutions and, for instance, propose a BasicSolution that re-distributes the existing resources of a
physical machine without incurring the cost associated with booting a new machine or starting a
migration. Moreover, in our argumentation framework we take into account the preferences
(ValPref) of each agent over the set of values pre-defined in the system to select among different

ϕ v
⟨S⟩
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1.

2.

3.

arguments to propose. Furthermore, the dependency relation between the proponent’s and the
opponent’s roles is also taken into account to evaluate arguments from other agents. In our
framework, we consider three types of dependency relations (inherited from [17]):

Power, when an agent has to accept a request from another agent because of some pre-
defined domination relationship between them (e.g. a hierarchy defined over roles);

Autorisation, when an agent has committed itself to another agent for a certain service and
a request from the latter leads to an obligation when the conditions are met (e.g. agents in
charge of virtual resources distributed across different physical machines that offer the same
service), and

Charity, when an agent is willing to answer a request from another agent without being
obliged to do so (e.g. an altruistic agent that selflessly shares its free resources).

The support set  can consist of different elements, depending on the argument purposed. For
example, if the argument justifies a potential solution for a problem, the support set is the set of
features (premises) that match the problem to solve, other extra premises that do not appear in
the description of this problem but that have been also considered to draw the conclusion of the
argument, and optionally, any knowledge resource used by the proponent to generate the
argument (domain-cases, argument-cases or argumentation-schemes). This type of argument is
called a support argument. On the other hand, if the argument attacks the argument of an
opponent, the support set can also include any of the allowed attack elements of our framework.
These are distinguishing premises, counter-examples, or critical questions. A distinguishing
premise is either a premise that does not appear in the description of the problem to solve and has
different values for two cases or a premise that appears in the problem description and does not
appear in one of the cases. A counter-example for a case is a previous case (i.e. a domain-case or
an argument-case), where the problem description of the counter-example matches the current
problem to solve and also subsumes the problem description of the case, but proposing a
different solution. Also, as pointed out before, critical questions represent potential attacks that
can defeat the conclusion of an argumentation-scheme. This other type of argument is called an
attack argument.

The structure of domain-cases and the concrete set of argumentation-schemes that an
argumentation system implements our framework depend on the application domain. However,
the structure of argument-cases is generic and domain-independent (see Table 1, for an example).
Argument- cases store the information about a previous argument that an agent posed in a
specific step of a dialogue with other agents. 

S



Table 1

Argument­case representing SA1

In argument-cases we store a problem description that has a domain context that consists of the
premises that characterize the argument. In addition, if we want to store an argument and use it to
generate a persuasive argument in the future, the features that characterize its social context must
be kept as well. The social context of the argument-case includes information about the
proponent and the opponent of the argument. Moreover, we also store the preferences (ValPref)
of each agent or group over the set of values pre-defined in the system. Finally, the dependency
relation between the proponent’s and the opponent’s roles is also stored.

In the solution part of argument-cases, we store the conclusion of the case, the value promoted,
and the acceptability status of the argument at the end of the dialogue are stored. The last feature
shows whether the argument was deemed acceptable, unacceptable or undecided in view of the
other arguments that were put forward in the agreement process. Attacked arguments remain
acceptable if the proponent of the argument is able to rebut the attack received, or if the opponent
that put forward the attack withdraws it. This feature is used in the argument management
process of our argumentation framework to represent the potentially high persuasive power of
current arguments that are similar to previous arguments that were attacked but remained
acceptable at the end of the agreement process (see [14] for a detailed explanation of this
reasoning process).

Finally, the justification part of an argument-case stores the information about the knowledge
resources that were used to generate the argument represented by the argument-case (the set of
premises, domain-cases, argument-cases or argumentation-schemes). In addition, the justification
of each argument-case has an associated dialogue-graph (or several), which represents the
dialogue where the argument was put forward. In this way, the sequence of arguments that were
put forward in a dialogue is represented, storing the complete conversation as a directed graph
that links argument-cases. This graph can be used later to improve the efficiency of an
argumentation dialogue, for instance, finishing a current dialogue that is very similar to a
previous one that proposed a solution that ended up in an unsuccessful re-distribution of



resources.

3.2 Example of argumentation dialogue

In our framework, the protocol that agents use to exchange positions and arguments is
represented by a set of locutions and a state machine that defines the allowed locutions that an
agent can put forward in each step of the argumentation dialogue (presented in Fig. 5). The
transitions between states depend on the locutions that the agent can use in each step. The set of
locutions of our argumentation protocol is as follows:

: an agent  opens the argumentation dialogue, asking other
agents to collaborate to solve a problem .

: an agent  engages in the argumentation dialogue to solve
the problem .

: an agent  leaves the argumentation dialogue to solve
the problem .

: an agent  puts forward the position  as its proposed solution to
solve the problem under discussion in the argumentation dialogue.

 (where  can be a position  or an argument arg): an agent 
challenges the position  or the argument arg of an agent , asking it for a support
argument.

: an agent  withdraws its position  as a solution for the
problem under discussion in the argumentation dialogue.

: an agent  sends to an agent  an argument arg that supports
its position.

 (where  can be an argument arg or a position ): an agent 
accepts the argument arg or the position  of an agent .

: an agent  challenges the argument arg of an agent .

: an agent  informs an agent  that it withdraws the argument
arg that it put forward in a previous step of the dialogue.

In order to demonstrate how our argumentation framework can be applied to manage the service
overload problem, this section will now describe the data-flow for the argumentation dialogue
among several global regulators engaged in the agreement process.

The process starts when a service demand monitor notices an overload in a file storage service
(FSS) that it controls. The service supervisor in charge of the virtual machines that offer this
service then sends the load information about the resources associated to these virtual machines

open_dialogue( , q)as as

q

enter_dialogue( , q)as as

q

withdraw_dialogue( , q)as as

q

propose( , p)as as p

why( , ,ϕ)as ar ϕ p as

p ar

no_commit( , p)as as p

assert( , , arg)as ar as ar

accept( , ,ϕ)as ar ϕ p as

p ar

attack( , , arg)as ar as ar

retract( , , arg)as ar as ar



to the local manager of the physical machine that hosts them. After that, the local manager will
analyze the demand of the service and ask the local resource monitor for information about the
physical resources load. With all of this information, the local manager will make the best
decision to re-distribute its virtual and physical resources to cope with this overload problem.

In this example, we assume that the local manager decides that the re-distribution of resources to
deal with the peak of demand implies an inter-machine configuration. Therefore, it transfers the
information to the service supervisor from which it received the overload problem. This service
supervisor notifies the global regulator of the same physical machine, and then it starts an
argumentation dialogue with its peers in other physical machines to decide which is the best
solution to propose to its service overload.

We also assume that there are global regulators connected among them and that they are able to
check the positions proposed by other global regulators. Furthermore, all agents are collaborative
and follow the common objective of providing the best solution by making the most of their
individual experiences. An agent that proposes a position, let us say a proponent agent, tries to
persuade any potential opponent that has proposed a different position to change its mind.

In this example, we consider the following values that agents may want to promote:

– Quality: Agents that promote this value will select those solutions that improve the quality of
the service.

– Economy: Agents that promote this value will select those solutions involving the lowest
consumption of resources.

For purposes of clarity, all agents belong to the same group, although the scenario could be
extended to consider agents that belong to different groups, representing organizations (for
instance, those which group together agents that manage the same type of services). In addition,
agents can play different roles (e.g. local manager, global regulator, etc.) and even act as
representatives of a group (e.g in this agreement process, global regulators represent the other
agents of their physical machine). Thus, this is a complex scenario that requires an argumentation
framework that is able to take into account the social context of agents to properly manage the
argumentation process.

In this setting, let us suppose that two agents that play the role of global regulators, GR2 and
GR3, are arguing with the global regulator that started the agreement process, GR, to decide
which is the best re-distribution of resources to deal with the FSS overload. The value preference
order of GR1 promotes economy (EC) over quality (QU) (promotes saving resources over
providing high quality solutions, ). Also, the example commands a dependency
relation of charity (C) between two global regulators, except for the case of GR1, which has an
authorization dependency relation (A) over the global regulators GR2 and GR3, which allows it
to ask them for resources to support the FSS service. GR2 prefers economy over quality (\(QU)
and GR3 prefers quality over economy (\(EC). Also, all agents have their own knowledge
resources (domain-cases case-base, argument-cases case-base and argumentation-schemes

QU<EC



ontology to generate, select and evaluate positions and arguments).

The premises of the domain context would store data about the overloaded resource and other
domain-dependent data about the current problem. For instance, the premises that characterize
the problem  to solve are the following: service identifier ( ), service
current demand ( ), virtual machines associated (

), physical resources associated with these virtual machines (
), and resources usage (

).

In the first step of the argumentation process, GR1 will open the dialogue with its peers by
conveying them the problem information to them with the locution open_dialogue. Then, global
operators GR2 and GR3 will search their case-bases of domain-cases (DC2 and DC3,
respectively) to generate their positions. In this case, the solution consists of a description, the
solution type and the value promoted with this solution. Figure 3 presents a potential domain-
case that GR2 could retrieve to generate its recommended solution “IR: Internal Re-distribution”
(since it has deemed it as similar enough to the current problem), which proposes re-distributing
resources inside the same physical machine, which is a BasicSolution solution that promotes
economy. Note that in this example we assume that domain-cases also store the type of solution
that they represent. Since GR2 has been able to generate a solution, it will use the locution
enter_dialogue to engage in the argumentation dialogue and propose to present its solution.

Fig. 3

Domain­case DC2

In the case of GR3, Fig. 4 shows that it has found the domain-case DC3, which proposes an
alternative solution (e.g NVM: Instantiate a new VM) that promotes quality and has the type of
solution EasySolution. Again, since GR3 has been able to generate a solution, it will use the
locution enter_dialogue to engage in the argumentation dialogue and propose to present its
solution.

q = {Service = FSS}p1
= {DemandSD1}p2

= {VMs = {VM1, VM2}}p3
= {Resources = {VM1R, VM2R}}p4
= {ResourcesUsage = {VM1RU, VM2RU}}p5



Fig. 4

Domain­case DC3

Once the agents have proposed their positions, the GR1 has to decide which between them could
be the best solution to apply. Therefore, it asks GR2 and GR3 to provide an argument for
supporting their positions with the locution why. Assuming that GR2 and GR3 are willing to
collaborate, they can put forward the following arguments using the locution assert:

Support argument of GR2:

Support argument of GR3:

where the support set includes the premises of the problem description and the domain-cases
used by GR2 (DC2) and GR3 (DC3) to generate their positions.

DC2 and DC3 can be considered as counter-examples for each other (assuming that
VM1overloaded subsumes the feature VM1RU pointing out a peak in the usage of this resource).
As both GR2 and GR3 have a charity dependency relation between them, neither GR2 nor GR3
is committed by default to accept the argument of the other agent. Then, GR1 has to evaluate the
arguments of GR2 and GR3 and decide between them. Now, let us suppose that GR! is receiving
constant information about the resources load from its local manager (which in turn receives it
from the local resource monitor). Then, let us suppose that GR1 knows an extra premise that
states that there is a current overload in the virtual machine 1 (VM1Overloaded). This new
premise matches an argumentation-schemes of its ontology, S1, which changes its value
preference order in case of any overload in a virtual machine (inspired by Waltons’s argument
for an exceptional case [15]):

SAGR2 = {IR, EC, ⟨Premises, {DC2}⟩}

SAGR3 = {NVM, QU, ⟨Premises, {DC3}⟩}



Major premise: if the case of x is an exception, then the value preference order can
be waived and changed by EC   QU in the case of x.

Minor premise: the case of overload is an exception.

Conclusion: therefore the value preference order can be waived and changed by EC 
 QU in the case of network overload.

Thus, this scheme will change the social context of the attack argument that the GR1 is going to
create. As the support set of  and  contains a domain-case, GR1 will try to
propose a counter-example or a distinguishing premise for these cases.

Thus, GR1 will check its case-base of domain-cases to find counter-examples for DC2 and DC3.
Suppose that GR1 finds one counter-example for each case (DC1a for DC2 and DC1b for DC3)
which subsume the problem description of each of these cases (but also including the new
premise that states the overload of VM1), but providing opposite solutions (e.g. “Instantiate a
new VM” for DC1a and “Internal Re-distribution” for DC1b). It could, therefore, generate the
following attack arguments:

AA1 = {NVM, QU, Premises  {VM1Overloaded}, S1, {DC1a} }

to undercut SAGR2 by attacking its support element DC2 with the counter-example DC1a. Here,
we assume that by attacking the argument of GR2, GR1 supports the argument of GR3 and then
promotes quality (QU).

AA2 = {IR, EC, Premises  {VM1Overloaded}, {DC1b} }

to undercut SAGR3 by attacking its support element DC3 with the counter-example DC1b. Here,
we assume that by attacking the argument of GR3, GR1 supports the argument of GR2 and then
promotes economy (EC) (Fig. 5).

<

<

SAGR2 SAGR3

⟨ ∪ ⟩

⟨ ∪ ⟩



Fig. 5

Argumentation state machine of the agents

GR1 will then try to find distinguishing premises and will check that the problem description of
domain-cases DC2 and DC3 matches the extended description of the problem (the original
description plus the new premise VM1overloaded). Then, GR1 realizes that DC2 does not match
with the extended description and generates an attack argument to GR2:

AA3 = {NVM, QU, Premises  {VM1overloaded}, {VM1overloaded} }

to undercut SAGR2 by attacking its support element DC2 with the distinguishing premise
VM1overloaded. Again, we assume that attacking the argument of GR2, GR1 supports the
argument of GR3 and then promotes quality (QU).

Now, GR1 has to select the argument that it will pose to attack the positions of the other global
regulators. Note that, if we assume that agents always observe their value preference orders when
putting forward arguments, GR1 would prefer to pose AA1 and AA3 first than AA2 (since GR1
has the new value preference order changed to EC  QU by the argumentation-scheme S1).
However, it has still to decide which AA1 or AA3 it would select to attack SAGR2. To do that, it
checks its argument-cases case-base to decide which is the best argument to pose in view of its
previous argumentation experience. Now, let us suppose that GR1 finds a similar argument-case
for AA3 that was unaccepted at the end of a dialogue where it was also in the exceptional
situation of an overload in the VM1, shown in Table 1. However, a counter-example that also
included the extra premise, let us say DC4, was able to defeat the argument represented by the
argument-case. Therefore, GR1 can infer that GR2 has enough pieces of evidence to defeat the

⟨ ∪ ⟩

<

http://link.springer.com/search?dc.title=Argumentation&facet-content-type=ReferenceWorkEntry&sortOrder=relevance


distinguishing premise attack AA3 at the end of the dialogue. Thus, GR1 will use the locution
attack and put forward AA1 to attack the position of GR2.

When GR2 receives the attack, it has to evaluate the attack argument in view of its support
argument. Then, it will realize that SAGR2 does not defeat AA1 from its point of view, since
GR1 has an authorization dependency relation with it. Then, it would try to generate more
support for its position. In case that it cannot find more support, GR2 would have to use the
no_commit locution to withdraw its position . If no more positions or arguments are
generated, GR3 solution would be selected as the best to deal with the overload problem of
service FSS and GR1 will send it an accept locution for its position. In this example, it is not
necessary for the service supervisor to validate the solution because the high availability of the
service is ensured.

The dialogue finishes when no new positions or arguments are proposed after a certain time.
Then, the global regulator that initiated the agreement process retrieves the active positions of the
participants, and the most accepted position (if several remain undefeated) is selected as the final
solution to propose. In case of a draw, the final solution will be the most frequent position
generated by the global regulators during the argumentation dialogue. Finally, once a position is
selected as the outcome of the agreement process, the global regulator sends it to the local
manager of its physical machine and both would start the process to implement it (with further
negotiations if necessary). Also, at the end of the argumentation dialogue, all agents update their
domain-cases case-bases with the new problem solved and their argument-cases case-bases with
the information about the arguments proposed, with the attacks received, the final acceptability
state, etc.

3.3 Preliminary evaluation of the argumentation framework

With this scenario we have demonstrated how agents’ arguments can be computationally
managed in the proposed argumentation framework. The example shows the way in which agents
can use the knowledge resources of the framework to generate, select and evaluate positions and
arguments. Also, it takes into account the social context of agents to perform these activities. Our
argumentation framework has also been implemented and tested to enhance a real customer
support application run by a Spanish company [14].

Let us show a real example where the argumentation framework solves an overload issue and,
therefore, a lost in the quality of service offered by the +Cloud environment. The test has been
performed using a control enviroment with high heterogeneous physical machines (HP, Mac
Server, Dell, etc.) with Centos linux operating system (https://​www.​centos.​org/​), the resource of
these server is also very heterogeneous in terms of CPU, memory, storage, even the system
architecture is disparate.

Following the previous example (Sect. 3.2), where the system avoids an overload problem due to
an increment in demand; the FSS is going to be subjected to a stress test where the system will

po R2sG
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have to adapt itself. During this test, the argumentation framework will be key, since it will make
the best decision in order to solve the overload problem.

The FSS characterization during the test will be the following:

The FSS will be deployed in two virtual machines (VM1 and VM2)

Each virtual machine will be deployed on a different physical server (VM1R and
VM2R).

VM1R and VM2R host an unknown number of virtual machines, and all the physical
resources will be shared among them. We assume that the re-distribution of the
resources at the intra-machine level is not possible.

The load balancer of FSS is allocated in VM1.

The cloud environment will have an unknown number of physical servers.

The test consists of making a set of calls to a specific heavy web service exposed by FSS. This
test is designed so that the load of the service increments lineally. There will be a set of threads
that will be progressively launched, this means that at the beginning of the test, there will be just
one thread and periodically one new thread will be launched (each 3 s), up to a maximum of 40
threads in parallel. The duration of the test is about 130 s. Each thread, continuously sends
requests to the specified service of the FSS. This specific method is called GetFolderContents
which returns a list of folders and files of a specific path. In this case, the specific path is the root
system (’/’). In this method, there is a special set of files and folders prepared for the test. The
response time varies between 0.5 and 4 s.

The vertical axis, in Fig. 6 represents the response time in seconds of each call to the method.

Fig. 6

Results of stress test
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The above graph shows the process of re-distributing the resources within the system. This
process includes the following steps:

The first part of the graph shows the linear increment in the number of requests. The
tendency in this part of the graph has a pronounced slope. See Tendency before adaptation in
Fig. 6.

Once the service monitor detects that the quality of service is decreasing (since there is a
big number of requests and the response time is bigger than 4 s), it notifies the problem to the
service supervisor of the FSS.

The service supervisor notifies the problem to the local managers of VM1R and VM2R,
but they cannot perform an intra-machine re-distribution of resources.

The service supervisor notifies the problem to the global regulator of its physical machine.

The global regulator initiates an argumentation with other global regulators, which are in
other physical machines. Although this argumentation is complex, it does not give rise to a
delay in the system. The result of the argumentation is to instantiate a new virtual machine in
another server. See Argumentation Phase in Fig. 6.

The next step is to adapt the system, this means turning on a new VM in another server
(VM3R) and adding it to the FSS. As we can see in Fig. 6 the load balancer retains the
majority of the requests temporaly and adding it the new VM to the FSS. When the process is
finished the load balancer redirects the retained requests to the VM that offers the service.

After the adaptation of the system, the response time does not increase. It is necessary to
take into account that at the final part of the experiment the number of queries is greater
because there are more threads running (up to 40).

Finally, it should be noted that the global tendency of the response time increases but the
adaptation makes it possible to reduce the increase.

In the fifth step of the process, the system global regulator has an argumentation dialogue with its
peers. At the beginning of this argumentation the global regulator builds the problem, , which is
composed of the following elements:

, the identification of the service, in this case FSS.

,
which is the actual demand of the service represented by the average response time, the
number of requests and the calculated percentage of quality, respectively.

 with the current virtual machines of the services,
the characterization of each virtual machine is based on the vector  which
includes information about the processor, memory, hard disk, kind of service, band

q

= {Service = FSS}p1

= {Demand = (response_time = 4, 1), (requests = 94), (quality = 0, 65)}p2

= {VMs = {VM1, VM2}}p3
⟨ ⟩VMV

http://link.springer.com/search?dc.title=Argumentation&facet-content-type=ReferenceWorkEntry&sortOrder=relevance


wide, etc.

 with the current physical machines of
the service, the characterization of each physical machine is also based on a vector 

 but it additionally includes the free resources and an indicator of the objective
performance of the physical server.

 with the current use of
resources.

Then the problem  the argumentation dialog continuous as described in the Sect. 3.2.

4 Discussion

Recent research foresees the advent of a new discipline of agent-based cloud computing systems
on the Future Internet. This paper identifies research opportunities from the multi-agent systems
(MAS) technology to the cloud computing paradigm and vice versa. Agents are intelligent,
flexible, autonomous and proactive [18]; all of these features are needed by a cloud computing
system where the resources have to be re-distributed within the system in order to cope with the
demand. Current literature reflects few references of studies that combine both agents and cloud
computing paradigms: in [19], software agents appear as a new cloud computing service which
would represent clients in virtual environments; Sim [20] presents a complex cloud negotiation
mechanism that supports negotiation activities in interrelated markets [21]; and Cao et al. [22]
present a service-oriented QOS-assured cloud computing architecture. These contributions pave
the way for an interesting new area of investigation in cloud-based multi-agent systems.

Argumentation-based agreement technologies, as a proficient research area within MAS-based
agreement models, should echo these opportunities and contribute toward the achievement of
new challenges in agent-based cloud computing. In recent years, the community of
argumentation in MAS has advanced research in many fields in the area of applying
argumentation theory to harmonize incoherent beliefs among agents and to model the interaction
among a set of agents [23]; however, the application of argumentation approaches to cloud
computing is a new challenge. Specifically, we have used an argumentation-based approach to
reach an agreement about the best solution to implement for the re-distribution of resources when
facing a peak service demand. To the best of our knowledge, we have presented the first
argumentation-based solution for load-balancing services based on MAS cooperation. Thus, we
deal with one of the main challenges for agent-based solutions to clouds software infrastructure,
which states the advantages of using agents to create intelligent and flexible cloud services [4].
These include service level agreements (SLAs) based on negotiation agents and load-balancing
services based on MAS cooperation.

In doing so, we propose the first (to the best of our knowledge) argumentation-based solution for

= {Resources = {VM1R, VM2R}}p4

⟨ ⟩VPM

= {ResourcesUsage = {VM1RU, VM2RU}}p5

q
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load-balancing services based on MAS cooperation (one of the open issues identified in [4]).
Work is currently underway to implement and test this system, in order to analyze the viability
and advantages of this approach. Also, the advantages that this approach contributes over direct
resource allocation algorithms must be analyzed.

With regards on further work, on the one hand, in argumentation in cloud computing can elicit
more argumentation-based agreement models that enable agents to argue and meet their goals
within a society. Some application examples may include: negotiating service level agreements,
providing a method to harmonize conflicts that arise in the adaption of the system to
environmental changes, and enabling a collaborative deliberation to find the best alternative for
service composition. On the other hand, in cloud computing paradigm the future work will be
focused on to perform new test on different environments (number of servers, demand of the
services, communication issues, etc.) as well as to improve the current algorithms.
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