
C

A
D

a

A
R
R
A
A

K
O
M
C
S

1

s
c
a
p

t
s
i
t
I
v
f
f
d

t
m
i
p
s

i

1
d

Applied Soft Computing 11 (2011) 3147–3159

Contents lists available at ScienceDirect

Applied Soft Computing

journa l homepage: www.e lsev ier .com/ locate /asoc

ROS: A Contingency Response multi-agent system for Oil Spills situations

itor Mata ∗, Juan M. Corchado, Dante I. Tapia
epartment of Computer Science, University of Salamanca, Plaza de la Merced s/n, Salamanca, Spain

r t i c l e i n f o

rticle history:
eceived 10 October 2008
eceived in revised form 12 July 2010
ccepted 12 December 2010
vailable online 30 December 2010

eywords:

a b s t r a c t

This paper presents CROS, a Contingency Response multi-agent system for Oil Spill situations. The sys-
tem uses the Case-Based Reasoning methodology to generate predictions to determine the probability
of finding oil slicks in certain areas of the ocean. CBR uses past information to generate new solutions to
the current problem. The system employs a SOA-based multi-agent architecture so that the main compo-
nents of the system can be remotely accessed. Therefore, all functionalities (applications and services) can
communicate in a distributed way, even from mobile devices. The core of the system is a group of delib-
il Spill
ulti-agent systems

ase-Based Reasoning
ervice Oriented Architectures

erative agents acting as controllers and administrators for all applications and services. CROS manages
information such as sea salinity, sea temperature, wind speed, ocean currents and atmosphere pressure,
obtained from several sources, including satellite images. The system has been trained using historical
data obtained after the Prestige accident on the Galician west coast of Spain. Results have demonstrated
that the system can accurately predict the presence of oil slicks in determined zones after an oil spill. The

-agen
use of a distributed multi
system.

. Introduction

The response to minimize the environmental impact when an oil
pill is produced must be precise, fast and coordinated. The use of
ontingency response systems can facilitate the planning and task
ssignation when organizing resources, especially when multiple
eople and systems are involved.

This paper presents CROS (Contingency Response multi-agent sys-
em for Oil Spill situations), a system for helping to manage these
ituations. This system deploys a prediction model which uses
ntelligent agents and Case-Based Reasoning systems to determine
he possibility of finding oil slicks in a certain area of the ocean.
t also applies a distributed multi-agent architecture based on Ser-
ice Oriented Architectures (SOA), modeling most of the system’s
unctionalities as independent applications and services. These
unctionalities are invoked by deliberative agents acting as coor-
inators.

Agents and multi-agent systems have been successfully applied
o several scenarios, such as education, culture, entertainment,

edicine and robotics [1–6]. Agents have a set of character-
stics, such as autonomy, reasoning, reactivity, social abilities,

ro-activity, mobility and organization which allow them to cover
everal needs for developing contingency response systems [7].

The agents’ characteristics make them appropriate for develop-
ng dynamic and distributed systems, as they possess the capability

∗ Corresponding author. Tel.: +34 923294400; fax: +34 923294514.
E-mail address: aitor@usal.es (A. Mata).

568-4946/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.asoc.2010.12.017
t architecture has been shown to enhance the overall performance of the

© 2010 Elsevier B.V. All rights reserved.

of adapting themselves to the users and environmental character-
istics [8]. In addition, the continuous advances in mobile computing
make it possible to obtain information about the environment
and also to react physically over it in more innovative ways. The
agents in CROS multi-agent system are based on the deliberative
(Belief, Desire, Intention – BDI) model [9], where the agents’ inter-
nal structure and capabilities are based on mental aptitudes, using
beliefs, desires and intentions for solving problems. However, mod-
ern developments need higher adaptation, learning and autonomy
levels than pure BDI models [9]. This can be achieved by modeling
the agents’ characteristics in order to provide them with mech-
anisms that allow them to solve complex problems and achieve
autonomous learning. Some of these mechanisms are Case-Based
Reasoning (CBR) systems [10], where problems are solved using
solutions applied to solve similar past problems [1]. Solutions are
stored in a case memory which the system can consult in order to
find better solutions for new problems. Deliberative agents can use
these systems to learn from past experiences and to adapt their
behavior according to each situation.

The system presented in this paper generates the probability of
finding oil slicks for different geographical areas after an oil spill.
Predictions are created using a Case-Based Reasoning system. The
cases used by the CBR system contain information about the oil
slicks (size and number) and atmospheric data (wind, ocean cur-

rents, salinity, temperature, height and pressure). CROS combines
artificial intelligence techniques in order to improve the efficiency
of the CBR system, thus generating better results. CROS was trained
using historical data acquired during the Prestige oil spill on the
Galician west coast of Spain, from November 2002 to April 2003.

dx.doi.org/10.1016/j.asoc.2010.12.017
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:aitor@usal.es
dx.doi.org/10.1016/j.asoc.2010.12.017

3 Computing 11 (2011) 3147–3159

M
m
T
(
o
d
w

s
t
fi
e
c
i

p
a
a
b
m
v
t
t
b
o

f
t
r
C
d
T
s
n
B
t
p
a
a
s

l
t
m
c
a
i
w

2

t
(
o
s
t
I
t
p
p

n
g
c

148 A. Mata et al. / Applied Soft

ost of the data used by CROS was acquired from the ECCO (Esti-
ating the Circulation and Climate of the Ocean) consortium [11].

he position and size of the slicks was obtained by treating SAR
Synthetic Aperture Radar) satellite images [12]. The development
f agents is an essential component in the analysis of data from
istributed sensors and provides those sensors with the ability to
ork together and analyze complex situations [13].

The excessive centralization of services negatively affects the
ystems’ functionalities, overcharging or limiting their capabili-
ies. Classical functional architectures are characterized by trying to
nd modularity and a structure oriented to the system itself. Mod-
rn functional architectures like Service-Oriented Architecture (SOA)
onsider integration and performance aspects that must be taken
nto account when functionalities are created outside the system.

As described by [14], “A SOA-based system is a network of inde-
endent services, machines, the people who operate, affect, use,
nd govern those services as well as the suppliers of equipment
nd personnel to these people and services”. The term service can
e defined as a mechanism that facilitates the access to one or
ore functionalities (e.g. functions and network capabilities). Ser-

ices are linked by means of standard communication protocols
hat must be used by applications in order to share resources in
he services network. A SOA approach has been chosen in CROS
ecause such architectures are asynchronous and non-dependent
n context (i.e. previous states of the system) [15].

Agents and multi-agent systems combine classical and modern
unctional architectural aspects. Multi-agent systems are struc-
ured by taking into account the modularity in the system, and by
euse, integration and performance of the data and results obtained.
ROS employs a SOA-based multi-agent architecture which allows
ifferent users to work together without sharing the same space.
he architecture divides the main components of the system into
mall pieces of software which work separately but are coordi-
ated. These components are managed through a set of deliberative
DI agents. The use of a distributed architecture can help to dis-
ribute resources and reduce the central unit tasks [16,17]. It also
rovides more flexible ways of moving functions to where actions
re needed, thus obtaining better responses at execution time,
utonomy, services continuity, and superior levels of flexibility and
calability than centralized architectures [18].

The following section presents the oil spill problem while high-
ighting the difficulties and the possibilities of finding solutions to
his problem. This is followed by a brief description of the CBR

ethodology and the systems created from it. Afterwards, the main
omponents of the system presented in this study, including its
rchitecture, are described. Finally, the results obtained by apply-
ng CROS to a real oil spill situation, the final conclusions and future

ork are presented.

. Facing the Oil Spill problem

Predicting the behavior of oceanic elements is quite a difficult
ask. In this case, the prediction is related to external elements
oil slicks), making the prediction even more difficult. The open
cean is a highly complex system that can be modeled by mea-
uring different variables and structuring them together. Some of
hese variables are essential in predicting the behavior of oil slicks.
t is necessary to know the previous positions of oil slicks in order
o predict the future presence in a specific area. That knowledge is
rovided by the analysis of satellite images which reveal the precise

osition of the slicks.

It is very important to determine if an area will be contami-
ated or not after an oil spill. It is necessary to know how the slicks
enerated by the spill behave for concluding about the presence of
ontamination in a specific area. First, the position, shape and size
Fig. 1. . Satellite image of an oil spill near the Galician west coast in Spain (top) and
its interpretation by the CROS system (bottom).

of the oil slicks must be identified. One of the most precise ways
to acquire that information is using satellite images. SAR images
are the most commonly used to automatically detect these kinds of
slicks [19]. Satellite images show certain areas where there seems
to be nothing (e.g. zones with no waves), such as oil with slicks. Fig. 1
(top) shows a SAR image which displays a portion of the Galician
west coast with black areas corresponding to oil slicks.

Fig. 1(bottom) also shows the interpretation of the SAR image
done by CROS after treating the data. SAR images make it possible
to distinguish between normal sea variability and oil slicks. It is also
important to make a distinction between oil slicks and look-alikes.
Oil slicks are quite similar to quiet sea areas, so it is not always
easy to discriminate between them. If there is not enough wind,
the difference between the calm sea and the surface of an oil slick
is less evident. This can lead to mistakes when trying to differen-
tiate between a normal situation and an oil slick. This is a crucial
aspect of this problem that can be automatically managed by com-
putational tools [20]. Once the slicks are correctly identified, it is
also crucial to know the atmospheric and maritime situation that is
affecting the zone at the moment that it is being analyzed. Informa-

tion collected from satellites is used to obtain the atmospheric data
needed. That is how different variables such as temperature, sea
height and salinity are collected in order to obtain a global model
that can explain how slicks evolve.

A. Mata et al. / Applied Soft Computing 11 (2011) 3147–3159 3149

cture

t
m
e
f
s
i
a
d
j
t
t
m
w
f
t
t
m
g
d
i
a
p
k
s
q
p
a
m
d
s
o
[

o
s

Fig. 2. . Basic stru

There are different ways to analyze, evaluate and predict situa-
ions after an oil spill. One approach is simulation [21], where the

odel of a certain area is created by introducing specific param-
ters (weather, currents and wind) and working together with a
orecasting system. Using simulations it is easy to obtain a good
olution for a certain area. However, it is quite difficult to general-
ze this information in order to solve the same problem in related
reas or new zones. It is also possible to replace the oil spill with
rifters [22] to obtain a trajectory model by comparing the tra-

ectory followed by the drifters with the already known oil slick
rajectories. If the drifters follow a trajectory similar to the one
hat followed the slicks, then a model can be created and there it

ay be possible to create more models in different areas. Another
ay of predicting oil slicks trajectories is to study previous cases

or obtaining a trajectory model for a certain area [23]. Taking
hese solutions one step further can be accomplished using sys-
ems that combine a major set of elements that generate response

odels to solve the oil spill problem. A different point of view is
iven by complex systems that use expert systems to analyze large
atabases (environmental, ecological, geographical and engineer-

ng) [24]. This way, an implicit relationship between the problem
nd the solution is obtained, but with no direct connection between
ast examples and current decisions. Nevertheless arriving at these
inds of solutions requires a great data mining effort. Once the oil
pill is produced, there should be contingency models that enable a
uick solution. Expert systems have also been used for solving this
roblem. These systems use stored information from past cases as
repository where future applications will find structured infor-
ation. The final objective of all these approaches is to create a

ecision support system that will enhance the response against oil
pill situations. Different techniques have been used to achieve this

bjective, from fuzzy logic to negotiation with multi-agent systems
25].

The next section briefly explains the CBR methodology, focusing
n the possibility of creating systems intended to solve different
ituations.
of a CBR system.

3. Case-Based Reasoning systems

Case-Based Reasoning (CBR) is a methodology whose capabil-
ities are based on past experiences. It has its origin in knowledge
based systems and has been used in several scenarios such as health
care, e-Learning, ubiquitous computing and oceanography [26–28].
CBR systems learn from previous situations. The main element of
a CBR system is the case base, which is a structure that stores
problems, elements (cases) and their solutions. A case base can be
visualized as a database where a collection of problems is stored
together with the solutions related to each problem. This allows
the system to generalize in order to solve new problems, which is
precisely the main objective of those systems.

The learning capabilities of CBR are due to its own structure,
which is composed of four main phases [10]: retrieval, reuse, revi-
sion and retain. These phases are represented in Fig. 2, with a brief
description of the main aim of each phase.

The retrieve phase consists of finding the most similar cases to
the current problem from the case base. Once a series of cases are
extracted they can be reused. The reuse phase adapts the selected
cases for solving the current problem through a new solution. The
revision phase revises the solution to check if it is an adequate solu-
tion to the current problem. If the solution is confirmed, then it
is retained in the retain phase. This new solution could eventually
serve as a solution for future problems. In most cases, CBR should
not been used alone but combined with artificial intelligence tech-
niques in each phase. For example, Growing Cell Structures have
been used with CBR to automatically create the internal structure
of the case base from existing data, and they has been com-
bined with multi-agent applications [29] to improve their results.
ART-Kohonen neural networks, artificial neural networks, genetic

algorithms and fuzzy logic [30,31] have also been used to comple-
ment the capabilities of CBR systems. These techniques enhance
the way CBR systems generate better solutions.

The main functionalities of CROS will now be described, includ-
ing the internal CBR system used for generating predictions

3150 A. Mata et al. / Applied Soft Compu

r
e

4
O

l
C
s
f
c
(
i
s
s

work that will generate the future value of the area of the slicks
Fig. 3. . Communication architecture in CROS.

egarding the presence of oil slicks in oceanic zones, and the differ-
nt agents involved in the system.

. CROS: a Contingency Response multi-agent system for
il Spills

CBR systems have already been applied to solve maritime prob-
ems [26] in which different oceanic variables were involved. In
ROS, the data collected from different satellites are processed and
tructured as cases. Cases are the key to obtaining solutions to
uture problems through a CBR system. The functionalities of CROS

an be accessed using different interfaces executed on PCs or PDAs
Personal Digital Assistants). Users can interact with the system by
ntroducing data, requesting a prediction or revising a generated
olution (i.e. prediction). Fig. 3 shows the basic communication
chema among the various components of CROS. As shown, the

Fig. 4. . Graphical user i
ting 11 (2011) 3147–3159

interface agents communicate with the services through the agent
platform (e.g. JADE, JACK and OAA) and vice versa.

Fig. 4 shows the main graphical user interface (GUI) of CROS.
The GUI shows a set of parameters, the oceanic area visualization
with oil slicks, and the squared area to be analyzed. The interface
agents perform all the different functionalities that users can use
to interact with CROS. The different phases of the CBR system have
been modeled as services, so each phase can be requested indepen-
dently. For example, one user may only input information into the
system (e.g. a new case), while another user could request a new
prediction.

Oil slicks are mainly detected by SAR images. Those images
are processed and transformed to be used by the system. Oceanic,
meteorological and oil spill related data are stored in the system in
order to generate future predictions. The data used to train the sys-
tem was obtained after the Prestige accident, between November
2002 and April 2003, in a specific geographical area on the western
coast of Galicia (longitude between 14◦ and 6◦ west and latitude
between 42◦ and 46◦ north). Table 1 shows the basic structure of
a case. The variables can be geographical (longitude and latitude),
temporal (date of the case), atmospheric (wind, current, sea height,
bottom pressure, salinity and temperature), or directly related to
the problem (number and area of the slicks).

The variables stored in the case base were chosen according to
the explanations given by experts in oceanic evolution. The vari-
ables shown in Table 1 represent the necessary information to
eventually predict the evolution of an oil slick in open ocean. The
area of the slicks parameter in the case base represents the param-
eter that is going to be predicted. That prediction will be based on
the values of the rest of the parameters (e.g. latitude, longitude, sea
height and temperature) which are the inputs of the neural net-
parameter, that is, the solution to the problem. The future situation
of the area of the slicks parameter will be generated from the rest of
the parameters of the problem introduced in the system and also
of the cases retrieved from the case base.

nterface of CROS.

A. Mata et al. / Applied Soft Computing 11 (2011) 3147–3159 3151

Table 1
Variables that define a case.

Variable Definition Unit

Longitude Geographical longitude ◦

Latitude Geographical latitude ◦

Date Day, month and year of the analysis dd/mm/yyyy
Sea height Height of the waves in open sea m
Bottom pressure Atmospheric pressure in the open sea N/m2

Salinity Sea salinity ppt (parts per thousand)
Temperature Celsius temperature in the area ◦C
Meridional wind Meridional direction of the wind m/s
Zonal wind Zonal direction of the wind m/s
Wind strength Wind strength m/s

curren
nt

nt in

w
o
t
m
T
f
b
p
i

a
m
s
s
q

a
t
t
a
g
f
t
t

a
c
T
i
l

E
t
s
p
r
f
a

4

t
s
v
[
t
w

Agent Platform and Communication Protocol. These blocks provide
all the system functionalities:

• Applications. These represent all the programs that users can use
to exploit the system functionalities. Applications are dynamic,
Meridional current Meridional direction of the ocean
Zonal current Zonal direction of the ocean curre
Current strength Ocean current strength
Area of the slicks Surface covered by the slicks prese

All the available information is stored in the case base, after
hich CROS is ready to predict future situations. The results

btained by CROS will specifically depend on the quality and quan-
ity of information stored in the case base. A problem situation

ust be introduced in the system in order to generate a prediction.
hen, the most similar cases to the current situation are retrieved
rom the case base. Once a group of cases is chosen from the case
ase, they must be used to generate a new solution to the current
roblem. Growing Radial Basis Functions Networks [32] are used

n CROS to combine the chosen cases and obtain the new solution.
CROS determines the probability of finding oil slicks in a certain

rea. CROS divides the area to be analyzed in squares of approxi-
ately half a degree per side to generate the new prediction. The

ystem then determines the amount of slicks in each square. The
quares are colored with different gradations depending on the
uantity of oil slicks calculated.

Within the case base there is a temporal relationship between
case and its future location. A square containing all the values of

he different variables can be related to the same square in the next
emporal location. That relationship will provide the internal mech-
nism used to generalize and to train the GRBF network, which will
enerate the prediction. Because every case is related to its next
uture location stored in the case base, it is easy to know the evolu-
ion of every single element within the case base and, thus, easier
o generalize the evolution of the slicks in different situations.

Fig. 5 shows the interpretation of a series of slicks. The squared
reas are those that will be analyzed by the system. First, the slicks
orresponding to different days are colored in different colors (top).
hen, the squared zones are colored in different intensities depend-
ng on the number of slicks appearing in each square (bottom). The
arger the number of slicks, the darker the square is colored.

Once the available data is structured, it is stored in the case base.
very case has its temporal situation stored and every case is related
o the next situation in the same position. The temporal relation-
hip creates the union between the problem and the solution. The
roblem is the past case, and the solution is the future case. The
elationship established between a situation and its corresponding
uture provides the necessary data for generalizing and generating
n appropriate prediction for a newly introduced problem.

.1. CROS main architecture

CROS employs a multi-agent architecture based on SOA for dis-
ributing resources and optimizing its performance. Most of the

ystem functionalities have been modeled as applications and ser-
ices managed by deliberative BDI (Belief, Desire, Intention) agents
9,33]. Deliberative BDI agents are able to cooperate, propose solu-
ions on very dynamic environments, and face real problems, even
hen they have a limited description of the problem and few
t m/s
m/s
m/s

the analyzed area km2

resources available. These agents depend on beliefs, desires, inten-
tions and plan representations to solve problems [34].

There are four basic blocks in CROS: Applications, Services,
Fig. 5. . Division of areas into squares and colors applied to each square.

3 Compu

•

•

•

152 A. Mata et al. / Applied Soft

reacting differently according to the particular situations and the
services invoked. They can be executed locally or remotely, even
on mobile devices with limited processing capabilities, because
computing tasks are largely delegated to the agents and services.
In CROS, the applications are related to the different possibilities
that the users have to relate interact with the system. There-
fore, there are applications to introduce information, to request
a prediction or to revise an automatic solution.
Services. These represent the activities that the architecture
offers. They are the bulk of the functionalities of the system at
the processing, delivery and information acquisition levels. Ser-
vices are designed to be invoked locally or remotely. Services can
be organized as local services, web services, GRID services, or
even as individual stand alone services. Services can make use
of other services to provide the functionalities that users require.
CROS has a flexible and scalable directory of services, so they can
be invoked, modified, added, or eliminated dynamically and on
demand. It is absolutely necessary that all services follow a com-
munication protocol to interact with the rest of the components.
CROS internal services cover the main phases of the CBR method-
ology, allowing the applications to introduce information in the
case base, to request a prediction and to consult the information
available in the case base.
Agent Platform. This is the core of the system, integrating a set
of agents, each one with special characteristics and behavior. An
important feature in this architecture is that the agents act as
controllers and administrators for all applications and services,
managing the adequate functioning of the system, from services,
applications, communication and performance to reasoning and
decision-making. In CROS, services are managed and coordinated
by deliberative BDI agents. The agents modify their behavior
according to the users’ preferences, the knowledge acquired from
previous interactions, as well as the choices available to respond
to a given situation.
Communication protocol. This allows applications and services
to communicate directly with the Agent Platform. The protocol
is completely open and independent of any programming lan-
guage. This protocol is based on SOAP specification to capture
all messages between the platform and the services and applica-
tions [35]. Services and applications communicate with the Agent
Platform via SOAP messages, such as the request defined below.
A response is sent back to the specific service or application that
made the request. All external communications follow the same
protocol, while the communication among agents in the platform
follows the FIPA Agent Communication Language (ACL) specifica-
tion. This is especially useful when applications run on limited
processing capable devices (e.g. cell phones or PDAs). Applica-
tions can make use of agents platforms to communicate directly
(using FIPA ACL specification) with the agents in CROS, so while
the communication protocol is not needed in all instances, it is
absolutely required for all services.

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12
/soap-envelope"
soap:encodingStyle="http://www.w3.org
/2001/12/soap-encoding">

<soap:Body
xmlns:m="http://www.example.org/spill
">
 <m:GetSpillInfo>

 <m:StockSize>IBM</m:StockSize>
 </m:GetStockInfo>
</soap:Body>

</soap:Envelope>
ting 11 (2011) 3147–3159

Agents, applications and services in CROS can communicate in a
distributed way, even from mobile devices. This makes it possible
to use resources no matter its location. It also allows the starting
or stopping of agents, applications, services or devices separately,
without affecting the rest of the resources, so the system has an ele-
vated adaptability and capacity for error recovery. Users can access
CROS functionalities through distributed applications which run
on different types of devices and interfaces (e.g. computers, PDA).
Fig. 6 shows a more detailed structure of CROS. As shown, most of
the functionalities, including the CBR system, have been modeled
as services and applications. Thus, each service can be performed on
demand and can also be replicated to respond to multiple requests.

Interface Agents are a special kind of agent in CROS designed to be
embedded in user applications. These agents are simple enough to
allow them to be executed on mobile devices, such as cell phones or
PDAs because all high demand processes are delegated to services.
CROS defines three different Interface Agents:

1. Input Agent. This agent sends the information introduced by the
users to CROS. Once the data have reached the system, it is struc-
tured into the case base. This interface agent is employed by
users that have visualized an oil slick, and then introduce the
data related to that slick into the system. Fig. 7 shows the Input
Agent interface shown to the users who introduce the data. The
main parameters to identify the slick are its position, in terms
of longitude and latitude, the surface covered by the slick, and
the distance of that slick to the coast. Once the basic informa-
tion about the slick has been sent to the system, CROS recovers
satellite information about the ocean and the meteorological
conditions in the area to create a case from the slick and geo-
graphical information.

2. Prediction Agent. When a user wants to request a prediction from
CROS, it uses this agent to do so. With the agent interface, shown
in Fig. 8, the user can define the area to be analyzed, the size of
the squares to be transformed into cases and, if there is previ-
ous information stored in the system, the existing slicks to be
considered to generate the prediction.

3. Revision Agent. When a prediction is generated by CROS, the
system can automatically verify the correction of the proposed
solution. But, if there are revision experts available, it also
requests an expert for a revision. The users receive the proposed
solution and enough data to validate the solution for the current
problem. Fig. 9 shows the interface with which the expert user
can verify the correction of the solution proposed.

CROS also defines three different services that perform all tasks
that the users may demand from the system. All requests and
responses are handled by the agents. The requests are analyzed and
the specified services are invoked either locally or remotely. Ser-
vices process the requests and execute the specified tasks. Then,
services send back a response with the result of the specific task.
In this way, the agents act as interpreters between applications
and services in CROS. The internal CBR system used to generate
the predictions and administrate the case base in CROS will now
be explained. The main services that form that system will be
explained in greater detail.

4.2. Internal CBR system

CROS is a Contingency Response multi-agent system for Oil
Spills that uses the Case-Based Reasoning methodology by imple-

menting an internal CBR system that deals with the information
available in the case base. The CBR system created to solve CROS
information needs to be divided into independent and distributed
services which cover the four main phases of the CBR cycle. The Pre-
diction Generation Service combines the retrieval and reuse phases.

A. Mata et al. / Applied Soft Computing 11 (2011) 3147–3159 3153

ROS s

T
i
t
f
i
t

4

t
i
h
s
t
b

Fig. 6. . C

his service generates a prediction after a problem description is
ntroduced in the system (i.e. in CROS). The Revision Service covers
he revision phase. It requires a confirmation of an expert (user)
or validating the solution proposed. Finally, the Data Input Service
ntegrates the retention phase, closing the whole CBR cycle. These
hree services will now be described.

.2.1. Data Input Service
When data about an oil slick is introduced, CROS must complete

he information about the area, including atmospheric and oceanic
nformation such as temperature, salinity, bottom pressure, and sea

eight. All of that complementary data is collected from satellite
ervices that offer precise information on-line and in real time. With
hat information, the case is created and introduced into the case
ase.

Fig. 7. . Input Agent interface.
tructure.

Historical data collected from November 2002 to April 2003
were used to create the initial case base for CROS. As previously
explained, cases are formed by a series of variables. Principal
Components Analysis (PCA) [36] can reduce the number of those
variables, after which the system stores the value of the principal
components, which are then related to the original variables that
define a case. PCA has been previously used to analyze oceano-
graphic data and it has proved to be a consistent technique when
trying to reduce the number of variables [37]. Some adaptations and
modifications of the classic PCA algorithm has been recently used to
solve different kinds of problems, and applied to quite different sce-
narios [38–42]. CROS uses Fast Iterative Kernel PCA (FIKPCA), which
is an evolution of PCA [43]. This technique reduces the number of
variables in a set by eliminating those that are linearly dependent,
and it is quite faster than the traditional PCA. To improve the con-
vergence of the previous Kernel Hebbian Algorithm used by classic
Kernel PCA, FIK-PCA set �t (the appropriate scalar gain) propor-
tional to the reciprocal of the estimated values. Let �t ∈ �r+ denote
the vector of values associated with the current estimate of the first
r eigenvectors. The new KHA algorithm sets the ith component of
�t to the files. � is positive tuning parameters. � determines the
length of an initial search phase with near-constant gain, with �0
and � being positive tuning parameters. Since the working phase is
not intended to start before all observations have been seen at least
once, � is tuned into small integer multiples of the data set size l.

[�t]i = 1
[�t]i

�

t + �
�0, (1)

The final variables are linearly independent and are formed by a
combination of previous variables. The values of the original vari-
ables can be recovered by applying an inverse calculation to the
one produced to obtain the new variables. The least used variables
among the final stored variables are those whose values suffer the
fewest changes during the periods of time analyzed. Salinity, tem-

perature and pressure do not change from one day to another,
so they can be ignored considering that the final result does not
depend on them.

Once applied the FIKPCA, the number of variables is reduced to
three, which have the following distribution:

3154 A. Mata et al. / Applied Soft Computing 11 (2011) 3147–3159

tion A
Fig. 8. . Predic

Variable 1: −0.560 * long − 0.923 * lat + 0.991 * s height
+ 0.919 * b pressure + 0.992 * salinity + 0.990 * temp
− 0.125 * area of slicks + 0.80 * mer wind + 0.79 *
zonal wind + 0.123 * w strenght + 0.980 * mer current +
0.980 * zonal current + 0.980 * c strength

Variable 2: 0.292 * long − 0.081 * lat − 0.010 * s height
− 0.099 * b pressure − 0.011 * salinity − 0.013 * temp
− 0.021 * area of slicks + 0.993 * merl wind + 0.993 *
zonal wind + 0.989 * w strenght − 0.024 * mer current
− 0.024 * zonal current − 0.024 * c strength

Fig. 9. . Revision Ag
gent interface.

Variable 3: 0 * long − 0.072 * lat + 0.009 * s height + 0.009
* b pressure + 0.009 * salinity + 0.009 * temp + 0.992 *
area of slicks + 0.006 * mer wind + 0.005 * zonal wind +
0.005 * w strenght − 0.007 * mer current − 0.007
* zonal current − 0.007 * c strength
After applying FIKPCA, the historical data is stored in the case
base and is used to solve future problems using the rest of the CBR
cycle. Storing the principal components instead of the original vari-
ables implies reducing the amount of memory necessary to store

ent interface.

Compu

t
a
c

S
u
r
i
b
c
t
t
s
i
l
r

ω

ω

T
t
t
t
t
p

l
i

a
s
C
t
o
r
s

4

r
l
n

m
(
a
m
t
s
p
t
r

t
p
fi
o
[
R
t
s
i

f
t

A. Mata et al. / Applied Soft

he information in about a 60% of the cases, which is more important
s the case base grows. The reduction of the number of variables
onsidered also implies a faster recovery from the case base.

When introducing the data into the case base, Growing Cell
tructures (GCS) [44] are used. GCS can create a model from a sit-
ation organizing the different cases by their similarity. If a 2D
epresentation is chosen to explain this technique, the most sim-
lar cells (i.e. cases) are near each other. If there is a relationship
etween the cells, they are grouped together, and this grouping
haracteristic helps the CBR system to recover the similar cases in
he next phase. When a new cell is introduced in the structure,
he closest cells move towards the new one, changing the overall
tructure of the system. The weights of the winning cell ωc, and
ts neighbours ωn, are changed. The terms εc and εn represent the
earning rates for the winner and its neighbours, respectively. x
epresents the value of the input vector.

c(t + 1) = ωc(t) + εc(x − ωc) (2)

n(t + 1) = ωn(t) + εn(x − ωn) (3)

he GCS insertion works as follows. First, the most similar cell to
he new one is found. The new cell is introduced in the middle of
he connection between the most similar cell and the least similar
o the new one. Then, direct neighbours of the closest cell change
heir values by approximating to the new cell and the specified
ercentage of the distance between them and the new cell.

Once the case base has stored the historical data, and the GCS has
earned from the original distribution of the variables, the system
s ready to receive a new problem.

When a new problem comes to the system, GCS are used once
gain. The stored GCS behaves as if the new problem would be
tored in the structure and finds the most similar cells (cases in the
BR system) to the problem introduced in the system. In this case,
he GCS does not change its structure because it has being used to
btain the most similar cases to the introduced problem. Only in the
etain phase does the GCS change again, introducing the proposed
olution if it is correct.

.2.2. Prediction Generation Service
When a prediction is requested by a user, the system starts

ecovering from the case base the most similar cases to the prob-
em proposed. Then, it creates a prediction using artificial neural
etworks.

The similarity between the new problem and the cases is deter-
ined by the GCS. Every element in the GCS has a series of values

every value corresponds to one of the principal components cre-
ted after the PCA analysis). The distance between elements is a
ulti-dimensional distance where all the elements are considered

o establish the distance between cells. After obtaining the most
imilar cases from the case base, the cases are used in the next
hase. The most similar cases stored in the case base will be used
o obtain an accurate prediction according to the previous solutions
elated to the selected cases.

Once the most similar cases are recovered from the case base,
hey are used to generate the solution. The prediction of the future
robability of finding oil slicks in an area is generated using an arti-
cial neural network with a hybrid learning system. An adaptation
f Radial Basis Functions Networks is used to obtain that prediction
45]. The chosen cases are used to train the artificial neural network.
adial Basis Function networks were chosen because of the reduced
raining time compared to other artificial neural network systems,

uch as Multilayer Perceptrons. In this case, the network is trained
n every analysis using only the cases selected from the case base.

Growing RBF networks [46] are used to obtain the predicted
uture values corresponding to the proposed problem. This adapta-
ion of the RBF networks allows the system to grow during training,
ting 11 (2011) 3147–3159 3155

while gradually increasing the number of elements (prototypes)
which play the role of the centers of the radial basis functions. The
creation of the Growing RBF must be made automatically, which
implies an adaptation of the original GRBF system. The error for
every pattern is defined by (4).

ei = l

p∗
∑p

j=1
||tij − yij||, (4)

where tij is the desired value of the jth output unit of the ith training
pattern, yij the actual values of the jth output unit of the ith training
pattern.

The Growing RBF process is described next:

1. Calculate the error, ei (4) for every new possible
prototype:
(a) If the new candidate does not form part of the

selected cases and the error calculated is less
than the error, then the new candidate is added
to the set of accepted prototypes.

(b) If the new candidate belongs to the accepted
ones and the error is less than the error
threshold, then modify the weights of the
neurons in order to adapt them to the new situ-
ation.

2. Select the best prototypes from the candidates:
a. If there are valid candidates, create a new cell

centred on it.
b. Else, increase the iteration factor. If the

iteration factor reaches 10% of the training
population, freeze the process.

3. Calculate global error and update the weights:
a. If the results are satisfactory, end the pro-

cess. If not, go back to step 1.

Once the GRBF network is created, it is used to generate the solu-
tion to the proposed problem. The solution proposed is the output
of the GRBF network created with the retrieved cases. The input to
the GRBF network, which is used to generate the solution, is the
data related to the problem to be solved, i.e., and the values of the
variables stored in the case base.

4.2.3. Revision Service
After generating a prediction, the system needs to validate its

correction. The system can also query an expert user to confirm the
automatic revision previously done. The prediction is shown to the
users in a similar way to how the slicks are interpreted by CROS. A
set of squared colored areas appear. The intensity of the color corre-
sponds to the possibility of finding oil slicks in that area. The areas
colored with a higher intensity are those with the highest proba-
bility of finding oil slicks in them. In this visual approximation, the
user can check if the solution is adequate. The system also provides
an automatic method of revision that must be also checked by an
expert user who confirms the automatic revision.

Explanations are a recent revision methodology used to check
the correction of the solutions proposed by CBR systems [47]. Expla-
nations are a kind of justification of the solution generated by the
system. To obtain a justification to the given solution, the cases
selected from the case base are used again. As explained before,
we can establish a relationship between a case and its future sit-
uation. If we consider the two situations defined by a case and
the future situation of that case as two vectors, we can define a

distance between them, calculating the evolution of the situation
under the given conditions. That distance is calculated for all the
cases retrieved from the case base as similar to the problem to be
solved. If the distance between the proposed problem and the solu-
tion given is not greater than the average distances obtained from

3 Computing 11 (2011) 3147–3159

t
s

1

2

3

4

5

w
t
i
c
i

s
s
d

P
t
i
c
c
w
g
k

5

a
c
s
t
e
t

b
e
s
S
s
i
r

k
t
t
u
i
t
i

table shows the evolution of the results along with the increase in
the number of cases stored in the case base. The results for all of
the techniques analyzed improved while increasing the number of
cases stored. Having more cases in the case base makes it easier to

Table 2
Percentage of good predictions obtained with different techniques.

Number of cases RBF CBR RBF + CBR CROS

100 45% 39% 42% 43%
500 48% 43% 46% 46%
156 A. Mata et al. / Applied Soft

he selected cases, then the solution is a good one, according to the
tructure of the case base. Next, the revision process is specified:

. For every selected case in the retrieval phase,
the distance between the case and its solution is
calculated.

. The distance between the proposed problem and the
proposed solution is also calculated.

. If the difference between the distance of the pro-
posed solution and that of the selected cases is
below a certain threshold value, then the solution
is considered to be valid.

. If not, the user is informed and the process goes
back to the retrieval phase, where new cases are
selected from the case base.

. If after a series of iterations the system does
not produce a good enough solution, then the user
is asked to consider accepting the best generated
solution.

The distances are calculated considering the sign of the values
ithout using its absolute value. This decision is justified by the fact

hat it is not the same to move to the north as to the south, even
f the distance between two points is the same. If the prediction is
onsidered correct, it will be stored in the case base and can be used
n future predictions for obtaining new solutions.

If the proposed prediction is accepted, it is considered as a good
olution to the problem and can be stored in the case base in order to
olve new problems. It will have the same category as the historical
ata previously stored in the system.

When inserting a new case in the case base, Fast Iterative Kernel
CA is used for reducing the number of variables used and adapting
he data generated by the system. The adaptation is done by chang-
ng the original variables into the principal components previously
hosen by the system. The internal structure of the case base also
hanges when a new case is introduced. The GCS system related
ith the case base structure controls its growth. The GCS system

rows and improves its capability of generating good results as new
nowledge is introduced in the system.

. Results

CROS uses different artificial intelligence techniques to cover
nd solve all the phases of the CBR cycle. Fast Iterative Kernel Prin-
ipal Component Analysis is used to reduce the number of variables
tored in the system, achieving about a 60% reduction in the size of
he case base. This adaptation of the PCA also implies a faster recov-
ry of cases from the case base (more than 7% faster than storing
he original variables).

To obtain a prediction using the cases recovered from the case
ase, the Growing Radial Basis Function Networks was used. This
volution of the RBF networks implies a better adaptation to the
tructure of the case base, which is organized using Growing Cell
tructures. The results from using Growing RBF networks instead of
imple RBF networks are about 4% more accurate, which is a good
mprovement. Using GRBF also implies a better adaptation to the
etrieved data which implies a more coherent solution generation.

Evaluations show that the system can make predictions in
nown conditions, showing better results than previously used
echniques. The use of a combination of techniques integrated in

he CBR structure makes it possible to obtain better results than
sing the CBR alone (17% better), and also better than using the

solated techniques (neural networks), without the integration fea-
ure produced by the CBR (11% better). A summary of all these
mprovements can be seen in Fig. 10.
Fig. 10. . Summary of the improvement of the results obtained with CROS.

The predicted situation was compared to the actual future situ-
ation. The future situation was known because historical data was
used to develop the system and to test its correction. The proposed
solution was, for the majority of the variables, close to 90% accurate.
For every problem defined by an area and its variables, the system
offers 9 solutions (i.e. the same area with its proposed variables
and the eight closest neighbours). This type of prediction is used
in order to clearly observe the direction of the slicks, which can be
useful in determining the coastal areas that will be affected by the
slicks generated after an oil spill.

Table 2 shows a summary of the results obtained after compar-
ing different techniques with the results obtained using CROS. The
1000 51% 47% 58% 64%
2000 56% 55% 65% 72%
3000 59% 58% 68% 81%
4000 60% 63% 69% 84%
5000 63% 64% 72% 87%

A. Mata et al. / Applied Soft Computing 11 (2011) 3147–3159 3157

Table 3
Multiple comparison procedure among different techniques.

RBF CBR RBF + CBR CROS

RBF

fi
t
s
a
a
i
n
T
r
t
t
t
i
c
a
v
t
p
e
n
o
t
s
t
t
o
u
b
o
w
u
u
a
t

(
a
m
f
t
T
t
f
T
d
˛
w
T
o
r

m
t
e
e
d
o

CROS is far more unstable. This is because the PGS had to perform
all requests by itself. It is important to notice that when the PGS
crashed, more agents crashed because they were always waiting for
the service response. For example, when processing 50 data sets,
CBR =
RBF + CBR = =
CROS * * *

nd cases similar to the proposed problem, which in turn enables
he solution to be more accurate. The “RBF” column represents a
imple Radial Basis Function Network that is trained with all the
vailable data. The network produces an output that is considered
solution to the problem. The network is trained with the major-

ty of the information available and, the rest of the data, which has
ot been previously used for training purposes, is used to check it.
here is no filtering or selection of optimal data. The “CBR” column
epresents a pure CBR system, with no other techniques included;
he cases are stored in the case base and recovered considering
he Euclidean distance (according to the internal representation of
he cases). The most similar cases are selected and, after apply-
ng a weighted mean according to the similarity of the selected
ases with the inserted problem, a solution s proposed. The values
re calculated transforming the information stored into a vector of
alues, which allows the system to measure the distance between
wo different elements. The “RBF + CBR” column corresponds to the
ossibility of using a RBF system combined with CBR. The recov-
ry from the CBR is done by the Manhattan distance and the RBF
etwork works in the reuse phase, adapting the selected cases to
btain the new solution. The RBF network is now trained with all
he information used for training, but when generating solutions, a
ubset of the data available is introduced in the network to generate
he results. The results of the “RBF + CBR” column are generally bet-
er than those from the “CBR”, mainly because of the elimination
f useless data to generate the solution. Finally, the “CROS” col-
mn shows the results obtained by the proposed system, obtaining
etter results than the three previously analyzed solutions. The lab-
ratory environment where the different techniques were applied
as the same for all of them. Three Pentium IV computers were
sed in the tests (3.00 GHz, 2 Gb RAM, Windows). One of them was
sed as a server, and the other two were used to send requests
nd receive the solutions. The same historical data was also used
o generate all the results used for comparison.

Table 3 shows a multiple comparison procedure
Mann–Whitney’s test) [48] used to determine which models
re significantly different from the others. This test helps to deter-
ine H0. That is, whether the variables are identically distributed

or two analyzed techniques. In our case, the variables represent
he percentage of errors for the numbers of cases shown in Table 2.
herefore, the variables x and y represent the different pairs of
echniques (i.e. RBF, CBR, RBF + CBR and CROS) selected. The values
or the variables x and y are the successive rows of each column.
he asterisk indicates that these pairs show statistically significant
ifferences. We have taken the lowest significance level for H0 (i.e.
= 0.13) where CROS presents statistically significant differences
ith the rest of the models, while the rest are considered equal.

he proposed solution does not generate a trajectory, but a series
f probabilities in different areas, which is far more similar to the
eal behavior of the oil slicks.

Several tests have been done to compare the overall perfor-
ance of CROS. The tests consisted of a set of requests delivered

o the Prediction Generation Service (PGS) which in turn had to gen-

rate solutions for each problem. There were 50 different data sets,
ach one with 10 different parameters. The data sets were intro-
uced into the PGS through a remote PC running multiple instances
f the Prediction Agent. The data sets were divided in five test groups
Fig. 11. . Average time needed to generate all solutions.

with 1, 5, 10, 20 and 50 data sets respectively. There was one
Prediction Agent for each test group. 30 runs for each test group
were performed. Several data have been obtained from these tests,
notably the average time to accomplish the solutions, the num-
ber of crashed agents, and the number of crashed services. First, all
tests were performed with only one Prediction Service running in
the same workstation on which the system was running. Then, five
Prediction Services were replicated also in the same workstation.
For every new test, the case base of the PGS was deleted in order to
avoid a learning capability, thus requiring the service to accomplish
the entire prediction process.

Fig. 11 shows the average time needed by CROS for generating all
solutions (predictions) for each test group. As can be seen, the time
exponentially increases when there is only one PGS running. This is
because the service must finish a request to start the next one. So,
for the last test group (50 data sets) the service was overcharged.
On the other hand, with five replicated services, the system can dis-
tribute the requests among these services and optimize the overall
performance. The system performed slightly faster when process-
ing a single request, but the performance was constantly reduced
when more requests were sent to the service.

Fig. 12 shows the average number of crashed agents and ser-
vices during all tests. As can be seen, with only one PGS available
Fig. 12. . Average number of crashed agents.

3 Compu

t
T
h

6

i
d
o
u
t
r
t
m
t
i
d
e

t
I
r
i

p
b
m
s
f
W
s
o
w

d
T
i
r
o
t
u
b
i

A

T

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

158 A. Mata et al. / Applied Soft

he last agent had to wait almost 200 s to receive the response.
hese data demonstrate that a distributed approach provides a
igher ability to recover from errors.

. Conclusions and future work

CROS is a new solution for predicting the presence of oil slicks
n oceanic areas after an oil spill. This system has a SOA-based
istributed multi-agent architecture which allows the simultane-
us interaction of multiple users. Distributing resources also allows
sers to interact with the system in different ways depending on
heir specific needs for each situation (e.g. introducing data or
equesting a prediction). This distributed and multi-agent architec-
ure is an improvement over previous tools where the information

ust be centralized and where local interfaces were used. With
he vision introduced by CROS, all the different people that may
nteract with a contingency response system can collaborate in a
istributed way, being physically located in different places but
xchanging information in a collaborative mode.

CROS uses a Case-Based Reasoning system to create new solu-
ions and predictions using past solutions given to past problems.
t has been demonstrated that the CBR system generates consistent
esults. The structure of the CBR system was divided into services
n order to optimize the overall performance of CROS.

In order to improve the system, it will be necessary to incor-
orate some generalizations. Applying the methodology explained
efore to diverse geographical areas will improve the results even
ore, being able to generate good solutions in a larger variety of

ituations. The current system was mainly developed using data
rom the accident of the Prestige off the north-west coast of Spain.

ith that information, CROS was able to generate solutions to new
ituations, based on the available cases. If the amount and variety
f cases stored in the case base increases, the quality of the results
ill also improve.

Although the performed tests have provided us very useful
ata, it is necessary to continue developing and enhancing CROS.
he number of possible interfaces can be augmented, including
ndependent sensors that may send information to the system in
eal-time. The data received by the system must be analyzed in
rder to detect new spills and to generate fast and accurate solu-
ions to existing problems without the direct intervention of the
sers. Then, the system will be not only a contingency response
ut also a kind of supervising system that can be specifically used

n dangerous geographical areas.

cknowledgements

This work was supported in part by the projects MEC THOMAS
IN2006-14630-C03-03, IMSERSO 137/07 and JCYL SA071A08.

eferences

[1] J.M. Corchado, J. Bajo, Y. De Paz, D.I. Tapia, Intelligent environment for moni-
toring Alzheimer patients, agent technology for health care, Decision Support
Systems 44 (2008) 382–396.

[2] B. Schön, G.M.P. O’hare, B.R. Duffy, A.N. Martin, J.F. Bradley, Agent assistance
for 3D world navigation, Lecture Notes in Computer Science 3661 (2005)
499–1499.

[3] H.H. Lund, Adaptive robotics in entertainment, Applied Soft Computing Journal
1 (2001) 3–20.

[4] J. Bajo, J.M. Corchado, Y. De Paz, J.F. De Paz, S. Rodríguez, Q. Martín, A. Abraham,
SHOMAS: intelligent guidance and suggestions in shopping centres, Applied
Soft Computing Journal 9 (2009) 851–862.

[5] M.S. Hamdi, MASACAD: a multi-agent approach to information customiza-

tion for the purpose of academic advising of students, Applied Soft Computing
Journal 7 (2007) 746–771.

[6] G. Cabri, L. Ferrari, L. Leonardi, A role-based mobile-agent approach to support
e-democracy, Applied Soft Computing Journal 6 (2005) 85–99.

[7] J. Yang, Z. Luo, Coalition formation mechanism in multi-agent systems based
on genetic algorithms, Applied Soft Computing Journal 7 (2007) 561–568.

[

[

[

ting 11 (2011) 3147–3159

[8] G.T. Jayaputera, A.B. Zaslavsky, S.W. Loke, Enabling run-time composition and
support for heterogeneous pervasive multi-agent systems, Journal of Systems
and Software 80 (2007) 2039–2062.

[9] M.E. Bratman, D. Israel, M.E. Pollack, Plans and resource-bounded practical
reasoning, Computational Intelligence 4 (1988) 349–355.

10] A. Aamodt, E. Plaza, Case-based reasoning: foundational issues, methodological
variations, and system approaches, AI Communications 7 (1994) 39–59.

11] D. Menemenlis, C. Hill, A. Adcroft, J.M. Campin, B. Cheng, B. Ciotti, I. Fukumori,
P. Heimbach, C. Henze, A. Köhl, NASA supercomputer improves prospects for
ocean climate research, EOS Transactions 86 (2005) 89–95.

12] J.M.T. Palenzuela, L.G. Vilas, M.S. Cuadrado, Use of ASAR images to study the
evolution of the Prestige oil spill off the Galician coast, International Journal of
Remote Sensing 27 (2006) 1931–1950.

13] F. Pecora, A. Cesta, Dcop for smart homes: a case study, Computational Intelli-
gence 23 (2007) 395–419.

14] J.A. Estefan, K. Laskey, F.G. Mccabe, D. Thornton, Reference Architecture for
Service Oriented Architecture Version 1.0, 2008 (Online PDF).

15] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, S. Weerawarana, Unraveling
the Web services web: an introduction to SOAP, WSDL, and UDDI, IEEE Internet
Computing 6 (2002) 86–93.

16] L. Ardissono, G. Petrone, M. Segnan, A conversational approach to the interac-
tion with Web Services, Computational Intelligence 20 (2004) 693–709.

17] H. Voos, Agent-based distributed resource allocation in technical dynamic sys-
tems, in: Proceedings of the IEEE Workshop on Distributed intelligent Systems:
Collective intelligence and Its Applications (DIS’06), IEEE Computer Society,
Washington, DC, 2006.

18] L.M. Camarinha-Matos, H. Afsarmanesh, A comprehensive modeling frame-
work for collaborative networked organizations, Journal of Intelligent
Manufacturing 18 (2007) 529–542.

19] A.H.S. Solberg, G. Storvik, R. Solberg, E. Volden, Automatic detection of oil spills
in ERS SAR images, IEEE Transactions on Geoscience and Remote Sensing 37
(1999) 1916–1924.

20] B.J. Ross, A.G. Gualtieri, F. Fueten, P. Budkewitsch, B.J. Ross, A.G. Gualtieri, F.
Fueten, P. Budkewitsch, Hyperspectral image analysis using genetic program-
ming, Applied Soft Computing 5 (2005) 147–156.

21] I. Brovchenko, A. Kuschan, V. Maderich, M. Zheleznyak, The modeling system
for simulation of the oil spills in the Black Sea, in: 3rd EuroGOOS Confer-
ence: Building the European Capacity in Operational Oceanography, 2002,
p. 192.

22] J.M. Price, Z.G. Ji, M. Reed, C.F. Marshall, M.K. Howard, N.L. Guinasso Jr., W.R.
Johnson, G.B. Rainey, Evaluation of an oil spill trajectory model using satellite-
tracked, oil-spill-simulating drifters, in: OCEANS 2003. Proceedings, 2003, p.
3.

23] P. Vethamony, K. Sudheesh, M.T. Babu, S. Jayakumar, R. Manimurali, A.K. Saran,
L.H. Sharma, B. Rajan, M. Srivastava, Trajectory of an oil spill off Goa, east-
ern Arabian Sea: field observations and simulations, Environmental Pollution
(2007) 148.

24] C. Douligeris, J. Collins, E. Iakovou, P. Sun, R. Riggs, C.N.K. Mooers, Develop-
ment of OSIMS: an oil spill information management system, Spill Science &
Technology Bulletin 2 (1995) 255–263.

25] X. Liu, K.W. Wirtz, Sequential negotiation in multiagent systems for oil spill
response decision-making, Marine Pollution Bulletin 50 (2005) 469–474.

26] J.M. Corchado, F. Fdez-Riverola, FSfRT: forecasting system for red tides, Applied
Intelligence 21 (2004) 251–264.

27] I. Bichindaritz, Memory organization as the missing link between case-based
reasoning and information retrieval in biomedicine, Computational Intelli-
gence 22 (2006) 148–160.

28] N. Pincho, V. Marques, A. Brito, J.T. Farinha, E-learning by experience-how CBR
can help, WSEAS Transactions on Advances in Engineering Education 3 (2006)
699–704.

29] C. Carrascosa, J. Bajo, V. Julian, J.M. Corchado, V. Botti, Hybrid multi-agent
architecture as a real-time problem-solving model, Expert Systems With Appli-
cations 34 (2007) 2–17.

30] F. Fdez-Riverola, E.L. Iglesias, F. Díaz, J.R. Méndez, J.M. Corchado, Applying lazy
learning algorithms to tackle concept drift in spam filtering, Expert Systems
With Applications 33 (2007) 36–48.

31] S. Chaudhury, T. Singh, P.S. Goswami, Distributed fuzzy case based reasoning,
Applied Soft Computing Journal 4 (2004) 323–343.

32] N.B. Karayiannis, G.W. Mi, Growing radial basis neural networks: merging
supervised and unsupervised learning with network growth techniques, Neural
Networks, IEEE Transactions 8 (1997) 1492–1506.

33] N.R. Jennings, M. Wooldridge, Applying agent technology, Applied Artificial
Intelligence 9 (1995) 351–361.

34] M. Georgeff, A. Rao, Rational software agents: from theory to practice, in: N.R.
Jennings, M.J. Wooldridge (Eds.), Agent Technology: Foundations, Applications,
and Markets, Secaucus/Springer-Verlag, NJ/New York, 1998.

35] E. Cerami, Web Services Essentials Distributed Applications with XML-RPC,
SOAP, UDDI & WSDL, O’Reilly & Associates, Inc., 2002.

36] G.H. Dunteman, Principal Components Analysis, Newbury Park, California,
1989.
37] R.W. Preisendorfer, Principal Component Analysis in Meteorology and
Oceanography, Development in Atmospheric Science (1988).

38] J.E. Fowler, Compressive-projection principal component analysis, IEEE Trans-
actions on Image Processing 18 (2009) 2230–2242.

39] P. Filzmoser, K. Hron, C. Reimann, Principal component analysis for composi-
tional data with outliers, Environmetrics 20 (2009) 621–632.

Compu

[

[

[

[

[

[
[

A. Mata et al. / Applied Soft

40] S.W. Lin, S.C. Chen, PSOLDA: a particle swarm optimization approach for
enhancing classification accuracy rate of linear discriminant analysis, Applied
Soft Computing 9 (2009) 1008–1015.

41] V. Rokhlin, A. Szlam, M. Tygert, A randomized algorithm for principal com-
ponent analysis, SIAM Journal on Matrix Analysis and Applications 31 (2009)
1100–1124.
42] V. Ravi, C. Pramodh, Threshold accepting trained principal component neural
network and feature subset selection: application to bankruptcy prediction in
banks, Applied Soft Computing 8 (2008) 1539–1548.

43] S. Gunter, N.N. Schraudolph, S.V.N. Vishwanathan, Fast iterative kernel prin-
cipal component analysis, Journal of Machine Learning Research 8 (2007)
1893–1918.

[

[

ting 11 (2011) 3147–3159 3159

44] B. Fritzke, Growing cell structures – a self-organizing network for unsupervised
and supervised learning, Neural Networks 7 (1994) 1441–1460.

45] S. Haykin, Neural Networks, Prentice Hall, Upper Saddle River, NJ, 1999.
46] F. Ros, M. Pintore, J.R. Chrétien, Automatic design of growing radial basis func-

tion neural networks based on neighboorhood concepts, Chemometrics and
Intelligent Laboratory Systems 87 (2007) 231–240.
47] E. Plaza, E. Armengol, S. Ontañón, The explanatory power of symbolic
similarity in case-based reasoning, Artificial Intelligence Review 24 (2005)
145–161.

48] H.B. Mann, D.R. Whitney, On a test of whether one of two random variables is
stochastically larger than the other, The Annals of Mathematical Statistics 18
(1947) 50–60.

	CROS: A Contingency Response multi-agent system for Oil Spills situations
	Introduction
	Facing the Oil Spill problem
	Case-Based Reasoning systems
	CROS: a Contingency Response multi-agent system for Oil Spills
	CROS main architecture
	Internal CBR system
	Data Input Service
	Prediction Generation Service
	Revision Service

	Results
	Conclusions and future work
	Acknowledgements
	References

