Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 21 = Issue 5 = August 2008 ISSN 0952-1976

Engineering Applications of
Artificial
Intelligence

The International Journal of Intelligent Real-Time Automation

Special Section
o 7 £ <A

for

and Scheduling Problems

Gues! Edfitors
M.A. Salido, A. Garrido and R. Bartdk

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

ke

ELSEVIER

Available qnline at www.sciencedirect.com
ScienceDirect

Engineering Applications of Artificial Intelligence 21 (2008) 769-784

Engineering Applications of

ARTIFICIAL
INTELLIGENCE

www.elsevier.com/locate/engappai

An execution time planner for the ARTIS agent architecture

Javier Bajo?®, Vicente Julian®, Juan Manuel Corchado®*, Carlos Carrascosa®, Yanira de Paz?,
Vicente Botti®, Juan Francisco de Paz®

#Departamento de Informdtica y Automdtica, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain
®Departamento de Sistemas Informdticos y Computacion, Universidad Politécnica de Valencia, 46022 Valencia, Spain

Received 11 December 2006; received in revised form 9 July 2007; accepted 16 July 2007
Available online 7 September 2007

Abstract

The purpose of this paper is to present an approach for integrating new complex deliberative behaviours in a real-time agent
architecture, specifically in the ARTIS agent architecture, which is specially designed for hard real-time environments. The new
deliberative agent proposed remakes its plans at runtime conserving the system integrity and its real-time feature. The proposed system
has been successfully tested in a robotic test environment. This environment consisted of the automated management of the internal and
external mail in a department plant, where the main goal was to ease the workload of a mail-robot. The results obtained increased the
flexibility and adaptability of the real-time agent while retaining the temporal restrictions.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Execution time planner; Case-based reasoning; Case-based planning; ARTIS agent; Mail delivery

1. Introduction

The future of multi-agent systems will be determined by
how they can be applied to real and complex environments.
Such environments may need to satisfy fundamental
restrictions for which current agent-based techniques may
not be appropriated. That is the case of hard real-time
environments, where multi-agent systems seem especially
suitable for developing solutions in systems of this kind
(Julian et al., 2000). The present study covers the problem
of real-time multi-agent system construction, where it is
necessary to merge intelligent deliberative techniques with
real-time actions in complex and distributed environments.
The system development with these integrated features
produces an unquestionable increase in complexity and a
need for the adaptation of current techniques or delib-
erative processes and, in some cases, the development
of new ones. More specifically, this paper proposes the
integration of a new deliberative behaviour, based on
bounded case-base reasoning techniques, in the ARTIS
hard real-time agent architecture (AA) (Botti et al., 1999).

*Corresponding author. Tel.: +34618696589; fax: +34923294514.
E-mail address: corchado@usal.es (J.M. Corchado).

0952-1976/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.engappai.2007.07.006

A real-time system (RTS) may be defined as a system at
which correction depends not only on the computation
result but also on the moment this result is produced
(Burns and Wellings, 2001). In general, a RTS is
characterized by the concurrent execution of tasks, the
priority of security and reliability, and temporal determin-
ism. Nowadays, the application of agents and multi-agent
systems to RTSs provides flexibility and distributed
problem solving. The developing of new applications in
the real-time distributed systems area has added a great
complexity to the systems, especially to requirements
related to the dynamic adaptation to changing conditions.
The development of a great part of the RTS is realized by
handling them as distributed systems, especially because
these RTS possess the inherent features of distribution and
dynamism (Burns and Wellings, 2001).

The agent theory is considered a very powerful and
promising option that can be used to develop complex
distributed systems. If multi-agent systems are applied to
RTSs, then they may be called real-time multi-agent
systems. Furthermore, it is possible to introduce in these
systems the concept of real-time agent as an agent that has
to deal with timing restrictions to carry out its responsi-
bilities (Botti et al., 1999). Therefore, a real-time agent

770 J. Bajo et al. | Engineering Applications of Artificial Intelligence 21 (2008) 769-784

must guarantee the fulfilment of its timing restrictions and,
at the same time it has to try to get its goals or objectives
(Soler et al., 2002). If a real-time agent is used in a multi-
agent system and besides it takes into account that in RTSs
the communications and protocols among agents cannot
be too many complexes, then a more complete definition of
real-time multi-agent system is obtained.

The ARTIS AA (Botti et al., 1999) provides a real-time
agent model composed basically of in-agents able to model
the agent behaviours dedicated to reach its goals. In-agents
are internal entities that have all the knowledge needed
to solve a particular sub-problem. Last but not least, a
Control Module in charge of the real-time execution of all
the AA in-agents is available. According to the AA features
shown, it seems to fit for solving hard real-time problems.

Intelligent agents may use a lot of reasoning mechan-
isms. One of them is based on planning techniques
(Martens and Uhrmacher, 2002). Planning-based agents
decide the course of an action before it is realized. Thus, a
plan represents the structure of such action. A planning-
based agent will execute plans allowing it to reach its goals.
To do this, the agent goes from an initial state to try to get
to a final state or set of states. The mechanism used to
reach the goals is to apply a set of operators over the
objects composing the agent’s environment. The AAs are
agents that allow the use of planning techniques. To do
this, they have a knowledge base composed of the agent’s
environment description, a description of the objectives to
be obtained and an inference mechanism that allows it to
reach the final state from the initial state.

The main aim of this paper is to integrate new bounded
deliberative techniques into the ARTIS AA. Such an agent
will be able to incorporate a new planning proposal known
as case-base planning-beliefs desires intentions (CBP-BDI)
derivative from CBR-BDI system (Corchado and Laza,
2003) in order to carry out deliberative planning tasks at
the moment where the timing restrictions are not con-
sidered critical. A CBP system is a type of case-based
reasoning (CBR) system that works with plans instead of
cases (Aamodt and Plaza, 1994). This integration makes it
possible to improve the ARTIS AA, incorporating a
deliberative behaviour. One of the main problems that
need to be overcome is the efficient integration of high-
level, deliberative planning processes within reactive
processes. These complex deliberative processes, which
allow the agent to adapt and learn, are unbounded and it is
difficult to integrate them in hard RTSs. Typically, in the
multi-agent area the processes are carried out by so-called
deliberative agents, which decide what to do and how to do
it according to their mental attitudes. In a deliberative
agent, it is relatively simple to identify decision processes
and how to perform them. However, its main drawback lies
in finding a mechanism that permits its efficient and
temporal bounded execution. Therefore, it would be
interesting to integrate complex deliberative processes for
decision-making in hard RTSs in a simple and efficient
way. This work presents an improvement to the ARTIS

AA incorporating a deliberative case-based planning
behaviour, which facilitates an innovative hybrid AA with
both real-time and deliberative capabilities.

Our case study consists in solving the automation of the
internal mail management of a department that is
physically distributed in a single floor of a building plant
(restricted and well-known test environment). At the
department, there is a mail robot in charge of attending
sending requests, carried out by a user from a department
office through a PDA to send a letter or packet to other
office of such department. In this way, the robot will be in
charge of picking up and delivering the external mail
received by the department or the mail that is going to be
sent to the outside. The robot is going to be controlled by
an ARTIS agent (Botti et al., 1999). Each ARTIS agent has
a reflex server (RS) able to plan tasks at real-time and a
second-level deliberative server (DS) in charge of non-
critical timing restrictions. So, this agent will be able to
replan in situations where the robot is unable to fulfil the
assigned plans, such as finding obstacles, closed doors, low
battery level, or receiving new requests of picking up or
sending mail while the robot is executing a plan.

The case study has been implemented in a simulated
environment in order to evaluate the proposal. To do this,
different experiments have been carried out investigating,
basically, the performance of the system and the planning/
replanning behaviour. The results have shown the benefits
obtained with the integration of the CBP-BDI deliberative
behaviour into the ARTIS agent while maintaining the
fulfilment of the critical time restrictions.

The rest of the paper is structured as follows: Section 2
shows a study of related work; Section 3 focuses on the
ARTIS AA; Section 4 describes how the ARTIS agent
integrates an execution-time planner; a simulated applica-
tion example is shown in Section 5; finally, the analysis of
the results obtained over the example and conclusions are
described in Section 6.

2. Related work

Planning based on cases is a kind of planning based on
experience. The generation of a new plan is made from
plans or fragments of plans that have been previously
generated (Hammond, 1990; Veloso et al., 1996; Muifioz-
Avila and Aha, 2004). The different planners based on
cases differ from each other in the way that they represent
and store the cases and the way in which they execute the
CBP cycle (in algorithms executed in each of its stages).
The case-based planner proposed within the framework of
this article incorporates an adaptation algorithm that
allows dynamic replanning in execution time. This fact
means that our system is unique in terms of the response
that it offers to changes in the environment during the
execution of the plan.

The applications of the planning agents are increasingly
prolific, especially in fields such as the web, games, tourism
applications, etc. Case-based Tactician (CAT) introduces a

J. Bajo et al. | Engineering Applications of Artificial Intelligence 21 (2008) 769784 771

case-based planner with a plan-retrieval algorithm that, by
using three key sources of domain knowledge, removes the
assumption of a static opponent (Aha et al., 2005). In
Munoz-Avila and Aha (2004)) it is described an application
of hierarchical case-based planning that involves reasoning in
the context of real-time strategy games. Multiagent planning
in the web (MAPWeb) presents a multiagent system for
cooperative work among different intelligent software agents
whose main goal is to solve user planning problems using the
information stored in the Web (Camacho et al., 2006). The
RETSINA AA presents a planner module for every task
agent, which interleaves HTN planning and process execu-
tion (Giampapa and Sycara, 2002). Furthermore, Giampapa
and Sycara (2001) describe a prototype in which a
conversational case-based reasoner, NaCoDAE, was agenti-
fied and inserted in the RETSINA multi-agent system. Some
case-based planners have been used in tourism applications,
such as the one presented by Corchado (Corchado et al.,
2005) in order to improve the traditional tourism techniques.
Users of the case-based planner tourism application noticed
the utility of the dynamic replanning, since it is quite usual
for them change opinions/objectives in the middle of a plan.
Another application field is intelligent guidance and sugges-
tions in leisure or shopping. Bohnenberger et al. (2005)
present a decision-theoretic location-aware shopping guide in
a shopping mall as a kind of virtual shop assistant.
Bohnenberger et al. (2005) propose the use of decision-
theoretic planning, but their system cannot provide the
option of replanning in execution time. SHOMAS (Bajo et
al., 2006) uses the CBP-BDI mechanism for replanning in
execution time and incorporates RFID technology to
automatically asses a user’s location. Furthermore SHO-
MAS uses past experiences to take new decisions, which
increases the personalization and adaptation capabilities of
the system as well as the success of the guidance. The CBP-
BDI mechanisms enables the system to offer efficient plans in
execution time that make it possible to choose optimum
routes, and to react to changes that may be produced in the
execution of the plan, responding with a dynamic replanning
that avoids ‘“‘retracing one’s steps”.

On the other hand, this article can be framed within the
field of ““Artificial Intelligence in Real Time”, which can be
defined as (Musliner et al., 1995): ‘combining guaranteed
execution methods of RTSs with artificial intelligence (Al)
planning, problem resolution and adaptation mechanisms
in order to construct an intelligent and flexible control
system that can dynamically plan its own behaviours and
guarantee that these behaviours satisfy the maximum for
strict execution time limits.

In this way, in order to obtain such characteristics of flexibi-
lity and adaptability, the use of the multi-agent paradigms
would seem the most appropriate for the development of
hard RTSs in environments that are clearly characterized
by very strong time constraints. As such the paradigm has
been applied successfully in architectures such as CIRCA/
SA-CIRCA (Goldman et al.,, 2001; Musliner, 2002) and
ARTIS (Garcia-Fornes, 1996; Carrascosa et al., 2000).

One of the problems central to the construction of RTSs
is to determine whether an admissible plan exists, in other
words, whether there exists an assignation of the resources
from the system (processors, memory, network, input/
output devices, etc.) to the real-time tasks, in such a way
that they meet the response time limits set.

Generally, RTS scheduling is a complete-NP problem.
Nevertheless the problem can be simplified by considering
solely the processor scheduling and assuming that the rest of
the resources will be available when the task requires them.
This approximation is realistic in mono-processor systems in
which the system is developed in such a way that the tasks
available from the memory that are required and the access
to common resources are encapsulated in a critical section.

Research in RTSs is aimed specifically at the resolution
of this problem, developing methods to guarantee that the
reactions of the control system are always produced on
time according to when changes are produced within the
environment. Normally, these methods operate on a set of
fixed tasks upon which a set of time requirements are
defined and the execution times for the worst-case scenario.
Techniques consist of determining whether there exists an
admissible plan for the set of tasks.

Among the approximations to real-time AI described
above, the most promising algorithms are ‘“‘any-time”
(Boddy and Dean, 1994) and multiple methods (approx-
imate processing) (Lesser et al., 1988).

3. ARTIS: real-time agent architecture

The ARTIS AA is a hard real-time AA (a more detailed
definition may be found at Botti et al. (1999) and Soler
et al. (2000)). According to existing agent taxonomies
(Wooldridge and Jennings, 1995), the AA architecture can
be labelled as vertical, hybrid and specifically designed to
work in hard real-time environments. This architecture
guarantees an answer satisfying all the agent’s hard timing
restrictions while trying to obtain the best answer, if one
exists, to the current environment state.

The AA architecture can be seen from two different
perspectives: the user model (high-level model) and the
system model (low-level or implementation model). The
user model presents the view of the system’s developer,
whilst the system model is the execution framework used to
build the final real-time running version of the agent.

3.1. User model

From the user model point of view, the AA architecture
is an extension of the blackboard model (Nii, 1986) that
has been adapted to work in hard real-time environments.
This model is formed by the following elements (Fig. 1):

(1) A set of sensors and effectors allowing the agent to
interact with the environment. Due to the environment
restrictions, the perception and the action in these
environments usually is timely restricted.

772 J. Bajo et al. | Engineering Applications of Artificial Intelligence 21 (2008) 769-784

4 N
real-time
N\ deliberative
5
Perception 5 Action
I’ in-agent
Behaviour
- /
N
Control Module
| Reflex Server (RS) |
| Deliberative Server (DS) |
ARTIS Agent

Fig. 1. ARTIS agent architecture. User Model.

(2) A set of behaviours. Behaviours model the alternate
ways of facing the environment that are available to the
agent. At running time, an AA always uses one
behaviour at a time, which is called active behaviour.

Each behaviour of an AA is composed of a set of in-
agents, each one of them dealing with a part of the
environment (or solving part of the problem) that the
AA is facing. The main reason to split the problem-
solving method into smaller parts is to provide an
abstraction that organizes the problem-solving knowl-
edge in a modular and gradual way.

Each in-agent makes a specific activity related to
solving a particular sub-problem, so that all the in-
agents (in a behaviour) cooperate to solve the whole
problem. The cooperation is mainly obtained sharing
the calculated outcomes by the different in-agents
through a global memory.

The in-agents composing the different AA’s beha-
viours are structured into two layers. One that is in
charge of solving the essential parts of the agent’s
problem (assuring that a minimum quality response is
reached and that the problem is kept under control)
and another one that is optional (trying to improve the
response obtained by the other layer or dealing with
parts of the problem that are not strictly needed). In-
agents can be classified according to different criteria.
According to their mode of activation, there are
periodic in-agents (their activation is repeated every
certain period established at AA’s design time) and
sporadic in-agents (activated as a reaction to a mean-
ingful event, de-activating after only one execution
until a future activation to react to such event). A more
detailed explanation of the in-agent concept can be
found in Botti et al. (1999) and Soler et al. (2000).

(3) A belief set comprising a world model (with all the
domain knowledge that is relevant to the agent) and the
internal state, that is, the agent mental states.

This set is stored in a framed-based blackboard that
is accessible to all the in-agents. It is possible to specify

that some meaningful changes in a belief may produce
an event at running time.

(4) A Control Module that is responsible for the real-time
execution of the in-agents belonging to the current AA
behaviour. The time requirements of the two layers at
each in-agent (reflex and deliberative) are different.
Therefore, the Control Module has to use different
execution criteria for each one. In fact, the Control
Module is divided into two sub-modules, RS and DS, in
charge, respectively, of the reflex and deliberative parts of
the AA. Both parts of the Control Module work with the
feasibility analysis in a coordinated and coherent way.

The Control Module incorporates a meta-reasoning
process (Carrascosa, 2004) in order to adapt the reason-
ing process of the AA to changing situations. The
specification of this process is the only Control Module
part that is application-dependent. The specification is
composed by a meta-rule set written by the AA designer
in a language developed for this purpose.

It is necessary to emphasize that once the above
elements’ specification has been completed, it has to be
validated in order to be considered as an AA’s user model
specification. This validation must guarantee the agent’s
real-time restrictions. This is carried out by means of a
static feasibility analysis of each one of the different
behaviours and of their transitions. This analysis, described
in Garcia-Fornes et al. (1997), is based on well-known
techniques in the RTSs community. The different compo-
nents of the agent are shown in Fig. 1.

3.2. System model

The system model provides the software architecture
implementing all the high-level features shown in the user
model. The main elements of this model (translating the
corresponding parts of the user model) are (more detailed
explanation in Carrascosa et al. (2004)):

(1) A library to access the hardware devices and/or the
hardware devices themselves. This corresponds to the
sensors and effectors shown in the user model.

(2) A working mode' set that, along with the Mode
Change Protocol (Real and Crespo, 2004), implements
the behaviour management expressed in the user
model. The working mode concept has to be based
on a specific task model that guarantees the environ-
ment’s critical time restrictions. Therefore, the user
model’s in-agents are translated into system model’s
tasks. Each working mode will consist of the tasks
corresponding to the in-agents defined in the behaviour
related to that mode.

'A working mode is defined by the set of tasks which execution is
needed in an specific situation (Sha et al., 1989; Tindell et al., 1992). The
purpose of this concept, of the real-time systems area, is to reduce the
number of tasks that are active at the same time.

J. Bajo et al. | Engineering Applications of Artificial Intelligence 21 (2008) 769784 773

(3) A shared memory (implementing the blackboard
model) with all the data corresponding to the different
beliefs specified in the user model. This memory may be
accessed by all the tasks.

(4) Here, both modules of the Control Module of the user
model are two separated entities:

The RS includes the real-time task scheduler? or first-
level scheduler (FLS). The FLS uses a real-time
scheduling policy such that, at running time, it decides
which task is the next one to be executed. This policy is
compatible with the static feasibility test (used at design
time to guarantee the fulfilment of the critical restric-
tions associated to the different working modes). Using
a scheduler at run-time helps the AA to adapt itself to
environmental changes and to benefit from tasks taking
less time than indicated by their worst-case execution
time.

The FLS also implements the mode change protocol
included in the AA, allowing it to change its working
mode according to the transitions specified in the user
model. These changes are activated by running specific
mechanisms. Furthermore, there exists a slack-stealing
algorithm (Davis, 1993; Garcia-Fornes, 1996), based on
a specific technique of the real-time community, to
calculate at run-time the available time for the DS to
execute optional parts belonging to the current working
mode.

The DS also includes a real-time task scheduler, the
second-level scheduler (SLS). This scheduler executes
optional parts of the active tasks (see Carrascosa et al.,
2004) in the current mode. So, in the slack intervals, the
SLS uses a scheduling policy that will choose the next
optional part to execute according to quality criteria.

Though it has no specific counterpart in the user model,
the system model also includes a static analysis of the
feasibility of the different working modes.

It is important to emphasize that this analysis does not
build a plan with the tasks execution sequence. On the
contrary, this analysis only assures the capability of the
scheduler at run-time (FLS) to execute the real-time tasks
guaranteeing their deadlines.

4. Execution-time planner for ARTIS agents

The main purpose of this paper is to develop and to
integrate new bounded CBP-based planner techniques
inside of the ARTIS AA. This planner allows a more
efficient execution time management, according to the
agent’s goals. It has to be taken into account that this
planner activates tasks to fulfil agent’s goals that will be
deal by the real-time task schedulers in order to be executed
guaranteeing the real-time constraints. CBR-based planner

It has to be taken into account that a real-time task scheduler is the
system’s part in charge of managing the CPU time, indicating which is the
task using it at each moment.

(or CBP) has been included as a sporadic in-agent that will
be activated when a new plan needs to be generated for a
new goal. Moreover the in-agent will be also activated
when replanning because the environment evolution makes
it impossible to finish the current plan. The in-agent’s initial
part reads the planning or replanning event that activated
it. According to this event, it checks if the existing current
plan is still feasible. If such plan is not yet applicable, it
builds a new plan or modifies the existing one. In an
optional way, it tries to improve the new plan. Lastly, the
action part of this in-agent begins the plan.

The CBR-based planner provides planning based on
previous experiences. CBR systems use memories (past
experiences) to solve new problems. The main concept
when working with CBR systems is the concept of case. A
case is a past experience that can be represented as a
3-tuple <P,S(P),R). In this way a case is composed of a
problem description (initial state), the solution applied to
solve the problem (in CBP the solution is a plan or a set of
plans, in other words, the sequences of actions executed in
order to achieve the objectives) and the result obtained
after applying the solution (the final state an the evaluation
of the plan executed). The planner needs to maintain a case
memory that will be used to solve new problems. When a
new problem is presented the planner executes a CBR cycle
to solve it. The CBR cycle is composed of four sequential
stages: Retrieve, where those cases with the most similar
problem description to the current problem are recovered
from the cases memory; Reuse, in which the plans
(solutions) corresponding to the similar cases retrieved in
the previous stage are reused to construct a new plan;
Revise, where the proposed plan is evaluated; and Retain,
where the planner learns from the new experience. One of
the key points in the CBR-based planning is the notation
used to represent the solution (the plans). A solution can be
seen as a sequence of intermediate states transited to go
from an initial state to the final state. States are usually
represented as propositional logic sets. The set of actions
can be represented as a set of operators together with an
order relationship. Furthermore Carbonell (1986) indicates
that additional information is needed on the decisions
taken during the plan execution.

According to the mail delivery problem, the test
environment is restricted. Let E = {ey,...,¢,} the set of
the possible collection points and mail delivery. e;
j€{0,...,n} represents the point of collection of the external
mail provided by the postman.

In each action the agent goes from the delivery point or
of mail collection to other one

E — E
aj . e; — q/(e;)ze, . (])

Agent plan is the name given to a sequence of actions
that, from a current state ey, defines the path of states
through which the agent passes in order to reach the other
delivery point or of mail collection. The dynamic relation-

774 J. Bajo et al. | Engineering Applications of Artificial Intelligence 21 (2008) 769-784

ship between the behaviour of the agent and the changes in
medium is modelled below.

The behaviour of agent A is represented by its action
function a4(t) Vt, defined as a correspondence between one
moment in time 7 and the action selected by the agent,

Agent A = {a4()}sercn- (2)

From the definition of the action function a,(t) a new
relationship that collects the idea of an agent’s action plan
can be defined,

TxA — A

Pa: (as) - pu) (€)
in the following way, taking into account the dynamic
character of our agent

ty
P = [aitnr @
fo
The variation of the agent plan p4(¢) will be provoked
essentially by

(1) The changes that occur in the medium and that force the
initial plan to be modified.

(2) The knowledge from the success and failure of the plans
that were used in the past, and which are favoured or
punished via learning.

The Efficiency of the plan is the relationship between the
objectives attained and the resources consumed

#(O' N O)
where # means cardinal of a set, O indicates the objectives of
the agent and O’ are the results achieved by the chosen plan
(O' € 0; O is a subset of 0). R are the total resources and R’
are the resources consumed by the agent, after that, the agent
carries out the chosen plan (R € R; R’ is a subset of R).

Given a problem E and a plan p(¢) it is possible to
construct functions Ob and Rc accumulated from the
objectives and costs of the plan. For all time points ¢; two
variables can be associated:

Eff

Ob(t;) = / " O()dt, Re(t;) = / " R(f)dt. (6)

O(?) indicates the objectives of the agent by time ¢ and
R(t) are the total resources by time ¢.

This allows us to construct a planning space (or space repre-
senting the environment for planning problems) as a vectorial
hyperdimensional space where each axis represents the accu-
mulative variable associated with each objective and resource.

In the planning space, defined in this way, conform to
the following properties:

(1) Property 1: The representation of the plans within the
planning space are always monotonously growing
functions. Given that Ob(¢) and Re(¢) are functions
defined as positive (see definition), function p(¢)
expressed at these coordinates is constant or growing.

(2) Property 2: In the planning space, the straight lines
represent plans of constant efficiency. If the representa-
tion of the plans are straight lines, the slope of the
function is constant, and coincides with the definition
of the efficiency of the plan

%p(t) =cte< lim A0() cte. @)

4—0AR(1)

In an n-dimensional space, the extension of the straight
concept line is called a geodesic curve. In this sense, the notion
of geodesic plans can be introduced. Geodesic plans are
defined as those that maintain efficiency at a constant
throughout their development, and therefore, they are the
most replanned in the event of changes in the environment in
order to complete the desired objectives. This way, only the
plans of constant efficiency (geodesic plans) are considered,
due to the fact that they represent minimum risk. In an envi-
ronment that changes unpredictably, any plan that is distal to
the geodesic plan means that a certain risk is accepted.
Geodesic plans have been used in many other domains.
Schramm et al. (2005) use geodesic plans for planning
optimization, Peyre and Cohen (2003) apply geodesic plans
for adaptive remeshing, Sbeh et al. (2001) propose the use of
geodesic reconstruction and image segmentation and Page
et al. (2006) apply geodesics for path planning for 3D terrains.

Given a problem, the agent must search for the plan that
determines a solution with a series of restrictions F(O;
R) = 0. If all the possible plans {pi,...,p,} (which are a
collection of points) are represented within the planning
space, a subset of states that the agent has already attained
in the past in order to resolve similar problems will be
obtained. With the mesh of points obtained (generally
irregular) within the planning space and using interpola-
tion techniques, a working hyperplane A(x) (that encapsu-
lates the information on the set of restrictions from
restored experiences) can be obtained, from which geodesic
plans can be calculated.

In general, the simplest variation problem is given when
ff1s only one point in the space, f,f, and the geodesic g that
links ey with e* is obtained (Fig. 2).

In a problem where the set of end points is n>1,
variation techniques with mobile frontiers are used to offer
us a set of geodesics between the starting point and each
one of the points of the final set. Suppose, for simplicity’s
sake, that a planning space of dimension 3 with coordinates
{0, R;, R,} is selected. Between the point ¢, and the
objective points f,f and over the interpolation surface A(x),
the Euler Theorem Jost and Li-Jost (1998) guarantees that
the expression of the geodesic plans will be obtained by
resolving the following system of equations:

oL _dar_,
oR, dOOR,
oL _dar_, ®)
oR, dOOR,

J. Bajo et al. | Engineering Applications of Artificial Intelligence 21 (2008) 769-784 775

Fig. 2. Geodesic ¢ linking initial and final point.

where R; is the function accumulated R, O is the function
of accumulated O and L is the distance function on the
hyperplan A(x)

L= /h dl.)

In order to obtain all the geodesic plans that, on the
surface /i(x) and beginning at ¢, allows us to reach any of the
points e* € f,f, a condition must be imposed on the surround-
ings: the initial point is ey = (O, Ry). Using variation
techniques it is possible to obtain expressions for all the
geodesic plans that, beginning at ¢, allows us to attain the
desired point. Once the plans that will create efficient
solutions between the current state and the set of solution
states have been obtained, it will be possible to calculate the
plan around it (along its trajectory). This is done by using a
denser distribution of geodesic plans (in other words, a
greater number of geodesic plans in its environment). The
tool that allows us to determine this, is called the minimum
Jacobi field associated with the solution set (Lee, 1997).

Let ¢o:[0,1]—S be a geodesic over a surface S. Let
h:[0,1]x[—e, e]—S be a variation of gy so that for each
te(—e, &), the set {h(8)} e (—e, »:

(1) his) Vte(—e,¢) are geodesic in S.
(2) They begin at go(0), in other words, they conform to
h(0) = go(0) Vie(—¢,¢).

In these conditions, taking the variations to a differential
limit:

' ~ L _0g,
Hm{7(s) = go(s + D} = limth(s, 0} = 5~ s0)
d
=P =0, (10

The term J, (s) is given to the Jacobi Field of the
geodesic gg for the set {g,(x)},en, and in the same way that

the definition has been constructed, it is possible to give a
measurement for the distribution of the other geodesics of
{g(X)}en around go throughout the trajectory. Given a
set of geodesics, some of them in their environment, have a
greater distribution than other geodesics in a neighbouring
environment. This is equivalent to saying that it presents a
variation in the distribution of geodesics lower than the
others and therefore the Jacobi Field associated with
{gn(x)} e v reaches its lowest value at Jy.

Let us return to the most-re-plan-able (MRP) agent
problem that, following the recuperation and variation
calculation phase, contains a set of geodesic plans
{P1,...,Pn}, the MRP solution will be the geodesic plan p*
with minimum associated Jacobi field associated with the
set {gn(x)}neN~

In this way, the behaviour model G for the MRP agent is
defined. For each problem that it represents, the agent
selects the MRP solution defined as that geodesic plan with
minimum Jacobi field, that expresses

Gleo,py,....pp) =p"<=IneN/J, =J, = Mi}g Jy,-
ne

(11)

If the plan p* is not interrupted, the agent will reach a
desired estate e=e*efif;e{1,...,m}. Below, in the learning
phase, a weighting w/(p) is stored. With the updating of
weighting w/p*), the planning cycle of the cased based
planning (CBP) motor is completed. Below, it is possible to
see what happens if p* is interrupted. Let us suppose that
the agent has initiated a plan p* but at a moment ¢> ¢, the
plan is interrupted due to a change in the medium. The
geodesic planning (the section of plans with a constant
slope in the planning space) meets the conditions of the
Bellman Principle of Optimality (Bellman, 1957), in other
words, each on of the plan’s parts is partially geodesic
between the selected points. This guarantees that if g is
geodesic for interrupted eq in ¢;, because ey changes to ey,
and g, is geodesic to e; that is begun in the state where go
has been interrupted, it follows that

g = go+ ¢, is geodesic to e = eg(t; — ty) + e1(t2 — 7).
(12)

If each time the environment changes and interrupts the
execution plan, a new geodesic plan is selected; the overall
plan will be geodesic. The dynamic process follows the CBP
cycle recurrently: each time a plan finds itself interrupted, it
generates from the state reached so far, the surroundings of
the plans from the case base and adjusts them to the new
problem. With this it calculates the geodesic plans and
selects the one, which meets the minimum conditions of the
associated Jacobi field. In this way, the dynamic planning
model of the agent G(¢) is characterized (Fig. 3). Fig. 3
shows a replanning situation in which an interruption
occurs during the execution of a plan. CBR-based planner
responds to this situation by identifying a new initial state,
the last intermediate state marked as success (e; in Fig. 3).
The next step is recovering the initial planning philosophy,

776 J. Bajo et al. | Engineering Applications of Artificial Intelligence 21 (2008) 769-784

that is, to execute a CBP cycle and obtain a new plan. Now
the set of geodesic plans will be composed of those plans
previously considered geodesics in the initial plan (all were
optimal and the closest to the initial plan) and new plans
(those with the most similar problem description to the
current initial problem description, provided by e;). The
new CBP cycle takes into account the new restrictions
(some of the tasks have already been executed and there are
new environmental conditions).

In the dynamic context the following properties of G(¢)
are particularly relevant:

(1) Property 1: All the Jacobi fields are variations of
geodesics.

It can be demonstrated (Milnor, 1973) that there
exists a isomorphism between all Jacobi fields that is
constructed between the end points.

(2) Property 2: All the geodesic variations are Jacobi fields
(Milnor, 1973).

These two results allow us to introduce the concept
of a global Jacobi field. The Global Jacobi field or
Dynamic Jacobi field J(t) is the Jacobi field formed by a
set of partial or successive Jacobi fields. The above
properties allow us to ensure that the change from one
partial Jacobi field and the next preserves the condi-
tions a Jacobi field because it produces a change
between geodesics: It is possible to observe that a
minimum global Jacobi field J(¢) also meets Bellman’s
conditions of optimality (Bellman, 1957), in other
words, a minimum global Jacobi field, must select
minimum Jacobi fields “in pieces”

Jmin(t) = {Jmin(tl - [0),Jmin(t2 - tl), ce aJmin(tn - tnfl)}~
(13)

If on the one hand, successive Jacobi fields generate one
Jacobi field, and on the other hand, minimum Jacobi fields
generate a minimum Jacobi field, the MRP agent that
follows a strategy of replanning G(¢) as indicated in order to
survive a dynamic environment, it generates a global plan
p*(t) that, faced with all possible global plans {p,(?)},cn>
presents a minimum value in its Jacobi field J 4 (f) = J - (?).

” Retrieve
g = {eo e }o—-___b
/ {p1= il pn}
Retain /
* * Reuse
{po.- ""(Po)} 3 *
D

Interruption

For example, Fig. 4 shows the representation of tasks of
a postman robot in a space R°, according to the following
three coordinates: time, number of objectives achieved, and
number of resources used (coordinates taken from similar
cases retrieved). In order to retrieve the cases, firstly those
from the beliefs base that have at least the delivery points
for the current problem are selected, and that from those, a
similarity measurement is used, the cosin, taking into
account the restrictions of the current problem and those of
previously selected cases. This similarity measurement is
based on the angle formed by two vectors (these vectors
may represent items, users, keywords, profiles, etc.) in
order to determine whether they are similar or not. If the
cosin is equal to 1, they will be equal, and totally different if
it is —1 and dissimilar if it is 0.

197

where <.,.) signifies scale product and I.II module.
Specifically, Fig. 4.a shows a hyperplane of restrictions
and the plan followed by a case retrieved from the beliefs
base, considered to be similar. So that Fig. 4a is not overly
large, and in order for the plan to be appreciated at first
glance, the time axis has been rescaled (axis z) to [0,1].

For other similar retrieved cases, the same procedure is
followed. The new plan is made in such a way that the
planner proposes the plan in sections, with the greatest
density of plans around it (reflected by the formulae (10)
and (11)).

In order to understand the graphical representation,
given that the plans are made up of pieces, one initial task
eo and a final task es are the focus. Between the initial and
the final task, the mail robot could carry out other tasks.
The idea that the planner presents is to choose as the
optimal solution the plan that has the most plans around it,
involving these two fixed tasks, (independently of whether
or not it includes other tasks, then the mail robots will only
do the assigned tasks). In this way, as can be seen in
Fig. 4b, the plan chosen is the one represented by a
discontinuous line, since it represents the plan that has
most other plans around it, and involves other tasks that

- 7
cos(i,j

b

Retrieve
*
— ,,/"
1E {e].:’e }' {pl"”.pﬂ}
Retain /
{p:, W(pl*)} Reu*se
P,

Interruption

Fig. 3. Model for behaviour G(?).

J. Bajo et al. | Engineering Applications of Artificial Intelligence 21 (2008) 769-784 771

b

Fig. 4. Hyperplan of restrictions: (a) hyperplan together with the corresponding plan and (b) selection of the most replannable plan.

could be assigned in the even of interruptions to the initial
plan (for example due to new assigned tasks).

If the tasks were repetitive and the plan was never
interrupted, it would be enough to find the plan once only
and no replanning would be necessary, but it does not
make sense in dynamic environments, which vary during
execution time.

Up until now, an agent that in a dynamic environment
seeks plans that lends it greater capacity for replanning has
been formally defined.

In a RTS, it is necessary to respect time restrictions, and as
such, in the planning system explained above, the time
available and the time consumed within the deliberative
process is taken into account. In other words, when a plan is
given both the time available and the time taken for the
planner to make the optimum plan are taken into account
(the MRP route in the event that the plan is interrupted). For
this purpose, when a new task is presented, similar cases are
recovered from the beliefs base and two actions are carried
out: one is to consider the plan carried out previously for
similar cases and which took less time than the time currently
available, while the other consists of taking into account the
maximum deliberative time of the cases recovered.

In order to obtain a better understanding of how the
planner respects the time restrictions, the application
example presented in Section 4 can be observed. In such
example, the robot begins to execute the recovered plan
(limited by the time available) and the planner begins to
deliberate (using the planning method described above),
taking into account the time restrictions: the difference
between the available time and the maximum time
observed from the recovered cases (thereby ensuring that
the deliberative process is completed and can offer an
optimum plan that is also limited by the available time).
Once the deliberative process is completed, the initial plan
is replanned taking into account the optimal plan, and
adapting itself to this one as such ensuring that the
objectives are reached within the available time.

5. Case study

In this section, a prototype of the mail robot example is
presented, developed according to our approach, which
emphasizes the proposal presented in previous sections.
The problem to solve consists of the automated manage-
ment of the internal and external mail (physical mail, non-
electronic) in a department plant. For this purpose, the
system created by this automation process, must be able to
request the shipment of a letter or package from an office
on one floor to another office from the same floor, as well
as the reception of external mail at a collection point for
later distribution. Once this service has been requested, a
mobile robot (or postbot) must gather the shipment and
direct it to the destination. It is important to note that each
mail or package distribution must be finalized before a
maximum time, specified in the shipment request. In order
to be able to carry out all this, the resources employed
include a mobile robot type Mobile Pioneer 2, and one
radio network that allows the communication within the
robot around the plant.

According to these resources, this problem will be solved
using a real-time agent by means of the ARTIS AA (Botti
et al.,, 1999). This architecture will give the real-time
support to the system, considering that it must satisfy
critical time restrictions (of forced fulfilment). And will be
designed according to the ARTIS hard real-time AA. On
the other hand, all the planning processes for the delivery
and collection of mail around the floor will be managed by
a deliberative planning behaviour integrated inside the real-
time agent. This behaviour will give the more appropriate
distribution routes to the mobile robot. This planning
behaviour will be developed following the CBP-BDI
model.

The cases are represented using objects. A case is
composed of a problem description, the solution (plan)
given to solve the problem and the efficiency obtained after
applying the solution. Table 1 shows a case structure.

778 J. Bajo et al. | Engineering Applications of Artificial Intelligence 21 (2008) 769-784

Table 1
Case attributes

Case field Measurement

Home Location

Agentstate AgentState

Currentloc Location

Targets ArrayList of Target
Restricts ArrayList of Restriction
Environment Environment

Solution Solution

Efficiency Efficiency

A case is composed of the problem description (location—
x, y coordinates; AgentState—batery, velocity, current
mail, capacity, mission time; target—Ilocation and restric-
tion; restriction—required time, forbidden areas, etc.;
environment—map, obstacles, etc.) and the solution
(solution—ArrayList of plans, decisions, solution data;
efficiency—percentage, comments).

A simulation prototype was implemented using the
ARTIS architecture on a Pionner 2 mobile robot simula-
tion software. As mentioned above, the robot must deliver
a set of letters or packages from an office to another office
on the same department floor. Several simulation experi-
ments were conducted to evaluate different aspects and try
to show the benefits of the planner integration into the
ARTIS architecture. The different experiments were tested
on an ARTIS agent without planning behaviour and
on one, which includes the planner behaviour proposed
above.

A view of the application environment is shown in Fig. 5.
The figure presents a space formed by a set of offices
connected through different corridors. Initially, the Post-
Bot is informed about the arrival of new mail through a
Jade-Leap agent running in a PDA. This notice contains a
set of offices to be visited in order to deliver or to gather
new mail. Later, the PostBot may be informed of new mail
orders, which implies changes in the initial set of offices. It
is important to remark that in the case of the ARTIS agent
without planning behaviour the different mail orders are
sequentially executed in a FIFO order. That is, a new order
is put at the end of its order list. On the other hand, the
other ARTIS agent will execute its mail orders according to
its planning/replanning capability. Moreover, in each case
the mail or package distribution must be finalized before a
maximum time and the robot control behaviour must
guarantee robot integrity, which implies hard real-time
constraints.

In the examples it has been supposed that if each unit of
time is equivalent to one unit of space, the unit of time is
the second; the second 0 has been taken as the starting
point (the robot begins to work at O's, if it began to work at
8 am, at 9 it would have worked 3600s); in order to aid
comprehension, the Manhattan distance has been used.

dy((x1,1), (x2,)) = Ix1 — x2| + [y — »al.

Fig. 5. Different views of the simulation environment.

Let us suppose that the robot is in position 0, the letter
pick-up centre; let us also suppose that in the centre there is
a letter and that each letter has a delivery point (from a
total of 32 delivery points). The delivery points are
represented through coordinates in a plan. Let us suppose
that there are no restrictions of any type, such as delivery
time or battery life. Given that there are 32 delivery/pick-
up points, the 32 points should be represented in %>, each
point represented by its coordinates {e; = (x;, ¥;)}i—0.. 31- €0
is the robot’s starting point. In the simple case, there is no
type of restriction. The cases with similar delivery
descriptions are retrieved from the beliefs base—in other
words those cases without restrictions that have at least the
same delivery points (Retrieve). Using interpolation
techniques a hyperplan is revealed that contains all the
delivery points of the retrieved cases, that at a minimum
contained the collection/delivery points assigned to the
robot in its task. Within this hyperplan the retrieved plans
are drawn (that are no more than geodesic curves). The
solution selected is that plan with the greatest density of
plans around it (formula 10—Reuse stage)—in other words
the one that corresponds with the geodesic of least value
from the associated Jacobi field, as can be observed in Fig.
4. Graphically it is possible to represent the MRP plan
(formula (11)) as shown in Fig. 6.

In Fig. 6 it is possible to see how two possible routes
exist for the robot to use initially: the robot must choose to
move from position 0 to 1 or from position 0 to 8 (we must
choose an action, formula (1)). It should be noted that an
initial case free of restrictions has been chosen. The
objectives were: Deliver and Collect the letters at the
delivery/collection points and the resource is the lifetime of
battery. In this case, O = O’, since the objectives are being
achieved and R’ C R, since the battery of the robot has not
run out, because we have assumed there are not any
restrictions.

In the event that some type of restriction is made, such as
battery life, the process would be the same but the only
cases retrieved from the beliefs case would be those whose

J. Bajo et al. | Engineering Applications of Artificial Intelligence 21 (2008) 769-784 779

a4 w -1-12: 10 -9[-—3
4 n U d i e

&

Fig. 6. Representation of the most replannable plan for a case without
restrictions.

associated plan are executed within the lifetime of battery
Z.

In other test it has been supposed that the same
description of the problem is given, with the same
delivery/collection points, but with a series of initial
restrictions. These restrictions are priority delivery, service
time according to delivery point (since more than one letter
can now be delivered to—or collected from—one delivery
point) and battery life. In this case, the initial data comes
from those expressed by {e; = (x;,¥))}i—0. 31 At each
delivery/collection point there is a minimum delivery time,
maximum time and service time (which depends on the
number of deliveries and collections, for example)
D; = [min;, max; — service time;], i = 0,...,31. Another re-
striction is the battery life. In the beliefs base the time is
stored which the robot took to carry out each one of the
plan in the past. As such, when the cases with similar
descriptions are retrieved, only those cases with an
execution time less than the battery life are taken into
account (Retrieve). Once cases are retrieved from the
beliefs base, a hyperplan of restrictions is created. Upon
adding two restrictions, another coordinates axis is
required, working in W% on the z-axis, the delivery/
collection times are represented in seconds. As such, each
delivery/collection point will have its coordinate in x, its
coordinate in y and two values on the axis z. For each
(x;,), there is a min; and a max; — service time;; i = 0, ...,
31. The hyperplan of restriction is the one that contains the
minimum number of delivery/collection points assigned to
the robot as a task and also V(x,,y;, z;) verifies z;e D;. In
order to reach the hyperplan of restrictions, interpolation
techniques are applied, taking into account that they pass
by the points (x;y;), i=0, ..., 31 of the retrieved cases;
and fixed “/”” that

Max

Frequency
e retrievaled cases {Zi,-}
7€ associated to (xi, ;)

with i =0,...,31. The fact that similar cases have been
retrieved from the beliefs case that comply with z;eD,,
i=0,...,31. Once the restrictions hyperplan has been
obtained and the retrieved plans represented in it
(corresponding to geodesic curves), a plan with most plans

around it is chosen (formula (10)), being the geodesic of
least value in the associated Jacobi field (formula (11)—
reuse). The MRP solution in our example is the one shown
in Fig. 7.

Given the restrictions imposed, only one direction is
valid. This is shown in the table with explanation below.

According to the MRP plan presented in Table 1, the
robot initially moves from delivery/collection point 0 to
delivery/collection point 1. The arrival time to point 1 is 15.
Given that the minimum collection time for point 1 was 15,
the robot does not needs to wait there until this time (until
the collection can be made). The time that the robot needs
to make the delivery and collection is 10 units of time and
later the robot uses 15 units to get to point 4. In this way
the time take will be 55 units of time to point 4 (arriving
between the minimum and maximum collection time) and
so on...

The goals were: Deliver and Collect the letters at the
delivery/collection points. The considered resource is the
lifetime of the battery. In the time shown in Table 2
the robot did not have problems with the battery life, in
this case, O = O, since the goals are being achieved and
R’ <R, since the battery of the robot has not run out.

If the first row in the table is observed, for point 0
(robot), the maximum delivery time is 3390 units of time.
On the other hand, in the last row of the table, the arrival
time to the starting point (point 0) is at 2788 (note, this is
obtained adding together arrival time+service time-+
distance to point 0), with which it can be observed that
the battery will not run out.

Let us see now that there is an interruption during the
delivery/collection process. Specifically, when the robot
was carrying out the delivery/collection tasks in point 17, it
received a communication informing it that delivery point
30 had changed its minimum and maximum collection
times from 2300 to 2385 units of time. In this case the robot
changes its starting point. Now point 0 for the robot will
change to point 17. The same will apply to the numbers of
delivery/collection points, which the root should go to in
order to complete, its task. At this moment the planning
reasoning will be repeated, but now with 15 delivery/
collection points. The MRP plan obtained from the recall
of similar cases taking into account the points that have
not been visited and the current restrictions would be the
one shown in Fig. 8. The objectives were: Deliver and
collect the letters in the delivery/collection points and the

Fig. 7. Representation of the most replannable plan for a case with time
restrictions.

780 J. Bajo et al. | Engineering Applications of Artificial Intelligence 21 (2008) 769-784

Table 2
MRP

Sequence order Delivery/collection coordinates Arrival time

Minimum collection time Maximum collection time Service time

0 (90.0, 0.0) 0.0
1 (75.0, 0.0) 15.0
4 (45.0, 0.0) 55.0
5 (35.0, 0.0) 75.0
3 (55.0, 0.0) 123.0
2 (65.0, 0.0) 153.0
7 (15.0, 0.0) 213.0
6 (25.0, 5.0) 238.0
8 (85.0, 10.0) 313.0
9 (75.0, 10.0) 361.0
10 (65.0, 10.0) 488.0
1 (55.0, 10.0) 549.0
12 (45.0, 10.0) 615.0
13 (35.0, 10.0) 686.0
14 (20.0, 10.0) 807.0
15 (15.0, 10.0) 925.0
16 (75.0, 20.0) 1126.0
17 (65.0, 20.0) 1298.0
18 (55.0, 20.0) 1350.0
19 (45.0, 20.0) 1539.0
20 (35.0, 20.0) 1590.0
21 (25.0, 20.0) 1709.0
2 (15.0, 20.0) 1813.0
23 (5.0, 0.0) 1886.0
24 (75.0, 25.0) 2100.0
25 (65.0, 25.0) 2150.0
26 (55.0, 30.0) 2185.0
27 (45.0, 30.0) 2350.0
28 (35.0, 30.0) 2430.0
29 (25.0, 30.0) 2450.0
30 (15.0, 25.0) 2628.0
31 (5.0, 30.0) 2653.0
2788.0

0.0 3390.0 0.0
15.0 402.0 10.0
23.0 368.0 10.0
93.0 484.0 10.0
12.0 505.0 20.0
10.0 645.0 10.0

170.0 595.0 10.0
168.0 787.0 10.0
331.0 822.0 20.0
448.0 897.0 30.0
499.0 1030.0 40.0
585.0 1136.0 20.0
666.0 1245.0 10.0
772.0 1329.0 20.0
890.0 1395.0 30.0
1036.0 1439.0 20.0
1268.0 1785.0 20.0
1330.0 1919.0 10.0
1519.0 1926.0 10.0
1560.0 2083.0 20.0
1689.0 2144.0 10.0
1763.0 2264.0 40.0
1846.0 2365.0 10.0
1985.0 2412.0 20.0
2077.0 2514.0 40.0
2143.0 2638.0 20.0
2310.0 2659.0 30.0
2380.0 2787.0 40.0
2385.0 2976.0 10.0
2603.0 2952.0 10.0
2628.0 3113.0 10.0
2653.0 3280.0 20.0

2 -

Fig. 8. Representation of the most replannable plan after an interruption.

resource is the lifetime of battery. In Table 3, we can note
that, O = O, since the objectives are being achieved and
R =R, since the battery of robot has not run out; because,
the maximum delivery time is 3390 units of time and the
robot battery ran out at 2783.

6. Results and conclusions

Several simulation experiments were conducted to
evaluate different parameters in order to asses the
proposal. The first set of experiments investigates the
performance of the system according to package or mail
arrival frequency. The simulation prototype was tested by

increasing this frequency incrementally and by testing two
different parameters: average delivery time in the whole
system and percentage of deliveries completed on time.
Each experiment was repeated one hundred times and the
results show the average obtained value.

Fig. 9 illustrates how the average delivery time maintains
more or less constant when the CBP behaviour is used.
However, in the tests carried out with the ARTIS agent, if
the planning/replanning capacity increases in proportion to
the arrival frequency, the average delivery time increases
considerably. In terms of the percentage of deliveries over
time, the CBP behaviour agent maintained a level of 90%
even with the maximum foreseen frequency. In the event
that the agent’s planning/replanning capacity is eliminated,
as might be expected, it performs worse, decreasing the
delivery time percentage significantly.

The second set of experiments concerns the investigation
of the system’s replanning behaviour. In order to do this,
the simulation was tested introducing events that will cause
a replanning in the system and measuring the same
parameters as in the previous experiment. Each experiment
supposes a delivery by the agent of a set of 10 letters as
previously indicated, and the average delivery time and

J. Bajo et al. | Engineering Applications of Artificial Intelligence 21 (2008) 769-784 781

12

ARTIS with CBR behavior
ARTIS without CBR behavio

11
18

M ;M N w0

Average delivery tine {ninutes)

1 2 3 4 5

Hail arrival frequency{# mnail/18 ninutes)

L00

ARTIS with CBR behavior —#—
ARTIS without CBR behavior —w—

90

868

70

60

Percentage of deliveries conpleted on tine T

e 1 2 3 4 5

Hail arrival frequency{# nail/18 ninutes)

Fig. 9. (a) Delivery average time in the whole system and (b) percentage of
deliveries completed on time when increasing the mail arrival frequency.

Table 3
MRP after the interruption

percentage of deliveries carried out is measured. The
behaviour of these parameters is then studied in relation
to those events, which lead to replanning (Table 3).

In Fig. 10, the results demonstrate that thanks to the
planning/replanning capacity, the average delivery time is
hardly affected by increases in number of uncontrolled
events. On the other hand, if this capacity is not available
the robot agent’s average delivery time increases consider-
ably. As far as the percentage of deliveries is concerned, if
the agent is capable of planning/replanning behaviour, the
behaviour can be considered quite acceptable, while if it is
not available the percentage of deliveries carried out is
considerably inferior.

The agent and multi-agent system paradigm has changed
the development process of certain software systems.
Nevertheless, the technologies employed in multi-agent
systems must be adapted for their correct use in real-time
environments. Accordingly, this paper has proposed the
integration of a new deliberative capacity, based on bound
case-base reasoning techniques, into a hard real-time
ARTIS agent. More specifically, the work has shown
how a new temporally bound CBR-based planner (CBP-
BDI agent) has been integrated inside the ARTIS AA. This
new planner takes into account the time available and the
time consumed within the deliberative process, allowing a
more efficient execution time management, according to
the agent’s goals.

The main goal of this approach was to increase flexibility
and adaptability of RTS implementations, and it has been
achieved. According to the example implementation and
the results obtained, in any situation of the real-time
environment the PostBot controlled by an ARTIS with
planning behaviour has a better performance than the
PostBot controlled by an ARTIS agent without planning
behaviour. This approach allows to the ARTIS architec-
ture an extremely high degree of flexibility while at the
same time retaining the hard or soft time restrictions

Sequence order Delivery/collection coordinates Arrival time

Minimum collection time Maximum collection time Service time

17 (65.0, 20.0) 0.0
18 (55.0, 20.0) 1350.0
19 (45.0, 20.0) 1539.0
20 (35.0, 20.0) 1590.0
21 (25.0, 20.0) 1709.0
22 (15.0, 20.0) 1813.0
23 (5.0, 0.0) 1886.0
24 (75.0, 25.0) 2100.0
25 (65.0, 25.0) 2150.0
30 (15.0, 25.0) 2220.0
26 (55.0, 30.0) 2355.0
28 (35.0, 30.0) 2405.0
29 (25.0, 30.0) 2425.0
31 (5.0, 30.0) 2633.0
27 (45.0, 30.0) 2713.0

2783.0

1330.0 1919.0 10.0
1519.0 1926.0 10.0
1560.0 2083.0 20.0
1689.0 2144.0 10.0
1763.0 2264.0 40.0
1846.0 2365.0 10.0
1985.0 2412.0 20.0
2077.0 2514.0 40.0
2143.0 2638.0 20.0
2300.0 2385.0 10.0
2310.0 2659.0 30.0
2385.0 2976.0 10.0
2603.0 2952.0 10.0
2653.0 3280.0 20.0
2380.0 2787.0 40.0

782 J. Bajo et al. | Engineering Applications of Artificial Intelligence 21 (2008) 769-784

ARTIS with CBR behavior —#—,
ARTIS without CBR behavior
B
@ 20
-
2
=]
B
4
Al
[
£
=]
-
T 15
[
>
o
=
4]
-
o
W
it
o d
>
< 18
;] 1 2 3 4 5
Rescheduling events frequency (# events/15 ninutes)

1680
- ARTIS with CBR behavior —#—
=] ARTIS without CBR behavior —w—
-
§

90
B
-]
]
a2
£ &0
=]
o
0
]
& 78
[
>
o
—
o
> &0
-
-]
o
7]
k]
2 50
[
0
c
[
o

a 1 2 3 4 5

Rescheduling events frequency (# events/15 ninutes)

Fig. 10. (a) Delivery average time in the whole system and (b) percentage
of deliveries completed on time when increasing the external event arrival
frequency.

needed in systems of this kind. On the other hand, some
limitations were detected. The case-based planning beha-
viour needs initial knowledge as well as initial cases to be
efficient, so the agent needs some initial data or some initial
time to learn about the environment. Furthermore, the case
memory needs index and maintenance. By now the CBP
uses the plan’s efficiency as an index to organize and
accesses the case memory.

The results are promising for deployment within a real
scenario in the near future. The characteristics of the
architecture presented in this paper make it very suitable
for application in dynamic environments, in which learning
and adaptation to constant changes is required. In this
sense our future research work will consist in the
application of the proposed planner in everyday dynamic
environments, such as the construction of intelligent
environments that facilitate care for the sick and elderly,
housing, e-commerce, e-learning, entertainment etc. They

can also be applied to other domains characterized by
unstructured and non-conventional environments such as
manufacturing companies, scheduling and control, manip-
ulation of materials, etc.

References

Aamodt, A., Plaza, E., 1994. Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches. Al Communica-
tions, vol. 7, IOS Press, March, pp. 39-59.

Aha, D.W., Molineaux, M., Ponsen, M., 2005. Learning to win: case-
based plan selection in a real-time strategy game. In: Case-Based
Reasoning Research and Development, Lecture Notes in Computer
Science, vol. 3620, Springer, Berlin, pp. 5-20.

Bajo, J., Corchado, J.M., de Paz, Y., de Paz, J.F., Martin, Q., 2006. A
multiagent recommending system for shopping centres. In: Proceed-
ings of the ECAI 2006 Workshop on Recommender Systems, August
28-29, 2006, Riva del Garda, Italy, pp. 92-96.

Bellman, R.E., 1957. Dynamic Programming. Princeton University Press,
Princeton, NJ.

Boddy, M., Dean, T., 1994. Deliberation scheduling for problem solving
in time-constrained environments. Artificial Intelligence 67, 245-285.

Bohnenberger, T., Jacobs, O., Jameson, A., 2005. DTP meets user
requirements: enhancements and studies of an intelligent shopping
guide. In: Proceedings of PERVASIVE-05, Lecture Notes in Computer
Science, vol. 3468, Springer, Berlin, pp. 279-296.

Botti, V., Carrascosa, C., Julian, V., Soler, J., 1999. Modelling agents in
hard real-time environments. In: Proceedings of MAAMAW’99,
Lecture Notes in Artificial Intelligence, vol. 1647, Springer, Berlin,
pp. 63-76.

Burns, A., Wellings, A., 2001. Real-Time Systems and Programming
Languages. Addison-Wesley, Longman, Reading, MA.

Camacho, D., Aler, R., Borrajo, D., Molina, J.M., 2006. Multi-agent plan
based information gathering. In: Applied Intelligence, vol. 25(1).
Springer, Netherlands, pp. 59-71.

Carbonell, J.G., 1986. Derivational analogy: a theory of reconstructive
problem solving and expertise acquisition. In: Machine Learning: An
Artificial Intelligence Approach, vol. 2. Morgan Kaufmann, Los Altos,
CA, pp. 371-392.

Carrascosa, C., 2004. Meta-razonamiento en Agentes con restricciones
temporales criticas. Ph.D. Thesis, Dept. Sistemas Informaticos y
Computacion, Univ. Politécnica, Valencia.

Carrascosa, C., Terrasa, A., Fabregat, J., Botti, V., 2004. Behaviour
management in real-time agents. In: Proceedings of Fifth Iberoamer-
ican Workshop on Multi-Agent Systems, pp. 1-11.

Carrascosa, C., Terrasa, A., Garcia-Fornes, A., Espinosa, A., Botti, V.,
2006. A meta-reasoning model for hard real-time agents. In: Selected
Papers from the 11th Conference of the Spanish Association for
Artificial Intelligence (CAEPIA 2005), vol. 4177, pp. 42-51.

Corchado, J.M., Laza, R., 2003. Constructing deliberative agents with
case-based reasoning technology. International Journal of Intelligent
Systems 18 (12), 1227-1241 ISSN:0884-8173.

Corchado, J.M., Pavon, J., Corchado, E.S, Castillo, L.F., 2005.
Development of CBR-BDI agents: a tourist guide application. In:
ECCBR 2004, Lecture Notes in Artificial Intelligence, vol. 3155,
Springer, Berlin, pp. 547-559.

Davis, R.1., 1993. Approximate slack stealing algorithms for fixed priority
preemptive systems. Technical Report YCS217, Department of
Computer Science, University of York.

Garcia-Fornes, A., 1996. ARTIS: Un modelo y una arquitectura para
sistemas de tiempo real inteligentes. Ph.D. Dissertation, Dept.
Sistemas Informaticos y Computacion. Univ. Politecnica Valencia.

Garcia-Fornes, A., Terrasa, A., Botti, V., Crespo, A., 1997. Analyzing the
schedulability of hard real-time artificial intelligence systems. En-
gineering Applications of Artificial Intelligence, 369-377.

Giampapa, J.A., Sycara, K., 2001. Conversational case-based planning for
agent team coordination. In: Case-based Reasoning Research and

J. Bajo et al. | Engineering Applications of Artificial Intelligence 21 (2008) 769-784 783

Development: Proceedings of the Fourth International Conference on
Case-Based Reasoning, ICCBR 2001, vol. 2080, Springer, Berlin,
Heidelberg, July 2001, pp. 189-203.

Giampapa, J.A., Sycara, K., 2002. Team-oriented agent coordination in
the RETSINA multi-agent system. In: The Paper Presented at
AAMAS 2002 Workshop on Teamwork and Coalition Formation.
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

Goldman, R.P., Musliner, D.J., Krebsbach, K.D., 2001. Managing online
self-adaptation in real-time environments. In: Proceedings of Second
International Workshop on Self-Adaptive Software, Balatonfured,
Hungary.

Hammond, K., 1990. Case-based planning: a framework for planning
from experience. Cognitive Science 14 (3), 385-443.

Jost, J., Li-Jost, X., 1998. Calculus of Variations. Cambridge University
Press, UK.

Julian, V., Carrascosa, C., Rebollo, M., Soler, J., Botti, V., 2000. SIMBA:
an approach for real-time multi-agent systems. In: Lecture Notes in
Computer Science, vol. 2504(1), Springer, Berlin, pp. 282-293.

Lee, J.M., 1997. Riemannian Manifolds. An Introduction to Curvature.
Springer, New York.

Lesser, V.R., Pavlin, J., Durfee, E., 1988. Approximate processing in real-
time problem solving. Al Magazine 9 (1), 49-61 Spring.

Martens, A., Uhrmacher, A.M., 2002. Adaptative tutoring processes and
mental plans. In: Cerri, S.A., Gouardéres, G., Paraguagu, F. (Eds.),
Proceedings of Intelligent Tutoring Systems—ITS 2002, Springer,
Berlin, pp. 71-80.

Milnor, J., 1973. Morse Theory. Annals of Mathematical Studies.
Princeton University Press, Princeton, NJ.

Muiioz-Avila, H., Aha, D.W., 2004. On the role of explanation for
hierarchical case-based planning in real-time strategy games. In:
Gervas, P., Gupta, K.M. (Eds.) Proceedings of the ECCBR 2004
Workshops (Technical Report 142-04), Departamento di Sistemos
Informaticos y Programacion, Universidad Complutense Madrid,
Madrid, Spain.

Musliner, D.J., 2002. Safe learning in mission-critical domains: time is of
the essence. Working Notes of the AAAI Spring Symposium on Safe
Learning Agents, Stanford, California.

Musliner, D.J., Hendler, J.A., Agrawala, A K., Durfee, E.H., Strosnider,
JK., Paul, CJ., 1995. The challenge of real-time in Al. IEEE
Computer (January), 58—66.

Nii, P., 1986. Blackboard systems: the blackboard model of problem
solving and the evolution of blackboard architectures. Al Magazine,
38-53.

Page, D.L., Koschan, A.F., Abidi, M.A., Overholt, J.L., 2006. Ridge-
valley path planning for 3D terrains. In: Proceedings of International
Conference on Robotics and Automation 2006, pp. 119-124.

Peyre, G., Cohen, L.D., 2003. Geodesic re-meshing and parameterization
using front propagation. In: Proceedings of Second IEEE Workshop
on Variational, Geometric and Level Set Methods in Computer Vision
(VLSM’03).

Real, J.V., Crespo, A., 2004. Mode change protocols for real-time
systems: a survey and a new proposal. Real-Time Systems 26(2),
ISSN:0922-6443.

Sbeh, Z.B., Cohen, L.D., Mimoun, G., Coscas, G.A., 2001. New approach
for geodesic reconstruction in mathematical morphology and applica-
tion to image segmentation and tracking in ophtalmology. IEEE
Transactions on Medical Imaging 20 (12), 1321-1333.

Sha, L., Rajkumar, R., Lehoczky, J., Ramamritham, K., 1989. Mode
Change Protocols for Priority-Driven Preemptive Scheduling, UM-
CS-1989-060, p. 31.

Schramm, F., Micaelli, A., Morel, G., 2005. Calibration free path
planning for visual serving yielding straight line behaviour both
in image and work space. In: TROS 2005, Edmonton, Canada,
pp- 2216-2221.

Soler, J., Julian, V., Carrascosa, C., Botti, V., 2000. Applying the ARTIS
agent architecture to mobile robot control. In: Proceedings of
IBERAMIA’2000, Atibaia, Sao Paulo, Brazil, vol. I, Springer, Berlin,
pp. 359-368.

Soler, J., Julian, V., Rebollo, M., Carrascosa, C., Botti, V., 2002. Towards
a real-time multi-agent system architecture. In: Proceedings of the First
International Workshop on Challenges in Open Agent Systems,
Bologna, Italy.

Tindell, K.W., Burns, A., Wellings, A.J., 1992. Mode changes in priority
pre-emptively scheduled systems. In: IEEE Real-Time Systems
Symposium, pp. 100-109.

Veloso, M., Muifioz-Avila, H., Bergmann, R., 1996. Case-based planning:
selected methods and systems. Al Communication 9 (3), 128-137.
Wooldridge, M., Jennings, N.R., 1995. Intelligent agents: theory and

practice. The Knowledge Engineering Review 10 (2), 115-152.

Javier Bajo is at present a Ph.D. student and an
Assistant Professor at the University of Salaman-
ca (Spain), he obtained his Information Technol-
ogy degree at the University of Valladolid (Spain)
in 2001 and an Engineering in Computer Sciences
degree at the Pontifical University of Salamanca
in 2003. He has been Member of the organising
and scientific committee of several international
symposiums such as CAEPIA, IDEAL, HAIS,
etc. and co-author of papers published in
recognized journals, workshops and symposiums.

B Vicente Julian (Ph.D.) is originally from Valencia
(Spain), he received his B.S. and M.S. degrees in
Computing Engineering from the Polytechnic
University of Valencia in 1992 and 1995,
respectively. He is a Lecturer and obtained his
Ph.D. at the Computer Science Department at
the Polytechnic University of Valencia in 2002.
His current research interests are in multi-agent
systems, agent design, information retrieval and
real-time systems.

Juan M. Corchado (Ph.D.) received his Ph.D. in
Computer Science from the University of Sala-
manca in 1998 and Ph.D. in Artificial Intelligence
(Al) from the University of Paisley, Glasgow
(UK) in 2000. At present he is Associate
Professor, Director of the Intelligent Information
System Group (http://bisite.usal.es) and Director
of the M.Sc. programs in Computer Science at
the University of Salamanca (Spain). Previously
i he was sub-director of the Computer Science
School at the University of Vigo (Spain, 1999-2000) and Researcher at the
University of Paisley (UK, 1995-1998). He has been a research
collaborator with the Plymouth Marine Laboratory (UK) since 1993.
He has led several Artificial Intelligence research projects sponsored by
Spanish and European public and private institutions and has supervised
seven Ph.D. students. He is the co-author of over 130 books, book
chapters, journal papers, technical reports, etc. published by organizations
such as Elsevier, IEEE, IEE, ACM, AAAI, Springer Verlag, Morgan
Kaufmann, etc., most of these present practical and theoretical achieve-
ments of hybrid Al and distributed systems. He has been President of the
organising and scientific committee of several international symposiums.

Carlos Carrascosa (Ph.D.) was born in Valencia
(Spain) and received his M.S. degree in Computer
Science from the Polytechnic University of
Valencia in 1995. Currently, he is a Lecturer
and obtained his Ph.D. from the Computer
Science Department at the Polytechnic University
of Valencia. His research interests include multi-
agent systems, learning, information retrieval and
real-time systems.

784 J. Bajo et al. | Engineering Applications of Artificial Intelligence 21 (2008) 769-784

Yanira de Paz is at present a Ph.D. student, she
holds a scholarship provided by the Spanish
Minister of Education to complete a Ph.D.
program at the University of Salamanca (Spain).
She obtained her Mathematics degree in 2002 and
a Statistic degree in 2003 at the University of
Salamanca (Spain). She is an Assistant Professor
at the Faculty of Economy at the University of
Salamanca and co-author of several mathemati-
cal and statistical books. She has also been
Lecturer in the Faculty of Mathematics at the Complutense University
of Madrid. She has been co-author of published papers in several journals.

Vicente J. Botti (Ph.D.) is an Electrical Engineer
and Doctorate in Computer Science. He is
currently a Full Professor at the Universidad
Politécnica de Valencia (Spain), where he has also
been the Head of the Department of Informatics
Systems and Computation. His fields of study are
focused mainly on multi-agent systems, meth-
odologies for developing multi-agent sytems,
artificial societies, and more specifically, real-time
multi-agent systems, real-time systems, mobile

robotics (in which he has developed his own models, architectures and
applications) in addition to the field of knowledge engineering and
softcomputing techniques. He is leader of an extensive research group
whose general line of research is Artificial Intelligence and has published
about 200 scientific articles. He has been and is a principal researcher on
nationally and internationally funded projects (CICYT, MC&T, ESPRIT,
etc.), and on technology transfer agreements, as well as sitting on various
scientific committees in his areas of interest.

Juan Francisco De Paz is currently a Ph.D.
student of Computer Science at the University of
Salamanca (Spain). He obtained his Technical
Engineering in Systems Computer Sciences de-
gree in 2003, an Engineering in Computer
Sciences degree in 2005 at the University of
Salamanca and at this moment is finishing
Statistics in the same University. He has been
co-author of published papers in several journals.

