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Abstract Indoor localization constitutes one of the main pillars for the provision

of context-aware services in e-Healthcare systems. Fingerprinting and ranging have

traditionally been placed facing each other to meet the localization requirements.

However, accurate fingerprinting may worth the exhaustive calibration effort in some

critical areas while easy-to-deploy ranging can provide adequate accuracy for cer-

tain non-critical spaces. In this paper, we propose a framework and algorithm for

seamless integration of both systems from the Bayesian perspective. We assessed the

proposed framework with conventional WiFi devices in comparison to conventional

implementations. The presented techniques exhibit a remarkable accuracy improve-

ment while they avoid computationally exhaustive algorithms that impede real-time

operation.
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1 Introduction

The development of a better condition of life for older adults has become a major

task over the increasingly aged occidental population [10]. Information and com-

munication technologies are acquiring a major role in this task since they can foster

greater quality of life, autonomy and participation in social life of elderly people

[4]. Such technologies have resulted in the irruption of a vast range of elderly care

[4], home care [5] and e-Healthcare systems [2]. These systems are highly corre-

lated with context, and hence, the knowledge of the location of elderly people can

remarkably benefit the provision of these context-aware services [12]. Current posi-
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tioning techniques that rely on global navigation satellite systems (GNSS) provide

suitable performances in open areas [6]. However, there is no alternative technique

with analogous performance and affordable complexity in harsh environments [11].

The proposed alternatives can be coarsely classified into fingerprinting and ranging

localization techniques [12].

Fingerprinting techniques determine the position of a mobile target from location-

dependent information provided by offline and online measurements [12]. In the

offline phase, different features from the transmitted signals in the wireless network

are stored at several locations to form a database of location fingerprints. Then, the

position is estimated by comparison of the database with the values received by the

target in the online phase (i.e., with its fingerprint). Fingerprinting techniques involve

two major drawbacks: they require an arduous calibration offline phase and are very

sensitive to fast environmental changes [12].

Ranging techniques determine the position of a mobile target from range-related

information provided by received signal-strength (RSS) or time-of-arrival (TOA)

measurements [11]. In a first stage, the distance to a set of anchors with known

positions is estimated from the signals transmitted to the target. Then, the position

is estimated by means of a process known as trilateration (i.e., intersection of cir-

cles). Ranging techniques suffer from two dominant limitations: their accuracy is

far from fingerprinting methods and falls down under the multipath and non-line-of-

sight (NLOS) conditions of harsh environments [6].

Strengths and weaknesses of fingerprinting and ranging localization have

inevitably focused the challenge in developing hybrid systems without substantially

increasing complexity and cost. Such solutions will enable fine localization via fin-

gerprinting methods in places where the accuracy is critical or the database can be

frequently updated, and coarse localization via ranging methods in areas where there

is no database or it has become obsolete. In [8] fingerprint- and TOA-based methods

are coupled to localize UWB devices from a maximum-likelihood (ML) perspective;

in [9] fingerprint- and RSS-based techniques are fused by using RFID tags/readers

and the computationally expensive particle filter; whereas in [3] fingerprint-based

localization and channel-estimation tracking are combined to localize UWB devices

via extended Kalman filter (EKF).

In this paper, we propose a framework for unified fingerprinting/ranging based on

Bayesian data fusion. Such framework integrate position-related measurements from

the first and range-related measurements from the second. Moreover, it considers the

dynamic nature of the target’s position and accommodates any other position-related

information. We further derive algorithms to implement such framework based on

the unscented Kalman filter (UKF) that allows for efficient computation over a

Smartphone, facilitating its integration under previously proposed e-Healthcare solu-

tions [12].

The rest of the paper is organized as follows: Sect. 2 exposes the system specifi-

cation for its integration within an e-Healthcare platform; Sect. 3 presents the frame-

work for unified data fusion of fingerprinting/ranging measurements; Sect. 4 assesses

the proposed scheme by an experimental case study; and finally, Sect. 5 summarizes

the conclusions drawn from the research.
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2 System Specification

This section provides a general overview of the requirements of the localization

framework implemented within a previously deployed e-Healthcare system [12].

The localization algorithm will be integrated within a monitoring and tracking

platform for people with medical problems [12]. The mentioned platform is based

on a virtual organization of agents that monitors user’s information. The virtual orga-

nization was created with the PANGEA platform that facilitates the development of

agents in light devices and the integration of different hardware [14]. Within this

platform, the localization role is played in the home care organization. However, the

localization algorithm can be executed in the elderly user’s device (i.e., in a Smart-

phone) or in a centralized server (i.e., in the cloud). In the former case, the complexity

limitations are imposed by the Smartphone’s memory and CPU. In the latter case,

the complexity constraints are determined by the number of simultaneous users and

the response time. Consequently, we will avoid highly complexity demanding fusion

algorithms such as particle filters or Gaussian mixture filters [9, 11].

The monitoring and tracking platform utilizes WiFi as the underlying technology

to provide indoor localization. WiFi technology is more accessible and less expen-

sive than other alternative technologies such as RFID or UWB, and has a longer

range and larger bandwidth than ZigBee or Bluetooth. From signals transmitted in

the WiFi network, we can easily extract the RSS metric, while time- or angle-related

measurements imply additional complexities and costs [11]. Hence, we will employ

the RSS metric for fingerprinting and ranging.

Figure 1 depicts the flowchart for the whole localization process. In the offline

phase, we store the fingerprints for the most critical areas where we desire a more

accurate localization. In the online phase, we estimate the position by means of

Bayesian data fusion where fingerprinting/ranging models are chosen if the predic-

tion is inside/outside the stored area, respectively. Note that this scheme accommo-

dates other position-related information given by diverse devices such as the Smart-

phone’s GPS receiver or a foot-mounted inertial measurement unit (IMU).

3 Bayesian Data Fusion

In this section, we formulate the problem of estimating the position of a mobile

agent in a two-dimensional scenario by fusing information from different position-

related measurements. In order to do that, we collect measurements, {𝐲k}k∈ℕ, at

discrete time instants, tk∈ℕ. From these measurements, we estimate the state vec-

tor, {𝐱k}k∈ℕ. In addition to the information conveyed by the measurements, the

fact that the sequence of positions is highly correlated in time can also be used as

another source of information. Next, we determine the entries to state and measure-

ment vectors and define the models for the fusion of time-evolution and measuring

information.
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The state vector contains the position and its first derivatives so that {𝐱k}k∈ℕ is

a Markov chain (i.e., the current state only depends on the previous one) [1, 11]. In

this paper, 𝐱k = [𝐩k, 𝐯k, 𝐚k] ∈ ℝ6
, where 𝐩k ∈ ℝ2

is the target’s position, 𝐯k ∈ ℝ2

its velocity, and 𝐚k ∈ ℝ2
its acceleration.

1

Fig. 1 The proposed localization scheme facilitates a smooth change between fingerprinting and

ranging algorithms and the integration of GPS or inertial measurements

The measurement vector conveys any position-related information received at

time instant tk (i.e., its dimension may be different to the previous one). In this paper,

𝐲k = 𝐲fk ∈ ℝLk , or 𝐲k = 𝐲sk ∈ ℝLk , depending on whether we receive the RSS mea-

surements within a critical area (i.e., fingerprinting) or not (i.e., ranging), respec-

tively, where Lk ∈ ℝ is the number of anchors visible at that particular moment.
2

With the defined measurements and state vectors, it can be assumed that given the

current state vector, 𝐱k, the measurement vector, 𝐲k, is independent of all previous

and future states and measurements [1]. Therefore, we can build a hidden Markov

model that leads to two kinds of dependence between the random variables: the rela-

tionship between the state vector in time tk and the state vector in time tk−1, i.e.,

p(𝐱k|𝐱k−1), called dynamic model; and the relationship between the measurements

and the state vector in each time, i.e., p(𝐲k|𝐱k), called measurements model [1, 11].

We define both models in the next subsections.

1
In dead-reckoning systems, it is common to employ a foot-mounted IMU. In this case, the state

vector has to be augmented to include the IMU’s orientation, its derivatives and measurement

biases [13].

2
In dead-reckoning systems, it is common to gather specific force and angular velocity measure-

ments. In this case, the measurement vector has to be augmented to include their respective val-

ues [13].
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3.1 Dynamic Model

In the following, we define the model that conveys the information provided by the

evolution in time of the state vector.

Given the position, velocity and acceleration at time tk−1, 𝐩k−1, 𝐯k−1 and 𝐚k−1,

we can approximate their values in time tk, 𝐩k, 𝐯k and 𝐚k, by means of their Taylor

series expansion as [1],
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where 𝐈n ∈ ℝn×n
denotes the n × n identity matrix, Δk = (tk − tk−1) ∈ ℝ is the

sampling interval, 𝐅k ∈ ℝ6×6
is the transition matrix, and 𝐧dk ∈ ℝ6

is the error

term where the most common is to model it as white Gaussian noise (i.e., a discrete

Wiener process). Therefore, the dynamic model is given by,

p(𝐱k|𝐱k−1) = 𝜑(𝐱k;𝐅k𝐱k−1,𝚺d
k ) (2)

where 𝜑(𝐱;𝝁,𝚺) denotes the probability density function of a random vector 𝐱 ∼
 (𝝁,𝚺) and 𝚺d

k ∈ ℝ6×6
is the covariance matrix corresponding to 𝐧dk .

3.2 Measurements Model

In the following, we describe the models for the relationship between position- or

range-related measurements and the state vector.

RSS-FingerprintingMeasurements. We assume that the RSS corresponding to the

region of the map associated to fingerprint 𝐟m ∈ ℝ2
follows a Gaussian distribution.

Therefore, the likelihood function of such fingerprint is given by,

p(𝐲fk|𝐟m) =
Lk∏

l=1
𝜑

(

y(l)k ; 𝐲(l)m , 𝜎

(l)
m ∕

√

S(l)m
)

(3)

where y(l)k is an RSS measurement received form the lth anchor in tk, 𝐲
(l)
m is the sample

mean of the S(l)m RSS measurements from such anchor stored in the mth fingerprint,

and 𝜎

(l)
m is their sample standard deviation. Therefore, we can approximate the mea-

surements model by a mixture of the individual likelihoods at every point of the set

{𝐟m}Mm=1 as,
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p(𝐲fk|𝐩k) ≈
M∑

m=1
p(𝐲fk|𝐟m)𝜑(𝐩k; 𝐟m, h

2𝐈2) (4)

≈
M∑

m=1
𝜔

(m)
k 𝜑(𝐩k; 𝐟m, h2𝐈2)

where we have selected a Gaussian kernel with bandwidth h to model each region of

the map and approximate the likelihood by a continuous function.

RSS-RangingMeasurements. The RSS values are influenced, among other factors,

by the distance between target and anchors. This attenuation is proportional to the

inverse of the distance raised to a path-loss exponent [11]. In logarithmic units, we

have that for the lth anchor with position 𝐩(l) ∈ ℝ2
,

ysk = 𝛼 − 10𝛽 log10 ‖𝐩(l) − 𝐩k‖ + nsk (5)

where 𝛼 ∈ ℝ is a constant that depends on several factors such as fast and slow

fading, gains in transmitter and receiver antennas and the transmitted power, and

𝛽 ∈ ℝ is the path-loss exponent that can be dynamically obtained or trained in each

scenario. Finally, nsk is a Gaussian noise term caused by shadowing [11]. Therefore,

the corresponding likelihood function is given by,

p(ysk|𝐩k) = 𝜑(ysk; 𝛼 − 10𝛽 log10 ‖𝐩(l) − 𝐩k‖, 𝜎
p
k ) (6)

where 𝜎

s
k ∈ ℝ is the standard deviation corresponding to nsk.

4 Performance Evaluation

The goal of this section is to quantify the performance of the localization framework

described in Sect. 3 that may help to a better monitoring and tracking of elderly peo-

ple. The system is evaluated in the experimental case study of a pedestrian walking

with a Smartphone that collects RSS measurements from the WiFi network. In the

following, we describe the set-up for the experiments and present the performance

results.

4.1 Experimental Set-Up

To obtain the localization results we utilized dynamic and measurements models

described in Sect. 3.
3

The complexity constraints mentioned in Sect. 2 led to the

election of a Kalman-like solution [7]. The lack of linearity in the models implied

the use of a suboptimal solution, where the most common is the EKF. For rang-

3
We also added zero-mean Gaussian priors for velocity and acceleration.
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ing localization, we selected the UKF since it better captures higher order moments

caused by non-linearities and avoids computation of Jacobian and Hessian matrices

[7]. For fingerprinting localization, we predicted via Kalman filter (KF) and updated

by multiplying the prediction with the Guassian mixture likelihood given by (4) and

approximating the result by a single Gaussian.

The mobile target was a pedestrian with a Smartphone that covered the path

shown in Fig. 2b with several people walking around. The total length of the path was

approximately 110 m, implying a total time of 2.5 min. For fingerprinting localiza-

tion, the database was created by storing at least 10RSS values from all the detectable

access points (up to 25) in the fingerprints marked in Fig. 2a. For the ranging local-

ization, we employed 16 RSS measurements per point from the 4 access points plot-

ted in Fig. 2a. All the RSS measurements were considerably affected by NLOS and

multipath propagation conditions.

We compare our results against a conventional implementation based on Bayesian

networks for fingerprinting [2] and ML for ranging [11].

4.2 Results and Discussion

Figure 2b shows the localization results in the mentioned path. For the proposed

approach, the root-mean-square-error (RMSE) was 0.79 m in fingerprinting, 4.04 m

in ranging, and 2.55m in total. For the conventional approach, the RMSE was 1.48m

in fingerprinting, 5.88 m in ranging, and 3.79 m in total.

AP1

AP2

AP3 AP4

fingerprints

ranging area

0m 10m4m

(a) Experimental set-up

actual path
proposed
conventional

S
T
A
R
T

(b) Localization results

Fig. 2 The proposed unified framework provides accurate localization via fingerprinting for criti-

cal areas and ready-to-use localization via ranging for non-critical spaces



230 J. Prieto et al.

From Fig. 2 we can point out that: (1) the proposed framework facilitates the shift

from accurate fingerprinting to coarse ranging; (2) the Bayesian approach noticeably

improves ML in ranging localization; and (3) fingerprinting outperforms ranging in

WiFi networks while requiring greater calibration effort.

5 Conclusion

This paper has presented a principled framework and efficient algorithm for unifying

fingerprinting and ranging localization in e-Healthcare systems. We have defined the

framework from the Bayesian perspective that allows for the inclusion of position-

related information coming from heterogeneous sources. We have implemented the

algorithm via UKF that holds promise for effective fingerprinting/ranging fusion

without a substantial increment in complexity. Under NLOS and multipath condi-

tions, the presented techniques obtained an error in position estimation of 2.5 m

along a 110-meter-long path, remarkably outperforming conventional fingerprint-

ing/ranging implementations.
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