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Abstract. This study presents a novel hybrid intelligent system which focuses 
on the optimisation of machine parameters for dental milling purposes Based on 
the following phases. Firstly, an unsupervised neural model extracts the internal 
structure of a data set describing the model and also the relevant features of the 
data set which represents the system. Secondly, the dynamic system 
performance of different variables is specifically modelled using a supervised 
neural model and identification techniques from relevant features of the data 
set. This model constitutes the goal function of the production process. Finally, 
a genetic algorithm is used to optimise the machine parameters from a non 
parametric fitness function. The reliability of the proposed novel hybrid system 
is validated with a real industrial use case, based on  the optimisation of a high-
precision machining centre with five axes for dental milling purposes. 

Introduction 

The optimisation process of machine parameters could significantly help to increase 
companies’ efficiencies and substantially contributes to costs reductions in 
preparation and setting machines processes and it also helps in the production process 
using new materials. 

Nevertheless, the variables and parameters setting processes are a well-known 
problem that has not been fully resolved yet. Several different techniques are 
proposed in the literature. In [1], is used a Taguchi orthogonal array to optimise effect 
of injection parameters. In [2] the influence of operating parameters of ultrasonic 
machining is studied using Taguchi and F-test method. In [3] is researched as to 



 

 

improve the quality of the KrF excimer laser micromachining of metal using the 
orthogonal array-based experimental design method. 

Conventional methods can be greatly improved through the application of soft 
computing techniques [4]. 

The novel proposed method was tested and validated using a four-step procedure 
based on several soft computing techniques as artificial neural networks (ANN) and 
genetic algorithms (GA). Firstly, the dataset is analysed using projection methods 
such as Principal Component Analysis (PCA) [5], [6], [7] and Cooperative 
Maximum-Likelihood Hebbian Learning (CMLHL)[8] to analyse the internal 
structure  of the dataset to establish whether the data set is sufficiently informative.  
Then those methods are applied to perform feature selection as a pre-processing step. 
It means that if the initial collected data set, once analysed shows a certain degree of 
clustering, it can be seen as a sign of a representative data set (this means that there is 
not a single problem related to any sensor when collecting the information and the 
process is well defined by such data set. Then, the following steps of the process can 
be applied. And thus the most representative features are identified and used in the 
following steps. At this phase, a model is generated during the modelling stage to 
estimate production time errors by modelling techniques. Finally, the ANN model 
obtained in the last step is used as fitness function to be optimised in the genetic 
algorithm. 

The rest of this paper is organised as follows. Section 2 introduces the 
unsupervised neural models for analysing the internal structure of the data sets and to 
perform feature selection.. Section 3 deals with system identification techniques used 
in the system modelling. Section 4 introduces the applied GA. Section 5 describes the 
real industrial use case. The final section presents the different models that are used to 
solve the high precision dental milling optimisation use case. Finally conclusions are 
set out and some comments on future research lines are outlined. 

Soft Computing for Data Structure Analysis 

Soft Computing is a set of several technologies whose aim is to solve inexact and 
complex problems [9] It investigates, simulates, and analyses very complex issues 
and phenomena in order to solve real-world problems [10]. Soft Computing has been 
successfully applied in feature selection, and plenty of algorithms are reported in the 
literature [11], [12], [13]. 

 
Feature Selection and extraction [14], [15] entails feature construction, space 

dimensionality reduction, sparse representations and feature selection among others. 
They are all commonly used pre-processing tools in machine learning tasks, which 
include pattern recognition. Although researchers have grappled with such problems 
for many years, renewed interest has recently surfaced in feature extraction. 



 

 

In this research, an extension of a neural PCA version [5], [6], [7] and other 
extensions are used to study the internal structure in the data set as well as to select 
the most relevant input features for feature selections porpuses. 

 
Then, this research uses the feature selection approach based on the dimension 

reduction issue. Initially, some projection methods as PCA [5], [6], [7], MLHL [16] 
and CMLHL [8] are applied. In a first step they aim to analyse the internal structure 
of a representative data set of a real use case. If after applying these models, a clear 
internal structure can be identified, this means that the data recorded is informative 
enough. Otherwise, data must be properly collected again [17], [18]. 

System Modelling Using Identification Algorithms 

System identification (SI) [19] aims to obtain mathematical models to estimate the 
behaviours of a physical process whose dynamic equations are unknown. The 
identification criterion consists in evaluating the group of candidate models that best 
describes the dataset gathered for the experiment. The goal is to obtain a model that 
meets the following premise [19]: a good model is one that makes good predictions 
and which produces small errors when the observed data is applied. 

Classic SI refers to the parametrical literature, which has its origin in the linear 
system analysis [20]. Nevertheless, increased computational capability and the 
availability of soft computing techniques have widened research into SI. ANNs are 
one of the most interesting soft computing paradigms used in SI. 

The SI procedure comprises several steps [19], [21]: the selection of the models 
and their structure, the learning methods [22], [23], [20], the identification and 
optimisation criteria and the validation method. Validation ensures that the selected 
model meets the necessary conditions for estimation and prediction. Typically, 
validation is carried out using three different methods: the residual analysis -by means 
of a correlation test between inputs, their residuals and their combinations-; the mean 
squared error (MSE) and the generalisation error value -normalised sum of squared 
errors (NSSE) - and finally a graphical comparison between the desired outputs and 
the model outcomes through simulation [20], [17], [18]. 

Genetic Algorithm for System Optimisation 

Metaheuristic algorithms are considered as a computational method that optimises a 
problem by iteratively trying to improve a candidate solution with regard to a given 
measure of quality. Metaheuristics are more effective and specialised than the 
classical heuristics. They combine more exclusive neighbourhood search, memory 
structures and recombination of solutions and tend to provide better results. However, 
their running time is unknown and they are usually more time consuming than the 
classical heuristics. Metaheuristics make few or no assumptions about the problem 



 

 

being optimised and can search very large spaces of candidate solutions. Within these 
algorithms, there are two well-known types among others, such as the genetic 
algorithms [24], and the simulated annealing algorithm [25]. 

GA are adaptive heuristic search algorithm that mimics the process of natural 
evolution -Darwin's theory about evolution-. This heuristic is routinely used to 
generate useful solutions to optimisation and search problems. It solves both 
constrained and unconstrained optimisation problems. GA is a method for moving 
from one population of “chromosomes” to a new population by using a kind of 
“natural selection” together with the genetics, inspired operators of crossover, 
mutation and inversion. In the literature are found a large number of examples [26], 
[27], [28], [29], [30] 

A High Precision Industrial Use Case Scenario 

This study describes the way in which a hybrid artificial intelligent system can be 
applied to improve the last step of a high precision industrial system for the 
manufacture of metal dental pieces, by optimising the time error detection for dental 
milling process, as shown in Figure 1. 

 

Fig. 1. Metal pieces manufactured by a dynamic high-precision machining centre with five axes 

A dynamic high-precision machining centre with five axes was applied in this 
research. This real industrial use case is described by an initial data set of 109 samples 
obtained by a dental scanner in the manufacturing of dental pieces with a toric tool 
characterized by 7 input variables (Radius, Number of pieces, Thickness, 
Revolutions, Feed rate X, Y and Z) and 1 output variable -Real time of work- as 
shown in Table 1. Time errors for manufacturing are the difference between the 
estimated time by the machine itself and real production time -negative values 
indicates that real exceeds estimated time-. 



 

 

Table 1. Values of each variable used in the process 

Variable (Units) Range of values 

Radius (mm.) 0.25 to 2 

Number of pieces 1 to 4 

Thickness (mm.) 8 to 18 

Revolutions per minute (RPM) 10,00 to 38,000 

Feed rate X 75 to 3,000 

Feed rate Y 75 to 3,000 

Feed rate Z 75 to 2,000 

Real time of work (s.) 81 to 1,924 

Time errors for manufacturing (s.) -3 to -332 

Optimising a Real Dental Milling Process 

The manufacturing of dental pieces process optimisation in terms of time errors based 
on the optimisation of the system behaviour is carried out by means of an ANN 
estimated model. Firstly, the dental manufacturing process is parameterised and its 
dynamic performance in normal operation is obtained by the real manufacturing of 
dental pieces. Then, the gathered data is processed using CMLHL to identify internal 
data set structures in order to determine the ability of the data set to be modelled and 
to identify the most relevant features. This allows a third step, knowing a priori, that 
the model to be obtained can be achieved. 

Once the model has been obtained –in the third step-, it is then used as a reference 
model and also as fitness functions in a GA. The GA calculates the best conditions 
under normal operating conditions in a dental milling process for manufacturing 
dental pieces, so if the operator wants to make a dental piece, the best machining 
conditions might be determined to minimize manufacturing time errors compared to 
the estimated manufacturing time which is given by the machine itself. 

This section deals with the description of each step once the data set is collected 
(see Section 4). In the next subsection, the generation of the data set which will be 
used in the process is described. Sub-Section 6.1 presents the PCA and CMLHL 
steps, in Sub-Section 6.2 the procedure to obtain the time error model is detailed, 
while in Sub-Section 6.3 the GA is applied. 

Identification of the Relevant Features 

PCA and CMLHL are techniques for identifying the internal structure of a data set 
and also to identify the most relevant variables, as detailed in Section 2. Both of 
which were applied to this real industrial use case. Then, by means of projection 
methods it is analysed whether the data set is sufficiently representative of a case 



 

 

study, and the most relevant variables are identified to reduce the computational cost 
in the third step. 

Modelling a Normal Dental Milling Operation 

Once the relevant variables and their transformations have been extracted from the 
production data, then a model to fit the normal manufacturing operation should be 
obtained. This is done to identify bias in the estimated production time, which, in the 
end, is used as fitness function -time error in the manufacturing of dental pieces-. The 
different model learning methods used in this study were implemented in Matlab© 
[31]. 

Moreover, several different indexes were used to validate the models [17], [18] 
such as the percentage representation of the estimated model; the graphical 
representation for the prediction - )|(ˆ1 mty - versus the measured output - )(ˆ 1 ty -; 
the loss function or error function (V) and the generalization error value. 

The percentage representation of the estimated model is calculated as the 
normalised mean error for the prediction (FIT1). The loss function or error function 
(V) is the numeric value of the mean square error (MSE) that is computed with the 
estimation data set. Finally, the generalisation error value is the numeric value of the 
normalised sum of square errors (NSSE) that is computed alongside with the 
validation data set (NSSE1) and with the test data set (NSSE2) [32]. 

Optimisation of a Normal Dental Milling Operation 

In this case study of dental pieces manufacturing, GAs are concerned with obtaining 
variables that best optimised the time errors. Firstly this process of optimisation is 
started with a set of solutions randomly called population –chromosomes-. Then, each 
individual in the population is evaluated by the fitness function obtained in the last 
step –ANN model of the manufacturing system-. GA, so as the different types of 
genetic operators -selection, crossover, mutation- used in this study were 
implemented in Matlab©. 

Experiment and Results 

The real industrial use case was analysed in order to select the features that best 
describe the relationships with manufacturing time errors. 

CMLHL is a powerful technique for identifying internal dataset structures. The 
axes forming the projections (Figure 2.a and Figure2.b) represent combinations of the 
variables contained in the original datasets. In the case of PCA, the model is looking 
for those directions with the biggest variance, when CMLHL is looking for those 
which measure how interesting is a dimension/direction. In this case, those are the 
directions which are as less Gaussian as possible, (by analysing the kurtosis) [8], [16]. 



 

 

 

 
Fig.2.a. Projection of PCA Fig.2.b. CMLHL projections 

Fig. 2. PCA projections (Figure 2.a) and CMLHL projections (Figure 2.b) 
 
As seen in Figure 2, PCA (Figure 2.a) and CMLHL (Figure 2.b), both found a clear 

internal structure in the dataset. Both methods identified ‘radius’ and 'RPM' variables 
as the relevant ones. CMLHL projection gives more information since it  recognises 
the 'thickness' as another important variable and also 'real time of work'. CMLHL 
provides a more sparse representation than the PCA model. 

An analysis of the results obtained with the CMLHL model, (Figure 2.b), leads to 
the conclusion that it has identified several different clusters ordered by 'radius' and 
'RPM' variables. 

Inside each cluster (Figure 2.b), there are further classifications by ‘thickness’ and 
'real time of work'. The dataset can be said to have an interesting internal structure. 

When the dataset is considered sufficiently informative, as in this case, the step for 
modelling the relations between inputs and production time errors in the process 
begins, through the application of several conventional ANN modelling systems. 

Thus, an ANN was used to monitor time error detection in the manufacturing of 
dental pieces by using the pre-processed data set from the input and output 
normalisation step –zero mean and unity standard deviation-, the reduction of the 
input vectors dimension –the data set gathered in the previous step- and the use of 
early stopping and Bayesian regularization techniques [33]. 

The model was obtained using the Bayesian regularised criterion when the ANN is 
determined the last step starts and it is then used as fitness functions in a GA. The 
ANN structure -Feedforward Network- has 25 hyperbolic tangent units -layer 1-, 20 
hidden hyperbolic tangent units -layer 2-, 4 hidden hyperbolic tangent units -layer 3- 
and 1 linear output unit. The network is estimated using the Lenvenberg-Marquardt 
method. Indexes of the model are FIT1: 80.1%, V: 0.043.and NSSE1: 0.031. 

The fitness function is the model of the time error in the dental pieces 
manufacturing. GA starts with a randomly generated initial population of size 60 
individuals. Tournament selection is used to determine the parents for the next 
generation. Individuals from the current population are selected proportionally to their 



 

 

fitness and forming in this way the basis for the next generation. Two-point crossover 
combines two parents to form a new individual for the next generation and uniform 
mutation with a 0.01 rate makes small changes in the individuals in the population. 
The population obtained by these genetic modifications is evaluated against the 
fitness function and enters a new search process in the next generation. The algorithm 
stops after fixed number of generations is reached and the best individual is returned 
as a solution to the given problem. 

Figure 3 shows the output response of the time error for different unnormalised 
input variable ranges. In Figure 3.a the X-axis shows the thickness, from 8mm to 18  
mm., the Y-axis shows the revolutions per minute, from 10,000 to 38,000 in RPM. 
and the Z-axis represents the unnormalised output variable range from -400 to 0 in s. 
for a constant value of a radius of 1,5 mm. The time error is shown on the bar, too. In 
Figure 3.b the X-axis shows the thickness from 8 to 18 in mm, the Y-axis shows the 
radius, from 0.25 to 2 in mm and the Z-axis represents the unnormalised output 
variable range from -250 to 0 in s. for a constant value of revolutions per minute of 
22,000 RPM. The time error is shown on the bar, too. The time error can be optimised 
for different values of radius, thickness and revolutions per minute; i.e., it is possible 
to achieve the less time error and to find the optimal value of the revolutions per 
minute for a thickness of 14 mm. and a radius of 1.5 mm. -both values fixed- in this 
case the time error and the revolutions per minute are -38.4 s. and 38,000 RPM., 
respectively. Also if the radius and the time error are fixed to 1.5 mm. and -100 s., 
respectively, the thickness and the revolutions to optimise those variables are 12.41 
mm. and 19,900 RPM. 

 
 

Fig.3.a. 3D graph, the X-axis represents the 
thickness, the Y-axis the RPM. and the Z-
axis the output -time error- for a constant 

value of radius of 1,5 mm. 

Fig.3.b. 3D graph, the X-axis represents the 
thickness, the Y-axis the radius, and the Z-
axis the output -time error- for a constant 

value of 22,000 RPM. 
Fig. 3. Output response of the time error for different unnormalised input variable ranges 

Conclusions and Future Work 

The novel hybrid artificial intelligence system for the optimisation of this industrial 
process can be used in the optimisation of machine parameters for industrial processes 



 

 

in general. The process increases the companies’ efficiency and substantially 
contributes to costs reduction of preparation and setting machine processes and it also 
helps in the production process using new materials.  This method has been used in 
this case for the optimisation and adjustments during the manufacturing process of 
dental pieces such as implants according to medical specifications of precisely 
moulded. 

The dental milling presents an important time error rate of manufacturing which is 
about 48%. This is due to the difference between the estimated time by the machine 
itself and the real production. The model obtained is capable of modelling more than 
80% of the actual measurements in relation to time error -modelling more than 90% 
of the real time of work-. This helps to reduce the error and the variability rate of 
manufacturing processes down to 10%, compared to 48% initially (Acceptable error 
rate in planning work for dental milling). 

Future lines of research include modelling the temperature and the erosion (errors 
in length or tooth wear), which is a measure of the quality of the dental milling 
process. Finally, an algorithm will be developed to automatically identify the best 
operating conditions: minor time errors for the manufacturing of dental pieces and 
minor erosion. The resulting model would moreover be applied to different metals 
used in prosthetic dentistry and in other industrial processes. 
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