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Dynamic Distribution of Tasks in 
Health-Care Scenarios 

Carolina Zato, Ana de Luis, and Juan F. De Paz* 

Abstract. This paper presents a multiagent system that use an autonomous delib-
erative case-based reasoningagent to design an efficient working day. The system 
has been developed to plan and distribute tasks in a health care scenario, specifi-
cally in geriatric residences. This model generates a planning of tasks, minimizing 
the resources necessary for its accomplishment and obtaining the maximum bene-
fits.For this purpose, the queuing theory and genetic algorithms have been include 
in a CBRarchitecture to obtain an efficient distribution. To evaluate the model, the 
obtained results have been compared with a previous method of planning based on 
neural networks. 

Keywords: multiagent systems, queuing theory, genetic algorithm, task schedul-
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1   Introduction 

During the last three decades the number of Europeans over 60 years old has risen 
by about 50%. Today they represent more than 25% of the population and it is es-
timated that in 20 years this percentage will rise to one third of the population, 
meaning 100 millions of citizens [1]. This situation is not exclusive to Europe, 
since studies in other parts of the world show similar tendencies. In the United 
States of America, people over 65 years old are the fastest growing segment of the 
population and it is expected that in 2020 they will represent about 1 of 6 citizens 
totalling 69 million by 2030. Furthermore, over 20% of people over 85 years old 
have a limited capacity for independent living, requiring continuous monitoring 
and daily care, for this reason it is important to create a task planner and control 
system for elderly people. 
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Nowadays, a great amount of dynamicproblems can be considered as planning 
problems. In this kind of problems the aim is to obtain a plan, as well as obtaining 
a scheduling of the actions along the time, assigning the necessary resources and 
taking into account restrictions like the benefits. Practical planning has been ap-
plied in many different fields and has been combined with different artificial intel-
ligence techniques [2] [10]. One of the main challenges has been the development 
of intelligent systems focused on the improvement of health care sciences that can 
be applied in hospitals, residences, etc. [3]. 

The system presented in this paper includes deliberative agents using a case-
based reasoning (CBR) architecture, as a way to implement adaptive systems to 
improve assistance and health care support for elderly and people with disabilities. 
Agents in this context must be able to respond to events, take the initiative accord-
ing to their goals, communicate with other agents, interact with users, and make 
use of past experiences to find the best plans to achieve goals.The planning model 
is performed by applying CBR systems [5]. The CBR system integrates into vari-
ous stages of reasoning, techniques to estimate resources based on queuing theory 
and planning using genetic algorithms. 

The planner has been included into the ALZ-MAS multi-agent system [4][7]. ALZ-
MAS generates the distribution of tasks among the personal taking into account their 
abilities and allowing the dynamic distribution of tasks according to their pro-
files.ALZ-MAS facilitates carrying out tasks in a ubiquitous way, such as plans gen-
eration for nurse’s and doctors working days, or patient and task assignation. These 
tasks are executed in a distributed way inside the intelligent environment and are inde-
pendent of the location of the processing devices due to the use of mobile devices and 
wireless networks. The previous planner of ALZ-MAS calculated the distribution of 
tasks using neural networks to establish the final sequence of actions. Now, this model 
has been improved using the queuing theory and genetic algorithms. 

This article is divided as follows: section two presents the proposed model and 
section three describes the results obtained and the conclusions. 

2   Proposed Model 

The model proposed in this paper focuses on developing a planning mechanism to 
coordinate the agents. The roles of the agents are: 

1.   Patient role. It manages the patient’s personal data and behaviour (monitoring, 
location, daily tasks, and anomalies). Every hour validates the patient location, 
monitors the patient state and sends a copy of its memory base to the manager 
agent in order to maintain backups.  

2.   Personnel role. It represents the different workers. This role can have different 
specializations according to the profile of the workers and his capabilities. In 
this case, the specialized profiles are doctors, nurses and nurse assistants. 

3.   Planner role. Design the overall plan to be implemented by the organization. 
Sets the number of personnel agents and makes the distribution of tasks de-
pending on the specialized role they play. Replan depending on the size of the 
input queue or inability to accomplishwith a plan. 
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is predefined to subsequently implement the adaptation phase. The set of recov-

ered cases are called CCr ⊆ . 

 
Adaptation. During this stage, the recovered information Cr is adapted from cases 
of memory to generate the entire plan corresponding to the case cn+1. The infor-
mation recovered is adapted by applying queuing theory and genetic algorithms. 
On one hand, the recovered information is used to determine the arrival rate and 
service for each of the tasks and thus using queuing theory we can determine the 
number of agents needed to run the indicated tasks. Recovered cases are the basis 
for constructing initial chromosomes in genetic algorithms. 
 
Review. The review stage is performed automatically as the agents are finalizing 
tasks. The agent updates the duration of the tasks as they are completed and in 
turn, makes new plans if any notice is received from the processor agents on the 
inability to complete a plan under time constraints provided. 
 
Learning. The learning phase is limited to store the case when the day is finished. 

The new case memory C 'is defined as follows: 1' +∪= ncCC  To limit the size 

of cases of memory, some are removed from memory if they exceeded a prede-
fined age. 

2.1   Dynamic Planning Roles 

The number of agents that should be available in the system is estimated dynami-
cally. It is intended that the number of agents suits demand to ensure that the sys-
tem utilization factor ρ  is less than 1. This estimate will be done through the use 

of queuing theory in a model M/G/s, where the arrival rate follows a Poisson dis-
tribution (the most commonly used in similar work), the exponential service and 
the existence of multiple servers (agents). 

The problem of planning multiple tasks can be reduced to the case of planning 
for a single task of each type. Thus, for each task a planning is performed inde-
pendently so as to calculate the average waiting time and average queue length in-
dependently. The average waiting time and the overall average length is reduced 
to calculating the average values calculated for each of the tasks. In the case of the 
M/G/s model where s = 1,2,3, ... is the number of agents and given an arrival rate 

nλ = λ = cte, the service rate when there are n processes is defined by the follow-

ing equation (2) [8] [5]. 
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Where μ represents the average service rate for s available agents. This value de-

pends on both the agents and the machine found. 
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Assuming that the system is in a stable condition, i.e. it meets the utilization 
factor 1)/( <= sμλρ , the queuing theory [8] allows to calculate the probability 

that n tasks exists (Pn) in the system, the number of tasks (L) in the system. 
To determine the optimal number of agents,an estimation that minimizes the cost 
function is calculated and it depends on the number of agents used and on the 
waiting time in the queue. The function is defined in a particular way for each ser-
vice depending on the actual costs of each agent in the system, though the follow-
ing benefit function is provided (4). 
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Where k is a constant associated with the cost of having an agent working, b the 

average benefit of performing the task 'μ  is the average time to complete the task 

obtained from the service rate, p  the average time to execute a task. If the condi-

tions of stability are overpass, fb is counted only up to the utilization factor 1. The 
utilization factor ρ  varies according to the new services added to the queue till it 

reaches the utilization factor of 1. 
Following the cost function given in (4), a global cost function is introduced (5) 

that takes into account the implementation of the various services. 
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Where if is calculated from equation (4). Because sometimes you might not be 

given the stability conditions, it is necessary to calculate the terms in order of 
benefit depending on the type of the task so that when you reach the utilization 
factor of 100%, the process ends calculating the summation terms. Once the opti-
mization function defined in (5) the maximum value is calculated iteratively start-
ing with number of agents equal to 1, the fixed value is the first local maximum 
that corresponds to the global maximum. 

2.2   Task Assignment 

Once the number of starting agents is considered to minimize costs, an allocation 
of tasks between the available agents has to be done. The distribution of tasks 
among agents is performed so as to ensure as far as possible that it can perform as-
signed tasks in case of delays or the time to perform a task increases. It is per-
formed so as to maximize the following function (6): 
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Where |1|log xxi −+  takes the sign of the expression xxi − ,

iiii catx −−= −1  with it  the maximum time for completion of the task i, 1−ia  

the accumulative time to perform the tasks i-1 above and finally ic
 the time to run 

the task iplus the time of movement from the task i-1calculated by Floyd algo-
rithm [11], which is customized according to the agent selected and calculated 
from the average value of previously executed tasks. Minimizing the differences 
get all the tasks to have a uniform distribution of the remaining time so it gets eas-
ier to achieve them. 

The chromosome encoding is performed so that each gene is composed of the 
elements listed by ti identified in (1). The crossover operator is defined similarly 
to the multi-junction used in other problems such as TSP. The operator is defined 
as follows: 

• Select a partial route 
• Exchange of direct segments of tasks where ID matches  
• The exchanges define a series of matches that relates each of the genes of a 

chromosome with which occupies the same position in the other parent 

Mutation operators define various modes that will be executed randomly, and just 
those mutations that improve the aptitude of chromosomes will be selected. The 
defined mutation operators are: exchange order of tasks, exchange of assigning 
contiguous tasks and changing the allocation of a task. 

Elitism operator is defined to keep the percentage of efficient solutions in every 
generation of population and population size as a constant this involves the re-
placement of parents by the children chromosomes in generations with the excep-
tion to remain with elite chromosomes. The roulette selection is the criteria chosen 
for this. 

The initiation of chromosomes is based on the received tasks; each chromo-
some is initiated with the tasks of the new case. For each task of the chromosome 
a sequential search is made in the case and assigns the task to an existing agent so 
that this association is maintained for the remaining tasks. 

3   Results and Conclusions 

The previous planning model of ALZ-MAS calculated the distribution of tasks us-
ing neural networks to establish the final sequence of actions. This model was im-
plemented by means of a RPTW (Routing Problems with Time Windows) neural 
network[4],which allows reaching a solution much more rapidly. 

In order to compare both systems, we measure the number of replannings car-
ried out by the planner agent. The first planner of ALZ-MAS was applied in a 
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working day and the process was repeated the next day using this new proposed 
planner. This process was repeated during 5 iterations. The image 1 shows the 
numbers of replannings carried out for each of the 5 nurses. The y axis represents 
the number of replannings and the x axis the nurses. The thin lines represent the 
RPTWplanner of ALZ-MAS and the fat lines the new planner. The colour repre-
sents the nurses. The number of replannings is reduced because the new planner 
creates the plans bearing in mind the intervals among the tasks in the final plan. 

 

Fig. 1 Numbers of replannings carried out for each of the 5 nurses. Fat lines new planer and 
thin lines RPTW. 

To complete the study the Mann-Whitney U-test [9] was applied. It was a non-
parametric test and it is not necessary to make assumptions on the data distribu-
tion, as in the t-test. The test determines two values: H0 and H1. H0 shows if the 
data in both groups presents the same distribution, whereas H1 determines if there 
is difference in number of replannings. The number of replannings for each 
worker was compared in both planners. The results establish that the number of 
replannings comes from different statistical distributions for each workerso, we 
can conclude that the differences are relevant. 

The proposed planner allows reducing the number of replannings because it es-
tablishes homogeneous intervals among the tasks and calculates the arrival time of 
tasks using the previous information. Besides, the planner makes predictions of 
the necessary personal in order to accomplish all the activities. 
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