
Modeling the Electromyogram (EMG)
of Patients Undergoing Anesthesia During
Surgery

José Luis Casteleiro-Roca, Juan Albino Méndez Pérez, Andrés José
Piñón-Pazos, José Luis Calvo-Rolle and Emilio Corchado

Abstract All fields of science have advanced and still advance significantly. One

of the facts that contributes positively is the synergy between areas. In this case, the

present research shows the Electromyogram (EMG) modeling of patients undergoing

to anesthesia during surgery. With the aim of predicting the patient EMG signal, a

model that allows to know its performance from the Bispectral Index (BIS) and the

Propofol infusion rate has been developed. The proposal has been achieved by using

clustering combined with regression techniques and using a real dataset obtained

from patients undergoing to anesthesia during surgeries. Finally, the created model

has been tested with very satisfactory results.
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1 Introduction

One of the facts that has contributed to the outstanding development in some sci-

entific fields is related to the existing synergy with other disciplines. Probably, the

most representative examples are the sciences and the techniques around the medi-

cine topics. Typical examples are: robotics, instrumentation, materials and so on.

The present research shows a new advance in this sense, specifically with the

Electromyogram signal (EMG) when a patient is undergoing surgery with general
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anesthesia. This research is focused on general anesthesia with Propofol. The mea-

surement of the hypnotic state is done with the Bispectral Index (BIS). This index

varies between 0 (no electrical activity) and 100 (awake state). The target for general

anesthesia is normally established in 50. The hypothesis in this work is that EMG is

correlated to BIS and infusion rate. Then, the objective is to predict the EMG value

in terms of BIS and Propofol rate. The EMG signal is used by the clinician to assess

the muscular relaxation of the patient [1–3].

For the EMG signal prediction, many different methods can be considered. The

common regression methods are typically based on Multiple Regression Analysis

(MRA) techniques, that are very common in applications in different fields [4–6].

However, these methods have limitations and do not provide a good performance

[5]. In order to increase this feature, many new proposals have been developed. These

proposals are based on Soft Computing techniques, both simple or hybrid. As it is

shown in [4, 7–20] these techniques improve the first ones mentioned above.

This study implements a hybrid model to predict the EMG signal from the BIS

signal and the Propofol infusion rate. To develop the model, K-means clustering

algorithm is used to create groups of data with similar behavior. Previously, a Self-

Organization Map (SOM) is employed with the aim of obtaining a first estimation

of the optimal clusters quantity. Then, several regression methods were verified for

each group to select the best one based on the lowest Mean Squared Error (MSE)

reached.

This paper is structured in the following way. After the present section, the case

of study is described, the Bispectral index. Then, the model approach and the tested

algorithms taken into account in the research are shown. The results section shows

the best configuration achieved by the hybrid model. After the results, the conclu-

sions and future works are presented.

2 Case of Study

When a patient is undergoing surgery with general anesthesia, a proper dose of

Propofol should be administrated to achieve an adequate hypnosis level [21]. To

monitor the anesthesia level, the Bispectral Index Signal (BIS) is measured [22, 23].

As a consequence of the anesthesia level and the BIS signal, the ElectroMyoGram

signal (EMG) varies according them [23]. The studied problem could be represented

as shown in Fig. 1.

The patient is under anesthesia while the right dose of drug is administrated.

When the surgery starts the patient is wake up, and then, with the Propofol drug

help, is achieved the adequate hypnosis level. During the procedure, the provide

level of drug (mg∕Kg∕h) is controlled to achieve the BIS desire level (50). Also,

the EMG signal (Volts) depends on the drug quantity. At the end of the surgery the

administration of the Propofol is stopped, consequently, the patient wakes up.
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Fig. 1 Case of study. Input/Output representation

3 Model Approach

The scheme defined for the model approach is shown in Fig. 2. Taking into account

the system behavior and the test accomplished, it is possible to divide the dataset in

several operation ranges. Consequently, some clusters are created, and for each one, a

regression model is implemented for the single output. As shown in Fig. 2, the global

model has two inputs (the −Propofol− drug and the Bispectral index −BIS−) and

one output (Electromyogram signal −EMG−). The cluster selector block connects

the chosen models with the output. On each figure cluster block, only the best model

is implemented; the cluster for a specific input is selected based on the Euclidean

distance between the input and the centroids on each cluster.

The modeling process is shown in Fig. 3. Despite that the figure only shows the

data division for training and testing, the dataset has been processed by using cross-

validation (holdout) to ensure the best results for the achieved model.

3.1 The Dataset Obtaining and Description

The dataset has been obtained from several patients undergoing general anesthesia

with Propofol drug during surgery. The three variables employed on this research

(BIS, EMG and Propofol infusion rate) have been monitored during surgeries. A

preconditioning stage was considered for BIS and EMG. The dataset is composed

with the data of a total of xx patient, recording new set of values every 5 seconds. Due

to the signals vary slowly at the acquisition phase, a low pass filter was implemented

to avoid the measurement noise. The induction phase and the recovery phase were not

considered in this study. Thus, the results obtained are only valid to predict EMG in

the maintenance phase of surgery. With the conditions exposed above, the employed

dataset contains 2788 samples.
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Fig. 2 Model approach

Fig. 3 Modeling process

3.2 Used Techniques

The techniques tested in the present study, with the aim of achieving the best model,

are described below.

The procedure to obtain the hybrid model is through clustering by using the SOM

and K-means algorithms. Below, different intelligent regression techniques are con-

templated to accomplish the models. Then, only the best one is chosen according

with the MSE criteria.
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Self-OrganizingMap (SOM) Self-Organizing Map (SOM) [24] is a type of Arti-

ficial Neural Network (ANN) that maps a high dimensionality vector onto a low

dimensional one. This type of ANN uses unsupervised competitive learning [25,

26]. The learning process is recurrent until the network reaches a precise result or a

maximum number of iterations have been finished. Its configuration is based on an

array tied to N inputs by an N-dimensional weight vector. The process provides the

geometry of the data. As a result, a 2D graphical representation is possible to show.

Then, possible relationships are discovered by comparing different component maps

with another one. The method provides an idea of the number of the required clusters.

Data Clustering - the K-means algorithm Clustering techniques are procedures

of data grouping where similarity is measured [27, 28]. These algorithms try to orga-

nize unlabeled feature vectors into groups, such samples within a cluster are similar

to each other [28]. The K-means method is a frequently used clustering algorithm

with square-error criterion, which minimizes error function.

The clustering will depend on the initial cluster centroids and on the K value

(number of groups). The K value choice is the most critical election because it needs

certain previous knowledge of the quantity of clusters present in the data, which is

extremely uncertain. The K-means clustering algorithm is computationally effective,

it works well if the data are close to its cluster, the cluster is hyperspherical in shape

and well-separated in the hyperspace.

Artificial Neural Networks (ANN). Multi-Layer Perceptron (MLP) A Multi-

Layer Perceptron (MLP) is a feedforward Artificial Neural Network (ANN) [29, 30].

It is one of the most used ANNs due to its simple configuration and its robustness. In

spite of this fact, the ANN architecture must be carefully chosen in order to achieve

satisfactory results. MLP is made up by one input layer, one or more hidden layers

and one output layer. Each layer has neurons, with an activation function. In a typi-

cal configuration, all layer neurons have the same activation function. This function

could be a step, linear, log-sigmoid or tan-sigmoid.

Support Vector Regression (SVR), Least Square Support Vector Regression
(LS-SVR) Support Vector Regression (SVR) is based on the algorithm of the Sup-

port Vector Machines (SVM) for classification. In SVR the main aim is mapping the

data into a high-dimensional feature space F through a nonlinear plotting and doing

linear regression in this space [31].

The Least Square algorithm of SVM is called LS-SVM. The solution estimation

is obtained by solving a system of linear equations, and it is similar to SVM in terms

of performance generalization [28]. The use of LS-SVM algorithm to regression is

well-known as LS-SVR (Least Square Support Vector Regression) [32]. In LS-SVR,

the insensitive loss function is replace by a classical squared loss function, which

makes the Lagrangian by solving a linear Karush-Kuhn-Tucker (KKT).

Polynomial Regression Usually, a polynomial regression model [33–36] could

also be defined as a linear summation of basis functions. The quantity of basis func-

tions depends on the number of inputs of the system, and the degree of the employed

polynomial. The model becomes more complex when the degree rises.
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4 Results

The model was obtained using the current value of BIS signal, and the Propofol

infusion rate quantity of drug (Propofol). To include the dynamic of the modeled

system, the last three previous values of the inputs were included to train the models;

also, the previous values of the desired output (the EMG signal) were included.

Figure 4 shows one of the results of the SOM analysis of the dataset. In this figure,

different regions in the dataset structure should be appreciated. It is necessary to

remind that the SOM neighbor weight distances represents the border of different

clusters in the dataset with dark lines.

Fig. 4 SOM analysis: Neighbor weight distances

The SOM analysis is very helpful to decided the number of clusters in a dataset

when this clusters are well defined. However, in this dataset the clusters are not valid

to use the method. As the number of clusters is not previously known, the model

was trained with different configuration of clusters, created by using the K-means

algorithm.

In each cluster, using cross-validation, 2/3 of the samples were used to train the

models, and the other samples were used to calculate the MSE to select the best one.

The algorithm performance depends on the initial state, the process was performed

20 times with a random initialization, and finally the best result was stored. The
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K-means configuration was ranged from 2 to 10 clusters with the aim to create 9

different topologies. The global model was taking into account too.

The MLP-ANN regression algorithm was trained for different configurations;

always with one hidden layer, but the number of neurons in the hidden layer varies

from 2 to 15. The activation function of this neurons was tan-sigmoid for all tests,

and the output layer neuron had a linear activation function. The training algorithm

used was Levenberg-Marquardt; gradient descent was used as learning algorithm,

and the performance function was set to mean squared error.

The LS-SVR was trained with the self-tuning implemented with the toolbox for

MatLab developed by KULeuven-ESAT-SCD. The kernel of the model was set to

Radial Basis Function (RBF), and the type was ‘Function Estimation’ to perform

regression. The optimization function is ‘simplex’ and the cost-criterion is ‘leaveo-

neoutlssvm’ with ‘mse’ as a performance function.

For Polynomial regression, the order of the polynomial trained varies from 1st to

20th order.

Table 1 shows the best MSE achieved for each cluster with the corresponding

test data(with all the different configurations tested). Moreover, in the last column is

shown the worst MSE achieved for each configuration. The best hybrid model was

chosen taking into account the worst cases, and then selecting the best.

Table 2 shows the best regression technique used and its configuration for each

cluster.

The best configuration achieved for the model was the one that divides the data

in 2 different clusters, as is shown in Table 3. In this table, the best configuration for

each algorithm is presented. Each cluster named was based on the quantity of the

samples (2763 samples in the big cluster, and only 25 in the small cluster).

5 Conclusions

This study provides a precise way of modeling the Electromyogram (EMG). The

accomplished model predicts the EMG from the Bispectral index (BIS) signal and

the Propofol drug quantity provided to the patient

This model was obtained from a real dataset. The approach is based on a hybrid

intelligent system, by combining different regression techniques on local models.

After some tests, the analysis of the results shows that the best model configuration

has 2 clusters. The regression techniques employed on the clusters were ANN with

different configurations (5 and 3 neurons in the hidden layer). The best average MSE

obtained with this configuration was 1.1083.
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Table 1 Best MSE for each cluster

N
◦

of Cluster Cluster Cluster Cluster Cluster Clusters

Clusters 1 2 3 4 5 MSE

Global

Model

1.4702 - - - - 1.4702

2 Clusters 1.1083 0.0118 - - - 1.1083
3 Clusters 3.0819 1.1470 1.2154 - - 3.0819
4 Clusters 0.8627 0.9678 12.1164 17.3731 - 17.3731
5 Clusters 0.6532 0.2730 38.1696 0.5758 0.8678 38.1696
6 Clusters 0.6307 1.3774 0.6544 1.8068 17.6927 17.6927
7 Clusters 2.8374 0.5853 0.8183 0.8000 17.0372 17.0372
8 Clusters 1.0466 1.2601 1.8061 0.5447 1.0011 24.9626
9 Clusters 2.3795 53.3880 1.2450 22.6021 0.0092 53.3880
10 Clusters 0.4696 18.1680 0.3254 0.9348 0.0173 18.1680
N

◦
of Cluster Cluster Cluster Cluster Cluster Clusters

Clusters 6 7 8 9 10 MSE

Global

Model

- - - - - 1.4702

2 Clusters - - - - - 1.1083
3 Clusters - - - - - 3.0819
4 Clusters - - - - - 17.3731
5 Clusters - - - - - 38.1696
6 Clusters 0.4948 - - - - 17.6927
7 Clusters 0.0055 0.8909 - - - 17.0372
8 Clusters 24.9626 0.8936 0.0020 - - 24.9626
9 Clusters 1.1125 0.4152 1.2255 1.9976 - 53.3880
10 Clusters 0.8402 1.1774 1.5591 0.0177 0.0966 18.1680

This analysis could be applied to several different systems with the aim of improv-

ing other specifications like: efficiency, performance, features of the obtained mate-

rial. It is important to emphasize that quite satisfactory results have been obtained

with the approach proposed in this research.
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Table 2 Best regression technique for each cluster

N
◦

of Cluster Cluster Cluster Cluster Cluster

Clusters 1 2 3 4 5

Global Model Poly-04 - - - -

2 Clusters ANN-05 ANN-03 - - -

3 Clusters ANN-03 Poly-02 LS-SVR - -

4 Clusters LS-SVR LS-SVR ANN-04 LS-SVR -

5 Clusters LS-SVR ANN-06 Poly-01 LS-SVR ANN-04

6 Clusters ANN-08 Poly-01 LS-SVR ANN-02 Poly-01

7 Clusters ANN-02 ANN-07 LS-SVR ANN-05 Poly-09

8 Clusters Poly-03 ANN-07 LS-SVR Poly-06 ANN-06

9 Clusters Poly-01 ANN-15 ANN-11 Poly-01 ANN-05

10 Clusters LS-SVR Poly-01 Poly-01 LS-SVR ANN-05

N
◦

of Cluster Cluster Cluster Cluster Cluster

Clusters 6 7 8 9 10

Global Model - - - - -

2 Clusters - - - - -

3 Clusters - - - - -

4 Clusters - - - - -

5 Clusters - - - - -

6 Clusters LS-SVR - - - -

7 Clusters ANN-15 LS-SVR - - -

8 Clusters ANN-02 LS-SVR ANN-03 - -

9 Clusters LS-SVR Poly-02 ANN-13 Poly-01 -

10 Clusters ANN-03 LS-SVR Poly-08 ANN-13 ANN-14

Table 3 Best result for the

final configuration of the

proposal

Big Cluster Small Cluster

Train samples 1842 17
Test samples 921 8
Best ANN 5 neurons 3 neurons

Best Polynomial First order First order

ANN MSE 1.1083 0.0118
LSSVM MSE 1.6241 6.9461
Poly MSE 1.3546 58.5147
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