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Abstract. A formation control method is proposed for multiple agents of “1” 
leader and “N” follower where the following N-agents (as called followers) can 
only observe the bearing information of the leading 1-agent (as called the lead-
er). It is proven that bearing-only observation meets the observability condition 
required for the “1-N” leader-follower formation system. The unscented Kal-
man filter is employed to estimate the relative position of the leader, based on 
which the input-output feedback control law is executed to control the real-time 
movement of the followers so that the “1-N” leader-followers formation is 
properly maintained. Simulation results demonstrate the effectiveness of our 
approach. 
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1 Introduction 

Multi-agent systems have matured during the last decade and many effective applica-
tions have been deployed in terms of both software and hardware (Carrascosa et al. 
2008, Zato et al. 2012). This papers concerns on the formation control of multi-agent 
of the “1-N” structure where several following agents (as called followers) are self-
controlled to follow a leading agent (leader) based on the bearing-only observation 
from the followers to the leader. That is, the motion of the leader defines the desired 
motion, while the followers are controlled to follow it. This is particularly related to 
the multi-robot formation, which is of high interest to underwater or outer space ex-
ploration, shop floor transportation, guarding, escorting, and patrolling missions. A 
variety of formation control methods have been proposed, such as virtual structure 
approach (Ren et al. 2004), leader-follower approach (Sun et al. 2012; Chen et al. 
2009; Shao et al. 2007; Consolini et al. 2008; Cristescu et al. 2012), artificial potential 
(Kwon 2012), graph theory (Sharma et al. 2012). Among them, the leader-follower 
formation that consists of “1” leader and “N” followers has been mostly used owing 
to its universality, scalability and reliability.  

The formation control becomes challenging when the observation information be-
tween agents is poor. Most of the existing leader-follower approaches as mentioned 
use both distance and bearing observation. However, in many real-life situations, 
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available observations might be only the bearing information, namely bearing-only 
formation control, which will pose a great challenge to the formation control. This 
challenging albeit important problem has been executed in Moshtagh et al. (2008), 
Basiri et al. (2010), Bishop (2011a, 2011b) and Eren (2012) based on special  
requirements on the number of agents or the form of the formation. A distributed 
control law is used in Franchi et al. (2012) and Zhao et al. (2014a) to stabilize the 
formations, based on which angle constraint is further considered in Zhao et al. 
(2014b). In Mariottini et al. (2009), the observability condition for position estimation 
by using bearing-only observations is estiblished. In order to utilize the feedback con-
trol law, an “off-the-axis” point has to be constructed in Mariottini et al. (2009), Mor-
bidi et al. (2010) and Das et al. (2002). Differently, our approach will rely on neither 
special requirement for the form of the formation and nor off-the-axis point. 

In particular, position estimation of each agent is critical to generate the real time 
form information that is required to control the movement of the follower. Estimation 
algorithms available include the extended Kalman filter (EKF) (Mariottini et al. 
2009), the extended information filter (EIF) (Sharma et al.2013), the particle filter 
(PF) (Li et al. 2010) and maximum a posteriori (MAP) (Nerurkaret al. 2009). Most of 
them except the PF are not well qualified to deal with highly nonlinear systems while 
the PF is very computationally intensive. In contrast, the UKF sits between them, 
which handles nonlinearities with higher accuracy than the EKF and requires lesser 
computational requirement than the PF. 

The contribution of this paper is two-fold. Firstly, the observability of the “1-N” 
multi-agent formation is studied based on the rank of the observability matrix (Sec-
tion 2). Secondly, an UKF based on bearing-only observations is designed for the 
state estimation of multi-agents, rendering real-time and reliable movement control of 
the followers via the input-output feedback control law (Section 3) which gets rid of 
off-the-axis points. Properly designed simulations are given (Section 4) to demon-
strate the validity of our approach. We offer our conclusions (Section 5). 

2 Problem Statement and Observability Analysis 

2.1 Problem Statement 

This section will formulate the “1-N” bearing-only observation model and give the 
notations used. As shown in Fig. 1, R1 represents the leader while R2 is a follower (for 
simplicity, we only show one here). The control inputs for agents are linear and  
 

 

Fig. 1. 1-1 Leader-Follower coordinate definition 
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angular velocities ሾݒ௜, ,௜ሿݓ ݅ ൌ 1,2,  ௜ is the distance from the centroid of the leaderߩ ,.…
to the centroid of the follower. ߮௜ is the view-angle from the y-axis of the follower to 
the centroid of the leader-robot. ߠ௜and ߠ௝are the orientations of the leader and the 
follower with respect to the world frame ۃWۄ, respectively, while ߙ௜ is the relative 
orientation between the leader and the follower robot, i.e., ߙ௜ ؜ ௜ߠ െ  .௝ߠ

With reference to Fig. 1, the kinematic model of a 1-1(one leader and one follow-
er) formation can be expressed as follows 
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The kinematic model of the “1-N” (one leader and ݊ follower) formation can be 
readily retrieved as an extension of (1), 
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where s ൌ ሾݏଵT, ,ଶTݏ ڮ , ௡TሿTݏ א Թଷ௡, ܷ ൌ ሾݑଵT, ,ଶTݑ ڮ , ௡ାଵTݑ ሿT א Թଶሺ௡ାଵሻ,݄:Թଶ௡ ฽ Թଶ௡,  
and ݂:Թଷሺ௡ାଵሻ ൈ Λ ฽ Թଷሺ௡ାଵሻ. 

To make the formation control problem solvable, the system must be observable. 
The system is defined to be observable only if the system output convey an informa-
tion that is sufficient to allow the follower to obtain correct estimates of the position 
of the leader; otherwise, the system is not observable. In the following, we will analy-
sis the observability of the “1-N” leader-followers system based on the nonlinear 
observability rank criteria that is developed in Hermann et al. (1977). 

The observability matrix of (2) is defined as 
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where݅ ൌ 1, ݇ ൌ 1, ڮ , ݊, j=2, ڮ, n+1, ݌ א Գ, ׏ represents the gradient operator. 

Lemma 1: System  ܵ௡  is (locally weakly) observable if its observability matrix ܯwhose rows are given in (3) has full rank (Hermann et al. 1977), e.g., in our case 
rankሺܯሻ ൌ 3݊, ݊ refers to the number of followers. 

2.2 Bearing-Only Observability  

We analysis the observability based on Lemma 1. For simplicity, we only analysis the 
1-1 system of one leader and one follower. This result is readily extendable to the 
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parallel “1-N” system of one leader and multiple followers, since each follower is 
independent to each other. The function ݂ሺ·ሻ can be separated into a summation of 
independent functions in the special case, and each one excited by a different compo-
nent of the control input vector, (1) can be restated as follows 
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where, 
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Proposition 2 given in Morbidi et al. (2010) indicates that the gradients of the Lie 
derivatives of h(s) are equal to the same order gradients of the time derivatives of h(s) 
from. That is, the zeroth-order Lie derivative is: 
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The first-order Lie derivative of the function ݄ଵሺݏሻwith respect to ௩݂and ఠ݂are de-
fined as follows,  
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where ”·” denotes the vector inner product, with their gradients given as follows 
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Substituting the above gradients of Lie derivatives into the observability matrix 
(3), we have 



124 Q. Han et al. 

1

1

2

2

0
1

2 1

2
1 1 1 11 1

3 3

2
1 1 1

2 21
1

1
1

1

3

1

1
1 3

cos( ) / cos( ) /sin

( )
0

( )
- -

( ) =

( ) -

( ) /

0

sin( ) / cos( ) / 0

0( )

f

f

f

f

L h s
I

L h s

L h sM

L h s

L h s

ν

ω

ν

ω

δ ρ δ ρδ ρ

ϕ ρ ϕ ρ

× ×

×

×

 ∇
  ∇   
  ∇   =
  ∇   
  ∇             

(19) 

It shows that the rank of the observability matrix does not change with the increas-
ing order of the Lie derivatives. The observability matrix can be determined based on 
the gradients of the first-order and zeroth order Lie derivatives. Then, we have the 
following two remarks on the observability of the bearing-only leader-follower sys-
tem as described so far. 

Remark 1: rankሺܯሻ ൌ 3 if 

ଵݒ (1 ൐ ௝ݒ ,0 ൐ 0,where j=2, ڮ, n+1;  
2) ߮௜ ് 0, i=1, ڮ, n; 
3) The leader and the follower move neither in parallel nor straightly. 

Proof: Given the above three prerequisite requirements, the ܯ matrix by means of a 
finite sequence of elementary row operations, can be transformed to a simplified form 
as given in (20), obtaining rank ሺܯሻ ൌ 3. 
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Remark 2: rankሺܯሻ ൌ 2 if 
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These lead to a simplified form of ܯ matrix as follows 

8 3

0 1 0

0 0 1M

O ×

 
   
  

 (24) 



 “1-N” Leader-Follower Formation Control 125 

i.e. rank ሺܯሻ ൌ 2. 
Based on Remark 1 and 2, we have the conclusion that ܯ has full rank (that the 

system is locally weakly observable) when the agents move along a curvilinear line 
(moving in neither parallel nor straightly) and rank ሺܯሻ ൌ 2 when the agent move 
along a straight line (the system is not locally observable). 

3 UKF-Based Input-Output Feedback Control 

To maintain a desired “1-N” formation, the followers need to know the relative posi-
tion of the leader, and adjusts their current positions accordingly in real time. In our 
approach, the former is estimated by UKF while the latter is carried out based on the 
classical input-output feedback control law. In the following, we will explain how to 
calculate the control input required for the followers for formation. 

To implement UKF, the continuous-time state dynamic (1) needs to be discretized 
firstly. Assume both the continuous-time state dynamics (25) and the observation 
equation (26) are affected with additive noises as 

( ) +OF s U=s  (25) 
=Gs N+y  (26) 

where ܩ is the output transition matrix, ܱ and ܰ are white Gaussian noises with zero 
mean and covariance matrices ைܲand ேܲ, respectively. We assume that ݏሺ0ሻ, ܱand ܰ 
are uncorrelated for simplicity. We apply the Euler forward method with sampling 
time ௖ܶ to discretize the state dynamics (25), obtaining 
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where ݏ௥ ؜ ሾߩଵ  ߮ଵ  ሿT is the reduced state-space vector. ܮଶൈଶand ܯଶൈଶ are the upper-
left and right submatrices of F, respectively. 

The input-output feedback control law (Slotine et al. 1991, Das et al. 2002) alge-
braically linearizes a nonlinear system dynamics and then calculates the control 
put  ܷ for the follower to achieve a desired ݏ௥୧ୢୣ . 

The control input for our input-output feedback control system is: 

2U ؜ T 1
2 12[  ] ( )( ( ) )v M s C L s Uω −= −                   (30) 

where 
ide- ( )r rC K s s= −  (31) 

and ܭ ൌ ݀݅ܽ݃ሾ݇ଵ݇ଶሿ, with ݇ଵ, ݇ଶ ൐ 0,the superscript “ide” refers to the desired state, 
and ܥ is auxiliary control parameter. Eq. (30) serves as a feedback linearizing control 
for Eq. (28). Substituting Eq. (30) into Eq. (28), we have 
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4 Simulation 

In order to demonstrate the validity of the proposed formation control approach, simu-
lations are designed based on the hybrid platform of Webots 7 and Matlab. The lead-
er-followers formation of four agents is formed where followers R2, R3 and R4 follow 
the leader R1. The simulation scenario given in Webots 7 is shown in Fig. 2. In the 
simulation, two typical trajectories are designed for the leader. As stated, to make the 
system always weakly observable (݇݊ܽݎሺܯሻ ൌ 3), the trajectories do not include 
straight and parallel movements for the leader and followers. In scenario 1 (as shown 
in Fig.3 (a)), the trajectory of the leader is a complete elliptical. In scenario 2 (as 
shown in Fig.4 (a)), the leader will move straightly (shortly) firstly and then turn right 
and left in circles. Simulation results are given in subfigures of Fig.3 and 4 for scena-
rio 1 and 2 respectively. 

 

Fig. 2. The simulation scene of mobile agents 

4.1 Simulation Setup 

In scenario 1, the following velocity inputs are assigned to the leader ݒଵሺݐሻ ൌ ,ݏ/݉ 2.0 ߱ଵሺݐሻ ൌ ߨ 5 ⁄ ,ݏ/݀ܽݎ ݐ א ሾ0,10ሿ 
while in scenario 2, the following velocity inputs are assigned to the leader  

ሻݐଵሺݒ ൌ ,ݏ/݉ 2.0 ߱ଵሺݐሻ ൌ ቐ ,ݏ/݀ܽݎ  0 ݐ א ሼሾ0,2ሻ, ሾ8,9ሻሽെ ߨ 5⁄ ,ݏ/݀ܽݎ  ݐ א ሾ9,12ሻߨ 5⁄ ,ݏ/݀ܽݎ ݐ א ሼሾ2,8ሻ, ሾ12,14ሿሽ 

For both scenarios, the initial vectors of the leader and three followers are   ሾ ݔଵሺ0ሻ  ݕଵሺ0ሻ ݖଵሺ0ሻሿT ൌ ሾ0  0  0ሿT, ሾ ݔଶሺ0ሻ  ݕଶሺ0ሻ ݖଶሺ0ሻሿT ൌ ሾ - 0.1 - 0.25  0ሿT, ሾ ݔଷሺ0ሻ  ݕଷሺ0ሻ ݖଷሺ0ሻሿT ൌ ሾ - 0.1 0.2  0ሿT, ሾ ݔସሺ0ሻ  ݕସሺ0ሻ ݖସሺ0ሻሿT ൌ ሾ - 0.1 0.4  0ሿT. 

Parameters required for the input-output state feedback control are set follows. ݇ଵ ൌ 0.65 , ݇ଶ ൌ 0.15 . sሺ0ሻ ൌ ሾ0.27 4.33 0 0.22 2.03 0 0.41 1.82 0ሿT ௥௜ௗ௘ሺ0ሻݏ , ൌሾ0.45 3ߨ 4⁄ ߨ5 0.45  4⁄ ߨ5 0.75  4⁄ ሿT where the distances are in meters and angles in 
radians. For the parameters required by the UKF, ௖ܶ ൌ ைܲ ,ݏ0.01 ൌ ݀݅ܽ݃ሾ݄  ݄ሿ, ேܲ ൌ݀݅ܽ݃ሾ݄   ݄ሿ,  ܲ ൌ ݀݅ܽ݃ሾ1.13  1.13ሿ, where ݄ ൌ 2.11 ൈ 10ିଶ݀ܽݎଶ.  
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4.2 Simulation Analysis 

Fig. 3 (a) and 4 (a) give the trajectories of the leader and followers, showing intuitive-
ly that the desired formation are properly maintained in both scenarios. This is be-
cause the system is observable under the given scenario according to the observability 
described in Section 2.2. Fig. 3. (b), (c) and (d) present the observation angle estima-
tion error, direction angle estimation error and velocities of the followers respectively. 
The results show that both the observation and direction angle errors are quite small 
after the initial stage (the formation becomes stable) and the velocities of the follower 
agents change slightly during the entire input-output feedback control process. The 
velocity of the follower agent outside of the leader is larger than the velocity of the 
leader and inside of the leader is smaller. Similar results are shown in scenario 2. It is 
shown in Fig. 4. (b) that the observation angle estimation error is very small. Fig. 4. 
(c) and (d) show that the direction angle estimation error is also very small and the 
velocities of the follower are relatively stable during the input-output feedback control 
process. There is an exception. When the leader changes moving direction suddenly, 
the maximum direction angle error occurs around -0.0126 and the velocities of the 
followers change significantly. Overall, these results indicate a stable performance of 
the proposed formation control solution and a quick response to the change as long as 
the system is observable. 

     
(a) Trajectories of agents in scenario 1 (b) Observation angle estimation error 

              
 (c) Direction angle estimation error   (d) Velocities of follower-agents 

Fig. 3. Formation performance of scenario 1 
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(a) Trajectories of agents in scenario 2    (b) Observation angle estimation error 

       
 (c) Direction angle estimation error           (d) Velocities of follower-agents 

Fig. 4. Formation performance of scenario 2 

5 Conclusion  

A leader-follower formation control method is presented for multiple agents of the  
“1-N” structure where multiple followers follow one leader. The observability of  
the “1-N” leader-follower formation system is studied, which theoretically shows that 
the bearing-only observation meet the observability requirement if the leader and 
followers do not move straightly in parallel. The UKF is employed for the position 
estimation, which enables the movement control of the followers via input-output 
feedback control. Simulation results show that the system can rapidly obtain the de-
sired formation and maintain the desired formation accurately and reliably. Further 
research for multi-agent formation control will consider dynamical obstacles. 
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