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A comparative study to distinguish
the vineyard of origin by NIRS using entire
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Abstract

BACKGROUND: Interest in high-quality products with a clear geographical origin is increasing. For the wine industry and
market sector, identity preservation is of fundamental importance owing to the large number of geographical classifications.
Nowadays, there is a growing demand for analytical methods for tracing grapes and wines. In the oenological sector, infrared
spectroscopy is becoming an attractive tool allowing simultaneous measurement of several analytical parameters and enabling
real-time decision making.

RESULTS: Discriminant partial least squares, a supervised pattern recognition technique, was employed to discriminate between
vineyards of origin using the near-infrared spectra of intact grapes, skins or seeds. In order to compare the three sample
presentations, a receiver operating characteristic curve was used. The best results were obtained using intact grape seeds, with
prediction rates of samples correctly classified of about 95%, although the good results obtained with entire grapes (about 93%
of samples correctly classified) and the simplicity of use of the fibre optic probe could advise using entire grape presentation
for comprehensive studies.

CONCLUSION: The procedure reported here seems to have excellent potential for a fast and reasonably inexpensive analysis of
the origin of samples. It is noted that such classification can be made at any time of ripening. This paper provides information
of interest to develop new and extensive models in the future.
c© 2012 Society of Chemical Industry
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INTRODUCTION
Nowadays, interest in high-quality products with a clear geograph-
ical origin is increasing. For the wine industry and market sector,
identity preservation is of fundamental importance owing to the
large number of geographical classifications. In this framework,
there is a growing demand for analytical methods for tracing
grapes and wines.

Numerous analytical tools coupled with chemometics have
been tested in order to achieve this aim.1 – 4 Among them,
phenolic compounds coupled with colour and other oenological
parameters have been used to recognise wine grape cultivars
in German red wines,5 Greek red wines,6 South African red and
white wines7 and Spanish red and rosé wines8 – 10 and also to
differentiate between different production areas.6,11,12

In the oenological sector, infrared spectroscopy is becoming an
attractive tool applicable to both the raw material and the end
product, allowing simultaneous measurement of several analytical
parameters and enabling real-time decision making.13 It has been
employed for quantitative purposes in order to determine a
number of oenological parameters such as phenolic compounds,
organic acids, polysaccharides, alcohol concentration, acidity, pH,
acetic acid, reducing sugars, mineral elements and aromas, among
others.13 – 21 Regarding qualitative analysis, the aforementioned

technique has also been used to classify organic and non-
organic wines,22 to discriminate between wines of different
varietal origin,23 – 25 to detect fermentation problems,26,27 to
discriminate between wines contaminated or not contaminated
with Brettanomyces bruxellensis28 and to distinguish between
wines of different geographical origin.29,30 Regarding grapes, the
technique has been employed to classify grapes according to their
geographic location, achieving promising results.31 – 33

The main objective of the present study was to compare the
potential of different sample presentation forms from grapes
to specify their vineyard of origin using near-infrared (NIR)
technology. To our knowledge, this is the first time that a
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comparative study between entire grapes, skins and seeds has
been evaluated with this purpose. Two ways to record the NIR
spectra, namely transport quartz cup (skins and seeds) and fibre
optic probe (intact grapes), were used.

Furthermore, in order to obtain information about the chemical
basis of the discrimination, attention was paid to the relationship
between the spectral variability and the phenolic compounds
present in grape skins and seeds.

MATERIALS AND METHODS
Samples
Vitis vinifera L. cv. Graciano red grape samples were collected
from two different vineyards located in La Rioja (Spain). POD
La Rioja is divided into regions according to their agroclimatic
characteristics. Vineyard 1 is located in Logroño (Rioja Media) and
vineyard 2 is located 40 km away in Haro (Rioja Alta). The first
region is under the influence of a Mediterranean climate, while
Rioja Alta generally is cooler and is under the influence of an
Atlantic climate. Differences between the agroclimatic conditions
of the regions have been described previously.34

The samples were collected at different developmental stages
from veraison (September) to overripeness (November) in two
different vintages (2008 and 2009). In the case of the 2008 vintage,
seven dates were taken into account for vineyard 1 and eight for
vineyard 2. For the 2009 vintage the number of dates taken into
account was six for vineyard 1 and seven for vineyard 2. Three
groups of 150 berries per vineyard were collected at each date. A
total of 84 samples were collected in this study, corresponding to
39 samples from vineyard 1 and 45 samples from vineyard 2. The
berries were collected from both sides of vines located in different
rows within the vineyard. Edge rows and the first two vines in a
row were avoided. Berries were collected from the top, middle and
bottom of the cluster and were immediately frozen and stored at
−20◦ C until analyses were performed. Firstly, the samples were
thawed and tempered at room temperature and the NIR spectra of
the intact grapes were recorded at room temperature, which was
controlled by an air-conditioning device. Grape skins and seeds
were then separated manually from the whole grapes, and the
remaining pulp was removed with the aid of filter paper in the case
of grape seeds. Two subsamples were taken from each sample,
one for analysis by high-performance liquid chromatography with
diode array detection/mass spectrometry (HPLC-DAD/MS) and
the other for NIR analysis, which was also carried out at room
temperature.20,21

Near-infrared spectroscopy analysis
A (Foss, Silver Spring, USA) Foss NIRSystem 5000 was used to
perform the near-infrared spectroscopy (NIRS) analysis. The spectra
were recorded at intervals of 2 nm, performing 32 scans for
both reference and samples. The fibre optic probe type 210/210
of 1.5 m length (Ref. R6539-A) employs a remote reflectance
system and a ceramic plate as reference. The window is of quartz
with a 5 cm × 5 cm surface area, measuring reflectance in the
NIR zone over a wavelength range of 1100–2000 nm. The fibre
optic probe increases the signal/noise ratio above 2000 nm as a
consequence of –OH groups present in the fibre optic material. The
recommended spectral zone for this attachment is 1100–2000 nm.
The NIR spectra were recorded by direct application of the fibre
optic probe onto the intact grapes. Approximately 10–15 grapes
(∼ 20–30 g) selected randomly were used to record their average

spectrum. The whole data set was constituted by 84 intact grape
samples and 451 log(1/R) data points per sample.

A transport quartz cup with a window surface area of 4.7 cm ×
5.7 cm and an optical pathway of 1.7 cm was used in half-full mode
(i.e. grape skins or seeds covering half of the window surface) to
record the reflectance spectra of grape skins and seeds. In this case
the measurements were made in the NIR zone over a wavelength
range of 1100–2498 nm. The whole data set was constituted by
84 grape skin or seed samples and 700 log(1/R) data points per
sample. The software used was Win ISITMVersion 1.50 (Infrasoft
International, LLC, Port Matilda, PA, USA).

Phenolic compound analysis by HPLC-DAD/MS
In order to obtain information about the chemical basis of the
discrimination, analysis of the phenolic composition of grape
skins and seeds was performed as described by Ferrer-Gallego
et al.20,21,35

Briefly, grape seeds and skins were separated manually and
submitted to two different extraction procedures, with 750 mL
L−1 methanol and acidic methanol respectively. In the case of
flavanols and phenolic acids from grape skins, an additional clean-
up procedure using a cationic exchange cartridge was performed
prior to the HPLC-DAD/MS analysis.20,21,35 Up to 77 phenolic
compounds were determined: 47 flavanols, 13 anthocyanins, nine
flavonols and eight phenolic acids. All analyses were performed in
triplicate.

Chemometric techniques
The software used was Win ISITMVersion 1.50 (Infrasoft Interna-
tional, LLC), which allows not only spectral acquisition but also
data treatment and the development of qualitative models. From
the three samples of each date, one (33%) was allocated to the
validation set and the other two (66%) to the calibration set. A
supervised pattern recognition technique, with a priori knowledge
about the category membership of samples, was employed in the
qualitative analysis. Discriminant partial least squares (DPLS) was
used, which permits the modelling of classes. Modelling of the
groups was carried out using the NIR raw spectral data and one
dummy variable, whose values were 1 and 2, thus the explicit
algebraic models denominated DPLS were constructed. The cali-
bration was conducted by performing a regression on the spectral
information on all group values, in this case defined as 1 or 2
(vineyard 1 or 2). The regression method applied to this procedure
is MPLS, which is a modification of normal PLS 1.36,37 The vineyard
discriminant model using grape seeds has already been devel-
oped as described elsewhere.21 In order to compare the three
sample presentations, a receiver operating characteristic (ROC)
curve – a graphical approach for displaying the trade-off between
true positive rate and false positive rate of a classifier – was used.

Moreover, in order to obtain information about the relationship
between the spectral variability and the phenolic composition,
principal component analysis (PCA) and Pearson correlation
analysis were carried out. PCA could also be used in further
analysis in order to detect samples that do not belong to the
spectral group using the Mahalanobis distance prior to the
discriminant analysis. PCA was performed with the NIR spectral
data. Pearson correlations between the scores of the first principal
component and the analysed phenolic compounds of each sample
presentation were performed. Only the phenolic composition of
grape skins was considered for intact grapes, since NIR radiation
does not penetrate enough to use also the phenolic composition
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Table 1. Statistical description of DPLS models

Presentation PLS factors
Cross-validation

groups RSQ SEC SECV

Grape seeds 11 6 0.718 0.27 0.33

Intact grapes 9 6 0.647 0.30 0.33

Grape skins 2 6 0.217 0.45 0.44

RSQ, coefficient of determination; SEC, standard error of calibration;
SECV, standard error of cross-validation.

of grape seeds. The radiation applied by most instruments has
very little energy and only penetrates a millimetre or so into the
substance, depending on the substance surface composition and
structure.38

The SPSS 13.0 for Windows software package (SPSS, Inc.,
Chicago, IL, USA) was used for Pearson correlation and ROC curve
analyses.

RESULTS AND DISCUSSION
Figure 1 shows the average spectrum of each vineyard in the
NIR zone (A) between 1100 and 2000 nm for intact grapes
and (B) between 1100 and 2500 nm for grape skins and seeds.
Differences between each vineyard average spectrum were
observed, especially in the case of grape seed samples. This
suggests that this sample presentation may provide the best
classification results.

The vineyard discriminant model using grape seeds has already
been developed as described elsewhere.21 The number of PLS
factors was set using the cross-validation procedure; in this case,
six cancellation groups were used (this number is greater in this
method compared with normal PLS). The discriminant models
using grape skins and intact grapes were developed following the
same procedure and the results are presented in Table 1.

As previously established,21 the spectral regions 1100–1358
and 1800–2100 nm showed important contributions to the grape
seed model loadings and are mainly related to second overtones
of C–H and second overtones of the bonds present in the COOH
groups respectively.39,40 Regarding the intact grape model, the
most important spectral regions were 1100–1552, 1274–1600 and

1856–2000 nm. As for grape skins, the spectral regions 1140–1250,
1370–1500 and 1800–1955 nm showed important contributions
to the model loadings. The first and third spectral zones of these
models mainly match the zones previously described for the
grape seed model. The second zones (i.e. 1274–1600 nm for intact
grapes and 1370–1500 nm for grape skins) are essentially related
to combination bands of aromatic C–H groups and first overtones
of the aforementioned bonds.39,40

In order to evaluate the NIRS technology models, an internal
validation was carried out using samples that belonged to the
calibration group. An external validation was also performed to
check the predictive ability of the method using the 28 samples
that did not belong to the calibration group. Table 2 presents
the obtained results expressed as number and prediction rate of
samples correctly classified. The percentages of samples correctly
classified using the DPLS models were 66% in internal validation
and 68% in external validation in the case of grape skins and 93%
and 83% in internal and external validation respectively in the case
of intact grapes. The best results were obtained using intact grape
seeds, with prediction rates of samples correctly classified of 95% in
internal validation and 97% in external validation. In consequence,
as can be seen in the ROC curves (Fig. 2), the greatest area under
the curve in both cases, internal and external validation, was for
grape seeds. Also noticeable is the area for entire grapes, which
is in internal validation not so much different from that of seeds.
Even if the results indicate that grape seeds are the most adequate
matrix to perform NIRS analysis in order to specify the vineyard
origin of grapes, the good results obtained with entire grapes and
the simplicity of the use of the fibre optic probe (the probe is
placed directly on the berries and no further manipulation of the
sample is needed) could advise using entire grape presentation
for comprehensive studies.

Table 3 lists the phenolic compounds and families of phenolic
compounds used in the Pearson correlation analysis. For this
analysis, these compounds were grouped taking into account
their basic structures. Considering the good results obtained with
grape seeds, major individual flavanols from seeds were also
considered.

In the space defined by the PCA of the data from skins,
principal component 1 (PC1) explains 75.3% of spectral variability
and its scores showed significant correlations (0.01, two-tailed)
with anthocyanins and total phenolic compounds. Significant

Figure 1. Average spectrum of each vineyard in NIR zone (A) between 1100 and 2000 nm for intact grapes and (B) between 1100 and 2500 nm for grape
skins and seeds.
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Table 2. Classification of samples according to their vineyard of origin. Internal and external validation

Samples correctly classified

Intact grapes Grape skins Grape seeds

Item Vineyard 1 Vineyard 2 Vineyard 1 Vineyard 2 Vineyard 1 Vineyard 2

Internal validation 24/26 28/30 16/26 21/30 24/26 29/30

Percentage (%)a 92 93 62 70 92 97

Total internal (%) 93 66 95

External validation 11/13 12/15 8/13 11/15 13/13 14/15

Percentage (%)a 85 80 62 73 100 93

Total external (%) 83 68 97

a Prediction rate of samples correctly classified.

Figure 2. Receiver operating characteristic (ROC) curves. Internal and external validation.

correlations with flavonols and phenolic acids were also found
(0.05, two-tailed) (Table 3).

In the case of entire grapes, PC1 explains 86.5% of spectral
variability and its scores showed significant correlations (0.01, two-
tailed) with anthocyanins, flavanols and total phenolic compounds.
Significant correlations (0.05, two-tailed) with flavonols were also
observed (Table 3).

PC1 for seeds explains 92.4% of spectral variability and its scores
showed significant correlations (0.01, two-tailed) with all studied
phenolic compounds except dimer B2 and galloylated trimers
(Table 3).

CONCLUSION
The comparative study between the three sample presentation
ways to be used for distinguishing the vineyard of origin using
NIR technology shows that seeds are the best matrix to carry
out the classification, although the good results obtained with
entire grapes and the simplicity of the use of the fibre optic probe
could advise using entire grape presentation for comprehensive

studies. Measuring intact grapes directly could be an excellent
tool for a fast and non-destructive analysis. It is noticeable that this
classification can be made at any time of ripening.

This study may help to develop robust models in the future.
Nevertheless, a comprehensive study should be done in order
to evaluate factors such as different production areas and grape
varieties.
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Table 3. Pearson correlations between phenolic composition and scores of first principal component (PCA performed with NIRS data)

Pearson correlation Pearson correlation

Grape skins PC1 skins PC1 grapes Grape seeds PC1 seeds

Anthocyanins −0.370∗ ∗ 0.482∗∗ Total monomers 0.844∗∗

Phenolic acids −0.312∗ 0.126 Total dimers 0.579∗∗

Flavanols −0.241 0.583∗∗ Total trimers 0.583∗∗

Flavonols −0.316∗ 0.291∗ Total tetramers 0.579∗∗

Total phenolic compounds −0.349∗∗ 0.557∗∗ Total galloylated dimers 0.816∗∗

Total galloylated trimers 0.106

Total galloylated compounds 0.663∗∗

Total phenolic compounds 0.810∗∗

(+)-Catechin 0.807∗∗

(-)-Epicatechin 0.663∗∗

B1 0.639∗∗

B2 −0.127

B3 0.373∗∗

B4 0.755∗∗

EEC 0.663∗∗

ECG 0.741∗∗

B23G 0.686∗∗

B1, epicatechin-(4β → 8)-catechin; B2, epicatechin-(4β → 8)-epicatechin; B3, catechin-(4α → 8)-catechin; B4, catechin-(4β → 8)-epicatechin; EEC,
epicatechin-(4β → 8)-epicatechin-(4β → 8)-catechin; ECG, epicatechin 3 − O-gallate; B23G, B23 − O-gallate.
∗ Pearson correlation significant at 0.05 level;
∗∗ Pearson correlation significant at 0.01 level.
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Boger Z, Comparative study of artificial neural network and
multivariate methods to classify Spanish DO rose wines. Talanta
62:983–990 (2004).
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