
Neurocomputing 398 (2020) 411–421

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Compact bilinear pooling via kernelized random projection for

fine-grained image categorization on low computational power

devices

Daniel López-Sánchez

∗, Angélica González Arrieta , Juan M. Corchado

BISITE Research Group, University of Salamanca, Spain

a r t i c l e i n f o

Article history:

Received 30 November 2018

Revised 9 May 2019

Accepted 20 May 2019

Available online 29 July 2019

Keywords:

Bilinear pooling

Deep learning

Random projection

Polynomial kernel

a b s t r a c t

Bilinear pooling is one of the most popular and effective methods for fine-grained image recognition.

However, a major drawback of Bilinear pooling is the dimensionality of the resulting descriptors, which

typically consist of several hundred thousand features. Even when generating the descriptor is tractable,

its dimension makes any subsequent operations impractical and often results in huge computational and

storage costs. We introduce a novel method to efficiently reduce the dimension of bilinear pooling de-

scriptors by performing a Random Projection. Conveniently, this is achieved without ever computing the

high-dimensional descriptor explicitly. Our experimental results show that our method outperforms exist-

ing compact bilinear pooling algorithms in most cases, while running faster on low computational power

devices, where efficient extensions of bilinear pooling are most useful.

© 2019 Elsevier B.V. All rights reserved.

1

s

s

s

c

fi

h

c

t

w

l

p

c

w

b

i

i

t

l

i

i

e

a

l

c

d

e

b

A

d

o

c

o

p

i

F

t

C

i

n

A

s

e

h

0

. Introduction

The term fine-grained recognition is generally applied to de-

cribe classification tasks with a relatively large number of very

imilar categories. Examples of this include animal and plant

pecies classification [1–3] , automobile and plane model identifi-

ation [4,5] , or scene recognition [6] among others. Such classi-

cation tasks tend to be quite challenging, partly because of the

igh intra-class variability they exhibit, combined with a low inter-

lass variability. In other words, the small variations that contain

he information needed to differentiate classes can be easily over-

helmed by non-informative factors such as pose, orientation, il-

umination conditions, etc.

In the recent years, many different approaches have been pro-

osed to address the challenge of fine-grained recognition, and ac-

uracies have risen steadily [7–9] . One of the most effective and

idely adopted approaches proposed in the literature is the use of

ilinear Convolutional Neural Networks (CNN) [10–14] , originally

ntroduced by Lin et al. [15] . In essence, bilinear CNNs build an

mage feature descriptor by first applying two CNNs as feature ex-

ractors. Then, the two descriptors generated are combined at each

ocation by using the outer product. Finally, the resulting descriptor

s pooled across locations to obtain a global descriptor of the input

mage. A classical linear classifier (e.g., softmax, logistic regression,
∗ Corresponding author.

E-mail address: lope@usal.es (D. López-Sánchez).

p

o

b

t

ttps://doi.org/10.1016/j.neucom.2019.05.104

925-2312/© 2019 Elsevier B.V. All rights reserved.
tc.) is then applied on the global descriptor. This approach en-

bles bilinear CNNs to capture pairwise feature interactions in a

ocation-invariant manner, which enables a boost in fine-grained

lassification accuracies.

In spite of its success, the bilinear CNN approach has a major

rawback. As a consequence of using the outer product, the gen-

rated descriptor is extremely high dimensional. For instance, the

ilinear descriptor used in [15] had more than 250,0 0 0 features.

s a consequence, even a simple linear classifier trained on these

escriptors will have millions of parameters, or even hundreds

f millions if the number of classes is large. This results in high

omputation and storage costs, and makes models more prone to

ver-fitting. While these heavy models might work well when de-

loyed on powerful and specialized hardware, their applicability

s severely limited on devices with little computational resources.

or example, devices with limited memory might have problems

o allocate space for the large number of parameters of bilinear

NNs, and the high number of operations required to process an

mage might result in important inference-time delays when run-

ing on devices without the massive parallelism of modern GPUs.

t the same time, the emergence of new computation paradigms

uch as the Edge computing [16] has originated a growing need for

ffective machine learning models capable of running on low com-

utational power devices such as Internet of Things (IoT) devices

r embedded systems. For instance, deep learning methods have

een profusely applied in tasks related to animal species recogni-

ion [17] or face recognition [10] . Due to the nature of these tasks,

https://doi.org/10.1016/j.neucom.2019.05.104
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.05.104&domain=pdf
mailto:lope@usal.es
https://doi.org/10.1016/j.neucom.2019.05.104

412 D. López-Sánchez, A. González Arrieta and J.M. Corchado / Neurocomputing 398 (2020) 411–421

m

o

W

i

m

T

d

o

b

l

o

t

t

m

h

t

m

b

d

m

e

o

t

b

r

l

l

i

m

a

p

i

a

l

b

i

b

i

i

a

P

R

f

t

i

[

a

3

I

p

t

(

�

w

l

1 Note that, like in [18] , we focus on the case were the same feature-extraction

CNN is used in both sides of the Kronecker product.
high performance hardware might not be available at the location

where models need to be deployed, which explains the need for

efficient variants of the existing fine-grained image understanding

methods.

Recently, methods that try to compress the discriminative

information of the bilinear descriptor into low dimension repre-

sentations have been developed, seeking to mitigate the efficiency

problems of bilinear pooling. Most notably, Gao et al. proposed

compact bilinear pooling [18] , which uses polynomial kernel

feature approximation techniques to achieve this. In addition, the

authors of [18] also discussed the possibility of using Random

Projection [19] to reduce the dimension of the bilinear feature

descriptor, but discarded this idea after noting that such approach

would require storing a huge projection matrix and explicitly

computing the bilinear descriptor prior to the projection.

In this paper, we further develop the idea of using Random Pro-

jection to reduce the dimension of the bilinear CNN descriptor. In

particular, we propose adapting an existing kernelized variant of

Random Projection [20] to efficiently project bilinear descriptors to

a lower dimension without ever having to explicitly compute the

high-dimensional bilinear descriptor itself. By implicitly computing

a Random Projection of the bilinear descriptor, our method gener-

ates a low-dimensional feature vector that captures much of the

discriminative information of the full bilinear descriptor, while re-

sulting in models with a much lower number of parameters. We

also derive back-propagation for our algorithm, so that it can be

included as a building block in end-to-end trainable models. As a

practical application of the proposed approach, we study the task

of fine-grained image classification on low computational power

devices of the Raspberry Pi ecosystem. We focus on this applica-

tion scenario because, as pointed out by Gao et al. [18] , methods

for making bilinear pooling more efficient are most useful in low

power devices such as embedded systems, where computational

resources are scarce. Our experimental results show that the pro-

posed algorithm generates a better compacted representation of

the bilinear descriptor in most cases, while being notably faster

than alternative compact bilinear pooling approaches.

2. Related work

Bilinear models were originally proposed in [21] , where the au-

thors used them to separately model the style and content of im-

ages. More recently, Lin et al. [15] explored their applicability in

the context of deep learning [17,22] for fine-grained image cat-

egorization, showing that bilinear Convolutional Neural Networks

could be used to achieve state of the art results in various fine-

grained image categorization datasets.

In [18] , the authors applied two polynomial kernel approxima-

tion techniques to make bilinear CNNs less computationally de-

manding, especially in terms of the memory required for param-

eter storage. This approach emerged from the notion that bilinear

features are fundamentally related to the feature space of the ho-

mogeneous polynomial kernel of degree two, so kernel approxima-

tion feature maps can also be used to approximate bilinear pooling

descriptors. This approach is known as compact bilinear pooling,

since it reduces the dimension of the bilinear descriptor proposed

in [15] . In addition, back-propagation was derived for both meth-

ods in [18] , making the proposed models end-to-end trainable.

The first kernel approximation technique applied in [18] was

Random Maclaurin [23] (RM). In essence, Random Maclaurin

builds a randomized feature map which, when approximating

the degree-two homogeneous polynomial kernel, takes the form

Z : R

d → R , Z : x → 〈 x, w 1 〉〈 x, w 2 〉 where x ∈ R

d is the input data

sample and w 1 , w 2 ∈ R

d are i.i.d. random Rademacher vectors.

Conveniently, for two arbitrary data samples x, y , it can be proven

that E [Z (x) Z (y)] = 〈 x , y 〉 2 . Of course, the quality of this feature
ap can be improved by using more than one entries in the

utput representation, thus reducing the variance of the estimator.

hile this approach performed well in the experiments of [18] ,

t has the inherent limitation of requiring a significant amount of

emory to store the Rademacher vectors used for the map.

The second kernel approximation technique used in [18] was

ensor Sketch [24] (TS). Introduced a few years later than Ran-

om Maclaurin, Tensor Sketch obtains a Count Sketch [25] of the

uter product of two vectors in an efficient manner, which can

e used to approximate polynomial kernels and in turn the bi-

inear descriptor. In particular, instead of explicitly computing the

uter product, TS computes the Count Sketch of the vectors and

hen uses polynomial multiplication via the Fast Fourier Transform

o compute the Count Sketch of their outer product. Using this

ethod to achieve a compact bilinear pooling typically results in

igher accuracies, while requiring much less memory for parame-

er storage than RM.

In addition to compact bilinear pooling methods, low-rank

atrix factorization methods have also been proposed to make

ilinear pooling more efficient, mainly by avoiding the high-

imensionality of the full bilinear descriptor, which leads to

odels with too many trainable parameters. In particular, Kim

t al. [26] proposed a low-rank bilinear pooling method based

n the Hadamard product. In essence, this approach is based on

he factorization a three-dimensional weight tensor applied to the

ilinear descriptor into three two-dimensional matrices, greatly

educing the number of parameters to be learned. Conveniently,

ow-rank bilinear pooling can be easily adapted to multimodal

earning models, such as those used for Visual Question Answer-

ng (VQA). In fact, a recent study by Yu et al. [27] generalized

ultimodal factorized bilinear pooling to capture high-order inter-

ctions between multi-modal features, obtaining a state-of-the-art

erformance on two large-scale real-world VQA datasets.

As mentioned above, Gao et al. [18] also suggested the possibil-

ty of using Random Projections (RP) [19] to reduce the dimension-

lity of bilinear descriptors. Thanks to the Johnson–Lindenstrauss

emma [28] that underpins Random Projection, pairwise distances

etween bilinear descriptors would be approximately preserved

n the projected representation. However, they discarded this idea

ecause directly applying RP to the bilinear descriptors would

nvolve storing a large projection matrix and explicitly comput-

ng the bilinear descriptors in the first place. However, recent

dvances in the intersection of kernel methods and Random

rojection [20,29–31] have made it possible to efficiently perform

andom Projections from the feature spaces of different kernel

unctions in an efficient manner. In particular, an efficient method

o approximate a Random Projection for polynomial kernels was

ntroduced in [20] . This paper adapts the ideas presented in

20] to make bilinear CNNs less computationally demanding by

pproximating a Random Projection of the bilinear descriptor.

. Proposed approach

Bilinear pooling [15] computes a global descriptor for an image

by computing the outer product of local descriptors and then ap-

lying average pooling over locations. In the context of this paper,

he local descriptors are generated by means of an arbitrary CNN

see Fig. 1). Formally, the global bilinear descriptor is defined as:

(I) =

∑

l∈L
CNN (I, l) � CNN (I, l) , (1)

here CNN (I, l) denotes the descriptor extracted from image I at

ocation l by the chosen CNN

1 , L is the set of existing locations

D. López-Sánchez, A. González Arrieta and J.M. Corchado / Neurocomputing 398 (2020) 411–421 413

Fig. 1. Schematic view of Bilinear Pooling [15] for an input image I and a Convolutional Neural Network (CNN) which produces an output feature map with d channels.

First, the Kronecker product is applied at each location of the feature maps generated by the CNN. Then, the resulting bilinear descriptors are averaged to form the final

global bilinear descriptor.

a

g

w

b

w

c

fi

x

d

t

P

R

d

s

[

w

t

o

t

o

f

o

f

t

a

w

b

r

r

T

m

t

i

p

A

m

b

o

o

m

fi

p

a

o

h

s

m

r

s

i

p

e

I

u

m

i

t

t

b

〈
T

s

i

f

n

t

n

i

m

d

j

c

v

c

F

t

w

m

q

nd � denotes the Kronecker product. 2 For instance, if the CNN

enerates feature maps of dimension H × W with d channels, there

ill be HW locations in L , and each local descriptor CNN (I, l) will

e of size d . As a consequence, the final bilinear descriptor �(I)

ill be of dimension d 2 , which is the main cause of the ineffi-

iency of this approach. The descriptor is typically normalized by

rst applying an element-wise signed square root operation (i.e.,

 ← sgn (x)
√ | x |), followed by L2 normalization.

To mitigate the issue of the high dimensionality of the bilinear

escriptor, one possible approach is to perform a Random Projec-

ion to reduce its dimension. In practice, performing the Random

rojection consists in multiplying the bilinear descriptor �(I) ∈

d 2 by a projection matrix R ∈ R

d 2 ×k whose entries are indepen-

ently drawn from a suitable distribution, and then applying a

caling factor to compensate for the reduction of dimensionality

19] . Formally, the Random Projection of the bilinear descriptor is:

1 √

k
�(I) R =

1 √

k

(∑

l∈L
CNN (I, l) � CNN (I, l)

)

R, (2)

hich results in a k -dimensional descriptor. Intuitively, we can

hink of each output feature from this operation as the projection

f the bilinear descriptor onto one of the columns of the projec-

ion matrix. Regarding the distribution for the entries of R , several

ptions have been proposed throughout the years. Originally, uni-

orm and standard normal distributions were used [32,33] . Later

n, studies demonstrated that projection matrices can be drawn

rom much simpler distributions. For instance, Achlioptas showed

hat the entries of the projection matrix can be instead drawn from

 discrete and sparse distribution [19] . In particular, Achlioptas’

ork proved that if the entries of R are drawn from the distri-

ution defined by (3) with sparsity term s = 1 or s = 3 , then the

esult will be a valid Random Projection.

 i j =

√

s

{

1 with prob. 1 / 2 s,
0 with prob. 1 − 1 /s,
−1 with prob. 1 / 2 s.

(3)

herefore, we can see than Random Projection is a rather robust

ethod in terms of the required distribution for the projection ma-

rix, since many distributions can be used. A crucial point however

s that, regardless of the selected distribution, the entries of the

rojection matrix must be chosen independently.

It is worth noting that using the distribution proposed by

chlioptas reduces the computational cost of the projection. If the

ultiplication by
√

s present in (3) is delayed, the computation
2 We use the Kronecker product rather than the outer product to characterize

ilinear pooling for the sake of consistency with the notation in [20] , but these

perations are essentially equivalent in this case.

l

[

t

i

c
f the projection itself reduces to aggregate evaluation (i.e. sum-

ation and subtraction but no multiplication), which can be ef-

ciently performed in database environments using standard SQL

rimitives. In addition, the sparsity term s enables further storage

nd computational savings. For instance, when using s = 3 , only 1
3

f the entries of the projection matrix are nonzero. Moreover, it

as been suggested that using greater sparsity levels in (3) is pos-

ible with little loss in accuracy. In particular, some studies recom-

end using s = O(
√

d) [34] .

However, as pointed out by Gao et al. [18] , even if a sparse

andom projection matrix is used, the d 2 -dimensional bilinear de-

criptor needs to be computed before performing the projection

n (2) , incurring in much of the inefficiencies of standard bilinear

ooling. Luckily, various methods have been recently introduced to

fficiently perform Random Projections from kernel feature spaces.

n particular, the kernelized algorithm proposed in [20] can be

sed to perform Random Projections from the feature space of ho-

ogeneous polynomial kernels of degree two. Moreover, the same

deas can be used to apply a Random Projection to bilinear descrip-

ors in an efficient manner. To show this, we begin by examining

he following property of the Kronecker product. Let x , r 1 , r 2 ∈ R

d

e three arbitrary vectors. Then the following holds:

 x , r 1 〉〈 x , r 2 〉 = 〈 x � x , r 1 � r 2 〉 . (4)

his equality is used in [20] to perform operations in the feature

pace of homogeneous polynomial kernel without ever comput-

ng it explicitly. Note that φ(·): x → x �x is a valid feature map

or the homogeneous polynomial kernel of degree two, so the in-

er product in the right hand side of the above equation can be

hought as taking place in the feature space of that kernel. Conve-

iently, the inner products in the left hand side of the equation are

n R

d , which enables us to evaluate the expression in an efficient

anner.

At this point, we might attempt to exploit (4) to perform a Ran-

om Projection of x � x , as a first step towards our goal of pro-

ecting the bilinear descriptor. To achieve this, r 1 and r 2 should be

hosen in such a way that the entries of r 1 � r 2 follow one of the

alid Random Projection distributions discussed before, so r 1 � r 2
an play the role of one of the columns of the projection matrix.

or instance, if we draw r 1 and r 2 according to (3) with s = 1 , then

he entries of r 1 � r 2 will appear to also follow this distribution

hen analyzed individually. However, the entries of r 1 � r 2 are not

utually independent, which as mentioned before is a crucial re-

uirement for achieving a Random Projection.

As shown in [20] , one possible solution to overcome this prob-

em is to apply the multidimensional Central Limit Theorem (CLT)

35] . This classical result states that the sum of t i.i.d. random vec-

ors with zero means and � covariance, scaled by 1 /
√

t , converges

n distribution to a multivariate normal with zero means and �
ovariance as t goes to infinity. As a consequence, given 2 t i.i.d.

414 D. López-Sánchez, A. González Arrieta and J.M. Corchado / Neurocomputing 398 (2020) 411–421

3

p

c

p

n

a

m

s

q

2

S

s

g

s

p

t

2

c

d

v

c

b

n

i

r

P

T

S

t

(

S

l

t

w

n

3

d

t

t

t

c

f

m

T

s

t

e

r

u

t

g

q

3 Depending on the implementation, these references can take the form of inte-

ger indexes, memory pointers, etc. In any case, storing one of these references has

a similar memory cost as storing a floating point parameter.
zero-mean random vectors r 1 , . . . , r 2 t , we can ensure that

t−1 ∑

j=0

(
r 2 j+1 � r 2 j+2 √

t

)
(5)

converges in distribution to a multidimensional normal distribu-

tion with zero means. Moreover, if vectors we are summing have

identity covariance matrix, then (5) converges in distribution to a

multidimensional normal with zero means and identity covariance,

which is one of the valid distributions for the Random Projection

matrix [33] . Conveniently, the desired identity covariance for vec-

tors in the summation of (5) can be achieved by independently

drawing the entries of r 1 , . . . , r 2 t from Achlioptas’ distribution, dis-

played in (3) . Note that, by definition, the individual variables in

a multidimensional normal with identity covariance are indepen-

dent, so the dependence among the entries of vectors formed fol-

lowing (5) vanishes as t grows.

Therefore, if we use projection vectors generated following (5) ,

with r 1 , . . . , r 2 t populated according to (3) , then for a sufficiently

large t we will be performing a valid Random Projection. Formally,

each component y i of the output representation will be:

y i =

1 √

k

〈

�(I) ,
t−1 ∑

j=0

(
r 2 j+1 � r 2 j+2 √

t

)〉

R d
2

. (6)

As shown in [20] , even if the selected value of t is not big

enough to make the resulting projection vectors follow a perfect

normal distribution, the summation in (5) has the effect of reduc-

ing the statistical dependence among the entries of the projection

vectors, resulting in a better approximation of a proper Random

Projection.

However, directly using (6) to compute the RP of the bilin-

ear descriptor involves explicitly generating the descriptor and the

projection vectors, resulting in the same inefficiencies as directly

applying standard RP. Luckily, the inner product of the bilinear de-

scriptor and our projection vectors can be conveniently rewritten

to avoid working in the d 2 -dimensional space. This is achieved

by using (4) along with some elemental properties of inner prod-

ucts:

y i =

1 √

k

〈

�(I) ,
t−1 ∑

j=0

(
r 2 j+1 � r 2 j+2 √

t

)〉

(7)

=

1 √

tk

t−1 ∑

j=0

〈
�(I) , r 2 j+1 � r 2 j+2

〉
=

1 √

tk

∑

l∈L

t−1 ∑

j=0

〈
CNN (I, l) � CNN (I, l) , r 2 j+1 � r 2 j+2

〉
=

1 √

tk

∑

l∈L

t−1 ∑

j=0

〈
CNN (I, l) , r 2 j+1

〉〈
CNN (I, l) , r 2 j+2

〉
.

Conveniently, the inner products appearing in the last expres-

sion are in R

d , avoiding the need of explicitly computing the bilin-

ear descriptor and the d 2 -dimensional projection vectors. The com-

plete output representation generated by our algorithm is obtained

by repeating this projection k times, each with a different set of

vectors r 1 , . . . , r 2 t :

y = [y 1 , . . . , y k] . (8)

Regarding the selection of the hyperparameter t , the results in

[20] suggest that while relatively high values of t are required for

good pairwise-distance preservation after the projection, classifica-

tion accuracies do not benefit much from using values of t greater

than two. In fact, the authors recommended using small values of

t in classification scenarios to reduce the computational cost.
.1. Reusing vectors for improved efficiency

Up to this point, we have assumed that each of the output com-

onents y i of the representation generated by our algorithm uses a

ompletely different set of vectors r 1 , . . . , r 2 t . This ensures that the

rojection vectors generated using (5) for different output com po-

ents are independent of each other, which is required to achieve

 valid Random Projection. Unfortunately, this also forces us to

aintain a total of 2 tk d -dimensional vectors in memory, which in

ome cases can be challenging. However, as shown in [20] , this re-

uirement can be relaxed in practice. In particular, instead of using

 tk different vectors, the authors of [20] proposed generating a set

 = { r 1 , . . . , r p } containing p i.i.d. vectors, and then using a random

ubset S i ⊂ S for each output component. This approach produced

ood results in practice, while enabling substantial computational

avings [20] .

A similar approach is taken in this paper. First, a set containing

 i.i.d. random vectors S = { r 1 , . . . , r p } is generated with the en-

ries of each vector following the distribution defined in (3) and

 t < p ≤ 2 tk . Then, 2 t of those vectors are selected for each output

omponent y 1 , . . . , y k . However, rather than simply selecting k ran-

om subsets of S as done in [20] , we make sure that each indi-

idual vector r i is used the lowest number of times possible. In

ontrast, randomly selecting k subsets of S results in some vectors

eing used more often than others. Also, a particular vector might

ot be used at all. To achieve a more even usage of the vectors

n S , we first generate a collection P containing the elements of S

epeated the necessary number of times to ensure | P | = 2 tk :

 = S ∪ . . . ∪ S ︸ ︷︷ ︸
� 2 tk/p

∪ S [1 : 2tk mod p] . (9)

hen, we sample P without replacement to form k collections

 1 , . . . , S k each with 2 t vectors. The 2 t vectors in collection S i are

hen used in the computation of the output component y i , using

7) . In practice, S 1 , . . . , S k store references to the original vectors is

 rather than copies of them, so no extra memory needs to be al-

ocated. Algorithm 1 provides a self-contained high-level descrip-

ion of the proposed method. Throughout the following sections,

e will refer to this algorithm as Compact Bilinear Pooling via Ker-

elized Random Projection (CBP-KRP).

.2. Computational complexity and implementation tricks

Analyzing the different steps in Algorithm 1 , it is possible to

etermine both the time complexity and storage requirements of

he proposed method. Steps 1–3 correspond to the instantiation of

he algorithm, and contain the initialization of the parameters of

he model. Most of the memory cost comes from storing S , which

ontains p vectors of dimension d . Luckily, these vectors are drawn

rom Achlioptas’ sparse distribution, so using an appropriate sparse

atrix implementation the zero-valued entries need not be stored.

herefore, only O(dp/s) parameters need to be stored to repre-

ent S .

Regarding the collections P and S 1 , . . . , S k , as mentioned before,

hey can be implemented in such a way that they only store refer-

nces to the original vectors in S , so the memory requirements are

educed significantly. In addition, note that P is only temporarily

sed to form S 1 , . . . , S k . In total, S 1 , . . . , S k contain 2 tk references 3

hat need to be stored after the initialization of the algorithm, to-

ether with the set of vectors S . Therefore, the complete model re-

uires storing O(dp/s) + 2 tk parameters.

D. López-Sánchez, A. González Arrieta and J.M. Corchado / Neurocomputing 398 (2020) 411–421 415

Algorithm 1 Compact Bilinear Pooling via Kernelized Random Projection (CBP-KRP).

Require: Descriptors CNN (I, l) for some image I at each location l ∈ L . The total number of vectors p and their sparsity level s , the

number t of vectors used for the Central Limit Theorem and the desired output dimension k .

Ensure: Returns a k -dimensional vector which approximates a Random Projection of the full bilinear pooling descriptor.

1: S ← { r 1 , . . . , r p } where each entry of r i ∈ R

d is {−√

s , 0 ,
√

s } w.p. { 1 2 s , 1 − 1
s ,

1
2 s } � Generate vectors

2: P = S ∪ . . . ∪ S ︸ ︷︷ ︸
� 2 tk/p

∪ S[1 : 2tk mod p] , so that | P | = 2 tk � Generate a redundant collection to sample from

3: Sample P w/o replacement to form S 1 , . . . , S k , where | S i | = 2 t � Select 2 t vectors for each output dimension

4: y ← [0 , . . . , 0] ∈ R

k � Initialize output vector

5: for l ∈ L do � Iterate over each location

6: for i = 1 , . . . , k do � Iterate over each output dimension

7: for j = 0 , . . . , t − 1 do

8: y i ← y i +

1 √

t
〈 CNN (I, l) , S i [2j + 1] 〉 · 〈 CNN (I, l) , S i [2j + 2] 〉 � Apply Eq. (??) to compute the projection

9: y ←

1 √

k
· y � Scale to compensate for the dimensionality reduction

10: return y

t

e

p

i

p

a

d

o

f

f

o

t

L

c

t

e

fi

L

t

e

t

fi

t

a

t

b

l

p

[

a

n

p

d

m

p

p

3

m

g

p

t

t

t

u

m

t

n
To assess the computational complexity, we separately consider

he initialization phase (steps 1–3) and the projection of the bilin-

ar descriptor (steps 4–10). Regarding the initialization, the com-

utational cost is O(dp + tk) , where the O(dp) comes from form-

ng S and the O(tk) from the sampling of P to form S 1 , . . . , S k . In

ractice, these initialization steps only have to be executed once

nd require a time in the order of seconds at most.

For the projection of the bilinear descriptor (steps 4–10), a more

etailed analysis is required. As we can see, these steps consist

f a series of nested loops that, as the innermost operation, per-

orm two inner products between vectors of dimension d . There-

ore, considering the number of iterations of each loop and the cost

f these inner products, we can conclude that the complexity of

hese steps is O(Lktd) , where L is the number of local descriptors

 = |L| . However, one may notice that most of the inner products

omputed are redundant, since S 1 , . . . , S k only contain references

o p unique vectors and we are computing 2 tk inner products for

ach local descriptor CNN (I, l) . As shown in [20] , a much more ef-

cient strategy would be precomputing the inner products of the

 local descriptors with the p vectors in S before steps 4–5. With

hese inner products precomputed, the expression in step 8 can be

valuated in O(1) time. Therefore, applying this implementation

rick the total time complexity of the proposed algorithm simpli-

es to O(L (pd + tk)) , where the O(Lpd) comes from precomputing

he inner products and the O(Ltk) from executing steps 4–10. It is

lso important to note that, thanks to the sparse nature of the vec-

ors in S , the computation of the inner products can be accelerated
Table 1

Comparison of descriptor dimension, memory usage and time

considered in this paper. Variables d, L and c represent the num

ber of locations at which the CNN is applied (i.e., height times

respectively. Hyperparameter k corresponds to the desired outp

t, p and s control the behavior of CBP-KRP (see Algorithm 1).

t = 2 and s = 100 , using float32 precision.

Full Bilin

Theoretic Descriptor Size d 2

Parameters 0

Classifier Param. cd 2

Computation O(Ld 2)

SqueezeNet [36]

Network size: 4.8 MB

@ fire9 (13 × 13 × 512)

Descriptor Size 262,144

Parameters 0 B

Classifier Param. 200 MB

GoogLeNet [37]

Network size: 25.7 MB

@ incept-4e (14 × 14 × 832)

Descriptor Size 692,224

Parameters 0 B

Classifier Param. 528 MB
y using sparse matrix multiplication routines, available in most

inear algebra packages.

Table 1 compares the number of parameters and time com-

lexity of the proposed method with the full bilinear descriptor

15] and with existing compact bilinear pooling methods [18] . In

ddition to the number of parameters needed to compute the fi-

al descriptor in each case, the table also shows the number of

arameters of a one-vs-all linear classifier trained on the resulting

escriptor, which in the case of the full bilinear descriptor is the

ain source of inefficiency. Some empirical values obtained for the

articular hyperparameters and CNNs used in Section 4 are also

rovided.

.3. Back-propagation for CBP-KRP

One of the main features of existing compact bilinear pooling

ethods [18] is their compatibility with the back-propagation al-

orithm, which makes them end-to-end trainable. The fact that the

artial derivative of the output of these algorithms with respect to

heir input can be easily computed makes it possible to include

hem as intermediate layers in deeper models, as the gradient of

he loss function can be back-propagated towards the first layers

sing the chain rule.

In this section, we derive back-propagation for the proposed

ethod, thus showing that it is also compatible with end-to-end

raining. First, let L denote the selected loss function. To keep the

otation simple, we will denote the local descriptor CNN (I, l) as
 complexity for the different approaches and networks

ber of channels before the pooling operation, the num-

 width of the feature maps), and the number of classes

ut dimension for CBP-KRP, TS and RM. Hyperparameters

Numeric results are for c = 200, k = 5000, p = 5000,

ear CBP-KRP TS [18] RM [18]

k k k

O(dp/s) + 2 tk 4 d 2 dk

ck ck ck

O(L (pd + tk)) O(L (d + k log k)) O(Ldk)

 5,000 5,000 5000

280 KB 8 KB 19.5 MB

3.8 MB 3.8 MB 3.8 MB

 5,000 5,000 5000

406 KB 13 KB 31.7 MB

3.8 MB 3.8 MB 3.8 MB

416 D. López-Sánchez, A. González Arrieta and J.M. Corchado / Neurocomputing 398 (2020) 411–421

Table 2

Main features of the two Raspberry devices used for the inference-time experiments.

Raspberry Model CPU model CPU Cores & Freq. RAM Release Price

Pi 3 Model B + BCM2837B0 (Cortex-A53) 4 @ 1.4 GHz 1 GB 14/03/18 $35

Pi Zero W BCM2835 (ARM1176JZF-S) 1 @ 1 GHz 512 MB 28/02/17 $10

Fig. 2. Raspberry Pi Model 3 B+ (left) and Zero W (right).

i

t

m

4

d

m

u

h

d

q

n

c

h

w

l

e

T

o

e

f

x l . Therefore, the input to the proposed algorithm is the set of d -

dimensional local descriptors { x l } l∈L . The output of the algorithm

is the k -dimensional projection y ∈ R

k of the bilinear descriptor.

Back-propagation for our algorithm can then be written as fol-

lows:

∂L

∂x l

=

k ∑

i =1

∂L

∂y i

∂y i
∂x l

, (10)

∂y i
∂x l

=

1 √

tk

t−1 ∑

j=0

(〈 x l , S i [2j + 1] 〉 S i [2j + 2] + 〈 x l , S i [2j + 2] 〉 S i [2j + 1]
)
.

The first equability is derived by simply applying the chain

rule, and the second one is the partial derivative of the i th fea-

ture in y with respect to one of the local descriptors x l . With this

two equations, one can propagate the gradient of the loss function

across our algorithm to layers closer to the input. While it might

be possible to derive the gradient with respect to the vectors in

S 1 , . . . , S k to also update them during training, this is not recom-

mended because (1) the sparsity of the vectors would be lost, and

(2) we would no longer be approximating a Random Projection of

the bilinear descriptor, as the distribution of the projection vectors

would be altered. Section 4.4 presents experimental results on the

fine-tuning of CNNs with the proposed algorithm as an intermedi-

ate layer.

4. Experimental results and discussion

In this section, we present experimental results regarding both

the efficiency and accuracy achieved by the proposed algorithm

as compared with existing approaches. As mentioned before, our

inference-time results focus on low computational power devices.

As shown in [18] , when compact bilinear pooling is executed in

specialized hardware such as GPUs, the high level of parallelism in

such devices makes bilinear pooling reasonably fast, to the point

that compact bilinear pooling can be even slower. 4 In addition, the

dominant factor in most cases is the forward pass of the convolu-

tion layers, so improvements in the efficiency of bilinear pooling

might not have a significant impact in the total inference time of

the entire model. In such scenarios, the main advantage of compact

bilinear pooling methods is the reduction in the number of param-

eters of the model, as a consequence of the reduced dimensionality

of the descriptor. Conversely, when running on low computational

power devices, compact bilinear pooling methods can make a huge

difference both in terms of memory requirements and total infer-

ence times.

We perform inference-time experiments on two devices from

one of most widespread low-cost hardware platforms. In particu-

lar, we used the Raspberry Pi 3 Model B+, the latest version of the

classic Raspberry series, and the Raspberry Pi Zero W, the small-

est Raspberry computer. 5 Table 2 highlights some of the most im-

portant features of these devices, and Fig. 2 shows their relative

sizes. Given their widespread use, some of the most popular deep

learning platforms such as Tensorflow [38] now include support for
4 For instance, [18] reported that full bilinear pooling and TS compact bilinear

pooling required 0.77 ms and 5.03 ms respectively, while the time for a pass of the

CNN they used was 312 ms.
5 https://www.raspberrypi.org/products/ .

l

nstallation on devices of the Raspberry ecosystem. This reflects

he growing interest of the community in running deep learning

odels on low cost and low power devices.

.1. Evaluated methods

Since our experiments focus on inference-time in low power

evices, we selected two relatively lightweight pretrained CNNs to

ake sure that the models would fit in memory. In particular, we

sed SqueezeNet v1.1 [36] and GoogLeNet [37] CNNs. On the one

and, SqueezeNet is a recently proposed architecture specifically

esigned for efficiency. Notably, the weights of this CNN only re-

uire 4.8 MB of storage, and even less if weight compression tech-

iques are applied. Version v1.1 of this model achieves a similar ac-

uracy as the original one while being twice as fast. 6 On the other

and, GoogLeNet is a slightly heavier model with a size of 25.7 MB,

hich was the winning architecture on the ImageNet 2014 chal-

enge. Conveniently, public implementations exist for both mod-

ls 7 , based on the Keras [39] and Tensorflow [38] Python libraries. 8

ables 3 and 4 provide a detailed description of the architectures

f these CNNs. The cut-off layers at which the bilinear pooling op-

ration was performed were fire9 for SqueezeNet and inception (4e)

or GoogLeNet. The different evaluated approaches were as follows:

• Baseline: The CNNs model is chopped at the specified cut-off

layer. Then, a signed square root operation is applied followed

by L2 normalization of the features. A one-vs-rest linear SVM

classifier [40] is then trained directly on these features.

• Full bilinear pooling (FB): The CNN model is chopped at the

specified cut-off layer. Then, the bilinear pooling descriptor is

generated [15] for the feature maps at the cut-off layer, fol-

lowed by a signed square root operation and L2 normalization.

A one-vs-rest linear SVM classifier [40] is then trained on the

full bilinear descriptors.

• Compact bilinear pooling via Kernelized Random Projection

(CBP-KRP): The CNN model is chopped at the specified cut-off

layer. Then, Algorithm 1 is applied on the feature maps at the
6 https://github.com/DeepScale/SqueezeNet .
7 https://github.com/rcmalli/keras-squeezenet https://github.com/fchollet/deep-

earning-models/pull/59 .
8 We used Keras version 2.1.1 and Tensorflow version 1.9.0 in all our experiments.

https://www.raspberrypi.org/products/
https://github.com/DeepScale/SqueezeNet
https://github.com/rcmalli/keras-squeezenet
https://github.com/fchollet/deep-learning-models/pull/59

D. López-Sánchez, A. González Arrieta and J.M. Corchado / Neurocomputing 398 (2020) 411–421 417

Table 3

Overview of the architecture of the SqueezeNet v1.1 CNN. For

more details about the architecture and custom layers used by

SqueezeNet see the original publication [36] and the official repos-

itory at https://github.com/DeepScale/SqueezeNet .

Layer Filter/stride Output Size Depth

input image – 227 × 227 × 3 –

conv1 3 × 3/2 (× 64) 113 × 113 × 64 1

maxpool1 3 × 3/2 56 × 56 × 64 0

fire2 – 56 × 56 × 128 2

fire3 – 56 × 56 × 128 2

maxpool3 3 × 3/2 27 × 27 × 128 0

fire4 – 27 × 27 × 256 2

fire5 - 27 × 27 × 256 2

maxpool5 3 × 3/2 13 × 13 × 256 0

fire6 – 13 × 13 × 384 2

fire7 – 13 × 13 × 384 2

fire8 – 13 × 13 × 512 2

fire9 – 13 × 13 × 512 2

conv10 1 × 1/1 (× 1000) 13 × 13 × 1000 1

avgpool10 13 × 13/1 1 × 1 × 1000 0

Table 4

Overview of the architecture of the GoogLeNet CNN. For more de-

tails about the architecture and custom layers used by GoogLeNet

see the original publication [37] .

Layer Filter/stride Output Size Depth

input image – 224 × 224 × 3 –

conv1 7 × 7/2 (× 64) 112 × 112 × 64 1

maxpool1 3 × 3/2 56 × 56 × 64 0

conv2 3 × 3/1 (× 192) 56 × 56 × 192 2

maxpool2 3 × 3/2 28 × 28 × 192 0

inception (3a) – 28 × 28 × 256 2

inception (3b) – 28 × 28 × 480 2

maxpool3 3 × 3/2 14 × 14 × 480 0

inception (4a) – 14 × 14 × 512 2

inception (4b) – 14 × 14 × 512 2

inception (4c) – 14 × 14 × 512 2

inception (4d) – 14 × 14 × 528 2

inception (4e) – 14 × 14 × 832 2

maxpool4 3 × 3/2 7 × 7 × 832 0

inception (5a) – 7 × 7 × 832 2

inception (5b) – 7 × 7 × 1024 2

avgpool5 7 × 7/1 1 × 1 × 1024 0

softmax – 1 × 1 × 1000 1

e

4

i

t

b

r

b

w

t

i

i

4

a

i

s

m

t

s

s

C

t

p

fi

b

9 By default, SqueezeNet and GoogLeNet have input sizes of 227 × 227 and

224 × 224 respectively.
10 The GoogLeNet implementation used requires pixel values in the range [−1,1].

SqueezeNet requires conversion from RGB to BGR and color zero-centering with re-

spect to the ImageNet dataset.
cut-off layer to compute a compact version of the bilinear de-

scriptor, followed by a signed square root operation and L2 nor-

malization. A one-vs-rest linear SVM classifier [40] is trained

on the resulting descriptors. For CBP-KRP, unless stated other-

wise we used p = 50 0 0 , t = 2 and s = 100 . The algorithm itself

was implemented in Python, using the standard linear algebra

libraries [41] and numba [42] to accelerate loops where possi-

ble.

• Compact bilinear pooling via Random Maclaurin (RM): The

CNN model is chopped at the specified cut-off layer. Random

Maclaurin [18,23] is used to generate a compact representation

of the outer product of each local descriptor, and the result-

ing descriptors are average-pooled. Then, a signed square root

operation is applied, followed by L2 normalization. A one-vs-

rest linear SVM classifier [40] is then trained on the result-

ing descriptors. The original Matlab implementation of RM was

rewritten in Python, using the standard linear algebra libraries

[41] .

• Compact bilinear pooling via Tensor Sketch (TS): The CNN

model is chopped at the specified cut-off layer. Tensor Sketch

[18,24] is used to generate a compact representation of the

outer product of each local descriptor, and the resulting de-

scriptors are average-pooled. Then, a signed square root oper-

ation is applied, followed by L2 normalization. A one-vs-rest
linear SVM classifier [40] is then trained on the result-

ing descriptors. The original Matlab implementation of TS

was rewritten in Python, using the standard linear alge-

bra libraries [41] and numba [42] to accelerate loops where

possible.

As done in [15] , we use C svm

= 1 to train the linear SVMs in all

xperiments.

.2. Datasets used in the experiments

For our experiments, we use three well known fine-grained

mage categorization datasets, all of which include pre-defined

rain/test splits:

• Caltech UCSD Birds-200-2011 [1] (CUB). Animal species recog-

nition dataset with 200 bird species, which extends the earlier

CUB-200 dataset by increasing the number of images per class.

The dataset contains a total of 11,788 images, with a standard

split of 5994 images for training and 5794 for testing. The num-

ber of images per class ranges from 41 to 60. Part annotations

and bounding boxes are provided for all the images.

• Stanford Cars Dataset (CARS) [4] Car model recognition dataset

with 196 categories. Classes include the model and year of the

car, for example “2012 Tesla Model S” or “2012 BMW M3”.

The dataset contains a total of 16,185 images, with a standard

split of 8144 images for training+validation and 8041 for test-

ing. Bounding boxes are provided for all the images.

• 102 Category Flower Dataset [3] (Flowers). Plant species recog-

nition dataset with 102 flower species commonly occurring

in the United Kingdom. The dataset contains a total of 8189

images, with a standard split of 2040 images for train-

ing+validation and 6149 for testing. The number of images per

class ranges from 40 to 258. Segmentation data is provided for

the images.

Training and test images were preprocessed as follows. First,

ounding boxes were used for CUB and CAR datasets to extract the

elevant region of the images. In the case of the Flower dataset,

ounding boxes are not explicitly provided, so the entire images

ere kept. Secondly, the resulting images were padded with zeros

o make them square, and resized to the appropriate size depend-

ng on the CNN used in the experiment. 9 Finally, color preprocess-

ng was applied as required. 10

.3. Classification accuracy and inference-time

Tables 5 and 6 compare the accuracies and inference-times

chieved by the different approaches described in Section 4.1 us-

ng SqueezeNet and GoogLeNet, respectively. To compensate for the

tochastic nature of some of the methods evaluated, each experi-

ent was executed ten times. The average accuracy is displayed

ogether with the standard deviation. Regarding inference-time re-

ults, times are reported in the format T 1 / T 2 / T 3 , where T 1 repre-

ents the time required for the image to be passed through the

NN, T 2 is the time needed to generate the final descriptor (ei-

her by full bilinear pooling or the corresponding compact bilinear

ooling method), and T 3 is the time taken by the final linear classi-

er to emit a prediction. Note that unlike T 1 and T 2 , T 3 is affected

y the number of classes in the dataset. The timings reported in

https://github.com/DeepScale/SqueezeNet

418 D. López-Sánchez, A. González Arrieta and J.M. Corchado / Neurocomputing 398 (2020) 411–421

Table 5

Comparison of compact bilinear pooling methods using SqueezeNet v1.1 chopped at fire9 [36] as the base network. Inference time results are for the CUB dataset (i.e., 200

categories).

Method Descript. size (k) Acc. (%) CUB [1] Acc. (%) CARS [4] Acc. (%) Flowers [3] Time (ms) Pi 3 Model B + Time (ms) Pi Zero W

Baseline (13 × 13 × 512) 46.46 49.07 71.83 156/0/119 Total: 273 1989/0/490 Total: 2,481

FB 512 2 66.05 63.42 83.34 149/22/360 Total: 539 1996/1042/1493 Total: 4,540

CBP-KRP 2000 60.78 ± 0.29 54.36 ± 0.39 80.75 ± 0.19 156/105/2 Total: 265 1962/490/11 Total: 2,461

TS 2000 60.17 ± 0.22 54.13 ± 0.24 80.60 ± 0.30 154/340/2 Total: 500 1968/1162/11 Total: 3,152

RM 2000 59.51 ± 0.28 53.12 ± 0.35 79.48 ± 0.29 154/483/2 Total: 644 1950/1865/11 Total: 3,828

CBP-KRP 3500 62.26 ± 0.24 57.28 ± 0.36 81.63 ± 0.20 155/113/4 Total: 276 1966/582/20 Total: 2,573

TS 3500 61.80 ± 0.25 57.35 ± 0.30 81.48 ± 0.24 148/747/4 Total: 908 1950/2920/20 Total: 4,895

RM 3500 60.63 ± 0.25 55.84 ± 0.31 80.17 ± 0.27 147/859/4 Total: 1,021 1967/3268/20 Total: 5,257

CBP-KRP 5000 62.94 ± 0.16 58.68 ± 0.42 82.04 ± 0.29 155/123/6 Total: 287 1965/697/28 Total: 2,690

TS 5000 62.85 ± 0.29 58.84 ± 0.26 81.95 ± 0.20 152/916/6 Total: 1,077 1960/3791/28 Total: 5,797

RM 5000 61.11 ± 0.17 56.97 ± 0.25 80.49 ± 0.19 152/1224/6 Total: 1,388 1951/4668/28 Total: 6,665

Table 6

Comparison of compact bilinear pooling methods using GoogLeNet chopped at inception (4e) [36] as the base network. Inference time results are for the CUB dataset (i.e.,

200 categories).

Method Descript. size (k) Acc. (%) CUB [1] Acc. (%) CARS [4] Acc. (%) Flowers [3] Time (ms) Pi 3 Model B + Time (ms) Pi Zero W

Baseline (14 × 14 × 832) 47.03 56.05 77.49 542/0/223 Total: 770 11629/0/968 Total: 12,684

FB 832 2 74.83 75.46 89.78 545/74/951 Total: 1,571 11499/3083/49374 Total: 100,280

CBP-KRP 2000 68.68 ± 0.27 62.88 ± 0.32 88.28 ± 0.23 537/156/2 Total: 704 11440/740/12 Total: 12,174

TS 2000 67.44 ± 0.22 61.31 ± 0.26 87.90 ± 0.21 534/396/2 Total: 944 11770/1437/12 Total: 13,155

RM 2000 67.56 ± 0.33 62.17 ± 0.34 87.82 ± 0.21 539/820/2 Total: 1,359 11358/3417/12 Total: 14,781

CBP-KRP 3500 70.14 ± 0.45 65.46 ± 0.34 89.02 ± 0.24 537/171/4 Total: 712 11627/862/20 Total: 12,553

TS 3500 69.61 ± 0.35 64.20 ± 0.24 88.73 ± 0.23 536/872/4 Total: 1,426 11478/3636/20 Total: 15,142

RM 3500 69.20 ± 0.27 64.57 ± 0.22 88.39 ± 0.20 532/1477/4 Total: 2,020 11514/6084/20 Total: 17,614

CBP-KRP 5000 71.04 ± 0.22 66.84 ± 0.32 89.24 ± 0.15 546/182/7 Total: 731 11481/985/30 Total: 12,504

TS 5000 70.52 ± 0.27 65.68 ± 0.35 89.05 ± 0.17 526/1074/6 Total: 1,619 11452/4867/29 Total: 16,363

RM 5000 69.87 ± 0.30 65.71 ± 0.28 88.56 ± 0.17 539/2100/6 Total: 2,651 11554/8682/29 Total: 20,243

d

o

a

r

o

1

a

v

c

a

K

t

a

b

v

4

p

g

l

h

fi

w

m

o

w

o

c
the tables are for a training dataset with 200 categories (e.g., the

CUB dataset). Total inference times are also reported. 11

Looking at the accuracies in Tables 5 and 6 , we can see that

CBP-KRP outperformed the alternative compact bilinear pooling

methods is most cases, providing the closest approximation to the

accuracy of full bilinear pooling. Notably, this is achieved while

maintaining much lower total inference times. For instance, using

SqueezeNet and k = 5 , 0 0 0 on the Raspberry Pi 3 Model B+, the

total inference time with CBP-KRP as the compact bilinear pooling

method is 287 ms, while with TS and RM inference times break the

one second mark. In addition, using CBP-KRP also results in lower

inference times when compared with the full bilinear approach. In

fact, CBP-KRP provided inference times roughly two times lower

than those of full bilinear pooling on the Pi 3 Model B+, and up

to eight times lower on the Pi Zero W. This efficiency is in part

achieved thanks to the sparse nature of the vectors used in CBP-

KRP, which enables using fast sparse matrix multiplication routines

for the projection. This supports our claim that, when considering

low computational power devices, compact bilinear pooling meth-

ods can be useful not only to reduce models’ memory require-

ments but to achieve lower inference times.

Another important aspect to consider when analyzing these re-

sults is the final model size achieved when using the different

methods. As mentioned before, Table 1 shows some useful figures

in this respect. Both CNNs used have a relatively low initial model

size with 4.8 MB for SqueezeNet and 25.7 MB for GoogLeNet. In

our experimental setup, using full bilinear pooling increases these

model sizes by 200 and 528 MB respectively, as a consequence of

the high number of parameters of a linear classifier trained on

512 2 or 832 2 features, with 200 classes and a one-vs-all scheme.

This of course is a problem if we want our models to run on
11 Small discrepancies exist between total inference times reported and the sum

of T 1 , T 2 and T 3 . This is because total inference times were measured independently

and not computed as T 1 + T 2 + T 3 . All the timings reported correspond to the lowest

execution time among ten runs.

t

i

s

a

l

evices with as little as 512 MB of RAM, which might also have

ther running processes competing for resources. Model size is also

 problem when using compact bilinear pooling via RM, as the pa-

ameters needed by RM itself can require and important amount

f memory. For instance, when using SqueezeNet, RM required

9.5 MB of additional memory, making the final model five times

s heavy as the base CNN. Conversely, compact bilinear pooling

ia TS and CBP-KRP have a low memory footprint. As an example,

onsider the case were we use GoogLeNet. With TS, only 13 KB of

dditional memory are required to store its parameters. With CBP-

RP, 406 KB are required for the same purpose. This difference in

he memory requirements of TS and CBP-KRP is significant, but has

 limited impact in the final model size given the 25 MBs of the

ase network and the 3.8 MBs of the linear classifier, which do not

ary depending on whether TS or CBP-KRP are used.

.4. Results with fine-tuning

As explained in Section 3.3 , one interesting feature of the pro-

osed algorithm is its compatibility with the back-propagation al-

orithm, which makes it possible to include it as an intermediate

ayer of end-to-end trainable models. In our experiments so far, we

ave focused on a simple transfer learning use case where only the

nal layer of the model is trained (i.e., the linear SVM), while the

eights of the remaining layers are fixed. However, it is also com-

on, if enough training data is available, to fine-tune the weights

f the entire model by running some iterations of gradient descent

ith a low learning rate. Conveniently, the inference-time and size

f the model do not change with this process. Therefore, models

an be fine-tuned on computers with specialized hardware and

hen deployed in low power devices, obtaining a potential boost

n accuracy with no increase in inference times. In this section, we

how that CBP-KRP is compatible with this fine-tuning approach

nd how it can improve the performance with respect to transfer

earning without fine-tuning.

D. López-Sánchez, A. González Arrieta and J.M. Corchado / Neurocomputing 398 (2020) 411–421 419

Table 7

Accuracies obtained using CBP-KRP with SqueezeNet and GoogLeNet, fine-tuning all layers of the pre-trained base network on the target dataset. Reported

accuracies are the average over five runs, together with the average improvement with respect to the same experiment without fine-tuning.

Method Base Network Descript. size (k) Acc. (%) CUB [1] Acc. (%) CARS [4] Acc. (%) Flowers [3]

CBP-KRPfine-tuned SqueezeNet v1.1at fire9 2000 68.50 ± 0.13(7.72 ↑) 66.50 ± 0.18(12.14 ↑) 84.99 ± 0.27(4.24 ↑)
CBP-KRPfine-tuned SqueezeNet v1.1at fire9 3500 69.53 ± 0.42(7.24 ↑) 68.59 ± 0.12(11.31 ↑) 85.47 ± 0.10(3.84 ↑)
CBP-KRPfine-tuned SqueezeNet v1.1at fire9 5000 69.92 ± 0.20(6.98 ↑) 69.66 ± 0.11(10.98 ↑) 85.65 ± 0.08(3.61 ↑)
CBP-KRPfine-tuned GoogLeNetat inception (4e) 2000 80.13 ± 0.51(11.45 ↑) 82.08 ± 0.35(19.20 ↑) 92.61 ± 0.16(4.33 ↑)
CBP-KRPfine-tuned GoogLeNetat inception (4e) 3500 80.71 ± 0.06(10.57 ↑) 83.21 ± 0.22(17.75 ↑) 92.72 ± 0.20(3.70 ↑)
CBP-KRPfine-tuned GoogLeNetat inception (4e) 5000 81.11 ± 0.10(10.07 ↑) 83.79 ± 0.20(16.95 ↑) 92.94 ± 0.10(3.70 ↑)

u

m

t

t

m

t

o

a

e

i

fi

p

i

s

p

f

i

i

p

d

b

C

4

e

w

p

p

p

o

p

n

t

t

r

[

P

v

l

c

r

o

o

t

b

m

h

a

w

p

p

p

e

a

d

i

s

c

t

t

A

s

t

p

s

i

w

t

v

a

c

o

s

F

k

We adopt a two step fine-tuning procedure similar to the one

sed in [15] : The process begins by chopping the pre-trained CNN

odel, keeping the layers before the selected cutoff point. After

his, CBP-KRP is initialized and appended to the CNN as a layer in

he model. Then, a softmax layer is added as the final layer of the

odel. The first step in the training procedure consist in training

his softmax layer alone, without altering the rest of the weights

f the model. Then, with the model assembled and the final layer

lready trained, all the weights in the model are fine-tuned by ex-

cuting a number of iterations of gradient descent. As explained

n Section 3.3 , the parameters of CBP-KRP are excluded from this

ne-tuning process in order to preserve their sparsity. For our ex-

eriments, we used Adam [43] as the optimizer, and set the learn-

ng rate to 0.001 with a learning rate decay of 0.1. Batch size was

et to 32 and the number of epochs to 20.

Table 7 shows the accuracies resulting from applying this ap-

roach with SqueezeNet and GoogLeNet as the base CNN, and dif-

erent output dimensions for CBP-KRP. As we can see, accuracies

mproved in all cases as a result of fine-tuning. The improvements

n the accuracy ranged from 3.61 to 19.20, with the higher im-

rovements occurring for the GoogLeNet CNN. These results evi-

ence the potential of fine-tuning models which include compact

ilinear pooling as an intermediate layer, and the compatibility of

BP-KRP with this approach.

.5. Hyperparameter selection

One possible drawback of the proposed method is that the

nd-user must specify the value of a number of hyperparameters,

hich can be challenging when the underlying effects of these hy-

erparameters are not known. This subsection tries to mitigate this

roblem by providing a detailed description of the different hyper-

arameters of CBP-KRP, and exploring the effect of modifying each

f them.

Looking at Algorithm 1 , we can see that CBP-KRP has four hy-

erparameters whose values must be provided. These are the total

umber of random vectors generated (p), their sparsity level (s),

he number of vectors summed to form each projection vector in

he feature space (t), and the desired output dimension (k).

The hyperparameter p , which controls the number of unique

andom vectors generated by the algorithm, was introduced in
ig. 3. Effect of using different values for the hyperparameter p and the output dimensio

 was fixed to 3500. Similarly, p was fixed to 50 0 0 when exploring the effect of k . Embed
20] to reduce the computational cost of the kernelized Random

rojection. As explained in Section 3.1 , instead of using 2 t distinct

ectors for each output component, our algorithm generates a col-

ection with p vectors, and reuses some of them in order to reduce

osts. Therefore, p must be set to be 2 tk ≥ p > 2 t . Larger values of p

educe the re-usage of vectors, improving performance at the cost

f longer running times. If p is set to 2 tk , no vector repetition will

ccur at all. Similarly, lower values of p sacrifice some performance

o achieve a faster execution. Therefore, this hyperparameter can

e used to control the performance/efficiency trade-off, without

odifying the dimension of the output representation, which may

ave further implications. Fig. 3 illustrates the effect in accuracy

nd execution times of using different values for p . Conveniently,

e can see that the accuracy grows rapidly with p , while as ex-

lained in Section 3.2 embedding times with CBP-KRP are linear in

 .

For is part, k is a common hyperparameter in most kernel ap-

roximation methods which controls the number of features gen-

rated to approximate the kernel. Therefore, the hyperparameter k

lso defines a trade-off between accuracy and efficiency. The main

ifference is that, as opposed to p, k determines the dimensional-

ty of the resulting descriptors, which might have implications for

ubsequent steps in the processing chain (e.g., for the final linear

lassifier in our case). Again, Fig. 3 explores this trade-off, showing

hat the accuracy grows quickly as k increases.

The hyperparameter t determines the number of random vec-

ors summed to form the projection vectors in the feature space.

s explained in Section 3 , forming the projection vectors as the

um of t random vectors results in a reduced dependence among

heir entries, which as shown in [20] is key for the distance-

reservation properties of Random Projection. However, the same

tudy revealed that the effect of t in classification accuracies is lim-

ted, and recommended using small values of this hyperparameter

hen the generated representations are intended for classification.

Finally, hyperparameter s determines the degree of sparsity of

he generated random vectors. In particular, the entries of these

ectors are zero with probability 1 − 1 /s . Therefore, using a rel-

tively large s enables us to reduce computational and storage

osts. Furthermore, using projection vectors with a certain degree

f sparsity does not necessary have a negative impact in the clas-

ification accuracy, as sparse Random Projections are known to
n k . Experiments are for the Flowers dataset. When exploring different values of p,

ding times are for the Raspberry Pi 3 Model B + .

420 D. López-Sánchez, A. González Arrieta and J.M. Corchado / Neurocomputing 398 (2020) 411–421

Table 8

Accuracies obtained by CBP-KRP on the three datasets studied, with SqueezeNet and GoogLeNet as the base network and using

different values for hyperparameters t and s . Hyperparameters p and k were fixed to 50 0 0 and 20 0 0 respectively. The best result

for each dataset and base network is stressed in bold.

CBP-KRP Accuracy with SqueezeNet (%) Accuracy with GoogLeNet (%)

Hyperparameters CUB [1] CARS [4] Flowers [3] CUB [1] CARS [4] Flowers [3]

t = 2 , s = 50 60.22 ± 0.26 54.15 ± 0.36 80.55 ± 0.30 68.07 ± 0.27 62.26 ± 0.37 88.13 ± 0.21

t = 4 , s = 50 59.86 ± 0.38 53.78 ± 0.37 80.22 ± 0.24 67.58 ± 0.32 61.72 ± 0.44 87.88 ± 0.21

t = 6 , s = 50 59.66 ± 0.32 53.42 ± 0.36 80.00 ± 0.26 67.37 ± 0.33 61.15 ± 0.40 87.73 ± 0.21

t = 2 , s = 100 60.75 ± 0.35 54.30 ± 0.39 80.73 ± 0.26 68.73 ± 0.36 62.88 ± 0.43 88.25 ± 0.20

t = 4 , s = 100 60.39 ± 0.35 54.16 ± 0.39 80.57 ± 0.28 68.29 ± 0.34 62.31 ± 0.35 88.19 ± 0.19

t = 6 , s = 100 60.15 ± 0.40 54.06 ± 0.35 80.49 ± 0.27 67.88 ± 0.33 61.74 ± 0.44 88.06 ± 0.26

t = 2 , s = 200 60.41 ± 0.38 52.65 ± 0.46 80.25 ± 0.34 68.72 ± 0.39 63.21 ± 0.48 88.15 ± 0.28

t = 4 , s = 200 60.74 ± 0.33 53.86 ± 0.43 80.60 ± 0.39 68.77 ± 0.41 62.86 ± 0.37 88.30 ± 0.31

t = 6 , s = 200 60.63 ± 0.44 54.24 ± 0.36 80.70 ± 0.21 68.55 ± 0.42 62.46 ± 0.36 88.17 ± 0.22

h

w

s

t

o

D

A

t

e

n

R

perform well in practice [34] . Moreover, sparsity has been shown

to be a powerful tool in the context of deep learning, as it can

contribute to mitigate over-fitting [44] .

It must be noted, however, that since the projection vectors in

the kernel feature space are built as the sum of t vectors, the spar-

sity level of the final projection vectors will also be affected by t ,

and not only by s . Hence, t and s should be jointly selected. Table 8

shows the accuracies obtained by CBP-KRP on the three datasets

studied, using different values for hyperparameters t and s . Luck-

ily, the results suggest that the proposed method is fairly robust

to the selection of these hyperparameters. Particularly, the combi-

nation used in the comparisons of the previous section, t = 2 and

s = 100 , resulted in either the best or the second best result in all

experiments. In some cases, a slight improvement in the accuracy

was achieved when increasing the sparsity by setting s = 200 and

using t = 4 or t = 6 .

5. Conclusions

This paper builds upon the ideas of [18,20] to propose CBP-KRP,

a novel method to create compact feature descriptors which cap-

ture most of the power of full bilinear pooling descriptors [15] .

Following the insights provided by [18] , we proposed an efficient

method to approximate a Random Projection of the full bilinear

descriptor, mostly preserving its discriminative information while

greatly reducing the dimension of the final descriptor. This was

achieved by adapting the ideas from [20] , and exploiting the close

relation between the bilinear pooling operation and homogeneous

polynomial kernels. We also derived back-propagation for the pro-

posed algorithm, showing that it can be used as a building block

in end-to-end trainable models.

Our experimental results show that, for three common fine-

grained image categorization datasets, our method produces the

best approximation to the accuracy of full bilinear pooling, out-

performing existing compact bilinear pooling methods. Moreover,

this is achieved while running significantly faster than TS and RM-

based compact bilinear pooling on low computational power de-

vices such as those from the Raspberry Pi ecosystem, and also

faster than full bilinear pooling. In addition, the number of param-

eters used by our algorithm is relatively low, solving the memory

issues that emerge when using full bilinear descriptors. As a con-

sequence, our algorithm could be useful in embedded systems or

other low computational power scenarios where tight computation

and memory constraints exist.

Following previous studies on the topic of compact bilinear

pooling, we focused on the case where a single CNN is used to

form the bilinear descriptors [18] . However, an interesting line for

future work would be the possibility of extending CBP-KRP to the

case where bilinear descriptors are formed as the outer product

of the descriptors extracted by two different CNNs, as this could
ave applications in multi-modal problems [45,46] . In addition, we

ould like to explore the applicability of our algorithm in areas

uch as Internet of Things, Wearable technology or Embedded Sys-

ems [47] , where efficient fine-grained image understanding meth-

ds could be of great use.

eclaration of Competing Interest

There are no conflicts of interest to declare.

cknowledgement

The research of Daniel López-Sánchez has been financed by

he Ministry of Education, Culture and Sports of the Spanish Gov-

rnment, University Faculty Training (FPU) programme, reference

umber FPU15/02339.

eferences

[1] C. Wah , S. Branson , P. Welinder , P. Perona , S. Belongie , The Caltech-UCSD
Birds-200-2011 Dataset, Technical Report, California Institute of Technology,

2011 .
[2] A. Khosla , N. Jayadevaprakash , B. Yao , L. Fei-Fei , Novel dataset for fine-grained

image categorization, in: Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, First Workshop on Fine-Grained Visual Catego-

rization, Colorado Springs, CO, 2011 .

[3] M.-E. Nilsback , A. Zisserman , Automated flower classification over a large num-
ber of classes, in: Proceedings of the Indian Conference on Computer Vision,

Graphics and Image Processing, 2008 .
[4] J. Krause , M. Stark , J. Deng , L. Fei-Fei , 3D object representations for fine-grained

categorization, in: Proceedings of the Fourth International IEEE Workshop on
3D Representation and Recognition (3DRR), Sydney, Australia, 2013 .

[5] S. Maji , J. Kannala , E. Rahtu , M. Blaschko , A. Vedaldi , Fine-Grained Visual Clas-

sification of Aircraft, Technical Report, 2013 .
[6] B. Zhou , A. Lapedriza , J. Xiao , A. Torralba , A. Oliva , Learning deep features for

scene recognition using places database, in: Proceedings of the Advances in
Neural Information Processing Systems, 2014, pp. 4 87–4 95 .

[7] S. Branson, G. Van Horn, S. Belongie, P. Perona, Bird species categorization us-
ing pose normalized deep convolutional nets, arXiv: 1406.2952 (2014).

[8] Z. Xu , S. Huang , Y. Zhang , D. Tao , Augmenting strong supervision using web

data for fine-grained categorization, in: Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 2524–2532 .

[9] J. Krause , B. Sapp , A. Howard , H. Zhou , A. Toshev , T. Duerig , J. Philbin , L. Fei-Fei ,
The unreasonable effectiveness of noisy data for fine-grained recognition, in:

Proceedings of the European Conference on Computer Vision, Springer, 2016,
pp. 301–320 .

[10] A.R. Chowdhury , T.-Y. Lin , S. Maji , E. Learned-Miller , One-to-many face recog-

nition with bilinear CNNS, in: Proceedings of the IEEE Winter Conference on
Applications of Computer Vision (WACV), IEEE, 2016, pp. 1–9 .

[11] C. Feichtenhofer , A . Pinz , A . Zisserman , Convolutional two-stream network fu-
sion for video action recognition, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016, pp. 1933–1941 .
[12] E. Ustinova , Y. Ganin , V. Lempitsky , Multi-region bilinear convolutional neural

networks for person re-identification, in: Proceedings of the 14th IEEE Inter-
national Conference on Advanced Video and Signal Based Surveillance (AVSS),

IEEE, 2017, pp. 1–6 .

[13] A . Alzu’bi , A . Amira , N. Ramzan , Content-based image retrieval with compact
deep convolutional features, Neurocomputing 249 (2017) 95–105 .

[14] Q. Sun , Q. Wang , J. Zhang , P. Li , Hyperlayer bilinear pooling with application to
fine-grained categorization and image retrieval, Neurocomputing 282 (2018)

174–183 .

http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0003
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0003
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0003
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0004
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0004
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0004
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0004
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0004
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0006
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0006
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0006
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0006
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0006
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0006
arxiv:/1406.2952
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0010
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0010
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0010
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0010
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0013
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0013
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0013
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0013
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0013

D. López-Sánchez, A. González Arrieta and J.M. Corchado / Neurocomputing 398 (2020) 411–421 421

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

r

s

s

s

n

T

g

E

i

t

n

[15] T.-Y. Lin , A. RoyChowdhury , S. Maji , Bilinear CNN models for fine-grained visual
recognition, in: Proceedings of the IEEE International Conference on Computer

Vision, 2015, pp. 1449–1457 .
[16] W. Shi , J. Cao , Q. Zhang , Y. Li , L. Xu , Edge computing: vision and challenges,

IEEE Internet Things J. 3 (5) (2016) 637–646 .
[17] H. Huang , H. Zhou , X. Yang , L. Zhang , L. Qi , A.-Y. Zang , Faster r-CNN for marine

organisms detection and recognition using data augmentation, Neurocomput-
ing 337 (2019) 372–384 .

[18] Y. Gao , O. Beijbom , N. Zhang , T. Darrell , Compact bilinear pooling, in: Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 317–326 .

[19] D. Achlioptas , Database-friendly random projections: Johnson-Lindenstrauss
with binary coins, J. Comput. Syst. Sci. 66 (4) (2003) 671–687 .

20] D. López-Sánchez , A.G. Arrieta , J.M. Corchado , Data-independent random pro-
jections from the feature-space of the homogeneous polynomial kernel, Pat-

tern Recognit. 82 (2018) 130–146 .

[21] J.B. Tenenbaum , W.T. Freeman , Separating style and content with bilinear mod-
els, Neural Comput. 12 (6) (20 0 0) 1247–1283 .

22] S. Taheri , O. Toygar , On the use of DAG-CNN architecture for age estimation
with multi-stage features fusion, Neurocomputing 329 (2019) 300–310 .

23] P. Kar , H. Karnick , Random feature maps for dot product kernels, in: Proceed-
ings of the 15th International Conference on Artificial Intelligence and Statis-

tics (AISTATS), 2012, pp. 583–591 .

[24] N. Pham , R. Pagh , Fast and scalable polynomial kernels via explicit feature
maps, in: Proceedings of the Nineteenth ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, ACM, 2013, pp. 239–247 .
25] M. Charikar , K. Chen , M. Farach-Colton , Finding frequent items in data streams,

in: Proceedings of the International Colloquium on Automata, Languages, and
Programming, Springer, 2002, pp. 693–703 .

26] J.-H. Kim, K.-W. On, W. Lim, J. Kim, J.-W. Ha, B.-T. Zhang, Hadamard product

for low-rank bilinear pooling, arXiv: 1610.04325 (2016).
[27] Z. Yu , J. Yu , C. Xiang , J. Fan , D. Tao , Beyond bilinear: generalized multimodal

factorized high-order pooling for visual question answering, IEEE Trans. Neural
Netw. Learn. Syst. 99 (2018) 1–13 .

28] S. Dasgupta , A. Gupta , An elementary proof of a theorem of Johnson and Lin-
denstrauss, Random Struct. Algorithms 22 (1) (2003) 60–65 .

29] K. Zhao , A. Alavi , A. Wiliem , B.C. Lovell , Efficient clustering on Riemannian

manifolds: a kernelised random projection approach, Pattern Recognit. 51
(2016) 333–345 .

30] A . Alavi, A . Wiliem, K. Zhao, B.C. Lovell, C. Sanderson, Random projections
on manifolds of symmetric positive definite matrices for image classification,

arXiv: 1403.0700 (2014).
[31] D. López-Sánchez , J.M. Corchado , A.G. Arrieta , Data-independent random pro-

jections from the feature-map of the homogeneous polynomial kernel of de-

gree two, Inf. Sci. 436 (2018) 214–226 .
32] P. Indyk , R. Motwani , Approximate nearest neighbors: towards removing the

curse of dimensionality, in: Proceedings of the Thirtieth Annual ACM Sympo-
sium on Theory of Computing, ACM, 1998, pp. 604–613 .

[33] R.I. Arriaga , S. Vempala , An algorithmic theory of learning: robust concepts
and random projection, in: Proceedings of the Fortieth Annual Symposium on

Foundations of Computer Science, IEEE, 1999, pp. 616–623 .
34] P. Li , T.J. Hastie , K.W. Church , Very sparse random projections, in: Proceedings

of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, ACM, 2006, pp. 287–296 .
[35] L. Breiman , Probability, Society for Industrial and Applied Mathematics (SIAM),

1992, pp. 237–238 .
36] F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer,

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 mb
model size, arXiv: 1602.07360 (2016).

[37] C. Szegedy , W. Liu , Y. Jia , P. Sermanet , S. Reed , D. Anguelov , D. Erhan , V. Van-

houcke , A. Rabinovich , Going deeper with convolutions, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9 .

38] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,

D.G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,
X. Zheng, TensorFlow: a system for large-scale machine learning, in: Proceed-

ings of the Twelfth USENIX Symposium on Operating Systems Design and Im-

plementation (OSDI), 2016, pp. 265–283. https://www.usenix.org/system/files/
conference/osdi16/osdi16-abadi.pdf .

39] F. Chollet, et al., Keras, 2015, (https://keras.io).
40] R.-E. Fan , K.-W. Chang , C.-J. Hsieh , X.-R. Wang , C.-J. Lin , LIBLINEAR: a library
for large linear classification, J. Mach. Learn. Res. 9 (2008) 1871–1874 .

[41] T.E. Oliphant , A Guide to NumPy, 1, Trelgol Publishing USA, 2006 .
42] S.K. Lam , A. Pitrou , S. Seibert , Numba: a LLVM-based python JIT compiler, in:

Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in
HPC, ACM, 2015, p. 7 .

43] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv: 1412.
6980 (2014).

44] Q. Xu , M. Zhang , Z. Gu , G. Pan , Overfitting remedy by sparsifying regularization

on fully-connected layers of CNNs, Neurocomputing 328 (2019) 69–74 .
45] A. Fukui, D.H. Park, D. Yang, A. Rohrbach, T. Darrell, M. Rohrbach, Multimodal

compact bilinear pooling for visual question answering and visual grounding,
arXiv: 1606.01847 (2016).

46] C. Hong , J. Yu , J. Wan , D. Tao , M. Wang , Multimodal deep autoencoder for hu-
man pose recovery, IEEE Trans. Image Process. 24 (12) (2015) 5659–5670 .

[47] A. Al-Fuqaha , M. Guizani , M. Mohammadi , M. Aledhari , M. Ayyash , Internet

of things: a survey on enabling technologies, protocols, and applications, IEEE
Commun. Surv. Tutor. 17 (4) (2015) 2347–2376 .

Daniel L ópez-S ánchez (M.Sc.) obtained a Computer Sci-
ence degree (highest GPA award) in 2015 and an M.Sc.

in Artificial Intelligence in 2016 at the University of Sala-
manca (Spain). In 2016, he received the FPU grant from

the Spanish Government and started pursuing a Ph.D. at

the BISITE Research Group. His research interest focus
in the field of machine learning, especially in the sub-

fields of dimensionality reduction and kernel methods.
He is also interested in developing novel applications of

the Deep Learning paradigm. He has participated as a
co-author in papers published in recognized international

conferences and journals.

Angélica Gonz ález-Arrieta (Ph.D.) Received a Ph.D. in
Computer Science from the University of Salamanca in

20 0 0. She is currently a Lecturer in Salamancas University
Department of Computer Science and has attended sev-

eral Master’s courses. She is further a professor and tutor
for UNED (Universidad Española de Educaci ón a Distan-

cia, Spain’s Open University). In the past, she carried out

relevant administrative tasks, such as Academic Secretary
of the Science Faculty (1996–20 0 0) and Chief of Staff for

the University of Salamanca (20 0 0–20 03). From 1990, she
has cooperated with the Home Ministry, and from 2008

with the Home and Justice Counsel of the local govern-
ment (Junta de Castilla y Le ón). She is a member of the

esearch group BISITE (http://bisite.usal.es) and has lead several research projects
ponsored by both public and private institutions in Spain. She is the coauthor of

everal works published in magazines, workshops, meetings, and symposia.

Juan M. Corchado (Ph.D.) Received a Ph.D. in Computer
Science from the University of Salamanca in 1998 and a

Ph.D. in Artificial Intelligence (AI) from the University of
Paisley, Glasgow (UK) in 20 0 0. At present, he is Vice Pres-

ident for Research and Technology Transfer since Decem-
ber 2013 and a Full Professor with Chair at the University

of Salamanca. He is the Director of the Science Park of

the University of Salamanca and Director of the Doctoral
School of the University. He has been elected twice as the

Dean of the Faculty of Science at the University of Sala-
manca. He has led several Artificial Intelligence research

projects sponsored by Spanish and European public and
private sector institutions and has supervised seven Ph.D.

tudents. He is the coauthor of over 230 books, book chapters, journal papers, tech-

ical reports, etc. Since January 2015, He is Visiting Professor at Osaka Institute of
echnology. He is also member of the Advisory group on Online Terrorist Propa-

anda of the European Counter Terrorism Centre (EUROPOL). He is also editor and
ditor-in-Chief of Specialized Journals like ADCAIJ (Advances in Distributed Comput-

ng and Artificial Intelligence Journal), IJDCA (International Journal of Digital Con-
ents and Applications) and OJCST (Oriental Journal of Computer Science and Tech-

ology).

http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0014
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0014
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0014
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0014
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0015
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0015
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0015
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0015
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0015
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0015
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0017
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0017
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0017
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0017
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0017
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0018
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0018
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0019
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0019
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0019
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0019
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0021
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0021
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0021
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0022
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0022
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0022
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0023
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0023
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0023
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0024
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0024
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0024
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0024
arxiv:/1610.04325
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0027
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0027
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0027
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0027
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0027
arxiv:/1403.0700
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0029
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0029
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0029
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0031
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0031
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0031
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0031
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0032
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0032
arxiv:/1602.07360
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0033
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://keras.io
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0036
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0036
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0037
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0037
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0037
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0037
arxiv:/1412.6980
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0038
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0038
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0038
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0038
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0038
arxiv:/1606.01847
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0039
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0039
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0039
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0039
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0039
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0039
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0040
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0040
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0040
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0040
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0040
http://refhub.elsevier.com/S0925-2312(19)31039-2/sbref0040
http://bisite.usal.es

	Compact bilinear pooling via kernelized random projection for fine-grained image categorization on low computational power devices
	1 Introduction
	2 Related work
	3 Proposed approach
	3.1 Reusing vectors for improved efficiency
	3.2 Computational complexity and implementation tricks
	3.3 Back-propagation for CBP-KRP

	4 Experimental results and discussion
	4.1 Evaluated methods
	4.2 Datasets used in the experiments
	4.3 Classification accuracy and inference-time
	4.4 Results with fine-tuning
	4.5 Hyperparameter selection

	5 Conclusions
	Declaration of Competing Interest
	Acknowledgement
	References

