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A B S T R A C T

In this study, an optimal -stable time-efficient hybrid block method with a relative measure of
stability is developed for solving stiff systems in ordinary differential equations. The derivation
resorts to interpolation and collocation techniques over a single step with two intermediate
points, resulting in an efficient one-step method. The optimization of the two off-grid points
is achieved by means of the local truncation error (LTE) of the main formula. The theoretical
analysis shows that the method is consistent, zero-stable, seventh-order convergent for the main
formula, and -stable. The highly stiff systems solved with the proposed and other algorithms
(even of higher-order than the proposed one) proved the efficiency of the former in the context
of several types of errors, precision factors, and computational time.

1. Introduction

Initial value problems (IVPs) in ordinary differential equations (ODEs) of the following form are the most frequently used
problems in several fields of science and engineering:

𝑠′(𝑥) = 𝑔(𝑥, 𝑠(𝑥)), 𝑠(𝑥0) = 𝑠0, 𝑥 ∈ [𝑥0, 𝑥𝑁 ] ⊂ R, and 𝑠(𝑥), 𝑔(𝑥, 𝑠(𝑥)) ∈ R𝑑 . (1)

It is common knowledge that numerous problems of the form (1) do not have analytic solutions; consequently, numerical methods
remain salient. Finding numerical solutions to stiff systems has been a significant challenge for numerical analysts. A potentially
good numerical method for solutions of stiff systems must possess certain qualities in terms of its region of absolute stability and
accuracy [16].
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Despite the several methods in the literature which had been implemented in a step-by-step fashion for the solution of (1), block
ethods for providing a numerical solution of (1) at more than one point have become a reasonable alternative to gain computational

fficiency and numerical accuracy. These methods are based on multistep methods formulated to produce the continuous form. The
ontinuous form of the multistep methods has the advantage of producing the primary and complementary methods combined with
he main methods to produce the required block scheme. Furthermore, they have the capacity to provide error control (see [30]).

Since the introduction of the block methods by Milne [18], which were used only for providing starting values for predictor–
orrector methods, and further improved by Rosser [29], many block methods, including hybrid ones, have been developed and
mplemented on different classes of problems. For instance, Ramos, et al. in [24], constructed a family of adapted block Falkner
ethods that were frequency-reliant for the direct numerical solution of second-order IVPs with oscillatory solutions. A family of

tiffly stable second derivative block methods for solving first-order stiff ODEs was presented by Ajayi et al. in [4]. Furthermore,
he second derivative trigonometrically fitted block backward differentiation formula whose coefficients rely on the frequency and
tep size was presented by Abdulganiy et al. in [2] for solving oscillatory problems, to mention but a few. To inquire more about
lock methods, one can refer [3,5,9,10,19,20,23,34] and the references therein.

Hybrid methods, which are the adapted form of the 𝑘-step multistep methods, have been developed by introducing intra-step
oints in the derivation process. When implemented in a step-by-step fashion, these methods are more laborious because of the
nclusion of the intra-step points as they increase the amount of predictors needed to execute them. However, with the emergence
f block hybrid methods, this difficulty has been overcome since block methods have the superiority of being self-starting methods.
ew block hybrid methods have been presented in the literature for the numerical integration of the IVP (1) as can be found
n [1,15,25]. In this paper, we propose a one-step -stable, optimized second derivative block method (OLSBM) with two intra-step
oints, which provides the solution of (1) without using predictors as discussed in [12,39].

The present article is organized as follows: In Section 2, the mathematical formulation of the proposed block method is discussed.
ection 3 is devoted to the theoretical analysis, which presents the qualitative properties of the proposed numerical algorithm.
ection 5 contains numerical simulations to illustrate the method’s performance, and a comparative analysis is also presented in
his same section. Finally, Section 6 presents the conclusion with future remarks.

. Mathematical formulation

The purpose of this section is to develop an implicit second derivative one-step block method for solving (1) efficiently. We
ssume that 𝑔 is an enough smooth function and 𝑑 = 1 in order to simplify the method’s derivation. After that, the method could
e applied to systems using a component-wise procedure. The approximate solution on the specific sub-interval [𝑥𝑛, 𝑥𝑛+1], where
𝑥𝑛+1 = 𝑥𝑛 + 𝛥𝑥 and 𝛥𝑥 is the step-size, is obtained by approximating 𝑠(𝑥) locally by a polynomial 𝑞(𝑥) of the form:

𝑠(𝑥) ≈ 𝑞(𝑥) =
5
∑

𝑗=0
𝜓𝑗𝑥

𝑗 , (2)

here 𝜓𝑗 ∈ R represent real unknown parameters. When Eq. (2) is differentiated, we obtain

𝑠′(𝑥) ≈ 𝑞′(𝑥) =
5
∑

𝑗=1
𝑗𝜓𝑗𝑥

𝑗−1, (3)

𝑠′′(𝑥) ≈ 𝑞′′(𝑥) =
5
∑

𝑗=2
𝑗(𝑗 − 1)𝜓𝑗𝑥𝑗−2. (4)

Consider two intra-step points, 𝑥𝑛+𝑢 = 𝑥𝑛 + 𝑢𝛥𝑥, 𝑥𝑛+𝑣 = 𝑥𝑛 + 𝑣 𝛥𝑥 with 0 < 𝑢 < 𝑣 < 1, that will be used to calculate the approximate
solution of (1) at point 𝑥𝑛+1, assuming that 𝑠𝑛 = 𝑠(𝑥𝑛). To commence the methodology, suppose the estimation in (2) computed
at 𝑥𝑛, its first-order derivative (𝑔) computed at the points 𝑥𝑛, 𝑥𝑛+𝑢, 𝑥𝑛+𝑣, 𝑥𝑛+1, and its second-order derivative (𝛾) computed at the
point 𝑥𝑛+1. In this case, we have a square linear system with six equations and six unknowns (coefficients) 𝜓𝑗 , 𝑗 = 0, 1,… , 5, where
𝜓𝑗 ∈ R:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 𝑥𝑛 𝑥2𝑛 𝑥3𝑛 𝑥4𝑛 𝑥5𝑛
0 1 2𝑥𝑛 3𝑥2𝑛 4𝑥3𝑛 5𝑥4𝑛
0 1 2𝑥𝑛+𝑢 3𝑥2𝑛+𝑢 4𝑥3𝑛+𝑢 5𝑥4𝑛+𝑢
0 1 2𝑥𝑛+𝑣 3𝑥2𝑛+𝑣 4𝑥3𝑛+𝑣 5𝑥4𝑛+𝑣
0 1 2𝑥𝑛+1 3𝑥2𝑛+1 4𝑥3𝑛+1 5𝑥4𝑛+1
0 0 2 6𝑥𝑛+1 12𝑥2𝑛+1 20𝑥3𝑛+1
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⎟

⎟

⎟
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⎟
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⎜

⎜

⎜
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⎟

⎟

⎟

⎟
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⎜

⎜

⎜
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𝑔𝑛
𝑔𝑛+𝑢
𝑔𝑛+𝑣
𝑔𝑛+1
𝛾𝑛+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (5)

The solution of the square linear system above produces values of the six undetermined coefficients 𝜓𝑗 , 𝑗 = 0, 1,… , 5. For the sake
of brevity, the values of the obtained coefficients are not mentioned herein. However, substituting these coefficients in (2) with the
change of variable 𝑥 = 𝑥𝑛 + 𝑡𝛥𝑥, we reach the following:

𝑞(𝑥 + 𝑡𝛥𝑥) = 𝜓 𝑠 + 𝛥𝑥
(

𝜈 𝑔 + 𝜈 𝑔 + 𝜈 𝑔 + 𝜈 𝑔
)

+ 𝛥𝑥2(𝜁 𝛾 ), (6)
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where
𝜓0 = 1,

𝜈0 =

(

3∕5 𝑡4 + (−3∕4 𝑢 − 3∕4 𝑣 − 3∕2) 𝑡3 + ((𝑣 + 2) 𝑢 + 2 𝑣 + 1) 𝑡2

+ ((−3 𝑣 − 3∕2) 𝑢 − 3∕2 𝑣) 𝑡 + 3 𝑣𝑢) 𝑡
3𝑣𝑢

,

𝜈𝑢 = −
𝑡2
(

15 𝑣𝑡2 − 12 𝑡3 − 40 𝑣𝑡 + 30 𝑡2 + 30 𝑣 − 20 𝑡
)

60 (𝑢 − 1)2 (𝑢 − 𝑣) 𝑢
,

𝜈𝑣 =
𝑡2(15 𝑢𝑡2 − 12 𝑡3 − 40 𝑢𝑡 + 30 𝑡2 + 30 𝑢 − 20 𝑡)

60 (𝑣 − 1)2(𝑢 − 𝑣)𝑣
,

𝜈1 = −

𝑡2
(

𝑡
(

5𝑢2
(

4𝑣2 − 3𝑣𝑡 + 6(𝑡 − 2)
)

+ 𝑢
(

−15𝑣2𝑡 + 6𝑣
(

2𝑡2 + 5𝑡 − 10
)

− 24𝑡2 + 80
)

+30𝑣2(𝑡 − 2) + 𝑣
(

80 − 24𝑡2
)

+ 12𝑡(3𝑡 − 5)
)

− 60𝑢𝑣
(

𝑢
(

𝑣 − 3
2

)

− 3𝑣
2 + 2

))

60(𝑢 − 1)2(𝑣 − 1)2
,

𝜁1 =
𝑡2
(

20 𝑢𝑣𝑡 − 15 𝑢𝑡2 − 15 𝑣𝑡2 + 12 𝑡3 − 30 𝑣𝑢 + 20 𝑢𝑡 + 20 𝑣𝑡 − 15 𝑡2
)

60 ( 𝑣 − 1) (𝑢 − 1)
.

(7)

To obtain the new block scheme, we evaluate 𝑞(𝑥𝑛 + 𝑡𝛥𝑥) at the collocation points 𝑥𝑛+𝑢, 𝑥𝑛+𝑣, and 𝑥𝑛+1, that is, we take 𝑡 = 𝑢, 𝑣, 1.
This results in the three formulas:

𝑠𝑛+𝑢 =
𝛥𝑥2𝑢2

(

−3 𝑢3 + 5 𝑢2𝑣 + 5 𝑢2 − 10 𝑣𝑢
)

𝛾𝑛+1
(60 𝑣 − 60) (𝑢 − 1)

+

(
(

−3 𝑢4 + 5 𝑢3𝑣 + 10 𝑢3 − 20 𝑢2𝑣 − 10 𝑢2 + 30 𝑣𝑢
)

𝑔𝑛
60 𝑣

−
𝑢
(

−12 𝑢3 + 15 𝑢2𝑣 + 30 𝑢2 − 40 𝑣𝑢 − 20 𝑢 + 30 𝑣
)

𝑔𝑛+𝑢
60 (𝑢 − 1)2 (𝑢 − 𝑠)

+
𝑢2

(

3 𝑢3 − 10 𝑢2 + 10 𝑢
)

𝑔𝑛+𝑣
60 (𝑣 − 1)2 (𝑢 − 𝑣) 𝑣

−
𝑢2

(

−3 𝑢4𝑣 + 5 𝑢3𝑣2 + 6 𝑢4 + 6 𝑢3𝑣 − 30 𝑣2𝑢2 − 24 𝑢3 + 30 𝑢2𝑣 + 30 𝑢𝑣2 + 20 𝑢2 − 40 𝑣𝑢
)

𝑔𝑛+1
60 (𝑣 − 1)2 (𝑢 − 1)2

)

𝛥𝑥 + 𝑠𝑛,

(8)

𝑠𝑛+𝑣 =
𝛥𝑥2𝑣2

(

5 𝑢𝑣2 − 3 𝑣3 − 10 𝑣𝑢 + 5 𝑣2
)

𝛾𝑛+1
(60 𝑣 − 60) (𝑢 − 1)

+

(
(

5 𝑢𝑣3 − 3 𝑣4 − 20 𝑢𝑣2 + 10 𝑣3 + 30 𝑣𝑢 − 10 𝑣2
)

𝑔𝑛
60 𝑢

−
𝑣2

(

3 𝑣3 − 10 𝑣2 + 10 𝑣
)

𝑔𝑛+𝑢
60 (𝑢 − 1)2 (𝑢 − 𝑣) 𝑢

+
𝑣
(

15 𝑢𝑣2 − 12 𝑣3 − 40 𝑣𝑢 + 30 𝑣2 + 30 𝑢 − 20 𝑣
)

𝑔𝑛+𝑣
60 (𝑣 − 1)2 (𝑢 − 𝑣)

−
𝑣2

(

5 𝑢2𝑣3 − 3 𝑢𝑣4 − 30 𝑣2𝑢2 + 6 𝑢𝑣3 + 6 𝑣4 + 30 𝑢2𝑣 + 30 𝑢𝑣2 − 24 𝑣3 − 40 𝑣𝑢 + 20 𝑣2
)

𝑔𝑛+1
60 (𝑣 − 1)2 (𝑢 − 1)2

)

𝛥𝑥 + 𝑠𝑛,

(9)

𝑠𝑛+1 =
𝛥𝑥2 (−10 𝑢𝑣 + 5 𝑢 + 5 𝑣 − 3) 𝛾𝑛+1

(60 𝑣 − 60) (𝑢 − 1)
+

(

(20 𝑢𝑣 − 5 𝑢 − 5 𝑣 + 2) 𝑔𝑛
60 𝑢𝑣

−
(5 𝑣 − 2) 𝑔𝑛+𝑢

60 (𝑢 − 1)2 (𝑢 − 𝑣) 𝑢
+

(5 𝑢 − 2) 𝑔𝑛+𝑣
60 (𝑣 − 1)2 (𝑢 − 𝑣) 𝑣

−

(

−40 𝑢2𝑣2 + 75 𝑢2𝑣 + 75 𝑢𝑣2 − 30 𝑢2 − 138 𝑢𝑣 − 30 𝑣2 + 56 𝑢 + 56 𝑣 − 24
)

𝑔𝑛+1
60 (𝑣 − 1)2 (𝑢 − 1)2

)

𝛥𝑥 + 𝑠𝑛,

(10)

where 𝑠𝑛+𝑖 ≃ 𝑠(𝑥𝑛+ 𝑖𝛥𝑥), are approximate solutions of the exact ones, 𝑔𝑛+𝑖 = 𝑔(𝑥𝑛+𝑖, 𝑠𝑛+𝑖), for 𝑖 = 𝑢, 𝑣, 1, and 𝛾𝑛+1 = 𝛾(𝑥𝑛+1, 𝑠𝑛+1). In the
approximations found above, the two unknown parameters 𝑢, 𝑣 are related to the two intra-step points 𝑥𝑢, 𝑥𝑣. In order to determine
the parameters’ values, we equate the first two terms of the LTE of 𝑠𝑛+1 to zero. In this way, the parameters’ values are optimized,
and at the end of the sub-interval [𝑥𝑛, 𝑥𝑛+1], the value 𝑠𝑛+1 is what is needed for advancing the integration on the next sub-interval.
Henceforth, the local truncation error of Eq. (10) is taken into consideration as follows:

𝐿𝑇𝐸(𝑠(𝑥𝑛+1);𝛥𝑥) =
((5 𝑣 − 2) 𝑢 − 2 𝑣 + 1)𝑠(6)(𝑥𝑛)𝛥𝑥6

7200

+

(

(35 𝑣 − 14) 𝑢2 +
(

35 𝑣2 + 56 𝑠 − 28
)

𝑢 − 14 𝑣2 − 28 𝑢 + 18
)

𝑠(7)(𝑥𝑛)𝛥𝑥7

302400
+ (𝛥𝑥8).

(11)

fter equating to zero the coefficients of 𝛥𝑥6 and 𝛥𝑥7 in (11) and solving the resulting system, the optimized version of the
arameters’ values are achieved as given below:

𝑢 = 3
7
−

√

2
7
, 𝑣 = 3

7
+

√

2
7
. (12)

Substituting these values in the LTE of the main formula, we obtain:

𝐿𝑇𝐸(𝑠(𝑥 );𝛥𝑥) = 𝛥𝑥8 1 𝑠(8)(𝑥 ) + (𝛥𝑥9) =
𝛥𝑥8𝑠(8)(𝑥𝑛) + (𝛥𝑥9). (13)
239
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With the above-computed parameters, the following one-step optimized -stable block method with two intra-step points is
proposed:

𝑠𝑛+𝑢 =𝑠𝑛 + 𝛥𝑥
(

2649 + 328
√

2
36015

𝑔𝑛 +
680 − 89

√

2
3360

𝑔𝑛+𝑢 +
189592 − 169889

√

2
1152480

𝑔𝑛+𝑣 +
−171 + 316

√

2
14406

𝑔𝑛+1

)

+ 𝛥𝑥2
(

411 − 928
√

2
288120

𝛾𝑛+1

)

,

𝑠𝑛+𝑣 =𝑠𝑛 + 𝛥𝑥
(

2649 − 328
√

2
36015

𝑔𝑛 +
−32714 − 45725

√

2

164640
(

−3 +
√

2
) 𝑔𝑛+𝑢 +

−91238 + 20237
√

2

164640
(

−3 +
√

2
) 𝑔𝑛+𝑣 +

−171 − 316
√

2
14406

𝑔𝑛+1

)

+ 𝛥𝑥2
(

356 − 1356
√

2

164640
(

−3 +
√

2
) 𝛾𝑛+1

)

,

𝑠𝑛+1 =𝑠𝑛 + 𝛥𝑥
(

196
2940

𝑔𝑛 +
9016 − 539

√

2
23520

𝑔𝑛+𝑢 +
9016 + 539

√

2
23520

𝑔𝑛+𝑣 +
98
588

𝑔𝑛+1

)

− 49
5880

𝛥𝑥2𝛾𝑛+1.

(14)

ven though the above-mentioned one-step optimized -stable block approach with two intra-step points was developed with a
ixed-stepsize (𝛥𝑥), it is easily adaptable to a variable-stepsize mode that has been done in one of the forthcoming sections.

. Theoretical analysis

Any numerical scheme’s qualitative properties are crucial and determine its efficiency. In this section, the stability, consistency,
nd by extension, the convergence of the proposed scheme are analyzed. These concepts often play a fundamental role in the
election of an efficient numerical algorithm for finding the solution of the IVPs of the type (1).

.1. Local truncation error and consistency

The one-step optimized block scheme (14) can be rewritten using the matrix notation as follows [23]

0𝑆𝑛+1 = 1𝑆𝑛 + 𝛥𝑥(𝐺𝑛+1 + 0𝐺𝑛 + 𝛥𝑥1�̄�𝑛+1), (15)

where 0, 1, 0, 1, and  stand for 3 × 3 matrices as given below.

0 =
⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

, 1 =
⎡

⎢

⎢

⎣

0 0 1
0 0 1
0 0 1

⎤

⎥

⎥

⎦

, 0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
2649 + 328

√

2
36015

0 0
2649 − 328

√

2
36015

0 0 196
2940

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
411 − 928

√

2
288120

0 0
356 − 1356

√

2

164640
(

−3 +
√

2
)

0 0 − 49
5880

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (16)

 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

680 − 89
√

2
3360

189592 − 169889
√

2
1152480

−171 + 316
√

2
14406

−32714 − 45725
√

2

164640
(

−3 +
√

2
)

−91238 + 20237
√

2

164640
(

−3 +
√

2
)

−171 − 316
√

2
14406

9016 − 539
√

2
23520

9016 + 539
√

2
23520

98
588

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (17)

nd
𝑆𝑛 = (𝑠𝑛−1+𝑢, 𝑠𝑛−1+𝑣, 𝑠𝑛)𝑇 ,

𝑆𝑛+1 = (𝑠𝑛+𝑢, 𝑠𝑛+𝑣, 𝑠𝑛+1)𝑇 ,

𝐺𝑛 = (𝑔𝑛−1+𝑢, 𝑔𝑛−1+𝑣, 𝑔𝑛)𝑇 ,

𝐺𝑛+1 = (𝑔𝑛+𝑢, 𝑔𝑛+𝑣, 𝑔𝑛+1)𝑇 ,

�̄�𝑛+1 = (𝛾𝑛+𝑢, 𝛾𝑛+𝑣, 𝛾𝑛+1)𝑇 .

(18)

Consider the associated linear operator 𝛶 for the proposed block method (14) as follows:

𝛶 [𝐽 (𝑥);𝛥𝑥] =
∑

[

�̄�𝑘𝐽 (𝑥𝑛 + 𝑘𝛥𝑥) − 𝛥𝑥�̄�𝑘𝐽 ′(𝑥𝑛 + 𝑘𝛥𝑥) − 𝛥𝑥2𝜁𝑘𝐽 ′′(𝑥𝑛 + 𝑘𝛥𝑥)
]

, (19)
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where �̄�𝑘, �̄�𝑘 and 𝜁 are column vectors of the matrices 0, 1 and 0, respectively. Given above, the symbol 𝐽 (𝑥) stands for any
rbitrary test function, which must be suitably differentiable on the integration interval. The suggested optimized -stable block

method (14) has at least order 𝑟 if after expanding the terms 𝐽 (𝑥𝑛 + 𝑘𝛥𝑥), 𝐽 ′(𝑥𝑛 + 𝑘𝛥𝑥) and 𝐽 ′′(𝑥𝑛 + 𝑘𝛥𝑥) in the Taylor expansion
round 𝑥𝑛, and collecting the coefficients of 𝛥𝑥, we obtain the equation as shown below:

𝛶 [𝐽 (𝑥);𝛥𝑥] = �̄�0𝐽 (𝑥𝑛) + �̄�1𝛥𝑥𝐽
′(𝑥𝑛) + �̄�2𝛥𝑥

2𝐽 ′′(𝑥𝑛) +⋯ + �̄�𝑟𝛥𝑥𝑟𝐽 (𝑟)(𝑥𝑛) +… , (20)

with �̄�0 = �̄�1 = ⋯ = �̄�𝑟 = 0 and �̄�𝑟+1 ≠ 0. The coefficients �̄�𝑗 are vectors and �̄�𝑟+1 is said to be the vector of error constants. For
the Eq. (14), we obtain �̄�0 = �̄�1 = ⋯ = �̄�5 = 0, whereas the error constant is obtained as follows:

�̄�6 =

(

11 + 92
√

2
21176820

,
11 − 92

√

2
21176820

, 0

)𝑇

. (21)

We note that although the internal stages have accuracies of (𝛥𝑥6) the main formula to advance the solution has accuracy of
(𝛥𝑥8), as given in (13). Hence, it has been proved from the above discussion that the main formula 𝑠𝑛+1 of the Eq. (14) with two

ntra-step points does possess a seventh order, while the formulas of the two intermediate stages are of fifth order of convergence.

.2. Zero stability and convergence

In the famous work of Rutishauser in [31], it was noted that the solution obtained from a numerical scheme characterized
y small local error and high order of accuracy may still be unstable when applied to the IVP (1), under a minimum step size.
odd [36] also noted this fact when he applied specific difference methods to second-order differential equations [13]. The concept
f zero-stability deals with the behavior of the solutions of the difference system in (15) when 𝛥𝑥→ 0. If 𝛥𝑥 → 0, then the method
n (14) gives the following system of equations

𝑠𝑛+𝑢 = 𝑠𝑛,

𝑠𝑛+𝑣 = 𝑠𝑛,

𝑠𝑛+1 = 𝑠𝑛.

(22)

sing the matrix formalism, this may be rewritten as 0𝑆𝑛+1−1𝑆𝑛 = 0, with 𝑆𝑛+1, 𝑆𝑛 and 1 as before, and 0 is the identity matrix
f the third-order. The proposed block method is said to be zero stable when the roots 𝜆𝑗 of the first characteristic polynomial 𝛺(𝜆)
iven by 𝛺(𝜆) = |0𝜆 − 1

| satisfy |𝜆𝑗 | ≤ 1, and for those roots with |𝜆𝑗 | = 1, the multiplicity does not exceed 1 (see Lambert [17]).
ince 𝛺(𝜆) = 𝜆2(𝜆− 1), the block method put forward in (15) is zero-stable. As discussed by Henrici in [14], the convergence of the
roposed block scheme given in (14) can be claimed since zero-stability+consistency = convergence.

.3. Stability analysis

Aside from the fact that the proposed numerical algorithm is zero stable, there is another concept of stability established by
ahlquist [8]. It has to do with linear stability, and it guarantees a certain value of 𝛥𝑥 > 0, whether the numerical scheme would
ield good results. We discuss the linear stability of the newly developed method considering the standard Dahlquist’s test equation
′ = 𝜎𝑤, 𝑅𝑒(𝜎) < 0 taken from [7]. After applying the numerical algorithm (14) to this equation, we obtain:

𝑤𝑛+1 = (𝑧)𝑤𝑛, 𝑧 = 𝜎𝛥𝑥, (23)

here 𝜎 is a complex parameter and (𝑧) is known as the stability matrix of the numerical method, which can be expressed as:

(𝑧) = (0 − 𝑧 − 𝑧21)−1(1 + 𝑧0). (24)

he stability matrix (𝑧) has eigenvalues
{

0, 0, 4 𝑧3 + 60 𝑧2 + 360 𝑧 + 840
𝑧4 − 16 𝑧3 + 120 𝑧2 − 480 𝑧 + 840

}

.

The eigenvalues of this matrix usually determine the behavior of the numerical solution, being the stability property of the
ethod which is characterized by the spectral radius 𝜌[(𝑧)]. Thus, the region of absolute stability is given as

𝑆 = {𝑧 ∈ C ∶ |𝜌[(𝑧)]| ≤ 1} . (25)

Fig. 1 draws the stability region, showing that the proposed method is − stable, since the entire left-half complex plane is
included in the stability domain. That is, 𝜌[(𝑧)] is power-bounded for every 𝑧 in the left half complex plane. In addition, the
proposed scheme is −stable [21], since it is −stable and

lim (𝜌[(𝑧)]) = 0.
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Fig. 1. Plot of the absolute stability region of the proposed method given in (14).

Fig. 2. Order stars for the proposed -stable optimal hybrid method given in (14). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

3.4. Relative measure of stability

The -stability property also implies that the sufficient conditions for -stability of a numerical integrator are that the stability
function 𝜌[(𝑧)] of the numerical algorithm must have no poles in the left half-plane and the magnitude of the stability function
|𝜌[(𝑧)]| must be bounded by 1, for 𝑧 on the imaginary axis [6]. If 𝜌[(𝑧)] is multiplied by exp(−𝑧), the sufficient conditions for
-stability above will still not change as the factor exp(−𝑧) will not add nor remove from the set of poles and its magnitude remains
1, where 𝑅𝑒(𝑧) = 0.

Consequently, the plot of |𝜌[(𝑧)] exp(−𝑧)| > 1 in Fig. 2 shows that our proposed scheme (14) is -stable. This plot is called
order stars by their inventors [37]. From Fig. 2, the dual, also called the order star, is the interior of the red region, while the
relative stability region, is the interior of the blue region.

4. Variable stepsize mode

Here, we formulate the one-step optimized -stable block approach with two intra-step points as a variable-step-size solver
employing an embedded-type procedure. This process involves the simultaneous execution of a combination of two processes, one
of order 𝑘1 and the other of order 𝑘2 (𝑘2 < 𝑘1). The procedure in (14) is treated here as the higher-order procedure with 𝑘1 = 7. We
need an estimate of the local error, for which, in order to get an economical implementation, the second formula will use values
242
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that have been previously computed. To get a reliable estimate of the local error we adopt a similar strategy as the one considered
by L. F. Shampine et al. [33].

Consider the approximation provided by the implicit trapezoidal rule [6], which has order 𝑘2 = 2, and denote it by 𝑠∗𝑛+1, that is

𝑠∗𝑛+1 = 𝑠𝑛 +
𝛥𝑥
2
(𝑔𝑛 + 𝑔𝑛+1).

he local error is given by

𝛶LE = 𝑠(𝑥𝑛 + 𝛥𝑥) − 𝑠∗𝑛+1,

here 𝑠(𝑥) denotes the exact solution of the problem given in (1). According to (13) the approximate solution with the method in
14) verifies 𝑠(𝑥𝑛+1) − 𝑠𝑛+1 = (𝛥𝑥𝑘1+1), and thus we have

𝐸𝑠𝑡 = 𝑠𝑛+1 − 𝑠∗𝑛+1 (26)

=
(

𝑠(𝑥𝑛 + 𝛥𝑥) − 𝑠∗𝑛+1
)

−
(

𝑠(𝑥𝑛 + 𝛥𝑥) − 𝑠𝑛+1
)

(27)

= 𝛶LE − (𝛥𝑥𝑘1+1). (28)

Since 𝛶LE dominates in (26), assuming that 𝛥𝑥 is small enough, we have that 𝐸𝑠𝑡 is a computable estimation of 𝛶LE.
If |𝛶LE| ≤ 𝑡𝑜𝑙, where tol stands for the tolerance predefined by the user, then we accept the obtained results and select the

next stepsize as 𝛥𝑥new = 2 × 𝛥𝑥old, to minimize the computational burden and continue the integration process with 𝛥𝑥var with the
assumption that 𝛥𝑥𝑚𝑖𝑛 ≤ 𝛥𝑥var ≤ 𝛥𝑥𝑚𝑎𝑥. However, if |𝛶LE| > 𝑡𝑜𝑙, then we reject the achieved results by reducing it and repeat the
calculations with the new step as follows:

𝛥𝑥new = 𝜂𝛥𝑥old

(

𝑡𝑜𝑙
‖𝐸𝑠𝑡‖

)
1

𝑘2+1 . (29)

Here, the order of the lower order technique is 𝑘2 = 2, while the value 0 < 𝜂(= 0.95) < 1 denotes a safety factor whose purpose is to
circumvent the steps that were unsuccessful. In the numerical examples, we have taken into account not only a very modest initial
step size but also a strategy for modifying the step size that, if necessary, will cause the algorithm to change the step size. This was
done so that we could demonstrate the behavior of the program under a variety of conditions.

5. Numerical simulations

In this section, we attempt to use the proposed optimal -stable block method (OLSBM) given in (14) on the basis of accuracy via
error distributions (absolute maximum global error = max1≤𝑛≤𝑁 ‖𝑠(𝑥𝑛)−𝑠𝑛‖, and root mean square error =

√

1
𝑁

∑

1≤𝑛≤𝑁 (𝑠(𝑥𝑛) − 𝑠𝑛)2,

recision factor (scd = − log10
[

max1≤𝑛≤𝑁 ‖𝑠(𝑥𝑛) − 𝑠𝑛‖
]

), and time-efficiency (CPU time measured in seconds)). In addition, for

roblem 1 we have shown the performance of OLSBM by computing the percent difference in the error distributions including
he percent difference in the number of steps (NS). For the calculation of the percent difference, the formula |𝐴 − 𝐵|

𝐴+𝐵
2

∗ 100, where

𝐴 shows the observation (say, MaxErr) in one of the selected methods and 𝐵 (say, MaxErr) is selected from the proposed method.
Both fixed and variable stepsize approaches have been employed to solve the differential systems. Several numerical experiments

re chosen in the form of stiff differential models and subsequently solved with the proposed method while choosing the following
ethods for comparison:

• TDBHM: An -stable seventh-order convergent hybrid block method based on third-order derivative proposed in [1].
• OSBIM: A seventh-order absolutely stable block method proposed recently in [12].
• EBM: An -stable eighth-order block method proposed in [28].
• ASHBM: An efficient -stable optimized hybrid block method with sixth-order of convergence proposed in [15].
• LobIIIB: Fully-implicit Lobatto type sixth-order method appeared in [6]
• RadIIA: Fully-implicit RK type fifth-order method appeared in [6]

t may also be noted that the pseudocodes for both fixed and variable step-size versions of the proposed optimal block method are
iven in Appendices A and B, respectively. The FindRoot command, which comes with Mathematica, has been used to implement the
ewton–Raphson method. It is crucial to note that Mathematica 12.1, which is installed on a personal computer running Windows
S and equipped with an Intel(R) Core(TM) i7-1065G7 CPU @ 1.30 GHz and 1.50 GHz and 24.0 GB of installed RAM, is used to
erform all of the numerical computations.

roblem 1. Consider the following nonlinear stiff model for the kinetic behavior of biosorption [22,26]:

𝜎𝑠′(𝑥) = 𝑠(𝑥) − 𝑠(𝑥)3, 𝑠(0) = 𝜎, 0 ≤ 𝑥 ≤ 1∕2, (30)

with exact solution 𝑠(𝑥) = 1
√

, where 𝜎 = 10−2.
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Table 1
Error distributions and precision factor (scd) for Problem 1 with a number of steps = 102.

Method MaxErr RMSE scd

OLSBM 3.5781 × 10−8 3.9675 × 10−9 7.44
TDBHM 1.0696 × 10−5 1.4589 × 10−6 4.97
OSBIM 1.9416 × 10−3 3.8996 × 10−4 2.71
EBM 8.1242 × 10−4 1.0152 × 10−4 3.09
ASHBM 1.0804 × 10−7 1.3210 × 10−8 6.96
LobIIIB 2.8076 × 10−7 4.8473 × 10−8 6.55
RadIIA 5.7372 × 10−6 8.9133 × 10−7 5.24

Table 2
Error distributions and precision factor (scd) for Problem 1 with a number of steps = 103.

Method MaxErr RMSE scd

OLSBM 3.4633 × 10−15 3.7132 × 10−16 14.46
TDBHM 3.3394 × 10−13 3.6439 × 10−14 12.47
OSBIM 8.1279 × 10−11 7.5344 × 10−12 10.09
EBM 3.9248 × 10−12 3.5881 × 10−13 11.40
ASHBM 9.6686 × 10−14 1.1989 × 10−14 13.01
LobIIIB 2.8675 × 10−13 4.8183 × 10−14 12.54
RadIIA 5.9543 × 10−11 8.9345 × 10−12 10.23

Table 3
Error distributions and precision factor (scd) for Problem 1 with a number of steps = 104.

Method MaxErr RMSE scd

OLSBM 3.4885 × 10−22 3.7408 × 10−23 21.45
TDBHM 3.3932 × 10−20 3.6607 × 10−21 19.46
OSBIM 8.9120 × 10−19 7.4605 × 10−20 18.05
EBM 3.5047 × 10−20 3.7006 × 10−21 19.45
ASHBM 9.6671 × 10−20 1.1985 × 10−20 19.01
LobIIIB 2.8676 × 10−19 4.8200 × 10−20 18.54
RadIIA 5.9887 × 10−16 8.9520 × 10−17 15.22

Table 4
Numerical results for Problem 1 with variable stepsize approach taking the tolerance = 10−6 and
𝛥𝑥𝑚𝑖𝑛𝑖 = 10−3 over the interval [0, 1

2
].

Method MaxErr RMSE NS CPU

OLSBM 3.620 × 10−11 3.742 × 10−12 177 2.266 × 10−1

TDBHM 6.566 × 10−11 5.753 × 10−12 182 1.487 × 10−1

OSBIM 4.956 × 10−9 5.226 × 10−10 204 7.546 × 10−2

EBM 4.573 × 10−9 3.674 × 10−10 200 1.045 × 10−1

ASHBM 5.503 × 10−11 5.721 × 10−12 177 2.274 × 10−1

LobIIIB 7.132 × 10−11 6.507 × 10−12 239 10.150
RadIIA 2.584 × 10−10 6.865 × 10−11 239 9.588

Table 5
Percent difference (PD) in error distributions and in number of steps for Problem 1 with variable
stepsize approach taking the tolerance = 10−6 and 𝛥𝑥mini = 10−3 over the interval [0, 1

2
].

Method MaxErrPD RMSEPD NSPD

TDBHM 57.847 42.359 2.8
OSBIM 197.100 197.156 14
EBM 196.858 195.967 12
ASHBM 41.294 41.828 0
LobIIIB 65.3293 139.052 30
RadIIA 150.847 61.8993 30

Numerical results for Problem 1 displayed in Tables 1–3 with the fixed stepsize approach show the error distributions and the
recision factor (scd) with the number of steps = 102, 103 and 104, respectively. The proposed OLSBM performs better than the other
our methods regarding all the error distributions and precision factors. The variable stepsize mode has been applied for Problem 1
n the Table 4 while taking the tolerance of 10−6 and 𝛥𝑥𝑚𝑖𝑛𝑖 = 10−3 over the interval [0, 12 ]. These results show that the proposed
pproach (OLSBM) yields the smallest amount of error distribution while taking considerably fewer steps (NS) with reasonably
cceptable CPU time measured in seconds. In this specific problem, a fixed step size is used in Tables 1–3, considering powers on
ase 10. This is done so to see the decreasing pattern in the absolute errors. It has been noted that increasing the step size by one
244
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Fig. 3. Efficiency curves for Problem 1 with methods under consideration while the tolerance for the maximum global error is taken to 10−𝑖, where 𝑖 = 5, 7, 9.

Table 6
Error distributions and precision factor (scd) for Problem 2 with a number of steps = 26.

Method RMS Mean scd

OLSBM 1.3958 × 10−3 1.3958 × 10−3 2.85
TDBHM 1.8614 × 10−2 1.8614 × 10−2 1.72
OSBIM 1.8343 × 100 1.8343 × 100 −0.26
EBM 7.8813 × 10−1 7.8784 × 10−1 0.09
ASHBM 1.7850 × 10−3 1.7850 × 10−3 2.74
LobIIIB 1.1200 × 10−2 1.1200 × 10−2 1.95
RadIIA 1.0465 × 10−1 1.0464 × 10−1 0.01

Table 7
Error distributions and precision factor (scd) for Problem 2 with number of steps = 28.

Method RMS Mean scd

OLSBM 9.5646 × 10−8 9.5643 × 10−8 7.01
TDBHM 1.2896 × 10−6 1.2896 × 10−6 5.88
OSBIM 3.5813 × 10−4 3.5813 × 10−4 3.44
EBM 1.5825 × 10−5 1.5825 × 10−5 4.80
ASHBM 5.6618 × 10−7 5.6616 × 10−7 6.24
LobIIIB 3.4072 × 10−6 3.4071 × 10−6 5.46
RadIIA 1.2276 × 10−4 1.2276 × 10−4 3.91

order of magnitude with base 10 results in a decrease of the greatest absolute error by a factor of seven. This provides the empirical
seventh order of convergence.

The first row of Table 5 suggests that the absolute maximum global error, norm, root mean square error, and number of steps are
differed by about 58%, 44%, 42%, and 3%, respectively for the -stable seventh-order convergent hybrid block method (TDBHM)
when compared with OLSBM. Similarly, the better performance of OLSBM can be interpreted for the remaining rows of Table 5.
Furthermore, from the efficiency curves shown in Fig. 3, the proposed approach performs better than the other four methods
concerning machine time (in seconds).

Problem 2. Consider the following stiff system from [38] whose first component is slowly varying in the specified interval while
the second component decays rapidly in the transient phase:

𝑠′1(𝑥) = −10−5𝑠1(𝑥) + 102𝑠2(𝑥),

𝑠′2(𝑥) = −102𝑠1(𝑥) − 10−5𝑠2(𝑥),

𝑠1(0) = 0, 𝑠2(0) = 1, 0 ≤ 𝑥 ≤ 1,

(31)

with exact solution 𝑠1(𝑥) = exp(−10−5𝑥) sin(100𝑥), 𝑠2(𝑥) = exp(−10−5𝑥) cos(100𝑥).

Tables 6–8 show the results of the error distributions and precision factor (scd) for Problem 2 with number of steps 26, 28 and
210 respectively. The OLSBM performs better than the other four methods in terms of the infinity norm, root mean square (RMS),
mean errors, and precision factor (scd). Moreover, from the efficiency curves shown in Fig. 4, the OLSBM has an efficiency curve
that distinguished it as the most efficient method from all the other four methods taken for comparison.
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Table 8
Error distributions and precision factor (scd) for Problem 2 with number of steps = 210.

Method RMS Mean scd

OLSBM 5.8881 × 10−12 5.8880 × 10−12 11.22
TDBHM 7.8430 × 10−11 7.8427 × 10−11 10.10
OSBIM 6.8581 × 10−9 6.8579 × 10−9 8.16
EBM 3.2548 × 10−10 3.2546 × 10−10 9.48
ASHBM 1.4061 × 10−10 1.4061 × 10−10 9.84
LobIIIA 8.4382 × 10−10 8.4380 × 10−10 9.07
RadIIA 1.2101 × 10−7 1.2100 × 10−7 6.92

Fig. 4. Efficiency curves for Problem 2 with methods under consideration while the tolerance for the maximum global error is set to 10−𝑖, where 𝑖 = 3, 5, 7.

Table 9
Error distributions at the final grid point in the state variable 𝑠1(𝑥) over the integration interval
[0, 0.55139] for Problem 3 with number of steps = 2𝑖, 𝑖 = 2, 4, 8.

Method 22 24 28

OLSBM 4.559 × 10−9 3.975 × 10−13 1.776 × 10−15

TDBHM 2.691 × 10−7 4.710 × 10−11 1.776 × 10−15

OSBIM 3.435 × 10−1 7.200 × 10−2 4.319 × 10−3

EBM 1.514 × 10−1 1.513 × 10−1 8.660 × 10−3

ASHBM 2.890 × 10−9 8.893 × 10−13 1.776 × 10−15

LobIIIB 3.783 × 10−7 1.022 × 10−10 1.332 × 10−15

RadIIA 7.045 × 10−7 9.22 × 10−10 2.220 × 10−15

Table 10
Error distributions at the final grid point in the state variable 𝑠2(𝑥) over the integration interval
[0, 0.55139] for Problem 3 with number of steps = 2𝑖, 𝑖 = 2, 4, 8.

Method 22 24 28

OLSBM 6.762 × 10−8 5.801 × 10−12 2.665 × 10−15

TDBHM 3.190 × 10−7 7.097 × 10−11 2.665 × 10−15

OSBIM 6.247 × 10−1 9.311 × 10−2 5.173 × 10−3

EBM 2.151 × 10−1 2.151 × 10−1 1.042 × 10−2

ASHBM 7.608 × 10−8 2.198 × 10−11 2.665 × 10−15

LobIIIB 5.153 × 10−6 1.391 × 10−9 3.109 × 10−15

RadIIA 1.036 × 10−5 1.330 × 10−8 1.621 × 10−14

Problem 3. Consider the following Van Der Pol System taken from [15]:

𝑠′1(𝑥) = 𝑠2(𝑥), 𝑠1(0) = 2,

𝑠′2(𝑥) =
(1 − 𝑠1(𝑥)2)𝑠2(𝑥) − 𝑠1(𝑥)

𝛽
, 𝑠2(0) = −2

3
+ 10

81
𝛽 − 292

2187
𝛽2 − 1814

19683
𝛽3,

(32)

where 𝛽 = 10−1. The reference solution at the final grid point over the integration interval [0, 0.55139] is as follows

𝑠1(𝑥𝑁 ) = 1.56337394423009, 𝑠2(𝑥𝑁 ) = −1.00002083185427.

The Tables 9 and 10 represent the absolute errors in both state variables 𝑠1(𝑥) and 𝑠2(𝑥) respectively, obtained at the final grid
point over the integration interval [0, 0.55139] for Problem 3 with number of steps = 2𝑖, 𝑖 = 2, 4, 8. It is observed that the proposed
optimized method (OLSBM) performs better than rest of the methods with ASHBM being the most comparable method when the
number of steps are 28. The OLSBM has an efficiency curve in Fig. 5 that distinguished it as the most efficient method from all the
other four methods taken for comparison.
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Fig. 5. Efficiency curves of the state variable 𝑠1(𝑥) for Problem 3 with methods under consideration while the number of steps is 2𝑖, where 𝑖 = 2, 4, 8.

Table 11
Error distributions and precision factor (scd) for Problem 4 with number of steps = 26.
Method RMS Mean scd

OLSBM 2.2700 × 10−18 1.8534 × 10−18 17.73
TDBHM 2.9312 × 10−17 2.3933 × 10−17 16.62
OSBIM 8.3580 × 10−16 6.8251 × 10−16 15.17
EBM 4.1999 × 10−17 3.4298 × 10−17 16.47
ASHBM 1.7017 × 10−16 1.3894 × 10−16 15.86
LobIIIB 1.0210 × 10−15 8.3364 × 10−16 15.08
RadIIA 4.5496 × 10−13 3.7148 × 10−13 12.43

Table 12
Error distributions and precision factor (scd) for Problem 4 with number of steps = 28.
Method RMS Mean scd

OLSBM 1.3896 × 10−22 1.1346 × 10−22 21.95
TDBHM 1.8380 × 10−21 1.5007 × 10−21 20.82
OSBIM 1.3043 × 10−20 1.0653 × 10−20 19.97
EBM 6.2302 × 10−22 5.0884 × 10−22 21.29
ASHBM 4.1543 × 10−20 3.3920 × 10−20 19.47
LobIIIB 2.4926 × 10−19 2.0352 × 10−19 18.69
RadIIA 4.4607 × 10−16 3.6421 × 10−16 15.44

Table 13
Error distributions and precision factor (scd) for Problem 4 with number of steps = 210.
Method RMS Mean scd

OLSBM 8.4875 × 10−27 6.9301 × 10−27 26.16
TDBHM 1.1294 × 10−25 9.2217 × 10−26 25.04
OSBIM 2.0018 × 10−25 1.6350 × 10−25 24.79
EBM 9.5834 × 10−27 7.8275 × 10−27 26.11
ASHBM 1.0142 × 10−23 8.2811 × 10−24 23.08
LobIIIB 6.0853 × 10−23 4.9687 × 10−23 22.30
RadIIA 4.3605 × 10−19 3.5603 × 10−19 18.45

Problem 4. Consider the following linear stiff system [32] :

𝑠′1(𝑥) = −21𝑠1(𝑥) + 19𝑠2(𝑥) − 20𝑠3(𝑥),

𝑠′2(𝑥) = 19𝑠1(𝑥) − 21𝑠2(𝑥) + 20𝑠3(𝑥),

𝑠′3(𝑥) = 40𝑠1(𝑥) − 40𝑠2(𝑥) − 40𝑠3(𝑥),

𝑠1(0) = 1, 𝑠2(0) = 0, 𝑠3(0) = −1, 0 ≤ 𝑥 ≤ 1,

(33)

with exact solution 𝑠1(𝑥) = 1
2 (exp(−2𝑥) + exp(−40𝑥)(cos(40𝑥) + sin(40𝑥))), 𝑠2(𝑥) = 1

2 (exp(−2𝑥) − exp(−40𝑥)(cos(40𝑥) + sin(40𝑥))),
𝑠3(𝑥) = exp(−40𝑥)(cos(40𝑥) + sin(40𝑥)).

The numerical results in Tables 11–13 show that error distributions and precision factor (scd) for Problem 4 with number of
steps 26, 28 and 210 respectively. The OLSBM performs better than the other four methods in terms of the infinity norm, root mean
square (RMS), mean errors, and precision factor (scd). The OLSBM has an efficiency curve in Fig. 6 that distinguished it as the most
efficient method from all the other four methods taken for comparison.
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Fig. 6. Efficiency curves for Problem 4 with methods under consideration while the number of steps is 10𝑖, where 𝑖 = 6, 8, 10.

Table 14
Error distributions and precision factor (scd) for Problem 5 with number of steps = 26.
Method RMS Mean scd

OLSBM 9.4747 × 10−17 8.1112 × 10−17 15.79
TDBHM 1.4350 × 10−15 1.2207 × 10−15 14.66
OSBIM 5.3503 × 10−14 4.7889 × 10−14 13.10
EBM 4.9310 × 10−16 4.5973 × 10−16 15.17
ASHBM 1.0086 × 10−14 9.1218 × 10−15 13.80
LobIIIB 3.0921 × 10−13 3.0808 × 10−13 12.47
RadIIA 2.1929 × 10−11 1.9150 × 10−11 10.44

Table 15
Error distributions and precision factor (scd) for Problem 5 with number of steps = 28.
Method RMS Mean scd

OLSBM 5.8056 × 10−21 4.9822 × 10−21 20.00
TDBHM 8.5703 × 10−20 7.3083 × 10−20 18.89
OSBIM 7.9472 × 10−19 7.1643 × 10−19 17.93
EBM 7.9655 × 10−21 7.5230 × 10−21 19.98
ASHBM 2.4628 × 10−18 2.2273 × 10−18 17.42
LobIIIB 7.5486 × 10−17 7.5209 × 10−17 16.08
RadIIA 2.1526 × 10−14 1.8845 × 10−14 13.45

Problem 5. A nonlinear two-body system [11] is considered below:

𝑠′′1 (𝑥) =
−𝑠1(𝑥)
𝑟3

, 𝑠1(0) = 1, 𝑠′1(0) = 0,

𝑠′′2 (𝑥) =
−𝑠2(𝑥)
𝑟3

, 𝑠2(0) = 0, 𝑠′2(0) = 1,

𝑟 =
√

𝑠1(𝑥)2 + 𝑠2(𝑥)2 , 0 ≤ 𝑥 ≤ 2,

(34)

with closed form solution 𝑠1(𝑥) = cos(𝑥), 𝑠2(𝑥) = sin(𝑥),

The numerical results in Tables 14–16 show the error distributions and precision factor (scd) for the four-dimensional nonlinear
two-body system given in Problem 5 with number of steps 26, 28 and 210 respectively. The OLSBM performs better than the other four
methods in terms of the infinity norm, root mean square (RMS), mean errors, and precision factor (scd). It may be noted that the
scd for the eighth-order method (EBM) gets a little higher than the proposed approach when 𝑛 = 210. The OLSBM has an efficiency
curve that distinguished it as the most efficient method from all the other four methods taken for comparison (see Fig. 7).

Problem 6. Finally, consider the periodic orbital system taken from [27,35]:

𝑠′′1 (𝑥) = −𝑠1(𝑥) +
cos(𝑥)
1000

, 𝑠1(0) = 1, 𝑠′1(0) = 0,

𝑠′′(𝑥) = −𝑠 (𝑥) +
sin(𝑥)

, 𝑠 (0) = 1, 𝑠′ (0) = 9995 ,
(35)
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Fig. 7. Efficiency curves for Problem 5 with methods under consideration while the number of steps is 10𝑖, where 𝑖 = 6, 8, 10.

Table 16
Error distributions and precision factor (scd) for Problem 5 with number of steps = 210.
Method RMS Mean scd

OLSBM 3.5470 × 10−25 3.0457 × 10−25 24.22
TDBHM 5.2019 × 10−24 4.4387 × 10−24 23.10
OSBIM 1.2032 × 10−23 1.0864 × 10−23 22.75
EBM 1.2188 × 10−25 1.1421 × 10−25 24.80
ASHBM 6.0127 × 10−22 5.4378 × 10−22 21.03
LobIIIB 1.8429 × 10−20 1.8362 × 10−20 19.69
RadIIA 2.1049 × 10−17 1.8438 × 10−17 16.46

Table 17
Error distributions and precision factor (scd) for Problem 6 with number of steps = 26.
Method RMS Mean scd

OLSBM 1.3984 × 10−11 1.3928 × 10−11 10.81
TDBHM 1.8395 × 10−10 1.8320 × 10−10 9.69
OSBIM 2.6458 × 10−8 2.6305 × 10−8 7.53
EBM 1.2120 × 10−9 1.2073 × 10−9 8.88
ASHBM 2.0918 × 10−10 2.0834 × 10−10 9.64
LobIIIB 1.2579 × 10−9 1.2528 × 10−9 8.86
RadIIA 1.1225 × 10−7 1.1180 × 10−7 6.91

Table 18
Error distributions and precision factor (scd) for Problem 6 with number of steps = 28.
Method RMS Mean scd

OLSBM 8.5571 × 10−16 8.5229 × 10−16 15.03
TDBHM 1.1389 × 10−14 1.1343 × 10−14 13.90
OSBIM 4.1730 × 10−13 4.1571 × 10−13 12.34
EBM 1.9335 × 10−14 1.9259 × 10−14 13.67
ASHBM 5.1138 × 10−14 5.0933 × 10−14 13.25
LobIIIB 3.0737 × 10−13 3.0614 × 10−13 12.48
RadIIA 1.1001 × 10−10 1.0957 × 10−10 9.92

where the exact solution over the interval [0, 10] is given as follows:

𝑠1(𝑥) = cos(𝑥) +
𝑥 sin(𝑥)
2000

,

𝑠2(𝑥) = sin(𝑥) −
𝑥 cos(𝑥)
2000

.
(36)

The numerical results in Tables 17–19 show the error distributions and precision factor (scd) for the four-dimensional periodic
orbit system given in Problem 6 with number of steps 26, 28 and 210 respectively. The OLSBM performs better than the other four
methods in terms of the infinity norm, root mean square (RMS), mean errors, and precision factor (scd). It may be noted that all
types of error and the scd for the proposed approach are more competitive than the rest of the methods used. The OLSBM has an
efficiency curve in Fig. 8 that distinguished it as the most efficient method from all the other four methods taken for comparison.
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Table 19
Error distributions and precision factor (scd) for Problem 6 with number of steps = 210.
Method RMS Mean scd

OLSBM 5.2254 × 10−20 5.2045 × 10−20 19.24
TDBHM 6.9579 × 10−19 6.9301 × 10−19 18.12
OSBIM 6.3508 × 10−18 6.3281 × 10−18 17.16
EBM 2.9453 × 10−19 2.9335 × 10−19 18.49
ASHBM 1.2486 × 10−17 1.2436 × 10−17 16.86
LobIIIB 7.5049 × 10−17 7.4748 × 10−17 16.09
RadIIA 1.0750 × 10−13 1.0707 × 10−13 12.93

Fig. 8. Efficiency curves for Problem 6 with methods under consideration while the number of steps is 10𝑖, where 𝑖 = 6, 8, 10.

6. Conclusion with future directions

A new efficient and optimized -stable one-step hybrid block method is developed in this paper. The optimization comes after
imposing the vanishing of the first two leading terms of the local truncation error of the main formula. The proposed method,
derived via interpolation and collocation concepts, is found to have a seventh-order of convergence for the main formula, zero-
stability, absolute stability, consistency, and -stability features. Moreover, when applied to some highly stiff systems, the proposed
method performs much better than several robust algorithms devised for the same purpose. Furthermore, the technique is better
for accuracy and time-efficient as shown by the various efficiency curves. The adaptive step size approach of the proposed method
will be investigated in the future. The future work will also devise strategies to modify the technique for solving partial differential
equations.
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Appendix A

Algorithm 1: Pseudo-code for the one-step optimized -stable block method with two intra-step points given in (14) under
ixed stepsize approach.
Data: 𝑥0, 𝑋 (integration interval), 𝑁 (number of steps), 𝑠00,
(initial values), 𝑔, 𝑑𝑔𝑑𝑥 .
Result: sol (discrete approximate solution of the IVP (1))

1 Let 𝑛 = 0, 𝛥𝑥 = 𝑋−𝑥0
𝑁 .

2 Let 𝑥𝑛 = 𝑥0, 𝑠𝑛 = 𝑠00.
3 Let 𝐬𝐨𝐥 = {(𝑥𝑛, 𝑠𝑛)}.
4 Solve (14) to obtain 𝑠𝑛+𝑘 where 𝑘 = 𝑢, 𝑣, 1.
5 Let 𝐬𝐨𝐥 = 𝐬𝐨𝐥 ∪{(𝑥𝑛+𝑘, 𝑠𝑛+𝑘)}𝑘=𝑢,𝑣,1.
6 Let 𝑥𝑛 = 𝑥𝑛 + 𝛥𝑥, 𝑠𝑛 = 𝑠𝑛+1.
7 Let 𝑛 = 𝑛 + 1,
8 if 𝑛 = 𝑁 then
9 go to 13
10 else
11 go to 4;
12 end
13 End

Appendix B

Algorithm 2: Pseudo-code for the one-step optimized -stable block method with two intra-step points given in (14) under
ariable stepsize approach.
Data: Initial stepsize: 𝛥𝑥 = 𝛥𝑥0 = 𝛥𝑥old, 𝑥𝑚 ∶= 𝑥0, 𝑠𝑚 ∶= 𝑠0; Integration interval: [𝑥0, 𝑋𝑁 ];
Total number of steps in the main formula: 𝑁 − 1; Initial value: 𝑥0, 𝑠0; Function 𝑠: 𝑔(𝑥, 𝑠(𝑥)); Given tolerance: tol;
Final point of the integration interval: 𝑋𝑁
Result: Approximations of the problem in (1) at selected points.

1 Introduce 𝑔(𝑥, 𝑢(𝑥)) and the initial values 𝑥0, 𝑠0;
2 if 𝑥𝑚 ≥ 𝑋𝑁 then
3 end
4 if 𝑥𝑚 + 𝛥𝑥 > 𝑋𝑁 , 𝛥𝑥 = 𝑋𝑁 − 𝑥𝑚 then
5 end
6 while 𝑥𝑚 < 𝑋𝑁 , then solve system of equations in (14) to get the values 𝑠𝑛+1 do
7 compute 𝑠∗𝑛+1 to get 𝛶LE.
8 end
9 if |𝛶LE| ≤ tol then accept the results and substitute 𝛥𝑥new = 2 × 𝛥𝑥old then
10 end
11 Set 𝑥𝑛 = 𝑥𝑛 + 𝛥𝑥, 𝑛 = 𝑛 + 1 and use the formula in (29) to determine the new stepsize.
12 if |𝛶LE| > tol, then reject the results and repeat the calculations using (29) and go to step (6) then
13 end
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