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Abstract. In this paper, we develop a one-step hybrid block method for solving

boundary value problems, which is applied to the classical one-dimensional Bratu’s

and Troesch’s problems. The convergence analysis of the new technique is dis-
cussed, and some improving strategies are considered to get better performance

of the method. The proposed approach produces discrete approximations at the grid
points, obtained after solving an algebraic system of equations. The solution of this

system is obtained through a homotopy-type strategy used to provide the starting

points needed by Newton’s method. Some numerical experiments are presented to
show the performance and effectiveness of the proposed approach in comparison

with other methods that appeared in the literature.
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1. Introduction

This paper aims at obtaining numerical solutions for second-order boundary value

problems (BVPs) where the differential equation is of the special form

y′′(x) = f(x, y(x)), x ∈ [a, b], (1.1)
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subject to Dirichlet boundary conditions given by

y(a) = ya, y(b) = bb, (1.2)

although, instead of the above ones, mixed boundary conditions of the form

g1(y(a), y
′(a)) = va, g2(y(b), y

′(b)) = vb (1.3)

might be considered.

One of those problems is the well-known Bratu’s problem, which is given by

y′′(x) + λey(x) = 0, y(0) = y(1) = 0, x ∈ [0, 1]. (1.4)

According to Jacobsen and Schmitt [13], and Boyd [2], the theoretical solution for this

problem is given by

y(x) = −2 log

[

cosh
((

x− 1
2

)

θ
2

)

cosh
(

θ
4

)

]

, (1.5)

where θ is the solution of the algebraic equation

θ =
√
2λ cosh

(

θ

4

)

.

In addition, we will also consider the Troesch’s problem, given by

y′′(x) = λ sinh(λ y(x)), y(0) = y(1) = 0, x ∈ [0, 1]. (1.6)

The close form of the solution for the problem in (1.6) is presented in Khuri [18] as

follows

y(x) =
2

λ
sinh−1

[

y′(0)

2
sc

(

λx|1− 1

4

(

y′(0)
)2

)

]

, (1.7)

where y′(0) = 2(1 − m)1/2 and the constant m satisfies the following transcendental

equation

sinh
(

λ
2

)

(1− m)1/2
= sc(λ|m), (1.8)

where sc(λ|m) stands for one of the elliptic Jacobi functions (see [9]).

Problems (1.5) and (1.6) arise in engineering and science. For example, Bratu’s

problems of the form (1.4) emerge in the thermal reaction process in flammable non-

deformable material, like the strong fuel ignition (see [13, 16]). It additionally shows

up in the electro-spinning process for the generation of ultra-fine polymer fibers (see

[37]), the Chandrasekhar model of the extension of the universe, chemical reactor

theory, and nanotechnology (see [26] and the references therein for more details).

Troesch’s problem in (1.6) is a two-point nonlinear BVP that emerges in the control of

a plasma segment by radiation weight and in the theory of gas porous electrodes. This

problem was presented and defined for the first time by Troesch in [35].
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It is imperative to note that most of the differential equations arising from the mod-

elling of physical phenomena do not have known analytical solutions, or in the case of

having them, it can be challenging to tackle. Thus, the need for the derivation of nu-

merical approaches to get approximate solutions becomes an important task. There are

mainly three different types of approximation techniques for solving boundary value

problems of ODEs: the shooting-type methods, finite-difference methods, and the class

of methods based on approximating the solution by a linear combination of trial func-

tions (of which collocation methods, Galerkin method, variational iteration method,

and the Rayleigh-Ritz method are the most typical examples). The shooting method

transforms the boundary-value ODE into a system of first-order ODEs, which must be

solved by some initial-value solver. The finite-difference approach constructs a finite

difference approximation of the exact ODE at selected points on a discrete grid, includ-

ing the boundary conditions. In this way a system of coupled finite difference equations

results, which must be solved to get the approximate solutions at the grid points.

Prominent researchers like Buckmire [3] applied the finite difference method to

solve the problem in (1.5), Khuri [19] implemented a variational iteration method to

give approximate solutions to (1.5), Hassan and Erturk used differential transformation

to solve the problem in (1.5). Various numerical methods have been applied by differ-

ent scholars to solve Troesch’s problem. Among the various techniques, we can mention

the simple shooting method in Chang [5], the discontinuous Galerkin finite-element

technique in [27], or the stochastic numerical treatment proposed by Temimi [33].

Recently, Jator and Manathunga [15] implemented a block Nyström-type integrator of

order seven for solving (1.5), Kafri et al. [17] applied embedding Green’s functions

into fixed-point iteration technique for the solution of Troesch’s problem. There are

a lot of works for solving (1.5) or (1.6) separately. In the present manuscript, we de-

velop a one-step hybrid block method for solving BVPs, which is applied to the classical

one-dimensional Bratu’s and Troesch’s problems.

This manuscript is organized as follows. In Section 2, we develop a one-step hybrid

block Falkner method for solving two-point boundary value problems. Some improve-

ment strategies are given in Section 3 when the differential equation is of the type in

(1.1), and implementation details of the proposed method are explained in Section 4.

In Section 5, we present some numerical experiments to demonstrate the efficiency and

reliability of the proposed strategy. Finally, some conclusions and future research work

are given in Section 6.

2. Development of the one-step hybrid block method

In this section, we will develop the block method for solving problems of the general

form

y′′(x) = f(x, y(x), y′(x)), x ∈ [a, b], (2.1)

subject to the boundary conditions in (1.2), and later we will present some strategies

in order to improve its performance for solving special problems of the type in (1.1).
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We are interested in obtaining approximations of the true solution y(x) of (2.1)-

(1.2) at the grid points a = x0 < · · · < xN = b of the integration interval [a, b], taking

a constant step-size h = xj+1 − xj , j = 0, . . . , N − 1. To derive the block method,

we consider that the true solution can be approximated on the interval [xn, xn+1] by

a polynomial p(x), that is,

y(x) ≃ p(x) =

8
∑

n=0

anx
n, (2.2)

from which, we get

y′(x) ≃ p′(x) =

8
∑

n=1

annx
n−1, (2.3)

y′′(x) ≃ p′′(x) =

8
∑

n=2

ann(n− 1)xn−2, (2.4)

y′′′(x) ≃ p′′′(x) =
8

∑

n=3

ann(n− 1)(n − 2)xn−3, (2.5)

where an ∈ R are real unknown coefficients that will be determined imposing colloca-

tion conditions at selected points (the degree of the polynomial is taken on the basis of

those conditions). Consider the intermediate points

xn+r = xn +
1

4
h, xn+s = xn +

1

2
h, xn+t = xn +

3

4
h

on [xn, xn+1] and the approximation in (2.2) and its first derivative in (2.3) applied to

the point xn, its second derivative in (2.4) applied to the points xn, xn+r, xn+s, xn+t,
xn+1, and its third derivative in (2.5) applied to the points xn, xn+1. In this way, we get

a system of nine equations with nine real unknowns an, n = 0, . . . , 8, given by

p(xn) = yn, p′(xn) = y′n, p′′(xn) = fn,

p′′(xn+r) = fn+r, p′′(xn+s) = fn+s, p′′(xn+t) = fn+t,

p′′(xn+1) = fn+1, p′′′(xn) = gn, p′′′(xn+1) = gn+1,

where the notations yn+j, fn+j and gn+j stand respectively for approximations of

y(xn+j), y
′′(xn+j) and

y′′′(xn+j) = f ′(xn+j , y(xn+j), y
′(xn+j)).

This system of nine equations can be written in matrix form as

Ax = y,
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where

A =





























1 xn x2n x3n x4n x5n x6n x7n x8n
0 1 2xn 3x2n 4x3n 5x4n 6x5n 7x6n 8x7n
0 0 2 6xn 12x2n 20x3n 30x4n 42x5n 56x6n
0 0 2 6xn+r 12x2n+r 20x3n+r 30x4n+r 42x5n+r 56x6n+r

0 0 2 6xn+s 12x2n+s 20x3n+s 30x4n+s 42x5n+s 56x6n+s

0 0 2 6xn+t 12x2n+t 20x3n+t 30x4n+t 42x5n+t 56x6n+t

0 0 2 6xn+1 12x2n+1 20x3n+1 30x4n+1 42x5n+1 56x6n+1

0 0 0 6 24xn 60x2n 120x3n 210x4n 336x5n
0 0 0 6 24xn+1 60x2n+1 120x3n+1 210x4n+1 336x5n+1





























,

x = (a0, a1, a2, a3, a4, a5, a6, a7, a8)
⊤,

y = (yn, y
′
n, fn, fn+r, fn+s, fn+t, fn+1, gn, gn+1)

⊤.

Solving the above system of equations, we readily obtain the values of the coefficients

an, n = 0, . . . , 8. After obtaining the values of these coefficients and changing the

variable, x = xn + zh, the polynomial in (2.2) may be written as

p(xn + zh) = α0(z)yn + hα1(z)y
′
n + h2(β0(z)fn + βr(z)fn+r + βs(z)fn+s

+ βt(z)fn+t + β1(z)fn+1) + h3(γ0(z)gn + γ1(z)gn+1), (2.6)

where

α0(z) = 1, α1(z) = t,

β0(z) =
1

3780

(

1890z2 − 17465z4 + 46410z5 − 54096z6 + 30400z7 − 6720z8
)

,

βr(z) =
64

945

(

105z4 − 336z5 + 434z6 − 260z7 + 60z8
)

,

βs(z) =
−4

35

(

35z4 − 154z5 + 238z6 − 160z7 + 40z8
)

,

βt(z) =
64

945

(

35z4 − 168z5 + 294z6 − 220z7 + 60z8
)

,

β1(z) =
1

3780

(

−3255z4 + 16086z5 − 29456z6 + 23360z7 − 6720z8
)

,

γ0(z) =
1

252

(

42z3 − 196z4 + 399z5 − 420z6 + 224z7 − 48z8
)

,

γ1(z) =
1

252

(

21z4 − 105z5 + 196z6 − 160z7 + 48z8
)

.

Now, taking z = 1 in the above formula we evaluate p(x) at the point xn+1 = xn + h,

and thus we obtain the first of the formulas that approximates the solution y(xn+1):

yn+1 = yn+hy′n+
h2

3780
(768fn+r+432fn+s+256fn+t+419fn+15fn+1)+

h3

252
gn. (2.7)
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Similarly, taking z = 1 in the derivative of the above formula we evaluate p′(x) at the

point xn+1 = xn + h, thus obtaining an approximation for the first derivative of the

solution y(x) at the point xn+1:

hy′n+1 = hy′n +
h2

3780
(1024fn+r + 864fn+s + 1024fn+t + 434fn + 434fn+1)

+
h3

3780
(15gn − 15gn+1). (2.8)

Until now, we have obtained the two main formulas, one for approximating the so-

lution and another for approximating the first derivative at the final point of the interval

[xn, xn+1]. Note that we have eight unknowns, that is, (yn+j, y
′
n+j), j = r, s, t, 1. There-

fore, to obtain a one-step hybrid block method, we need to consider additional formu-

las. For this, we consider the evaluation of p(x) and p′(x) at the points xn+r, xn+s, xn+t.

In this way, we obtain a total of eight formulas that form the block hybrid method. The

rest of the formulas are as follows

yn+r = yn +
h

4
y′n +

h2

15482880
(181440fn+r − 62424fn+s + 33472fn+t

+ 343124fn − 11772fn+1) +
h3

15482880
(11715gn + 1125gn+1),

yn+s = yn +
h

2
y′n +

h2

120960
(8576fn+r + 384fn+t + 6312fn − 152fn+1) (2.9)

+
h3

120960
(225gn + 15gn+1),

yn+t = yn +
3h

4
y′n +

h2

573440
(78912fn+r + 30456fn+s + 6720fn+t

+ 46668fn − 1476fn+1) +
h3

573440
(1665gn + 135gn+1),

hy′n+r = hy′n +
h2

967680
(139456fn+r − 35424fn+s + 18496fn+t

+ 125846fn − 6454fn+1) +
h3

967680
(5055gn + 615gn+1),

hy′n+s = hy′n +
h2

60480
(17152fn+r + 6912fn+s − 768fn+t + 6762fn + 182fn+1) (2.10)

+
h3

60480
(225gn − 15gn+1),

hy′n+t = hy′n +
h2

35840
(9024fn+r + 9504fn+s + 4544fn+t + 4354fn − 546fn+1)

+
h3

35840
(165gn + 45gn+1).

For each of the above formulas, we can obtain the local truncation error in the usual

form: passing all the terms to the left, substituting the approximate values for the true
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ones, and expanding the resulting formula by Taylor series in powers of h. In this way,

we obtain the following local truncation errors

L[y(xn+1), h] = −h9y(9)(xn)

203212800
+O

(

h10
)

,

L[y′(xn+1), h] =
h10y(10)(xn)

1625702400
+O

(

h11
)

,

L[y(xn+r), h] = −3991h9y(9)(xn)

3329438515200
+O

(

h10
)

,

L[y(xn+s), h] = −h9y(9)(xn)

406425600
+O

(

h10
)

,

L[y(xn+t), h] = −153h9y(9)(xn)

41104179200
+O

(

h10
)

,

L[y′(xn+r), h] = −3h9y(9)(xn)

293601280
+O

(

h10
)

,

L[y′(xn+s), h] =
h10y(10)(xn)

3251404800
+O

(

h11
)

,

L[y′(xn+t), h] = −3h9y(9)(xn)

293601280
+O

(

h10
)

,

(2.11)

which indicates that the proposed method has seventh order.

To be applied for solving a boundary-value problem, the above formulas are con-

sidered altogether along with the grid points on the integration interval at the same

time, thus resulting in a global method that provides an approximate solution over all

the grid points simultaneously. Considering the grid points a = x0 < · · · < xN = b with

N ∈ N, N a positive integer, we take the formulas in (2.7)-(2.10) for n = 0, . . . , N − 1,

which results in a system of 8N equations. It is also clear that the number of unknowns

is 8N (the approximate values of the solution and the first derivative at the grid and

intermediate points).

2.1. Convergence analysis

This subsection is devoted to proving the convergence of the proposed one-step

method. We start by defining convergence, and then we will show that the proposed

method is convergent by compactly writing the main formulas in (2.7) and (2.8), and

the additional ones in (2.9) and (2.10) in a matrix-vector form.

Definition 2.1. Let y(x) be the solution of the considered boundary value problem and

{yj}Nj=0 the approximations provided by the proposed method. The numerical method

is said to be a p-th order convergent method if for h sufficiently small, there exists

a constant K independent of h such that

max
0≤j≤N

|y(xj)− yj| ≤ Khp.
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Note that in this case, we have that max0≤j≤N |y(xj)− yj| → 0 as h → 0.

Let D represent the 8N × 8N matrix defined by

D =







D1,1 D1,2 . . . D1,2N
...

...
...

D2N,1 D2N,2 . . . D2N,2N






,

where the elements Di,j are 4 × 4 submatrices, except the Di,N , i = 1, . . . , 2N which

have size 4× 3, and the Di,2N , i = 1, . . . , 2N , which have size 4× 5. Those submatrices

are given as follows:

DN,N =









1 0 0
0 1 0
0 0 1
0 0 0









, Di,i−1 =









0 0 0 −1
0 0 0 −1
0 0 0 −1
0 0 0 −1









, i = 2, . . . , N,

D2N−1,2N = h









0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0









, Di,i+1 = h









0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0









, i = N + 1, . . . , 2N − 2,

D2N,2N = h









−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1









, Di,i = h









−1 1 0 0
−1 0 1 0
−1 0 0 1
−1 0 0 0









, i = N + 1, . . . , 2N − 1,

DN,2N = h











−1
4 0 0 0 0

−2
4 0 0 0 0

−3
4 0 0 0 0

−1 0 0 0 0











, Di,N+i = h











−1
4 0 0 0

−2
4 0 0 0

−3
4 0 0 0

−1 0 0 0











, i = 1, . . . , N − 1,

and Di,i = I, i = 1, . . . , N − 1, where I is the identity matrix.

For the rest of submatrices not included above it is Di,j = O, that is, they are null

matrices.

On the other hand, let U be a 8N × (8N + 2) matrix defined by

U =







U1,1 U1,2 . . . U1,2N
...

...
...

U2N,1 U2N,2 . . . U2N,2N






,

where the elements Ui,j are 4 × 4 submatrices except the Ui,1, Ui,N+1, i = 1, . . . , 2N ,

which have size 4× 5. Those submatrices are given as follows:

U1,1 =











−343124
15482880

−181440
15482880

62424
15482880

−33472
15482880

11772
15482880

−6312
120960

−8576
120960 0 −384

120960
152

120960
−46668
573440

−78912
573440

−30456
573440

−6720
573440

1476
573440

−419
3780

−768
3780

−432
3780

−256
3780

−15
3780











,
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Ui,i =











−181440
15482880

62424
15482880

−33472
15482880

11772
15482880

−8576
120960 0 −384

120960
152

120960
−78912
573440

−30456
573440

−6720
573440

1476
573440

−768
3780

−432
3780

−256
3780

−15
3780











, i = 2, . . . , N,

UN+1,1 =











−125846
967680

−139456
967680

35424
967680

−18496
967680

6454
967680

−6762
60480

−17152
60480

−6912
60480

768
60480

−182
60480

−4354
35840

−9024
35840

−9504
35840

−4544
35840

546
35840

−434
3780

−1024
3780

−864
3780

−1024
3780

−434
3780











,

UN+j,j =











−139456
967680

35424
967680

−18496
967680

6454
967680

−17152
60480

−6912
60480

768
60480

−182
60480

−9024
35840

−9504
35840

−4544
35840

546
35840

−1024
3780

−864
3780

−1024
3780

−434
3780











, j = 2, . . . , N,

U2,1 =











0 0 0 0 −343124
15482880

0 0 0 0 −6312
120960

0 0 0 0 −46668
573440

0 0 0 0 −419
3780











, Ui,i−1 =











0 0 0 −343124
15482880

0 0 0 −6312
120960

0 0 0 −46668
573440

0 0 0 −419
3780











, i = 3, . . . , N,

UN+2,1 =











0 0 0 0 −125846
967680

0 0 0 0 −6762
60480

0 0 0 0 −4354
35840

0 0 0 0 −434
3780











, UN+j,j−1 =











0 0 0 −125846
967680

0 0 0 −6762
60480

0 0 0 −4354
35840

0 0 0 −434
3780











, j = 3, . . . , N,

U1,N+1 = h











−11715
15482880 0 0 0

−1125
15482880

−225
120960 0 0 0 −15

120960
−1665
573440 0 0 0 −135

573440
−1
252 0 0 0 0











, Ui,N+i = h











0 0 0 −1125
15482880

0 0 0 −15
120960

0 0 0 −135
573440

0 0 0 0











, i = 2 . . . , N,

U2,N+1 = h











0 0 0 0 −11715
15482880

0 0 0 0 −225
120960

0 0 0 0 −1665
573440

0 0 0 0 −1
252











, Ui,N+i−1 = h











0 0 0 −11715
15482880

0 0 0 −225
120960

0 0 0 −1665
573440

0 0 0 −1
252











, i = 3, . . . , N,

UN+1,N+1 = h











−5055
967680 0 0 0

−615
967680

−225
60480 0 0 0 15

60480
−165
35840 0 0 0 −45

35840
−15
3780 0 0 0 15

3780











, UN+i,N+i = h











0 0 0 −615
967680

0 0 0 15
60480

0 0 0 −45
35840

0 0 0 15
3780











, i = 2, . . . , N,
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UN+2,N+1 = h











0 0 0 0 −5055
967680

0 0 0 0 −225
60480

0 0 0 0 −165
35840

0 0 0 0 −15
3780











, UN+i,N+i−1 = h











0 0 0 −5055
967680

0 0 0 −225
60480

0 0 0 −165
35840

0 0 0 −15
3780











, i = 3, . . . , N.

For the rest of submatrices Ui,j not included above it is Ui,j = O, that is, they are null

matrices.

Note that all those submatrices Di,j and Ui,j contain the coefficients of the formulas

in (2.9)-(2.7) for n = 0, 1, . . . , N − 1, followed by the formulas in (2.10)-(2.8) for

n = 0, 1, . . . , N − 1, in this order. We also define the following vectors of exact values

Y =
(

y(x1/4), y(x1/2), y(x3/4), . . . , y(xN−1+3/4), y
′(x0), y

′(x1/4), . . . , y
′(xN )

)⊤
,

F =
(

f(x0, y(x0), y
′(x0)), f(x1/4, y(x1/4), y

′(x1/4)), . . . , f(xN , y(xN ), y′(xN )),

g(x0, y(x0), y
′(x0)), g(x1/4, y(x1/4), y

′(x1/4)), . . . , g(xN , y(xN ), y′(xN ))
)⊤

.

Note that Y has (4N−1)+(4N+1) = 8N components, while F has (4N+1)+(4N+1) =
8N +2 components, because due to the boundary conditions in (1.2), y(x0) and y(xN )
are known values, y(x0) = ya, y(xN ) = yb.

By using the above notations, the exact form of the system that provides the ap-

proximate values of the problem at hand is given by

D8N×8NY8N + h2U8N×(8N+2)F8N+2 + C8N = L(h)8N , (2.12)

where we have included the dimensions for clarity. C8N is a vector containing the

known values, which is given by

C8N = (−ya,−ya,−ya,−ya, 0, . . . , 0, yb, 0, . . . , 0)
⊤,

and L(h)8N corresponds to the local truncation errors of the formulas, that is,

L(h)8N = (u1, u2, u3, u4, u5, . . . , u4N , v1, v2, v3, v4, v5, . . . , v4N )⊤,

where

u1 = − 3991h9y(9)(x0)

3329438515200
+O

(

h10
)

, u2 = − h9y(9)(x0)

406425600
+O

(

h10
)

,

u3 = −153h9y(9)(x0)

41104179200
+O

(

h10
)

, u4 = − h9y(9)(x0)

203212800
+O

(

h10
)

,

u5 = − 3991h9y(9)(x1)

3329438515200
+O

(

h10
)

, u4N = −h9y(9)(xN−1)

203212800
+O

(

h10
)

,

v1 = −3h9y(9)(x0)

293601280
+O

(

h10
)

, v2 =
h10y(10)(x0)

3251404800
+O

(

h11
)

,

v3 = −3h9y(9)(x0)

293601280
+O

(

h10
)

, v4 =
h10y(10)(x0)

1625702400
+O

(

h11
)

,
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v5 = −3h9y(9)(x1)

293601280
+O

(

h10
)

, v4N =
h10y(10)(xN−1)

1625702400
+O

(

h11
)

.

On the other hand, the system to get the approximate values of the problem is

represented by

D8N×8N Ȳ8N + h2U8N×(8N+2)F̄8N+2 + C8N = 0, (2.13)

where Ȳ8N approximates the vector Y8N , that is,

Ȳ8N =
(

y1/4, y1/2, y3/4, y1, . . . , yN−1+3/4, y
′
0, y

′
1/4, . . . , y

′
N

)⊤
,

F̄8N+2 =
(

f0, f1/4, f1/2, f3/4, f1, . . . , fN , g0, g1/4, g1/2, g3/4, g1, . . . , gN
)⊤

.

On subtracting (2.13) from (2.12) and simplifying we get

D8N×8NE8N + h2U8N×(8N+2)

(

F − F̄
)

8N+2
= L(h)8N , (2.14)

where

E8N = Y8N − Ȳ8N =
(

e1/4, e1/2, . . . , eN−1+3/4, e
′
0, e

′
1/4, . . . , e

′
N

)⊤

contains the errors of the solution and its first derivative at the grid points.

By using the Mean-Value Theorem (see [10,22]), we can write for i = 0, 14 , . . . , N

f
(

xi, y(xi), y
′(xi)

)

− f
(

xi, yi, y
′
i

)

= (y(xi)− yi)
∂f

∂y
(ξi) +

(

y′(xi)− y′i
) ∂f

∂y′
(ξi),

g
(

xi, y(xi), y
′(xi)

)

− g
(

xi, yi, y
′
i

)

= (y(xi)− yi)
∂g

∂y
(ηi) +

(

y′(xi)− y′i
) ∂g

∂y′
(ηi),

where ξi and ηi are intermediate points on the line segment joining (xi, y(xi), y
′(xi)) to

(xi, yi, y
′
i). Thus, we have that

F − F̄ =

































∂f
∂y (ξ0) 0 . . . 0 ∂f

∂y′ (ξ0) 0 . . . 0

0 ∂f
∂y (ξ1/4) . . . 0 0 ∂f

∂y′ (ξ1/4) . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . ∂f∂y (ξN ) 0 0 . . . ∂f
∂y′ (ξN )

∂g
∂y (η0) 0 . . . 0 ∂g

∂y′ (η0) 0 . . . 0

0 ∂g
∂y (η1/4) . . . 0 0 ∂g

∂y′ (η1/4) . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . ∂g∂y (ηN ) 0 0 . . . ∂g
∂y′ (ηN )





























































e0
e1/4

...

eN
e′0
e′1/4

...

e′N




























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=











































0 . . . 0 ∂f
∂y′ (ξ0) 0 . . . 0 0

∂f
∂y (ξ1/4) . . . 0 0 ∂f

∂y′ (ξ1/4) . . . 0 0
...

. . . 0
...

...
. . .

...
...

0 . . . ∂f∂y (ξN−1+3/4) 0 0 . . . ∂f
∂y′ (ξN−1+3/4) 0

0 . . . 0 0 0 . . . 0 ∂f
∂y′ (ξN )

0 . . . 0 ∂g
∂y′ (η0) 0 . . . 0 0

∂g
∂y (η1/4) . . . 0 0 ∂g

∂y′ (η1/4) . . . 0 0
...

. . . 0
...

...
. . .

...
...

0 . . . ∂g∂y (ηN−1+3/4) 0 0 . . . ∂g
∂y′ (ηN−1+3/4) 0

0 . . . 0 0 0 . . . 0 ∂g
∂y′ (ηN )











































E8N

=J(8N+2)×8N E8N ,

where the second identity has been achieved through the fact that we know the exact

boundary conditions, that is, e0 = y(x0)− y0 = 0 and eN = y(xN )− yN = 0.

Finally, using the above result, the equation in (2.14) may be rewritten as follows

(

D8N×8N + h2U8N×(8N+2)J(8N+2)×8N

)

E8N = L(h)8N , (2.15)

and setting M = D + h2UJ we simply get that

M8N×8NE8N = L(h)8N . (2.16)

Let us see that except for a few selected values of h > 0, matrix M is invertible.

If we use the abbreviate notation DN = D8N×8N , given the form of this matrix where

the submatrices have many zeros, it is easy to verify that for N = 1 the determinant is

|D1| = −h5. Now, by induction, it can be proved that |DN | = −NhN+4, and thus DN

is invertible as long as it is h > 0.

Now the matrix M may be rewritten as

M = D + h2UJ = (Id− C)D,

where Id is the identity matrix of order 8N , and C = −h2UJD−1. Thus, we have that

|M | = |Id− C||D|.
As |λId − C| =

∏8N
i=1(λ − λi) is the characteristic polynomial of C in order to have

|Id− C| 6= 0, if we take λ = 1, it is sufficient to choose h such that

h2 /∈
{

1/λ̄i : λ̄i is an eigenvalue of UJD−1
}

.

For such values of h the equation in (2.16) may be rewritten as

E =
(

M−1
)

L(h). (2.17)

We consider the maximum norm in R, ‖E‖ = maxi |ei|, and the corresponding matrix

induced norm in R
8N×8N . After expanding each term of M−1 in series around h it can

Usuario
Resaltado
4N+1
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be shown that ‖M−1‖ = O(h−1). Note that the norm of matrix J must be bounded,

which in fact is related with the boundedness of ∂f
∂y , ∂f

∂y′ ,
∂g
∂y , ∂g

∂y′ .

Consequently, from the equation in (2.17) and the form of the vector L(h) in (2.11),

assuming that y(x) has in [a, b] bounded derivatives up to the ninth order, we have that

‖E‖ ≤ ‖(M−1)‖‖L(h)‖ = O
(

h−1
)

O
(

h8
)

≤ Kh7.

Therefore, the proposed method is a seventh-order convergent method.

3. Some improving strategies

This section explains the adopted strategies to improve the performance of the de-

veloped method for solving problems of the form in (1.1).

Note that the developed method obtained from the formulas in (2.7)-(2.10) may be

applied for solving problems where the differential equation is of the general form y′′ =
f(x, y(x), y′(x)). But for the kind of problems considered here the first derivative does

not appear in the function f , that is, the differential equation is of the special second

order, as in (1.1). In this situation, we can put aside the formulas that contain the first

derivatives at the intermediate points, and consider only the formulas in (2.7)-(2.9).

With this strategy the resulting algebraic system to be solved has 5N + 2 equations

(obtained from the formulas in (2.7)-(2.9) for n = 0, . . . , N − 1 together with the two

boundary conditions) and the same number of unknowns (the approximate values of

the solution at the grid and intermediate points, and the approximate values of the first

derivative at the grid points). This procedure results in a saving in computational time.

A complementary strategy in order to gain efficiency consists in a reformulation of

the formulas in (2.7)-(2.9). To do that we consider those formulas in (2.7)-(2.9) as an

algebraic system and solve this system in terms of the variables fn+r, fn+s, fn+t, fn+1,

gn+1. After some simplifications we get

h2fn+r −
(

−fnh
2

3
− 5gnh

3

384
− 1151hy′n

576
− 13hy′n+1

192
+

51yn+s

2

−304yn+r

9
− 112yn+t

27
+

9983yn
864

+
251yn+1

288

)

= 0,

h2fn+s −
(

7fnh
2

18
+

gnh
3

72
+

463hy′n
108

+
hy′n+1

4
− 40yn+s

+
2048yn+t

81
+

2951yn
162

− 7yn+1

2

)

= 0,

h2fn+t −
(

−11fnh
2

16
− 3gnh

3

128
− 531hy′n

64
− 99hy′n+1

64
+

27yn+s

2
+ 48yn+r (3.1)

−48yn+t −
1299yn

32
+

867yn+1

32

)

= 0,

h2fn+1 −
(

−31fnh
2

3
− gnh

3

3
− 1184hy′n

9
+

68hy′n+1

3
− 384yn+s
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+
8192yn+r

9
+

8192yn+t

27
− 18236yn

27
− 1388yn+1

9

)

= 0,

h3gn+1 −
(

−952fnh
2

3
− 31gnh

3

3
− 36092hy′n

9
+ 308hy′n+1 − 10752yn+s

+
81920yn+r

3
+

180224yn+t

27
− 552824yn

27
− 8264yn+1

3

)

= 0.

The resulting formulas are from a theoretical point of view equivalent to those in (2.7)-

(2.9), the theoretical basis of this fact can be seen in the article by Ramos and Popescu

[30]. Note that the numerical results obtained with the different formulations of the

method may not be the same, due to the various calculations involved.

To get the approximate solution in the interval [x0, xN ] we have to solve the system

obtained from the formulas in (3.1) for n = 0, . . . , N −1, together with the two bound-

ary conditions. To solve this system with 5N + 2 equations, a Newton-type method is

usually appropriate. By using this approach, the nonlinearity of the functions f and g is

reflected fewer times in the system. On the contrary, taking the formulas in (2.7)-(2.9)

the number of occurrences of the functions f and g is higher, which might complicate

the system, and thus its resolution.

Although we will describe the implementation procedure in the following section,

just to check the performance of the different approaches, we have considered the

problem in (1.4) for λ = 1 taking h = 1
10 .

In Table 1 we show the performance of the three approaches considered, where we

have included the number of intervals, N , the number of equations of each algebraic

system, Eqns, the computational times, CPU , and the maximum absolute errors on

the grid points, MAE. Note that for this problem the number of equations is not

8N + 2 or 5N + 2, as the two equations corresponding to the boundary values are in

fact constants, and accordingly, y0 and yN are not considered unknowns. We see that

the best performance corresponds to the method that uses the simplified equations in

(3.1). From now on, we would use this method in the numerical examples, which will

be denoted as 1HBM .

Table 1: Comparison of the different approaches for solving Eq. (1.4) for λ = 1, h = 0.1.

Formulas (2.7)-(2.10) Formulas (2.7)-(2.9) Formulas (3.1)

N 10 10 10
Eqns 80 50 50
CPU 0.171 0.125 0.094
MAE 3.46× 10−15 3.46× 10−15 1.66× 10−15

4. Implementation

To obtain the numerical approximations to the considered problem, we have to

solve the system of 5N + 2 equations given by (3.1) for n = 0, . . . , N − 1, together
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with the two boundary conditions in (1.2) or (1.3). If we denote the system in (3.1) by

Fn = 0, considering the boundary conditions of the general form in (1.3), the algebraic

system may be formulated as











































g1(y0, y
′
0)− va = 0,

F0 = 0,

F1 = 0,

· · ·
FN−1 = 0,

g2(yN , y′N )− vb = 0,

(4.1)

which will be named in shortly as F = 0. The 5N + 2 unknowns will be denoted by

Y =
(

y0, y
′
0, yr, ys, yt, y1, y

′
1, y1+r, y1+s, y1+t, y2, y

′
2, . . . ,

yN−1+r, yN−1+s, yN−1+t, yN , y′N
)

.

In general, we will use Newton’s method for solving the system F = 0, although any

other of the many schemes available in the literature could be used.

The Newton iteration is given by

Yi+1 = Yi −
(

Ji
)−1

Fi,

where J denotes the jacobian matrix of F, which is given by

J =



















∂g1
∂y0

∂g1
∂y′

0

· · ·
J0 · · ·

J1 · · ·
· · ·
· · · JN−1

· · · ∂g2
∂yN

∂g2
∂y′

N



















with the Jn, n = 0, . . . , N − 1 submatrices of dimensions 5 × 7 associated to the set of

equations in (3.1), given by

Jn =













j11 j12 j13 j14 j15 j16 j17
j21 j22 j23 j24 j25 j26 j27
j31 j32 j33 j34 j35 j36 j37
j41 j42 j43 j44 j45 j46 j47
j51 j52 j53 j54 j55 j56 j57













,

where

j11 =
h2

3
fn
2 +

5h3

384
gn2 − 9983

864
, j12 =

h2

3
fn
2 +

5h3

384
gn2 +

1151h

576
,
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j13 = h2fn+r
2 +

304

9
, j14 = −51

2
, j15 =

112

27
, j16 = −251

288
, j17 =

13h

192
,

j21 = −7h2

18
fn
2 − h3

72
gn2 − 2951

162
, j22 = −7h2

18
fn
2 − h3

72
gn2 − 463h

108
,

j23 = 0, j24 = h2fn+s
2 + 40, j25 = −2048

81
, j26 =

7

2
, j27 = −h

4
,

j31 =
11h2

16
fn
2 +

3h3

128
gn2 +

1299

32
, j32 =

11h2

16
fn
2 +

3h3

128
gn2 +

531h

64
,

j33 = −48, j34 = −27

2
, j35 = h2fn+t

2 + 48, j36 = −867

32
, j37 =

99h

64
,

j41 =
31h2

3
fn
2 +

h3

3
gn2 +

18236

27
, j42 =

31h2

3
fn
2 +

h3

3
gn2 +

1184h

9
,

j43 = −8192

9
, j44 = 384, j45 = −8192

27
,

j46 = h2fn+1
2 +

1388

9
, j47 = h2fn+1

3 − 68h

3
,

j51 =
952h2

3
fn
2 +

31h3

3
gn2 +

552824

27
, j52 =

952h2

3
fn
2 +

31h3

3
gn2 +

36092h

9
,

j53 = −81920

3
, j54 = 10752, j55 = −180224

27
,

j56 = h3gn+1
2 +

8264

3
, j57 = h3gn+1

3 − 308h,

and the notations fn+i
j , gn+i

j refer respectively to the partial derivatives of f(x, y, y′) or

g(x, y, y′) with respect to y for j = 2 and with respect to y′ for j = 3, evaluated at the

corresponding point xn+i, i = 0, r, s, t, 1 .

For the use of the iterative Newton’s method, initial guesses reasonably close to the

true roots are needed. In case of Dirichlet conditions it is y0 = ya, yN = yb, and thus

the system is reduced to 5N equations with 5N unknowns. In this case, it might be

considered a linear interpolation to get as initial starting points the following

y
(0)
j = y0 +

yN − y0
b− a

jh, j = 1, . . . , N − 1,

y
(0)
j+r = y0 +

yN − y0
b− a

(j + r)h, j = 0, . . . , N − 1,

y
(0)
j+s = y0 +

yN − y0
b− a

(j + s)h, j = 0, . . . , N − 1,

y
(0)
j+t = y0 +

yN − y0
b− a

(j + t)h, j = 0, . . . , N − 1,

y′
(0)
j =

yN − y0
b− a

, j = 0, . . . , N.

Nevertheless, the above strategy may behave very poorly. For the general case in

(1.3) we propose a strategy similar to that in [8, 24, 31, 32] where a homotopy-type

procedure is used. We consider a family of nonlinear BVPs Pj , j = 0, . . . ,m, such that
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for j = 0 the problem P0 admits only the solution y(x) = 0, while for j = m we recover

the original problem. In this way, we get a family of BVPs given by

Pj ≡























y′′ = f(x, y, y′)− f(x, 0, 0) +
j

m
f(x, 0, 0),

g1(y(a), y
′(a)) =

j

m
va,

g2(y(b), y
′(b)) =

j

m
vb,

(4.2)

for j = 0, . . . ,m. Each of these problems Pj for j = 1, . . . ,m is solved using the method

presented in the previous section, taking as starting guesses the values obtained after

solving the previous problem Pj−1. For j = m the nonlinear algebraic system corre-

sponding to the original BVP is solved taking as starting guesses the values obtained

after solving the problem Pm−1.

This strategy has the sole purpose of providing suitable starting values for Newton’s

method. Sometimes it is enough to take m = 1 (which means that the starting values

are taken as zero, although any other constant values according to the data of the

problem could be considered).

5. Numerical experiments

In this section, we present the approximate solutions for the Bratu’s and Troesch’s

problems using the proposed modified one-step hybrid block method for various val-

ues of λ. Besides, we will include comparisons with different numerical approaches

available in the literature, to show the efficiency of the proposed method.

5.1. Problem 1

As a first problem, we will consider the equation in (1.4) whose theoretical solution

is given in (1.5).

This problem is solved using the new one-step hybrid block method 1HBM with

step-size h = 1
10 . The reason for considering h = 1

10 is to compare the absolute errors

(AEs) provided by our method with those obtained by Caglar et al. [4] using a B-

spline approach. In order to compare the accuracy of our present method to a non-

polynomial spline method proposed by Jalilian [14] we use step-sizes h = 1
4 ,

1
8 ,

1
16 ,

1
32 .

We note that for the step-sizes, h = 1
4 ,

1
8 ,

1
16 ,

1
32 , the 1HBM method has less maximum

absolute errors (MAEs) compared with the step-sizes h = 1
8 ,

1
16 ,

1
32 ,

1
64 used in [14].

The numerical outcomes presented in Tables 2-5 taking m = 1 show that 1HBM is

more efficient in terms of accuracy than the approaches in [4] and [14].

Comparison of the theoretical versus approximate solutions for various values of λ
with m = 1, h = 0.1 and m = 8, are shown in Figs. 1 and 2 respectively. Concerning

the boundedness of matrix J to guaranty the convergence of the proposed scheme, we

have that

f(x, y, y′) = −λey, g(x, y, y′) = −λeyy′,
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Table 2: Comparison of the absolute errors (AEs) on Problem 1 at different grid points for λ = 1, h = 0.1.

x AEs in (1HBM) AEs in [14] AEs in [4]

0.1 8.25728× 10−16 5.7700× 10−10 2.9800× 10−6

0.2 1.7486× 10−15 2.4700× 10−10 5.4600× 10−6

0.3 2.62290× 10−15 4.5600× 10−11 7.3300× 10−6

0.4 3.24740× 10−15 9.6400× 10−11 8.5000× 10−6

0.5 3.46945× 10−15 1.4600× 10−10 8.8900× 10−6

0.6 3.24740× 10−15 9.6400× 10−11 8.5000× 10−6

0.7 2.6229× 10−15 4.5600× 10−11 7.3300× 10−6

0.8 1.74860× 10−15 2.4700× 10−10 5.4600× 10−6

0.9 8.18789× 10−16 5.7700× 10−10 2.9800× 10−6

Table 3: Comparison of the absolute errors (AEs) on Problem 1 at different grid points for λ = 2, h = 0.1.

x AEs in (1HBM) AEs in [14] AEs in [4]

0.1 1.84297× 10−14 9.71000× 10−9 1.72000× 10−5

0.2 5.82312× 10−14 1.41000× 10−10 3.26000× 10−6

0.3 1.12577× 10−13 1.98000× 10−8 4.49000× 10−6

0.4 1.61260× 10−13 2.42000× 10−8 5.28000× 10−5

0.5 1.80911× 10−13 2.60000× 10−8 5.56000× 10−5

0.6 1.61260× 10−13 9.6400× 10−11 5.28000× 10−5

0.7 1.12521× 10−13 1.98000× 10−8 4.49000× 10−5

0.8 5.82312× 10−14 1.41000× 10−8 3.26000× 10−5

0.9 1.84019× 10−14 9.71000× 10−9 1.72000× 10−5

Table 4: Comparison of the absolute errors (AEs) on Problem 1 at different grid points for λ = 3.51, h = 0.1.

x AEs in (1HBM) AEs in [14] AEs in [4]

0.1 2.67258× 10−12 6.61000× 10−6 3.84000× 10−2

0.2 1.38389× 10−12 5.83000× 10−6 7.48000× 10−2

0.3 6.78757× 10−12 6.19000× 10−6 1.06000× 10−1

0.4 3.02771× 10−11 6.89000× 10−6 1.27000× 10−1

0.5 4.74032× 10−11 7.31000× 10−10 1.35000× 10−1

0.6 3.02771× 10−11 6.89000× 10−6 1.27000× 10−6

0.7 6.78746× 10−12 6.19000× 10−6 1.06× 10−1

0.8 1.38389× 10−12 1.37000× 10−6 7.48000× 10−2

0.9 2.67264× 10−12 6.61000× 10−6 3.84000× 10−2
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Table 5: Comparison of the maximum absolute errors (MAEs) on Problem 1.

N Methods MAEs, λ = 3.51 MAEs, λ = 2 MAEs, λ = 1

4 (1HBM) 4.57168× 10−7 2.97576× 10−10 5.81088× 10−12

8 non-polynomial spline [14] 3.51000× 10−5 4.53000× 10−8 5.64000× 10−9

8 (1HBM) 2.70407× 10−10 1.08646× 10−12 2.16771× 10−14

16 non-polynomial spline [14] 1.45000× 10−7 1.76000× 10−9 4.66000× 10−11

16 (1HBM) 1.15996× 10−12 4.16334× 10−15 1.11022× 10−16

32 non-polynomial spline [14] 1.02000× 10−9 2.13000× 10−11 8.33000× 10−13

32 (1HBM) 6.43929× 10−15 5.55112× 10−17 2.77556× 10−17

64 non-polynomial spline [14] 1.48000× 10−11 2.87000× 10−13 9.21000× 10−15

and thus,
∂f

∂y
= −λey,

∂f

∂y′
= 0,

∂g

∂y
= −λeyy′,

∂g

∂y′
= −λey. (5.1)

On the other hand, taking in mind the boundary values, we have

y′(x) =

∫ x

0
−λeydx, x ∈ [0, 1],

and thus, as the solution is bounded, it will be so the derivative. The partial derivatives

in (5.1) are bounded, and so is matrix J .

Fig. 3 shows the efficiency curves for N = 10, 20, 30 of the maximum absolute

errors in logarithmic scale versus CPU times for the proposed 1HBM and the Block

Nyström Method (BNM) in [15]. We observed that the proposed 1HBM presents the

best performance.

Figure 1: Exact and discrete solutions with the method 1HBM for λ = 1, 2, 3.51, on Problem 1 with
N = 10.
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Figure 2: Exact and discrete solutions of Problem 1 (for N = 10, λ = 3.51) using the homotopy-type
approach with m = 8.

Figure 3: Efficiency plot showing the maximum absolute errors (MAEs) versus CPU times for Problem 1.

5.2. Problem 2

In the second problem, we apply our newly 1HBM to give numerical solution to

non-linear Bratu’s BVP given by

y′′(x) + λey(x) = 0,

subject to the following initial conditions

y(0) = y(1) = 0, 0 ≤ x ≤ 1,

whose exact solution for λ = −π2 is

y(x) = − log(1− cos(π(x+ 0.5))).

Problem 2 has been solved earlier by Raja et al. [28] using the active-set method (ASM),

the genetic algorithm (GA), and a hybrid approach denoted by GA-ASM with step-size
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Figure 4: Absolute errors of the 1HBM for λ = −π2 on Problem 2 with N = 10.

Table 6: Comparison of the absolute errors (AEs) on Problem 2 at different grid points for λ = −π2.

x (1HBM) GA-ASM in [28] ASM in [28] GA in [28]

0.1 5.33462× 10−14 8.22940× 10−03 1.49360× 10−06 7.68000× 10−07

0.2 5.35127× 10−14 5.95130× 10−03 8.63660× 10−07 2.52870× 10−07

0.3 4.94049× 10−14 4.15280× 10−03 9.89070× 10−07 3.09370× 10−08

0.4 4.64073× 10−14 3.0633× 10−03 5.19550× 10−07 6.82250× 10−07

0.5 4.52971× 10−14 2.39900× 10−03 5.40640× 10−07 6.44070× 10−07

0.6 4.64073× 10−14 1.75990× 10−03 5.49350× 10−07 1.56430× 10−07

0.7 4.94049× 10−14 9.45720× 10−04 2.45520× 10−07 7.04670× 10−07

0.8 5.37903× 10−14 6.32720× 10−05 3.34720× 10−07 9.73410× 10−07

0.9 5.33462× 10−14 7.61860× 10−04 2.61370× 10−07 1.29300× 10−06

h = 1
10 . We have solved the same problem using the newly developed technique 1HBM

with same step-size. The results presented in Table 6 show that the proposed approach

is more efficient and accurate than those given in [28]. Fig. 4 displays the plot of the

absolute errors on problem 2 for m = 1, h = 1
10 .

5.3. Problem 3

To test the practical relevance and applicability of the proposed 1HBM method

and to exhibit its convergence computationally, we consider the Troesch’s problem.

This problem has been solved numerically earlier by many researchers using different

numerical methods for different values of the parameter λ. Among them are Khuri [18],

Khuri and Sayfy [20], Mirmoradia et al. [25], and Zarebnia and Sajjadian [38]. This

problem is given in Eq. (1.6) and its solution in closed form is presented in Eqs. (1.7)

and (1.8).

Fig. 5 shows the plot of the absolute errors for λ = 2,m = 1, h = 0.1. Concerning

the boundedness of matrix J to guaranty the convergence of the proposed scheme, we
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Figure 5: Absolute errors of the 1HBM method for Troesch’s problem with λ = 2,m = 1, N = 10.

have that

f(x, y, y′) = λ sinh(λy), g(x, y, y′) = λ2 cosh(λy)y′,

and thus,

∂f

∂y
= λ2 cosh(λy),

∂f

∂y′
= 0,

∂g

∂y
= λ3 sinh(λy)y′,

∂g

∂y′
= λ2 cosh(λy). (5.2)

On the other hand, taking in mind the boundary values, we have

y′(x) =

∫ x

0
λ sinh(λy)dx, x ∈ [0, 1],

and thus, as the solution is bounded, it will be so the derivative and the partial deriva-

tives in (5.2).

Tables 7 and 8 report the comparisons between the theoretical solution and the

numerical approximations provided by the proposed 1HBM taking h = 0.1.

Table 7: Numerical results of Troesch’s problem for the case λ = 1 and m = 1, h = 0.1.

x (1HBM) SGM in [38] HPM in [25] LM in [20]

0.10000 0.084661256551 0.084661250 0.084934415 0.0846631

0.20000 0.170171358178 0.170171338 0.170697546 0.1701750

0.30000 0.257393908080 0.257393933 0.258133224 0.2573995

0.40000 0.347222855110 0.347222839 0.348116627 0.3472304

0.50000 0.440599835168 0.440599836 0.441572740 0.4406094

0.60000 0.538534398076 0.538534416 0.539498234 0.5385460

0.70000 0.642128609191 0.642128589 0.642987984 0.6421421

0.80000 0.752608094046 0.752608114 0.753267551 0.7526227

0.90000 0.871362519798 0.871362527 0.871733059 0.8713749
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Table 8: Numerical results of Troesch’s problem for the case λ = 2 and m = 1, h = 0.1.

x (1HBM) Exact Absolute Errors

0.10000 0.05220874953937186 0.05220874955804888 1.86770× 10−11

0.20000 0.10651864918058021 0.10651864921867965 3.80994× 10−11

0.30000 0.16514082653330660 0.16514082659236876 5.90621× 10−11

0.40000 0.23052172534051973 0.23052172542298302 8.24633× 10−11

0.50000 0.30550472585623295 0.30550472596559070 1.09358× 10−10

0.60000 0.39356327187974344 0.39356327202069340 1.40950× 10−10

0.70000 0.49917297576130920 0.49917297593948345 1.78174× 10−10

0.80000 0.62846511544672280 0.62846511566546390 2.18741× 10−10

0.90000 0.79049400208269970 0.79049400231928270 2.36583× 10−10

Our technique yields higher accuracy than the Laplace-based Method (LM) pro-

posed in [20], the Homotopy Perturbation Method (HPM) presented in [25], and the

sinc-Galerkin method (SGM) reported in [38].

In Tables 9 and 10 we show and contrast the AEs of the 1HBM and Laplace Method

(LM) proposed in [20], the Homotopy Perturbation Method (HPM) in [25], and the

sinc-Galerkin strategy (SGM) in [38]. We have used the 1HBM to give numerical

results to Troesch’s problem for λ = 0.5 and λ = 1 with N = 10 on the mesh points.

From the AEs displayed in Tables 9 and 10, we noticed that 1HBM methodology gives

better numerical results and more proficiency in terms of accuracy than those methods

used for comparisons.

Figs. 6 and 7 display the comparison of the analytical versus numerical solutions

for different values of λ with m = 1, h = 0.1 and m = 5, h = 0.05 respectively.

Fig. 8 includes the efficiency curves for N = 10, 20, 30 of the maximum absolute

errors in logarithmic scale versus CPU times for the proposed 1HBM and the BNM

method in [15]. Again the proposed method performs better.

Table 9: Comparison of the absolute errors (AEs) for λ = 0.5 on Troesch’s problem.

x AEs with (1HBM) AEs with SGM [38] AEs with HPM [25] AEs with LM [20]

0.10000 6.93433× 10−12 7.67445× 10−4 7.71124× 10−4 7.70000× 10−4

0.20000 1.22436× 10−11 1.49487× 10−3 1.50193× 10−3 1.50000× 10−3

0.30000 1.78599× 10−11 2.14100× 10−3 2.15084× 10−3 2.10000× 10−3

0.40000 2.34778× 10−11 2.66191× 10−3 2.67371× 10−3 2.70000× 10−3

0.50000 2.91577× 10−11 3.00978× 10−3 3.02252× 10−3 3.00000× 10−3

0.60000 3.75988× 10−12 3.13128× 10−3 3.14381× 10−3 3.10000× 10−3

0.70000 1.21607× 10−11 2.96601× 10−3 2.97716× 10−3 3.00000× 10−3

0.80000 7.85405× 10−12 2.44474× 10−3 2.45332× 10−3 2.40000× 10−3

0.90000 8.62710× 10−12 1.48723× 10−3 1.49210× 10−3 1.50000× 10−3
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Table 10: Comparison of the absolute errors (AEs) for λ = 1 on Troesch’s problem.

x AEs with 1HBM AEs with SGM [38] AEs with HPM [25] AEs with LM [20]

0.10000 5.51466× 10−9 2.86425× 10−3 3.13742× 10−3 2.90000× 10−3

0.20000 1.07024× 10−8 5.64047× 10−3 6.61667× 10−3 5.90000× 10−3

0.30000 1.60636× 10−8 8.22657× 10−3 8.96586× 10−3 8.20000× 10−3

0.40000 2.15824× 10−8 1.01049× 10−2 1.13844× 10−2 1.00000× 10−2

0.50000 2.73293× 10−8 1.22527× 10−2 1.32256× 10−2 1.20000× 10−2

0.60000 2.42145× 10−8 1.32604× 10−2 1.42242× 10−2 1.30000× 10−2

0.70000 2.80028× 10−8 1.31574× 10−2 1.40168× 10−2 1.30000× 10−2

0.80000 2.56935× 10−8 1.14397× 10−2 1.20992× 10−2 1.10000× 10−2

0.90000 1.98350× 10−8 7.39251× 10−3 7.76304× 10−3 7.40000× 10−5

Figure 6: Exact and discrete solutions with the method 1HBM for λ = 0.5, 1, 2, on Problem 3 with N = 10.

Figure 7: Exact and discrete solutions of Problem 3 (for N = 20, λ = 2) using the homotopy-type approach
with m = 5.
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Figure 8: Efficiency plot showing the maximum absolute errors (MAEs) versus CPU times for Problem 3.

6. Conclusions

A new one-step hybrid block method considering some improving strategies

(1HBM) has been developed and effectively used for numerically solving the Bratu’s

and Troesch’s problems. Some test problems have been solved, illustrating the per-

formance of the proposed method and demonstrating its reliability. The presented

numerical outcomes in Tables 2-10 and Figs. 1-8 show that our approach is much su-

perior to other existing numerical strategies, in terms of accuracy and efficiency. For

future research work, we note that the two dimensional Bratu’s and Troesch’s problems

for large values of the sensitivity parameter λ might be solved considering the type of

strategies presented in this work.
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