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Departamento de Geometŕıa y Topoloǵıa de la Universidad de Granada, que fue

mi tutor en los cursos de doctorado, por su hospitalidad, su continuo apoyo y su

sano interés por mi trabajo durante todos estos años.
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Chapter 1

Introduction

General Relativity, formulated by Einstein in 1915 [52], is up to the present date

the most accurate theory to describe gravitational physics. Roughly speaking,

this theory establishes that space, time and gravitation are all of them aspects of

a unique structure: the spacetime, a four dimensional manifold whose geometry is

closely related to its matter contents via the Einstein field equations. One of the

most striking consequences of General Relativity is the existence of black holes,

that is, spacetime regions from which no signal can be seen by an observer located

infinitely far from the matter sources. Black holes in the universe are expected

to arise as the final state of gravitational collapse of sufficiently massive objects,

such as massive stars, as the works by Chandrasekhar, Landau and Oppenheimer

and Volkoff [34] already suggested in the decade of the 1930’s. Despite the fact

that many astronomical observations give strong indication that black holes really

exist in nature, a definitive experimental proof of their existence is still lacking.

Although black holes arose first as theoretical predictions of General Rela-

tivity, its modern theory was developed in the mid-sixties largely in response

to the astronomical discovery of highly energetic and compact objects. During

these years the works of Hawking and Penrose [93] showed that singularities (i.e.

“points” where the fundamental geometrical quantities are not well-defined) are

commonplace in General Relativity, in particular in the interior of black holes.

Singularities have the potential danger of breaking the predictability power of a

theory because basically anything can happen once a singularity is visible. How-

ever, for the singularities inside black holes the situation is not nearly as bad,

because, in this case, the singularity is not visible from infinity and hence the

predictability capacity of the observers lying outside the black hole region re-

mains unaffected. This fact led Penrose to conjecture that naked singularities

(i.e. singularities which do not lie inside a black hole) cannot occur in any rea-

sonable physical situation [94]. This conjecture, known as the cosmic censorship

hypothesis, protects the distant observers from the lack of predictability that oc-

1
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curs in the presence of singularities. Whether this conjecture is true or not is at

present largely unknown (see [110] for an account of the situation in the late 90’s).

Rigorous results are known only in spherical symmetry, where the conjecture has

been proven for several matter models [37, 49]. In any case, the validity of (some

form) of cosmic censorship implies that black holes are the generic end state of

gravitational collapse, and hence fundamental objects in the universe.

Of particular importance is the understanding of equilibrium configurations

of black holes. The uniqueness theorems for static and stationary black holes,

which are considered one of the cornerstones of the theory of black holes, also

appeared during the sixties mainly motivated by the early work of Israel [69].

These theorems assert that, given a matter model (for example vacuum), a static

or a stationary black hole spacetime belongs necessarily to a specific class of

spacetimes (in the vacuum case, they are Schwarzschild in the static regime and

Kerr for the stationary case) which are univocally characterized by a few pa-

rameters that describe the fundamental properties of the black hole (for vacuum

these parameters are the mass and the angular momentum of the black hole).

Since, from physical principles, it is expected that astronomical objects which

collapse into a black hole will eventually settle down to a stationary state, the

black hole uniqueness theorems imply that the final state of a generic gravita-

tional collapse (assuming that cosmic censorship holds) can be described by a

very simple spacetime geometry characterized by a few parameters like the total

mass, the electric charge or the angular momentum of the collapsing astronomical

object (or, more precisely, the amount of these physical quantities which is kept

by the collapsing object and does not get radiated away during the process). The

resulting spacetime is therefore independent of any other of the properties of the

collapsing system (like shape, composition, etc.). This type of result was, some-

what pompously, named “no hair” theorems for black holes by Wheeler [101]. In

1973 Penrose [95] invoked cosmic censorship and the no hair theorems to deduce

an inequality which imposes a lower bound for the total mass of a spacetime in

terms of the area of the event horizon (i.e. the boundary) of the black hole which

forms during the gravitational collapse. This conjecture is known as the Penrose

inequality.

The Penrose inequality, like the cosmic censorship conjecture on which it is

based, has been proven only in a few particular cases. Both conjectures therefore

remain, up to now, wide open. One of the intrinsic difficulties for their proof

is that black holes impose, by its very definition (see e.g. Chapter 12 of [109]),

very strong global conditions on a spacetime. From an evolutive point if view,
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these objects are of teleological nature because a complete knowledge of the fu-

ture is needed to even know if a black hole forms. Determining the future of an

initial configuration (i.e. the metric and its first time derivative on a spacelike

hypersurface) requires solving the spacetime field equations (either analytical or

numerically) with such initial data. The Einstein field equations are non-linear

partial differential equations, so determining the long time behavior of its solu-

tions is an extremely difficult problem. In general, the results that can be obtained

from present day technology do not give information on the global structure of

the solutions and, therefore, they do not allow to study black holes in an evolu-

tive setting. As a consequence, the concept of black hole is not very useful in this

situation because, what does it mean that an initial data set represents a black

hole? Since the concept of black hole is central in gravitation, it has turned out

to be necessary to replace this global notion by a more local one that, on the one

hand, can be studied in an evolutionary setting and, on the other, hopefully has

something to do with the global concept of black hole. The objects that serve this

purpose are the so-called trapped surfaces, which are, roughly speaking, compact

surfaces without boundary for which the emanating null rays do not diverge (all

the precise definitions will be given in Chapter 2). The reason for this bending

of light “inwards” is the gravitational field and, therefore, these surfaces reveal

the presence of an intense gravitational field. This is expected to indicate that

a black hole will in fact form upon evolution. More precisely, under suitable en-

ergy conditions, the maximal Cauchy development of this initial data is known

to be causal geodesically incomplete (this is the content of one of the versions of

the singularity theorems, see [103] for a review). If cosmic censorship holds, then

a black hole will form. Moreover, it is known that in any black hole spacetime

the subclass of trapped surfaces called weakly trapped surfaces and weakly outer

trapped surface lie inside the black hole (see e.g. chapter 9.2 of [63] and chapter

12.2 of [109]), and so they give an indication of where the back hole event horizon

should be in the initial data (if it forms at all). In fact, the substitution of the

concept of black hole by the concept of trapped surface is so common that one

terminology has replaced the other, and scientists talk about black hole colli-

sion, of black hole-neutron star mergers to refer to evolutions involving trapped

surfaces. However, it should be kept in mind that both concepts are completely

different a priori.

In the context of the Penrose inequality, the fact that, under cosmic censor-

ship, weakly outer trapped surfaces lie inside the black hole was used by Penrose

to replace the area of the event horizon by the area of weakly outer trapped sur-
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faces to produce inequalities which, although motivated by the expected global

structure of the spacetime that forms, can be formulated directly on the given

initial data in a manner completely independent of its evolution. A particular case

of weakly outer trapped surfaces, the so-called marginally outer trapped surfaces

(MOTS) (defined as compact surfaces without boundary with vanishing outer

null expansion θ+), are widely considered as the best quasi-local replacements for

the event horizon. From what it has been said, it is clear that proving that these

surfaces can replace black holes is basically the same as proving the validity of

cosmic censorship, which is beyond present day knowledge. The advantage of see-

ing the problem from this perspective is that it allows for simpler questions that

can perhaps be solved. One such question is the Penrose inequality already men-

tioned. Another one has to do with static and stationary situations. One might

think that, involving no evolution at all, it should be clear that black holes, event

horizons and marginally outer trapped surfaces are essentially the same in an

equilibrium configuration. However, although certainly plausible, very little is

known about the validity of this expectation.

The aim of this thesis is precisely to study the properties of trapped surfaces

in spacetimes with symmetries and their possible relation with the theory of black

holes. Even this more modest goal is vast. We will concentrate on one aspect of this

possible equivalence, namely whether the static black hole uniqueness theorems

extend to static spacetimes containing MOTS. The main result of this thesis states

that this question has an affirmative answer, under suitable conditions on the

spacetime. To solve this question we will have to analyze in depth the properties

of MOTS and weakly outer trapped surfaces in spacetimes with symmetries, and

this will produce a number of results which are, hopefully, of independent interest.

This study will naturally lead us to consider a second question, namely to study

the Penrose inequality in static initial data sets which are not time-symmetric.

Our main result here is the discovery of a counterexample of a version of the

Penrose inequality that was proposed by Bray and Khuri [19] not long ago. It

is worth to mention that most of the results we will obtain in this thesis do

not use the Einstein field equations and, consequently, they are also valid in any

gravitational theory of gravitation in four dimensions.

In the investigations on stationary and static spacetimes there has been a

tendency over the years of reducing the amount of global assumptions in time

to a minimum. This is in agreement with the idea behind cosmic censorship of

understanding the global properties as a consequence of the evolution. This trend

has been particularly noticeable in black hole uniqueness theorems, where several



1. Introduction 5

conditions can be used to capture the notion of black hole (see e.g. Theorem 2.4.2

in Chapter 2). In this thesis, we will follow this general tendency and work directly

on slabs of spacetimes containing suitable spacelike hypersurfaces or, whenever

possible, directly at the initial data level, without assuming the existence of a

spacetime where it is embedded. It should be remarked that the second setting is

more general than the former one. Indeed, in some circumstances the existence

of such a spacetime can be proven, for example by using the notion of Killing

development (see [12] and Chapter 4) or by using well-posedness of the Cauchy

problem and suitable evolution equations for the Killing vector [45]. The former,

however, fails at fixed points of the static isometry and the second requires spe-

cific matter models, not just energy inequalities as we will assume. Nevertheless,

although most of the results of this thesis will be obtained at the initial data

level, we will need to invoke the existence of a spacetime to complete the proof

of the uniqueness result (we emphasize however, that no global assumption in

time is made in that case either). We will also try to make clear which is the

difficulty that arises when one attempts to prove this result directly at the initial

data level.

The results obtained in this thesis constitute, in our opinion, a step forward

in our understanding of how black holes evolve. Regarding the problem of es-

tablishing a rigorous relationship between black holes and trapped surfaces, the

main result of this thesis (Theorem 5.4.1) shows that, at least as far as unique-

ness of static black holes is concerned, event horizons and MOTS do coincide.

Our uniqueness result for static spacetimes containing MOTS is interesting also

independently of its relationship with black holes. It proves that static config-

urations are indeed very rigid. This type of result has several implications. For

instance, in any evolution of a collapsing system, it is expected that an equilib-

rium configuration is eventually reached. The uniqueness theorems of black holes

are usually invoked to conclude that the spacetime is one of the stationary black

holes compatible with the uniqueness theorem. However, this argument assumes

implicitly that one has sufficient information on the spacetime to be able to apply

the uniqueness theorems, which is far from obvious since the spacetime is being

constructed during the evolution. In our setting, as long as the evolution has a

MOTS on each time slice, if the spacetime reaches a static configuration, then

it is unique. Related to this issue, it would be very interesting to know if these

types of uniqueness results also hold in an approximate sense, i.e. if a spacetime

is nearly static and contains a MOTS, then the spacetime is nearly unique. This

problem is, of course, very difficult because it needs a suitable concept of “being
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close to”. In the particular case of the Kerr metric, there exists a notion of an

initial data being close to Kerr [7], which is based on a suitable characterization

of this spacetime [79]. This closeness notion is defined for initial data sets with-

out boundary. It would be of interest to extend it to the case with a non-empty

boundary which is a MOTS.

The static uniqueness result for MOTS is only a first step in this subject. Fu-

ture work should try to extend this result to the stationary setting. The problem

is, however, considerably more difficult because the techniques known at present

to prove uniqueness of stationary black holes are much less developed than those

for proving uniqueness of static black holes. Assuming however, that the spacetime

is axially symmetric (besides being stationary) simplifies the black hole unique-

ness proof considerably (the problem becomes essentially a uniqueness proof for

a boundary value problem of a non-linear elliptic system on a domain in the Eu-

clidean plane, see [65]). The next natural step would be to try and extend this

uniqueness result to a setting where the black hole is replaced by a MOTS. The

only result we prove in this thesis in the stationary (non-static) setting involves

MOTS lying in the closure of the exterior region where the Killing is timelike.

We show that in this case the MOTS cannot penetrate into the timelike exterior

domain (see Theorem 3.4.10).

In the remaining of this Introduction, we will try to give a general idea of the

structure of the thesis and to discuss its main results.

In rough terms, the typical structure of static black holes uniqueness theorems

is the following:

Let (M, g(4)) be a static solution of the Einstein equations for a given matter

model (for example vacuum) which describes a black hole. Then (M, g(4)) belongs

necessarily to a specific class of spacetimes which are univocally characterized by

a number of parameters that can be measured at infinity (in the case of vacuum,

the spacetime is necessarily Schwarzschild and the corresponding parameter is

the total mass of the black hole).

There exist static black hole uniqueness theorems for several matter models,

such as vacuum ([69], [87], [98], [22], [38]), electro-vacuum ([70], [88], [106], [100],

[82], [39], [44]) and Einstein-Maxwell dilaton ([83], [81]). As we will describe in

more detail in Chapter 2 the most powerful method for proving these results

is the so called doubling method, invented by Bunting and Masood-ul-Alam [22]
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to show uniqueness in the vacuum case. This method requires the existence of

a complete spacelike hypersurface Σ containing an exterior, asymptotically flat,

region Σext such that the Killing is timelike on Σext and the topological boundary

∂topΣext is an embedded, compact and non-empty topological manifold. In static

spacetimes, the condition that (M, g(4)) is a black hole can be translated into

the existence of such a hypersurface Σ. In this setting, the topological boundary

∂topΣext corresponds to the intersection of the boundary of the domain of outer

communications (i.e. the region outside both the black hole and the white hole)

and Σ. This equivalence, however, is not strict due to the potential presence of

non-embedded Killing prehorizons, which would give rise to boundaries ∂topΣext

which are non-embedded. This issue is important and will be discussed in detail

below. We can however, ignore this subtlety for the purpose of this Introduction.

The type of uniqueness result we are interested in this thesis is of the form:

Let (M, g(4)) be a static solution of the Einstein equations for a given matter

model. Suppose that M possesses a spacelike hypersurface Σ which contains a

MOTS. Then, (M, g(4)) belongs to the class of spacetimes established by the

uniqueness theorem for static black holes for the corresponding matter model.

The first result in this direction was given by Miao in 2005 [86], who extended

the uniqueness theorems for vacuum static black holes to the case of asymptoti-

cally flat and time-symmetric slices Σ which contain a minimal compact boundary

(it is important to note that for time-symmetric initial data, a surface is a MOTS

if and only if it is a compact minimal surface). In this way, Miao was able to

relax the condition of a time-symmetric slice Σ having a compact topological

boundary ∂topΣ where the Killing vector vanishes to simply containing a com-

pact minimal boundary. Miao’s uniqueness result is indeed a generalization of the

static uniqueness theorem of Bunting and Masood-ul-Alam because the static vac-

uum field equations imply in the time-symmetric case that the boundary ∂topΣext

is necessarily a totally geodesic surface, which is more restrictive than being a

minimal surface.

Miao’s result is fundamentally a uniqueness result. However, one of the key

ingredients in its proof consists in showing that no minimal surface can penetrate

into the exterior timelike region Σext. As a consequence, Miao’s theorem can

also be viewed as a confinement result for minimal surfaces. As a consequence,

one can think of extending Miao’s result in three different directions: Firstly, to

allow for other matter models. Secondly, to work with arbitrary slices and not
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just time-symmetric ones. This is important in order to be able to incorporate so-

called degenerate Killing horizons into the problem. Obviously, in the general case

minimal surfaces are no longer suitable and MOTS should be considered. And

finally, try to make the confinement part of the statement as local as possible and

relax the condition of asymptotic flatness to the existence of suitable exterior

barrier. To that aim it is necessary a proper understanding of the properties of

MOTS and weakly outer trapped surfaces in static spacetimes (or more general,

if possible).

For simplicity, let us restrict to the asymptotically flat case for the purpose

of the Introduction. Consider a spacelike hypersurface Σ containing an asymp-

totically flat end Σ∞
0 . In what follows, let λ be minus the squared norm of the

static Killing ~ξ. So, λ > 0 means that ~ξ is timelike. Staticity and asymptotic

flatness mean that this Killing vector is timelike at infinity. Thus, it makes sense

to define {λ > 0}ext as the connected component of {λ > 0} which contains the

asymptotically flat end Σ∞
0 (the set Σext in the Masood-ul-Alam doubling method

is precisely {λ > 0}ext). Since we want to prove the expectation that MOTS and

spacelike sections of the event horizon coincide in static spacetimes, we will firstly

try to ensure that no MOTS can penetrate into {λ > 0}ext. This result will gen-

eralize Miao’s theorem as a confinement result and will extend the well-known

confinement result of MOTS inside the black hole region (c.f. Proposition 12.2.4

in [109])) to the initial data level. The main tool which will allow us to prove

this result is a recent theorem by Andersson and Metzger [4] on the existence,

uniqueness and regularity of the outermost MOTS on a given spacelike hypersur-

face. This theorem, which will be essential in many places in this thesis, requires

working with trapped surfaces which are bounding, in the sense that they are

boundaries of suitable regions (see Definition 2.2.25). Another important ingre-

dient for our confinement result will be a thorough study of the causal character

that the Killing vector is allowed to have on the outermost MOTS (or, more,

generally on stable or strictly stable MOTS – all these concepts will be defined

below –). For the case of weakly trapped surfaces (which are defined by a more

restrictive condition than weakly outer trapped surfaces), it was proven in [80]

that no weakly trapped surface can lie in the region where the Killing vector is

timelike provided its mean curvature vector does not vanish identically. Further-

more, similar restrictions were also obtained for other types of symmetries, such

as conformal Killing vectors (see also [105] for analogous results in spacetimes

with vanishing curvature invariants).

Our main idea to obtain restrictions on the Killing vector on an outermost
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MOTS S consists on a geometrical construction [23] whereby S is moved first to

the past along the integral lines of the Killing vector and then back to Σ along

the outer null geodesics orthogonal to this newly constructed surface, produc-

ing a new weakly outer trapped surface S ′, provided the null energy condition

(NEC) is satisfied in the spacetime. If the Killing field ~ξ is timelike anywhere on

S then we show that S ′ lies partially outside S, which is a contradiction with the

outermost property of S. This simple idea will be central in this thesis and will

be extended in several directions. In particular, we will generalize the geometric

construction to the case of general vector fields ~ξ, not just Killing vectors. To

ensure that S ′ is weakly outer trapped in this setting we will need to obtain an

explicit expression for the first variation of the outer null expansion θ+ along ~ξ

in terms of the so called deformation tensor of the metric along ~ξ (Proposition

3.3.1). This will allow us to obtain results for other types of symmetries, such as

homotheties and conformal Killing vectors, which are relevant in many physical

situations of interest (e.g. the Friedmann-Lemâıtre-Robertson-Walker cosmolog-

ical models). Another relevant generalization involves analyzing the infinitesimal

version of the geometric construction. As we will see, the infinitesimal construc-

tion is closely related to the stability properties of the the first variation of θ+

along Σ on a MOTS S. This first variation defines a linear elliptic second order

differential operator [3] for which elliptic theory results can be applied. It turns

out that exploiting such results (in particular, the maximum principle for elliptic

operators) the conclusions of the geometric construction can be sharpened con-

siderably and also extended to more general MOTS such as stable and strictly

stable ones. (Theorem 3.4.2 and Corollaries 3.4.3 and 3.4.4).

As an explicit application of these results, we will show that stable MOTS can-

not exist in any slice of a large class of Friedmann-Lemâıtre-Robertson-Walker

cosmological models. This class includes all classic models of matter and radiation

dominated eras and also those models with accelerated expansion which satisfy

the NEC (Theorem 3.4.6). Remarkably, the geometric construction is more pow-

erful than the elliptic methods in some specific cases. We will find an interesting

situation where this is the case when dealing with homotheties (including Killing

vectors) on outermost MOTS (Theorem 3.4.8). This will allow us to prove a result

(Theorem 3.4.10) which asserts that, as long as the spacetime satisfies the NEC,

a Killing vector or homothety cannot be timelike anywhere on a bounding weakly

outer trapped surface whose exterior lies in a region where the Killing vector is

timelike.

Another case when the elliptic theory cannot be applied and we resort to the
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geometric procedure deals with situations when one cannot ensure that the newly

constructed surface S ′ is weakly outer trapped. However, it can still occur that

the portion of S ′ which lies in the exterior of S has θ+ ≤ 0. In this case, we can

exploit a result by Kriele and Hayward [75] in order to construct a weakly outer

trapped surface S ′′ outside both S and S ′ by smoothing outwards the corner where

they intersect. This will provide us with additional results of interest (Theorems

3.5.2 and 3.5.4). All these results have been published in [25] and [26] and will be

presented in Chapter 3.

From then on, we will concentrate exclusively on static spacetimes. Chapter 4

is devoted to extending Miao’s result as a confinement result. Since in this chap-

ter we will work exclusively at the initial data level, we will begin by recalling

the concept of a static Killing initial data (static KID), (which corresponds to

the data and equations one induces on any spacelike hypersurface embedded on

a static spacetime, but viewed as an abstract object on its own, independently

of the existence of any embedding into a spacetime). It will be useful to intro-

duce two scalars I1, I2 which correspond to the invariants of the Killing form

(or Papapetrou field) of the static Killing vector ~ξ. It turns out that I2 always

vanishes due to staticity and that I1 is constant on arc-connected components

of ∂top{λ > 0} and negative on the arc-connected components which contains at

least a fixed point (Lemma 4.3.5). Fixed points are initial data translations of

spacetime points where the Killing vector vanishes and, since I1 turns out to be

closely related to the surface gravity of the Killing horizons, this result extends a

well-known result by Boyer [16] on the structure of Killing horizons to the initial

data level.

The general strategy to prove our confinement result for MOTS is to use

a contradiction argument. We will assume that a MOTS can penetrate in the

exterior timelike region. By passing to the outermost MOTS S we will find that

the topological boundary of ∂top{λ > 0}ext must intersect both the interior and

the exterior of S. It we knew that ∂top{λ > 0}ext is a bounding MOTS, then we

could get a contradiction essentially by smoothing outwards (via the Kriele and

Hayward method) these two surfaces. However, it is not true that ∂top{λ > 0}ext
is a bounding MOTS in general. There are simple examples even in Kruskal

where this property fails. The problem lies in the fact that ∂top{λ > 0}ext can

intersect both the black hole and the white hole event horizons (think of the

Kruskal spacetime for definiteness) and then the boundary ∂top{λ > 0}ext is, in

general, not smooth on the bifurcation surface. To avoid this situations we need

to assume a condition which essentially imposes that ∂top{λ > 0}ext intersects
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only the black hole or only the white hole region. Furthermore, the possibility

of ∂top{λ > 0}ext intersecting the white hole region must be removed to ensure

that this smooth surface is in fact a MOTS and not a past MOTS. The precise

statement of this final condition is given in points (i) and (ii) of Proposition

4.3.14, but the more intuitive idea above is sufficient for this Introduction. Since

we will need to mention this condition below, we refer to it as (⋆). In this way, in

Proposition 4.3.14, we prove that every arc-connected component of ∂top{λ > 0} is

an injectively immersed submanifold with θ+ = 0. However, injectively immersed

submanifolds may well not be embedded. Since, in order to find a contradiction

we need to construct a bounding weakly outer trapped surface, and these are

necessarily embedded, we need to care about proving that the injective immersion

is an embedding (i.e. an homeomorphism with the induced topology in the image).

In the case with I1 6= 0 this is easy. In the case of components with I1 = 0 (so-

called degenerate components), the problem is difficult and open. This issue is

very closely related to the possibility that there may exist non-embedded Killing

prehorizons in a static spacetime which has already been mentioned before. This

problem, which has remained largely overlooked in the black hole uniqueness

theory until very recently [40], is important and very interesting. However, it is

beyond the scope of this thesis. For our purposes it is sufficient to assume an

extra condition on degenerate components of ∂top{λ > 0}ext which easily implies

that they are embedded submanifolds. This condition is that every arc-connected

component of ∂top{λ > 0}ext with I1 = 0 is topologically closed. This requirement

will appear in all the main results in this thesis precisely in order to avoid dealing

with the possibility of non-embedded Killing prehorizons. If one can eventually

prove that such objects simply do not exist (as we expect), then this condition

can simply be dropped in all the results below. Our main confinement result is

given in Theorem 4.4.1. The results of Chapter 4 have been published in [23] and

[24].

Theorem 4.4.1 leads directly to a uniqueness result (Theorem 5.1.1) which al-

ready generalizes Miao’s result as a uniqueness statement. The idea of the unique-

ness proof is to show that the presence of a MOTS boundary in an initial data

set implies, under suitable conditions, that ∂top{λ > 0}ext is a compact embed-

ded surface without boundary. This is precisely the main hypothesis that is made

in order to apply the doubling method of Bunting and Masood-ul-Alam. Thus,

assuming that the matter model is such that static black hole uniqueness holds,

then we can conclude uniqueness in the case with MOTS. The strategy is there-

fore to reduce the uniqueness theorem for MOTS to the uniqueness theorem for
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black holes. This idea is in full agreement with our main theme of showing that

MOTS and black holes are the same in a static situation.

Theorem 5.1.1 is, however, not fully satisfactory because it still requires con-

dition (⋆) on ∂top{λ > 0}ext. Since ∂top{λ > 0}ext is a fundamental object in the

doubling method, it would be preferable if no conditions are a priori imposed

on it. Chapter 5 is devoted to obtaining a uniqueness result for static space-

times containing weakly outer trapped surfaces with no a priori restrictions on

∂top{λ > 0}ext (besides the condition on components with I1 = 0 which we have

already mentioned). In Chapter 4 the fact that ∂top{λ > 0}ext is closed (i.e.

compact and without boundary) is proven as a consequence of its smoothness.

However, when condition (⋆) is dropped, we know that ∂top{λ > 0}ext is not

smooth in general, and in principle, it may have a non-empty manifold bound-

ary. Therefore, we will need a better understanding of the structure of the set

∂top{λ > 0} when (⋆) is not assumed. In this case, our methods of Chapter 4 do

not work and we will be forced to invoke the existence of a spacetime where the

initial data set is embedded. By exploiting a construction by Rácz and Wald in

[96] we show that, in an embedded static KID, the set ∂top{λ > 0} is a finite union

of smooth, compact and embedded surfaces, possibly with boundary. Moreover,

at least one of the two null expansions θ+ or θ− vanishes identically on each one

of these surfaces (Proposition 5.3.1). With this result at hand we then prove that

the set ∂top{λ > 0}ext coincides with the outermost bounding MOTS (Theorem

5.3.3) provided the spacetime satisfies the NEC and that the past weakly outer

trapped region T− is included in the weakly outer trapped region T+. It may seem

that the condition T− ⊂ T+ is very similar to (⋆): In some sense, both try to

avoid that the slice intersects first the white hole horizon when moving from the

outside. However, it is important to remark that T+ and T− have a priori nothing

to do with Killing horizons and that the condition T− ⊂ T+ is not a condition

directly on ∂top{λ > 0}ext. Our main uniqueness theorem is hence Theorem 5.4.1,

which states that, under reasonable hypotheses, MOTS and spacelike sections of

Killing horizons do coincide in static spacetimes. If the static spacetime is a black

hole (in the global sense) then the event horizon is a Killing horizon. This shows

the equivalence between MOTS and (spacelike sections of) the event horizon in

the static setting.

The last part of this thesis is devoted to the study of the Penrose inequality

in initial data sets which are not time-symmetric. The standard version of the

Penrose inequality bounds the ADM mass of the spacetime in terms of the small-

est area of all surfaces which enclose the outermost MOTS. The huge problem
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in proving this inequality has led several authors to propose more general and

simpler looking versions of the Penrose inequality (see [78] for a review). In par-

ticular, in a recent proposal by Bray and Khuri [19], a Penrose inequality has

been conjectured in terms of the area of so-called outermost generalized apparent

horizon in a given asymptotically flat initial data set. Generalized apparent hori-

zons are more general than weakly outer trapped surfaces and have interesting

analytic and geometric properties. The Penrose inequality conjectured by Bray

and Khuri reads

MADM ≥
√

|Sout|
16π

, (1.1)

where MADM is the total ADM mass of a given slice and |Sout| is the area of

the outermost generalized apparent horizon Sout. This new inequality has several

appealing properties, like being invariant under time reversals, the fact that no

minimal area enclosures are involved and that it implies the standard Penrose in-

equality. On the other hand, this version is not directly supported by any heuristic

argument based on cosmic censorship, as the standard Penrose inequality. In fact,

as a consequence of a theorem by Eichmair [51] on the existence, uniqueness and

regularity of the outermost generalized apparent horizon, there exist slices in the

Kruskal spacetimes (for which ∂top{λ > 0}ext intersects both the black hole and

the white hole event horizons), with the property that its outermost generalized

apparent horizon lies, at least partially, inside the domain of outer communica-

tions. In Chapter 6 we present a counterexample of (1.1) precisely by studying

this type of slices in the Kruskal spacetime.

The equations that define a generalized apparent horizon are non-linear elliptic

PDE. Thus, we intend to determine properties of the solutions of these equations

for slices sufficiently close to the time-symmetric slice of the Kruskal spacetime.

Since the outermost generalized apparent horizon in the time-symmetric slice is

the well-known bifurcation surface, we can exploit the implicit function theorem

to show that any solution of the linearized equation for the generalized apparent

horizon corresponds to the linearization of a solution of the non-linear problem

(Proposition 6.2.2). With this existence result at hand, we find a generalized ap-

parent horizon Ŝ which turns out to be located entirely inside the domain of outer

communications and which has area larger than 16πM2
ADM

, this violating (1.1).

This would give a counterexample to the Bray and Khuri conjecture provided Ŝ

is either the outermost generalized apparent horizon Sout or else, the latter has

not smaller area than the former one. Finally, we will prove that the area of Sout

is, indeed, at least as large as the area of Ŝ, which gives a counterexample to (1.1)
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(Theorem 6.1.1). It is important to remark that the existence of this counterex-

ample does not invalidate the approach given by Bray and Khuri in [19] to prove

the standard Penrose inequality but it does indicate that the emphasis must not

be on generalized apparent horizons. This result has been published in [27] and

[28].

Before going into our new results, we start with a preliminary chapter where

the fundamental definitions and results required to understand this thesis are

stated and briefly discussed. This chapter contains in particular, a detailed sketch

of the Bunting and Masood-ul-Alam method to prove uniqueness of electro-

vacuum static black holes. We have preferred to collect all the preliminary ma-

terial in one chapter to facilitate the reading of the thesis. We have also found it

convenient to include two mathematical appendices. One where some well-known

definitions of manifolds with boundary and topology are included (Appendix A)

and another one that collects a number of theorems in mathematical analysis

(Appendix B) which are used as tools in the main text.



Chapter 2

Preliminaries

2.1 Basic elements in a geometric theory of

gravity

The fundamental concept in any geometric theory of gravity is that of space-

time. A spacetime is a connected n-dimensional smooth differentiable man-

ifold M without boundary endowed with a Lorentzian metric g(n). All man-

ifolds considered in this thesis will be Hausdorff and paracompact (see Ap-

pendix A for the definitions). A Lorentzian metric is a metric with signature

(−,+,+, ...,+). The covariant derivative associated with the Levi-Civita connec-

tion of g(n) will be denoted by ∇(n) and the corresponding Riemann, Ricci and

scalar curvature tensors will be denoted by R
(n)
µναβ, R

(n)
µν and R(n), respectively

(where µ, ν, α, β = 0, ..., n − 1). We follow the sign conventions of [109]. We will

denote by TpM the tangent space to M at a point p ∈ M , by TM the tangent

bundle to M (i.e. the collection of the tangent spaces at every point of M) and

by X(M) the set of smooth sections of TM (i.e. vector fields on M).

Definition 2.1.1 According to the sign of its squared norm, a vector ~v ∈ TpM

is:

• Spacelike, if g
(n)
µν vµvν

∣
∣
∣
p

> 0.

• Timelike, if g
(n)
µν vµvν

∣
∣
∣
p

< 0.

• Null, if g
(n)
µν vµvν

∣
∣
∣
p

= 0.

• Causal, if g
(n)
µν vµvν

∣
∣
∣
p

≤ 0.

Definition 2.1.2 A spacetime (M, g(n)) is time orientable if and only if there

exists a vector field ~u ∈ X(M) which is timelike everywhere on M .

15
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Consider a time orientable spacetime (M, g(n)). A time orientation is a selec-

tion of a timelike vector field ~u which is declared to be future directed.

A time oriented spacetime is a time orientable spacetime after a time orienta-

tion has been selected.

In a time oriented manifold, causal vectors can be classified in two types:

future directed or past directed.

Definition 2.1.3 Let (M, g(n)) be a spacetime with time orientation ~u. Then, a

causal vector ~v ∈ TpM is

• future directed if g
(n)
µν uµvν

∣
∣
∣
p

≤ 0.

• past directed if g
(n)
µν uµvν

∣
∣
∣
p

≥ 0.

Throughout this thesis all spacetimes are oriented (see Definition A.6 in Ap-

pendix A) and time oriented.

General Relativity is a geometric theory of gravity in four dimensions in

which the spacetime metric g(4) satisfies the Einstein field equations, which in

geometrized units, G = c = 1 (where G is the Newton gravitational constant and

c is the speed of light in vacuum), takes the form:

G(4)
µν + Λg(4)

µν = 8πTµν , (2.1.1)

where G
(4)
µν is the so-called Einstein tensor, G

(n)
µν ≡ R

(n)
µν − 1

2
R(n)g

(n)
µν (in n dimen-

sions), Λ is the so-called cosmological constant and Tµν is the stress-energy tensor

which describes the matter contents of the spacetime. In such a framework, freely

falling test bodies are assumed to travel along the causal (timelike for massive

particles and null for massless particles) geodesics of the spacetime (M, g(4)).

Due to general physical principles, it is expected that many dynamical pro-

cesses tend to a stationary final state. Studying these stationary configurations is

therefore an essential step for understanding any physical theory. This is the case,

for example, in gravitational collapse processes in General Relativity which are

expected to settle down to a stationary system. Since the fundamental object in

gravity is the spacetime metric g(4), the existence of symmetries in the spacetime

is expressed in terms of a group of isometries, that is, diffeomorphisms of the

spacetime manifold M which leave the metric unchanged. The infinitesimal gen-

erator of the isometry group defines a so-called Killing vector field. Conversely,
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a Killing vector field defines a local isometry, i.e. a local group of diffeomor-

phisms, each of which is an isometry of (M, g(4)). If the Killing vector field is

complete then the local group is, in fact, a global group of isometries (or, simply,

an isometry). Throughout this thesis, we will mainly work at the local level with-

out assuming that the Killing vector fields are complete, unless otherwise stated.

More precisely, consider a spacetime (M, g(4)) and a vector field ~ξ ∈ X(M). The

Lie derivative L~ξ g
(4)
µν describes how the metric is deformed along the local group

of diffeomorphisms generated by ~ξ. We thus define the metric deformation

tensor associated to ~ξ, or simply deformation tensor, as

aµν(~ξ ) ≡ L~ξ g
(4)
µν = ∇µξν + ∇νξµ, (2.1.2)

where, throughout this thesis, ∇ will denote the covariant derivative of g(4). If

aµν(~ξ ) = 0, then the vector field ~ξ is a Killing vector field or simply a Killing

vector.

If the Killing field is timelike on some non-empty set, then the spacetime is called

stationary. If, furthermore, the Killing field is integrable, i.e.

ξ[µ∇νξα] = 0 (2.1.3)

where the square brackets denote anti-symmetrization, then the spacetime is

called static.

Other important types of isometries are the following. If the Killing field is

spacelike and the isometry group generated is U(1), then the spacetime has

a cyclic symmetry. If, furthermore, there exists a regular axis of symmetry,

then the spacetime is axisymmetric. If the isometry group is SO(3) with

orbits being spacelike 2-spheres (or points), then the spacetime is spherically

symmetric.

Other special forms of aµν(~ξ ) define special types of vectors which are also

interesting. In particular, aµν(~ξ ) = 2φg
(4)
µν (with φ being a scalar function) defines

a conformal Killing vector and aµν(~ξ ) = 2Cg
(4)
µν (with C being a constant)

corresponds to a homothety.

Regarding the matter contents of the spacetime, represented by Tµν , we will

not assume a priori any specific matter model, such as vacuum, electro-vacuum,

perfect fluid, etc. However, we will often restrict the class of models in such a way

that various types of so-called energy conditions are satisfied (c.f. Chapter 9.2 in

[109]). These are inequalities involving Tµν acting on certain causal vectors and

are satisfied by most physically reasonable matter models. In fact, since in General
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Relativity without cosmological constant, the Einstein equations impose G
(4)
µν =

8πTµν , these conditions can be stated directly in terms of the Einstein tensor. We

choose to define the energy conditions directly in terms of G
(4)
µν . This is preferable

because then all our results hold in any geometric theory of gravity independently

of whether the Einstein field equations hold or not. Obviously, these inequalities

are truly energy conditions only in specific theories as, for instance, General

Relativity with Λ = 0. Throughout this thesis, we will often need to impose the

so-called null energy condition (NEC).

Definition 2.1.4 A spacetime (M, g(4)) satisfies the null energy condition

(NEC) if the Einstein tensor G
(4)
µν satisfies G

(4)
µν kµkν |p ≥ 0 for any null vector

~k ∈ TpM and all p ∈M .

Other usual energy conditions are the weak energy condition and the dominant

energy condition (DEC).

Definition 2.1.5 A spacetime (M, g(4)) satisfies the weak energy condition

if the Einstein tensor G
(4)
µν satisfies that G

(4)
µν tµtν |p ≥ 0 for any timelike vector

~t ∈ TpM and all p ∈M .

Definition 2.1.6 A spacetime (M, g(4)) satisfies the dominant energy con-

dition (DEC) if the Einstein tensor G
(4)
µν satisfies that −G(4)ν

µt
µ|p is a future

directed causal vector for any future directed timelike vector ~t ∈ TpM and all

p ∈M .

Remark. Obviously, the DEC implies the NEC. �

2.2 Geometry of surfaces in Lorentzian spaces

2.2.1 Definitions

In this subsection we will motivate and introduce several types of surfaces, such

as trapped surfaces and marginally outer trapped surfaces, that will play an

important role in this thesis. We will also discuss several relevant known results

concerning them. For an extensive classification of surfaces in Lorentzian spaces,

see [104]. Let us begin with some previous definitions and notation.

In what follows, M and Σ are two smooth differentiable manifolds, Σ possibly

with boundary, with dimensions n and s, respectively, satisfying n ≥ s.
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Definition 2.2.1 Let Φ : Σ → M be a smooth map between Σ and M . Then Φ

is an immersion if it has maximum rank (i.e. rank(Φ) = s) at every point.

The set Φ(Σ) is then said to be immersed in M . However Φ(Σ) can fail to be

a manifold because it can intersect itself.

To avoid self-intersections, one has to consider injective immersions. In fact, we

will say that Φ(Σ) is a submanifold of M if Σ is injectively immersed in M .

All immersions considered in this thesis will be submanifolds. For simplicity, and

since no confusion usually arises, we will frequently denote by the same symbol

(Σ in this case) both the manifold Σ (as an abstract manifold) and Φ(Σ) (as a

submanifold). Similarly, and unless otherwise stated, we will use the same conven-

tion for contravariant tensors. More specifically, a contravariant tensor defined on

Σ and pushed-forward to Φ(Σ) will be usually denoted by the same symbol. No-

tice however that Φ(Σ) admits two topologies which are in general different: the

induced topology as a subset of M and the manifold topology defined by Φ from

Σ. When referring to topological concepts in injectively immersed submanifolds

we will always use the subset topology unless otherwise stated.

Next, we will define the first and the second fundamental forms of a subman-

ifold.

Definition 2.2.2 Consider a smooth manifold M endowed with a metric g(n)

and let Σ be a submanifold of M . Then, the first fundamental form of Σ is

the tensor field g on Σ defined as

g = Φ∗ (g(n)
)
,

where Φ∗ denotes the pull-back of the injective immersion Φ : Σ →M .

According to the algebraic properties of its first fundamental form, a subman-

ifold can be classified as follows.

Definition 2.2.3 A submanifold Σ of a spacetime M is:

• Spacelike if g is non-degenerate and positive definite.

• Timelike if g is non-degenerate and non-positive definite.

• Null if g is degenerate.

The following result is straightforward and well-known (see e.g. [92])
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Proposition 2.2.4 Let Σ be a submanifold of M . Then, the first fundamental

form g of Σ is non-degenerate (and, therefore, a metric) at a point p ∈ Σ if and

only if

TpM = TpΣ ⊕ (TpΣ)⊥, (2.2.1)

where (TpΣ)⊥ denotes the set of normal vectors to Σ at p.

We will denote (TpM)⊥ by NpM and we will call this set the normal space to Σ

at p. The collection of all normal spaces forms a vector bundle over Σ which is

called the normal bundle and is denoted by NΣ. From now on, unless otherwise

stated, we will only consider submanifolds satisfying (2.2.1) at every point. Let

us denote by ∇Σ the covariant derivative associated with g.

Next, consider two arbitrary vectors ~X, ~Y ∈ X(Σ). According to (2.2.1), the

derivative ∇(n)
~X
~Y , as a vector on TM , can be split according to

∇(n)
~X
~Y =

(

∇(n)
~X
~Y
)
T +

(

∇(n)
~X
~Y
)

⊥,

where the superindices T and ⊥ denote the tangential and normal parts with

respect to Σ. The following is an important result in the theory of submanifolds

[92].

Theorem 2.2.5 With the notation above, we have

(

∇(n)
~X
~Y
)
T = ∇Σ

~X
~Y .

The extrinsic geometry of the submanifold is encoded in its second fundamental

form.

Definition 2.2.6 The second fundamental form ~K of Σ in M is a symmetric

linear map ~K : X(Σ) × X(Σ) → NΣ defined by

~K( ~X, ~Y ) = −
(

∇(n)
~X
~Y
)

⊥,

for all ~X, ~Y ∈ X(Σ).

Remark. Our sign convention is such that the second fundamental form of a

2-sphere in the Euclidean 3-space points outwards. �

Definition 2.2.7 The mean curvature vector of Σ in M is defined as ~H ≡
trΣ

~K (where trΣ denotes the trace with the induced metric g on TpΣ for any

p ∈ Σ).
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Definition 2.2.8 We will define an embedding Φ as an injective immersion

such that Φ : Σ → Φ(Σ) is an homeomorphism with the topology on Φ(Σ) induced

from M . The image Φ(Σ) will be called an embedded submanifold.

Definition 2.2.9 A surface S is a smooth, orientable, codimension two, embed-

ded submanifold of M with positive definite first fundamental form γ.

From now on we will focus on 4-dimensional spacetimes (M, g(4)). For a surface

S ⊂M we have the following result.

Lemma 2.2.10 The normal bundle of S admits two vector fields
{

~l+,~l−

}

which

are null and future directed everywhere, and which form a basis of NS in TM at

every point p ∈ S.

Proof. Let p ∈ S and (Uα, ϕα) be any chart at p belonging to the positively

oriented atlas of M . Let us define {~l Uα+ ,~l Uα− } as the solution of the set of equations

g(4)(~l Uα± , ~eA)
∣
∣
∣
p

= 0, g(4)(~l Uα± ,~l Uα± )
∣
∣
∣
p

= 0,

g(4)(~l Uα+ ,~l Uα− )
∣
∣
∣
p

= −2, g(4)(~l Uα± , ~u)
∣
∣
∣
p

= −1, (2.2.2)

η(4)(~l Uα− ,~l Uα+ , ~e1, ~e2)
∣
∣
∣
p

> 0.

where the vectors {~eA} (A = 1, 2) are the coordinate basis in Uα, ~u is the timelike

vector which defines the time-orientation for the spacetime and η(4) is the volume

form of (M, g(4)). It is immediate to check that {~l Uα+ ,~l Uα− } exists and is unique.

The last equation is necessary in order to avoid the ambiguity ~l Uα+ ↔ ~l Uα− allowed

by the previous four equations.

The set {~l Uα+ ,~l Uα− } defines two vector fields if and only if this definition is

independent of the chart. Select any other positively oriented chart (Uβ, ϕβ) at p.

Let {~e′1, ~e′2} be the corresponding coordinate basis, which is related with {~e1, ~e2}
by e′A

µ = Aµνe
ν
A (A,B = 1, 2), where Aµν denotes the Jacobian. Since Uα and Uβ

belong to the positively oriented atlas, we have that detA > 0 everywhere.

The first four equations in (2.2.2) force that either ~l
Uβ
± = ~l Uα± or ~l

Uβ
± = ~l Uα∓ .

However, the second possibility would imply

η(4)(~l
Uβ
− ,~l

Uβ
+ , ~e′1, ~e′2)

∣
∣
∣
p

= (detA) η(4)(~l Uα+ ,~l Uα− , ~e1, ~e2)
∣
∣
∣
p

< 0,

which contradicts the fifth equation in (2.2.2) for Uβ. Consequently {~l+,~l−} does

not depend on the chart, which proves the result. �
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Remark. From now on we will take the vectors ~l+, ~l− to be partially

normalized to satisfy l+µl
µ
− = −2, as in the proof of the lemma. Note that these

vectors are then defined modulo a transformation ~l+ → F~l+, ~l− → 1
F
~l−, where F

is a positive function on S. �

For a surface S, ∇S will denote the covariant derivative associated with γ

and ~Π and ~H will denote the second fundamental form and the mean curvature

of S in M . The physical meaning of the causal character of ~H is closely related

to the first variation of area, which we briefly discuss next. Let ~ν be a normal

variation vector on S, i.e. a vector defined in a neighbourhood of S in M which,

on S, is orthogonal to S. Choose ~ν to be compactly supported on S (which

obviously places no restrictions when S itself is compact). The vector ~ν generates

a one-parameter local group {ϕτ}τ∈I of transformations where τ is the canonical

parameter and I ⊂ R is an interval containing τ = 0. We then define a one

parameter family of surfaces Sτ ≡ ϕτ (S), which obviously satisfies Sτ=0 = S. Let

|Sτ | denote the area of the surface Sτ . The formula of the first variation of area

states (see e.g. [35])

δ~ν |S| ≡
d|Sτ |
dτ

∣
∣
∣
∣
τ=0

=

∫

S

Hµν
µηS. (2.2.3)

Remark. It is important to indicate that, when S is boundaryless, expression

(2.2.3) holds regardless of whether the variation ~ν is normal or not. This formula

is valid for any dimensions of M and S, provided dimM > dimS. �

The first variation of area justifies the definition of a minimal surface as fol-

lows.

Definition 2.2.11 A surface S is minimal if and only if ~H = 0.

According to (2.2.3), if ~H is timelike and future directed (resp. past directed)

everywhere on S, then the area of S will decrease along any non-zero causal future

(resp. past) direction. If a surface is such that its area does not increase for any

future variation, one may say that the surface is, in some sense, trapped. Thus,

according to the previous discussion, we find that the trappedness of a surface

is intimately related with the causal character and time orientation of its mean

curvature vector ~H. In what follows, we will introduce various notions of trapped

surface. For that, it will be useful to consider a null basis {~l+,~l−} for the normal

bundle of S in M , as before. Then, the mean curvature vector decomposes as

~H = −1

2

(

θ−~l+ + θ+~l−

)

, (2.2.4)
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where θ+ ≡ l+
µHµ and θ− ≡ l−

µHµ are the null expansions of S along ~l+ and
~l−, respectively. It is worth to remark that these null expansions θ± are equal

to the divergence on S of light rays (i.e. null geodesics) emerging orthogonally

from S along ~l±. Thus, the negativity of both θ+ and θ− indicates the presence

of strong gravitational fields which bend the light rays sufficiently so that both

are contracting.

Thus, this leads to various concepts of trapped surfaces, as follows.

Definition 2.2.12 A closed (i.e. compact and without boundary) surface is a:

• Trapped surface if θ+ < 0 and θ− < 0. Or equivalently, if ~H is timelike

and future directed.

• Weakly trapped surface if θ+ ≤ 0 and θ− ≤ 0. Or equivalently, if ~H is

causal and future directed.

• Marginally trapped surface if either, θ+ = 0 and θ− ≤ 0 everywhere,

or, θ+ ≤ 0 and θ− = 0 everywhere. Equivalently, if ~H is future directed and

either proportional to ~l+ or proportional to ~l− everywhere.

If the signs of the inequalities are reversed then we have trappedness along

the past directed causal vectors orthogonal to S. Thus,

Definition 2.2.13 A closed surface is a:

• Past trapped surface if θ+ > 0 and θ− > 0. Or equivalently if ~H is

timelike and past directed.

• Past weakly trapped surface if θ+ ≥ 0 and θ− ≥ 0. Or equivalently if
~H is causal and past directed.

• Past marginally trapped surface if either, θ+ = 0 and θ− ≥ 0 every-

where, or θ+ ≥ 0 and θ− = 0 everywhere. Equivalently, ~H is past directed

and either proportional to ~l+ or proportional to ~l− everywhere.

We also define “untrapped” surface as a kind of strong complementary of the

above.

Definition 2.2.14 A closed surface is untrapped if θ+θ− < 0, or equivalently

if ~H is spacelike everywhere.



24 2.2. Geometry of surfaces in Lorentzian spaces

Notice that, according to these definitions, a closed minimal surface is both

weakly trapped and marginally trapped, as well as past weakly trapped and past

marginally trapped.

Because of their physical meaning as indicators of strong gravitational fields,

trapped surfaces are widely considered as good natural quasi-local replacements

for black holes. Let us briefly recall the definition of a black hole which, as already

mentioned in the Introduction, involves global hypotheses in the spacetime. First,

it requires a proper definition of asymptotic flatness in terms of the conformal

compactification of the spacetime (see e.g. Chapter 11 of [109]). Besides, it also

requires that the spacetime is strongly asymptotically predictable, (see Chapter

12 of [109] for a precise definition). A strongly asymptotically predictable space-

time (M, g(4)) is then said to contain a black hole if M is not contained in the

causal past of future null infinity J−(I +). The black hole region B is defined

as B = M \J−(I +). The topological boundary HB of B in M is called the event

horizon. Similarly, we can define the white hole region W as the complemen-

tary of the causal future of past null infinity, i.e. M \ J+(I −), and the white

hole event horizon HW as its topological boundary. Finally, the domain of

outer communications is defined as MDOC ≡ J−(I +)∩J+(I −). Hawking and

Ellis show (see Chapter 9.2 in [63]) that weakly trapped surfaces lie inside the

black hole region in a spacetime provided this spacetime is future asymptotically

predictable. However, as we already pointed out in the Introduction, the study of

trapped surfaces is specially interesting when no global assumptions are imposed

on the spacetime and the concept of black hole is not available. It is worth to

remark that trapped surfaces are also fundamental ingredients in several versions

of singularity theorems of General Relativity (see e.g. Chapter 9 in [109]).

Note that all the surfaces introduced above are defined by restricting both

null expansions θ+ and θ−. When only one of the null expansions is restricted,

other interesting types of surfaces are obtained: the outer trapped surfaces, which

will be the fundamental objects of this thesis.

Again, consider a surface S. Suppose that for some reason one of the future null

directions can be geometrically selected so that it points into the “outer” direction

of S (shortly, we will find a specific setting where this selection is meaningful).

In that situation we will always denote by ~l+ the vector pointing along this outer

null direction. We will say that ~l+ is the future outer null direction, and similarly,
~l− will be the future inner null direction. We define the following types of surfaces

(c.f. Figure 2.1).

Definition 2.2.15 A closed surface is:
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• Outer trapped if θ+ < 0.

• Weakly outer trapped if θ+ ≤ 0.

• Marginally outer trapped (MOTS) if θ+ = 0.

• Outer untrapped if θ+ > 0.

p

~l+
~l−

Figure 2.1: This figure represents the normal space to S in M at a point p ∈ S.

If S is outer trapped, the mean curvature vector ~H points into the shaded region.

If S is a MOTS, ~H points into the direction of the bold line.

As before, these definitions depend on the time orientation of the spacetime.

If the time orientation is reversed but the notion of outer is unambiguous, then

−~l− becomes the new future outer null direction. Since the null expansion of −~l−
is −θ−, the following definitions become natural (c.f. Figure 2.2).

Definition 2.2.16 A closed surface is:

• Past outer trapped if θ− > 0.

• Past weakly outer trapped if θ− ≥ 0.

• Past marginally outer trapped (past MOTS) if θ− = 0.

• Past outer untrapped if θ− < 0.

As for weakly trapped surfaces, weakly outer trapped surfaces are always in-

side the black hole region provided the spacetime is strongly asymptotically pre-

dictable. In fact, in one of the simplest dynamical situations, namely the Vaidya
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p

~l+~l−

Figure 2.2: On the normal space NpS for any point p ∈ S, the mean curvature

vector ~H points into the shaded region if S is past outer trapped, and into the

direction of the bold line if S is a past MOTS.

spacetime, Ben-Dov has proved [13] that the event horizon is the boundary of the

spacetime region containing weakly outer trapped surfaces. On the other hand,

Bengtsson and Senovilla have shown [14] that the spacetime region containing

weakly trapped surfaces does not extend to the event horizon. This result sug-

gests that the concept of weakly outer trapped surface does capture the essence

of a black hole better than that of weakly trapped surface.

Two other interesting classes of surfaces that also depend on a choice of outer

direction are the so-called generalized trapped surfaces and its marginal case,

generalized apparent horizons. They were specifically introduced by Bray and

Khuri while studying a new approach to prove the Penrose inequality [19].

Definition 2.2.17 A closed surface is a:

• Generalized trapped surface if θ+|
p
≤ 0 or θ−|

p
≥ 0 at each point

p ∈ S.

• Generalized apparent horizon if either θ+|
p

= 0 with θ−|
p
≤ 0 or

θ−|
p

= 0 with θ+|
p
≥ 0 at each point p ∈ S.

It is clear from Figures 2.1, 2.2 and 2.3 that the set of generalized trapped

surfaces includes both the set of weakly outer trapped surfaces and the set of past

weakly outer trapped surfaces as particular cases.

In this thesis we will often consider surfaces embedded in a spacelike hyper-

surface Σ ⊂M . For this reason, it will be useful to give a (3+1) decomposition of
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p

~l+~l−

Figure 2.3: This figure represents the normal space of a surface S in M at a point

p ∈ S. For generalized trapped surfaces, the mean curvature vector ~H points into

the shaded region. For generalized apparent horizons, ~H points into the direction

of the bold line.

the null expansions and to reformulate the previous definitions in terms of objects

defined directly on Σ.

A hypersurface Σ of M is an embedded, connected submanifold, possibly with

boundary, of codimension 1. Let us consider a spacelike hypersurface Σ of M and

denote by g its induced metric, by ~K its second fundamental form and by K the

scalar second fundamental form, defined as K( ~X, ~Y ) = −n( ~K( ~X, ~Y )), where n

is the unit, future directed, normal 1-form to Σ and ~X, ~Y ∈ X(Σ).

Consider a surface S embedded in (Σ, g,K) As before, we denote by γ, ~Π

and ~H the induced metric, the second fundamental form and the mean curvature

vector of S as a submanifold of (M, g(4)), respectively. As a submanifold of Σ, S

will also have a second fundamental form ~κ and a mean curvature vector ~p. From

their definitions, we immediately have

~Π( ~X, ~Y ) = ~K( ~X, ~Y ) + ~κ( ~X, ~Y ),

where ~X, ~Y ∈ X(S). Taking trace on S we find

~H = ~p+ γAB ~KAB, (2.2.5)

where ~KAB is the pull-back of ~Kij (i, j = 1, 2, 3) onto S. Assume that an outer

null direction ~l+ can be selected on S. Then, after a suitable rescaling of ~l+ and
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~l−, we can define ~m univocally on S as the unit vector tangent to Σ which satisfies

~l+ = ~n+ ~m, (2.2.6)

~l− = ~n− ~m. (2.2.7)

By construction, ~m is normal to S in Σ and will be denoted as the outer normal.

Multiplying (2.2.5) by ~l+ and by ~l− we find

θ± = ±p+ q, (2.2.8)

where p ≡ pim
i and q ≡ γABKAB. All objects in (2.2.8) are intrinsic to Σ. This

allows us to reformulate the definitions above in terms of p and q. The following

table summarizes the types of surfaces mostly used in this thesis.

Outer trapped surface p < −q
Weakly outer trapped surface p ≤ −q
Marginally outer trapped surface (MOTS) p = −q
Outer untrapped surface p > −q
Past outer trapped surface p < q

Past weakly outer trapped surface p ≤ q

Past marginally outer trapped surface (past MOTS) p = q

Past outer untrapped surface p > q

Generalized trapped surface p ≤ |q|
Generalized apparent horizon p = |q|

Table I: Definitions of various types of trapped surfaces in terms of the mean

curvature p of S ⊂ Σ and the trace q on S of the second fundamental form of Σ

in M .

Having defined the main types of surfaces used in this thesis, let us next

consider the important concept of stability of a MOTS.

2.2.2 Stability of marginally outer trapped surfaces

(MOTS)

Let us first recall the concept of stability for minimal surfaces. Let S be a closed

minimal surface embedded in a Riemannian 3-dimensional manifold (Σ, g). From

(2.2.3), S is an extremal of area for all variations (normal or not). In order to

study whether this extremum is a minimum, a maximum or a saddle point, it
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is necessary to analyze the second variation of area. A minimal surface is called

stable if the second variation of area is non-negative for all smooth variations.

This definition becomes operative once an explicit form for the second variation

is obtained. For closed minimal surfaces the crucial object is the so-called stability

operator, defined as follows. Consider a variation vector ψ~m normal to S within Σ.

Let us denote by a sub-index τ the magnitudes which correspond to the surfaces

Sτ = ϕτ (S) (where, as before, {ϕτ}τ∈I⊂R denotes the one-parameter local group

of transformations generated by any vector ~ν satisfying ~ν|S = ψ~m). For any

covariant tensor Γ defined on S, let us define the variation of Γ along ψ~m as

δψ~mΓ ≡ d
dτ

[ϕ∗
τ (Γτ )]

∣
∣
τ=0

, where ϕ∗
τ denotes the pull-back of ϕτ (this definition

does not depend on the extension of the vector ψ~m outside S). The stability

operator Lmin~m is then defined as

Lmin~m ψ ≡ δψ~mp = −∆Sψ − (RΣ
ijm

imj + κijκ
ij)ψ, (2.2.9)

where ∆S = ∇S
A∇SA is the Laplacian on S and RΣ

ij denotes the Ricci tensor of

(Σ, g). The second equality follows from a direct computation (see e.g. [35]).

In terms of the stability operator, the formula for the second variation of area

of a closed minimal surface is given by

δ2
ψ~m|S| =

∫

S

ψLmin~m ψηS.

The operator Lmin~m is linear, elliptic and formally self-adjoint (see Appendix

B for the definitions). Being self-adjoint implies that the principal eigenvalue λ

can be represented by the Rayleigh-Ritz formula (B.2), and therefore the second

variation of area can be bounded according to

δ2
ψ~m|S| ≥ λ

∫

S

ψ2ηS,

where equality holds when ψ is a principal eigenfunction (i.e. an eigenfunction

corresponding to λ). This implies that δ2
ψ~m|S| ≥ 0 for all smooth variations is

equivalent to λ ≥ 0. Thus, a minimal surface is stable if and only if λ ≥ 0.

A related construction can be performed for MOTS. Consider a MOTS S

embedded in a spacelike hypersurface Σ of a spacetime M . As embedded sub-

manifolds of Σ, MOTS are not minimal surfaces in general. Consequently, any

connection between stability and the second variation of area is lost. However,

the stability for minimal surfaces involves the sign of the variation δψ~mp (see

(2.2.9)), so it is appropriate to define stability of MOTS in terms of the sign of

first variations of θ+.
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A formula for the first variation of θ+ was derived by Newman in [90] for

arbitrary immersed spacelike submanifolds. The derivation was simplified by An-

dersson, Mars and Simon in [3].

Lemma 2.2.18 Consider a surface S embedded in a spacetime (M, g(4)). Let

{~l+,~l−} be a future directed null basis in the normal bundle of S in M , partially

normalized to satisfy l+µl
µ
− = −2. Any variation vector ~ν can be decomposed on

S as ~ν = ~ν ‖ + b~l+ − u
2
~l−, where ~ν ‖ is tangent to S and b and u are functions on

S. Then,

δ~νθ
+ = −θ

+

2
l−
µδ~νl+µ + ~ν ‖(θ+) − b

(
Πµ

ABΠνABl+µl+ν +Gµνl+
µl+

ν
)
− ∆Su

+2sA∇S
Au+

u

2

(
RS −H2 −Gµνl+

µl−
ν − 2sAs

A + 2∇S
As

A
)
, (2.2.10)

where RS denotes the scalar curvature of S, H2 = HµH
µ and sA = −1

2
l−µ∇~eAl+

µ,

with {~eA} being a local basis for TS.

Expression (2.2.10) can be particularized when the variation is restricted to

Σ, i.e. when ~ν = ψ~m for an arbitrary function ψ. Writing ~l± = ~n± ~m as before,

we have ~ν = ψ
2
(~l+ − ~l−) and hence ~ν ‖ = 0, b = ψ

2
, u = ψ. As a consequence of

Lemma 2.2.18 we have the following [3].

Definition 2.2.19 The stability operator L~m for a MOTS S is defined by

L~mψ ≡ δψ~mθ
+ = −∆Sψ + 2sA∇S

Aψ +

(
1

2
RS − Y − sAs

A + ∇S
As

A

)

ψ, (2.2.11)

where

Y ≡ 1

2
Πµ
ABΠνABl+µl+ν +Gµνl

µ
+n

ν . (2.2.12)

Remark. In terms of objects on Σ, a simple computation using ~l± = ~n ± ~m

shows that sA = miejAKij. �

If we consider a variation along ~l+, then (2.2.10) implies that, on a MOTS,

δψ~l+θ
+ = −ψW, (2.2.13)

where

W = Πµ
ABΠνABl+µl+ν +Gµνl

µ
+l
ν
+. (2.2.14)

This is the well-known Raychaudhuri equation for a MOTS (see e.g. [109]).
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Note that W is non-negative provided the NEC holds and Y is non-negative

if the DEC holds (recall that ~n is timelike).

The operator L~m is linear and elliptic which implies that it has a discrete

spectrum. However, due to the presence of a first order term, it is not formally self-

adjoint (see Appendix B) in general. Nevertheless, it is still true (c.f. Lemma (B.5

in Appendix B)) that there exists an eigenvalue λ with smallest real part. This

eigenvalue is called the principal eigenvalue and it has the following properties:

1. It is real.

2. Its eigenspace (the set of smooth real functions ψ on S satisfying L~mψ = λψ)

is one-dimensional.

3. An eigenfunction ψ of λ vanishes at one point p ∈ S if and only if it vanishes

everywhere on S (i.e. the principal eigenfunctions do not change sign).

The stability of minimal surfaces could be rewritten in terms of the sign of the

principal eigenvalue of its stability operator. In [2], [3] the following definition of

stability of MOTS is put forward.

Definition 2.2.20 A MOTS S ⊂ Σ is stable in Σ if the principal eigenvalue λ

of the stability operator L~m is non-negative. S is strictly stable in Σ if λ > 0.

For simplicity, since no confusion will arise, we will refer to stability in Σ

simply as stability.

For stable MOTS, there is no scalar quantity which is non-decreasing for

arbitrary variations, like the area for stable minimal surfaces. However, in the

minimal surface case, the formula

< φ,ψ >L2 λ =< Lmin~m φ, ψ >L2=< φ,Lmin~m ψ >L2 ,

where φ is a principal eigenfunction of Lmin~m , implies that if there exists a positive

variation ψ~m for which δψ~mp ≥ 0, then λ ≥ 0 and the minimal surface is stable.

A similar result can be proven for MOTS [3]:

Proposition 2.2.21 Let S ⊂ Σ be a MOTS. Then S is stable if and only if there

exists a function ψ ≥ 0, ψ 6≡ 0 on S such that δψ~mθ
+ ≥ 0. Furthermore, S is

strictly stable if and only if, in addition, δψ~mθ
+ 6≡ 0.

Remark. For the case of past MOTS simply change ~n → −~n, ~l+ → −~l−,
~l− → −~l+, sA → −sA and θ+ → −θ− in equations (2.2.11), (2.2.12), (2.2.13),
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(2.2.14) and, also, in Proposition 2.2.21. �

Thus, Proposition 2.2.21 tells us that a (resp. past) MOTS S is strictly stable

if and only if there exists an outer variation with strictly increasing (resp. de-

creasing) θ+ (resp. θ−). This suggests that the presence of surfaces with negative

θ+ (resp. positive θ−) outside S may be related with the stability property of S.

This can be made precise by introducing the following notion.

Definition 2.2.22 A (resp. past) MOTS S ⊂ Σ is locally outermost if there

exists a two-sided neighbourhood of S on Σ whose exterior part does not contain

any (resp. past) weakly outer trapped surface.

The following proposition gives the relation between these concepts [2].

Proposition 2.2.23

1. A strictly stable MOTS (or past MOTS) is necessarily locally outermost.

2. A locally outermost MOTS (or past MOTS) is necessarily stable.

3. None of the converses is true in general.

2.2.3 The trapped region

In this section we will extend the notion of locally outermost to a global concept

and state a theorem by Andersson and Metzger [4] on the existence, uniqueness

and regularity of the outermost MOTS on a spacelike hypersurface Σ. We will

also see that an analogous result holds for the outermost generalized apparent

horizon (Eichmair, [51]). Both results will play a fundamental role throughout

this thesis.

The result by Andersson and Metzger is local in the sense that it works for

any compact spacelike hypersurface Σ with boundary ∂Σ as long as the boundary

∂Σ splits in two disjoint non-empty components ∂Σ = ∂−Σ ∪ ∂+Σ. Neither of

these components is assumed to be connected a priori. Andersson and Metzger

deal with surfaces which are bounding with respect to the boundary ∂+Σ which

plays the role of outer untrapped barrier. Both concepts are defined as follows.

Definition 2.2.24 Consider a spacelike hypersurface Σ possibly with boundary.

A closed surface Sb ⊂ Σ is a barrier with interior Ωb if there exists a manifold

with boundary Ωb which is topologically closed and such that ∂Ωb = Sb
⋃∪

a
(∂Σ)a,

where ∪
a
(∂Σ)a is a union (possibly empty) of connected components of ∂Σ.
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Remark. For simplicity, when no confusion arises, we will often refer to a

barrier Sb with interior Ωb simply as a barrier Sb. �

The concept of a barrier will give us a criterion to define the exterior and the

interior of a special type of surfaces called bounding. More precisely,

Definition 2.2.25 Consider a spacelike hypersurface Σ possibly with boundary

with a barrier Sb with interior Ωb. A surface S ⊂ Ωb \ Sb is bounding with

respect to the barrier Sb if there exists a compact manifold Ω ⊂ Ωb with

boundary such that ∂Ω = S ∪ Sb. The set Ω \ S will be called the exterior of S

in Ωb and (Ωb \ Ω) ∪ S the interior of S in Ωb.

Remark. Note that a surface S which is bounding with respect to a barrier

Sb is always disjoint to Sb and that its exterior is always not empty. Again, for

simplicity and when no confusion arises, we will often refer to a surface which

is bounding with respect a barrier simply as a bounding surface. Notice that, in

the topology of Ωb, the exterior of a bounding surface S in Ωb is topologically

open (because for every point p ∈ ∂Ωb there exists an open set U ⊂ Ωb such that

p ∈ U), while its interior is topologically closed. For graphic examples of surfaces

which are bounding with respect to a barrier see figures 2.4 and 2.5. �

The concept of bounding surface allows for a meaningful definition of outer

null direction. For that, define the vector ~m as the unit vector normal to S in

Σ which points into the exterior of S in Ωb. For Sb, ~m will be taken to point

outside of Ωb. Then, we will select the outer and the inner null vectors, ~l+ and
~l− as those null vectors orthogonal to S or Sb which satisfy equations (2.2.6) and

(2.2.7), respectively.

Definition 2.2.26 Given two surfaces S1 and S2 which are bounding with respect

to a barrier Sb, we will say that S1 encloses S2 if the exterior of S2 contains the

exterior of S1.

Definition 2.2.27 A (past) MOTS S ⊂ Σ which is bounding with respect to a

barrier Sb is outermost if there is no other (past) weakly outer trapped surface

in Σ which is bounding with respect to Sb and enclosing S.

Since bounding surfaces split Ωb into an exterior and an interior region, it is

natural to consider the points inside a bounding weakly outer trapped surface S

as “trapped points”. The region containing trapped points is called weakly outer
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Sb

∂Σ

S1

S2

Ωb

Ω1

Figure 2.4: In this graphic example, the surface Sb (in red) is a barrier with

interior Ωb (in grey). The surface S1 is bounding with respect to Sb with Ω1 (the

stripped area) being its exterior in Ωb. The surface S2 fails to be bounding with

respect to Sb because its “exterior” would contain ∂Σ.

trapped region and will be essential for the formulation of the result by Andersson

and Metzger. More precisely,

Definition 2.2.28 Consider a spacelike hypersurface containing a barrier Sb

with interior Ωb. The weakly outer trapped region T+ of Ωb is the union

of the interiors of all bounding weakly outer trapped surfaces in Ωb.

Analogously,

Definition 2.2.29 The past weakly outer trapped region T− of Ωb is the

union of the interiors of all bounding past weakly outer trapped surfaces in Ωb.

The fundamental result by Andersson and Metzger, which will be an impor-

tant tool in this thesis, reads as follows.

Theorem 2.2.30 (Andersson, Metzger, 2009 [4]) Consider a compact

spacelike hypersurface Σ̃ with boundary ∂Σ̃. Assume that the boundary can be

split in two non-empty disjoint components ∂Σ̃ = ∂−Σ̃ ∪ ∂+Σ̃ (neither of which

are necessarily connected) and take ∂+Σ̃ as a barrier with interior Σ̃. Suppose

that θ+[∂−Σ̃] ≤ 0 and θ+[∂+Σ̃] > 0 (with respect to the outer normals defined
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~m

~m
~m

∂+Σ

∂−Σ

S1

S2

Σ

S3

Figure 2.5: A manifold Σ with boundary ∂Σ = ∂−Σ ∪ ∂+Σ. The boundary ∂+Σ

is a barrier whose interior coincides with Σ. The surface S1 is bounding with

respect to ∂+Σ, while S2 and S3 fail to be bounding. The figure also shows the

outer normal ~m as defined in the text.

above). Then the topological boundary ∂topT+ of the weakly outer trapped region

of Σ̃ is a smooth MOTS which is bounding with respect to ∂+Σ̃ and stable.

Remark. Since no bounding MOTS can penetrate into the exterior of ∂topT+,

by definition, this theorem shows the existence, uniqueness and smoothness

of the outermost bounding MOTS in a compact hypersurface. Note also that

another consequence of this result is the fact that the set T+ is topologically

closed (because it is the interior of the bounding surface ∂topT+). �

The proof of this theorem uses the Gauss-Bonnet Theorem in several places

and, therefore, this result is valid only in (3+1) dimensions.

If we reverse the time orientation of the spacetime, an analogous result for the

topological boundary of the past weakly outer trapped region T− follows. Indeed,

if the hypotheses on the sign of the outer null expansion of the components of

∂Σ̃ are replaced by θ−[∂−Σ̃] ≥ 0 and θ−[∂+Σ̃] < 0 then the conclusion is that

∂topT− is a smooth past MOTS which is bounding with respect to ∂+Σ̃ and stable.

As we mentioned before, a similar result for the existence of the outermost

generalized apparent horizon also exists. It has been recently obtained by Eich-

mair [51].

Theorem 2.2.31 (Eichmair, 2009 [51]) Let (Σ̃, g,K) be a compact n-

dimensional spacelike hypersurface in an (n+1)-dimensional spacetime, with 3 ≤
n ≤ 7 and boundary ∂Σ̃. Assume that the boundary can be split in two non-empty

disjoint components ∂Σ̃ = ∂−Σ̃∪∂+Σ̃ (neither of which are necessarily connected)
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and take ∂+Σ̃ as a barrier with interior Σ̃. Suppose that the inner boundary ∂−Σ̃

is a generalized trapped surface, and the outer boundary satisfies p > |q| with

respect to the outer normals defined above.

Then there exists a unique C2,α (i.e. belonging to the Hölder space C2,α, with

0 < α ≤ 1, see Appendix B) generalized apparent horizon S which is bounding

with respect to ∂+Σ̃ and outermost (i.e. there is no other bounding generalized

trapped surface in Σ̃ enclosing S). Moreover, S has smaller area than any other

surface enclosing it.

The proof of this result does not use the Gauss-Bonnet theorem or any other

specific property of 3-dimensional spaces, so it not restricted to (3+1) dimensions.

However, it is based on regularity of minimal surfaces, which implies that the di-

mension of Σ̃ must be at most seven (in higher dimensions minimal hypersurfaces

need not be regular everywhere, see e.g. [57]).

The area minimizing property of the outermost bounding generalized appar-

ent horizon makes this type of surfaces potentially interesting for the Penrose

inequality, as we will discuss in the next section.

2.3 The Penrose inequality

The Penrose inequality involves the concept of the total ADM mass of a spacetime,

so we start with a brief discussion about mass in General Relativity.

The notion of energy in General Relativity is not as clear as in other physical

theories. The energy-momentum tensor Tµν represents the matter contents of a

spacetime and therefore should contribute to the total energy of a spacetime.

However, the gravitational field, represented by the metric tensor g(4), must also

contribute to the total energy of the spacetime. In agreement with the Newtonian

limit, a suitable gravitational energy density should be an expression quadratic

in the first derivatives of the metric g(4). However, since at any point we can

make the metric to be Minkowskian and the Christoffel symbols to vanish, there

is no non-trivial scalar object constructed from the metric and its first derivatives

alone. Therefore, a natural notion of energy density in General Relativity does not

exist. The same problem is also found in any other geometric theory of gravity.

Nevertheless, there does exist a useful notion of the total energy in the so-called

asymptotically flat spacetimes.

The term asymptotic flatness was introduced in General Relativity to express

the idea of a spacetime corresponding to an isolated system. It involves restric-
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tions on the spacetime “far away” form the sources. There are several notions of

asymptotic flatness according to the type of infinity considered (see e.g. Chapter

11.1 of [109]), namely limits along null directions (null infinity) or limits along

spacelike directions (spacelike infinity). The idea is to define the mass as inte-

grals in the asymptotic region where the gravitational field is sufficiently weak

so that integrals become meaningful (i.e. independent of the coordinate system).

According to the type of infinity considered there are two different concepts:

the Bondi energy-momentum where the integral is taken at null infinity and the

ADM energy-momentum where the integral is taken at spatial infinity. Both are

vectors in a suitable four dimensional vector space and transform as a Lorentz

vector under suitable transformations. Moreover, the Lorentz length of this vector

is either a conserved quantity upon evolution (ADM) or monotonically decreas-

ing in advanced time (Bondi). An interesting and more precise discussion about

the definitions of both Bondi and ADM energy-momentum tensors can be found

in Chapter 11.2 of [109]. Because of its relation with the Penrose inequality we

are specially interested in the ADM energy-momentum. To make these concepts

precise we need to define first asymptotic flatness for spacelike hypersurfaces.

Definition 2.3.1 An asymptotically flat end of a spacelike hypersurface

(Σ, g,K) is a subset Σ∞
0 ⊂ Σ which is diffeomorphic to R

3 \ BR, where BR is

an open ball of radius R. Moreover, in the Cartesian coordinates {xi} induced by

the diffeomorphism, the following decay holds

gij − δij = O(2)(1/r), Kij = O(2)(1/r2), (2.3.1)

where r = |x| =
√
xixjδij.

Here, a function f(xi) is said to be O(k)(rn), k ∈ N ∪ {0} if f(xi) = O(rn),

∂jf(xi) = O(rn−1) and so on for all derivatives up to and including the k-th ones.

Definition 2.3.2 A spacelike hypersurface (Σ, g,K), possibly with boundary, is

asymptotically flat if Σ = K ∪ Σ∞, where K is a compact set and Σ∞ = ∪
a
Σ∞
a

is a finite union of asymptotically flat ends Σ∞
a .

Definition 2.3.3 Consider a spacelike hypersurface (Σ, g,K) with a selected

asymptotically flat end Σ∞
0 . Then, the ADM energy-momentum PADM associated

with Σ∞
0 is defined as the spacetime vector with components

PADM0 = EADM ≡ lim
r→∞

1

16π

3∑

j=1

∫

Sr

(∂jgij − ∂igjj) dS
i, (2.3.2)

PADM i = pADM i ≡ lim
r→∞

1

8π

∫

Sr

(Kij − gijtrK) dSj, (2.3.3)
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where {xi} are the Cartesian coordinates induced by the diffeomorphism which

defines the asymptotically flat end, Sr is the surface at constant r and dSi = midS

with ~m being the outward unit normal and dS the area element.

The quantity EADM is called the ADM energy while pADM the ADM spatial

momentum.

Definition 2.3.4 The ADM mass is defined as

MADM =
√

E2
ADM

− δijPADM iPADM j.

A priori, these definitions depend on the choice of the coordinates {xi}. How-

ever, the decay in g and K at infinity implies that PADM is indeed a geometric

quantity provided G
(4)
µνnµ decays as 1/r4 at infinity [5]. The notion of ADM mass

is in fact independent of the coordinates as long as the decay (2.3.1) is replaced

by

gij − δij = O(2)(1/rα), Kij = O(1)(1/r1+α), (2.3.4)

with α > 1
2

[8].

A fundamental property of the ADM energy-momentum is its causal charac-

ter. The Positive Mass Theorem (PMT) of Schoen and Yau [102] (also proven by

Witten [111] using spinors) establishes that the ADM energy is non-negative and

the ADM mass is real (c.f. Section 8.2 of [107] for further details). More precisely,

Theorem 2.3.5 (Positive mass theorem (PMT), Schoen, Yau, 1981)

Consider an asymptotically flat spacelike hypersurface (Σ, g,K) without boundary

satisfying the DEC. Then the total ADM energy-momentum ~PADM is a future

directed causal vector. Furthermore, ~PADM = 0 if and only if (Σ, g,K) is a slice

of the Minkowski spacetime.

The global conditions required for the PMT were relaxed in [9] where Σ was

allowed to be complete and contain an asymptotically flat end instead of being

necessarily asymptotically flat (see Theorem 2.4.12 below). The PMT has also

been extended to other situations of interest. Firstly, it holds for spacelike hy-

persurfaces admitting corners on a surface, provided the mean curvatures of the

surface from one side and the other satisfy the right inequality [85]. It has also

been proved for spacelike hypersurfaces with boundary provided this boundary

is composed by either future or past weakly outer trapped surfaces [55]. Since

future weakly outer trapped surfaces are intimately related with the existence of

black holes (as we have already pointed out above), this type of PMT is usually
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referred to as PMT for black holes. Having introduced these notions we can now

describe the Penrose inequality.

During the seventies, Penrose [95] conjectured that the total ADM mass of a

spacetime containing a black hole that settles down to a stationary state must

satisfy the inequality

MADM ≥
√

|H |
16π

, (2.3.5)

where |H | is the area of the event horizon at one instant of time. Moreover, equal-

ity happens if and only if the spacetime is the Schwarzschild spacetime. The plau-

sibility argument by Penrose goes as follows [95]. Assume a spacetime (M, g(4))

which is globally well-behaved in the sense of being strongly asymptotically pre-

dictable and admitting a complete future null infinity I + (see [109] for defini-

tions). Suppose that M contains a non-empty black hole region. The black hole

event horizon HB is a null hypersurface at least Lipschitz continuous. Next, con-

sider a spacelike Cauchy hypersurface Σ ⊂M (see e.g. Chapter 8 of [109] for the

definition of a Cauchy hypersurface) with ADM massMADM . Clearly HB and Σ in-

tersect in a two-dimensional Lipschitz manifold. This represents the event horizon

at one instant of time. Let us denote by H this intersection and by |H | its area

(the manifold is almost everywhere C1 so the area makes sense). Consider now any

other cut H1 lying in the causal future of H . The black hole area theorem [61],

[62], [42] states that |H1| ≥ |H | provided the NEC holds. Physically, it is reason-

able to expect that the spacetime settles down to some vacuum equilibrium config-

uration (if an electromagnetic field is present, the conclusions would be essentially

the same). Then, the uniqueness theorems for stationary black holes (which hold

under suitable assumptions [41], [48]) imply that the spacetime must approach

the Kerr spacetime. In the Kerr spacetime the area of any cut of the event horizon

HKerr takes the value |HKerr| = 8πMKerr

(

MKerr +
√

MKerr
2 + L2

Kerr/MKerr
2

)

where MKerr and LKerr are respectively the total mass and the total angular

momentum of the Kerr spacetime (the angular momentum can be defined also

as a suitable integral at infinity). This means that MKerr is the asymptotic value

of the Bondi mass along the future null infinite I +. Assuming that the Bondi

mass tends to the MADM of the initial slice, inequality (2.3.5) follows because the

Bondi mass cannot increase along the evolution. Moreover, equality holds if and

only if Σ is a slice of the Kruskal extension of the Schwarzschild spacetime.

It is important to remark than inequality (2.3.5) is global in the sense that,

in order to locate the cut H , it is necessary to know the global structure of

the spacetime. Penrose proposed to estimate the area |H | from below in terms



40 2.3. The Penrose inequality

of the area of certain surfaces which can be defined independently of the future

evolution of the spacetime. The validity of these estimates relies on the validity of

the cosmic censorship. These types of inequalities are collectively called Penrose

inequalities and they are interesting for several reasons. First of all, they would

provide a strengthening of the PMT. Moreover, they would also give indirect

support to the validity of cosmic censorship, which is a basic ingredient in their

derivation.

There are several versions of the Penrose inequality. Typically one considers

closed surfaces S embedded in a spacelike hypersurface with a selected asymp-

totically flat end Σ∞
0 which are bounding with respect to a suitable large sphere

in Σ∞
0 . This leads to the following definition:

Definition 2.3.6 Consider a spacelike hypersurface (Σ, g,K) possibly with

boundary with a selected asymptotically flat end Σ∞
0 . Take a sphere Sb ⊂ Σ∞

0

with r = r0 = const large enough so that the spheres with r ≥ r0 are outer un-

trapped with respect to the direction pointing into the asymptotic region in Σ∞
0 . Let

Ωb = Σ \ {r > r0}, which is obviously topologically closed and satisfies Sb ⊂ ∂Ωb.

Then Sb is a barrier with interior Ωb. A surface S ⊂ Σ will be called bounding

if it is bounding with respect to Sb.

Remark 1. It is well-known that on an asymptotically flat end Σ∞
0 , the

surfaces at constant r are, for large enough r, outer untrapped. Essentially, this

definition establishes a specific form of selecting the barrier in hypersurfaces

containing a selected asymptotically flat end. �

Remark 2. Obviously, the definitions of exterior and interior of a bounding

surface (Definition 2.2.25), enclosing (Definition 2.2.26), outermost (Definition

2.2.27) and T± (Definitions 2.2.28 and 2.2.29), given in the previous section, are

applicable in the asymptotically flat setting. Moreover, since r0 can be taken as

large as desired, the specific choice of Sb and Ωb is not relevant for the definition

of bounding (once the asymptotically flat end has been selected). Because of

that, when considering asymptotically flat ends, we will refer to the exterior of

S in Ωb as the exterior of S in Σ. �

The standard version of the Penrose inequality reads

MADM ≥
√

Amin(∂topT+)

16π
, (2.3.6)
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Sb

Σ

S1

Ωb

Σ∞
0

S2

Figure 2.6: The hypersurface Σ possesses an asymptotically flat end Σ∞
0 but also

other types of ends and boundaries. The surface Sb, which represents a large

sphere in Σ∞
0 and is outer untrapped, is a barrier with interior Ωb (in grey). The

surface S1 is bounding with respect to Sb (c.f. Definition 2.2.25) and therefore is

bounding. The surface S2 fails to be bounding (c.f. Figure 2.4).

where Amin(∂
topT+) is the minimal area necessary to enclose ∂topT+. This in-

equality (2.3.6) is a consequence of the heuristic argument outlined before be-

cause (under cosmic censorship) H encloses ∂topT+ The minimal area enclosure

of ∂topT+ needs to be taken because H could still have less area than ∂topT+

[67].

By reversing the time orientation, the same argument yields (2.3.6) with

∂topT+ replaced by ∂topT−. In general, neither ∂topT+ encloses ∂topT− nor vice

versa. In the case that Kij = 0, these inequalities simplify because T+ = T−

and ∂topT+ is the outermost minimal surface (i.e. a minimal surface enclosing

any other bounding minimal surface in Σ) and, hence, its own minimal area en-

closure. The inequality in this case is called Riemannian Penrose inequality and

it has been proven for connected ∂topT+ in [68] and in the general case in [18]

using a different method. In the non-time-symmetric case, (2.3.6) is not invariant

under time reversals. Moreover, the minimal area enclosure of a given surface S

can be a rather complicated object typically consisting of portions of S together

with portions of minimal surfaces outside of S. This complicates the problem

substantially. This has led several authors to propose simpler looking versions of

the inequality, even if they are not directly supported by cosmic censorship. Two
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of such extensions are

MADM ≥
√

Amin(∂top(T+ ∪ T−))

16π
, MADM ≥

√

|∂top(T+ ∪ T−)|
16π

, (2.3.7)

(see e.g. [73]). These inequalities are immediately stronger than (2.3.6) and have

the advantage of being invariant under time reversals. The second inequality

avoids even the use of minimal area enclosures. Neither version is supported by

cosmic censorship and at present there is little evidence for their validity. However,

both reduce to the standard version in the Riemannian case and both hold in

spherical symmetry. No counterexamples are known either. It would be interesting

to have either stronger support for them, or else to find a counterexample.

Recently, Bray and Khuri proposed [19] a new method to approach the gen-

eral (i.e. non time-symmetric) Penrose inequality. The basic idea was to modify

the Jang equation [72], [102] so that the product manifold Σ × R used to con-

struct the graphs which define the Jang equation is endowed with a warped type

metric of the form −ϕ2dt2 + g instead of the product metric. Their aim was to

reduce the general Penrose inequality to the Riemannian Penrose inequality on

the graph manifold. A discussion on the type of divergences that could possi-

bly occur for the generalized Jang equation led the authors to consider a new

type of trapped surfaces which they called generalized trapped surfaces and

generalized apparent horizons (defined in Section 2.2.1). This type of sur-

faces have very interesting properties. The most notable one is given by Theorem

2.2.31 [51] which guarantees the existence, uniqueness and C2,α-regularity of the

outermost generalized apparent horizon Sout. The Penrose inequality proposed by

these authors reads

MADM ≥
√

|Sout|
16π

, (2.3.8)

with equality only if the spacetime is Schwarzschild. This inequality has several

remarkable properties that makes it very appealing [19]. First of all, the definition

of generalized apparent horizon, and hence the corresponding Penrose inequality,

is insensitive to time reversals. Moreover, there is no need of taking the minimal

area enclosure of Sout, as this surface has less area than any of its enclosures (c.f.

Theorem 2.2.31). Since MOTS are automatically generalized trapped surfaces,

Sout encloses the outermost MOTS ∂topT+. Thus, (2.3.8) is stronger than (2.3.6)

and its proof would also establish the standard version of the Penrose inequality.

Moreover, Khuri has proven [74] that no generalized trapped surfaces exist in

Minkowski, which is a necessary condition for the validity of (2.3.8). Another
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interesting property of this version, and one of its motivations discussed in [19],

is that the equality case in (2.3.8) covers a larger number of slices of Kruskal than

the equality case in (2.3.6). Recall that the rigidity statement of any version of the

Penrose inequality asserts that equality implies that (Σ, g,K) is a hypersurface

of Kruskal. However, which slices of Kruskal satisfy the equality case may depend

on the version under consideration. The more slices having this property, the

more accurate the version can be considered. For any slice Σ of Kruskal we can

define Σ+ as the intersection of Σ with the domain of outer communications.

Bray and Khuri noticed that whenever ∂topΣ+ intersects both the black hole and

the white hole event horizons, then the standard version (2.3.6) gives, in fact, a

strict inequality. Although (2.3.8) does not give equality for all slices of Kruskal,

it does so in all cases where the boundary of Σ+ is a C2,α surface (provided this

boundary is the outermost generalized apparent horizon). It follows that version

(2.3.8) contains more cases of equality than (2.3.6) and is therefore more accurate.

It should be stressed that the second inequality in (2.3.7) gives equality for all

slices of Kruskal, so in this sense it would be optimal.

Despite its appealing properties, (2.3.8) is not directly supported by cosmic

censorship. The reason is that the outermost generalized apparent horizon need

not always lie inside the event horizon. A simple example [78] is given by a slice

Σ of Kruskal such that ∂topT+ (which corresponds to the intersection of Σ with

the black hole event horizon) and ∂topT− (the intersection Σ with the white hole

horizon) meet transversally. Since both surfaces are generalized trapped surfaces,

Theorem 2.2.31 implies that there must exist a unique C2,α outermost generalized

apparent horizon enclosing both. This surface must therefore penetrate into the

exterior region Σ+ somewhere, as claimed. We will return to the issue of the

Penrose inequality in Chapter 6, where we will find a counterexample of (2.3.8)

precisely by studying the outermost generalized apparent horizon in this type of

slices in the Kruskal spacetime. For further information about the present status

of the Penrose inequality, see [78].

2.4 Uniqueness of Black Holes

According to cosmic censorship, any gravitational collapse that settles down to a

stationary state should approach a stationary black hole. The black hole unique-

ness theorems aim to classify all the stationary black hole solutions of Einstein

equations. In this section we will first summarize briefly the status of stationary

black hole uniqueness theorems. We will also describe in some detail a powerful
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method (the so-called doubling method of Bunting and Masood-ul-Alam) to prove

uniqueness for static black holes which will be essential in Chapter 5.

In the late sixties and early seventies the properties of equilibrium states of

black holes were extensively studied by many theoretical physicists interested in

the gravitational collapse process. The first uniqueness theorem for black holes

was found by W. Israel in 1967 [69], who found the very surprising result that a

static, topologically spherical vacuum black hole is described by the Schwarzschild

solution. In the following years, several works ([87], [98], [22]) established that the

Schwarzschild solution indeed exhausts the class of static vacuum black holes with

non-degenerate horizons. The method of the proofs in [69], [87], [98] consisted in

constructing two integral identities which were used to investigate the geometric

properties of the level surfaces of the norm of the static Killing. This method

proved uniqueness under the assumption of connectedness and non-degeneracy

of the event horizon. The hypothesis on the connectedness of the horizon was

dropped by Bunting and Masood-ul-Alam [22] who devised a new method based

on finding a suitable conformal rescalling which allowed using the rigidity part of

the PMT to conclude uniqueness. This method, known as the doubling method is,

still nowadays, the most powerful method to prove uniqueness of black holes in

the static case. Finally, the hypothesis on the non-degeneracy of the event horizon

was dropped by Chruściel [38] in 1999 who applied the doubling method across

the non-degenerate components and applied the PMT for complete manifolds

with one asymptotically flat end (Theorem 2.4.12 below) to conclude uniqueness

(the Bunting and Masood-ul-Alam conformal rescalling transforms the degenerate

components into cylindrical ends). The developments in the uniqueness of static

electro-vacuum black holes go in parallel to the developments in the vacuum case.

Some remarkable works which played an important role in the general proof of

the uniqueness of static electro-vacuum black holes are [70], [88], [106], [100],

[82], [39], [44]. Uniqueness of static black holes using the doubling method has

also been proved for other matter models, as for instance the Einstein-Maxwell-

dilaton model [83], [81].

During the late sixties, uniqueness of stationary black holes also started to

take shape. In fact, the works of Israel, Hawking, Carter and Robinson, between

1967 and 1975, gave an almost complete proof that the Kerr black hole was the

only possible stationary vacuum black hole. The first step was given by Hawking

(see [63]) who proved that the intersection of the event horizon with a Cauchy

hypersurface has S
2-topology. The next step, also due to Hawking [63] was the

demonstration of the so-called Hawking Rigidity Theorem, which states that a
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stationary black hole must be static or axisymmetric. Finally, the work of Carter

[32] and Robinson [97] succeeded in proving that the Kerr solutions are the only

possible stationary axisymmetric black holes. Nevertheless, due to the fact that

the Hawking Rigidity Theorem requires analyticity of all objects involved, unique-

ness was proven only for analytic spacetimes. The recent work [41] by Chruściel

and Lopes Costa has contributed substantially to reduce the hypotheses and to

fill several gaps present in the previous arguments. Similarly, uniqueness of sta-

tionary electro-vacuum black holes has been proven for analytic spacetimes. Some

remarkable works for the stationary electro-vacuum case are [33], [84] and, more

recently, [48], where weaker hypotheses are assumed for the proof. Uniqueness

of stationary and axisymmetric black holes has also been proven for non-linear

σ-models in [21]. The Hawking Rigidity Theorem has not been generalized to non-

linear σ-models and, hence, axisymmetry is required in this case. It is also worth

to remark that, in the case of matter models modeled with Yang-Mills fields,

uniqueness of stationary black holes is not true in general and counterexamples

exist [10].

In this thesis we will be interested in uniqueness theorems for static quasi-local

black holes and, particularly, in the doubling method of Bunting and Masood-

ul-Alam. In the remainder of this chapter, we will describe this method in some

detail by giving a sketch of the proof of the uniqueness theorem for static electro-

vacuum black holes.

2.4.1 Example: Uniqueness for electro-vacuum static

black holes

Let us start with some definitions. An electro-vacuum solution of the Einstein

field equations is a triad (M, g(4),F), where F is the source-free electromagnetic

tensor, i.e. a 2-form satisfying the Maxwell equations which no sources, i.e.

∇µFµν = 0,

∇[αFµν] = 0,

and (M, g(4)) is the spacetime satisfying the Einstein equations with energy-

momentum tensor

Tµν =
1

4π

(

FµαFν
α − 1

4
FαβF

αβg(4)
µν

)

.

We call a stationary electro-vacuum spacetime an electro-vacuum spacetime

admitting a stationary Killing vector field ~ξ, satisfying L~ξFµν = 0. Let us define
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the electric and magnetic fields with respect to ~ξ as

Eµ = −Fµνξν ,
Bµ = (∗F )µνξ

ν ,

respectively. Here, ∗F denotes the Hodge dual of F defined as

(∗F )µν =
1

2
η

(4)
µναβF

αβ.

From the Maxwell equations and L~ξFµν = 0 it follows easily that dE = 0 and

dB = 0 which implies that, at least locally, there exist two functions φ and ψ,

called the electric and magnetic potentials, so that E = −dφ and B = −dψ,

respectively. These potentials are defined up to an additive constant and they

satisfy ~ξ(φ) = ~ξ(ψ) = 0.

Definition 2.4.1 A stationary electro-vacuum spacetime (M, g(4),F) with

Killing field ~ξ is said to be purely electric with respect to ~ξ if and only if B = 0.

For simplicity, we will restrict ourselves to the purely electric case. In fact, the

general case can be reduced to the purely electric case by a transformation called

duality rotation [64].

In the static case there exists an important simplification which allows to

reduce the formulation of the uniqueness theorem for black holes in terms of

conditions on a spacelike hypersurface instead of conditions on the spacetime.

The fact is that, under suitable circumstances, the presence of an event horizon

in a static spacetime implies the existence of an asymptotically flat hypersurface

with compact topological boundary such that the static Killing field is causal

everywhere and null precisely on the boundary. Then, the uniqueness theorem

for static electro-vacuum black holes can be stated simply as follows.

Theorem 2.4.2 (Chruściel, Tod, 2006 [44]) Let (M, g(4), F ) be a static so-

lution of the Einstein-Maxwell equations. Suppose that M contains a simply con-

nected asymptotically flat hypersurface Σ with non-empty topological boundary

such that Σ is the union of an asymptotically flat end and a compact set, such

that:

• The topological boundary ∂topΣ is a compact, 2-dimensional embedded topo-

logical submanifold.

• The static Killing vector field is causal on Σ and null only on ∂topΣ.
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Then, after performing a duality rotation of the electromagnetic field if necessary:

• If ∂topΣ is connected, then Σ is diffeomorphic to R
3 minus a ball. Moreover,

there exists a neighbourhood of Σ in M which is isometrically diffeomorphic

to an open subset of the Reissner-Nördström spacetime.

• If ∂topΣ is not connected, then Σ is diffeomorphic to R
3 minus a finite

union of disjoint balls and there exists a neighborhood of Σ in M which is

isometrically diffeomorphic to an open subset of the standard Majumdar-

Papapetrou spacetime.

Remark. The standard Majumdar-Papapetrou spacetime is the manifold

(R3 \ n∪
i=1

pi) × R endowed with the metric ds2 = −dt2
u2 + u2(dx2 + dy2 + dz2),

where u = 1+
n∑

i=1

qi
ri

with qi being a constant and ri the Euclidean distance to pi. �

In what follows we will give a sketch of the proof of the Theorem 2.4.2. Firstly,

we need some results concerning the boundary of the set {p ∈M : λ|
p
> 0}, where

λ ≡ −ξµξµ, i.e. minus the squared norm of the stationary Killing field ~ξ.

Let us start with some definitions.

Definition 2.4.3 Let (M, g(4)) be a spacetime with a Killing vector ~ξ. A Killing

prehorizon H~ξ of ~ξ is a null, 3-dimensional submanifold (not necessarily em-

bedded), at least C1, such that ~ξ is tangent to H~ξ, null and different from zero.

Definition 2.4.4 A Killing horizon is an embedded Killing prehorizon.

Next, let us introduce a quantity κ defined on a Killing prehorizon in any

stationary spacetime. Clearly, on a Killing prehorizon H~ξ we have λ = 0. It

implies that ∇µλ is normal to H~ξ. Now, since ~ξ is null and tangent to H~ξ, it is

also normal to H~ξ. Since, moreover ~ξ
∣
∣
H~ξ

is nowhere zero, it follows that there

exists a function κ such that

∇µλ = 2κξµ. (2.4.1)

κ is called the surface gravity on H~ξ. The following result states the constancy

of κ on a Killing prehorizon in a static spacetime.

Lemma 2.4.5 (Rácz, Wald, 1996 [96]) Let H~ξ be a Killing prehorizon for an

integrable Killing vector ~ξ. Then κ is constant on each arc-connected component

of H~ξ.
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Remark. This lemma also holds in stationary spacetimes provided the DEC

holds. Its proof can be found in Chapter 12 of [109]. �

This lemma allows to classify Killing prehorizons in static spacetimes in two

types with very different behavior.

Definition 2.4.6 An arc-connected Killing prehorizon H~ξ is called degenerate

when κ = 0 and non-degenerate when κ 6= 0.

Since ∇µλ 6= 0 on a non-degenerate Killing prehorizon, the set {λ = 0} defines

an embedded submanifold (c.f. [40]).

Lemma 2.4.7 Non-degenerate Killing prehorizons are Killing horizons.

The next lemma guarantees the existence of a Killing prehorizon in a static

spacetime. This lemma will be used several times along this thesis. For com-

pleteness, we find it appropriate to include its proof (we essentially follow [38]).

Lemma 2.4.8 (Vishveshwara, 1968 [108], Carter, 1969 [31]) Let

(M, g(4)) be a static spacetime with Killing vector ~ξ. Then the set

N~ξ ≡ ∂top{λ > 0} ∩ {~ξ 6= 0}, if non-empty, is a smooth Killing prehori-

zon.

Proof. Consider a point p ∈ N~ξ. Due to the Fröbenius’s theorem (see e.g.

[76]), staticity implies that there exists a neighbourhood V0 ⊂ M of p, with
~ξ
∣
∣
V0

6= 0, which (for V0 small enough) is foliated by a family of smooth embedded

submanifolds Σt of codimension one and orthogonal to ~ξ. In particular, p ∈ Σ0,

where Σ0 denotes a leaf of this foliation.

Now consider the leaves Σα of the Σt foliation such that Σα ∩ {λ 6= 0} 6= ∅.
The staticity condition (2.1.3) implies

ξ[ν∇µ]λ = λ∇[µξν],

which on V0 ∩ {λ 6= 0} reads

ξ[ν∇µ](ln |λ|) = ∇[µξν]. (2.4.2)

Let ~W and ~Z be smooth vector fields on V0 such that ~W satisfies ξµW
µ = 1 and

~Z is tangent to the leaves Σt. At points of Σα on which λ 6= 0, the contraction of

equation (2.4.2) with ZµW ν gives

Zµ∇µ(ln |λ|) = 2ZµW ν∇[µξν].
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The right-hand side of this equation is uniformly bounded on Σα, which implies

that ln |λ| is uniformly bounded on Σα∩{λ 6= 0}. This is only possible if Σα∩{λ =

0} = ∅. Consequently, λ is either positive, or negative, or zero in each leaf of the

foliation Σt. In particular, it implies that {λ = 0} ∩ V0 is a union of leaves of the

Σt foliation.

It only remains to prove that each arc-connected component of ∂top{λ > 0}∩V0

coincides with one of these leaves. For that, take coordinates {z, xA} in V0 in

such a way that the coordinate z characterizes the leaves of the foliation Σt and

p = (z = 0, xA = 0) (this is possible because each leaf of Σt is an embedded

submanifold of V0). Note that the leaf Σ0 ∋ p is then defined by {z = 0}. In

this setting, we just need to prove that {z = 0} coincides with an arc-connected

component of ∂top{λ > 0} ∩ V0. Due to the fact that p ∈ ∂top{λ > 0} ∩ V0,

there exists a sequence of points pi ∈ V0 with λ > 0 which converge to p

and have coordinates (z(pi), x
A(pi)). Since the coordinate z characterizes the

leaves and λ is either positive, or negative, or zero in each leaf, it follows

that the sequence of points p′
i with coordinates (z(pi), 0) also has λ > 0 and

tends to p. By the same reason, given any point q ∈ {z = 0} with coordinates

(0, xA0 ), the sequence of points qi = (z(pi), x
A
0 ) tends to q and lies in {λ > 0}.

Therefore, {z = 0} is composed precisely by the points of the arc-connected

component of ∂top{λ > 0} ∩ V0 which contains p. This implies that every

arc-connected component of ∂top{λ > 0} ∩ V0 coincides with a leaf Σt where

λ ≡ 0 (and ~ξ 6= 0). Finally, this local argument can be extended to the whole set

N~ξ simply by taking a covering of N~ξ by suitable open neighbourhoods Vβ ⊂M . �

Remark. Although each arc-connected component of ∂top{λ > 0} ∩ Vβ is an

embedded submanifold of Vβ ⊂ M , the whole set N~ξ may fail to be embedded

in M (see Figure 2.7). Thus, a priori, degenerate Killing prehorizons may fail

to be embedded. As mentioned before, this possibility has been overlooked

in the literature until recently [40]. The occurrence of non-embedded Killing

prehorizons poses serious difficulties for the uniqueness proofs. One way to

deal with these objects is to make hypotheses that simply exclude them. In

Proposition 2.4.11 below, the hypothesis that ∂topΣ is a compact and embedded

topological manifold is made precisely for this purpose. Another possibility is to

prove that these prehorizons do not exist. At present, this is only known under

strong global hypotheses on the spacetime (c.f. Definition 2.4.14 below). It is an

interesting open problem to either find an example of a non-embedded Killing

prehorizon or else to prove that they do not exist. �
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N~ξ

Figure 2.7: The figure illustrates a situation where N~ξ = ∂top{λ > 0} ∩ {~ξ 6= 0}
fails to be embedded. In this figure, the Killing vector is nowhere zero, causal ev-

erywhere and null precisely on the plotted line. Here, N~ξ has three arc-connected

components: two spherical and one with spiral form. The fact that the spiral

component accumulates around the spheres implies that the whole set N~ξ is not

embedded. Moreover, the spiral arc-connected component, which is itself embed-

ded, is not compact.

The hypotheses of Theorem 2.4.2 require the existence of a hypersurface Σ

with topological boundary such that λ ≥ 0 everywhere and λ = 0 precisely on

∂topΣ. It is clear then that ∂topΣ ⊂ ∂topU , where U ≡ {p ∈ M : λ|
p
> 0}, but,

in general, ∂topΣ will not lie in a Killing prehorizon because it can still happen

that ~ξ = 0 on a subset of ∂topU . However, the set of points where ~ξ = 0 cannot

be very “large” as the next result guarantees.

Theorem 2.4.9 (Boyer, 1969 [16], Chruściel, 1999 [38]) Consider a static

spacetime (M, g(4)) with Killing vector ~ξ. Let p ∈ ∂top{λ > 0} be a fixed point

(i.e. ~ξ
∣
∣
p

= 0). Then p belongs to a connected, spacelike, smooth, totally geodesic,

2-dimensional surface S0 which is composed by fixed points. Furthermore, S0 lies

in the closure of a non-degenerate Killing horizon H~ξ

Therefore, using Lemma 2.4.8 and Theorem 2.4.9, we can assert that ∂top{λ >
0} belongs to the closure of a Killing prehorizon.

The manifold int(Σ) admits, besides the induced metric, a second metric h

called orbit space metric which is a key object in the uniqueness proof. Let us

first define the projector orthogonal to ~ξ.
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Definition 2.4.10 On the open set U ≡ {λ > 0} ⊂M , the projector orthog-

onal to ~ξ, denoted by hµν, is defined as

hµν ≡ g(4)
µν +

ξµξν
λ
. (2.4.3)

This tensor has the following properties:

• It is symmetric, i.e. hµν = hνµ.

• It has rank 3.

• It satisfies hµνξ
µ = 0

On U we can also define the function V = +
√
λ. The hypersurface int(Σ) is

fully contained in U . Let Φ : int(Σ) → U ⊂ M denote the embedding of int(Σ)

in U , then the pull-back of the projector Φ∗(h) is a Riemannian metric on Σ. We

will denote by the same symbols h, V and φ both the objects in U ⊂M and their

corresponding pull-backs in int(Σ).

The Einstein-Maxwell field equations for a purely electric stationary electro-

vacuum spacetime are equivalent to the following equations on int(Σ) see e.g.

[65].

V∆hφ = DiV D
iφ, (2.4.4)

V∆hV = DiφD
iφ, (2.4.5)

V Rij(h) = DiDjV +
1

V

(
DkφD

kφhij − 2DiφDjφ
)
, (2.4.6)

where D and Rij(h) are the covariant derivative and the Ricci tensor of the

Riemannian metric h, respectively. Indices are raised and lowered with hij and

its inverse hij.

In the asymptotically flat end Σ∞
0 of int(Σ), the Einstein equations on int(Σ)

and (2.3.1) that V and φ decay as

V = 1 − MADM

r
+O(2)(1/r2), φ =

Q

r
+O(2)(1/r2), (2.4.7)

where Q is a constant (called the electric charge associated with Σ∞
0 ), and

MADM is the corresponding ADM mass.

A crucial step for the uniqueness proof is to understand the behavior of the

Riemannian metric h near the boundary ∂topΣ. This is the aim of the following

proposition.
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Proposition 2.4.11 (Chruściel, 1999 [38]) Let Σ be a spacelike hypersurface

in a static spacetime (M, g(4)) with Killing vector ~ξ. Suppose that λ ≥ 0 on Σ

with λ = 0 precisely on its topological boundary ∂topΣ which is assumed to be a

compact, 2-dimensional and embedded topological manifold. Then

1. Every connected component (∂topΣ)d which intersects a C2 degenerate

Killing horizon corresponds to a complete cylindrical asymptotic end of

(Σ, h).

2. (Σ, h) admits a differentiable structure such that every connected component

(∂topΣ)n of ∂topΣ which intersects a non-degenerate Killing horizon is a

totally geodesic boundary of (Σ, h) with h being smooth up to and including

the boundary.

This proposition shows that the Riemannian manifold (Σ \ ∪
d
(∂topΣ)d, h) is

the union of asymptotically flat ends, complete cylindrical asymptotic ends and

compact sets with totally geodesic boundaries. Let us define Σ̃ ≡ Σ \ ∪
d
(∂topΣ)d.

Now we are ready to explain the doubling method itself. Recall that the final

aim is to show that the spacetime is either Reissner-Nördström or Majumdar-

Papapetrou. Both have the property that (Σ̃, h) is conformally flat (i.e. there

exists a positive function Ω, called the conformal factor, such that the metric Ω2h

is the flat metric). Moreover, conformal flatness together with sufficient informa-

tion on the conformal factor would imply, via the Einstein field equations, that

the spacetime is in fact Reissner-Nördström or Majumdar-Papapetrou.

A powerful method to prove that a given metric is flat is by using the rigidity

part of the PMT. Unfortunately Theorem 2.3.5 cannot be applied directly to

(Σ̃, h) because, first, Σ̃ is a manifold with boundary, and second, (Σ̃, h) has in

general cylindrical asymptotic ends and therefore it is not asymptotically flat.

The presence of boundaries was dealt with by Bunting and Masood-ul-Alam

who invented a method which constructs a new manifold without boundary to

which the PMT can be applied.

To simplify the presentation, let us assume for a moment that (Σ̃, h) has

no cylindrical ends, so this manifold is the union of asymptotically ends and a

compact interior with totally geodesic boundaries (by Proposition 2.4.11). Next,

find two conformal factors Ω+ > 0 and Ω− > 0 such that

• h+ ≡ Ω2
+h is asymptotically flat, has vanishing mass and R(h+) ≥ 0, where

R(h+) is the scalar curvature of h+.
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• h− ≡ Ω2
−h admits a one point (let us denote it by Υ) compactification of

the asymptotically flat infinity, and R(h−) ≥ 0.

Then the idea is to glue the manifolds (Σ̃, h+) and (Σ̃ ∪ Υ, h−) across the

boundaries to produce a complete, asymptotically flat manifold (Σ̂, ĥ) with no

boundaries, vanishing mass and non-negative scalar curvature R̂ ≥ 0. In order to

glue the two manifolds with sufficient differentiability, the following two conditions

are required:

• Ω+|∂Σ̃ = Ω−|∂Σ̃,

• ~m(Ω+)|∂Σ̃ = − ~m(Ω−)|∂Σ̃.

where ~m is the unit normal pointing to the interior Σ̃ in each of the copies.

∂Σ̃

Υ

(Σ̃, h+)

(Σ̃, h−)

Figure 2.8: The doubled manifold (Σ̂, ĥ) resulting from gluing (Σ̃, h+) and (Σ̃ ∪
Υ, h−).

Theorem 2.3.5 can be applied to (Σ̂, ĥ) to conclude that this space is in fact

Euclidean.

When the spacetime also has degenerate horizons the doubling method across

non-degenerate components can still be done. The resulting manifold however is

no longer asymptotically flat since it contains asymptotically cylindrical ends,

so Theorem 2.3.5 cannot be applied directly. Fortunately, there exists a suitable

generalization of the PMT that covers this case. The precise statement is the

following.
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Theorem 2.4.12 (Bartnik, Chruściel, 1998 [9]) Let (Σ̂, ĥ) be a smooth

complete Riemannian manifold with an asymptotically flat end Σ̂∞
0 and with a

smooth one-form Ê satisfying D̂iÊ
i = 0 and Êidx

i = Q̂
r2
dr + o( 1

r2
) in Σ̂∞

0 , where

Q̂ is a constant called electric charge. Suppose that ĥ satisfies R(ĥ) ≥ 2ÊiÊ
i and

that ∫

Σ̂∞
0

(

R(ĥ) − 2ÊiÊ
i
)

ηĥ <∞.

Then the ADM mass M̂ADM of Σ̂∞
0 satisfies M̂ADM ≥ |Q̂| and equality holds if and

only if locally ĥ = u2(dx2 + dy2 + dz2), Ê = du
u

and ∆δu = 0.

Remark. As a consequence of this result, it is no longer necessary to require

that (Σ̃, h−) admits a one-point compactification. It is only necessary to assume

that (Σ∞
0 , h−) is complete. �

It is clear from the discussions above that the key to prove Theorem 2.4.2 is

to find suitable conformal factors which allow to conclude that (Σ̃, h) is confor-

mally flat. For the static electro-vacuum case, two conformal factors have been

considered, one due to Ruback [100], Ω± = 1±V+φ
2

, and another proposed by

Masood-ul-Alam [82], Ω± = (1±V )2−φ2

4
. Recently, Chruściel has showed [39] that

the Ruback conformal factor is the only one which works when degenerate Killing

horizons are allowed a priori.

We will therefore consider only the Ruback conformal factors Ω± = 1±V+φ
4

.

The first thing to do is to check that Ω± are strictly positive on Σ̃. This was

shown by Ruback [100] and extended by Chruściel [39] and Chruściel and Tod

[44] when there are degenerate horizons.

Proposition 2.4.13 (Ruback, 1988, Chruściel, 1998, Chruściel, Tod, 2006)

On Σ̃ it holds |φ| ≤ 1 − V . Moreover, equality at one point only occurs when the

spacetime is the standard Majumdar-Papapetrou spacetime.

This proposition implies Ω− > 0 unless we have Majumdar-Papapetrou. More-

over, since V ≥ 0 on Σ̃, we have Ω+ ≥ Ω− > 0 except for the standard Majumdar-

Papapetrou.

The remaining ingredients are as follows:

• The matching conditions for the gluing procedure follow easily from the fact

that V |∂Σ̃ = 0, which immediately implies Ω+|∂Σ̃ = Ω−|∂Σ̃ and ~m(Ω+)|∂Σ̃ =

− ~m(Ω−)|∂Σ̃.
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• The asymptotically flat end (Σ∞
0 ) becomes a complete end with respect to

the metric h−. This follows from the asymptotic form Ω− = 1
4r

(MADM−Q)+

O(1/r2) and the fact that MADM > |Q| which follows from the positivity of

Ω−.

• The field E± ≡ −(1+φ)dφ+V dV
V (1+φ±V )

has the following asymptotic behavior

E+ =
1

2

MADM +Q

r2
dr + o(1/r2),

and satisfies, from the Einstein field equations, that D±
i E±

i = 0 and

R(h±) = 2Ei
±E±i, where R(h±) is the scalar curvature of h±.

• A direct computation gives that the ADM mass and the electric charge of

(Σ̂, ĥ) satisfy,

M̂ADM = Q̂.

Therefore, the rigidity part of Theorem 2.4.12 can be applied, to conclude

ĥ = u2gE, where u is a specific function of (V, φ) and gE is the Euclidean metric.

Consequently, h (which was conformally related with ĥ) is conformally flat. The

original proof used at this point the explicit form of u(φ, V ) together with the field

equations to conclude that (Σ̃, h) corresponds to the metric of the {t = 0} slice of

Reissner-Nördström spacetime with M > |Q|. This last step has been simplified

recently by González and Vera in [59] who show that the Reissner-Nördström and

the Majumdar-Papapetrou spacetimes are indeed the only static electro-vacuum

spacetimes for which (Σ̃, h) is asymptotically flat and conformally flat.

Summarizing, we have obtained that, in the case when Theorem 2.4.12 can be

applied, the spacetime is Reissner-Nördström, and in the cases when it cannot be

applied the spacetime is already the standard Majumdar-Papapetrou spacetime.

We conclude then that a static and electro-vacuum spacetime corresponding to

a black hole must be either the Reissner-Nördström spacetime (where ∂topΣ is

connected) or the standard Majumdar-Papapetrou spacetime (where ∂topΣ is non-

connected), which proves Theorem 2.4.2.

Remark. The compactness assumption for the embedded topological sub-

manifold ∂topΣ is used in order to ensure that (Σ̂, ĥ) is complete. It would be

interesting to study whether this condition can be relaxed or not. �

We will finish this chapter by giving a brief discussion about the global ap-

proach of Theorem 2.4.2. In several works ([38], [40] and [43]) Chrúsciel and Gal-

loway have studied sufficient hypotheses which ensure that a black hole spacetime
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possesses a spacelike hypersurface Σ like the one required in Theorem 2.4.2 and,

also, which assumptions are needed to conclude uniqueness for the whole space-

time (or at least for the domain of outer communications) The first work on

the subject, namely [38], deals with the vacuum case and requires, among other

things, the spacetime to be analytic (although this hypothesis was not explicitly

mentioned in [38] and it was included only in the correction [40]). This hypothesis

is needed to avoid the existence of non-embedded degenerate Killing prehorizons,

which implies that ∂topΣ may fail to be compact and embedded as required in

Theorem 2.4.2. In [40], Chruściel was able to drop the analyticity assumption by

assuming a second Killing vector on M generating a U(1) action and a global

hypothesis (named I+-regularity in the later paper [41]). Finally, in [43] the as-

sumption on the existence of a second Killing field was removed and the result

was explicitly extended to the electro-vacuum case. Before giving the statement

of such a result, let us define the property of I+-regularity of a spacetime.

Definition 2.4.14 Let (M, g(4)) be a stationary spacetime containing an asymp-

totically flat end and let ~ξ be the stationary Killing vector field on M . (M, g(4))

is I+-regular if ~ξ is complete, if the domain of outer communications MDOC

is globally hyperbolic, and if MDOC contains a spacelike, connected, acausal hy-

persurface Σ containing an asymptotically flat end, the closure Σ of which is a

C0 manifold with boundary, consisting of the union of a compact set and a fi-

nite number of asymptotically flat ends, such that ∂topΣ is an embedded surface

satisfying

∂topΣ ⊂ E+ ≡ ∂topMDOC ∩ I+(MDOC),

with ∂topΣ intersecting every generator of E+ just once.

Then the result by Chruściel and Galloway states the following.

Theorem 2.4.15 (Chruściel and Galloway, 2010 [43]) Let (M, g(4)) be a

static solution of the electro-vacuum Einstein equations. Assume that (M, g(4))

is I+-regular. Then the conclusions of Theorem 2.4.2 hold. Moreover, MDOC is

isometrically diffeomorphic to the domain of outer communications of either the

Reissner-Nördström spacetime or the standard Majumdar-Papapetrou spacetime.



Chapter 3

Stability of marginally outer

trapped surfaces and symmetries

3.1 Introduction

As we have already mentioned in Chapter 1, although the main aim of this thesis

is to study properties of certain types of trapped surfaces, specially weakly outer

trapped surfaces and MOTS, in stationary and static configurations, isometries

are not the only type of symmetries which can be involved in physical situations

of interest. For instance, many relevant spacetimes admit other types of sym-

metries, such as conformal symmetries, e.g. in Friedmann-Lemâıtre-Robertson-

Walker (FLRW) cosmological models. Another interesting example appears when

studying the critical collapse, which is a universal feature of many matter models.

Indeed, the critical solution, which separates those configurations that disperse

from those that form black holes, are known to admit either a continuous or

a discrete self-similarity. Therefore, it is interesting to understand the relation-

ship between trapped surfaces and several special types of symmetries. This is

precisely the aim of this chapter.

A recent interesting example of this interplay has been given in [13], [14],

[15] where the location of the boundaries of the spacetime set containing weakly

trapped surfaces and weakly outer trapped surfaces was analyzed, firstly, in the

Vaidya spacetime [13], [14] (which is one of the simplest dynamical situations)

and, later, in spherically symmetric spacetimes in general [15]. In these analyses

the presence of symmetries turned out to be fundamental. In the important case

of isometries, general results on the relationship between weakly trapped surfaces

and Killing vectors were discussed in [80], where the first variation of area was

used to obtain several restrictions on the existence of weakly trapped surfaces

in spacetime regions possessing a causal Killing vector. More specifically, weakly

57
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trapped surfaces can exist in the region where the Killing vector is timelike only

if their mean curvature vanishes identically. By obtaining a general identity for

the first variation of area in terms of the deformation tensor of an arbitrary vec-

tor (defined in equation (2.1.2)), similar restrictions were obtained for spacetimes

admitting other types of symmetries, such as conformal Killing vectors or Kerr-

Schild vectors (see [46] for its definition). The same idea was also applied in [105]

to obtain analogous results in spacetimes with vanishing curvature invariants. The

interplay between isometries and dynamical horizons (which are spacelike hyper-

surfaces foliated by marginally trapped surfaces) was considered in [6] where it

was proven that dynamical horizons cannot exist in spacetime regions containing

a nowhere vanishing causal Killing vector, provided the spacetime satisfies the

NEC. Regarding MOTS, the relation between stable MOTS and isometries was

considered in [3], where it was shown that, given a strictly stable MOTS S in a

hypersurface Σ (not necessarily spacelike), any Killing vector on S tangent to Σ

must in fact be tangent to S.

In the present chapter, we will study the interplay between stable and outer-

most properties of MOTS in spacetimes possessing special types of vector fields
~ξ, including isometries, homotheties and conformal Killing vectors. In fact, we

will find results involving completely general vector fields ~ξ and then, we will

particularize them to the different types of symmetries. More precisely, we will

find restrictions on ~ξ on stable, strictly stable and locally outermost MOTS S in

a given spacelike hypersurface Σ, or alternatively, forbid the existence of a MOTS

in certain regions where ~ξ fails to satisfy those restrictions. In what follows, we

give a brief summary of the present chapter.

The fundamental idea which will allow us to obtain the results of this chapter

will be introduced in Section 3.2. As we will see, it will consist in a geometri-

cal construction which can potentially restrict a vector field ~ξ on the outermost

MOTS S. The geometrical procedure will involve the analysis of the stability

operator L~m of a MOTS acting on a certain function Q. It will turn out that the

results obtained by the geometric construction can, in most cases, be sharpened

considerably by using the maximum principle of elliptic operators. This will also

allow us to extend the validity of the results from the outermost case to the case

of stable and strictly stable MOTS. However, the defining expression (2.2.11) for

the stability operator L~mQ has a priori nothing to do with the properties of the

vector field ~ξ, which makes the method of little use. Our first task will be therefore

to obtain an alternative (and completely general) expression for L~mQ in terms of
~ξ, or more specifically, in terms of its deformation tensor aµν(~ξ ). We will devote
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Section 3.3 to doing this. The result, given in Proposition 3.3.1, is thoroughly

used in this chapter and also has independent interest.

With this expression at hand, we will be able to analyze under which con-

ditions our geometrical procedure gives restrictions on ~ξ. In Section 3.4 we will

concentrate on the case where L~mQ has a sign everywhere on S. The main result

of Section 3.4 will be given in Theorem 3.4.2, which holds for any vector field
~ξ. This result will be then particularized to conformal Killing vectors (including

homotheties and Killing vectors) in Corollary 3.4.3. Under the additional restric-

tion that the homothety or the Killing vector is everywhere causal and future (or

past) directed, strong restrictions on the geometry of the MOTS will be derived

(Corollary 3.4.4). As a consequence, we will prove that in a plane wave spacetime

any stable MOTS must be orthogonal to the direction of propagation of the wave.

Marginally trapped surfaces will be also discussed in this section.

As an explicit application of the results on conformal Killing vectors, we will

show, in Subsection 3.4.1, that stable MOTS cannot exist in any spacelike hy-

persurface in FLRW cosmological models provided the density µ and pressure p

satisfy the inequalities µ ≥ 0, µ ≥ 3p and µ+ p ≥ 0. This includes, for instance,

all classic models of matter and radiation dominated eras and also those models

with accelerated expansion which satisfy the NEC. Subsection 3.4.2 will deal with

one case where, in contrast with the standard situation, the geometric construc-

tion does in fact give sharper results than the elliptic theory. One of these results,

together with Theorem 2.2.30 by Andersson and Metzger, will imply an inter-

esting result (Theorem 3.4.10) for weakly outer trapped surfaces in stationary

spacetimes.

In the case when L~mQ is not assumed to have a definite sign, the maximum

principle loses its power. However, as we will discuss in Section 3.5, a result

by Kriele and Hayward [75] will allow us to exploit our geometric construction

again to obtain additional results. This will produce a theorem (Theorem 3.5.2)

which holds for general vector fields ~ξ on any locally outermost MOTS. As in the

previous section, we will particularize the result to conformal Killing vectors, and

then to causal Killing vectors and homotheties which, in this case, will be allowed

to change their time orientation on S

The results presented in this chapter have been published mainly in the papers

[25], [26] and partly in [23] and [24].
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3.2 Geometric procedure

Consider a spacelike hypersurface (Σ, g,K) which is embedded in a spacetime

(M, g(4)) with a vector field ~ξ defined on a neighbourhood of Σ. Assume that Σ

possesses a barrier Sb with interior Ωb and let S ⊂ Σ be a bounding MOTS with

respect to Sb (and therefore an exterior region of S in Ωb can be properly defined).

The idea we want to exploit consists in constructing under certain circumstances

a new weakly outer trapped surface Sτ ⊂ Ωb which lies, at least partially, outside

S. This fact will provide a contradiction in the case when S is the outermost

bounding MOTS and will allow us to obtain restrictions on the vector ~ξ on S. As

we will see below, this simple idea will allow us to obtain results also for stable,

strictly stable and locally outermost MOTS, irrespectively of whether they are

bounding or not, by using the theory of elliptic second order operators.

The geometric procedure to construct the new surface Sτ consists in moving

S first along the integral lines of ~ξ a parametric amount τ . This gives a new

surface S ′
τ . Next, take the null normal ~l′+(τ) on this surface which coincides with

the continuous deformation of the outer null normal ~l+ on S normalized to satisfy

lµ+nµ = −1 (where ~n denotes the unit vector normal to Σ and future directed)

and consider the null hypersurface generated by null geodesics with tangent vector
~l′+(τ). This hypersurface is smooth close enough to S ′

τ . Being null, its intersection

with the spacelike hypersurface Σ is transversal and hence defines a smooth sur-

face Sτ (for τ sufficiently small). By this construction, a point p on S describes

a curve in Σ when τ is varied. The tangent vector of this curve on S, denoted by

~ν, will define the variation vector generating the one-parameter family {Sτ}τ∈I⊂R

on a neighbourhood of S in Σ. Figure 3.1 gives a graphic representation of this

construction.

Let us decompose the vector ~ξ into normal and tangential components with

respect to Σ, as ~ξ = N~n+ ~Y (see Figure 3.2). On S we will further decompose ~Y

in terms of a tangential component ~Y ‖, and a normal component (Yim
i)~m, where

~m is the unit vector normal to S in Σ which points to the exterior of S in Σ.

Therefore, ~ξ|S = NS~n+(Yim
i)~m+ ~Y ‖, where NS is the value of N on the surface.

In order to study the variation vector ~ν, let us expand the embedding functions
{
xµ
(
yA, τ

)}
of the surface Sτ (where

{
yA
}

are intrinsic coordinates of S) as

xµ
(
yA, τ

)
= xµ

(
yA, 0

)
+ ξµ

(
yA, 0

)
τ + F (yA)l′+(τ)µ

(
yA
)
τ +O(τ 2), (3.2.1)

where F (yA) is a function to be adjusted. Since ~ν defines the variation of S to

first order, equation (3.2.1) implies that we only need to evaluate the vector ~l′+(τ)
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Σ

S

S

S

’

l
ν ξ

l’τ

τ

τ

Figure 3.1: The figure represents how the new surface St is constructed from the

original surface S. The intermediate surface S ′
τ is obtained from S by dragging

along ~ξ a parametric amount τ . Although ~ξ has been depicted as timelike here,

this vector can be in fact of any causal character.

~ξ

N~n

~Y

Σ

Figure 3.2: The vector ~ξ decomposed into normal N~n and tangential ~Y compo-

nents.
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to zero order in τ , which obviously coincides with ~l+. It follows then that ~ν is a

linear combination (with functions) of ~ξ and ~l+. The amount we need to move

S ′
τ in order to go back to Σ can be determined by imposing ~ν to be tangent to

Σ. Since ~ν(yA) = ~ξ(yA) + F (yA)~l+(yA), multiplication with ~n gives 0 = NS + F .

Thus, F = −NS and ~ν = ~ξ −NS
~l+. Using the previous decomposition for ~ξ and

~l+ = ~n+ ~m we can rewrite ~ν = Q~m+ ~Y ‖, where

Q = (Yim
i) −NS = ξµl

µ
+ (3.2.2)

determines at first order the amount and sense to which a point p ∈ S moves

along the normal direction.

Let us consider for a moment the simplest case that ~ξ is a Killing vector. Sup-

pose S is a MOTS which is bounding with respect to a barrier Sb with interior

Ωb. Since the null expansion does not change under an isometry, it follows that

the surface S ′
τ is also a bounding MOTS for the spacelike hypersurface obtained

by moving Σ along the integral curves of ~ξ an amount τ . Moving back to Σ along

the null hypersurface gives a contribution to θ+[Sτ ] which is easily computed to

be d
dτ

[ϕ̂∗
τ (θ

+[Sτ ])]
∣
∣
τ=0

= Nθ+2
[S] +NW

∣
∣
∣
S

which is the well-known Raychaud-

huri equation (which has already appeared before in equation (2.2.13) for the

particular case of MOTS), where ϕ̂τ : S → Sτ is the diffeomorphism defined by

the geometrical construction above and W was defined in equation (2.2.14) and

is non-negative provided the NEC holds. It implies that if NS < 0 and W 6= 0

everywhere, then θ+[Sτ ] < 0 provided τ is positive and sufficiently small and the

NEC holds. Therefore, Sτ is a bounding (provided τ is sufficiently small) weakly

outer trapped surface which lies partially outside S if Q > 0 somewhere. This is

impossible if S is an outermost bounding MOTS by Theorem 2.2.30 of Anders-

son and Metzger. Thus, the function Q must be non-positive everywhere on any

outermost bounding MOTS S for which NS < 0 and W 6= 0 everywhere.

Independently of whether ~ξ is a Killing vector or not, the more favorable case

to obtain restrictions on the generator ~ξ on a given outermost bounding MOTS

is when the newly constructed surface Sτ is bounding and weakly outer trapped.

This is guaranteed for small enough τ when δ~νθ
+ is strictly negative everywhere,

because then this first order terms becomes dominant for small enough τ . Due to

the fact that the tangential part of ~ν does not affect the variation of θ+ along ~ν

for a MOTS (c.f. (2.2.10)), it follows that δ~νθ
+ = L~mQ, where L~m is the stability

operator for MOTS defined in (2.2.11). Since the vector ~ν = Q~m+ ~Y ‖ determines

to first order the direction to which a point p ∈ S moves, it is clear that L~mQ <

0 everywhere and Q > 0 somewhere is impossible for an outermost bounding
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MOTS. This is precisely the argument we have used above and is intuitively

very clear. However, this geometric method does not provide the most powerful

way of finding this type of restriction. Indeed, when the first order term L~mQ

vanishes at some points, then higher order coefficients come necessarily into play,

which makes the geometric argument of little use. It is remarkable that using the

elliptic results described in Appendix B, most of these situations can be treated in

a satisfactory way. Furthermore, since the elliptic methods only use infinitesimal

information, there is no need to restrict oneself to outermost bounding MOTS,

and the more general case of stable or strictly stable MOTS (not necessarily

bounding) can be considered.

Unfortunately, the general expression of L~mQ given in equation (2.2.11) is not

directly linked to the vector ~ξ, which is clearly unsuitable for our aims. In the

case of Killing vectors, the point of view of moving S along ~ξ and then back to Σ

gives a simple method of calculating L~mQ. For more general vectors, however, the

motion along ~ξ will give a non-zero contribution to θ+ which needs to be computed

(for Killing vectors this term was known to be zero via a symmetry argument,

not from a direct computation). In order to do this, it becomes necessary to have

an alternative, and completely general, expression for δ~ξ θ
+ directly in terms of

the deformation tensor aµν(~ξ ) associated with ~ξ. This is the aim of the following

section.

3.3 Variation of the expansion and the metric

deformation tensor

Let us derive an identity for δ~ξ θ
+ in terms of aµν(~ξ ). This result will be important

later on in this chapter, and may also be of independent interest. We derive this

expression in full generality, without assuming S to be a MOTS and for the

expansion θ~η along any normal vector ~η of S (not necessarily a null normal) i.e.

θ~η ≡ Hµη
µ,

where ~H denotes the mean curvature of S in M .

To do this calculation, we need to take derivatives of tensorial objects defined

on each one of S ′
τ . For a given point p ∈ S, these tensors live on different spaces,

namely the tangent spaces of ϕτ (p), where ϕτ is the one-parameter local group of

diffeomorphisms generated by ~ξ. In order to define the variation, we need to pull-

back all these tensors to the point p before doing the derivative. We will denote
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the resulting derivative by L~ξ. In general, this operation is not the standard Lie

derivative L~ξ on tensors because it is applied to tensorial objects on each S ′
τ which

may not define tensor fields on M (e.g. when these surfaces intersect each other).

Nevertheless, both derivatives do coincide when acting on spacetime tensor fields

(e.g. the metric g(4)) which will simplify the calculation considerably.

Notice in particular that the definition of θ~η depends on the choice of ~η on

each of the surfaces S ′
τ . Thus δ~ξ θ~η ≡ L~ξ θ~η

∣
∣
∣
S

will necessarily include a term of

the form L~ξ ηα which is not uniquely defined (unless ~η can be uniquely defined

on each S ′
τ , which is usually not the case). Nevertheless, for the case of MOTS

and when ~η = ~l+ this a priori ambiguous term becomes determined, as we will

see. The general expression for δ~ξ θ~η is given in the following proposition.

Proposition 3.3.1 Let S be a surface on a spacetime (M, g(4)), ~ξ a vector field

defined on M with deformation tensor aµν(~ξ ) and ~η a vector field normal to S

and extend ~η to a smooth map ~η : (−ǫ, ǫ)×S → TM satisfying ~η(0, p) = ~η(p) and

~η(τ, p) ∈ (Tϕτ (p)S
′
τ )

⊥ where ϕτ is the local group of diffeomorphisms generated by
~ξ and S ′

τ = ϕτ (S). Then, the variation along ~ξ of the expansion θ~η on S reads

δ~ξ θ~η = Hµ
L~ξ ηµ − aAB(~ξ )ΠAB

µ ηµ

+γABeαAe
ρ
Bη

ν

[
1

2
∇νaαρ(~ξ ) −∇αaνρ(~ξ )

]∣
∣
∣
∣
S

, (3.3.1)

where ~ΠAB denotes the second fundamental form vector of S in M , and aAB(~ξ ) ≡
eαAe

β
Baαβ(

~ξ ), with {~eA} being a local basis for TS.

Proof. Since θ~η = Hµη
µ = γABΠµ

ABηµ, the variation we need to calculate

involves three terms

L~ξ θ~η =
(

L~ξ γ
AB
)

Πµ
ABηµ + γAB

(

L~ξ Πµ
AB

)

+Hµ
(

L~ξ ηµ

)

. (3.3.2)

In order to do the calculation, we will choose ϕτ ⋆(~eA) as the basis of tangent

vectors at ϕτ (p) ∈ S ′
τ (we refer to ϕτ ⋆(~eA) merely as ~eA in the following to

simplify the notation). This entails no loss of generality and implies L~ξ ~eA = 0,

which makes the calculation simpler. Our aim is to express each term of (3.3.2)

in terms of aµν(~ξ ). For the first term, we need to calculate L~ξ γ
AB. We start with

L~ξ γAB = L~ξ

(
g(4)(~eA, ~eB)

)
= (L~ξ g) (~eA, ~eB) = (L~ξ g) (~eA, ~eB) = aµν(~ξ )eµAe

ν
B ≡

aAB(~ξ ), which immediately implies L~ξ γ
AB = −aCD(~ξ )γACγBD, so that the first

term in (3.3.2) becomes

L~ξ γ
ABΠµ

ABηµ = −aAB(~ξ )ΠAB
µ ηµ. (3.3.3)
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The second term γAB(L~ξΠ
µ
AB)ηµ is more complicated. It is useful to introduce

the projector to the normal space of S, hµν ≡ δµν −g(4)
νβ e

µ
Ae

β
Bγ

AB. From the previous

considerations, it follows that L~ξ h
µ
ν = eµAe

β
B(aAB(~ξ )g

(4)
νβ − γABaνβ(~ξ )), which

implies
(

L~ξ h
µ
ν

)

ηµ = 0 and hence

L~ξ (Πµ
AB)ηµ = −L~ξ (hµνe

α
A∇αe

ν
B) ηµ = −ηνL~ξ (eαA∇αe

ν
B) . (3.3.4)

Therefore we only need to evaluate L~ξ (eαA∇αe
ν
B). It is well-known that for

an arbitrary vector field ~v, L~ξ∇αv
ν −∇αL~ξ v

ν = vρ∇α∇ρξ
ν +R(4)ν

ρσαv
ρξσ. How-

ever, this expression is not directly applicable to the variational derivative we are

calculating and we need the following closely related lemma.

Lemma 3.3.2

L~ξ (eαA∇αe
ν
B) = eαAe

ρ
B∇α∇ρξ

ν +R(4)ν

ρσαe
α
Ae

ρ
Bξ

σ. (3.3.5)

Proof of Lemma 3.3.2. Choose coordinates yA on S and extend them as

constants along ~ξ. This gives coordinates on each one of S ′
τ . Define eαA = ∂xα

∂yA
,

where xµ(yA, τ) are the embedding functions of S ′
τ in M in spacetime coordi-

nates xµ. The map ϕ−τ : M → M relates every point p ∈ Sτ with coordi-

nates {xα} to a point ϕ−τ (p) ∈ S with coordinates {ϕα
−τ (x

β)}. By definition,

L~ξ(e
µ
A∇µe

ν
B) ≡ d

dτ
((ϕ−τ )∗(e

µ
A∇µe

ν
B)). Using that

∂ϕα−τ (x
β)

∂τ
= −ξα, it is immediate

to obtain

d

dτ
((ϕ−τ )∗(e

µ
A∇µe

ν
B))

∣
∣
∣
∣
τ=0

=
d

dτ

[

(eµA∇µe
α
B)
∂ϕ ν

−τ
∂xα

]∣
∣
∣
∣
τ=0

=
∂

∂τ
(eµA∇µe

ν
B(yC , τ)) − ∂αξ

νeµA∇µe
α
B

=
∂

∂τ

[
∂2xν

∂yA∂yB
+ Γναρ

∂xα

∂yA
∂xρ

∂yB

]

− ∂µξ
ν

[
∂2xµ

∂yA∂yB
+ Γµαρ

∂xα

∂yA
∂xρ

∂yB

]

.

On the other hand,

eαAe
ρ
B∇α∇ρξ

ν +R(4)ν

ρσαe
α
Ae

ρ
Bξ

σ

=
∂xα

∂yA
∂xρ

∂yB
[
∂α∂ρξ

ν + Γνµρ∂αξ
µ + Γνµα∂ρξ

µ − Γµαρ∂µξ
ν + ξσ∂σΓ

ν
αρ

]

=
∂3xν

∂τ∂yA∂yB
− ∂2xρ

∂yA∂yB
∂ρξ

ν +
∂xρ

∂yB
Γνµρ∂τ

(
∂xµ

∂yA

)

+
∂xα

∂yA
Γνµα∂τ

(
∂xµ

∂yB

)

+
∂xα

∂yA
∂xρ

∂yB
[
∂τΓ

ν
αρ − Γµαρ∂µξ

ν
]

=
∂

∂τ

[
∂2xν

∂yA∂yB
+ Γναρ

∂xα

∂yA
∂xρ

∂yB

]

− ∂µξ
ν

[
∂2xµ

∂yA∂yB
+ Γµαρ

∂xα

∂yA
∂xρ

∂yB

]

,
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where we have used

R(4)ν
ρσα = ∂σΓ

ν
ρα − ∂αΓ

ν
ρσ + ΓνγσΓ

γ
ρα − ΓνγαΓ

γ
ρσ,

in the first equality and ξµ = ∂xµ(yA,τ)
∂τ

in the second one. This proves the lemma. �

We can now continue with the proof of Proposition 3.3.1. It only remains to

express the quantity ∇α∇ρξ
ν + R(4)ν

ρσαξ
σ in terms of aµν(~ξ ). To that end, we

take a derivative of ∇νξρ + ∇ρξν = aνρ(~ξ ) to get

∇α∇νξρ + ∇α∇ρξν = ∇αaνρ(~ξ),

and use the Ricci identity ∇α∇νξρ −∇ν∇αξρ = −R(4)
σρανξ

σ to obtain

∇ν∇αξρ + ∇α∇ρξν = R(4)
σρανξ

σ + ∇αaνρ(~ξ ).

Now, write the three equations obtained from this one by cyclic permutation of

the three indices. Adding two of them and subtracting the third one we find

∇α∇ρξν =
1

2
(R(4)

σραν +R(4)
σνρα −R(4)

σανρ)ξ
σ

+
1

2

[

∇αaνρ(~ξ ) + ∇ρaαν(~ξ ) −∇νaαρ(~ξ )
]

.

which, after using the first Bianchi identity R
(4)
σραν +R

(4)
σνρα +R

(4)
σανρ = 0, leads to

∇α∇ρξν = R(4)
σαρνξ

σ +
1

2

[

∇αaνρ(~ξ ) + ∇ρaαν(~ξ ) −∇νaαρ(~ξ )
]

.

Substituting (3.3.5) and this expression into (3.3.4) yields

γABL~ξ Πµ
ABηµ = γABeαAe

ρ
Bη

ν

[
1

2
∇νaαρ(~ξ ) −∇αaνρ(~ξ )

]

. (3.3.6)

Inserting (3.3.3) and (3.3.6) into equation (3.3.2) proves the proposition. �

We can now particularize to the outer null expansion in a MOTS.

Corollary 3.3.3 If S is a MOTS then

δ~ξ θ
+ = −1

4
θ−aµν(~ξ )lµ+l

ν
+ − aAB(~ξ )ΠAB

µ lµ+

+γABeαAe
ρ
Bl
ν
+

[
1

2
∇νaαρ(~ξ ) −∇αaνρ(~ξ )

]∣
∣
∣
∣
S

. (3.3.7)
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Proof. The normal vector ~l′+(τ) defined on each of the surfaces S ′
τ is null.

Therefore, using L~ξ g
(4)µν = L~ξ g

(4)µν = −aµν(~ξ ),

0 = L~ξ

(

l′+µ(τ)l
′
+ν

(τ)g(4)µν
)

= 2lµ+L~ξ l
′
+µ

(τ) − aµν(~ξ )lµ+l
ν
+. (3.3.8)

Since, on a MOTS ~H = −1
2
θ−~l+, it follows HµL~ξ l

′
+µ

(τ) = −1
2
θ−lµ+L~ξ l

′
+µ

(τ) =

−1
4
θ−aµν(~ξ )lµ+l

ν
+, and the corollary follows from (3.3.1). �

Remark. Formula (3.3.7) holds in general for arbitrary surfaces S at any

point where θ+ = 0. �

3.4 Results provided L~mQ has a sign on S

In this section we will give several results provided L~mQ has a definite sign on

S. In this case, a direct application of Lemma B.6 for a MOTS S with stability

operator L~m leads to the following result.

Lemma 3.4.1 Let S be a stable MOTS on a spacelike hypersurface Σ. If

L~mQ|S ≤ 0 (resp. L~mQ|S ≥ 0) and not identically zero, then Q|S < 0 (resp.

Q|S > 0).

Furthermore, if S is strictly stable and L~mQ|S ≤ 0 (resp. L~mQ|S ≥ 0) then

Q|S ≤ 0 (resp. Q|S ≥ 0) and it vanishes at one point only if it vanishes every-

where on S.

The general idea then is to combine Lemma 3.4.1 with the general calculation

for the variation of θ+ obtained in the previous section to get restrictions on

special types of generators ~ξ on a stable or strictly stable MOTS. Our first result

is fully general in the sense that it is valid for any generator ~ξ.

Theorem 3.4.2 Let S be a stable MOTS on a spacelike hypersurface Σ and ~ξ a

vector field on S with deformation tensor aµν(~ξ ). With the notation above, define

Z = −1

4
θ−aµν(~ξ )lµ+l

ν
+ − aAB(~ξ )ΠAB

µ lµ+

+γABeαAe
ρ
Bl
ν
+

[
1

2
∇νaαρ(~ξ ) −∇αaνρ(~ξ )

]

+NW

∣
∣
∣
∣
S

, (3.4.1)

where W = Πµ
ABΠνABl+µl+ν +Gµνl

µ
+l
ν
+, and assume Z ≤ 0 everywhere on S.

(i) If Z 6= 0 somewhere, then ξµl
µ
+ < 0 everywhere.
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(ii) If S is strictly stable, then ξµl
µ
+ ≤ 0 everywhere and vanishes at one point

only if it vanishes everywhere.

Proof. Consider the first variation of S defined by the vector

~ν = ~ξ − NS
~l+ = Q~m + ~Y ‖. From equation (2.2.10) and Definition 2.2.19

we have δ~ν θ
+ = L~mQ. On the other hand, linearity of this variation under

addition gives δ~ν θ
+ = δ~ξ θ

+ − δNS~l+θ
+. The Raychaudhuri equation for MOTS

establishes that δNS~l+θ
+ = −NSW (see (2.2.13) and (2.2.14)) and the identity

(3.3.7) gives L~mQ = Z. Since Q = ξµl
µ
+, the result follows directly from Lemma

3.4.1. �

Remark. The theorem also holds if all the inequalities are reversed. This

follows directly by replacing ~ξ → −~ξ. �

This theorem gives information about the relative position between the gen-

erator ~ξ and the outer null normal ~l+ and has, in principle, many potential conse-

quences. Specific applications require considering spacetimes having special vector

fields for which sufficient information about its deformation tensor is available.

Once such a vector is known to exist, the result above can be used either to re-

strict the form of ~ξ in stable or strictly stable MOTS or, alternatively, to restrict

the regions of the spacetime where such MOTS are allowed to be present.

Since conformal vector fields (and homotheties and isometries as particular

cases) have very special deformation tensors, the theorem above gives interesting

information for spacetimes admitting such symmetries.

Corollary 3.4.3 Let S be a stable MOTS in a hypersurface Σ of a spacetime

(M, g(4)) which admits a conformal Killing vector ~ξ, L~ξg
(4)
µν = 2φg

(4)
µν (including

homotheties φ = C, and isometries φ = 0).

(i) If 2~l+(φ) +NW |S ≤ 0 and not identically zero, then ξµl
µ
+|S < 0.

(ii) If S is strictly stable and 2~l+(φ) +NW |S ≤ 0 then ξµl
µ
+|S ≤ 0 and vanishes

at one point only if it vanishes everywhere

Remark 1. As before, the theorem is still true if all inequalities are reversed.

�

Remark 2. In the case of homotheties and Killing vectors, the condition

of the theorem demands that NSW ≤ 0. Under the NEC, this holds provided
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Figure 3.3: The planes TpΣ and P ≡ TpS ⊕ span{~l+ |p} divide the tangent space

TpM in four regions. By Corollary 3.4.3, if S is strictly stable and ~ξ is a Killing

vector or a homothety in a spacetime satisfying the NEC which points above

Σ everywhere, then ~ξ cannot enter into the forbidden region at any point (and

similarly, if ~ξ points below Σ everywhere). The allowed region includes the plane

P . However, if there is a point with W 6= 0 where ~ξ is not tangent to Σ, then the

result is also valid for stable MOTS with P belonging to the forbidden region.

NS ≤ 0, i.e. when ~ξ points below Σ everywhere on S (where the term “below”

includes also the tangential directions). For strictly stable S, the conclusion of

the theorem is that the homothety or the Killing vector must lie above the null

hyperplane defined by the tangent space of S and the outer null normal ~l+ at

each point p ∈ S. If the MOTS is only assumed to be stable, then the theorem

requires the extra condition that ~ξ points strictly below Σ at some point with

W 6= 0. In this case, the conclusion is stronger and forces ~ξ to lie strictly above

the null hyperplane everywhere. By changing the orientation of ~ξ, it is clear

that similar restrictions arise when ~ξ is assumed to point above Σ. Figure 3.3

summarizes the allowed and forbidden regions for ~ξ in this case. �

Proof. We only need to show that Z = 2~l+(φ) + NW |S for conformal

Killing vectors. This follows at once from (3.4.1) and aµν(~ξ ) = 2φg
(4)
µν after using

orthogonality of ~eA and ~l+. Notice in particular that Z is the same for isometries

and for homotheties. �

This corollary has an interesting consequence in spacetime regions where there

exists a Killing vector or a homothety ~ξ which is causal everywhere.
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Corollary 3.4.4 Let a spacetime (M, g(4)) satisfying the NEC admit a causal

Killing vector or homothety ~ξ which is future (or past) directed everywhere on a

stable MOTS S ⊂ Σ. Then,

(i) The second fundamental form Π+
AB along ~l+ (i.e. Π+

AB ≡ Πµ
ABl+µ) and

G
(4)
µν l

µ
+l
ν
+ vanish identically on every point p ∈ S where ~ξ|p 6= 0.

(ii) If S is strictly stable, then ~ξ ∝ ~l+ everywhere.

Remark. If we assume that there exists an open neighbourhood of S in M

where the Killing vector or homothety ~ξ is causal and future (or past) directed ev-

erywhere then the conclusion (i) can be generalized to say that Π+
AB and Gµνl

µ
+l
ν
+

vanish identically on S. The reason is that such a ~ξ cannot vanish anywhere

in this neighbourhood (and consequently neither on S). For Killing vectors this

result is proven in Lemma 3.2 in [11]1. A simple generalization shows that the

same holds for homotheties, as follows. Suppose that ~ξ |p∈S = 0. Take a timelike

affine-parametrized geodesic γ passing through p with future directed unit tan-

gent vector ~v. A simple computation gives that, if ~ξ is a homothety with constant

C, vµ∇µ(ξνv
ν) = −C. Supposing C > 0, this implies that the causal vector ~ξ is

future directed on the future of p and past directed on the past of p contradicting

the fact that ~ξ is future (past) directed everywhere on a neighbourhood of S in

M . A similar argument works if C < 0.

Point (ii) can be generalized to locally outermost MOTS using a finite

construction. We will prove this in Theorem 3.4.9 below. �

Proof. We can assume, after reversing the sign of ~ξ if necessary, that ~ξ is past

directed, i.e. NS ≤ 0.

Under the NEC, W is the sum of two non-negative terms, so in order to prove

(i) we only need to show that W = 0 on points where ~ξ 6= 0, i.e. at points where

NS < 0. Assume, on the contrary, that W 6= 0 and NS < 0 happen simultaneously

at a point p ∈ S. It follows that NSW ≤ 0 everywhere and non-zero at p. Thus,

we can apply statement (i) of Corollary 3.4.3 to conclude Q < 0 everywhere.

Hence NSQ ≥ 0 and not identically zero on S. Recalling the decomposition
~ξ = NS

~l+ +Q~m+ ~Y ‖, the squared norm of this vector is

ξµξ
µ = 2NSQ+Q2 + Y ‖

µY
‖µ. (3.4.2)

This is the sum of non-negative terms, the first one not identically zero. This

contradicts the condition of ~ξ being causal.

1We thank Miguel Sánchez Caja for pointing this out.
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To prove the second statement, we notice that point (ii) in Corollary 3.4.3

implies Q ≤ 0, and hence NSQ ≥ 0. The only way (3.4.2) can be negative or

zero is if Q = 0 and ~Y ‖ = 0, i.e. ~ξ ∝ ~l+. �

This corollary extends Theorem 2 in [80] to the case of stable MOTS and

implies, for instance, that any strictly stable MOTS in a plane wave spacetime

(which by definition admits a null and nowhere zero Killing vector field ~ξ ) must

be aligned with the direction of propagation of the wave (in the sense that ~ξ must

be one of the null normals to the surface). It also implies that any spacetime

admitting a nowhere zero and causal Killing vector (or homothety) whose energy-

momentum tensor satisfies the DEC and does not admit a null eigenvector cannot

contain any stable MOTS. This is because G
(4)
µν l

µ
+l
ν
+ = 0 and the DEC implies

G
(4)
µν l

µ
+ ∝ lν and G

(4)
µν would have a null eigenvector. For perfect fluids this result

holds even without the DEC provided µ + p 6= 0 (this is because in this case

G
(4)
µν l

µ
+l
ν
+ = (µ + p)(lµ+uµ)

2 6= 0 – where µ is the density, p the pressure and ~u is

the 4-velocity of the fluid–).

The results above hold for stable or strictly stable MOTS. Among such sur-

faces, marginally trapped surfaces are of special interest. Our next result restricts

(and in some cases forbids) the existence of such surfaces in spacetimes admitting

Killing vectors, homotheties or conformal Killings.

Theorem 3.4.5 Let S be a stable MOTS in a spacelike hypersurface Σ of a

spacetime (M, g(4)) which satisfies the NEC and admits a conformal Killing vector
~ξ with conformal factor φ ≥ 0 (including homotheties with C ≥ 0 and Killing

vectors). Suppose furthermore that either (i) (2~l+(φ) + NW )|S 6≡ 0 or (ii) S is

strictly stable and ξµl
µ
+|S 6≡ 0. Then the following holds.

(a) If 2~l+(φ)+NW |S ≤ 0 then S cannot be a marginally trapped surface, unless
~H ≡ 0. The latter case is excluded if φ|S 6≡ 0.

(b) If 2~l+(φ) +NW |S ≥ 0 then S cannot be a past marginally trapped surface,

unless ~H ≡ 0. The latter case is excluded if φ|S 6≡ 0.

Remark. The statement obtained from this one by reversing all the inequali-

ties is also true. This is a direct consequence of the freedom in changing ~ξ → −~ξ. �

Proof. We will only prove case (a). The argument for case (b) is similar.

The idea is taken from [80] and consists of performing a variation of S along

the conformal Killing vector and evaluating the change of area in order to get
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a contradiction if S is marginally trapped. The difference is that here we do

not make any a priori assumption on the causal character for ~ξ. Corollary 3.4.3

provides us with sufficient information for the argument to go through.

The first variation of area (2.2.3) gives

δ~ξ |S| = −1

2

∫

S

θ−ξµl
µ
+ηS, (3.4.3)

where we have used ~H = −1
2
θ−~l+. Now, since 2~l+(φ) + NW |S ≤ 0, and further-

more either hypothesis (i) or (ii) holds, Corollary 3.4.3 implies that ξµl
µ
+|S < 0.

On the other hand, ~ξ being a conformal Killing vector, the induced metric on

S ′
τ is related to the metric on S by conformal rescaling. A simple computation

gives δ~ξ ηS = 1
2
γAB(L~ξ g)(~eA, ~eB)ηS (see e.g. [80]), which for the particular case of

conformal Killing vectors gives the following.

δ~ξ |S| = 2

∫

S

φηS, (3.4.4)

This quantity is non-negative due to φ ≥ 0 and not identically zero if φ 6= 0

somewhere. Combining (3.4.3) and (3.4.4) we conclude that if θ− ≤ 0 (i.e. S is

marginally trapped) then necessarily θ− vanishes identically (and so does ~H).

Furthermore, if φ|S is non-zero somewhere, then θ− must necessarily be positive

somewhere, and S cannot be marginally trapped. �

3.4.1 An application: No stable MOTS in Friedmann-

Lemâıtre-Robertson-Walker spacetimes

In this subsection we apply Corollary 3.4.3 to show that a large subclass of

Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetimes do not admit stable

MOTS on any spacelike hypersurface. Obtaining this type of results for metric

spheres only requires a straightforward calculation, and is therefore simple. The

power of the method is that it provides a general result involving no assumption

on the geometry of the MOTS or on the spacelike hypersurface where it is embed-

ded. The only requirement is that the scale factor and its time derivative satisfy

certain inequalities. This includes, for instance all FLRW cosmological models

satisfying the NEC with accelerated expansion, as we shall see in Corollary 3.4.7

below.

Recall that the FLRW metric is

g
(4)
FLRW = −dt2 + a2(t)

[
dr2 + χ2(r; k)dΩ2

]
,
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where a(t) > 0 is the scale factor and χ(r; k) = {sin r, r, sinh r} for k = {1, 0,−1},
respectively. The Einstein tensor of this metric is of perfect fluid type and reads

G(4)
µν = (µ+ p)uµuν + pg(4)

µν , ~u = ∂t, µ =
3(ȧ2(t) + k)

a2(t)
, (3.4.5)

µ+ p = 2

(
ȧ2(t) + k

a2(t)
− ä(t)

a(t)

)

(3.4.6)

where dot stands for derivative with respect to t.

Theorem 3.4.6 There exists no stable MOTS in any spacelike hypersurface of

a FLRW spacetime (M, g
(4)
FLRW ) satisfying

ȧ2(t) + k

a(t)
> 0, − ȧ

2(t) + k

a(t)
≤ ä(t) ≤ ȧ2(t) + k

a(t)
. (3.4.7)

Remark. In terms of the energy-momentum contents of the spacetime, these

three conditions read, respectively, µ ≥ 0, µ ≥ 3p and µ+ p ≥ 0. As an example,

in the absence of a cosmological constant they are satisfied as soon as the weak

energy condition is imposed and the pressure is not too large (e.g. for the matter

and radiation dominated eras). The class of FLRW satisfying (3.4.7) is clearly

very large (c.f. Corollary 3.4.7 below). We also remark that Theorem 3.4.6 agrees

with the fact that the causal character of the hypersurface which separates the

trapped from the non-trapped spheres in FLRW spacetimes depends precisely

on the quantity µ2(µ+ p)(µ− 3p) (c.f. [103]). �

Proof. The FLRW spacetime admits a conformal Killing vector ~ξ = a(t)~u

with conformal factor φ = ȧ(t). Since this vector is timelike and future directed,

it follows that ξµl
µ
+|S < 0 for any spacelike surface S embedded in a spacelike

hypersurface Σ. If we can show that 2~l+(φ) + NW |S ≥ 0, and non-identically

zero for any S, then the sign reversed of point (i) in Corollary 3.4.3 implies

that S cannot be a stable MOTS, thus proving the result. The proof therefore

relies on finding conditions on the scale factor which imply the validity of this

inequality on any S. First of all, we notice that the second fundamental form

Π+
AB can be made as small as desired on a suitably chosen S. Thus, recalling

that W = Π+
ABΠ+AB +G

(4)
µν l

µ
+l
ν
+, it is clear that the inequality that needs to be

satisfied is

2~l+(φ) +NG(4)
µν l

µ
+l
ν
+

∣
∣
∣
S
≥ 0, (3.4.8)

and positive somewhere. In order to evaluate this expression recall that ~u =

a−1~ξ = a(t)−1N~n + a(t)−1~Y . Let us write ~Y = Y ~e, where ~e is unit and let α be
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the hyperbolic angle of ~u in the basis {~n,~e }, i.e. ~u = coshα~n+sinhα~e. It follows

immediately that N = a(t) coshα and Y = a(t) sinhα. Furthermore, multiplying

~u by the normal vector to the surface S in Σ we find uµm
µ = cosϕ sinhα, where ϕ

is the angle between ~m and ~e. With this notation, let us calculate the null vector
~l+. Writing ~l+ = A~u +~b, with ~b orthogonal to ~u, it follows bµb

µ = A2 from the

condition of ~l+ being null. On the other hand we have the decomposition A~u+~b =
~l+ = ~n+ ~m. Multiplying by ~u we immediately get A = coshα− cosϕ sinhα, and,

since φ = ȧ(t) only depends on t,

~l+(φ) = (coshα− cosϕ sinhα) ä(t). (3.4.9)

The following expression for G
(4)
µν l

µ
+l
ν
+ follows directly from ~l+ = A~u+~b and (3.4.5),

(3.4.6),

G(4)
µν l

µ
+l
ν
+ = A2(µ+ p)

= 2 (coshα− cosϕ sinhα)2

(
ȧ2(t) + k

a2(t)
− ä(t)

a(t)

)

. (3.4.10)

Inserting (3.4.9) and (3.4.10) into (3.4.8) and dividing by 2A2 coshα (which is

positive) we find the equivalent condition
(

1

coshα (coshα− cosϕ sinhα)
− 1

)

ä(t) +
ȧ2(t) + k

a(t)
≥ 0, (3.4.11)

and non-zero somewhere. The dependence on S only arises through

the function f(α, ϕ) = coshα(coshα − cosϕ sinhα). Rewriting this as

f = 1/2(1 + cosh(2α) − cosϕ sinh(2α)) it is immediate to show that f takes all

values in (1/2,+∞). Hence, [coshα (coshα− cosϕ sinhα)]−1 − 1 takes all values

between −1 and 1. In order to satisfy (3.4.11) on all this range, it is necessary

and sufficient that the two inequalities in (3.4.7) are satisfied. �

The following corollary gives a particularly interesting case where all the con-

ditions of Theorem 3.4.6 are satisfied.

Corollary 3.4.7 Consider a FLRW spacetime (M, g
(4)
FLRW ) satisfying the NEC.

If ä(t) > 0, then there exists no stable MOTS in any spacelike hypersurface of

(M, g
(4)
FLRW )

Proof. The null energy condition gives 0 ≤ µ + p = 2
(
ȧ2(t)+k
a2(t)

− ä(t)
a(t)

)

.

This implies the first and third inequalities in (3.4.7) if ä > 0. The remaining

condition − ȧ2(t)+k
a(t)

≤ ä is also obviously satisfied provided ä > 0. �
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3.4.2 A consequence of the geometric construction of Sτ

We have emphasized at the beginning of this section that the restrictions obtained

directly by the geometric procedure of moving S along ~ξ and then back to Σ are

intuitively clear but typically weaker than those obtained by using elliptic theory

results. There are some cases, however, where the reverse actually holds, and the

geometric construction provides stronger results. We will present one of these

cases in this subsection.

Corollary 3.4.3 gives restrictions on ξµl
µ
+|S for Killing vectors and homotheties

in spacetimes satisfying the NEC, provided ~ξ is future or past directed everywhere.

However, when W vanishes identically, the result only gives useful information

in the strictly stable case. The reason is that W ≡ 0 implies L~mQ ≡ 0 and,

for marginally stable MOTS (i.e. when the principal eigenvalue of L~m vanishes),

the maximum principle is not strong enough to conclude that Q must have a

sign. There is at least one case where marginally stable MOTS play an important

role, namely after a jump in the outermost MOTS in a (3+1) foliation of the

spacetime (see [1] for details). As we will see next, the geometric construction

does give restrictions in this case even when W vanishes identically.

Theorem 3.4.8 Consider a spacetime (M, g(4)) possessing a Killing vector or a

homothety ~ξ and satisfying the NEC. Suppose M contains a compact spacelike

hypersurface Σ̃ with boundary consisting in the disjoint union of a weakly outer

trapped surface ∂−Σ̃ and an outer untrapped surface ∂+Σ̃ (neither of which are

necessarily connected) and take ∂+Σ̃ as a barrier with interior Σ̃. Without loss

of generality, assume that Σ̃ is defined locally by a level function T = 0 with

T > 0 to the future of Σ̃ and let S be the outermost MOTS which is bounding

with respect to ∂+Σ̃. If ~ξ(T ) ≤ 0 on some spacetime neighbourhood of S, then

ξµl+µ ≤ 0 everywhere on S.

Remark 1. As usual, the theorem still holds if all the inequalities involving
~ξ are reversed. �

Remark 2. The simplest way to ensure that ~ξ(T ) ≤ 0 on some neighbour-

hood of S is by imposing a condition merely on S, namely ξµn
µ|S > 0, because

then ~ξ lies strictly below Σ̃ on S and this property is obviously preserved

sufficiently near S (i.e. ~ξ points strictly below the level set of T on a sufficiently

small spacetime neighbourhood of S). We prefer imposing directly the condition
~ξ(T ) ≤ 0 on a spacetime neighbourhood of S because this allows ~ξ |S to be
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tangent to S. �

Proof. First note that the hypersurface Σ̃ satisfies the assumptions of The-

orem 2.2.30 which ensures that an outermost MOTS S which is bounding with

respect to ∂+Σ̃ does exist and, therefore, no weakly outer trapped surface can

penetrate in its exterior region. Then, the idea is precisely to use the geometric

procedure described above to construct Sτ and use the fact that S is the outer-

most bounding MOTS to conclude that Sτ (τ > 0) cannot have points outside

S. Here we move S a small but finite amount τ , in contrast to the elliptic results

before, which only involved infinitesimal displacements. We want to have infor-

mation on the sign of the outer expansion of Sτ in order to make sure that a

weakly outer trapped surface forms. The first part of the displacement is along
~ξ and gives S ′

τ . Let us first see that all these surfaces are MOTS. For Killing

vectors, this follows at once from symmetry arguments. For homotheties we have

the identity

δ~ξ θ
+ =

(

−1

2
lα−L~ξ l

′
+α

(τ) − 2C

)

θ+, (3.4.12)

which follows directly from (3.3.1) with ~η = ~l+ after using lµ+L~ξ l
′
+µ

(τ) =
1
2
aµν(~ξ )lµ+l

ν
+ = 0, see (3.3.8). Expression (3.4.12) holds for each one of the

surfaces {S ′
τ}, independently of them being MOTS or not. Since this variation

vanishes on MOTS and the starting surface S has this property, it follows that

each surface S ′
τ (τ > 0) is also a MOTS. Moving back to Σ̃ along the null

hypersurface introduces, via the Raychaudhuri equation (2.2.13), a non-positive

term NSW in the outer null expansion, provided the motion is to the future.

Hence, Sτ for small but finite τ > 0 is a weakly outer trapped surface provided
~ξ moves to the past of Σ̃. This is ensured if ~ξ(T ) ≤ 0 near S, because T cannot

become positive for small enough τ . On the other hand, since a point p ∈ S

moves initially along the vector field ν = ~ξ −NS
~l+ = Q~m+ ~Y ‖, where Q = ξµl

µ
+

as usual, it follows that Q > 0 somewhere implies (for small enough τ) that

the bounding weakly outer trapped surface Sτ has a portion lying strictly to

the outside of S which, due to Theorem 2.2.30 by Andersson and Metzger,

is a contradiction to S being the outermost bounding MOTS. Hence Q ≤ 0

everywhere and the theorem is proven. �

It should be remarked that the assumption of ~ξ being a Killing vector or a

homothety is important for this result. Trying to generalize it for instance to

conformal Killings fails in general because then the right hand side of equation
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(3.4.12) has an additional term 2~l+(φ), not proportional to θ+. This means that

moving a MOTS along a conformal Killing does not lead to another MOTS in

general. The method can however, still give useful information if ~l+(φ) has the

appropriate sign, so that S ′
τ is in fact weakly outer trapped. We omit the details.

An immediate consequence of the finite construction of Sτ is the extension of

point (ii) of Corollary 3.4.4 to locally outermost MOTS.

Theorem 3.4.9 Let (M, g(4)) be a spacetime satisfying NEC and admitting a

causal Killing vector or homothety ~ξ which is future (past) directed on a locally

outermost MOTS S ⊂ Σ. Then ~ξ ∝ ~l+ everywhere on S.

Proof. As before, let Σ be defined locally by a level function T = 0 with

T > 0 to the future of Σ. Assume that ~ξ is past directed (the future directed case

is similar). Then, the assumption ~ξ(T ) ≤ 0 on some spacetime neighbourhood

of S of Theorem 3.4.8 is automatically satisfied. Then we can use the finite

construction therein to find a weakly outer trapped surface which, due to the

fact that ~ξ is causal (and past directed), does not penetrate in the interior part

of the two-sided neighbourhood of S. In fact, this new trapped surface will have

points strictly outside S if on some point of S ~ξ 6∝ ~l+ which proves the result. �

Finally, Theorem 3.4.9 together with Theorem 2.2.30 lead to the following

result.

Theorem 3.4.10 Consider a spacelike hypersurface (Σ, g,K) possibly with

boundary in a spacetime satisfying the NEC and possessing a Killing vector or a

homothety ~ξ with squared norm ξµξ
µ = −λ. Assume that Σ possesses a barrier

Sb with interior Ωb which is outer untrapped with respect to the direction pointing

outside of Ωb.

Consider any surface S which is bounding with respect to Sb. Let us denote by

Ω the exterior of S in Ωb. If S is weakly outer trapped and Ω ⊂ {λ > 0}, then λ

cannot be strictly positive on any point p ∈ S.

Remark. When weakly outer trapped surface is replaced by the stronger

condition of being a weakly trapped surface with non-vanishing mean curvature,

then this theorem can be proven by a simple argument based on the first

variation of area [80]. In that case, the assumption of S being bounding becomes

unnecessary. It would be interesting to know if Theorem 3.4.10 holds for arbitrary

weakly outer trapped surfaces, not necessarily bounding. �
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Figure 3.4: Theorem 3.4.10 excludes the possibility pictured in this figure, where

S (in blue) is a weakly outer trapped surface which is bounding with respect to

the outer trapped barrier Sb. The grey (both light and dark) regions represent

the region where λ > 0. The dark grey region represents the interior of Sb, while

the striped area corresponds to Ω, which is the exterior of S in Ωb.

Proof. We argue by contradiction. Suppose a weakly outer trapped surface

S satisfying the assumptions of the theorem and with λ > 0 at some point.

Theorem 2.2.30 implies that an outermost MOTS ∂topT+ which is bounding

with respect to Sb exists in the closure of the exterior Ω of S in Ωb. In particular,

∂topT+ is a locally outermost MOTS. The hypothesis Ω ⊂ {λ > 0} implies

that the vector ~ξ is causal everywhere on ∂topT+, either future or past directed.

Moreover, the fact that λ > 0 on some point of S implies that the Killing vector

is timelike in some non-empty set of ∂topT+, which contradicts Theorem 3.4.9. �

The following result is a particularization of Theorem 3.4.10 to the case when

the hypersurface Σ possesses an asymptotically flat end.

Theorem 3.4.11 Let (Σ, g,K) be a spacelike hypersurface in a spacetime satis-

fying the NEC and possessing a Killing vector or homothety ~ξ. Suppose that Σ

possesses an asymptotically flat end Σ∞
0 .

Consider any bounding surface S (see Definition 2.3.6). Let us denote by Ω

the exterior of S in Σ. If S is weakly outer trapped and Ω ⊂ {λ > 0}, then λ

cannot be strictly positive on any point p ∈ S.

Proof. The result is a direct consequence of Theorem 3.4.10. �

Two immediate corollaries follow.

Corollary 3.4.12 Consider a spacelike hypersurface (Σ, g,K) in a spacetime sat-

isfying the NEC and possessing a Killing vector or a homothety ~ξ. Assume that

Σ has a selected asymptotically flat end Σ∞
0 and λ > 0 everywhere on Σ. Then

there exists no bounding weakly outer trapped surface in Σ.
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Corollary 3.4.13 Let (Σ, g,K) be a spacelike hypersurface of the Minkowski

spacetime. Then there exists no bounding weakly outer trapped surface in Σ.

The second Corollary is obviously a particular case of the first one because

the vector ∂t in Minkowskian coordinates is strictly stationary everywhere, in

particular on Σ. The non-existence result of a bounding weakly outer trapped

surface in a Cauchy surface of Minkowski spacetime is however, well-known as

this spacetime is obviously regular predictable (see [63] for definition) and then

the proof of Proposition 9.2.8 in [63] gives the result.

So far, all the results we have obtained require that the quantity LmQ does

not change sign on the MOTS S. In the next section we will relax this condition.

3.5 Results regardless of the sign of L~mQ

When L~mQ changes sign on S, the elliptic methods exploited in the previous

section lose their power. Moreover, for sufficiently small τ , the surface Sτ defined

by the geometric construction above necessarily fails to be weakly outer trapped.

Thus, obtaining restrictions in this case becomes a much harder problem.

However, for locally outermost MOTS S, an interesting situation arises when

Sτ lies partially outside S and happens to be weakly outer trapped in that exte-

rior region. More precisely, if a connected component of the subset of Sτ which

lies outside S turns out to have non-positive outer null expansion, then using a

smoothing result by Kriele and Hayward [75], we will be able to construct a new

weakly outer trapped surface outside S, thus leading to a contradiction with the

fact that S is locally outermost (or else giving restrictions on the generator ~ξ ).

The result by Kriele and Hayward states, in rough terms, that given two

surfaces which intersect on a curve, a new smooth surface can be constructed

lying outside the previous ones in such a way that the outer null expansion does

not increase in the process. The precise statement is as follows.

Lemma 3.5.1 (Kriele, Hayward, 1997 [75]) Let S1, S2 ⊂ Σ be smooth two-

sided surfaces which intersect transversely on a smooth curve γ. Suppose that the

exterior regions of S1 and S2 are properly defined in Σ and let U1 and U2 be

respectively tubular neighbourhoods of S1 and S2 and U−
1 and U−

2 their interior

parts. Assume it is possible to choose one connected component of each set S1 \ γ
and S2 \γ, say S+

1 and S+
2 respectively, such that S+

1 ∩U−
2 = ∅ and S+

2 ∩U−
1 = ∅.

Then, for any neighbourhood V of γ in Σ there exists a smooth surface S̃ and a

continuous and piecewise smooth bijection Φ: S+
1 ∪ S+

2 ∪ γ → S̃ such that
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Figure 3.5: The figure represents the two surfaces S1 and S2 which intersects in a

curve γ, (where one dimension has been suppressed). The two intersecting grey

regions are the tubular neighbourhoods U1 and U2 and, inside them, the stripped

regions represents their interior parts, U−
1 and U−

2 . The sets S+
1 and S+

2 , in blue

color, are then taken to be the connected components of S1\γ and S2\γ which do

not intersect U−
2 and U−

1 , respectively. Finally, the red line represents the smooth

surface S̃ which has smaller θ+ than S1 and S2..

1. Φ(p) = p, ∀p ∈
(
S+

1 ∪ S+
2

)
\ V

2. θ+[S̃]
∣
∣
∣
Φ(p)

≤ θ+[S+
A ]
∣
∣
p
∀p ∈ S+

A (A = 1, 2).

Moreover S̃ lies in the connected component of V \
(
S+

1 ∪ S+
2 ∪ γ

)
lying in the

exterior regions of both S1 and S2.

Remark. It is important to emphasize that the statement of this result is

slightly different from the one appearing in the original paper [75] by Kriele

and Hayward. Indeed, the assumptions made in [75] are rather ambiguous and

restrictive in the sense that the outer normals of S1 and S2 are required to form

an angle (defined only by a figure), not smaller than 90 degrees. This condition is

not necessary for the lemma to work. This result also appears quoted in [4] where

the assumptions are wrongly formulated (although the result is properly used

throughout the paper). In our paper [25], where Lemma 3.5.1 is also formulated,

the hypotheses are incomplete as well. �

This result will allow us to adapt the arguments above without having to

assume that L~mQ has a constant sign on S. The argument will be again by

contradiction, i.e. we will assume a locally outermost MOTS S and, under suitable
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circumstances, we will be able to find a new weakly outer trapped surface lying

outside S. Since the conditions are much weaker than in the previous section, the

conclusion is also weaker. It is, however, fully general in the sense that it holds

for any vector field ~ξ on S. Recall that Z is defined in equation (3.4.1).

Theorem 3.5.2 Let S be a locally outermost MOTS in a spacelike hypersurface

Σ of a spacetime (M, g(4)). Denote by U0 a connected component of the set {p ∈
S; ξµl

µ
+|p > 0}. Assume U0 6= ∅ and that its boundary γ ≡ ∂topU0 is either empty,

or it satisfies that the function ξµl
µ
+ has a non-zero gradient everywhere on γ, i.e.

d(ξµl
µ
+)|γ 6= 0.

Then, there exists a point p ∈ U0 such that Z|
p
≥ 0.

Proof. As mentioned, we will use a contradiction argument. Let us therefore

assume that

Z|p < 0, ∀p ∈ U0. (3.5.1)

The aim is to construct a weakly outer trapped surface near S and outside of it.

This will contradict the condition of S being locally outermost.

First of all we observe that Z cannot be negative everywhere on S, because

then Theorem 3.4.2 (recall that outermost MOTS are always stable) would imply

Q ≡ (ξµl
µ
+) < 0 everywhere and U0 would be empty against hypothesis. Con-

sequently, under (3.5.1), U0 cannot coincide with S and γ ≡ ∂topU0 6= ∅. Since

Q|γ = 0 and, by assumption, dQ|γ 6= 0 it follows that γ is a smooth embed-

ded curve. Taking µ to be a local coordinate on γ, it is clear that {µ,Q} are

coordinates of a neighbourhood of γ in S. We will coordinate a small enough

neighbourhood of γ in Σ by Gaussian coordinates {u, µ,Q} such that u = 0 on

S and u > 0 on its exterior.

By moving S along ~ξ a finite but small parametric amount τ and back to Σ

with the outer null geodesics, as described in Section 3.2, we construct a family

of surfaces {Sτ}τ . The curve that each point p ∈ S describes via this construction

has tangent vector ~ν = Q~m+~Y ‖|S on S. In a small neighbourhood of γ, the normal

component of this vector, i.e. Q~m, is smooth and only vanishes on γ. This implies

that for small enough τ , Sτ are graphs over S near γ. We will always work on

this neighbourhood, or suitable restrictions thereof. In the Gaussian coordinates

above, this graph is of the form {u = û(µ,Q, τ), µ,Q}. Since the normal unit

vector to S is simply ~m = ∂u in these coordinates and the normal component of

~ν is Q~m, the graph function û has the following Taylor expansion

û(µ,Q, τ) = Qτ +O(τ 2). (3.5.2)
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Our next aim is to use this expansion to conclude that the intersection of S and

Sτ near γ is an embedded curve γτ for all small enough τ . To do that we will apply

the implicit function theorem for functions to the equation û = 0. It is useful to

introduce a new function v(µ,Q, τ) = û(µ,Q,τ)
τ

, which is still smooth (thanks to

(3.5.2)) and vanishes at τ = 0 only on the curve γ. Moreover, its derivative with

respect to Q is nowhere zero on γ, in fact ∂v
∂Q

∣
∣
∣
(µ,0,0)

= 1 for all µ. The implicit

function theorem implies that there exist a unique function Q = ϕ(µ, τ) which

solves the equation v(µ,Q, τ) = 0, for small enough τ . Obviously, this function

is also the unique solution near γ of û(µ,Q, τ) = 0 for τ > 0. Consequently,

the intersection of S and Sτ (τ > 0) lying in the neighbourhood of γ where we

are working on is an embedded curve γτ . Since γ separates S into two or more

connected components, the same is true for γτ for small enough τ (note that γ

need not be connected and the number of connected components of S \ γ may

be bigger than two). Recall that γ is the boundary of a connected set U0. Hence,

by construction, there is only one connected component of Sτ \ γτ which has

v(µ,Q, τ) > 0 near γ (i.e. that lies in the exterior of S near γ). Let us denote

it by S+
τ . S+

τ in fact lies fully outside of S, not just in a neighborhood of γ, as

we see next. First of all, note that Q > 0 on U0. We have just seen that γτ is

a continuous deformation of γ. Let us denote by Uτ the domain in S obtained

by deforming U0 when the boundary moves from γ to γτ (See Figure 3.6). It is

obvious that S+
τ is obtained by moving Uτ first along ~ξ an amount τ and then

back to Σ by null hypersurfaces. The closed subset of Uτ lying outside the tubular

neighbourhood where we applied the implicit function theorem is, by construction

a proper subset of U0. Consequently, on this closed set Q is uniformly bounded

below by a positive constant. Given that Q is the first order term of the normal

variation, all these points move outside of S. This proves that S+
τ is fully outside

S for sufficiently small τ . Incidentally this also shows that S+
τ is a graph over Uτ .

The next aim is to show that the outer null expansion of Sτ is non-positive

everywhere on S+
τ . To that aim, we will prove that, for small enough τ , Z is strictly

negative everywhere on Uτ . Since Z is the first order term in the variation of θ+,

this implies that the outer null expansion of S+
τ satisfies θ+[S+

τ ] < 0 for τ > 0

small enough.

By assumption (3.5.1), Z is strictly negative on U0. Therefore, this quantity

is automatically negative in the portion of Uτ lying in U0 (in particular, outside

the tubular neighbourhood where we applied the implicit function theorem). The

only difficulty comes from the fact that γτ may move outside U0 at some points

and we only have information on the sign of Z on U0. To address this issue, we
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Figure 3.6: The figure represents both intersecting surfaces S and S+
τ together

with the curves γ and γτ . The shaded region corresponds to U0 and the stripped

region to Uτ .

first notice that Q defines a distance function to γ (because Q vanishes on γ and

its gradient is nowhere zero). Consequently, the fact that Z is strictly negative on

γ (by assumption (3.5.1)) and that this curve is compact imply that there exists

a δ > 0 such that, inside the tubular neighbourhood of γ, |Q| < δ implies Z < 0.

Moreover, the function Q = ϕ(µ, τ), which defines γτ , is such that it vanishes

at τ = 0 and depends smoothly on τ . Since µ takes values on a compact set,

it follows that for each δ′ > 0, there exists an ǫ(δ′) > 0, independent of µ such

that |τ | < ǫ(δ′) implies |Q| = |ϕ(µ, τ)| < δ′. By taking δ′ = δ, it follows that,

for |τ | < ǫ(δ), Uτ is contained in a δ-neighbourhood of U0 (with respect to the

distance function Q) and consequently Z < 0 on this set, as claimed. We restrict

to 0 < τ < ǫ(δ) from now on.

Summarizing, so far we have shown that S+
τ lies fully outside S and has

θ+[S+
τ ] < 0. The final task is to use Lemma 3.5.1 to construct a weakly outer

trapped surface strictly outside S. Denote by S∗
τ the complement of Uτ in S,

which may have several connected components. For any connected component

γiτ of γτ there exists a neighbourhood W ∗
τ,i of γiτ in S∗

τ ⊂ S which lies in

the exterior of Sτ (because the intersection between S and Sτ is transverse).

Similarly, there is a connected neighbourhood W+
τ,i of γiτ in S+

τ ⊂ Sτ which lies

in the exterior of S. The smoothing argument of Lemma 3.5.1 can be therefore

applied locally on each union W ∗
τ,i ∪ γiτ ∪W+

τ,i to produce a weakly outer trapped

surface S̃ which lies outside S, leading a contradiction. This surface S̃ is con-

structed in such a way that S̃ = S∗
τ in S∗

τ \
(

∪
i
W ∗
τ,i

)

and S̃ = S+
τ in S+

τ \
(

∪
i
W+
τ,i

)

. �

Remark. As usual, this theorem also holds if all the inequalities are reversed.

Note that in this case U0 is defined to be a connected component of the set
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{p ∈ S; (ξµl
µ
+)|p < 0}. For the proof simply take τ < 0 instead of τ > 0 (or

equivalently move along −~ξ instead of ~ξ). �

Similarly as in the previous section, this theorem can be particularized to the

case of conformal Killing vectors, as follows (recall that Z = 2~l+(φ)+NW in the

conformal Killing case, see Corollary 3.4.3).

Corollary 3.5.3 Under the assumptions of Theorem 3.5.2, suppose that ~ξ is a

conformal Killing vector with conformal factor φ (including homotheties φ = C

and isometries φ = 0).

Then, there exists p ∈ U0 such that 2~l+(φ) +NS(Π
+
ABΠ+AB +G

(4)
µν l

µ
+l
ν
+)|p ≥ 0.

If the conformal Killing is in fact a homothety or a Killing vector and it is

causal everywhere, the result can be strengthened considerably. The next result

extends Corollary 3.4.4 in a suitable sense to the cases when the generator is not

assumed to be either future or past everywhere. Since its proof requires an extra

ingredient we write it down as a theorem.

Theorem 3.5.4 In a spacetime (M, g(4)) satisfying the NEC and admitting a

Killing vector or homothety ~ξ, consider a locally outermost MOTS S in a spacelike

hypersurface Σ. Assume that ~ξ is causal on S and that W = Π+
ABΠ+AB+G

(4)
µν l

µ
+l
ν
+

is non-zero everywhere on S. Define U ≡ {p ∈ S; (ξµl
µ
+)|p > 0} and assume that

this set is neither empty nor covers all of S. Then, on each connected component

Uα of U there exist a point p ∈ ∂topUα with d(ξµl
µ
+)|p = 0.

Remark 1. The same conclusion holds on the boundary of each connected

components of the set {p ∈ S; (ξµl
µ
+)|p < 0}. This is obvious since ~ξ can be

changed to −~ξ. �

Remark 2. The case ∂topU = ∅, excluded by assumption in this theorem,

can only occur if ~ξ is future or past everywhere on S. Hence, this case is already

included in Corollary 3.4.4. �

Proof. We first show that on any point in U we have NS < 0, which has as an

immediate consequence that NS ≤ 0 on any point in U . The former statement is

a consequence of the decomposition ~ξ = N~l+ +Q~m+ ~Y ‖, where Q = (ξµl
µ
+). The

condition that ~ξ is causal then implies ξµξ
µ = 2NSQ + Q2 + Y ‖2 ≤ 0. This can

only happen at a point where Q > 0 (i.e. on U) provided NS < 0 there. Moreover,
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if at any point q on the boundary ∂topU we have NS|q = 0, then necessarily the

full vector ~ξ vanishes at this point. This implies, in particular, that the geometric

construction of Sτ has the property that q remains invariant.

Having noticed these facts, we will now argue by contradiction, i.e. we

will assume that there exists a connected component U0 of U such that

d(ξµl
µ
+)|∂topU0 6= 0 everywhere. In these circumstances, we can follow the same

steps as in the proof of Theorem 3.5.2 to show that, for small enough τ the

surface Sτ has a portion S+
τ lying in the exterior of S and which, in the Gaussian

coordinates above, is a graph over a subset Uτ which is a continuous deformation

of U0. Moreover, the boundary of Uτ is a smooth embedded curve γτ . The only

difficulty with this construction is that we cannot use NSW = Z < 0 everywhere

on U0, in order to conclude that θ+[S+
τ ] < 0, as we did before. The reason is that

there may be points on ∂topU0 where NS = 0. However, as already noted, these

points have the property that do not move at all by the construction of Sτ , i.e.

the boundary γτ (which is the intersection of S and S+
τ ) can only move outside

of U0 at points where NS is strictly negative. Hence on the interior points of Uτ

we have NS < 0 everywhere, for sufficiently small τ . Consequently the first order

terms in the variation of θ+, namely Z = NsW , is strictly negative on all the

interior points of Uτ . This implies that S+
τ has negative outer null expansion

everywhere except possibly on its boundary γτ . By continuity, we conclude

θ+[S+
τ ] ≤ 0 everywhere. The smoothing argument of the proof of Theorem 3.5.2

implies that a smooth weakly outer trapped surface can be constructed outside

the locally outermost MOTS S. This gives a contradiction. Therefore, there

exists p ∈ ∂topU0 such that d(ξµl
µ
+)|p = 0, as claimed. �

Remark The assumption dQ|γ 6= 0 is a technical requirement for using the

smoothing argument of Lemma 3.5.1. This is why we had to include an assump-

tion on dQ|γ in Theorem 3.5.2 and also that the conclusion of Theorem 3.5.4 is

stated in terms of the existence of critical points for Q. If Lemma 3.5.1 could

be strengthened so as to remove this requirement, then Theorem 3.5.4 could be

rephrased as stating that any outermost MOTS in a region where there is a causal

Killing vector (irrespective of its future or past character) must have at least one

point where the shear and G
(4)
µν l

µ
+l
ν
+ vanish simultaneously.

In any case, the existence of critical points for a function in the boundary

of every connected component of {Q > 0} and every connected component of

{Q < 0} is obviously a highly non-generic situation. So, locally outermost MOTS

in regions where there is a causal Killing vector or homothety can at most occur
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under very exceptional circumstances. �



Chapter 4

Weakly outer trapped surfaces in

static spacetimes

4.1 Introduction

In the next two chapters we will concentrate on static spacetimes. As we have

remarked in Chapter 1, one of the main aims of this thesis is to extend the

uniqueness theorems for static black holes to static spacetimes containing MOTS.

This chapter is devoted to obtaining a proper understanding of MOTS in static

spacetimes, which will be essential to prove the uniqueness result in the next

chapter.

The first answer to the question of whether the uniqueness theorems for static

black holes extend to static spacetimes containing MOTS was given by Miao

in 2005 [86], who proved uniqueness for the particular case of time-symmetric,

asymptotically flat and vacuum spacelike hypersurfaces possessing a minimal

compact boundary (note that in a time-symmetric slice compact minimal sur-

faces are MOTS and vice versa). This result generalized the classic uniqueness

result of Bunting and Masood-ul-Alam [22] for vacuum static black holes which

states the following.

Theorem 4.1.1 Consider a vacuum spacetime (M, g(4)) with a static Killing vec-

tor ~ξ. Assume that (M, g(4)) possesses a connected, asymptotically flat spacelike

hypersurface (Σ, g,K) which is time-symmetric (i.e. K = 0, ~ξ ⊥ Σ), has non-

empty compact boundary ∂Σ and is such that the static Killing vector ~ξ is causal

on Σ and null only on ∂Σ.

Then (Σ, g) is isometric to

(

R
3 \BMKr/2(0), (gKr)ij =

(

1 + MKr

2|x|

)4

δij

)

for some

MKr > 0, i.e. the {t = 0} slice of the Kruskal spacetime with mass MKr out-

side and including the horizon. Moreover, there exists a neighbourhood of Σ in

M which is isometrically diffeomorphic to the closure of the domain of outer

87
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communications of the Kruskal spacetime.

In other words, this theorem asserts that a time-symmetric slice Σ of a non-

degenerate static vacuum black hole must be a time-symmetric slice of the Kruskal

spacetime. Miao was able to reach the same conclusion under much weaker as-

sumptions, namely by simply assuming that the boundary of Σ is a closed min-

imal surface. As in Bunting and Masood-ul-Alam’s theorem, Miao’s result deals

with time-symmetric and asymptotically flat spacelike hypersurfaces embedded

in static vacuum spacetimes. More precisely,

Theorem 4.1.2 Consider a vacuum spacetime (M, g(4)) with a static Killing vec-

tor ~ξ. Assume that (M, g(4)) possesses a connected, asymptotically flat spacelike

hypersurface (Σ, g,K) which is time-symmetric and such that ∂Σ is a (non-empty)

compact minimal surface.

Then (Σ, g) is isometric to

(

R
3 \BMKr/2(0), (gKr)ij =

(

1 + MKr

2|x|

)4

δij

)

for some

MKr > 0, i.e. the {t = 0} slice of the Kruskal spacetime with mass MKr out-

side and including the horizon. Moreover, there exists a neighbourhood of Σ in

M which is isometrically diffeomorphic to the closure of the domain of outer

communications of the Kruskal spacetime.

A key ingredient in Miao’s proof was to show that the existence of a closed

minimal surface implies the existence of an asymptotically flat end Σ∞ with

smooth topological boundary ∂topΣ∞ such that ~ξ is timelike on Σ∞ and vanishes

on ∂topΣ∞. Miao then proved that ∂topΣ∞ coincides in fact with the minimal

boundary ∂Σ of the original manifold. Hence, the strategy was to reduce Theorem

4.1.2 to the Bunting and Massod-ul-Alam uniqueness theorem of black holes.

As a consequence of the static vacuum field equations the set of points where

the Killing vector vanishes in a time-symmetric slice is known to be a totally

geodesic surface. Totally geodesic surfaces are of course minimal and in this sense

Theorem 4.1.2 is a generalization of Theorem 4.1.1. In fact, Theorem 4.1.1 allows

us to rephrase Miao’s theorem as follows: No minimal surface can penetrate in

the exterior region where the Killing vector is timelike in any time-symmetric and

asymptotically flat slice of a static vacuum spacetime. In this sense, Miao’s result

can be regarded as a confinement result for MOTS in time-symmetric slices of

static vacuum spacetimes. Here, it is important to remark that a general confine-

ment result of this type was already known when suitable global hypotheses in

time are assumed in the spacetime. In this case, weakly outer trapped surfaces
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must lie inside the black hole region (see e.g. Proposition 12.2.4 in [109]). Con-

sequently, Theorem 4.1.2 can also be viewed as an extension of this result to the

initial data setting (which drops completely all global assumptions in time) for

the particular case of time-symmetric, static vacuum slices.

We aim to generalize Miao’s theorem in three different directions. Firstly, we

want to allow for non-vanishing matter as long as the NEC is satisfied. Secondly,

the slices will no longer be required to be time-symmetric. In this situation the

natural replacement for minimal surfaces are MOTS. And finally, we intend to

relax the condition of asymptotic flatness to just assuming the presence of an

outer untrapped surface (of course, this will not be possible for the uniqueness

theorem, but it is possible when viewing Miao’s result as a confinement result).

The proof given by Miao relies strongly on the vacuum field equations, so we

must resort to different methods. Obviously, a fundamental step for our purposes

is a proper understanding of MOTS in static spacetimes.

In this chapter we explore the properties of MOTS in static spacetimes. The

main result of this chapter is Theorem 4.4.1 which extends Theorem 4.1.2 as a

confinement result for MOTS by asserting that no MOTS which are bounding can

penetrate into the exterior region where the static Killing is timelike provided some

hypotheses hold. In fact, this result for MOTS also holds for weakly outer trapped

surfaces. It is important to note that Theorem 3.4.10 in the previous chapter

already forbids the existence of weakly outer trapped surfaces whose exterior lies

in the region where the Killing vector is timelike, and which penetrates into the

timelike region (recall that the exterior of S does not contain S, by definition).

However, this result does not exclude the existence of a weakly outer trapped

surface penetrating into the timelike region but not lying entirely in the causal

region. This is the situation we exclude in Theorem 4.4.1. The essential ingredients

to prove this result will be a combination of the ideas that allowed us to prove

Theorem 3.4.10 together with a detailed study of the properties of the boundary of

the region where the static Killing is timelike. Besides a confinement result, Miao’s

theorem is also (and fundamentally) a uniqueness theorem. The generalization of

Miao’s result as a uniqueness result will be studied in the next chapter, where

several of the results of the present chapter will be applied.

As we remarked in the introductory chapter, a general tendency in investiga-

tions involving stationary and static spacetimes over the years has been to relax

the global hypotheses in time and work at the initial data level as much as pos-

sible. Good examples of this fact are the statements of Theorems 4.1.1 and 4.1.2

above, where the existence of a spacelike hypersurface with suitable properties is,
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in fact, sufficient for the proof. Following this trend, all the results of this chapter

will be proved by working directly on spacelike hypersurfaces, with no need of

invoking a spacetime containing them. These spacelike hypersurfaces, considered

as abstract objects on their own, will be called initial data sets. Some of these

results generalize known properties of static spacetimes to the initial data setting

and, consequently, can be of independent interest.

We finish this introduction with a brief summary of the chapter. In Section 4.2

we define initial data set as well as Killing initial data (KID). Then we introduce

the so-called Killing form and give some of its properties. In Section 4.3 we discuss

the implications of imposing staticity on a Killing initial data set and state a

number of useful properties of the boundary of the set where the static Killing

vector is timelike, which will be fundamental to prove Theorem 4.4.1. Some of

the technical work required in this section is related to the fact that we are not

a priori assuming the existence of a spacetime. Finally, Section 4.4 is devoted to

stating and proving Theorem 4.4.1.

The results presented in this chapter have been published in [23], [24].

4.2 Preliminaries

4.2.1 Killing Initial Data (KID)

We start with the standard definition of initial data set [12].

Definition 4.2.1 An initial data set (Σ, g,K; ρ,J) is a 3-dimensional con-

nected manifold Σ, possibly with boundary, endowed with a Riemannian metric

g, a symmetric, rank-two tensor K, a scalar ρ and a one-form J satisfying the

so-called constraint equations,

2ρ = RΣ + (trΣK)2 −KijK
ij,

−Ji = ∇Σ
j(Ki

j − trΣKδ
j
i ),

where RΣ and ∇Σ are respectively the scalar curvature and the covariant derivative

of (Σ, g) and trΣK = gijKij.

For simplicity, we will often write (Σ, g,K) instead of (Σ, g,K; ρ,J) when no

confusion arises.

In the framework of the Cauchy problem for the Einstein field equations, Σ is

a spacelike hypersurface of a spacetime (M, g(4)), g is the induced metric and K is

the second fundamental form. The initial data energy density ρ and energy
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flux J are defined by ρ ≡ G
(4)
µνnµnν , Ji ≡ −G(4)

µνnµeνi , where G
(4)
µν is the Einstein

tensor of g(4), ~n is the unit future directed vector normal to Σ and {~ei} is a local

basis for X(Σ). When ρ = 0 and J = 0, the initial data set is said to be vacuum.

As remarked in the previous section, we will regard initial data sets as abstract

objects on their own, independently of the existence of a spacetime where they

may be embedded, unless explicitly stated.

Consider for a moment a spacetime (M, g(4)) possessing a Killing vector field
~ξ and let (Σ, g,K) be an initial data set in this spacetime. We can decompose ~ξ

along Σ into a normal and a tangential component as

~ξ = N~n+ Y i~ei (4.2.1)

(see Figure 3.2), where N = −ξµnµ. Note that with this decomposition

λ ≡ −ξµξµ = N2 − Y 2.

Inserting (4.2.1) into the Killing equations and performing a 3+1 splitting on

(Σ, g,K) it follows (see [45], [12]),

2NKij + 2∇Σ
(iYj) = 0, (4.2.2)

L~YKij + ∇Σ
i ∇Σ

j N = N
(
RΣ

ij + trΣKKij − 2KilK
l
j − τij

+
1

2
gij(trΣτ − ρ)

)

, (4.2.3)

where the parentheses in (4.2.2) denotes symmetrization, τij ≡ G
(4)
µν e

µ
i e
ν
j are the

remaining components of the Einstein tensor and trΣτ = gijτij. Thus, the follow-

ing definition of Killing initial data becomes natural [12].

Definition 4.2.2 An initial data set (Σ, g,K; ρ,J) endowed with a scalar N , a

vector ~Y and a symmetric tensor τij satisfying equations (4.2.2) and (4.2.3) is

called a Killing initial data (KID).

In particular, if a KID has ρ = 0, J = 0 and τ = 0 then it is said to be a vacuum

KID.

A point p ∈ Σ where N = 0 and ~Y = 0 is a fixed point. This name is

motivated by the fact that when the KID is embedded into a spacetime with a

local isometry, the corresponding Killing vector ~ξ vanishes at p and the isometry

has a fixed point there.

A natural question regarding KID is whether they can be embedded into a

spacetime (M, g(4)) such that N and ~Y correspond to a Killing vector ~ξ. The
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simplest case where existence is guaranteed involves “transversal” KID, i.e. when

N 6= 0 everywhere. Then, the following spacetime, called Killing development

of (Σ, g,K), can be constructed

(

Σ × R, g(4) = −λ̂dt2 + 2Ŷidtdx
i + ĝijdx

idxj
)

(4.2.4)

where

λ̂(t, xi) ≡ (N2 − Y iYi)(x
i), ĝij(t, x

k) ≡ gij(x
k), Ŷ i(t, xj) ≡ Y i(xj). (4.2.5)

Notice that ∂t is a complete Killing field with orbits diffeomorphic to R which,

when evaluated on Σ ≡ {t = 0} decomposes as ∂t = N~n+Y i~ei, in agreement with

(4.2.1). The Killing development is the unique spacetime with these properties.

Further details can be found in [12]. Notice also that the Killing development can

be constructed for any connected subset of Σ where N 6= 0 everywhere.

We will finish this subsection by giving the definition of asymptotically flat

KID, which is just the same as for asymptotically flat spacelike hypersurface but

adding the suitable decays for the quantities N and ~Y .

Definition 4.2.3 A KID (Σ, g,K;N, ~Y , τ) is asymptotically flat if Σ = K ∪
Σ∞, where K is a compact set and Σ∞ =

⋃

a

Σ∞
a is a finite union with each Σ∞

a ,

called an asymptotic end, being diffeomorphic to R
3 \BRa, where BRa is an open

ball of radius Ra. Moreover, in the Cartesian coordinates {xi} induced by the

diffeomorphism, the following decay holds

N − Aa = O(2)(1/r), gij − δij = O(2)(1/r),

Y i − Ci
a = O(2)(1/r), Kij = O(2)(1/r2).

where Aa and {Ci
a}i=1,2,3 are constants such that A2

a − δijC
i
aC

j
a > 0 for each a,

and r = (xixjδij)
1/2

.

Remark. The condition on the constants Aa, C
i
a is imposed to ensure that

the KID is timelike near infinity on each asymptotic end. �

4.2.2 Killing Form on a KID

A useful object in spacetimes with a Killing vector ~ξ is the two-form ∇µξν , usually

called Killing form or also Papapetrou field. This tensor will play a relevant role

below. Since we intend to work directly on the initial data set, we need to define

a suitable tensor on (Σ, g,K) which corresponds to the Killing form whenever
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a spacetime is present. Let (Σ, g,K;N, ~Y , τ) be a KID in (M, g(4)). Clearly we

need to restrict and decompose ∇µξν onto (Σ, g,K;N, ~Y , τ) and try to get an

expression in terms of N and ~Y and its spatial derivatives. In order to use (4.2.1)

we first extend ~n to a neighbourhood of Σ as a timelike unit and hypersurface

orthogonal, but otherwise arbitrary, vector field (the final expression we obtain

will be independent of this extension), and define N and ~Y so that ~Y is orthogonal

to ~n and (4.2.1) holds. Taking covariant derivatives we find

∇µξν = ∇µNnν +N∇µnν + ∇µYν . (4.2.6)

Notice that, by construction, ∇µnν |Σ = Kµν − nµaν |Σ where aν = nα∇αnν is

the acceleration of ~n. To elaborate ∇µYν we recall that ∇Σ-covariant deriva-

tives correspond to spacetime covariant derivatives projected onto Σ. Thus, from

∇Σ
µYν ≡ hαµh

β
ν∇αYβ, where hµν = δµν + nµnν is the projector orthogonal to ~n, and

expanding we find

∇µYν |Σ = ∇Σ
µYν − nµ (nα∇αYβ)h

β
ν − nν

(
nβ∇αYβ

)
hαµ + nµnνn

αnβ∇αYβ|Σ
= ∇Σ

µYν − nµ (nα∇αYβ)h
β
ν + nν

(
Y β∇αnβ

)
hαµ + nµnνn

αnβ∇αYβ|Σ
= ∇Σ

µYν − nµ (nα∇αYβ)h
β
ν +KµαY

αnν + nµnνn
αnβ∇αYβ|Σ,

Substitution into (4.2.6), using ∇µN = ∇Σ
µN − nµn

α∇αN , gives

∇µξν
∣
∣
Σ

= nν
(
∇Σ
µN +KµαY

α
)
− nµ

(
Naν + nαhβν∇αYβ

)

+(∇Σ
µYν +NKµν) + nµnν

(
nαnβ∇αYβ − nα∇αN

)
|Σ. (4.2.7)

The Killing equations then require nαnβ∇αYβ|Σ = nα∇αN |Σ and ∇Σ
µN +

KµαY
α|Σ = Naµ + nαhβµ∇αYβ|Σ, so that (4.2.7) becomes, after using (4.2.2),

∇µξν |Σ = nν
(
∇Σ
µN +KµαY

α
)
− nµ

(
∇Σ
νN +KναY

α
)

+
1

2

(
∇Σ
µYν −∇Σ

ν Yµ
)
∣
∣
∣
∣
Σ

.

(4.2.8)

This expression involves solely objects defined on Σ. However, it still involves

four-dimensional objects. In order to work directly on the KID, we introduce an

auxiliary four-dimensional vector space on each point of Σ as follows (we stress

that we are not constructing a spacetime, only a Lorentzian vector space attached

to each point on the KID).

At every point p ∈ Σ define the vector space Vp = TpΣ ⊕ R, and endow this

space with the Lorentzian metric g0|p = g|p⊕(−δ), where δ is the canonical metric

on R. Let ~n be the unit vector tangent to the fiber R. Having a metric we can
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lower and raise indices of tensors in TpΣ ⊕ R. In particular define n = g0(~n, ·).
Covariant tensors Q on TpΣ can be canonically extended to tensors of the same

type on Vp = TpΣ⊕R (still denoted with the same symbol) simply by noticing that

any vector in Vp is of the form ~X+a~n, where ~X ∈ TpΣ and a ∈ R. The extension

is defined (for a type m covariant tensor) by Q( ~X1 + a1~n, · · · , ~Xm + am~n) ≡
Q( ~X1, · · · , ~Xm). In index notation, this extension will be expressed simply by

changing Latin to Greek indices. It is clear that the collection of (TpΣ ⊕ R, g0)

at every p ∈ Σ contains no more information than just (Σ, g). In particular, this

construction allows us to redefine the energy conditions appearing in Chapter 3.2

at the initial data level. Let us give the definition of NEC for an initial data set.

Definition 4.2.4 An initial data set (Σ, g,K) satisfies the null energy condi-

tion (NEC) if for all p ∈ Σ the tensor G
(4)
µν ≡ ρnµnν + Jµnν + nµJν + τµν on

TpΣ × R satisfies that G
(4)
µν kµkν |p ≥ 0 for any null vector ~k ∈ TpΣ ⊕ R.

Motivated by (4.2.8), we can define the Killing form directly in terms of objects

on the KID

Definition 4.2.5 The Killing form on a KID is the 2-form Fµν defined on

(TpΣ ⊕ R, g0) given by

Fµν = nν
(
∇Σ
µN +KµαY

α
)
− nµ

(
∇Σ
νN +KναY

α
)

+ fµν , (4.2.9)

where fµν = ∇Σ
[µYν].

In a spacetime setting it is well-known that for a non-trivial Killing vector ~ξ, the

Killing form cannot vanish on a fixed point. Let us show that the same happens

in the KID setting.

Lemma 4.2.6 Let (Σ, g,K;N, ~Y , τ) be a KID and p ∈ Σ a fixed point, i.e. N |p =

0 and ~Y |p = 0. If Fµν |p = 0 then N and ~Y vanish identically on Σ.

Proof. The aim is to obtain a suitable system of equations and show that,

under the circumstances of the lemma, the solution must be identically zero.

Decomposing ∇Σ
i Yj in symmetric and antisymmetric parts,

∇Σ
i Yj = −NKij + fij, (4.2.10)

and inserting into (4.2.3) gives

∇Σ
i ∇Σ

j N = NQij − Y l∇Σ
l Kij −Kilfj

l −Kjlfi
l, (4.2.11)
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where Qij = RΣ
ij + trΣKKij − τij + 1

2
gij(trΣτ − ρ). In order to find an equation

for ∇Σ
l fij, we take a derivative of (4.2.2) and write the three equations obtained

by cyclic permutation. Adding two of them and subtracting the third one, we

find,

∇Σ
l ∇Σ

i Yj = RΣ
klijY

k + ∇Σ
j (NKli) −∇Σ

i (NKlj) −∇Σ
l (NKij),

after using the Ricci and first Bianchi identities. Taking the antisymmetric part

in i, j,

∇Σ
l fij = RΣ

klijY
k + ∇Σ

j NKli −∇Σ
i NKlj +N∇Σ

j Kli −N∇Σ
i Klj. (4.2.12)

If Fµν |p = 0, it follows that fij|p = 0 and ∇Σ
i N |p = 0. The equations given by

(4.2.10), (4.2.11) and (4.2.12) is a system of PDE for the unknowns N , Yi and

fij written in normal form. It follows (see e.g. [53]) that the vanishing of N ,

∇Σ
i N , Yi and fij at one point implies its vanishing everywhere (recall that Σ is

connected). �

4.2.3 Canonical Form of Null two-forms

Let Fµν be an arbitrary two-form on a spacetime (M, g(4)). It is well-known that

the only two non-trivial scalars that can be constructed from Fµν are I1 = FµνF
µν

and I2 = F ⋆
µνF

µν , where F ⋆ is the Hodge dual of F , defined by F ⋆
µν = 1

2
η

(4)
µναβF

αβ,

with η
(4)
µναβ being the volume form of (M, g(4)). When both scalars vanish, the

two-form is called null. Later on, we will encounter Killing forms which are null

and we will exploit the following well-known algebraic decomposition which gives

its canonical form, see e.g. [71] for a proof.

Lemma 4.2.7 A null two-form Fµν at a point p can be decomposed as

Fµν |p = lµwν − lνwµ|p, (4.2.13)

where ~l |p is a null vector and ~w|p is spacelike and orthogonal to ~l |p.

4.3 Staticity of a KID

4.3.1 Static KID

To define a static KID we have to decompose the integrability equation ξ[µ∇νξρ] =

0 according to (4.2.1). By taking the normal-tangent-tangent part (to Σ) and
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the completely tangential part (the other components are identically zero by

antisymmetry) we find

N∇Σ
[iYj] + 2Y[i∇Σ

j]N + 2Y[iKj]lY
l = 0, (4.3.1)

Y[i∇Σ
j Yk] = 0. (4.3.2)

Since these expressions involve only objects on the KID, the following definition

becomes natural.

Definition 4.3.1 A KID (Σ, g,K;N, ~Y , τ) satisfying (4.3.1) and (4.3.2) is called

an integrable KID.

Multiplying equation (4.3.1) byN and equation (4.3.2) by Y k, adding them up

and using equation (4.2.2), we get the following useful relation, valid everywhere

on Σ,

λ∇Σ
[iYj] + Y[i∇Σ

j]λ = 0. (4.3.3)

If λ > 0 in some non-empty set of the KID, the Killing vector is timelike in some

non-empty set of the spacetime. Hence

Definition 4.3.2 A static KID is an integrable KID with λ > 0 in some non-

empty set.

4.3.2 Killing Form of a Static KID

In Subsection 4.2.3 we introduced the invariant scalars I1 and I2 for any two-form

in a spacetime. In this section we find their explicit expressions for the Killing

form of an integrable KID in the region {λ > 0}.
Although not necessary, we will pass to the Killing development (which is

available in this case) since this simplifies the proofs. We start with a lemma

concerning the integrability of the Killing vector in the Killing development.

Lemma 4.3.3 The Killing vector field associated with the Killing development

of an integrable KID is also integrable.

Proof. Let (Σ, g,K;N, ~Y , τ) be an integrable KID. Suppose the Killing de-

velopment (4.2.4) of a suitable open set of Σ. Using ~ξ = ∂t it follows

ξ∧dξ = −λ̂∂iŶjdt∧dxi∧dxj− Ŷi∂jλ̂dt∧dxi∧dxj+ Ŷi∂jŶkdxi∧dxj∧dxk, (4.3.4)

where λ̂, Ŷ and ĝ are defined in (4.2.5). Integrability of ~ξ follows directly from

(4.3.2) and (4.3.3). �

The following lemma gives the explicit expressions for I1 and I2.
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Lemma 4.3.4 The invariants of the Killing form in a static KID in the region

{λ > 0} read

I1 = − 1

2λ

(

gij − Y iY j

N2

)

∇Σ
i λ∇Σ

j λ, (4.3.5)

and

I2 = 0. (4.3.6)

Remark. By continuity I2
∣
∣
∂top{λ>0} = 0. �

Proof. Consider a static KID (Σ, g,K;N, ~Y , τ) and let {λ > 0}0 be

a connected component of {λ > 0}. In {λ > 0}0 we have necessarily

N 6= 0, so we can construct the Killing development ({λ > 0}0, g
(4))

and introduce the so-called Ernst one-form, as σµ = ∇µλ − iωµ where

ωµ = η
(4)
µναβξ

ν∇αξβ is the twist of the Killing field (η(4) is the volume form

of the Killing development). The Ernst one-form satisfies the identity (see

e.g. [77]) σµσµ = −λ
(
Fµν + iF ⋆

µν

)
(F µν + iF ⋆µν), which in the static case (i.e.

ωµ = 0) becomes ∇µλ∇µλ = −2λ (FµνF
µν + iFµνF

⋆µν) where the identity

FµνF
µν = −F ⋆

µνF
⋆µν has been used. The imaginary part immediately gives

(4.3.6). The real part gives I1 = − 1
2λ
|∇λ|2

g(4)
. Taking coordinates {t, xi} adapted

to the Killing field ∂t, it follows from (4.2.5) that |∇λ|2
g(4)

= g(4)ij∂iλ∂jλ. It is

well-known (and easily checked) that the contravariant spatial components of

g(4) are g(4)ij = gij − Y iY j

N2 , where gij is the inverse of gij and (4.3.5) follows. �

This lemma allows us to prove the following result on the value of I1 on the

fixed points on the closure of {λ > 0}. Notice that ∂top{λ > 0} ⊂ {N 6= 0}.
Since the result involves points where N vanishes, we cannot rely on the Killing

development for its proof and an argument directly on the initial data set is

needed.

Lemma 4.3.5 Let p ∈ {λ > 0} be a fixed point of a static KID, then I1|p < 0.

Proof. We first show that I1 ≤ 0 on {λ > 0}, which implies that I1|p ≤ 0

by continuity. Let q ∈ {λ > 0} ⊂ Σ and define the vector ~ξ ≡ N~n + ~Y on the

vector space (Vq, g0) introduced in Section 4.2.2. Since ~ξ is timelike at q, we can

introduce its orthogonal projector hµν = g0µν + ξµξν
λ

which is obviously positive

semi-definite. If we pull it back onto TqΣ we obtain a positive definite metric,

called orbit space metric,

hij = gij +
YiYj
λ

. (4.3.7)
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It is immediate to check that the inverse of hij is precisely the term in brackets

in (4.3.5). Consequently, I1|q ≤ 0 follows.

It only remains to show that I1|p cannot be zero. We argue by contradiction.

Assuming that I1|p = 0 and using I2|p = 0 by Lemma 4.3.4, it follows that Fµν

is null at p. Lemma 4.2.7 implies the existence of a null vector ~l and a spacelike

vector ~w on Vp such that (4.2.13) holds. Since ~w is defined up to an arbitrary

additive vector proportional to ~l, we can choose ~w normal to ~n without loss of

generality. Decompose ~l as ~l = a (~x+ ~n) with xµxµ = 1. We know from Lemma

4.2.6 that a 6= 0 (otherwise Fµν |p = 0 and {λ > 0} would be empty). Expression

(4.2.9) and the canonical form (4.2.13) yield

Fµν |p = 2n[ν∇Σ
µ]N + ∇Σ

[µYν]|p = 2a
(
x[µwν] + n[µwν]

)
.

The purely tangential and normal-tangential components of this equation give,

respectively

∇Σ
i Yj
∣
∣
p

= 2ax[iwj], ∇Σ
i N
∣
∣
p

= −awi, (4.3.8)

where wi is the projection of wµ to TpΣ. The Hessian of λ at p is then

∇Σ
i ∇Σ

j λ
∣
∣
p

= 2(∇Σ
i N∇Σ

j N −∇Σ
i Y

k∇Σ
j Yk)

∣
∣
p

= −2a2wkwkxixj,

where we have used xixi = 1 and xiwi = 0 (which follows from ~w being orthogonal

to ~l ). This Hessian has therefore signature {−, 0, 0}. The Gromoll-Meyer splitting

Lemma (see Appendix B) implies the existence of an open neighbourhood Up of

p and coordinates {x, zA} in Up such that p = (x = 0, zA = 0) and λ = −â2x2 +

ζ(zA) where â > 0 and ζ is a smooth function satisfying ζ
∣
∣
p

= 0, ∇Σ
i ζ
∣
∣
p

= 0 and

∇Σ
i ∇Σ

j ζ
∣
∣
p

= 0. Since p ∈ ∂top{λ > 0}, there exists a curve µ(s) = (x(s), zA(s)) in

Up∩{λ > 0}, parametrized by s ∈ (0, ǫ) such that µ(s) −→
s→0

p. Since λ > 0 on the

curve we have −â2x2(s)+ζ(zA(s)) > 0, which implies ζ(zA(s)) > 0. It follows that

the curve γ(s) ≡
(

x(s) = 1
â

√

ζ(zA(s)), zA(s)
)

(also parametrized by s) belongs

to ∂top{λ > 0} and is composed by non-fixed points (because ∇Σ
i λ
∣
∣
γ(s)

6= 0).

We can construct the Killing development (4.2.4) near this curve, which is a

static spacetime (see Lemma 4.3.3). Applying Lemma 2.4.8 by Vishveshwara and

Carter it follows that γ(s) (which belongs to ∂top{λ > 0} and has N 6= 0) lies in

an arc-connected component of a Killing prehorizon of the Killing development.

Projecting equation (2.4.1), valid on a Killing prehorizon, onto Σ, we get the

relation

∇Σ
i λ
∣
∣
γ(s)

= 2κYi
∣
∣
γ(s)

, (4.3.9)
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where κ is the surface gravity of the prehorizon. Therefore, κ
∣
∣
γ(s)

6= 0. Since

I1 = −2κ2 (see e.g. equation (12.5.14) in [109]) and κ remains constant on γ(s)

(see Lemma 2.4.5), it follows, by continuity of I1, that I1
∣
∣
p

= −2κ2 < 0. �

4.3.3 Properties of ∂top{λ > 0} on a Static KID

In this subsection we will show that, under suitable conditions, the boundary of

the region {λ > 0} is a smooth surface. Our first result on the smoothness of

∂top{λ > 0} is the following.

Lemma 4.3.6 Let (Σ, g,K;N, ~Y , τ) be a static KID and assume that the set

S = ∂top{λ > 0} ∩ {N 6= 0} is non-empty. Then S is a smooth submanifold of Σ.

Recall that in this thesis, a submanifold is, by definition, injectively immersed,

but not necessarily embedded. Besides, it is worth to remark they are also not

necessarily arc-connected.

Proof. Since N |S 6= 0, we can construct the Killing development (4.2.4) of

a suitable neighbourhood of S ⊂ Σ satisfying N 6= 0 everywhere. Moreover,

by Lemma 4.3.3, ~ξ = ∂t is integrable. Applying Lemma 2.4.8 by Vishveshwara

and Carter, it follows that the spacetime subset N~ξ ≡ ∂top{λ > 0} ∩ {~ξ 6= 0}
is a smooth null submanifold (in fact, a Killing prehorizon) of the Killing

development and therefore transverse to Σ, which is spacelike. Thus, S = Σ∩N~ξ

is a smooth submanifold of Σ. �

This lemma states that the boundary of {λ > 0} is smooth on the set of non-

fixed points. In fact, for the case of boundaries having at least one fixed point,

an explicit defining function for this surface on the subset of non-fixed points can

be given:

Lemma 4.3.7 Let (Σ, g,K;N, ~Y , τ) be a static KID. If an arc-connected com-

ponent of ∂top{λ > 0} contains at least one fixed point, then ∇Σ
i λ 6= 0 on all

non-fixed points in that arc-connected component.

Proof. Let V be the set of non-fixed points in one of the arc-connected

components under consideration. This set is obviously open with at least one

fixed point in its closure. Constructing the Killing development as before, we

know that V belongs to a Killing prehorizon H~ξ. Projecting equation (2.4.1)
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onto Σ we get ∇Σ
i λ
∣
∣
H~ξ

∩Σ
= 2κYi

∣
∣
H~ξ

∩Σ
. Since the surface gravity κ is constant

on each arc-connected component of H~ξ and I1 = −2κ2, Lemma 4.3.5 implies

κ
∣
∣
V
6= 0 and consequently ∇Σ

i λ
∣
∣
V
6= 0. �

Fixed points are more difficult to analyze. We first need a lemma on the

structure of ∇Σ
i N and fij on a fixed point.

Lemma 4.3.8 Let (Σ, g,K;N, ~Y , τ) be a static KID and p ∈ ∂top{λ > 0} be a

fixed point. Then

∇Σ
i N |p 6= 0

and

fij|p =
b

Q

(
∇Σ
i NXj −∇Σ

j NXi

)
∣
∣
∣
∣
p

(4.3.10)

where b is a constant, Xi is unit and orthogonal to ∇Σ
i N |p and Q =

+
√

∇Σ
i N∇ΣiN .

Proof. From (4.2.9),

I1 = FµνF
µν = fijf

ij − 2
(
∇Σ
i N +KijY

j
) (

∇ΣiN +KikYk

)

. (4.3.11)

Hence, ∇Σ
i N |p 6= 0 follows directly from I1|p < 0 (Lemma 4.3.5). For the second

statement, let ui be unit and satisfy ∇Σ
i N = Qui in a suitable neighbourhood of

p. Consider (4.3.1) in the region N 6= 0, which gives

fij = −2N−1Y[i

(
∇Σ
j]N +Kj]kY

k
)
. (4.3.12)

Since |~Y |/N stays bounded in the region {λ > 0}, it follows that the second term

tends to zero at the fixed point p. Thus, let ~X1 and ~X2 be any pair of vector

fields orthogonal to ~u. It follows by continuity that fijX
i
1X

j
2 |p = 0. Hence for

any orthonormal basis {~u, ~X, ~Z} at p it follows fijX
iZj|p = 0 (because ~X and

~Z can be extended to a neighbourhood of p while remaining orthogonal to ~u).

Consequently, fij|p = (b/Q)(∇Σ
i NXj − ∇Σ

j NXi) + (c/Q)(∇Σ
i NZj − ∇Σ

j NZi)|p
for some constants b and c. A suitable rotation in the { ~X, ~Z} plane allows us to

set c = 0 and (4.3.10) follows. �

As we will see next, a consequence of this lemma is that an open subset

of fixed points in ∂top{λ > 0} is a smooth surface. In fact, we will prove that

this surface is totally geodesic in (Σ, g) and that the pull-back of the second

fundamental form Kij vanishes there. This means from a spacetime perspective,
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i.e. when the initial data set is embedded into a spacetime, that this open set

of fixed points is totally geodesic as a spacetime submanifold. This is of course

well-known in the spacetime setting from Boyer’s results [16], see also [65]. In

our initial data context, however, the result must be proven from scratch as no

Killing development is available at the fixed points.

Proposition 4.3.9 Let (Σ, g,K;N, ~Y , τ) be a static KID and assume that the

set ∂top{λ > 0} is non-empty. If S ⊂ ∂top{λ > 0} is open and consists of fixed

points, then S is a smooth surface. Moreover, the second fundamental form of S
in (Σ, g) vanishes and KAB

∣
∣
S = 0

Proof. Consider a point p ∈ S. We know from Lemma 4.3.8 that ∇Σ
i N
∣
∣
p
6=

0. This means that there exists an open neighbourhood Up such that {N =

const} ∩ Up defines a foliation by smooth and connected surfaces, and moreover

that ∇Σ
i N 6= 0 everywhere on Up. Restricting Up if necessary we can assume that

∂top{λ > 0} ∩ Up = S ∩ Up (because S is an open subset of ∂top{λ > 0}). It is

clear that S ∩Up ⊂ {N = 0}∩Up (because N vanishes on a fixed point). We only

need to prove that these two sets are in fact equal. Choose a continuous curve

γ : (−ǫ, 0) → {λ > 0} ∩ Up satisfying lims→0γ(s) = p. Assume that there is a

point q ∈ {N = 0} ∩ Up not lying in ∂top{λ > 0}. This means that there is an

open neighbourhood Uq of q (which can be taken fully contained in Up) which

does not intersect {λ > 0}. Take a point r in Uq sufficiently close to q so that N
∣
∣
r

takes the same value as N
∣
∣
γ(s0)

for some s0 ∈ (−ǫ, 0) (this point r exists because

∇Σ
i N
∣
∣
q
6= 0 and N

∣
∣
q

= 0). Since the surface {N = N
∣
∣
r
} ∩ Up is connected and

contains both r and γ(s0), it follows that there is a path in Up with N = N
∣
∣
r

constant and connecting these two points. This path must necessarily intersect

∂top{λ > 0} (recall that λ
∣
∣
γ(s)

> 0 for all s). But this contradicts the fact that

∂top{λ > 0} ∩ Up ⊂ {N = 0} ∩ Up. Therefore, S ∩ Up = {N = 0} ∩ Up, which

proves that S is a smooth surface.

To prove the other statements, let us introduce local coordinates {u, xA} on

Σ adapted to S so that S ≡ {u = 0} and let us prove that the linear term in

a Taylor expansion for Y i vanishes identically. Equivalently, we want to show

that uj∇Σ
j Yi|S = 0 for ~u = ∂u (recall that on S we have Yi|S = 0 and this

covariant derivative coincides with the partial derivative). Note that ∇Σ
i Yj|S = fij

(see (4.2.10)), so that uiuj∇Σ
i Yj|S = 0 being the contraction of a symmetric

and an antisymmetric tensor. Moreover, for the tangential vectors eiA = ∂A we

find ujeiA∇Σ
i Yj|S = uj∂AYj = 0 because Yj vanishes all along S. Consequently
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ui∂iYj|S = 0. Hence, the Taylor expansion reads

N = G(xA)u+O(u2),

Yi = O(u2). (4.3.13)

Moreover, G 6= 0 everywhere on S because substituting this Taylor expansion in

(4.3.5) and taking the limit u → 0 gives I1|S = −2guuG2(xA) and we know that

I1|S 6= 0 from Lemma 4.3.5.

We can now prove that S is totally geodesic and that KAB = 0. For the first,

the Taylor expansion above gives

fij|S = 0 (4.3.14)

and obviously N and ~Y also vanish on S. Hence, from (4.2.11),

∇Σ
i ∇Σ

j N |S = 0. (4.3.15)

Since, by Lemma 4.3.8, ∇Σ
i N |S is proportional to the unit normal to S and

non-zero, then ∇Σ
i ∇Σ

j N |S = 0 is precisely the condition that S is totally geodesic.

In order to prove KAB|S = 0, we only need to substitute the Taylor expansion

(4.3.13) in the AB components of (4.2.2). After dividing by u and taking the

limit u→ 0, KAB|S = 0 follows directly. �

At this point, let us introduce a lemma on the constancy of I1 on each arc-

connected component of ∂top{λ > 0}.

Lemma 4.3.10 I1 is constant on each arc-connected component of ∂top{λ > 0}
in a static KID.

Proof. For non-fixed points this is a consequence of the Vishveshwara-Carter

Lemma (Lemma 2.4.8) and it has already been used several times before. For

an arc-connected open set S of fixed points, taking the derivative of equation

(4.3.11) we get

∇Σ
l I1 = 2f ij∇Σ

l fij − 4(∇Σ
l ∇Σ

i N + ∇Σ
l KijY

j +Kij∇Σ
l Y

j)(∇ΣiN +KikYk).

Then, using the facts that fij
∣
∣
S = 0 (equation (4.3.14)), ∇Σ

i ∇Σ
j N
∣
∣
S = 0 (equation

(4.3.15)) and ∇Σ
i Yj = −NKij + fij (equation (4.2.10)), it is immediate to obtain

that ∇Σ
l I1
∣
∣
S = 0. Finally, continuity of I1 leads to the result. �
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Black hole

   event horizon
White hole

event horizon

S0

S

p

Σ

Figure 4.1: An example of non-smooth boundary S = ∂top{λ > 0} in an ini-

tial data set Σ of Kruskal spacetime with one dimension suppressed. The region

outside the cylinder and the cone corresponds to one asymptotic region of the

Kruskal spacetime. The initial data set Σ intersects the bifurcation surface S0 (in

red). The shaded region corresponds to the intersection of Σ with the asymptotic

region, and is in fact a connected component of the subset {λ > 0} ⊂ Σ. Its

boundary is non-smooth at the point p lying on the bifurcation surface.

We have already proved that both the open sets of fixed points and the

open sets of non-fixed points are smooth submanifolds. Unfortunately, when

∂top{λ > 0} contains fixed points not lying on open sets, this boundary is not a

smooth submanifold in general. Consider as an example the Kruskal extension of

the Schwarzschild black hole and choose one of the asymptotic regions where the

static Killing field is timelike in the domain of outer communications. Its bound-

ary consists of one half of the black hole event horizon, one half of the white hole

event horizon and the bifurcation surface connecting both. Take an initial data set

Σ that intersects the bifurcation surface transversally and consider the connected

component {λ > 0}0 of the subset {λ > 0} within Σ contained in the chosen

asymptotic region. Its boundary is non-smooth because it has a corner on the

bifurcation surface where the black hole event horizon and the white hole event

horizon intersect (see example of Figure 4.1). We must therefore add some condi-

tion on ∂top{λ > 0}0 in order to guarantee that this boundary does not intersect

both a black and a white hole event horizon. In terms of the Killing vector, this

requires that ~Y points only to one side of ∂top{λ > 0}0. Lemma 4.3.7 suggests that

the condition we need to impose is Y i∇Σ
i λ
∣
∣
∂top{λ>0}0

≥ 0 or Y i∇Σ
i λ
∣
∣
∂top{λ>0}0

≤ 0.

This condition is in fact sufficient to show that ∂top{λ > 0}0 is a smooth surface.

Before giving the precise statement of this result (Proposition 4.3.13 below) we

need to prove a lemma on the structure of λ near fixed points with fij 6= 0. For
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this, the following definition will be useful.

Definition 4.3.11 A fixed point p ∈ ∂top{λ > 0} is called transverse if and

only if fij|p 6= 0 and non-transverse if and only if fij|p = 0

Lemma 4.3.12 Let p ∈ ∂top{λ > 0} be a transverse fixed point. Then, there

exists an open neighbourhood Up of p and coordinates {x, y, z} on Up such that

λ = µ2x2 − b2y2 for suitable constants µ > 0 and b 6= 0.

Proof. From Lemma 4.3.8 we have b 6= 0. Squaring fij we get filf
l
j |p =

b2
(∇Σ

i N∇Σ
j N

Q2
0

+XiXj

)∣
∣
∣
p

and fijf
ij|p = 2b2, where Q0 = Q(p). Being p a fixed

point, both λ and its gradient vanish at p and we have a critical point. The

Hessian of λ at p is immediately computed to be

∇Σ
i ∇Σ

j λ|p = 2∇Σ
i N∇Σ

j N − 2filf
l
j

∣
∣
p

=
2 (Q2

0 − b2)

Q2
0

∇Σ
i N∇Σ

j N − 2b2XiXj

∣
∣
∣
∣
p

. (4.3.16)

At a fixed point we have I1|p = fijf
ij − 2∇Σ

i N∇ΣiN |p = 2(b2 −Q2
0) < 0 (Lemma

4.3.5). Let us define µ > 0 by µ2 = Q2
0−b2. The rank of the Hessian is therefore two

and the signature is (+,−, 0). The Gromoll-Meyer splitting Lemma (see Appendix

B) implies the existence of coordinates {x, y, z} in a suitable neighbourhood U ′
p

of p such that p = {x = 0, y = 0, z = 0} and λ = µ2x2 − b2y2 + h(z) on U ′
p.

The function h(z) is smooth and satisfies h(0) = h′(0) = h′′(0) = 0, where prime

stands for derivative with respect to z. Moreover, evaluating the Hessian of λ at p

and comparing with (4.3.16) we have dx|p = Q−1
0 dN |p and dy|p = X. This implies

N = Q0x + O(2). Moreover, since ∇Σ
i Yj|p = fij|p = b(dx ⊗ dy − dy ⊗ dx)ij|p we

conclude Yx = −by + O(2), Yy = bx + O(2), Yz = O(2). On the surface {z = 0},
the set of points where λ vanishes is given by the two lines x = x+(y) ≡ bµ−1y

and x = x−(y) ≡ −bµ−1y. Computing the gradient of λ on these curves we find

dλ|(x=x±(y),z=0) = ±2µbydx− 2b2ydy. (4.3.17)

On the other hand, the Taylor expansion above for Y gives

Y |(x=x±(y),z=0) = −bydx± b2

µ
ydy +O(2). (4.3.18)

Let S be the arc-connected component of ∂top{λ > 0} containing p. On all

non-fixed points in S we have dλ = 2κY , with κ2 = −I1/2. Comparing (4.3.17)
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with (4.3.18) yields κ = −µ on the branch x = x+(y) and κ = +µ on the branch

x = x−(y) (this is in agreement with I1 = −2κ2 = −2µ2 at every point in S). We

already know that κ must remain constant on each arc-connected component of

S \ F , where F = {p ∈ S, p fixed point}. Let us show that this implies h(z) = 0

on U ′
p. First, we notice that the set of fixed points on S are precisely those where

λ = 0 and dλ = 0 (this is because in Lemma 4.3.7 we have shown that dλ 6= 0 on

every non-fixed point of any arc-connected component of ∂top{λ > 0} containing

at least one fixed point). From the expression λ = µ2x2− b2y2 +h(z), this implies

that the fixed points in U ′
p are those satisfying {x = 0, y = 0, h(z) = 0, h′(z) = 0}.

Assume that there is no neighbourhood (−ǫ, ǫ) where h vanishes identically.

Then, there exists a sequence zn → 0 satisfying h(zn) 6= 0. There must exist

a subsequence (still denoted by {zn}) satisfying either h(zn) > 0, ∀n ∈ N

or h(zn) < 0, ∀n ∈ N. The two cases are similar, so we only consider

h(zn) = −a2
n < 0. The set of points with λ = 0 in the surface {z = zn} are given

by x = ±µ−1
√

b2y2 + a2
n. It follows that the points {λ = 0} ∩ {z = zn} in the

quadrant {x > 0, y > 0} lie in the same arc-connected component as the points

{λ = 0} ∩ {z = zn} lying in the quadrant {x > 0, y < 0}. Since zn converges

to zero, it follows that the points {x = x+(y), y > 0, z = 0} lie in the same

arc-connected component of S \ F than the points {x = x−(y), y < 0, z = 0}.
However, this is impossible because κ (which is constant on S \F ) takes opposite

values on the branch x = x+(y) and on the branch x = x−(y). This gives a

contradiction, and so there must exist a neighbourhood Up of p where h(z) = 0. �

Now, we are ready to prove a smoothness result for ∂top{λ > 0}.

Proposition 4.3.13 Let (Σ, g,K;N, ~Y , τ) be a static KID and consider a con-

nected component {λ > 0}0 of {λ > 0}. If Y i∇Σ
i λ ≥ 0 or Y i∇Σ

i λ ≤ 0 on an

arc-connected component S of ∂top{λ > 0}0, then S is a smooth submanifold (i.e.

injectively immersed) of Σ.

Proof. If there are no fixed points in S, the result follows from Lemma 4.3.6.

Let us therefore assume that there is at least one fixed point p ∈ S. The idea

of the proof proceeds in three stages. The first stage will consist in showing that

Y i∇Σ
i λ ≥ 0 (or Y i∇Σ

i λ ≤ 0) forces all fixed points in S to be non-transverse. The

second one consists in proving that, in a neighbourhood of a non-transverse fixed

point, S is a C1 submanifold. In the third and final stage we prove that S is, in

fact, C∞.
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Stage 1. We argue by contradiction. Assume the fixed point p is transverse.

Lemma 4.3.12 implies that either {λ > 0}0 ∩Up = {x > |b||y|
µ

} or {λ > 0}0 ∩Up =

{x < − |b||y|
µ

}. We treat the first case (the other is similar). The boundary of

{λ > 0}0 ∩ Up is connected and given by x = x+(y) for y > 0 and x = x−(y)

for y < 0. Using dλ = 2κY on this boundary, it follows Y i∇Σ
i λ = 2κYiY

i. But

κ has different signs on the branch x = x+(y) and on the branch x = x−(y), so

Y i∇Σ
i λ also changes sign, against hypothesis. Hence p must be a non-transverse

fixed point.

Stage 2. Let us show that there exists a neighbourhood of p where S is C1.

Being p non-transverse, we have fij|p = 0 and, consequently, the Hessian of λ

reads

∇Σ
i ∇Σ

j λ|p = 2∇Σ
i N∇Σ

j N |p, (4.3.19)

which has signature {+, 0, 0}. Similarly as in Lemma 4.3.5, the Gromoll-Meyer

splitting Lemma (see Appendix B) implies the existence of an open neighbour-

hood Up of p and coordinates {x, zA} in Up such that p = {x = 0, zA = 0} and

λ = Q2
0x

2 − ζ(z), where ζ is a smooth function satisfying ζ|p = 0, ∇Σ
i ζ|p = 0 and

∇Σ
i ∇Σ

j ζ|p = 0, and Q0 is a positive constant. Moreover, evaluating the Hessian of

λ = Q2
0x

2 − ζ(z) and comparing with (4.3.19) gives dx|p = Q−1
0 dN |p.

Let us first show that there exists a neighbourhood Vp of p where ζ ≥ 0. The

surfaces {N = 0} and {x = 0} are tangent at p. This implies that there exists

a neighbourhood Vp of p in Σ such that the integral lines of ∂x are transverse

to {N = 0}. Assume ζ(z) < 0 on any of these integral lines. If follows that

λ = Q2
0x

2 − ζ is positive everywhere on this line. But at the intersection with

{N = 0} we have λ = N2 − Y iYi = −Y iYi ≤ 0. This gives a contradiction and

hence ζ(z) ≥ 0 in Vp as claimed.

The set of points {λ > 0}∩Vp is given by the union of two disjoint connected

sets namelyW+ ≡ {x > +
√
ζ

Q0
} andW− ≡ {x < −

√
ζ

Q0
}. On a connected component

of {λ > 0} (in particular on {λ > 0}0) we have that N =
√
λ+ Y iYi must

be either everywhere positive or everywhere negative. On the other hand, for

δ > 0 small enough N |(x=δ,zA=0) must have different sign than N |(x=−δ,zA=0) (this

is because ∂xN |p = dN(∂x)|p = Q0dx(∂x)|p > 0). It follows that either {λ >

0}0 ∩ Vp = W+ (if N > 0 in {λ > 0}0) or {λ > 0}0 ∩ Vp = W− (if N < 0 in

{λ > 0}0). Consequently, S is locally defined by x = ǫ
√
ζ

Q0
, where ǫ is the sign of

N in {λ > 0}0. Now, we need to prove that +
√
ζ is C1. This requires studying

the behavior of ζ at points where it vanishes.

The set of fixed points p′ ∈ Vp is given by {x = 0, ζ(z) = 0} (this is a

consequence of the fact that fixed points in S are characterized by the equations
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λ = 0 and dλ = 0, or equivalently x = 0, ζ = 0, dζ = 0. Since, for non-negative

functions, ζ = 0 implies dζ = 0 the statement above follows). The Hessian of λ

on any fixed point p′ ⊂ Vp reads ∇Σ
i ∇Σ

j λ|p′ = 2Q2
0(dx⊗ dx)ij −∇Σ

i ∇Σ
j ζ|p′ . Since

p′ must be a non-transverse fixed point, we have ∇Σ
i Yj|p′ = fij|p′ = 0 and hence

∇Σ
i ∇Σ

j λ|p′ = 2∇Σ
i N∇Σ

j N |p′ which has rank 1. Consequently, ∇Σ
i ∇Σ

j ζ|p′ = 0 (this

is because this Hessian must be positive semi-definite from ζ(z) ≥ 0). So, at all

points where ζ vanishes we not only have dζ = 0 but also ∇Σ
i ∇Σ

j ζ = 0. We can

now apply a theorem by Glaeser (see Appendix B) to conclude that the positive

square root u ≡ +
√
ζ

Q0
is C1, as claimed.

Stage 3. Finally, we will prove that S is, in fact, C∞ in a neighbourhood

of p (we already know that S is smooth at non-fixed points) This is equivalent

to proving that the function x = ǫu(z) is C∞. Since u = +
√
ζ

Q0
and ζ ≥ 0, it

follows that u is smooth at any point where u > 0. The proof will proceed in two

steps. In the first step we will show that u is C2 at points where u vanishes and

then, we will improve this to C∞. Let us start with the C2 statement. At points

where u 6= 0, we have Yi|(x=ǫu(z),zA) = 1
2κ
∇Σ
i λ|(x=ǫu(z),zA). Hence Yi is non-zero and

orthogonal to S on such points. Pulling back equation ∇Σ
i Yj +∇Σ

j Yi+2NKij = 0

onto S ∩ {x 6= 0}, we get

κAB + ǫσKAB = 0, (4.3.20)

where σ is the sign of κ , KAB is the pull-back of Kij on the surface {x =

ǫu(z)} and κAB is the second fundamental form of this surface with respect to

the unit normal pointing inside {λ > 0}. By assumption Y i∇Σ
i λ has constant

sign on S. This implies that σ is either everywhere +1 or everywhere −1. So,

the graph x = ǫu(z) satisfies the set of equations κAB + ǫσKAB = 0 on the open

set {zA;u(z) > 0} ⊂ R
2. In the local coordinates {zA} these equations takes the

form

− ∂A∂Bu(z) + χAB(u(z), ∂Cu(z), z) = 0 (4.3.21)

where χ is a smooth function of its arguments which satisfies χAB(u = 0, ∂Cu =

0, z) = κ̂AB(z) + ǫσK̂AB(z), where κ̂AB is the second fundamental form of the

surface {x = 0} (with respect to the outer normal pointing towards {x > 0}) at

the point with coordinates {zA} and K̂AB is the pull-back of Kij on this surface

at the same point. Take a fixed point p′ ∈ S not lying within an open set of fixed

points (if p′ lies on an open set of fixed points we have u ≡ 0 on the open set

and the statement that u is C∞ is trivial). It follows that p′ ∈ {x = 0} and that

the coordinates zA0 of p′ satisfy zA0 ∈ ∂top{zA;u(z) > 0} ⊂ R
2. By stage 2 of the

proof, the function u(z) is C1 everywhere and its gradient vanishes wherever u
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vanishes. It follows that u
∣
∣
zA0

= ∂Bu
∣
∣
zA0

= 0. Being u continuously differentiable,

it follows that the term χAB in (4.3.21) is C0 as a function of zC and therefore

admits a limit at zC0 . It follows that ∂A∂Bu also has a well-defined limit at zC0 ,

and in fact this limit satisfies

∂A∂Bu
∣
∣
zC0

= κ̂AB
∣
∣
zC0

+ ǫσK̂AB

∣
∣
zC0
.

This shows that u is in fact C2 everywhere. But taking the trace of

κAB + ǫσKAB = 0, we get p + ǫσq = 0, where p is the mean curvature of

S and q is the trace of the pull-back of Kij on S. This is an elliptic equation in

the coordinates {zA} (see e.g. [3]), so C2 solutions are smooth as a consequence

of elliptic regularity [56]. Thus, the function u(z) is C∞. �

Knowing that this submanifold is differentiable, our next aim is to show that,

under suitable circumstances it has vanishing outer null expansion. This is the

content of our next proposition.

Proposition 4.3.14 Let (Σ, g,K;N, ~Y , τ) be a static KID and consider a con-

nected component {λ > 0}0 of {λ > 0} with non-empty topological boundary. Let

S be an arc-connected component ∂top{λ > 0}0 and assume

(i) NY i∇Σ
i λ|S ≥ 0 if S contains at least one fixed point.

(ii) NY imi|S ≥ 0 if S contains no fixed point, where ~m is the unit normal

pointing towards {λ > 0}0.

Then S is a smooth submanifold (i.e. injectively immersed) with θ+ = 0 provided

the outer direction is defined as the one pointing towards {λ > 0}0. Moreover, if

I1 6= 0 in S, then S is embedded.

Remark. If the inequalities in (i) and (ii) are reversed, then S has θ− = 0. �

Proof. Consider first the case when S has at least one fixed point. Since, on

S, N cannot change sign and vanishes only if ~Y also vanishes, the hypothesis

NY i∇Σ
i λ|S ≥ 0 implies either Y i∇Σ

i λ|S ≥ 0 or Y i∇Σ
i λ|S ≤ 0 and, therefore,

Proposition 4.3.13 shows that S is a smooth submanifold. Let ~m be the unit

normal pointing towards {λ > 0}0 and p the corresponding mean curvature. We

have to show that θ+ = p + γABKAB (see equation (2.2.8)) vanishes. Open sets

of fixed points are immediately covered by Proposition 4.3.9 because this set is

then totally geodesic and KAB = 0, so that both null expansions vanish.
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On the subset V ⊂ S of non-fixed points we have Yi
∣
∣
V

= 1
2κ
∇Σ
i λ
∣
∣
V

(see

equation 4.3.9) and, therefore, Yi
∣
∣
V

= |N |sign(κ)mi

∣
∣
V
. The condition NY i∇Σ

i λ ≥
0 imposes sign(N)sign(κ) = 1 or, in the notation of the proof of Proposition

4.3.13, ǫσ = 1. Equation p+ q = 0 follows directly from (4.3.20) after taking the

trace.

For the case (ii), we know that S is smooth from Lemma 4.3.6 and, hence, ~m

exists (this shows in particular that hypothesis (ii) is well-defined). Since S lies

in a Killing prehorizon in the Killing development of the KID, it follows that ~ξ is

orthogonal to S and hence that ~Y is normal to S in Σ. Since ~Y 2 = N2 on S it

follows ~Y |S = N ~m|S and the same argument applies to conclude θ+ = 0.

To show that S is embedded if I1|S 6= 0, consider a point p ∈ S. if p is a

non-fixed point, we know that ∇Σ
i λ
∣
∣
p
6= 0 and hence λ is a defining function

for S in a neighbourhood of p. This immediately implies that S is embedded in

a neighbourhood of p. When p is a fixed point, we have shown in the proof of

Proposition 4.3.13 that there exists an open neighbourhood Vp of p such that, in

suitable coordinates, {λ > 0} ∩ Vp = {x ≥ u(z)} or {λ > 0} ∩ Vp = {x ≤ −u(z)}
for a non-negative smooth function u(z). It is clear that the arc-connected com-

ponent S is defined locally by x = u(z) or x = −u(z) and hence it is embedded. �

4.4 The confinement result

Now, we are ready to state and prove our confinement result. For simplicity, it

will be formulated as a confinement result for outer trapped surfaces instead of

weakly outer trapped surfaces. However, except for a singular situation, it can be

immediately extended to weakly outer trapped surfaces (see Remark 1 after the

proof).

Theorem 4.4.1 Consider a static KID (Σ, g,K;N, ~Y , τ) satisfying the NEC and

possessing a barrier Sb with interior Ωb (see Definition 2.2.24) which is outer

untrapped and such that such that λ
∣
∣
Sb

> 0. Let {λ > 0}ext be the connected

component of {λ > 0} containing Sb. Assume that every arc-connected component

of ∂top{λ > 0}ext with I1 = 0 is topologically closed and

1. NY i∇Σ
i λ ≥ 0 in each arc-connected component of ∂top{λ > 0}ext containing

at least one fixed point.
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Figure 4.2: Theorem 4.4.1 forbids the existence of an outer trapped surface S like

the one in the figure (in blue). The striped area corresponds to the exterior of S

in Ωb and the shaded area corresponds to the set {λ > 0}ext whose boundary is

S0 (in red). Note that S0 may intersect ∂Σ.

2. NY imi ≥ 0 in each arc-connected component of ∂top{λ > 0}ext which

contains no fixed points, where ~m is the unit normal pointing towards

{λ > 0}ext.

Consider any surface S which is bounding with respect to Sb. If S is outer trapped

then it does not intersect {λ > 0}ext.

Proof. We argue by contradiction. Let S be an outer trapped surface which

is bounding with respect to Sb, satisfies the hypotheses of the theorem and inter-

sects {λ > 0}ext. By definition of bounding, there exists a compact manifold Σ̃

whose boundary is the disjoint union of the outer untrapped surface Sb and the

outer trapped surface S. We work on Σ̃ from now on. The Andersson and Met-

zger Theorem 2.2.30 implies that the topological boundary of the weakly outer

trapped region ∂topT+ in Σ̃ is a stable MOTS which is bounding with respect to

Sb. We first show that ∂topT+ necessarily intersects {λ > 0}ext. Indeed, consider

a point r ∈ S with λ|r > 0 (this point exists by hypothesis) and consider a path

from r to Sb fully contained in {λ > 0}ext (this path exists because {λ > 0}ext

is connected). Since r ∈ T+ it follows that this path must intersect ∂topT+ as

claimed. Furthermore, due to the maximum principle for MOTS (see Proposi-

tion B.7), ∂topT+ lies entirely in the exterior of S in Ωb (here is where we use

the hypothesis of S being outer trapped instead of merely being weakly outer

trapped).

Let us suppose for a moment that ∂topT+ ⊂ {λ > 0}ext. Then the Killing vec-

tor N~n + ~Y is causal everywhere on ∂topT+, either future or past directed, and

timelike somewhere on ∂topT+. Since ∂topT+ intersects {λ > 0}ext, there must be

non-fixed points on ∂topT+. If all points in ∂topT+ are non-fixed, then we can con-

struct the Killing development and Theorem 3.4.9 can be applied at once giving a
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contradiction (note that ∂topT+ is necessarily a locally outermost MOTS). When

∂topT+ has fixed points we cannot construct the Killing development everywhere.

However, let V ⊂ ∂topT+ be a connected component of the set of non-fixed points

in ∂topT+ satisfying V ∩ {λ > 0} 6= ∅ (this V exists because λ > 0 somewhere on

∂topT+). Then, the Killing development still exists in an open neighbourhood of

V . In this portion we can repeat the geometrical construction which allowed us

to prove Theorem 3.4.9 and define a surface S ′ by moving V a small, but finite

amount τ along ~ξ to the past and back to Σ along the outer null geodesics. Since

N and ~Y are smooth and approach zero at ∂topV it follows that S ′ and the set

of fixed points in ∂topT+ join smoothly and therefore define a closed surface S ′′.

Clearly, S ′′ is weakly outer trapped and lies, at least partially, in the exterior of

∂topT+, which is impossible.

Until now, we have essentially applied the ideas of Theorem 3.4.9. When

∂topT+ 6⊂ {λ > 0}ext new methods are required. However, the general strategy is

still to construct a weakly outer trapped surface outside ∂topT+ in Σ̃.

First of all, every arc-connected component Si of ∂top{λ > 0}ext with I1 6= 0 is

embedded, as proven in Proposition 4.3.14. For an arc-connected component Sd
with I1 = 0 we note that, since no point on this set is a fixed point, it follows that

there exists an open neighbourhood U of Sd containing no fixed points. Thus,

the vector field ~Y is nowhere zero on U . Staticity of the KID implies that Y

is integrable (see (4.3.2)). It follows by the Fröbenius theorem that U can be

foliated by maximal, injectively immersed submanifolds orthogonal to ~Y . Sd is

clearly one of the leaves of this foliation because ~Y is orthogonal to Sd everywhere.

By assumption, Sd is topologically closed. Now, we can invoke a result on the

theory of foliations that states that any topologically closed leaf in a foliation is

necessarily embedded (see e.g. Theorem 5 in page 51 of [89]). Thus, each Si is

an embedded submanifold of Σ̃. Since we know that ∂topT+ intersects {λ > 0}ext
and we are assuming that ∂topT+ 6⊂ {λ > 0}ext, it follows that at least one of the

arc-connected components {Si}, say S0, must intersect both the interior and the

exterior of ∂topT+ . In Proposition 4.3.14 we have also shown that S0 has θ+ = 0

with respect to the direction pointing towards {λ > 0}ext.

Thus, we have two intersecting surfaces ∂topT+ and S0 which satisfy θ+ = 0.

Moreover, ∂topT+ is a stable MOTS. The idea is to use Lemma 3.5.1 by Kriele

and Hayward to construct a weakly outer trapped surface Ŝ outside both ∂topT+

and S0 and which is bounding with respect to Sb. However, Lemma 3.5.1 can be

applied directly only when both surfaces ∂topT+ and S0 intersect transversally in

a curve and this need not happen for S0 and ∂topT+. To address this issue we use
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a technique developed by Andersson and Metzger in their proof of Theorems 5.1

and 7.6 in [4].

The idea is to use Sard Lemma (see Appendix B) in order to find a weakly

outer trapped surface S̃ as close to ∂topT+ as desired which does intersect S0

transversally. Then, the Kriele and Hayward smoothing procedure applied to S̃

and S0 gives a weakly outer trapped surface penetrating Σ̃ \ T+, which is simply

impossible.

So, it only remains to prove the existence of S̃.

Recall that ∂topT+ is a stable MOTS. We will distinguish two cases. If ∂topT+ is

strictly stable, there exists a foliation {Γs}s∈(−ǫ,0] of a one sided tubular neighbour-

hood W of ∂topT+ in T+ such that Γ0 = ∂topT+ and all the surfaces {Γs}s<0 have

θ+
s < 0. To see this, simply choose a variation vector ~ν such that ~ν

∣
∣
∂topT+ = ψ~m

where ψ is a positive principal eigenfunction of the stability operator L~m and

~m is the outer direction normal to ∂topT+. Using δ~νθ
+ = L~mψ = λψ > 0 it

follows that the surfaces Γs ≡ ϕs(∂
topT+) generated by ~ν are outer trapped for

s ∈ (−ǫ, 0). Next, define the mapping Φ : S0 ∩ (W \∂topT+) → (−ǫ, 0) ⊂ R which

assigns to each point p ∈ (W \ ∂topT+) the corresponding value of the parameter

of the foliation s ∈ (−ǫ, 0) on p. Sard Lemma (Lemma B.8) implies that the set

of regular values of the mapping Φ is dense in (−ǫ, 0) ⊂ R. Select a regular value

s0 as close to 0 as desired. Then, the surface S̃ ≡ Γs0 intersects transversally S0,

as required.

If ∂topT+ is stable but not strictly stable, a foliation Γs consisting on weakly

outer trapped surfaces may not exist. Nevertheless, following [4], a suitable mod-

ification of the interior of ∂topT+ in Σ solves this problem. It is important to

remark that, in this case, the contradiction which proves the theorem is obtained

by applying the Kriele and Hayward Lemma in the modified initial data set. The

modification is performed as follows. Consider the same foliation Γs as defined

above and replace the second fundamental form K on the hypersurface Σ by the

following.

K̃ = K − 1

2
φ(s)γs, (4.4.1)

where φ : R → R is a C1,1 function such that φ(s) = 0 for s ≥ 0 (so that the

data remains unchanged outside ∂topT+) and γs is the projector to Γs. Then, the

outer null expansion of Γs computed in the modified initial data set (Σ, g, K̃)

θ̃+[Γs] = θ+[Γs] − φ(s),

where θ+[Γs] is the outer null expansion of Γs in (Σ, g,K). Since ∂topT+ was a

stable but not strictly stable MOTS in (Σ, g,K), θ+[Γs] vanishes at least to second
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order at s = 0. On s ≤ 0, define φ(s) = bs2 with b a sufficient large constant. It

follows that for some ǫ > 0 we have θ̃+[Γs] < 0 on all Γs for s ∈ (−ǫ, 0). Working

with this foliation, Sard Lemma asserts that a weakly outer trapped surface Γs0
lying as close to ∂topT+ as desired and intersecting S0 transversally can be chosen

in (Σ, g, K̃).

Furthermore, the surface S0 also has non-positive outer null expansion in

the modified initial data, at least for s sufficiently close to zero. Indeed, this

outer null expansion θ̃+[S0] reads θ̃+[S0] = p[S0] + trS0K̃. By (4.4.1), we have

trS0K̃
∣
∣
r

= trS0K
∣
∣
r
− 1

2
φ(sr)trS0γsr

, at any point r ∈ S0, where sr is the value of

the leaf Γs containing r, i.e. r ∈ Γsr
. Since trS0γs ≥ 0 (because the pull-back of

γs is positive semi-definite) we have trS0K̃ = trS0K for s ≥ 0 and trS0K̃ ≤ trS0K

for s < 0 (small enough). In any case θ̃+(S0) ≤ θ+(S0) = 0 and we can apply the

Kriele and Hayward Lemma to Γs0 and S0 to construct a weakly outer trapped

surface which is bounding with respect to Sb, lies in the topological closure of the

exterior of ∂topT+ and penetrates this exterior somewhere. Since the geometry

outside ∂topT+ has not been modified, this gives a contradiction. �

Remark 1. This theorem has been formulated for outer trapped surfaces

instead of weakly outer trapped surfaces. The reason is that in the proof we have

used a foliation in the inside part of a tubular neighbourhood of ∂topT+. If S

satisfies θ+ = 0, it is possible that S = ∂Σ = ∂topT+ and then we would not have

room to use this foliation. It follows that the hypothesis of the theorem can be

relaxed to θ+ ≤ 0 if one of the following conditions hold:

1. S is not the outermost MOTS.

2. S ∩ ∂Σ = ∅.

3. The KID (Σ, g,K;N, ~Y , τ) can be isometrically embedded into another KID

(Σ̂, ĝ, K̂, N̂ ,
~̂
Y, τ̂) with ∂Σ ⊂ int(Σ̂)

In this case, Theorem 4.4.1 includes Miao’s theorem in the particular case of

asymptotically flat time-symmetric vacuum static KID with minimal compact

boundary. This is because in the time-symmetric case all points with λ = 0 are

fixed points and hence there are no arc-connected components of ∂top{λ > 0}
with I1 = 0 and Y i∇Σ

i λ is identically zero on ∂top{λ > 0}ext. �

Remark 2. In geometric terms, hypotheses 1 and 2 of the theorem exclude a

priori the possibility that ∂top{λ > 0}ext intersects the white hole Killing horizon
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at non-fixed points. A similar theorem exists for initial data sets which do not

intersect the black hole Killing horizon (more precisely, such that both inequalities

in 1 and 2 are satisfied with the reversed inequality signs). The conclusion of

the theorem in this case is that no bounding past outer trapped surface can

intersect {λ > 0}ext provided Sb is a past outer untrapped barrier (the proof

of this statement can be obtained by applying Theorem 4.4.1 to the static KID

(Σ, g,−K;−N, ~Y ; ρ,− ~J, τ)).

No version of this theorem, however, covers the case when ∂top{λ > 0}ext
intersects both the black hole and the white hole Killing horizon. The reason

is that, in this setting, ∂top{λ > 0}ext is, in general, not smooth and we cannot

apply the Andersson-Metzger theorem to Σ̃. In the next chapter we will address

this case in more detail. �

For the particular case of KID possessing an asymptotically flat end we have

the following corollary, which is an immediate consequence of Theorem 4.4.1.

Corollary 4.4.2 Consider a static KID (Σ, g,K;N, ~Y , τ) with a selected asymp-

totically flat end Σ∞
0 and satisfying the NEC. Denote by {λ > 0}ext the connected

component of {λ > 0} which contains the asymptotically flat end Σ∞
0 . Assume

that every arc-connected component of ∂top{λ > 0}ext with I1 = 0 is closed and

1. NY i∇Σ
i λ ≥ 0 in each arc-connected component of ∂top{λ > 0}ext containing

at least one fixed point.

2. NY imi ≥ 0 in each arc-connected component of ∂top{λ > 0}ext which

contains no fixed points, where ~m is the unit normal pointing towards

{λ > 0}ext.

Then, any bounding (see Definition 2.3.6) outer trapped surface S in Σ cannot

intersect {λ > 0}ext.



Chapter 5

Uniqueness of static spacetimes

with weakly outer trapped

surfaces

5.1 Introduction

In this chapter we will extend the classic static black hole uniqueness theorems

to asymptotically flat static KID containing weakly outer trapped surfaces. As

emphasized in the previous chapter, the first step for this extension was given

by Miao for the particular case of asymptotically flat, time-symmetric, static and

vacuum KID, with compact minimal boundary (Theorem 4.1.2). Indeed, our aim

of extending the classic uniqueness theorems for static black holes to the quasi-

local setting can be reformulated as generalizing Theorem 4.1.2 to non-vanishing

matter (as long as the NEC is satisfied) and arbitrary slices (not necessarily time-

symmetric) containing weakly outer trapped surfaces. In the previous chapter we

obtained a generalization of this result as a confinement result. In this chapter

we address the extension of Miao’s theorem as a uniqueness result.

As we already know, the most powerful method to prove uniqueness of static

black holes is the doubling method of Bunting and Masood-ul-Alam. This method

was described in some detail in Section 2.4 where we gave a sketch of the proof

of the uniqueness theorem for static electro-vacuum black holes. In the present

chapter, our strategy will be precisely to recover the framework of the doubling

method from an arbitrary static KID containing a weakly outer trapped surface.

As it was discussed in Section 2.4, this framework consists of an asymptotically

flat spacelike hypersurface Σ with topological boundary ∂topΣ which is a closed

(i.e. compact and without boundary) embedded topological manifold and such

that the static Killing field is causal on Σ and null only on ∂topΣ. As we pointed

115
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out in Section 2.4, the existence of this topological manifold ∂topΣ is ensured

precisely by the presence of a black hole. Note that ∂topΣ is not required to be

smooth.

Hence, our strategy to conclude uniqueness departing from a static KID

(Σ, g,K;N, ~Y , τ) with an asymptotically flat end Σ∞
0 which contains a bounding

MOTS S will be therefore to prove that the topological boundary ∂top{λ > 0}ext,
where {λ > 0}ext is the connected component of {λ > 0} in Σ which contains Σ∞

0 ,

is a closed embedded topological submanifold. Since a priori MOTS have nothing

to do with black holes, ∂top{λ > 0}ext may fail to be closed (see Figure 5.1) as

required in the doubling method. Consequently, throughout this chapter we will

study under which conditions we can guarantee that ∂top{λ > 0}ext is closed. In

fact, it turns out that the confinement Theorem 4.4.1 and its Corollary 4.4.2 are

already sufficient to conclude that ∂top{λ > 0}ext is a closed surface. This leads

to our first uniqueness result.

S

Σ∞
0

∂Σ

∂top{λ > 0}ext

Figure 5.1: The figure illustrates a situation where ∂top{λ > 0}ext (in red) has

non-empty manifold boundary (which lies in ∂Σ) and, therefore, is not closed.

Here, S (in blue) represents a bounding MOTS and the grey region corresponds

to {λ > 0}ext. In a situation like this the doubling method cannot be applied.

Theorem 5.1.1 Consider a static KID (Σ, g,K;N, ~Y , τ) with a selected asymp-

totically flat end Σ∞
0 and satisfying the NEC. Assume that Σ possesses an outer

trapped surface S which is bounding. Denote by {λ > 0}ext the connected compo-

nent of {λ > 0} which contains the asymptotically flat end Σ∞
0 . If

1. Every arc-connected component of ∂top{λ > 0}ext with I1 = 0 is topologically

closed.

2. NY i∇Σ
i λ ≥ 0 in each arc-connected component of ∂top{λ > 0}ext containing

at least one fixed point.

3. NY imi ≥ 0 in each arc-connected component of ∂top{λ > 0}ext which

contains no fixed points, where ~m is the unit normal pointing towards

{λ > 0}ext.
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4. The matter model is such that Bunting and Masood-ul-Alam doubling

method gives uniqueness of black holes.

Then, ({λ > 0}ext, g,K) is a slice of such a unique spacetime.

Proof. Proposition 4.3.14 implies that ∂top{λ > 0}ext is a smooth submani-

fold with θ+ = 0 with respect to the normal pointing towards {λ > 0}ext. We

only need to show that ∂top{λ > 0}ext is closed (i.e. embedded, compact and

without boundary) in order to apply hypothesis 4 and conclude uniqueness. By

definition of bounding in the asymptotically flat setting (see Definition 2.3.6) we

have a compact manifold Σ̃ with boundary ∂Σ̃ = S∪Sb, where Sb = {r = r0} is a

sufficiently large coordinate sphere in Σ∞
0 . Take this sphere large enough so that

{r ≥ r0} ⊂ {λ > 0}ext. We are in a setting where all the hypothesis of Theorem

4.4.1 hold. In the proof of this theorem we have shown that ∂top{λ > 0}ext is

embedded and compact. Moreover, ∂topT+ lies in the interior int(Σ̃) and does

not intersect {λ > 0}ext. This, clearly prevents ∂top{λ > 0}ext from reaching S,

which in turn implies that ∂top{λ > 0}ext has no boundary. �

Remark. This theorem applies in particular to static KID which are asymp-

totically flat, without boundary and have at least two asymptotic ends, as long

as conditions 1 to 4 are fulfilled. To see this, recall that an asymptotically flat

initial data is the union of a compact set and a finite number of asymptotically

flat ends. Select one of these ends Σ∞
0 and define S to be the union of coordinate

spheres with sufficiently large radius on all the other asymptotic ends. This

surface is an outer trapped surface which is bounding with respect to Σ∞
0 and

we recover the hypotheses of Theorem 5.1.1. �

Theorem 5.1.1 has been formulated for outer trapped surfaces instead of

weakly outer trapped surfaces for the same reason as in Theorem 4.4.1. Con-

sequently, the hypotheses of this theorem can also be relaxed to θ+ ≤ 0 if one

of the following conditions hold: S is not the outermost MOTS, S ∩ ∂Σ = ∅, or

the KID can be extended. Under these circumstances, this result already extends

Miao’s theorem as a uniqueness result.

Nevertheless, the theorem above requires several conditions on the boundary

∂top{λ > 0}ext. Since ∂top{λ > 0}ext is a fundamental object in the doubling

procedure, it is rather unsatisfactory to require conditions directly on this object.

Out main aim in this chapter is to obtain a uniqueness result which does not

involve any a priori restriction on ∂top{λ > 0}ext. As discussed in the previous
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chapter, ∂top{λ > 0}ext is in general not a smooth submanifold (see e.g. Figure

4.1) and the techniques of the previous chapter cannot be applied to conclude that

∂top{λ > 0}ext is a closed embedded topological submanifold. The key difficulty

lies in proving that ∂top{λ > 0}ext is a manifold without boundary. In the previous

theorem, we used the non-penetration property of ∂topT+ into {λ > 0}ext in

order to conclude that ∂top{λ > 0}ext must lie in the exterior of the bounding

outer trapped surface S (which implies that ∂top{λ > 0}ext is a manifold without

boundary). In turn, this non-penetration property was strongly based on the

smoothness of ∂top{λ > 0}ext, which we do not have in general. The main problem

is therefore: How can we exclude the possibility that ∂top{λ > 0}ext reaches S in

the general case? (see Figure 5.1).

To address this issue we need to understand better the structure of ∂top{λ >
0}ext (and, more generally, of ∂top{λ > 0}) when conditions 2 and 3 are not

satisfied. As we will discuss later, this will force us to view KID as hypersurfaces

embedded in a spacetime, instead as abstract objects on their own, as we have

done in the previous chapter.

To finish this introduction, let us give a briefly summary of the chapter. In

Section 5.2 we define the concept of an embedded static KID and present some

known results on the structure of the spacetime in the neighbourhood of the fixed

points of the isometry. In Section 5.3 we will revisit the study of the properties of

∂top{λ > 0}, this time for embedded static KID. Finally, Section 5.4 is devoted to

state and prove the uniqueness theorem for asymptotically flat static spacetimes

containing a bounding weakly outer trapped surface.

The results presented in this chapter have been summarized in [30] and will

also be sent to publication [29].

5.2 Embedded static KID

We begin this section with the definition of an embedded static KID. Recall that,

according to our definitions, a spacetime has no boundary.

Definition 5.2.1 An embedded static KID (Σ, g,K;N, ~Y , τ) is a static KID,

possibly with boundary, which is embedded in a spacetime (M, g(4)) with static

Killing field ~ξ such that ~ξ |Σ = N~n+ ~Y , where ~n is the unit future directed normal

of Σ in M .

Remark. If a static KID has no boundary and belongs to a matter model

for which the Cauchy problem is well-posed (e.g. vacuum, electro-vacuum, scalar
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field, Yang-Mills field, σ-model, etc), it is clear that there exists a spacetime

which contains the initial data set a spacelike hypersurface. Whether this Cauchy

development admits or not a Killing vector ~ξ compatible with the Killing data

has only been answered in the affirmative for some special matter models, which

include vacuum and electro-vacuum [45]. Even in these circumstances, it is at

present not known whether the spacetime thus constructed is in fact static (i.e.

such that the Killing vector ~ξ is integrable). This property is obvious near points

where N 6= 0 (i.e. points where ~ξ is transverse to Σ), but it is much less clear

near fixed points, specially those with I1 < 0. Indeed, these points belong to

a totally geodesic closed spacelike surface in the Cauchy development of the

initial data set. The points lying in the chronological future of this surface

cannot be reached by integral curves of the Killing vector starting on Σ. Proving

that the Killing vector is integrable on those points is an interesting and,

apparently, not so trivial task. In this thesis we do not explore this problem fur-

ther and simply work with the definition of embedded static KID stated above. �

In what follows, we will review some useful results concerning the structure

of the spacetime near fixed points of the static Killing ~ξ.

Proposition 5.2.2 Let (Σ, g,K;N, ~Y , τ) be a static embedded KID and let

(M, g(4)) be the static spacetime where the KID is embedded. Consider a fixed

point p ∈ ∂top{λ > 0} ⊂ Σ and let S0 be the connected spacelike surface of fixed

points in M containing p (which exists by Theorem 2.4.9). Then, there exists a

neighbourhood V of p in M and coordinates {u, v, xA} on V such that {xA} are

coordinates for S0∩V and the spacetime metric takes the Rácz-Wald-Walker form

g
(4)
RWW = 2Gdudv + γABdx

AdxB, (5.2.1)

where S0∩V = {u = v = 0}, ∂v is future directed and G and γAB are both positive

definite and depend smoothly on {w ≡ uv, xA}.

Proof. Theorem 2.4.9 establishes that p belongs to a connected, spacelike,

smooth surface S0 which lies in the closure of a non-degenerate Killing horizon.

Thus, we can use the Rácz-Wald-Walker construction, see [96], which shows that

there exists a neighbourhood V of p and coordinates {u, v, xA} adapted to S0 ∩V
such that the metric g(4) takes the form

g(4) = 2Gdudv + 2vHAdx
Adu+ γABdx

AdxB, (5.2.2)
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where G, HA and γAB depend smoothly on {w, xA}. In these coordinates, the

Killing vector ~ξ reads
~ξ = c2 (v∂v − u∂u) , (5.2.3)

where c is a (non-zero) constant and ∂v is future directed. We only need to prove

that staticity implies that {u, v, xA} can be chosen in such a way that HA = 0.

A straightforward computation shows that the integrability condition ξ ∧ dξ = 0

is equivalent to the following equations

G∂wHA −HA∂wG = 0, (5.2.4)

H[A∂B]G+G∂[AHB] = 0, (5.2.5)

H[A∂wHB] = 0. (5.2.6)

Equation (5.2.4) implies HA = fAG, where fA depend on xC . Inserting this

in (5.2.5), we get ∂[AfB] = 0, which implies (after restricting V if necessary)

the existence of a function ζ(xC) such that fA = ∂Aζ. Equation (5.2.6) is then

identically satisfied. Therefore, staticity is equivalent to

HA(w, xC) = G(w, xC)∂Aζ(x
C). (5.2.7)

We look for a coordinate change {u, v, xC} → {u′, v′, x′C} which preserves the

form of the metric (5.2.2) and such that H ′
A = 0. It is immediate to check that

an invertible change of the form
{

u = u(u′), v = v(v′, x′
C
), xA = x′

A
}

preserves the form of the metric and transforms HA as

v′H ′
A =

du

du′

(
∂v

∂x′A
G+ vHA

)

, (5.2.8)

So, we need to impose G∂Av + vHA = 0, which in view of (5.2.7), reduces to

∂Av+v∂Aζ = 0. Since v = v′e−ζ (with v′ independent of xA) solves this equation,

we conclude that the coordinate change
{

u = u′, v = v′e−ζ(x
′C), xA = x′A

}

brings the metric into the form (5.2.2) (after dropping the primes). �

Now, let us consider an embedded static KID in a static spacetime with Rácz-

Wald-Walker metric (V , g(4)
RWW ). Since the vector ∂v is null on V , it is transverse

to Σ ∩ V and, therefore, the embedding of Σ ∩ V can be written locally as

Σ : (u, xA) → (u, v = φ(u, xA), xA), (5.2.9)



5. Uniqueness of static spacetimes with trapped surfaces 121

where φ is a smooth function. A simple computation using (5.2.3) leads to

λ|Σ∩V = 2c4Ĝuφ, (5.2.10)

N |Σ∩V = (φ+ u∂uφ)

√

c4Ĝ

2∂uφ− Ĝ∂Aφ∂Aφ
, (5.2.11)

Y|Σ∩V = c2Ĝ (φdu− udφ) . (5.2.12)

where Ĝ ≡ G(w = uφ, xA) and indices A,B, . . . are raised with the inverse of

γ̂AB ≡ γAB(w = uφ, xA).

Since Σ is spacelike, the quantity 2∂uφ− Ĝ∂Aφ∂
Aφ is positive. In particular,

this implies that

∂uφ > 0, (5.2.13)

which will be used later. For the sets {u = 0} and {φ = 0} in Σ ∩ V we have the

following result.

Lemma 5.2.3 Consider an embedded static KID (Σ, g,K;N, ~Y , τ) and use Rácz-

Wald-Walker coordinates {u, v, xA} in a spacetime neighbourhood V of a fixed

point p ∈ ∂top{λ > 0} ⊂ Σ such that the embedding of Σ reads (5.2.9). Then the

sets {u = 0} and {φ = 0} in Σ ∩ V are both smooth surfaces (not necessarily

closed). Moreover, a point p ∈ ∂top{λ > 0} in Σ ∩ V is a non-fixed point if and

only if uφ = 0 with either u or φ non-zero.

Proof: The lemma follows directly from the fact that both sets {u = 0} and

{φ = 0} in Σ are the intersections between Σ and the null smooth embedded

hypersurfaces {u = 0} and {v = 0} in (V , g(4)
RWW ), respectively. The second

statement of the lemma is a direct consequence of equations (5.2.3) and (5.2.10).

�

5.3 Properties of ∂top {λ > 0} on an embedded

static KID

In this section we will explore in more detail the properties of the set ∂top {λ > 0}
in Σ. In particular, we will study the structure ∂top{λ > 0} in an embedded KID

when no additional hypothesis are made. First, we will briefly recall some results

of the previous chapter which will be used below. In Proposition 4.3.9 we showed

that an open set of fixed points in ∂top{λ > 0} in a static KID (Σ, g,K;N, ~Y , τ)
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is a smooth and totally geodesic surface. Moreover, Lemma 4.3.6 and Proposition

4.3.14 imply that every arc-connected component of the open set of non-fixed

points in ∂top{λ > 0} ⊂ Σ is a smooth submanifold (not necessarily embedded)

of Σ and has either θ+ = 0 or θ− = 0. The structure of those arc-connected

components of ∂top{λ > 0} having exclusively fixed points or exclusively non-

fixed points is therefore clear with no need of additional assumptions. However, for

the case of arc-connected components having both types of points an additional

assumption on the sign of NY i∇Σ
i λ was required to conclude smoothness (see

Propositions 4.3.13 and 4.3.14). This hypothesis was imposed in order to avoid

the existence of transverse fixed points in ∂top{λ > 0} (see stage 1 on the proof

of Proposition 4.3.13). Actually, the existence of transverse points is, by itself,

not very problematic. Indeed, as we showed in Lemma 4.3.12, the structure of

∂top{λ > 0} on a neighbourhood of transverse fixed points is well understood and

consists of two intersecting branches. The problematic situation happens when a

sequence of transverse fixed points tends to a non-transverse point p. In this case

the intersecting branches can have a very complicated limiting behavior at p. If we

consider the non-transverse limit point p, then we know from the previous chapter

(see stage 2 on the proof of Proposition 4.3.13) that locally near p there exists

coordinates such that λ = Q2
0x

2 − ζ(zA), with ζ a non-negative smooth function.

In order to understand the behavior of ∂top{λ > 0} we need to take the square

root of ζ. Under the assumptions of Proposition 4.3.13 we could show that the

positive square root is C1. For general non-transverse points, this positive square

root is not C1. In fact, is not clear at all whether there exists any C1 square root

(even allowing this square root to change sign). The following example shows a

function ζ which admits no C1 square root. It is plausible that the equations that

are satisfied in a static KID forbid the existence of ζ functions with no C1 square

root. This is, however, a difficult issue and we have not been able to resolve it.

This is the reason why we need to restrict ourselves to embedded static KID

in this chapter. Assuming the existence of a static spacetime where the KID is

embedded, it follows that, irrespectively of the structure of fixed points in Σ, a

suitable square root of ζ always exists.

Example. Non-negative functions do not have in general a C1 square root.

A simple example is given by the function ρ = y2 + z2 on R
2. We know, however,

that this type of example cannot occur for the function ζ because the Hessian of

ζ must vanish at least on one point where ζ vanishes (and this is obviously not

true for ρ).

The following is an example of a non-negative function ζ for which the function
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and its Hessian vanish at one point and which admits no C1 square root. Consider

the function ζ(y, z) = z2y2 + z4 + f(y), where f(y) is a smooth function such

that f(y) = 0 for y ≥ 0 and f(y) > 0 for y < 0. Recall that the set of fixed

points consists of the zeros of ζ, and a fixed point is non-transverse if and only

if the Hessian of ζ vanishes (see the proof of Proposition 4.3.13). It follows that

the fixed points occur on the semi-line σ ≡ {y ≥ 0, z = 0}, with (0, 0) being

non-transverse and (y > 0, z = 0) transverse. Consider the points p = (1,−1)

and q = (1, 1). First of all take a curve γ joining them in such a way that it

does not intersect σ. It is clear that ζ remains positive along γ and, therefore,

its square root cannot change sign (if it is to be continuous). Now consider the

curve γ′ = {y = 1,−1 ≤ z ≤ 1} joining p and q (which does intersect σ). Since

ζ
∣
∣
γ′

= z2(1+z2), the only way to find a C1 square root is by taking u = z
√

1 + z2,

which changes sign from p to q. This is a contradiction to the property above.

So, we conclude that no C1 square root of ζ exists.

Let us see that, in the spacetime setting, this behavior cannot occur. Our first

result of this section shows that the set ∂top{λ > 0} in an embedded KID is a

union of compact, smooth surfaces which has one of the two null expansions equal

to zero.

Proposition 5.3.1 Consider an embedded static KID (Σ̃, g,K;N, ~Y , τ), compact

and possibly with boundary ∂Σ̃. Assume that every arc-connected component of

∂top{λ > 0} with I1 = 0 is topologically closed. Then

∂top{λ > 0} = ∪
a
Sa, (5.3.1)

where each Sa is a smooth, compact, connected and orientable surface such that

its boundary, if non-empty, satisfies ∂Sa ⊂ ∂Σ̃. Moreover, at least one of the two

null expansions of Sa vanishes everywhere.

Proof. Let {Sα} be the collection of arc-connected components of ∂top{λ >
0}. We know that the quantity I1 is constant on each Sα (see Lemma 4.3.10).

Consider an arc-connected component Sd of ∂top{λ > 0} with I1 = 0. Since all

points in this component are non-fixed, it follows that Sd is a smooth submanifold.

Using the hypothesis that arc-connected components with I1 = 0 are topologically

closed it follows that Sd is, in fact, embedded. Choose ~m to be the unit normal

satisfying

~Y = N ~m, (5.3.2)
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on Sd. This normal is smooth (because neither ~Y nor N vanish anywhere on Sd),

which implies that Sd is orientable. Inserting ~Y = N ~m into equation (4.2.3) and

taking the trace it follows

p+ q = 0. (5.3.3)

Consider now a Sα with I1 6= 0. At non-fixed points we know that Sα is a

smooth embedded surface with ∇Σ
i λ 6= 0. On those points, define a unit normal

~m by the condition

N ~m(λ) > 0 (5.3.4)

We also know that ∇Σ
i λ = 2κYi where Ii = −2κ2. Let us see that Sα = S1,α ∪

S2,α, where each S1,α and S2,α is a smooth, embedded, connected and orientable

surface. To that aim, define

S1,α = {p ∈ Sα such that κ
∣
∣
p
> 0} ∪ { fixed points in Sα},

S2,α = {p ∈ Sα such that κ
∣
∣
p
< 0} ∪ { fixed points in Sα}.

Notice that the fixed points are assigned to both sets. It is clear that at non-

fixed points, both S1,α and S2,α are smooth embedded surfaces. Let q be a fixed

point in Sα and consider the Rácz-Wald-Walker coordinate system discussed in

Proposition 5.2.2. The points in Sα ∩ V are characterized by {uφ = 0} (due to

(5.2.10)). Inserting (5.2.10) and (5.2.12) into ∇Σ
i λ = 2κYi yields, at any non-fixed

point q′ ∈ Sα ∩ V,

2c2 (φdu+ udφ) |q′ = 2κ (φdu− udφ) |q′ .

Since du 6= 0 (because u is a coordinate) and dφ 6= 0 (see equation (5.2.13)) we

have

κ > 0 on {u = 0, φ 6= 0},
κ < 0 on {u 6= 0, φ = 0}. (5.3.5)

Consequently, the non-fixed points in S1,α ∩V are defined by the condition {u =

0, φ 6= 0} and the non-fixed points in S2,α ∩ V are defined by the condition

{u 6= 0, φ = 0}. It is then clear that S1,α ∩V = {u = 0} and S2,α ∩V = {φ = 0},
which are smooth embedded surfaces. It remains to see that the unit normal ~m,

which has been defined only at non-fixed points via (5.3.4), extends to a well-

defined normal to all of S1,α and S2,α (see Figure 5.2).
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q I

II

III

IV
λ < 0

λ < 0

λ > 0 λ > 0

u = 0φ = 0

u = 0 φ = 0
N > 0

N > 0

N < 0

N < 0

Figure 5.2: In the Rácz-Wald-Walker coordinate system we define four open re-

gions by I = {u > 0} ∩ {φ > 0}, II = {u < 0} ∩ {φ > 0}, III = {u < 0} ∩ {φ <
0}, IV = {u > 0}∩ {φ < 0}. The normal on its boundaries which satisfies (5.3.4)

is depicted in red color. It is clear graphically that these normals extend smoothly

to the fixed points on the hypersurfaces {u = 0} and {φ = 0}, such as q in the

figure. This figure is, however, only schematic because one dimension has been

suppressed and fixed points need not be isolated in general. A formal proof that

~m extends smoothly in all cases is given in the text.

This requires to check that the condition (5.3.4), when evaluated on V defines

a normal which extends smoothly to the fixed points. Consider first the points

{u 6= 0, φ = 0}. The unit normal to this surface is ~m = ǫ|∇Σφ|−1
g ∇Σφ where

ǫ = ±1 and may, a priori, depend on the point. Since

N |{u 6=0,φ=0} = u∂uφ

√

c4Ĝ

2∂uφ− Ĝ∂Aφ∂Aφ
,

∇Σ
i λ
∣
∣
{u 6=0,φ=0} = 2c4Ĝu∇Σ

i φ,

expression (5.3.4) implies

0 < N ~m(λ)|{u 6=0,φ=0} = 2ǫc4Ĝu2∂uφ|∇Σφ|g

√

c4Ĝ

2∂uφ− Ĝ∂Aφ∂Aφ
.

Hence ǫ = 1 at all points on {u 6= 0, φ = 0}. Thus the normal vector reads

~m = |∇Σφ|−1
g ∇Σφ at non-fixed points, and this field clearly extends smoothly to

all points on S1,α ∩ V. This implies, in particular, that S1,α is orientable.

The argument for S2,α is similar. Consider now the points {u = 0, φ 6= 0}.
The unit vector normal to this surface is ~m = ǫ′|∇Σu|−1

g ∇Σu where ǫ′ = ±1.
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Using (5.2.10) and (5.2.11) in (5.3.4) gives now

0 < N ~m(λ)|{u=0,φ6=0} = 2ǫ′c4Ĝφ2|∇Σu|g

√

c4Ĝ

2∂uφ− Ĝ∂Aφ∂Aφ
,

which implies ǫ′ = 1 all points on {u = 0, φ 6= 0}. The normal vector is ~m =

|∇Σu|−1
g ∇Σu which again extends smoothly to all points on S2,α ∩ V. As before,

S2,α is orientable.

Let us next check that S1,α has θ+ = 0 and S2,α has θ− = 0 (both with

respect to the normal ~m defined above). On open sets of fixed points this is a

trivial consequence of Proposition 4.3.9 which implies both p = q = 0. To discuss

the non-fixed points, we need an expression for ~Y in terms of ~m. Let ~Y = ǫ′′N ~m,

where ǫ′′ = ±1. Using ~Y = 1
2κ
∇Σλ, we have

ǫ′′

2κ
|∇Σλ|2g = ǫ′′~Y (λ) = N ~m (λ) > 0

Hence ǫ′′ = sign(κ) and

~Y = sign(κ)N ~m. (5.3.6)

Inserting this into (4.2.2) and taking the trace, it follows

sign(κ)p+ q = 0 (5.3.7)

This implies that θ+ = p+ q = 0 at non-fixed points of S1,α and θ− = −p+ q = 0

at non-fixed points at S2,α. At fixed points not lying on open sets, equations

θ+ = 0 (resp. θ− = 0) follow by continuity once we know that S1,α (resp. S2,α)

is smooth with a smooth unit normal.

The final step is to prove that S1,α and S2,α are topologically closed. Let us

first show that Sα is topologically closed. Consider a sequence of points {pi} in

Sα converging to p. It is clear that p ∈ ∂top{λ > 0}, so we only need to check that

we have not moved to another arc-connected component. If p is a non-fixed point,

then {λ = 0} is a defining function for ∂top{λ > 0} near p and the statement is

obvious. If p is a fixed point, we only need to use the Rácz-Wald-Walker coordinate

system near p to conclude that no change of arc-connected component can occur

in the limit. To show that each S1,α, S2,α is topologically closed, assume now

that pi is a sequence on S1,α. If the limit p is a fixed point, it belongs to S1,α

by definition. If the limit p is a non-fixed point, we can take a subsequence {pi}
of non-fixed points. Since κ remains constant on the sequence, it takes the same

value in the limit, which shows that p ∈ S1,α, i.e. S1,α is topologically closed.
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The surfaces Sa in the statement of the theorem are the collection of {Sd}
having I1 = 0 and the collection of pairs {S1,α, S2,α} for the arc-connected

components Sα with I1 6= 0. The statement that ∂Sa ⊂ ∂Σ̃ is obvious. �

Remark 1. In this proof we have tried to avoid using the existence of

a spacetime where (Σ, g,K;N, ~Y , τ) is embedded as much as possible. The

only essential information that we have used from the spacetime is that, near

fixed points, λ can be written as the product of two smooth functions with

non-zero gradient, namely u and φ. This is the square root of ζ that we

mentioned above. To see this, simply note that if a square root h of ζ exists,

then λ = Q0x
2 − ζ = Q2

0x − h2 = (Q0x− h) (Q0x+ h)). The functions Q0x ± h

have non-zero gradient and are, essentially, the functions u and φ appearing the

Rácz-Wald-Walker coordinate system. �

Remark 2. The assumption of every arc-connected component of ∂top{λ > 0}
with I1 = 0 being topologically closed is needed to ensure that these arc-connected

components are embedded and compact. From a spacetime perspective, this

hypothesis avoids the existence of non-embedded degenerate Killing prehorizons

which would imply that, on an embedded KID, the arc-connected components

of ∂top{λ > 0} which intersect these prehorizons could be non-embedded or

non-compact (see Figure 2.7 in Chapter 2). Although it has not been proven,

it may well be that non-embedded Killing prehorizons cannot exist. A proof

of this fact would allow us to drop automatically this hypothesis in the theorem. �

We are now in a situation where we can prove that ∂top{λ > 0}ext = ∂topT+

under suitable conditions on the trapped region and on the topology of Σ̃. This

result is the crucial ingredient for our uniqueness result later. The strategy of the

proof is, once again, to assume that ∂top{λ > 0}ext 6= ∂topT+ and to construct a

bounding weakly outer trapped surface outside ∂topT+. This time, the surface we

use to perform the smoothing is more complicated than ∂top{λ > 0}ext, which we

used in the previous chapter. The newly constructed surface will have vanishing

outer null expansion and will be closed and oriented. However, we cannot guar-

antee a priori that it is bounding. To address this issue we impose a topological

condition on int(Σ̃) which forces that all closed and orientable surfaces separate

the manifold into disconnected subsets. This topological condition involves the

first homology group H1(int(Σ̃),Z2) with coefficients in Z2 and imposes that this

homology group is trivial. More precisely, the theorem that we will invoke is due
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to Feighn [54] and reads as follows

Theorem 5.3.2 (Feighn, 1985) Let N and M be manifolds without boundary

of dimension n and n + 1 respectively. Let f : N → M be a proper immer-

sion (an immersion is proper if inverse images of compact sets are compact). If

H1(M,Z2) = 0 then M\ f(N ) is not connected. Moreover, if two points p1 and

p2 can be joined by an embedded curve transverse to f(N ), then p1 and p2 belong

to different connected components of M\ f(N ).

The proof of this theorem requires that all embedded closed curves in M
are the boundary of an embedded compact surface. This is a consequence of

H1(M,Z2) = 0 and this is the only place where this topological condition enters

into the proof. This allows us to understand better what topological restriction

we are really imposing on M, namely that every closed embedded curve is the

boundary of a compact surface.

Without entering into details of algebraic topology, we just notice that

H1(M,Z2) vanishes if H1(M,Z) = 0 (see e.g. Theorem 4.6 in [112]) and, in turn,

this is automatically satisfied in simply connected manifolds (see e.g. Theorem

4.29 in [99]).

Theorem 5.3.3 Consider an embedded static KID (Σ̃, g,K;N, ~Y , τ) compact,

with boundary ∂Σ̃ and satisfying the NEC. Suppose that the boundary can be

split into two non-empty disjoint components ∂Σ̃ = ∂−Σ̃∪ ∂+Σ̃ (neither of which

are necessarily connected). Take ∂+Σ̃ as a barrier with interior Σ̃ and assume

θ+[∂−Σ̃] ≤ 0 and θ+[∂+Σ̃] > 0 Let T+, T− be, respectively, the weakly outer

trapped and the past weakly outer trapped regions of Σ̃. Assume also the following

hypotheses:

1. Every arc-connected component of ∂top{λ > 0}ext with I1 = 0 is topologically

closed.

2. λ|∂+Σ̃ > 0.

3. H1

(

int(Σ̃),Z2

)

= 0.

4. T− is non-empty and T− ⊂ T+.

Denote by {λ > 0}ext the connected component of {λ > 0} which contains ∂+Σ̃.

Then

∂top{λ > 0}ext = ∂topT+,

Therefore, ∂top{λ > 0}ext is a non-empty stable MOTS which is bounding with

respect to ∂+Σ̃ and, moreover, it is the outermost bounding MOTS.



5. Uniqueness of static spacetimes with trapped surfaces 129

Proof. After replacing ~ξ → −~ξ if necessary, we can assume without loss

of generality that N > 0 on {λ > 0}ext. From Theorem 2.2.30, we know that

the boundary of the weakly outer trapped region T+ in Σ̃ (which is non-empty

because θ+[∂−Σ̃] ≤ 0) is a stable MOTS which is bounding with respect to ∂+Σ̃.

∂topT− is also non-empty by assumption.

Since we are dealing with embedded KID, and all spacetimes are boundary-

less in this thesis, it follows that (Σ, g,K;N, ~Y , τ) can be extended as a smooth

hypersurface in (M, g(4))1. Working on this extended KID allows us to assume

without loss of generality that ∂topT+ and ∂topT− lie in the interior of Σ̃. This

will be used when invoking the Kriele and Hayward smoothing procedure below.

First of all, Theorem 3.4.10 implies that ∂top{λ > 0}ext cannot lie completely

in T+ and intersect the topological interior
◦
T+ (here is where we use the NEC).

Therefore, either ∂top{λ > 0}ext intersects the exterior of ∂topT+ or they both

coincide. We only need to exclude the first possibility. Suppose, that ∂top{λ >

0}ext penetrates into the exterior of ∂topT+. Let {U} be the collection of arc-

connected components of ∂top{λ > 0} which have a non-empty intersection with

∂top{λ > 0}ext. In Proposition 5.3.1 we have shown that {U} decomposes into

a union of smooth surfaces Sa. Define its unit normal ~m′ as the smooth normal

which points into {λ > 0}ext at points on ∂top{λ > 0}ext. This normal exists

because all Sa are orientable. By (5.3.4) and the fact that N > 0 on {λ > 0}ext,
we have that on the surfaces Sa with I1 6= 0, the normal ~m′ coincides with the

normal ~m defined in the proof of Proposition 5.3.1. On the surfaces Sa with I1 = 0,

this normal coincides with ~m provided ~Y points into {λ > 0}ext, see (5.3.2). Since,

by assumption, ∂top{λ > 0}ext penetrates into the exterior of T+, it follows that

there is at least one Sa with penetrates into the exterior of T+. Let {Sa′} be the

subcollection of {Sa} consisting on the surfaces which penetrate into the exterior

of ∂topT+. A priori, none of the surfaces Sa′ need to satisfy p+ q = 0 with respect

to the normal ~m′. However, one of the following two possibilities must occur:

1. There exists at least one surface, say S0, in {Sa′} containing a point q ∈
∂top{λ > 0}ext such that ~Y |q points inside {λ > 0}ext, or

2. All surfaces in {Sa′} have the property that, for any q ∈ Sa′ ∩∂top{λ > 0}ext
we have ~Y |q is either zero, or it points outside {λ > 0}ext.

1Simply consider ∂Σ̃ as a surface in (M, g(4)) and let ~m the be the spacetime normal to

∂Σ̃ which is tangent to Σ̃. Take a smooth hypersurface containing ∂Σ̃ and tangent to ~m. This

hypersurface extends (Σ, g,K;N, ~Y , τ). It is clear that the extension can be selected as smooth

as desired.
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In case 1, we have that S0 satisfies p + q = 0 with respect to the normal ~m′.

Indeed, we either have that S0 satisfies I1 = 0 or I1 6= 0. If I1 = 0 then, since ~Y

points into {λ > 0}ext, we have that ~m and ~m′ coincide. Since S0 satisfies p + q

with respect to ~m (see (5.3.3)) the statement follows. If I1 6= 0 then κ > 0 on S0

(from (5.3.6) and the fact that ~m = ~m′). Thus, p+ q = 0 follows from (5.3.7).

In case 2, all surfaces {Sa′} satisfy θ− = −p + q = 0 with respect to ~m′ and

we cannot find a MOTS outside ∂topT+. However, under assumption 3, we have

T− ⊂ T+ and hence each Sa′ penetrates into the exterior of T−. We can therefore

reduce case 2 to case 1 by changing the time orientation (or simply replacing θ+

and T+ by θ− and T− in the argument below).

Let us therefore restrict ourselves to case 1. We know that S0 either has no

boundary, or the boundary is contained in ∂−Σ̃. If S0 has no boundary, simply

rename this surface to S1. When S0 has a non-empty boundary, it is clear that

S0 must intersect ∂topT+. We can then use the smoothing procedure by Kriele

and Hayward (see Lemma 3.5.1) to construct a closed surface S1 penetrating

into the exterior of ∂topT+ and satisfying θ+ ≤ 0 with respect to a normal ~m′′

which coincides with ~m′ outside the region where the smoothing is performed

(see Figure 5.3). As discussed in the previous chapter, when S0 and ∂topT+ do

not intersect transversally we need to apply the Sard Lemma to surfaces inside

∂topT+. If ∂topT+ is only marginally stable, a suitable modification of the initial

data set inside ∂topT+ is needed. The argument was discussed in depth at the end

of the proof of Theorem 4.4.1 and applies here without modification.

S1

S0

λ > 0

∂+Σ̃

∂−Σ̃

∂topT+

Figure 5.3: The figure illustrates the situation when S0 has boundary. The grey

region represents the region with λ > 0 in Σ̃. In this case we use the smoothing

procedure of Kriele and Hayward to construct a smooth surface S1 from S0 and

∂topT+ (in blue). The red lines represent precisely the part of S1 which comes

from smoothing S0 and ∂topT+.
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So, in either case (i.e. irrespectively of whether S0 has boundary of not),

we have a closed surface S1 penetrating into the exterior of ∂topT+ and satis-

fying θ+ ≤ 0 with respect to ~m′′. Here we apply the topological hypothesis 3

(H1(Σ̃,Z2) = 0). Indeed S1 is a closed manifold embedded into int(Σ̃). Since S1

is compact, its embedding is obviously proper. Thus, the theorem by Feighn [54]

(Theorem 5.3.2) implies that int(Σ̃) \ S1 has at least two connected components.

It is clear that one of the connected components Ω of int(Σ̃) \ S1 contains ∂+Σ̃.

Moreover, by Feighn’s theorem there is a tubular neighbourhood of S1 which

intersects this connected component only to one side of S1. Consequently, Ω

is a compact manifold with boundary ∂Ω = S1 ∩ ∂+Σ. If follows that S1 is

bounding with respect to ∂+Σ̃. The choice of ~m′′ is such that ~m′′ points towards

∂+Σ̃. Consequently S1 is a weakly outer trapped surface which is bounding

with respect to ∂+Σ̃ penetrating into the exterior of ∂topT+, which is impossible. �

Remark 1. If the hypothesis T− ⊂ T+ is not assumed, then the possibility 2

in the proof of the Theorem would not lead to a contradiction (at least with our

method of proof). To understand this better, without the assumption T− ⊂ T+

it may happen a priori that all the surfaces Sa′ (which have θ− = 0 and penetrate

in the exterior of ∂topT+) are fully contained in T−. A situation like this is

illustrated in Figure 5.4, where ∂topT− intersects ∂topT+. It would be interesting

to either prove this theorem without the assumption T− ⊂ T+ or else find a

counterexample of the statement ∂top{λ > 0}ext = ∂topT+ when assumption 4 is

dropped. The problem, however, appears to be difficult. �

5.4 The uniqueness result

Finally, we are ready to state and prove the uniqueness result for static spacetimes

containing trapped surfaces.

Theorem 5.4.1 Let (Σ, g,K;N, ~Y , τ) be an embedded static KID with a selected

asymptotically flat end Σ∞
0 and satisfying the NEC. Assume that Σ possesses a

weakly outer trapped surface S which is bounding. Assume the following:

1. Every arc-connected component of ∂top{λ > 0}ext with I1 = 0 is topologically

closed.

2. T− is non-empty and T− ⊂ T+.
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∂topT+

∂topT−
θ+ = 0 θ− = 0

∂+Σ

Σ

Figure 5.4: The figure illustrates a hypothetical situation where T+ ⊂ T− does

not hold and the conclusions of the Theorem 5.3.3 would not be true. The red

continuous line represents the set ∂top{λ > 0}ext which is composed by a smooth

surface with θ+ = 0, lying inside of ∂topT+ (in blue) and partly outside of ∂topT−

(in green), and a smooth surface with θ− = 0, which lies partly outside of ∂topT+

and inside of ∂topT−.

3. H1 (Σ,Z2) = 0.

4. The matter model is such that Bunting and Masood-ul-Alam doubling

method for time-symmetric initial data sets gives uniqueness of black holes.

Then (Σ \ T+, g,K) is a slice of such a unique spacetime.

Proof. Take a coordinate sphere Sb ≡ {r = r0} in the asymptotically flat end

Σ∞
0 with r0 large enough so that λ > 0 on {r ≥ r0} ⊂ Σ∞

0 and all the surfaces

{r = r1} with r1 ≥ r0 are outer untrapped with respect to the unit normal

pointing towards increasing r. Sb is a barrier with interior Ωb = Σ \ {r > r0}.
Take Σ̃ to be the topological closure of the exterior of S in Ωb. Then

define ∂−Σ̃ = S and ∂+Σ̃ = Sb. Let {λ > 0}ext be the connected component

of {λ > 0} ⊂ Σ̃ containing Sb. All the hypothesis of Theorem 5.3.3 are

satisfied and we can conclude ∂top{λ > 0}ext = ∂topT+. This implies that

the manifold Σ \ T+ is an asymptotically flat spacelike hypersurface with

topological boundary ∂top(Σ \ T+) which is compact and embedded (moreover,

it is smooth) such that the static Killing vector is timelike on Σ \ T+ and null

on ∂top(Σ \ T+). Under these assumptions, the doubling method of Bunting

and Masood-ul-Alam [22] can be applied. Hence, hypothesis 4 gives uniqueness. �

Remark 1. In contrast to Theorems 4.4.1 and 5.1.1, this result has been

formulated for weakly outer trapped surfaces instead of outer trapped surfaces.

As mentioned in the proof of Theorem 5.3.3 this is because, (Σ, g,K;N, ~Y , τ)
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being an embedded static KID, it can be extended smoothly as a hypersurface

in the spacetime. It is clear however, that we are hiding the possible difficulties

in the definition of embedded static KID. Consider, for instance, a static KID

with boundary and assume that the KID is vacuum. The Cauchy problem is of

course well-posed for vacuum initial data. However, since Σ has boundary, the

spacetime constructed by the Cauchy development also has boundary and we

cannot a priori guarantee that the static KID is an embedded static KID (this

would require extending the spacetime, which is as difficult – or more – than

extending the initial data).

Consequently, Theorem 5.4.1 includes Miao’s theorem in vacuum as a

particular case only for vacuum static KID for which either (i) S is not the

outermost MOTS, (ii) S ∩ ∂Σ = ∅ or (iii) the KID can be extended as a vacuum

static KID. Despite this subtlety, we emphasize that all the other conditions of

the theorem are fulfilled for asymptotically flat, time-symmetric vacuum KID

with a compact minimal boundary. Indeed, condition 4 is obviously satisfied for

vacuum. Moreover, the property of time-symmetry implies that all points with

λ = 0 are fixed points and hence no arc-connected component of ∂top{λ > 0}
with I1 = 0 exists. Thus, condition 1 is automatically satisfied. Time-symmetry

also implies T− = T+ and condition 2 is trivial. Finally, the region outside the

outermost minimal surface in a Riemannian manifold with non-negative Ricci

scalar is R
3 minus a finite number of closed balls (see e.g. [68]). This manifold is

simply connected and hence satisfies condition 3. �

Remark 2. Condition 4 in the theorem could be replaced by a statement of

the form

4’. The matter model is such that static black hole initial data implies unique-

ness, where a black hole static initial data is an asymptotically flat static

KID possibly with boundary with an asymptotically flat end Σ∞
0 such that

∂top{λ > 0}ext (defined as the connected component of {λ > 0} containing

the asymptotic region in Σ∞
0 ) is a topological manifold without boundary

and compact.

The Bunting and Masood-ul-Alam method is, at present, the most powerful

method to prove uniqueness under the circumstances of 4’. However, if a new

method is invented, Theorem 5.4.1 would still give uniqueness. �
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Remark 3. A comment on the condition T− ⊂ T+ is in order. First of all,

in the static regime, T+ and T− are expected to be the intersections of both

the black and the white hole with Σ̃. Therefore, the hypothesis T− ⊂ T+ could

be understood as the requirement that the first intersection, as coming from

∂+Σ̃, of Σ̃ with an event horizon occurs with the black hole event horizon.

Therefore, this hypothesis is similar to the hypotheses on ∂top{λ > 0}ext made in

Theorem 4.3.14. However, there is a fundamental difference between them: The

hypothesis T− ⊂ T+ is an hypothesis on the weakly outer trapped regions which,

a priori, have nothing to do with the location and properties of ∂top{λ > 0}ext.
In a physical sense, the existence of past weakly outer trapped surfaces in

the spacetime reveals the presence of a white hole region. Moreover, given a

(3+1) decomposition of a spacetime satisfying the NEC, the Raychaudhuri

equation implies that T− shrinks to the future while T+ grows to the future

(see [1]) (“grow” and “shrink” is with respect to any timelike congruence in the

spacetime). It is plausible that by letting the initial data evolve sufficiently long,

only the black hole event horizon is intersected by Σ. The uniqueness theorem

5.4.1 could be applied to this evolved initial data. Although this requires much

less global assumptions than for the theorem that ensures that no MOTS can

penetrate into the domain of outer communications, it still requires some control

on the evolution of the initial data. In any case, we believe that the condition

T− ⊂ T+ is probably not necessary for the validity of the theorem. It is an

interesting open problem to analyze this issue further. �

We conclude with a trivial corollary of Theorem 5.4.1, which is nevertheless

interesting.

Corollary 5.4.2 Let (Σ, g,K = 0;N, ~Y = 0; ρ, ~J = 0, τij; ~E) be a time-symme-

tric electrovacuum embedded static KID, i.e a static KID with an electric field ~E

satisfying

∇Σ
i E

i = 0, ρ = | ~E|2g, τij = | ~E|2gij − 2EiEj.

Let Σ = K∪Σ∞
0 where K is a compact and Σ∞

0 is an asymptotically flat end and

assume that ∂Σ 6= 0 with mean curvature with respect to the normal which points

inside Σ satisfying p ≤ 0. Then (Σ, g,K = 0;N, ~Y = 0, ρ, ~J = 0, τij, ~E) can be

isometrically embedded in the Reissner-Nordström spacetime with M > |Q|, where

M is the ADM mass of (Σ, g) and Q is the total electric charge of ~E, defined as

Q = 1
4π

∫

Sr0
EimiηSr0 where Sr0 ⊂ Σ∞

0 is the coordinate sphere {r = r0} and ~m it

unit normal pointing towards infinity.
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Remark. The standard Majumdar-Papapetrou spacetime cannot occur be-

cause it possesses degenerate Killing horizons which are excluded in the hypothe-

ses of the corollary (recall that, by Proposition 2.4.11, degenerate Killing horizons

implies cylindrical ends in time-symmetric slices). �





Chapter 6

A counterexample of a recent

proposal on the Penrose

inequality

6.1 Introduction

In this chapter we will give a counter-example of the Penrose inequality proposed

by Bray and Khuri in [19].

As discussed in Chapter 2, in a consistent attempt [19] to prove the stan-

dard Penrose inequality (equation (2.3.6)) in the general case (i.e. non-time-

symmetric), Bray and Khuri were led to conjecture a new version of the Penrose

inequality in terms of the outermost generalized apparent horizon (see Definition

2.2.17) as follows.

MADM ≥
√

|Sout|
16π

, (6.1.1)

where MADM is the ADM mass of a spacelike hypersurface Σ, which contains an

asymptotically flat end Σ∞
0 , and |Sout| denotes the area of the outermost bounding

generalized apparent horizon Sout in Σ. As we already remarked in Section 2.3,

this inequality has several convenient properties such as the invariancy under time

reversals, no need of taking the minimal area enclosure of Sout, and the facts that

it is stronger than (2.3.6) and covers a larger number of slices of Kruskal with

equality than (2.3.6). Furthermore, it also has good analytical properties which

potentially can lead to its proof in the general case. Indeed, Bray and Khuri

proved that if a certain system of PDE admits solutions with the right boundary

behavior, then (6.1.1) follows.

Nevertheless, as we also pointed out in Section 2.3, inequality (6.1.1) is not

directly supported by cosmic censorship. In fact, it is not difficult to obtain par-

ticular situations where Sout lies, at least partially, outside the event horizon, as
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for example for a slice Σ in the Kruskal spacetime for which ∂topT+ and ∂topT−

intersect transversally. In this case, Eichmair’s theorem (Theorem 2.2.31) implies

that there exists a C2,α outermost generalized apparent horizon lying, at least

partially, in the domain of outer communications of the Kruskal spacetime.

Thus, it becomes natural to study the outermost generalized apparent horizon

in slices of this type in order to check whether (6.1.1) holds or not. Surprisingly,

the result we will find is that there are examples for which inequality (6.1.1) turns

out to be violated. More precisely,

Theorem 6.1.1 In the Kruskal spacetime with mass MKr > 0, there exist asymp-

totically flat, spacelike hypersurfaces with an outermost generalized apparent hori-

zon Sout satisfying |Sout| > 16πM2
Kr.

For the systems of PDE proposed in [19], this means that a general existence

theory cannot be expected with boundary conditions compatible with generalized

apparent horizons. However, simpler boundary conditions (e.g. compatible with

future and past apparent horizons) are not ruled out. This may in fact simplify

the analysis of these equations.

The results on this chapter have been published in [27], [28].

6.2 Construction of the counterexample

Let us consider the Kruskal spacetime of mass MKr > 0 with metric

ds2 =
32M3

Kr

r
e−r/2MKrdûdv̂ + r2

(
dθ2 + sin2 θdφ2

)
,

where r(ûv̂) solves the implicit equation

ûv̂ =
r − 2MKr

2MKr

er/2MKr . (6.2.1)

In this metric ∂v̂ is future directed and ∂û is past directed. The region {û > 0, v̂ >

0} defines the domain of outer communications and {û = 0}, {v̂ = 0} define,

respectively, the black hole and white hole event horizons. Consider the one-

parameter family of axially-symmetric embedded hypersurfaces Σǫ = R×S
2, with

intrinsic coordinates ŷ ∈ R, x ∈ [−1, 1], φ ∈ [0, 2π], defined by the embedding

Σǫ ≡ {û = ŷ − ǫx, v̂ = ŷ + ǫx, cos θ = x, φ = φ} .

Inserting this embedding functions into equation (6.2.1) we get

ŷ2 − ǫ2x2 =
r − 2MKr

2MKr

er/2MKr , (6.2.2)
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from which it is immediate to show that, for |ǫ| < 1, Σǫ does not touch the

Kruskal singularity (r = 0) for any value of {ŷ, x} in their coordinate range.

It is also immediate to check that the hypersurfaces Σǫ are smooth everywhere,

included the north and south poles defined by |x| = 1. It is straightforward to

prove that the induced metric gǫ on Σǫ is positive definite and satisfies (for ǫ is

small enough) gǫ = dr2 + r2
(

dx2

1−x2 + (1 − x2)dφ2
)

+O(2)(1
r
), where r is defined in

(6.2.2). Consequently, the hypersurfaces Σǫ are spacelike and asymptotically flat.

Let us select Σǫ
∞
0 to be the asymptotically flat end of the region {û > 0, v̂ > 0}.

The discrete isometry of the Kruskal spacetime defined by {û, v̂} → {v̂, û}
implies that under reflection with respect to the equatorial plane, i.e. (ŷ, x, φ) →
(ŷ,−x, φ), the induced metric of Σǫ remains invariant, while the second funda-

mental form of Σǫ changes sign. The latter is due to the fact that Σǫ is defined by

û− v̂ + 2ǫx = 0 and hence the future directed unit normal to Σǫ is proportional

(with metric coefficients which only depend on uv and x2) to dû−dv̂+2ǫdx and,

therefore, it changes sign under a reflection (ŷ, x, φ) → (ŷ,−x, φ) and a simulta-

neous spacetime isometry {û, v̂} → {v̂, û} (notice that this isometry reverses the

time orientation). Let us denote by Σ+
ǫ the intersection of Σǫ with the domain

of outer communications {û > 0, v̂ > 0}, which is given by {ŷ − |ǫx| > 0}. For

ǫ 6= 0, ∂topΣ+
ǫ is composed by a portion of the black hole event horizon and a por-

tion of the white hole event horizon. Moreover, ∂topT+ is given by {ŷ − ǫx = 0},
while ∂topT− is {ŷ + ǫx = 0} so that these surfaces intersect transversally on the

circumference {ŷ = 0, x = 0} provided ǫ 6= 0. By Eichmair’s theorem (Theorem

2.2.31), there exists a C2,α outermost generalized apparent horizon Sout which

is bounding and contains both ∂topT+ and ∂topT−. Uniqueness implies that this

surface must be axially symmetric and have equatorial symmetry. In what follows

we will estimate the area of Sout from below . To that aim we will proceed in two

steps. Firstly, we will prove that an axial and equatorially symmetric general-

ized apparent horizon Ŝǫ of spherical topology and lying in a sufficiently small

neighbourhood of {ŷ = 0} exists (provided ǫ is small enough) and determine its

embedding function. In the second step we will compute its area and prove that

it is smaller or equal than the area of the outermost generalized apparent horizon

Sout.

6.2.1 Existence and embedding function

This subsection is devoted to prove the existence of Ŝǫ and to calculate its em-

bedding function up to first order in ǫ. For that, we will consider surfaces Sǫ of
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spherical topology defined by embedding functions {ŷ = y(x, ǫ), x = x, φ = φ}
in Σǫ and satisfying y(−x, ǫ) = y(x, ǫ). Since the outermost generalized apparent

horizon is known to be C2,α it is natural to consider the spaces of functions

Um,α ≡
{
y ∈ Cm,α(S2) : ∂φy = 0, y(−x) = y(x)

}
,

i.e. the spaces of m-times differentiable functions on the unit sphere, with Hölder

continuousm-th derivatives with exponent α ∈ (0, 1] and invariant under the axial

Killing vector on S
2 and under reflection about the equatorial plane. Each space

Um,α is a closed subset of the Banach space Cm,α(S2) and hence a Banach space

itself. Let I ⊂ R be the closed interval where ǫ takes values. The expression that

defines a generalized apparent horizon is p−|q| = 0, where p is the mean curvature

of the corresponding surface Sǫ in Σǫ with respect to the direction pointing into

Σǫ
∞
0 and q is the trace on Sǫ of the pull-back of the second fundamental form K

of Σǫ. For each function y ∈ U2,α the expression p− |q| defines a non-linear map

f : U2,α × I → U0,α. Thus, we are looking for solutions y ∈ U2,α of the equation

f = 0.

We know that when ǫ = 0, the hypersurface Σǫ is totally geodesic, which

implies q = 0 for any surface on it. Consequently, all generalized apparent horizons

on Σǫ=0 satisfy p = 0 and are, in fact, minimal surfaces. The only closed minimal

surface in Σǫ=0 is the bifurcation surface S0 = {û = 0, v̂ = 0}. Thus, the equation

f(y, ǫ) = 0 has y = 0 as the unique solution when ǫ = 0. It becomes natural to

use the implicit function theorem for Banach spaces to show that there exists a

unique solution y ∈ U2,α of f = 0 in a neighbourhood of y = 0 for ǫ small enough.

To apply the implicit function theorem it will be necessary to know the explicit

form of the linearization of the differential equation f(y, ǫ) = 0. The following

lemma gives precisely the explicit form of f up to first order in ǫ.

Lemma 6.2.1 Let Σǫ be the one-parameter family of axially-symmetric hyper-

surfaces embedded in the Kruskal spacetime with mass MKr > 0, with intrinsic

coordinates ŷ ∈ R, x ∈ [−1, 1], φ ∈ [0, 2π], defined by

Σǫ ≡
{
û = ŷ − ǫx, v̂ = ŷ + ǫx, cos θ = x, φ = φ

}
.

Consider the surfaces Sǫ ⊂ Σǫ defined by {ŷ = y(x), x, φ} where the embedding

function has the form y = ǫY , with Y ∈ Um,α(S2). Then, p and q satisfy

p(y = ǫY, ǫ) =
1

MKr

√
e
L[Y (x)]ǫ+O(ǫ2), (6.2.3)

q(y = ǫY, ǫ) = − 1

MKr

√
e

3xǫ+O(ǫ2), (6.2.4)
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where L[z(x)] ≡ −(1−x2)z̈(x)+2xż(x)+z(x) and where the dot denotes derivative

with respect to x.

Proof. The proof is by direct computation. Let us define H =
32M3

Kr

r
e−r/2MKr ,

Q = r2 and x = cos θ, so that the Kruskal metric takes the form

g(4) = Hdûdv̂ +
Q

1 − x2
dx2 + (1 − x2)Qdφ2.

The induced metric gǫ on Σǫ is

gǫ = Ĥdŷ2 +

(

Q̂

1 − x2
− ǫ2Ĥ

)

dx2 + (1 − x2)Q̂dφ2, (6.2.5)

where Ĥ, Q̂ are obtained from H, Q by expressing r in terms of (ŷ, x) according

to (6.2.2). The induced metric γǫ on Sǫ satisfies

γǫ =

[

Q̃

1 − x2
+ ǫ2

(

Ẏ 2(x) − 1
)

H̃

]

dx2 + (1 − x2)Q̃dφ2, (6.2.6)

where H̃, Q̃ are obtained from Ĥ and Q̂ by inserting ŷ = ǫY (x). Firstly, let us deal

with the computation of p = −miγ
AB
ǫ ∇Σǫ

~eA
eiB, where m is the unit vector tangent

to Σǫ normal to Sǫ which points to the asymptotically flat end in {û > 0, v̂ > 0}
and {~eA} is a basis for TSǫ. In our coordinates

~ex = ∂x + ǫẎ (x)∂ŷ,

~eφ = ∂φ.

The unit normal is therefore

m =

√
√
√
√

H̃
(

Q̃− ǫ2(1 − x2)H̃
)

Q̃+ ǫ2(1 − x2)(Ẏ 2 − 1)H̃

(

dŷ − ǫẎ (x)dx
)

. (6.2.7)

Since γǫ is diagonal, we only need to calculate ∇Σǫ
~ex
eŷx, ∇Σǫ

~eφ
eŷφ, ∇Σǫ

~ex
exx and ∇Σǫ

~eφ
exφ

up to first order. The results are the following.

∇Σǫ
~ex
eŷx = − ∂ŷQ̂

2(1 − x2)H̃
+ ǫ
(

Ÿ + Ẏ ∂x ln Ĥ
)

+O(ǫ2), (6.2.8)

∇Σǫ
~ex
exx =

2x+ (1 − x2)∂x ln Q̂

2(1 − x2)
+ ǫẎ ∂ŷ ln Q̂+O(ǫ2), (6.2.9)

∇Σǫ
~eφ
eŷφ = −(1 − x2)∂ŷQ̂

2H̃
, (6.2.10)

∇Σǫ
~eφ
exφ =

(1 − x2)
(

2x− (1 − x2)∂x ln Q̂
)

2
+O(ǫ2), (6.2.11)
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where ∂ŷQ̂ means taking derivative with respect to ŷ of Q̂ and afterwards, sub-

stituting ŷ = ǫY (x) (and similarly for the other derivatives).

In order to compute the derivatives of Ĥ and Q̂, we need to calculate the

derivatives ∂ŷr(ŷ, x) and ∂xr(ŷ, x). This can be done by taking derivatives of

(6.2.2) with respect to x and ŷ, which gives,

∂ŷr = ǫ
8M2

Kr

r
e−r/2MKrY,

∂xr = −ǫ2 8M2
Kr

r
e−r/2MKrx.

At ǫ = 0 we have y = 0 and equation (6.2.2) gives r
∣
∣
Sǫ=0

= 2MKr. Then r
∣
∣
Sǫ

=

2MKr + O(ǫ) This allows us to compute the derivatives of Ĥ and Q̂ up to first

order in ǫ. The result is

∂xĤ = O(ǫ2),

∂ŷQ̂ = ǫ
16M2

Kr

e
Y +O(ǫ2),

∂xQ̂ = O(ǫ2).

Inserting these equations into (6.2.6), (6.2.7), (6.2.8), (6.2.9), (6.2.10) and

(6.2.11), and putting all these results together, we finally obtain that p =

−miγ
AB
ǫ ∇Σǫ

~eA
eiB satisfies (6.2.3).

Next, we will study q = γABǫ eiAe
j
BKij, where K is the second fundamental

form of Σǫ with respect to the future directed unit normal. Since, γǫ is diagonal,

we just have to compute eixe
j
xKij = ẏ2Kyy + 2ẏKxy +Kxx and eiφe

j
φKij = Kφφ up

to first order. To that aim, it is convenient to take coordinates {T = 1
2
(v̂− û), ŷ =

1
2
(v̂ + û), x, φ} in the Kruskal spacetime for which the metric g(4) is diagonal. In

these coordinates Σǫ is defined by {T = ǫx, ŷ, x, φ} and the future directed unit

normal to Σǫ reads

n =

√

ĤQ̂

Q̂− ǫ2(1 − x2)Ĥ
(−dT + ǫdx) .

The computation of the second fundamental form is straightforward and gives

ẏ2Kyy = O(ǫ2), (6.2.12)

2ẏKxy = O(ǫ2), (6.2.13)

Kxx =
√

H̃

[
∂TQ

′

2(1 − x2)H̃
− ǫ

x

1 − x2

]

+O(ǫ2) (6.2.14)

Kφφ =
√

H̃

[
(1 − x2)∂TQ

′

2H̃
− ǫ(1 − x2)x

]

+O(ǫ2), (6.2.15)
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where we have denoted by Q′ the function obtained from Q by expressing r in

terms of (T, ŷ) according to ûv̂ = ŷ2 − T 2 = r−2MKr

2MKr
er/2MKr . This expression

also allows us to compute ∂TQ
′ which, on Σǫ (where T = ǫx) and using r =

2MKr +O(ǫ), takes the form

∂TQ
′ = −ǫ16M2

Kr

e
x+O(ǫ2).

Inserting this into (6.2.14) and (6.2.15), and using (6.2.6), it is a matter of simple

computation to show that q = γABǫ eiAe
j
BKij satisfies (6.2.4). �

From this lemma we conclude that f(y = ǫY, ǫ) ≡ p(y = ǫY, ǫ)− |q(y = ǫY, ǫ)|
reads

f(y = ǫY, ǫ) =
1

MKr

√
e

(L[Y (x)] − 3|x|)ǫ+O(ǫ2). (6.2.16)

The implicit function theorem requires the operator f to have a continuous

Fréchet derivative and the partial derivative Dyf |(y=0,ǫ=0) to be an isomorphism

(see Appendix B). The problem is not trivial in our case because the appearance

of |x| makes the Fréchet derivative of f potentially discontinuous1. However, the

problem can be solved considering a suitable modification of f , as we discuss in

detail next.

Proposition 6.2.2 There exists a neighborhood Ĩ ⊂ I of ǫ = 0 such that

f(y, ǫ) = 0 admits a solution y(x, ǫ) ∈ U2,α(S2) for all ǫ ∈ Ĩ. Moreover, y(x, ǫ) is

C1 in ǫ and satisfies y(x, ǫ = 0) = 0.

Proof. Firstly, let us consider surfaces Sǫ in Σǫ defined by {ŷ = y(x, ǫ), x, φ}
such that the embedding function has the form y = ǫY , where Y ∈ U2,α. Since we

are considering surfaces with axial symmetry, neither p nor q depend on φ. Let ηµ

denote the spacetime coordinates, zi the coordinates on Σǫ, x
A the coordinates

on Sǫ, η
µ(zi) the embedding functions of Σ in M (which depend smoothly on zi),

and zi(xA) the embedding functions of S in Σ (which depend smoothly on xA).

Thus, by definition, we have

p(x, ǫ) = −γABmi

[
∂2zi

∂xA∂xB
+ ΓΣǫ i

jk(z(x))
∂zj

∂xA
∂zk

∂xB

]

,

where ΓΣǫ i
jk are the Christoffel symbols of Σǫ. In this expression all terms depend

smoothly on (ẏ(x), y(x), x, ǫ), except ∂2zi

∂xA∂xB
which also depends on ÿ(x). There-

fore, p can be viewed as a smooth function of (ÿ(x), ẏ(x), y(x), x, ǫ). Similarly, by

1We thank M. Khuri for pointing out this issue.
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definition,

q(x, ǫ) = −γABnµeiAejB
[
∂2ηµ

∂zi∂zj
+ Γµνβ(η(z))

∂ην

∂zi
∂ηβ

∂zj

]∣
∣
∣
∣
zi=zi(xA)

,

where all terms depend smoothly on (ẏ(x), y(x), x, ǫ) Therefore, setting y = ǫY

and since both p and q are O(ǫ) (see equations (6.2.3) and (6.2.4)), we can write

p = ǫP(Y (x), Ẏ (x), Ÿ (x), x, ǫ)

and

q = ǫQ(Y (x), Ẏ (x), x, ǫ),

where P : R
3 × [−1, 1] × I → R and Q : R

2 × [−1, 1] × I → R are

smooth functions. Moreover, the function Q has the symmetry Q (x1, x2, x3, x4) =

−Q (x1,−x2,−x3, x4), which reflects the fact that the extrinsic curvature of Σǫ

changes sign under a transformation x→ −x and the symmetry Y (−x) = Y (x).

Let us write P (Y, ǫ)(x) ≡ P(Y (x), Ẏ (x), Ÿ (x), x, ǫ) and similarly Q(Y, ǫ)(x) ≡
Q(Y (x), Ẏ (x), x, ǫ).

Now, instead of f , let us consider the functional F : U2,α × I → U0,α defined

by F (Y, ǫ) = P (Y, ǫ)− |Q(Y, ǫ)|. This functional has the property that, for ǫ > 0,

the solutions of F (Y, ǫ) = 0 correspond exactly to the solutions of f(y, ǫ) = 0

via the relation y = ǫY . Moreover, the functional F is well-defined for all ǫ ∈ I,

in particular at ǫ = 0. Therefore, by proving that F = 0 admits solutions in a

neighbourhood of ǫ = 0, we will conclude that f = 0 admits solutions for ǫ > 0

and the solutions will in fact belong to a neighbourhood of y = 0 since y = ǫY .

In order to show that F admits solutions we will use the implicit function

theorem. Equation (6.2.16) yields

F (Y, ǫ = 0)(x) = c (L[Y (x)] − 3|x|) (6.2.17)

where c is the constant 1/(MKr

√
e) and L[Y ] ≡ −(1 − x2)Ÿ + 2xẎ + Y . As

it is well-known the eigenvalue problem (1 − x2)z̈(x) − 2xż(x) + λz(x) = 0 has

non-trivial smooth solutions on [−1, 1] (the Legendre polynomials) if and only

if λ = l(l + 1), with l ∈ N ∪ {0}. Thus, the kernel of L[Y ] (for which λ = 1)

is Y = 0. We conclude that L is an isomorphism between U2,α and U0,α. Let

Y1 ∈ U2,α be the unique solution of the equation L[Y ] = 3|x|. For later use, we

note that Q(Y1, ǫ = 0) = −3cx (see equation (6.2.4)). This vanishes only at x = 0.

This is the key property that allows us to prove that F is C1(U2,α × I).
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The C1(U2,α×I) property of the functional P (Y, ǫ) is immediate from Theorem

B.3 in the Appendix B. More subtle is to show that |Q| is C1(U2,α×I) in a suitable

neighbourhood of (Y1, ǫ = 0). Let r0 > 0 and define

Vr0 = {(Y, ǫ) ∈ U2,α × I : ‖(Y − Y1, ǫ)‖U2,α×I ≤ r0}. (6.2.18)

First of all we need to show that |Q| is Fréchet-differentiable on Vr0 , i.e. that

for all (Y, ǫ) ∈ Vr0 there exists a bounded linear map DY,ǫ|Q| : U2,α × I → U0,α

such that, for all (Z, δ) ∈ U2,α× I, |Q(Y +Z, ǫ+ δ)| − |Q(Y, ǫ)| = DY,ǫ|Q|(Z, δ) +

RY,ǫ(Z, δ) where ‖RY,ǫ(Z, δ)‖U0,α = o(‖(Z, δ)‖U2,α×I). The key observation is that,

by choosing r0 small enough in Definition 6.2.18, we have

|Q(Y, ǫ)(x)| = −σ(x)Q(Y, ǫ)(x) ∀(Y, ǫ) ∈ Vr0 , (6.2.19)

where σ(x) is the sign function, (i.e. σ(x) = +1 for x ≥ 0 and σ(x) = −1 for

x < 0). To show this we need to distinguish two cases: when x lies in a sufficiently

small neighbourhood (−ε, ε) of 0 and when x lies outside this neighbourhood.

Consider first the latter case. As already mentioned, we have Q(Y1, ǫ = 0) = −3cx

which is negative for x > 0 and positive for x < 0. Taking r0 small enough, and

using that Q is a smooth function of its arguments it follows that the inequalities

Q(Y1, ǫ) < 0 for x ≥ ε and Q(Y1, ǫ) > 0 for x ≤ −ε still hold for any (Y, ǫ) ∈ Vr0 .
For the points x ∈ (−ε, ε), the function Q(Y, ǫ)(x) is odd in x, so it passes through

zero at x = 0. Hence, the relation (6.2.19) holds in (−ε, ε) provided we can prove

that Q(Y, ǫ) is strictly decreasing at x = 0. But this follows immediately from the

fact that dQ(Y1,ǫ=0)
dx

|x=0 = −3c and Q is a smooth function of its arguments.

From its definition, it follows that Q(Y, ǫ)(x) is C1,α (note that only first

derivatives of Y enter in Q) and that the functional Q(Y, ǫ) has Fréchet derivative

(see Theorem B.3 in Appendix B)

DY,ǫQ(Z, δ)(x) = AY,ǫ(x)Z(x) +BY,ǫ(x)Ż(x) + CY,ǫ(x)δ,

where AY,ǫ(x) ≡ ∂1Q|(Y (x),Ẏ (x),x,ǫ), BY,ǫ(x) ≡ ∂2Q|(Y (x),Ẏ (x),x,ǫ) and CY,ǫ(x) ≡
∂4Q|(Y (x),Ẏ (x),x,ǫ). We note that these three functions are C1,α and that AY,ǫ, CY,ǫ

are odd, while BY,ǫ is even (as a consequence of the symmetries of Q). Defining

the linear map

DY,ǫ|Q|(Z, δ) ≡ −σ(AY,ǫZ +BY,ǫŻ + CY,ǫδ),

it follows from (6.2.19) that

|Q(Y + Z, ǫ+ δ)| − |Q(Y, ǫ)| = DY,ǫ|Q|(Z, δ) +RY,ǫ(Z, δ),
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with ‖R(Z, δ)‖U0,α = o(‖(Z, δ)‖U2,α×I). In order to conclude that DY,ǫ|Q| is the

derivative of |Q(Y, ǫ)|, we only need to check that, it is (i) well-defined (i.e. that its

image belongs to U0,α) and (ii) that it is bounded, i.e. that ‖DY,ǫ|Q|(Z, δ)‖U0,α <

C‖(Z, δ)‖U2,α×I for some constant C.

To show (i), let us concentrate on the most difficult term which is −σBY,ǫŻ

(because BY,ǫ(x) is even and need not vanish at x = 0). Since Ż is an odd function,

−σBY,ǫŻ is continuous. To show it is also Hölder continuous, we only need to

consider points x1 = −a and x2 = b with 0 < a < b (if x1 ·x2 ≥ 0, the sign function

remains constant, so −σBY,ǫŻ is in fact C1,α). Calling w(x) ≡ −σ(x)BY,ǫ(x)Ż(x)

and using that w(x) is even, we find

|w(x2) − w(x1)| = |w(b) − w(−a)| = |w(b) − w(a)| =
∣
∣
∣
∣
∣
∣

d(BY,ǫŻ)

dx

∣
∣
∣
∣
∣
x=ζ

∣
∣
∣
∣
∣
∣

|b− a| =

∣
∣
∣
∣
∣
∣

d(BY,ǫŻ)

dx

∣
∣
∣
∣
∣
x=ζ

∣
∣
∣
∣
∣
∣

|b− a|1−α|b− a|α ≤
∣
∣
∣
∣
∣
∣

d(BY,ǫŻ)

dx

∣
∣
∣
∣
∣
x=ζ

∣
∣
∣
∣
∣
∣

|b− a|1−α|x2 − x1|α ≤

∣
∣
∣
∣
∣
∣

d(BY,ǫŻ)

dx

∣
∣
∣
∣
∣
x=ζ

∣
∣
∣
∣
∣
∣

|x2 − x1|α

≤ sup
x

∣
∣
∣
∣
∣

d(BY,ǫŻ)

dx

∣
∣
∣
∣
∣
|x2 − x1|α (6.2.20)

where the mean value theorem has been applied in the third equality and ζ ∈
(a, b). We also have used that |b − a|α ≤ |b + a|α = |x2 − x1|α and |b − a| < 1.

This proves that −σBY,ǫŻ is Hölder continuous with exponent α. The remaining

terms −σ(x)AY,ǫ(x)Z(x) and −σ(x)CY,ǫ(x)δ are obviously continuous because

they vanish at x = 0. To show Hölder continuity the same argument that for

−σ(x)BY,ǫ(x)Ż works.

To check (ii), we have to find and upper bound for the norm ‖w(x)‖U0,α .

‖w(x)‖U0,α = sup
x

|w(x)| + sup
x1 6=x2

|w(x2) − w(x1)|
|x2 − x1|α

≤ sup
x

|BY,ǫ(x)| sup
x

|Ż(x)| + sup
x

∣
∣
∣
∣
∣

d(BY,ǫŻ)

dx

∣
∣
∣
∣
∣

≤ sup
x

|BY,ǫ(x)| sup
x

|Ż(x)| + sup
x

|ḂY,ǫ(x)| sup
x

|Ż(x)| + sup
x

|BY,ǫ(x)| sup
x

|Z̈(x)|

≤ (2 sup
x

|BY,ǫ(x)| + sup
x

|ḂY,ǫ(x)|)‖(Z, δ)‖U2,α×I ,

where, in the first inequality, (6.2.20) has been used. Since BY,ǫ(x) is C1,α, then

(2 supx |BY,ǫ(x)|+supx |ḂY,ǫ(x)|) is bounded in the compact set [−1, 1] and, there-

fore, there exists a constant C such that ‖ − σBY,ǫŻ‖U0,α < C‖(Z, δ)‖U2,α×I . A
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similar argument applies to −σAY,ǫZ and −σCY,ǫδ and we conclude that DY,ǫ|Q|
is indeed a continuous operator.

In order to apply the implicit function theorem, it is furthermore necessary

that |Q| ∈ C1(U2,α × I) (i.e. that DY,ǫ|Q| depends continuously on (Y, ǫ)). This

means that given any convergent sequence (Yn, ǫn) ∈ Vr0 , the corresponding oper-

ators DYn,ǫn |Q| also converge. Denoting by (Y, ǫ) ∈ Vr0 the limit of the sequence,

we need to prove that

‖DYn,ǫn|Q| −DY,ǫ|Q|‖£(U2,α×I,U0,α) → 0,

where, for any linear operator L : U2,α × I → U0,α, the operator norm is

‖L ‖£(U2,α×I,U0,α) ≡ sup
(Z,δ) 6=(0,0)

‖L (Z, δ)‖U0,α

‖(Z, δ)‖U2,α×I
.

For that it suffices to find a constant K (which may depend on (Y, ǫ)), such that

‖(DYn,ǫn |Q| −DY,ǫ|Q|)(Z, δ)‖U0,α

≤ K‖(Z, δ)‖U2,α×I‖(Yn − Y, ǫn − ǫ)‖U2,α×I (6.2.21)

for all (Z, δ) ∈ U2,α × I. Indeed, if (6.2.21) holds then the right-hand side tends

to zero when (Yn, ǫn) → (Y, ǫ) Again, the most difficult case involves σ(BY,ǫ −
BYn,ǫn)Ż, so let us concentrate on this term (the same argument works for the

remaining terms in DYn,ǫn|Q| −DY,ǫ|Q|).
With the definition z ≡ σ(BY,ǫ −BYn,ǫn)Ż, we have

sup
x

|z(x)| ≤ sup
x

|BY,ǫ(x) −BYn,ǫn(x)| sup
x

|Ż(x)|.

To bound the C0-norm of z in terms of ‖(Z, δ)‖U2,α×I‖(Yn − Y, ǫn − ǫ)‖U2,α×I ,

we have to use the mean value theorem on the function B ≡ ∂2Q (recall that

BY,ǫ(x) = B|(Y (x),Ẏ (x),x,ǫ)). By the definition of Vr0 (see (6.2.18)) any element

(Y, ǫ) ∈ Vr0 satisfies that |Y −Y1|(x) ≤ r0 and |Ẏ − Ẏ1|(x) ≤ r0 ∀x ∈ [−1, 1]. This

implies that there is a compact set K ⊂ R
4 depending only on r0 and Y1 such that

(Y (x), Ẏ (x), x, ǫ) ∈ K, for all x ∈ [−1, 1] and (Y, ǫ) ∈ Vr0 . When applying the

mean value theorem to the derivatives ∂1B, ∂2B and ∂4B all mean value points

will therefore belong to K. Taking the supremum of these derivatives in K, we

get the following bound.

sup
x

|z(x)| ≤ sup
K

(|∂1B| + |∂2B| + |∂4B|) sup
x

|Ż|‖(Yn − Y, ǫn − ǫ)‖U2,α×I . (6.2.22)

Since B is smooth, (6.2.22) is already of the form (6.2.21).
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It only remains to bound the Hölder norm of z in a similar way. As before,

this is done by distinguishing two cases, namely when x1 · x2 ≥ 0 and when

x1 · x2 < 0. If x1 · x2 ≥ 0 then σ(x) is a constant function and therefore, to

obtaining an inequality of the form

sup
x1 6=x2

|z(x2) − z(x1)|
|x2 − x1|α

≤ K1‖(Z, δ)‖U2,α×I‖(Yn − Y, ǫn − ǫ)‖U2,α×I

is standard (and a consequence of Theorem B.3). When x1 · x2 < 0, we exploit

the parity of the functions as in (6.2.20) to get

|z(x2) − z(x1)| ≤

∣
∣
∣
∣
∣
∣

d((BYn,ǫn −BY,ǫ)Ż)

dx

∣
∣
∣
∣
∣
x=ζ

∣
∣
∣
∣
∣
∣

|x2 − x1|α,

where ζ ∈ (a, b) and we are assuming x1 = −a, x2 = b, 0 < a < b without loss

of generality. Since the sign function σ(x) has already disappeared, a bound for

the right hand side in terms of K2‖(Z, δ)‖U2,α×I‖(Yn− Y, ǫn − ǫ)‖U2,α×I |x2 − x1|α
is guaranteed by Theorem B.3. This, combined with (6.2.22) gives (6.2.21) and

hence continuity of the derivative of DY,ǫ|Q| with respect to (Y, ǫ) ∈ Vr0 .
The final requirement to apply the implicit function theorem to F = P − |Q|

is to check that DY F |(Y1,ǫ=0) is an isomorphism between U2,α and U0,α. This is

immediate from equation (6.2.17) that implies

DY F |(Y1,ǫ=0)(Z) = F (Y1 + Z, ǫ = 0) − F (Y1, ǫ = 0) = cL(Z),

and we have already shown that L is an isomorphism.

Thus, the implicit function theorem can be used to conclude that there exists

an open neighbourhood Ĩ ⊂ I of ǫ = 0 and a C1 map Ỹ : Ĩ → U2,α such

that Ỹ (ǫ = 0) = Y1 and y = ǫỸ (ǫ) defines a C2,α generalized apparent horizon

embedded in Σǫ.

�

We will denote by Ŝǫ the surface defined by this solution. The proposition

above implies that we can expand y(x, ǫ) = Y1(x)ǫ+o(ǫ). From (6.2.16) it follows

that Y1 satisfies the linear equation L[Y1(x)] = 3|x|. Decomposing Y1(x) into

Legendre polynomials Pl(x), as Y1(x) =
∑∞

l=0 alPl(x), where convergence is in

L2[−1, 1], this equation reads

L[Y1(x)] =
∞∑

l=0

alL[Pl(x)] = 3|x|.
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The Legendre equation, −(1−x2)P̈l(x)+2xṖl(x)− l(l+1)Pl(x) = 0, implies that

L[Pl(x)] = (l(l + 1) + 1)Pl(x). We can also decompose |x| in terms of Legendre

polynomials. This computation can be found in [17] and gives

|x| =
1

2
+

∞∑

l=1

b2lP2l(x),

where

b2l =
(4l + 1)(−1)l+1

22l

(2l − 2)!

(l − 1)!(l + 1)!
, l ≥ 1.

It follows that the unique solution to the equation L[Y1(x)] = 3|x| is

Y1(x) =
3

2
+

∞∑

l=1

a2lP2l(x), (6.2.23)

with

a2l =
3(4l + 1)(−1)l+1

[2l(2l + 1) + 1] 22l

(2l − 2)!

(l − 1)!(l + 1)!
, l ≥ 1. (6.2.24)

6.2.2 Area of the outermost generalized trapped horizon

In this subsection we will compute the area of Ŝǫ, to second order in ǫ, and

we will obtain that it is greater than 16πM2
Kr. Then, we will prove that any

generalized apparent horizon enclosing Ŝǫ has greater or equal area than Ŝǫ which

will complete the proof of Theorem 6.1.1.

Integrating the volume element of Ŝǫ, it is straightforward to get

|Ŝǫ| =

∫ 1

−1

∫ 2π

0

r2

√

1 + ǫ2
32M3

Kr

r3
e−r/2MKr(1 − x2)(Ẏ 2

1 − 1) +O(ǫ3)dφdx

=

∫ 1

−1

∫ 2π

0

[

r2 + ǫ2
16M3

Kr

r
e−r/2MKr(1 − x2)(Ẏ 2

1 − 1) +O(ǫ3)

]

dφdx,

where r still depends on ǫ. Let us expand r = r0 + r1ǫ + r2ǫ
2 + O(ǫ3). Using

equation (6.2.2) and expanding the exponential therein, it follows

r = 2MKr +
2MKr

e
(Y 2

1 − x2)ǫ2 +O(ǫ3). (6.2.25)

Then, after inserting (6.2.23), (6.2.24) and (6.2.25) into the integral and using

the orthogonality properties of the Legendre polynomials, we find

|Ŝǫ| = 16πM2
Kr +

8πM2
Krǫ

2

e

(

5 + 4
∞∑

l=1

2l(2l + 1) + 1

4l + 1
a2

2l

)

+O(ǫ3).
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Since the second term is strictly positive, it follows that |Ŝǫ| > 16πM2
Kr. This is

not yet a counterexample of (6.1.1) because Ŝǫ is not known to be the outermost

generalized apparent horizon. Before turning into this point, however, let us give

an alternative argument to show that the area increases. This will shed some light

into the underlying reason why the area of Ŝǫ is larger than 16πM2
Kr.

To that aim, let us now use coordinates {û, x, φ} in Σǫ. Then, the embedding

of Σǫ becomes Σǫ ≡ {û, v̂ = û+ 2ǫx, x, φ}, and the corresponding embedding in

Σǫ for the surfaces Ŝǫ is Ŝǫ = {û = u(x, ǫ), x, φ}. Again, u admits an expansion

u = U1(x)ǫ + o(ǫ). The relationship between U1 and Y1 is simply Y1 = U1 + x.

It follows that U1 satisfies L[U1(x)] = 3(|x| − x). Similarly, if we take {v̂, x, φ}
as coordinates for Σǫ, then the embedding of Ŝǫ reads v̂ = V1(x)ǫ+ o(ǫ), with V1

satisfying Y1 = V1 − x and therefore L[V1(x)] = 3(|x| + x). Thus, L[U1(x)] ≥ 0

and L[V1(x)] ≥ 0 and neither of them is identically zero. Since L is an elliptic

operator with positive zero order term, we can use the maximum principle to

conclude that U1(x) > 0 and V1(x) > 0 everywhere. Geometrically, this means

that Ŝǫ lies fully in Σ+
ǫ for ǫ small enough. In fact, the maximum principle applied

to L[Y1] = 3|x| also implies Y1 > 0. This will be used below.

We can now view Ŝǫ as a first order spacetime variation of the bifurcation

surface Ŝǫ=0. The variation vector ∂ǫ is defined as the tangent vector to the

curve generated when a point with fixed coordinates {x, φ} in Ŝǫ moves as ǫ

varies. This vector satisfies ∂ǫ = U1∂û + V1∂v̂ + O(ǫ) and is spacelike everywhere

on the unperturbed surface Ŝǫ=0. If we do a Taylor expansion of |Ŝǫ| around

ǫ = 0, we see that the zero order term is |Ŝǫ=0| = 16πM2
Kr, as this is the area

of the bifurcation surface. The bifurcation surface is totally geodesic so that, in

particular, its mean curvature vector vanishes. Consequently, the linear term in

the expansion is identically zero as a consequence of the first variation of area

(2.2.3). For any ǫ ≥ 0 we have

d|Ŝǫ|
dǫ

=

∫

Ŝǫ

( ~HŜǫ
, ∂ǫ)ηŜǫ

=

∫

Ŝǫ

(

−1

2

[

(p+ q)~l− + (−p+ q)~l+

]

, U1∂û + V1∂v̂ +O(ǫ)

)

η
Ŝǫ

(6.2.26)

where ~HŜǫ
is the spacetime mean curvature vector of Ŝǫ, ( , ) denotes the scalar

product with the spacetime metric, and ~l+ and ~l− are the outer and the inner

null vectors which are future directed and satisfy (~l+,~l−) = −2. Since on Ŝǫ=0 the
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vectors ∂v̂ and −∂û are proportional to ~l+ and ~l−, we have

~l+
∣
∣
Ŝǫ

=

√
e

8M2
Kr

∂v̂ +O(ǫ),

~l−
∣
∣
Ŝǫ

=

√
e

8M2
Kr

(−∂û) +O(ǫ),

where the factor
√

e
8M2

Kr

is due to the normalization (l+, l−) = −2. Besides, η
Ŝǫ

=

4M2
Krdx ∧ dφ + O(ǫ). Then, inserting these expressions into the first variation

integral (6.2.26) and taking the derivative with respect to ǫ at ǫ = 0, we obtain

d2|Ŝǫ|
dǫ2

∣
∣
∣
∣
∣
ǫ=0

=
16
√

2πM2
Kr

e

∫ 1

−1

[

U1(x)L[V1(x)] + V1(x)L[U1(x)]
]

dx,

where (6.2.3), (6.2.4) and the relations Y1 = U1 + x and Y1 = V1 − x has been

used. Since U1 and V1 are strictly positive and L[U1(x)], L[V1(x)] are non-negative

and not identically zero, it follows d2|Ŝǫ|
dǫ2

∣
∣
∣
ǫ=0

> 0 and hence that the area of Ŝǫ is

larger than 16πM2
Kr for small ǫ.

We have obtained that the second order variation of area turns out to be

strictly positive along the direction joining the bifurcation surface with Ŝǫ, which

is tied to the fact that L[U1] and L[V1] have a sign. The right hand sides of these

operators are (except for a constant) the linearization of |q|± q and these objects

are obviously non-negative in all cases. We conclude, therefore, that the fact that

the area of Ŝǫ is larger than 16πM2
Kr is closely related to the defining equation

p = |q|. It follows that the increase of area is a robust property which does not

depend strongly on the choice of hypersurfaces Σǫ that we have made. In fact, had

we chosen hypersurfaces Σǫ ≡ {u = y − ǫβ(x), v = y + ǫβ(x), cos θ = x, φ = φ},
the corresponding equations would have been L[U1(x)] = |L[β(x)]| −L[β(x)] and

L[V1(x)] = |L[β(x)]| + L[β(x)]. The same conclusions would follow provided the

right hand sides are not identically zero.

Having shown that |Ŝǫ| > 16πM2
Kr for ǫ 6= 0 small enough, the next step is to

analyze whether |Ŝǫ| is a lower bound for the area of the outermost generalized

apparent horizon. Indeed, in order to have a counterexample of (6.1.1) we only

need to make sure that no generalized apparent horizon with less area than Ŝǫ

and enclosing Ŝǫ exists in Σǫ.

We will argue by contradiction. Let S ′
ǫ be a generalized apparent horizon

enclosing Ŝǫ and with |S ′
ǫ| < |Ŝǫ|. In these circumstances, Ŝǫ cannot be area outer

minimizing. Thus, its minimal area enclosure Ŝ ′
ǫ does not coincide with it. Now,

two possibilities arise: (i) either Ŝ ′
ǫ lies completely outside Ŝǫ, or (ii) it coincides
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with Ŝǫ on a closed subset K, while the complement Ŝ ′
ǫ \K (which is non-empty)

has vanishing mean curvature p everywhere.

To exclude case (i), consider the foliation of Σǫ defined by the surfaces {ŷ =

y0, x, φ}, where y0 is a constant. We then compute the mean curvature py0 of

these surfaces. The induced metric is

γy0AB =

(
r2

1 − x2
− ǫ2

32M3
Kr

r
e−r/2MKr

)

dx2 + (1 − x2)r2dφ2.

The tangent vectors and the unit normal one-form are

~ex = ∂x, ~eφ = ∂φ, m = Adŷ,

where A =

√
32M3

Kr

r
e−r/2MKr is the normalization factor. Since γ ŷ0 is diagonal we

just need the following derivatives

∇Σǫ
~ex
eŷx = −r

3 + 8ǫ2M2
Kr(2MKr + r)(1 − x2)e−r/2MKr

4MKr(1 − x2)r2
y0

∇Σǫ
~eφ
eŷφ = −(1 − x2)r

4MKr

y0.

Inserting all these expressions in py0 = −miγ
AB∇Σǫ

~eA
eiB we obtain

py0 = A

(
r3 + 8ǫ2M2

Kr(2MKr + r)(1 − x2)e−r/2MKr

4MKrr (r3 − 32ǫ2M3
Kr(1 − x2)e−r/2MKr)

+
1

4MKrr

)

y0.

Thus, taking −1 < ǫ < 1 small enough so that

ǫ2 <
r3
mine

rmin/2MKr

32M3
Kr

,

where rmin is the minimum value of r in Σǫ (recall that rmin > 0 provided |ǫ| < 1),

we can assert that py0 > 0 for all y0 > 0.

We noted above that Y1(x) > 0 everywhere. Thus, for small enough positive

ǫ, the function y(x, ǫ) is also strictly positive. Since Ŝ ′
ǫ lies fully outside Ŝǫ, the

coordinate function ŷ restricted to Ŝ ′
ǫ achieves a positive maximum yǫ somewhere.

At this point, the two surfaces Ŝ ′
ǫ and {ŷ = yǫ} meet tangentially, with Ŝ ′

ǫ lying

fully inside {ŷ = yǫ} (see Figure 6.1). This is a contradiction to the maximum

principle for minimal surfaces (see Proposition B.7 with K = 0 in Appendix B).

It only remains to deal with case (ii). The same argument above shows that

the coordinate function ŷ restricted to Ŝ ′
ǫ \ K cannot reach a local maximum. It

follows that the range of variation of ŷ restricted to Ŝ ′
ǫ is contained in the range

of variation of ŷ restricted to Ŝǫ (see Figure 6.2).
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Ŝǫ

Ŝ ′
ǫ

{ŷ = yǫ}

Figure 6.1: If the minimal area enclosure Ŝ ′
ǫ (in red) lies completely outside Ŝǫ

then Ŝ ′
ǫ, which is a minimal surface, must touch tangentially from the inside a

surface {ŷ = yǫ} (in blue) which has pyǫ > 0.

Ŝǫ

Ŝ ′
ǫ

{ŷ = ymax}

{ŷ = ymin}

Figure 6.2: In the case (ii), the minimal area enclosure Ŝ ′
ǫ coincides with Ŝǫ in

a compact set. The coordinate function ŷ restricted to Ŝ ′
ǫ cannot achieve a local

maximum in the set where Ŝ ′
ǫ and Ŝǫ do not coincide (in red). Then, this set can

be viewed as an outward variation of order ǫ of the corresponding points in Ŝǫ.
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Since maxŜǫ ŷ − minŜǫ ŷ = O(ǫ), it follows that we can regard Ŝ ′
ǫ as an out-

ward variation of Ŝǫ of order ǫ when ǫ is taken small enough. The corresponding

variation vector field ~ν can be taken orthogonal to Ŝǫ without loss of generality,

i.e. ~ν = ν ~m, where ~m is the outward unit normal to Ŝǫ. The function ν vanishes

on K and is positive in its complement U ≡ Ŝǫ \ K. Expanding to second order

and using the first and second variation of area (see e.g. [35]) gives

|Ŝ ′
ǫ| = |Ŝǫ| + ǫ

∫

U

pŜǫνηŜǫ

+
ǫ2

2

∫

U

(

|∇Ŝǫ
ν|2 +

ν2

2

(

RŜǫ −RΣǫ − |κŜǫ|
2 + p2

Ŝǫ

)

+ pŜǫ
dν

dǫ

)

η
Ŝǫ

+O(ǫ3),

where ∇Ŝǫ
, RŜǫ and κŜǫ are, respectively, the gradient, scalar curvature and second

fundamental form of Ŝǫ, and RΣǫ is the scalar curvature of Σǫ. Now, the mean

curvature pŜǫ of Ŝǫ reads pŜǫ = 3ǫ
MKr

√
e
|x| + o(ǫ) (see equation (6.2.3)) and both

RΣǫ and κŜǫ are of order ǫ (because Σǫ=0 has vanishing scalar curvature and Ŝǫ=0

is totally geodesic). Moreover, RŜǫ = 1/(2M2
Kr) +O(ǫ). Thus,

|Ŝ ′
ǫ| = |Ŝǫ| + ǫ2

{∫

U

[
3|x|ν
MKr

√
e

+

( |∇Ŝǫ
ν|2

2
+

ν2

8M2
Kr

)]

η
Ŝǫ

}

+O(ǫ3).

It follows that, for small enough ǫ, the area of Ŝ ′
ǫ is larger than Ŝǫ contrarily

to our assumption. This proves Theorem 6.1.1 and, therefore, the existence of

counterexamples to the version (6.1.1) of the Penrose inequality.

It is important to remark that the existence of this counterexample does not

invalidate the approach suggested by Bray and Khuri to study the general Penrose

inequality. It means, however, that the emphasis should not be put on generalized

apparent horizons. It may be that the approach can serve to prove the standard

version (2.3.6) as recently discussed in [20].
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Conclusions

In this thesis we have studied some questions within the framework of the

theory of General Relativity. In particular, we have concentrated on some of

the properties of marginally outer trapped surfaces (MOTS) and weakly outer

trapped surfaces in spacetimes with symmetries, specially static isometries,

and its application to the uniqueness theorems of black holes and the Penrose

inequality. We can summarize the main results of this thesis in the following list.

1. We have obtained a general expression for the first variation of the outer

null expansion θ+ of a surface S along an arbitrary vector field ~ξ in terms of

the deformation tensor of the spacetime metric associated with the vector
~ξ. This expression has been particularized when S is a MOTS.

2. Starting from a geometrical idea that generates a family of surfaces by mov-

ing first along ~ξ and then along null geodesics, we have used the theory of

linear elliptic second order operators to obtain restrictions on any vector

field on stable and strictly stable MOTS. Using the expression mentioned

in the previous point, these results have been particularized to generators

of symmetries of physical interest, such as Killing vectors, homotheties and

conformal Killing vectors. As an application we have shown that there exists

no stable MOTS in any spacelike hypersurface of a large class of Friedmann-

Lemâıtre-Robertson-Walker cosmological models, which includes all classic

models of matter and radiation dominated eras and those models with ac-

celerated expansion which satisfy the null energy condition (NEC).

3. For the situations when the elliptic theory is not useful, we have exploited

the geometrical idea mentioned before to obtain similar restrictions for

Killing vectors and homotheties on outermost and locally outermost MOTS.

As a consequence of these results, we have shown that, on a spacelike hyper-
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surface possessing an untrapped barrier Sb, a Killing vector or a homothety
~ξ cannot be timelike anywhere on a bounding weakly outer trapped surface

whose exterior lies in the region where ~ξ is timelike, provided the NEC holds

in the spacetime.

For the more general cases when the elliptic theory simply cannot be ap-

plied, a suitable variation of the geometrical idea has allowed us to obtain

weaker restrictions on any vector field ~ξ on locally outermost MOTS. This

results have also been particularized to Killing vectors, homotheties and

conformal Killing vectors.

4. Analyzing the Killing form in a static Killing initial data (KID)

(Σ, g,K;N, ~Y , τ) we have shown, at the initial data level, that the topolog-

ical boundary of each connected component {λ > 0}0 of the region where

the Killing vector is timelike is a smooth injectively immersed submanifold

with θ+ = 0 with respect to the outer normal which points into {λ > 0}0,

provided

(i) NY i∇Σ
i λ|∂top{λ>0}0 ≥ 0 if ∂top{λ > 0}0 contains at least one fixed

point.

(ii) NY imi|∂top{λ>0}0 ≥ 0 if ∂top{λ > 0}0 contains no fixed point, where ~m

is the unit normal pointing towards {λ > 0}0.

There are examples in the Kruskal spacetime where these conditions do not

hold and ∂top{λ > 0}0 fails to be smooth and has θ+ 6= 0.

5. Under the same hypotheses as before we have proven a confinement result

for MOTS in arbitrary spacetimes satisfying the NEC and for arbitrary

spacelike hypersurfaces, not necessarily time-symmetric. The hypersurfaces

need not be asymptotically flat either and are only required to have an

outer untrapped barrier Sb. This result, which also have been proved at the

initial data level, asserts that no bounding weakly outer trapped surface can

intersect {λ > 0}ext, where {λ > 0}ext denotes the connected component

of {λ > 0} which contains Sb. A condition which ensures that all arc-

connected components of ∂top{λ > 0} are topologically closed is required.

This condition is automatically fulfilled in spacetimes containing no non-

embedded Killing prehorizons.

6. We have proven that the set ∂top{λ > 0} in an embedded static KID is a

union of smooth injectively immersed surfaces with at least one of the two



7. Conclusions 157

null expansions equal to zero (provided the topological condition mentioned

in the previous point is satisfied).

7. Using the previous result, we have shown that, in a static embedded KID

which satisfies the NEC and possesses an outer untrapped barrier Sb and a

bounding weakly outer trapped surface, the set ∂top{λ > 0}ext is the out-

ermost bounding MOTS provided that every arc-connected component of

∂top{λ > 0}ext is topologically closed, the past weakly outer trapped region

T− is contained in the weakly outer trapped region T+ and a topologi-

cal condition which ensures that all closed orientable surfaces separate the

manifold.

8. With the previous result at hand, we have obtained a uniqueness theorem

for embedded static KID containing an asymptotically flat end which sat-

isfy the NEC and possess a bounding weakly outer trapped surface. The

matter model is arbitrary as long as it admits a static black hole uniqueness

proof with the Bunting and Masood-ul-Alam doubling method. This result

extends a previous theorem by Miao valid on vacuum and time-symmetric

slices, and allows to conclude that, at least regarding uniqueness of black

holes, event horizons and MOTS do coincide in static spacetimes. This re-

sult requires the same hypotheses as the result in the previous point. As

we have mentioned before, the condition on the arc-connected components

of ∂top{λ > 0}ext is closely related with the non-existence of non-embedded

Killing prehorizons and can be removed if a result on the non-existence of

these type of prehorizons is found. The condition T− ⊂ T+ is needed for

out argument to work. Trying to drop this hypotheses is a logical next step,

but it would require a different method of proof.

9. Finally, we have proved that there exist slices in the Kruskal spacetime

where the outermost generalized apparent horizon has area greater than

16πM2
Kr, where MKr is the mass of the Kruskal spacetime. This gives a

counterexample of a Penrose inequality recently proposed by Bray and

Khuri (in terms of the area of the outermost apparent horizon) in order

to address the general proof of the standard Penrose inequality. The ex-

istence of this counterexample does not invalidate the approach of these

authors but indicate that the emphasis must not be on generalized appar-

ent horizons.





Appendix A

Differential manifolds

In this Appendix, we will give a definition of a differentiable manifold which

allows us to consider manifolds with and without boundary at the same time.

We follow [66].

Consider the vector space R
n and let ωα be a one-form defined on this vector

space (the index α is simply a label at this point). Let us define the set Hα =

{~r ∈ R
n : ωα(~r ) ≥ 0}, which is either a half plane if ωα 6= 0 or the whole space if

ωα = 0. The concept of differentiable manifold may be defined as follows.

Definition A.1 A differentiable manifold is a topological space M together

with a collection of open sets Uα ⊂M such that:

1. The collection {Uα} is an open cover of M , i.e. M =
⋃

α

Uα.

2. For each α there is a bijective map ϕα : Uα → Vα, where Vα is an open

subset of Hα with the induced topology of R
n. Every set (Uα, ϕα) is called

a chart or a local coordinate system. The collection {(Uα, ϕα)} is called an

atlas.

3. Consider two sets Uα and Uβ which overlap, i.e. Uα ∩Uβ 6= ∅, and consider

the map ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ). Then, there exists a map

ϕαβ : Wα → Wβ, where Wα and Wβ are open subsets of R
n which, respec-

tively, contain ϕα(Uα∪Uβ) and ϕβ(Uα∪Uβ) such that ϕαβ is a differentiable

bijection, with differentiable inverse and satisfying ϕαβ|ϕα(Uα∩Uβ) = ϕβ◦ϕ−1
α .

Remark. Since no confusion arises, we will denote a differential manifold

(M, {Uα}) simply by M . Note that manifolds need not be connected according

to this definition. �
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Definition A.2 A differentiable manifold M is of class Ck if the mappings ϕαβ

and their inverses are Ck.

A differentiable manifold M is smooth (or C∞) if it is Ck for all k ∈ N.

Definition A.3 M is a differentiable manifold with boundary if for at

least one chart Uα, we have ωα 6= 0. In this case, the boundary of M is defined

as ∂M =
⋃

α,ωα 6=0

{p ∈ Uα such that ωα (ϕα(p)) = 0}

Remark. Along this thesis the sign ∂ will denote the boundary of a mani-

fold while the sign ∂top will refer to the topological boundary of any subset of a

topological space (both concepts are in general completely different). �

Definition A.4 M is a differentiable manifold without boundary if ωα =

0 for all α.

It can be proven that ∂M is a differentiable manifold without boundary.

Definition A.5 The interior int(M) of a manifold M is defined as int(M) =

M \ ∂M .

We will denote by U the topological closure of a set U and by
◦
U its topological

interior.

Definition A.6 A differentiable manifold, with or without boundary, is ori-

entable if there exists an atlas such that for any two charts (Uα, ϕα) and (Uβ, ϕβ)

which overlap, i.e. Uα∩Uβ 6= 0, the Jacobian of ϕαβ|Uα∪Uβ on Uα∩Uβ is positive.

Such an atlas will be called oriented atlas

A differentiable manifold with an oriented atlas is said to be oriented.

Definition A.7 Consider an oriented manifold M endowed with a metric g(n).

The volume element η(n) of (M, g(n)) is the n-form η
(n)
α1...αn =

√

|det g(n)|ǫα1...αn

in any coordinate chart of the oriented atlas. Here, ǫα1...αn is the totally antisym-

metric symbol and det g(n) is the determinant of g(n) in this chart.

All manifolds in thesis are assumed to be Hausdorff and paracompact. These

concepts are defined as follows.

Definition A.8 A topological space M is Hausdorff if for each pair of points

p, q with p 6= q, there exist two disjoint open sets Up and Uq such that p ∈ Up and

q ∈ Uq.



A. Differential manifolds 161

Definition A.9 Let M be a topological space and let {Uα} be an open cover of

M . An open cover {Vβ} is said to be a refinement of {Uα} if for each Vβ there

exists an Uα such that Vβ ⊂ Uα. The cover {Vβ} is said to be locally finite if

each p ∈M has an open neighbourhood W such that only finitely many Vβ satisfy

W ∩ Vβ 6= ∅.
The topological space M is said to be paracompact if every open cover {Uα} of

M has a locally finite refinement {Vβ}.





Appendix B

Elements of mathematical

analysis

This Appendix is devoted to introducing some elements of mathematical analysis

which are used throughout this thesis.

Firstly, recall that a Banach space is a normed vector space which is complete.

Let X , Y be Banach spaces with respective norms || · ||X and || · ||Y . Let UX ⊂ X ,

UY ⊂ Y be open sets. A function f : UX → UY is said to be Fréchet-differentiable

at x ∈ UX if there exists a linear bounded map Dxf : X → Y such that

lim
h→0

||f(x+ h) − f(x) −Dxf(h)||Y
||h||X

= 0.

f is said to be C1 if it is differentiable at every point x ∈ UX and the map

Df : UX → L(X ,Y) defined by Df(x) = Dxf is continuous. Here L(X ,Y) is the

Banach space of linear bounded maps between X and Y with the operator norm.

A key tool in analysis is the implicit function theorem.

Theorem B.1 (Implicit function theorem (e.g. [36])) Let X , Y, Z be Ba-

nach spaces and UX , UY , UZ respective open sets with 0 ∈ UZ . Let f : UX ×UY →
UZ be C1 with Fréchet-derivative D(x,y)f .

Let x0 ∈ UX , y0 ∈ Y satisfy f(x0, y0) = 0 and assume that the linear map

Dyf |(x0,y0) : Y → Z,
ŷ → D(x0,y0)f(0, ŷ)

is invertible, bounded and with bounded inverse. Then there exist open neighbour-

hoods x0 ∈ Ux0 ⊂ UX and y0 ∈ Uy0 ⊂ UY and a C1 map g : Ux0 → Uy0 such

that f(x, g(x)) = 0 and, moreover, f(x, y) = 0 with (x, y) ∈ Ux0 × Uy0 implies

y = g(x).
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In the context of partial differential equations, one important class of Banach

spaces are the Hölder spaces.

Let Ω ⊂ R
n be a domain and f : Ω → R. Let β = (β1, · · · , βn) be multi-index

(i.e. βi ∈ N∪ {0} for all i ∈ {1, · · ·n}) and define |β| =
∑n

i=1 βi . Denote by Dβf

the partial derivative Dβf = ∂
x
β1
1
· · · ∂xβnn f when this exists. For k ∈ N ∪ {0} we

denote by Ck(Ω) the set of functions f with continuous derivatives Dβf for all β

with |β| ≤ k.

Let 0 < α ≤ 1. The function f is Hölder continuous with exponent α if

[f ]α ≡ sup
x,y∈Ω
x 6=y

|f(x) − f(y)|
|x− y|α

is finite. When α = 1, the function is called Lipschitz continuous.

Definition B.2 For 0 < α ≤ 1 and k ∈ N∪ {0} the Hölder space Ck,α(Ω) is the

Banach space of all functions u ∈ Ck(Ω) for which the norm

[f ]k,α =
k∑

|β|=0

sup
Ω

|Dβf | + max
|β|=k

[Dβf ]α

is finite.

The definition extends to Riemannian manifolds if we replace |x − y| by the

distance function d(x, y) between two points.

The following result appearing in [56] (pages 448-449 and problem 17.2) is

useful when we apply the implicit function theorem in Chapter 6.

Theorem B.3 Let ψ ∈ C2,α(Ω) with Ω ⊂ R a domain and consider the maps

F : C2,α(Ω) −→ C0,α(Ω)

and

F : Γ = Ω2 × Ω −→ R,

where Ω2 ⊂ R
3 is a domain, which are related by

F (ψ)(x) = F(ψ̈(x), ψ̇(x), ψ(x), x).

Assume that F ∈ C2,α(Γ). Then F has continuous Fréchet derivative given by

DψF (ϕ) = ∂1F
∣
∣
(ψ̈(x),ψ̇(x),ψ(x),x)

ϕ̈(x) + ∂2F
∣
∣
(ψ̈(x),ψ̇(x),ψ(x),x)

ϕ̇(x)

+∂3F
∣
∣
(ψ̈(x),ψ̇(x),ψ(x),x)

ϕ(x).
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Consider a manifold S with metric g and let ∇ be the corresponding covariant

derivative. Let aij be a symmetric tensor field , bi a vector field and c a scalar.

Consider a linear second order differential operator L on the form

Lψ = −aij(x)∇i∇jψ + bi(x)∇iψ + c(x)ψ, (B.1)

Definition B.4 L is elliptic at a point x ∈ S if the matrix [aij](x) is positive

definite.

Assume that S is orientable and denote by <,>L2 the L2 inner product of

two functions ψ, φ : S → R defined by < ψ, φ >L2≡
∫

S
ψφηS, where ηS is the

(metric) volume form on S. Given a second order linear differential operator, the

formal adjoint L† is the linear second order differential operator which satisfies

< ψ,L†φ >L2=< φ,Lψ >L2 .

for all pairs of smooth functions with compact support. A linear operator L is

formally self-adjoint with respect to the product L2 if L† = L.

When acting on the Hölder space C2,α(S) for 0 < α < 1, the linear second

order operator L becomes a bounded linear operator L : C2,α(S) → C0,α(S).

The formal adjoint is also a map L† : C2,α(S) → C0,α(S). An eigenvalue of L

is a number µ ∈ C for which there exist functions u, v ∈ C2,α(S) such that

L[u]+ iL[v] = µ (u+ iv ). The complex function u+ iv is called an eigenfunction.

The following lemma concerns the existence and uniqueness of the principal

eigenvalue (i.e. the eigenvalue with smallest real part) of L and L†. This result

is an adaptation of a standard result of elliptic theory to the case of compact

connected manifolds without boundary (see Appendix B of [3]).

Lemma B.5 Let L be a linear second order elliptic operator on a compact man-

ifold S. Then

1. There is a real eigenvalue λ, called the principal eigenvalue, such that for

any other eigenvalue µ the inequality Re(µ) ≥ λ holds. The corresponding

eigenfunction φ, Lφ = λφ is unique up to a multiplicative constant and can

be chosen to be real and everywhere positive.

2. The formal adjoint L† (with respect to the L2 inner product) has the same

principal eigenvalue λ as L.
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For formally self-adjoint operators, the principal eigenvalue λ satisfies

λ = inf
ψ∈C2,α(S2)

ψ 6=0

< ψ,Lψ >L2

< ψ,ψ >L2

, (B.2)

where the quotient
<ψ,Lψ>

L2

<ψ,ψ>
L2

is called the Rayleigh-Ritz ratio of the function ψ.

This formula, which reflects the connection between the eigenvalue problems and

the variational problems, is also useful to obtain upper bounds for λ.

An important tool in the analysis of the properties of the elliptic operator L is

the maximum principle. The standard formulations of the maximum principle for

elliptic operators requires that the coefficient c in (B.1) is non-negative (see e.g.

Section 3 of [56]). The following formulation of the maximum principle, which is

more suitable for our purposes, requires non-negativity of the principal eigenvalue.

Its proof can be found in Section 4 of [3].

Lemma B.6 Consider a linear second order elliptic operator L on a compact

manifold S with principal eigenvalue λ ≥ 0 and principal eigenfunction φ and let

ψ be a smooth function satisfying Lψ ≥ 0 (Lψ ≤ 0).

1. If λ = 0, then Lψ ≡ 0 and ψ = Cφ for some constant C.

2. If λ > 0 and Lψ 6≡ 0, then ψ > 0 (ψ < 0) all over S.

3. If λ > 0 and Lψ ≡ 0, then ψ ≡ 0.

For surfaces S embedded in an initial data set (Σ, g,K), the outer null expan-

sion θ+ (also the inner null expansion θ−) is a quasilinear second order elliptic

operator1 acting on the embedding functions of S. In this case, there also exists

a maximum principle which is useful (see e.g. [4]).

Proposition B.7 Let (Σ, g,K) be an initial data set and let S1 and S2 be two

connected C2-surfaces touching at one point p, such that the outer normals of S1

and S2 agree at p. Assume furthermore that S2 lies to the outside of S1, that is

in direction of its outer normal near p, and that

sup
S1

θ+[S1] ≤ inf
S2

θ+[S2].

Then S1 = S2.

1A quasilinear second order elliptic operator Q has the form Qψ = −aij(x, ψ,∇ψ)∇i∇jψ+

b(x, ψ,∇ψ), with the matrix [aij ] being positive definite.
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In particular, if two MOTS touch at one point and the outer normals agree there

then the two surfaces must coincide. This maximum principle can be viewed as an

extension of the maximum principle for minimal surfaces which asserts precisely

that two minimal surfaces touching at one point are the same surface (see e.g.

[50]).

We discuss next the Sard Lemma, which is needed at several places in the

main text. First we define regular and critical value for a smooth map.

Let f : N → M be a smooth map. A point p ∈ N is a regular point if

Dpf : TpN → Tf(p)M has maximum rank (i.e. rank(Dpf) = max(n,m), where n

is the dimension of N and m is the dimension of M). A critical point p ∈ M
is a point which is not regular. A point q ∈ M is a regular value if f−1(q) is

either empty or all p ∈ f−1(q) are regular points. A point q ∈ M is a critical

value if it is not a regular value.

We quote Theorem 1.2.2 in [91]

Theorem B.8 (Sard) Let N and M be paracompact manifolds, then the set of

critical values of a smooth map f : N → M has measure zero in M.

This theorem is equivalent to saying that the set of regular values of f : N →
M is dense in M.

For maps f : N → R the definition above states that p ∈ N is a critical

point if and only if df |p = 0. Let p ∈ N be a critical point and Hp the Hessian

at p (i.e. Hp( ~X, ~Y ) = ~X(~Y (f))|p). For any isolated critical point p ∈ N with

non-degenerate Hessian, the Morse Lemma (see e.g. Theorem 7.16 in [47]) asserts

that there exists neighbourhood Up of p and coordinates {x1, · · · , xn} on Up such

that p = (0, · · · 0) and f takes the form f(x) = f(p) − (x1)
2 − · · · − (xq)

2 +

(xq+1)
2 + · · · (xn)2 where the signature of Hp is n− q. For arbitrary critical points

this Lemma has been generalized by Gromoll and Meyer [60]. The generalization

allows for Hilbert manifolds of infinite dimensions. In the finite dimensional case

Lemma 1 in [60] can be rewritten in the following form.

Lemma B.9 (Gromoll-Meyer splitting Lemma, 1969) Let N be a mani-

fold of dimension n and f : N → R a smooth map. Let p be a critical point (not

necessarily isolated) and Hp the Hessian of f at p. Assume that the signature of

Hp is {+, · · · ,+
︸ ︷︷ ︸

q

,−, · · · ,−
︸ ︷︷ ︸

r

, 0, · · · , 0
︸ ︷︷ ︸

n−q−r

}

Then, there exists an open neighbourhood Up of p and coordinates {x1, · · · , xn}
such that p = {0, · · · 0} and f takes the form

f(x) = f(p) + (x1)
2 + · · · + (xq)

2 − (xq+1)
2 − · · · (xq+r)2 + h(xq+r+1, · · · , xn)
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where h is smooth and this function, its gradient and its Hessian vanishes at

(xq+r+1 = 0, · · · , xn = 0).

Finally, the following result by Glaeser [58] is needed in Chapter 4 (proof

of Proposition 4.3.13) when dealing with positive square roots of non-negative

functions.

Theorem B.10 (Glaeser, 1963 [58]) Let U be an open subset of R
n and f :

U → R be C2 and satisfy f ≥ 0 everywhere. If the Hessian of f vanishes ev-

erywhere on the set F = {p ∈ U, such that F (p) = 0}, then g = +
√
f is C1 on

U .
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