
 

BORDA WORKING PAPERS 

 

        
 

J.C.R. Alcantud, R. de Andrés Calle, J.M. Cascón 

 

Consensus and the Act of Voting 

 

Working paper No.: 1202 

January 2012 

 

 

http://borda.usal.es 
 



Consensus and the Act of Voting

J. C. R. Alcantuda, R. de Andrés Callea,b, J. M. Cascóna
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Abstract

In this paper we are concerned with assessing the cohesiveness of a society
whose individual preferences are known. We analyse the axiomatic properties of
a general proposal to measure aggregate satisfaction, that relies on the consensus
with reference to a select social preference.
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1. Introduction

Consider the case of a finite society that must express its preferences on
a finite list of alternatives (or more generally, that aggregates its members’
preferences into a social preference on the alternatives). In this paper we are
concerned with the aggregate welfare that the profile of preferences brings about
to this society. We analyse the axiomatic properties of a proposal to measure
such satisfaction that intends to capture the consensus that a social preference
by a representative agent furnishes. Under this position the informational basis
of the model (all personal preferences on the alternatives) must bear comparison
with the informational structure of the social representative. Two preliminary
remarks on our model are in order. For one thing, our procedure to measure the
consensus (relative to the social benchmark) is in line with previous analyses like
e.g., Bosch (2005) or Alcalde and Vorsatz (2010) where an absolute coefficient is
sought. For another, and concerning what an “ideal” focal agent could be, much
has been written about the (un)suitability of aggregation rules thus any possible
choice will raise criticisms. Therefore in order to set forth the virtues of our
model we expound on the normative properties of a general class of measures
where the idea of a fictitious representative agent is captured by select voting
rules.

The literature has provided several studies of metrics producing distance
measures for pairs of individual preferences expressed by binary relations (cf.,
e.g., Kemeny, 1959; Kendall, 1962; Cook and Seiford, 1978, 1982; Klamler, 2008;
Baldiga and Green, 2011). Concerning groups of individuals we can address
to the aforementioned Bosch (2005) and Alcalde and Vorsatz (2010), and our
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objective resembles theirs in that we consider finite groups of agents too. But we
must emphasize from the outset that we separate from their positions in a critical
point: in the frequent situations where individual preferences are formed in order
to make a collective judgement, a measure of the cohesiveness of preferences as
a social welfare function must relate to the output that they might generate.
To see this, suppose for example the case where pairwise collective comparisons
are made on a unanimity basis (i.e., in order for x to be socially better than y
all agents must agree that x is better than y). Then in a large group voting on
two alternatives x and y, if all members except one agree that x is better than y
but one member thinks the opposite it is intuitively appealing that an absolute
measure of the consensus à-la-Bosch should yield a high value although the
social welfare that the preferences actually warrant seems negligible. So under
a welfarist point of view we cannot detach the possibility of a collective outcome
from the configuration of the preference profile.

Our goal is shaped by these constraints. We present the concept of referenced
consensus measures which permit to produce a numerical social evaluation from
purely ordinal individual information. It can be specialized via two ways: the
specification of the representative agent, and the measure of agreement between
profiles of orderings and individual orderings. Then we perform a descriptive
analysis of their formal properties with an emphasis on two relevant cases whose
explicit constructions are detailed1. Our proposal does not intend to be univer-
sally applicable but we stress that introducing a fictitious agent as a reference
is fit for the case of actual social choices.

The paper is organized as follows. Section 2 is devoted to introduce basic
notation and definitions. Furthermore in this section, our proposal of measure-
ment of consensus, the referenced consensus measure, is introduced as well as a
relevant particular subclass of referenced consensus measures, the normal ref-
erenced consensus measure. In Section 3, operational characterizations of some
focal voting rules are provided, which helps us to deal with the two explicit
proposals for measurement of consensus that we present. Also we perform a
short analysis of the dichotomous case. In Section 4 we explore a list of appeal-
ing properties of normal referenced consensus measures, and particularly of our
explicit proposals. Finally, in Section 5 we give some concluding remarks and
pose questions for further research.

2. Basic notation and definitions

We fix X = {x1, ..., xk}, a finite set of k options, alternatives or candidates.
Abusing notation, on occasions we refer to option xs as option s for convenience.
A population of agents or voters is a finite subset N = {1, 2, ..., N} of natural
numbers. We also denote K = {{i, j} ⊆ N : i, j ∈ {1, 2, ..., k}, i > j}.

1A computational comparison between two focal instances has been outlined elsewhere
(Alcantud, de Andrés Calle and Cascón, 2011).
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Let W (X) be the set of weak orders or complete preorders on X, that is, the
set of complete and transitive binary relations on X. If R ∈ W (X) is a weak
order on X that reflects the preferences of a voter, then by xkRxj we mean
“R-voter thinks that alternative xk is at last as good as xj”. L(X) denotes the
set of linear orders on X.

A profile R = (R1, . . . , RN ) ∈ W (X)× N.... ×W (X) is a vector of weak
orders, where Ri ∈ W (X) represents the preferences of the individual i on
the k alternatives or candidates for each i = 1, . . . , N . The reversal of the
profile R, denoted by R−1, is the profile (R−11 , ..., R−1N ) where xsR

−1
i xt ⇔

xtRi xs for each possible voter i ∈ {1, . . . , N} and candidates or alternatives
xs, xt ∈ {1, . . . , k}. We say that the profile R is constant to R if
R = (R, N......, R).

Any permutation σ of the voters {1, 2, ..., N} determines a permutation of
R by Rσ = (Rσ(1), ......, Rσ(N)). Similarly, any permutation π of the candidates
{1, 2, ..., k} determines a permutation of every complete preorder R ∈ W (X)
via xs

πRi xt ⇔ xπ−1(s)Ri xπ−1(t) for all s, t ∈ {1, . . . , k} and i ∈ {1, . . . , N}.
Then with R and π we can associate πR = (πR1, ......,

π RN ).
Finally, given any profile of weak orders R = (R1, . . . , RN ) ∈ W (X)N

and any weak order R′ on X, we denote R ] R′ the profile (R1, . . . , RN , R
′)

of N + 1 weak orders. We denote by P(X) the set of all profiles, that is,
P(X) =

⋃
N>1W (X)N .

2.1. Basic definitions

We start by recalling some definitions from Alcantud, de Andrés Calle and
Cascón (2011).

Definition 1. A Consensus measure with reference to a consensus function
(henceforth, referenced consensus measure, RCM for simplicity, when the con-
sensus function is common knowledge) is a pair M = (C, ∂) where:

1) C is a consensus function (McMorris and Powers, 2009), that is, a mapping

C : P(X)→W (X),

that associates a complete preorder C(R) with each profile of complete
preorders R. We speak of the consensus preorder C(R) associated with
R, and assume that

1.a) C(R) = R for each profile R that is constant to the complete pre-
order R.

1.b) C(Rσ) = C(R) for each profile of complete preorders and σ permu-
tation of the voters.

1.c) C(πR) =π C(R) for each profile of complete preorders and π per-
mutation of the candidates or alternatives.

Abusing notation, this can be replaced with a voting rule with suitable
properties: for example, 1.b) and 1.c) just mean the usual anonymity and
neutrality conditions, respectively.
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2) ∂ is a referenced measure function (RMF), that is, a mapping

∂ : P(X)×W (X)→ [0, 1],

that assigns a real number, ∂(R, R) ∈ [0, 1], to each pair of a profile
of complete preorder R, and a complete preorder R, with the following
properties:

2.a) ∂(R, R) = 1 if and only if R is constant to R.

2.b) ∂(Rσ, R) = ∂(R, R) for each possible permutation σ of the voters.

2.c) ∂(πR,π R) = ∂(R, R) for each possible permutation π of the candi-
dates.

With regard to M = (C, ∂) each profile of complete preorders R on X has a
consensus ∇M(R) = ∂(R, C(R)).

Each conventional consensus measure can be interpreted as a referenced
consensus measure Alcantud, de Andrés Calle and Cascón (2011, Lemma 1).
For this reason it is analytically convenient to restrict ourselves to a significant
proper subclass where a better normative behaviour can be guaranteed. To that
purpose Alcantud, de Andrés Calle and Cascón (2011) introduce the following
concept:

Definition 2. A referenced consensus measure M = (C, ∂) is called normal
referenced consensus measure if its referenced measure function ∂ verifies

2.d) ∂(R, R) > 0 if R ∈ R.

If overall satisfaction is an aggregate of individual satisfaction, property 2.d)
can be considered as natural.

In order to check the profiles of individual preferences against the social
benchmark, the following general proposal is exploited:

Definition 3. Let M be a consensus measure. Given a profile of complete
preorders R and a complete preorder R we define the µp(M)-reference measure
function (µp(M)-RMF) as the p-generalized mean of the RN vector that has
the i-th component equal to M(Ri ]R), that is

∂pM(R, R) =

(
N∑
i=1

1

N
M(Ri ]R)p

)1/p

(1)

It is trivial to check that properties 2.a), 2.b), 2.c) and 2.d) hold true.

This parametric format can be specialized via p and the consensus measure.
In particular, we conclude this part with the important example of referenced
measure functions given by the arithmetic mean and Kemeny’s measure:
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Example 1. For every profile of complete preorders R = (R1, . . . , RN ), its
Kemeny’s measure K(R) is the probability that the binary ordering between a
pair of randomly selected alternatives is the same for all voters. Given p = 1
and M = K, the construction above produces the following RMF. Attending
to (1), we have to compute the Kemeny’s measure of a profile composed by
two elements: Ri that represents the preferences of individual i and R the

referenced complete preorder. Observe that there is a total of k(k−1)
2 possible

random choices. Thus the proportion of pairwise comparisons where Ri and R
coincide is

K(Ri ]R) =
2

k(k − 1)

∑
(s,t)∈K

Ks,t(Ri ]R)

with

Ks,t(Ri ]R) =

 1 if Ri and R coincide on the binary comparison
between xs and xt;

0 otherwise.

We then conclude that the µ1(K)-RMF is given by:

∂1K(R, R) =
K(R1 ]R) + . . .+K(RN ]R)

N
.

Convention 1. In what follows we omit superscripts when they are 1. We
denote the µ1(K)-RMF as ∂K.

Along the rest of the paper we restrict our attention to normal referenced
consensus measure with referenced measure function based on generalized means.

3. Some proposals for normal referenced consensus measures

In this section we detail the construction of two relevant normal RCM pro-
posals. These models check the profiles against the classical Borda and Copeland
methods, that we proceed to recall, and they measure the consensus with the
µ1(K)-RMF.

Example 2. A tie-breaking Borda rule (Suzumura, 1983, pp. 107-108) at-
taches a complete preorder to each profile of complete preorders. It ranks the
candidates according to their respective Borda score defined as follows:

β(xs) =

N∑
i=1

(#{xt ∈ X : xsRi xt } −#{xt ∈ X : xtRi xs}) .

Because 1.a), 1.b) and 1.c) are immediate, we denote by CB such consensus
function.

If in fact we have a profile of linear orders the same ranking is obtained
through the alternative Borda score given by:

β′(xs) =

N∑
i=1

(#{xt ∈ X : xsRi xt }) .
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Example 3. The Copeland method (Saari and Merlin, 1996; Suzumura, 1983,
p. 108) ranks the candidates according to their respective Copeland score de-
fined as follows:

κ(xs) = #{xt ∈ X : xs beats xt by s.s.m.}−#{xt ∈ X : xt beats xs by s.s.m.}

where s.s.m. stands for “strict simple majority”. This rule is widely used in
tournament situations, and versions of it are adopted by sports leagues. Again,
1.a), 1.b) and 1.c) are immediate. We denote by CC its associated consensus
function.

We proceed to provide operational characterizations of the Borda and Cope-
land rules. We then describe our proposals and briefly discuss the dichotomous
case.

3.1. Some operational characterizations

Let us fix a profile R = (R1, ..., RN ) of complete preorders on X. Its Borda
and Copeland scores can be reinterpreted in terms of simple matrix operations.
We denote by At the transpose of the matrix A. Besides, for any m × n real-
valued matrix A = (ai,j)m×n the notation sig(A) refers to the m × n matrix
whose (i, j) cell is 1 if ai,j > 0, −1 if ai,j < 0, and 0 otherwise. Ik denotes the
identity matrix of size k × k.

For each complete preorder Rs, the asymmetric part of which is denoted
by Ps, its preference matrix Ps is defined as the k × k binary matrix whose
(i, j) cell is 1 when xi Ps xj , and 0 otherwise. Observe that Rs is linear if
and only if Ps + (Ps)

t + Ik = (1)k×k, the constant to 1 matrix of size k × k.
Besides, the sum of the cells in the i-th row of Ps − (Ps)

t is #{xj ∈ X :
xi Ps xj} −#{xj ∈ X : xj Ps xi}. We say that R has an aggregate preference
matrix A(R) = P1 + ...+ PN . Its (i, j) cell has the number of agents for which
alternative xi is strictly better than xj . The sum of the cells in its i-th row is
the usual Borda score β′(xi) when R is a profile of linear orders.

Define A(R) = A(R)− (A(R))t, then the sum of the cells in its i-th file is
β(xi), the Borda score of alternative xi (see Example 2).

Observe that the fact that the (i, j) cell of A(R) is greater than 0 is equiva-
lent to the fact that alternative xi beats xj by strict simple majority under the

profile R. Thus if we define Ã(R) = sig(A(R)) then the sum of the cells in its
i-th file is κ(xi), the Copeland score of alternative xi (see Example 3).

Example 4. Suppose X = {x, y, z, w} thus k = 4. Let R = (R1, R2, R3) be the
profile of linear orders given by: wP1 y P1 xP1 z, z P2 wP2 y P2 x, xP3 z P3 y P3 w.
Then

P1 =


0 0 1 0
1 0 1 0
0 0 0 0
1 1 1 0

 P2 =


0 0 0 0
1 0 0 0
1 1 0 1
1 1 0 0

 P3 =


0 1 1 1
0 0 0 1
0 1 0 1
0 0 0 0
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Some simple computations yield

A(R) =


0 1 2 1
2 0 1 1
1 2 0 2
2 2 1 0

 A(R) = Ã(R) =


0 −1 1 −1
1 0 −1 −1
−1 1 0 1

1 1 −1 0


Thus for this setting the Borda and Copeland scores coincide throughout. Their
values are −1 por options x and y, and 1 for options z and w. Therefore
the social preference R that is derived from both choice rules is w I z P x I y
(Suzumura, 1983, p. 108).

Calculating ∂K(R, R) for R = (R1, ..., RN ) profile of complete preorders and
R complete preorder is trivial from the numbers Ks,t(Ri ] R). These amounts
can be computed with the assistance of basic matrix manipulations too. Denote
by P the preference matrix of R defined as above. Let us observe two facts.

1. Cell (s, t) of both Pi + (Pi)
t and P + Pt has a 0 if and only if both Ri

and R are indifferent between xs and xt. This can not happen when s 6= t
if either Ri or R is linear.

2. Cell (s, t) of both Pi and P has a 1 if and only if xs Pi xt and xs P xt .

This means that the number of pairs of different options for which both Ri
and R are indifferent is the number of cells strictly above the diagonal with a
0 for both Pi + (Pi)

t and P + Pt (and it is 0 if either Ri or R is linear); and
the number of pairs of options for which Ri and R have equal strict preference
is the number of cells (outside the diagonal) with a 1 for both Pi and P.2 The

sum of these two amounts is k(k−1)
2 K(Ri, R) =

∑
{s,t}∈KKs,t(Ri], R).

Example 5. In the situation of Example 4 one has

P1 + Pt
1 = P2 + Pt

2 = P3 + Pt
3 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


because all P1, P2 and P3 are linear orders. The preference matrix of the
complete preorder R that is prescribed by both the Borda and Copeland rule is

P =


0 0 0 0
0 0 0 0
1 1 0 0
1 1 0 0


Some simple computations yield ∂K(R, R) = 1

3 ( 2+4+1
6 ) = 7

18 since

2This number is obtained with a computer assistant very easily: do the cell-by-cell multi-
plication and sum up all the cells in the result.
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• No pair of different options is indifferent under any of the Pi’s.

• Only cells (4, 1) and (4, 2) have a 1 in both P1 and P.

• Only cells (3, 1), (3, 2), (4, 1) and (4, 2) have a 1 in both P2 and P.

• Only cell (3, 2) has a 1 in both P3 and P.

3.2. The RCM-B and RCM-C proposals

The referenced consensus measure given by the tie-breaking Borda rule (cf.,
Example 2) and ∂K introduced in Example 1 is referred to as RCM-B, that is,
MB = (CB, ∂K). Let us now show how this proposal produces its output with a
simple Example.

Example 6. In the situation of Example 4 we checked that CB(R) is the com-
plete preorder RB determined by w IB z PB x IB y. According to Example 5

∇MB
(R) = ∂K(R, CB(R)) =

7

18

therefore 7 out of 18 = 3·4·(4−1)
2 possible pairwise comparisons made by a mem-

ber of the society {1, 2, 3} coincide with the binary ordering given by the con-
sensus function in the model.

The referenced consensus measure given by the Copeland method (cf., Ex-
ample 3) and ∂K is referred to as RCM-C, that is, MC = (CC , ∂K). The following
Example illustrates its calculation.

Example 7. In the situation of Example 4 (v. Example 6) we found CC(R) =
RB thus

∇MC
(R) = ∂K(R, CC(R)) =

7

18

Again, 7 out of 18 possible pairwise comparisons made by a member of the so-
ciety {1, 2, 3} coincide with the binary ordering given by the consensus function
in the model.

3.3. The case of a dichotomous choice

Suppose k = 2, i.e., the dichotomous case. To simplify notation let
X = {x, y}. We also denote n1 = |{i ∈ N : xPi y}| and n2 = |{i ∈ N : y Pi x}|,
thus N − n1 − n2 = |{i ∈ N : x Ii y}|. Due to properties 1.b) and 2.b) we can
reorder the voters as convenient, and we assume that voters 1, ..., n1 prefer x
strictly over y, that voters n1 + 1, ..., n1 + n2 prefer y strictly over x, and that
the last N −n1−n2 voters are indifferent between x and y. Let nx,y(R) denote
the majority margin of x over y under R, that is, the number of voters that
prefer x strictly over y minus the number of voters that prefer y strictly over x,
or nx,y(R) = n1 − n2. Now the Borda and Copeland voting rule coincide with
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strict simple majority: the preference matrix of the complete preorder R0 that
is prescribed by them is

P0 =

(
0 1
0 0

)
if nx,y(R) > 0 (or n1 > n2)

P0 =

(
0 0
0 0

)
if nx,y(R) = 0 (or n1 = n2)

P0 =

(
0 0
1 0

)
if nx,y(R) < 0 (or n1 < n2)

Because k = 2 we obtain:

if n1 > n2, then K(Ri ]R0) =

{
1 for i = 1, ..., n1

0 otherwise

if n2 > n1, then K(Ri ]R0) =

{
1 for i = n1 + 1, ..., n1 + n2
0 otherwise

if n1 = n2, then K(Ri ]R0) =

{
1 for i = n1 + n2 + 1, ..., N
0 otherwise.

Therefore

∂K(R, R0) =


n1

N if n1 > n2,
n2

N if n2 > n1,
N−n1−n2

N = 1− 2n1

N if n1 = n2.

This means that under either RCM-B or RCM-C, total lack of consensus only
happens under a precise fifty-fifty division among all the voters (half prefer x
strictly over y, half the other way around), which is commonly agreed upon
(see e.g., Alcalde and Vorsatz, 2008, pp. 2-3). Obviously when k = 2 and
n1 + n2 = N (i.e., the dichotomous and binary case) one has

∂K(R, R0) =


n1

N if n1 > n2
n2

N if n2 > n1
0 if n1 = n2

and an odd number of voters can not produce zero consensus under these models.

4. Normal referenced consensus measures: a critical analysis of their
properties

Along this Section, M = (C, ∂pM) denotes a normal referenced consensus
measure with a µp(M)-RMF. In other words, ∂pM is based on a conventional
consensus measure M and is computed as a p-generalized mean according to
(1). We proceed to check that such model agrees with certain axioms that are
common use in the literature. At this point we remark that Axioms 1 to 3 below
hold true in the larger class of referenced consensus measures. Finally, a critical
analysis of other ad-hoc properties is performed along this study.
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4.1. Some properties of referenced consensus measures

The following axiom is trivial from the definition of a referenced consensus
measure. It means that maximum consensus is reached under commonly held
preferences across agents.

Axiom 1. M is unanimous if for each constant profile R it is true that
∇M(R) = 1.

Similarly, Proposition 1 below proves that the following property obtains:

Axiom 2. M is anonymous if for each permutation of the voters σ and each
profile R, it is true that ∇M(R) = ∇M(Rσ).

As is apparent, anonymity of a normal referenced consensus measure means that
the consensus measure does not change if we rename the voters.

Proposition 1. Any M is anonymous.

Proof. This holds because M has properties 1.b) and 2.b). Specifically,

∇M(R) = ∂(R, C(R))
2.b)
= ∂(Rσ, C(R))

1.b)
= ∂(Rσ, C(Rσ)) = ∇M(Rσ).

�

In particular, both RCM-B and RCM-C satisfy Axiom 2. We now argue that
normal referenced consensus measures verify the following property too:

Axiom 3. M is neutral if the consensus measure does not change when we
rename the candidates.

Proposition 2. Any M is neutral.

Proof. From properties 1.c) and 2.c) we obtain

∇M(R) = ∂(R, C(R))
2.c)
= ∂(πR,π C(R))

1.c)
= ∂(πR, C(πR)) = ∇M(πR).

�

In order to introduce a further property of normal referenced consensus
measures, we first give some notation. For each profile R = (R1, ..., RN ) and
m ∈ N we denote

mR = (R1, m..., R1, R2, m..., R2, ..., RN , m..., RN )

that we call an m-replication of the profile R. Then we say that the consensus
function C verifies replication if C(R) = C(mR) throughout. This means that
for each fixed society, the same consensus ordering is proposed if we repeatedly
clone it. Likewise we define:
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Axiom 4. M verifies the replication axiom if for each profile R and m ∈ N it
is true that ∇M(R) = ∇M(mR).

Coupled with Axiom 2, this property is the analogous of the replication
axiom in Alcalde and Vorsatz (2008) 3. They interpret it as an invariance
property asking that exact replications of a society are attached the same level of
coherence as the original. The following result checks the model under inspection
against Axiom 4:

Proposition 3. Given M = (C, ∂pM), if C verifies replication then M satisfies
the replication axiom.

Proof. Let us fix a profile R = (R1, ..., RN ) and m ∈ N. By definition
of mR, it is clear that for any complete peorder R one has

∂pM(mR, R) =

(∑N
i=1M(Ri ]R)p+ m....... +

∑N
i=1M(Ri ]R)p

m ·N

)1/p

=

(∑N
i=1M(Ri ]R)p

N

)1/p

= ∂pM(R, R).

Thus because C satisfies replication we finally obtain

∇M(mR) = ∂pM(R, C(mR)) = ∂pM(R, C(R)) = ∇M(R).

�

Corollary 1. Both RCM-B and RCM-C verify the replication axiom.

Proof. By Proposition 3 it suffices to prove that both Borda and Copeland
rankings satisfy replication. Let us fix a profile R = (R1, ..., RN ) and m ∈ N.
We observe that because A(mR) = m · A(R) and A(mR) = m · A(R) the
Borda ranking is preserved by m-replication of the profile. Further, the fact
that Ã(R) = sig(A(R)) = sig(A(mR)) = Ã(mR) implies that the Copeland
ranking is preserved by m-replication of the profile. �

The next Axiom captures the intuitively appealing property that the con-
sensus measure should not change if all the agents simultaneously reverse their
orderings of the alternatives:

Axiom 5. M verifies reversal invariance if the reversal of any profileR, namely
R−1, produces the same consensus, i.e.,

∇M(R) = ∇M(R−1) for each possible profile R.

3These authors acknowledge inspiration by the scale invariance axiom in Allison (1978)
characterization of the Gini index.
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To discuss this property, we have to introduce some additional notations. A
consensus function C satisfies the reversal property if C(R−1) = C(R)−1 for
any complete peorder R. This means that when all voters in a profile reverse
their rankings of the candidates then the outcome is reversed. A consensus
measure M verifies the reversal property if M(R−1) = M(R) for any profile
of complete preorders. That is, the consensus measure is unchanged when the
profile is reversed. Let us analyse this property in detail.

Proposition 4. Given M = (C, ∂pM), if C and M verify the reversal property,
then M satisfies the reversal invariance axiom.

Proof. Since (Ri ] C(R))−1 = R−1i ] C(R)−1, by hypothesis we infer for all
i = 1 . . . N that

M(Ri]C(R)) =M((Ri]C(R))−1) =M(R−1i ]C(R)−1) =M(R−1i ]C(R
−1)),

and thus from definition of µp(M)-RMF we conclude as follow

∇M(R) = ∂pM(R, C(R)) = ∂pM(R−1, C(R−1)) = ∇M(R−1).

�

Our particular proposals in Section 3 verify this property too.

Corollary 2. Both RCM-B and RCM-C verify the reversal invariance axiom.

Proof. Because the Borda and the Copeland rules satisfy the reversal property
(Saari and Merlin, 1996, Section 1) we only have to prove that Kemeny’s measure
verifies the reversal property. This is straightforward since Ks,t(Ri ] C(R)) =
Ks,t(R−1i ] C(R−1)) for each possible voter i and candidates s and t. �

We now investigate if normal referenced consensus measures verify the fol-
lowing reinforcement property:

Axiom 6. M verifies reinforcement if adding C(R) to the profile R does not
reduce the consensus, i.e.,

∇M(R] C(R)) > ∇M(R) for each possible profile R.

We proceed to state a criterion for satisfaction of this property that depends
upon the behavior of C, and then we check that both RCM-B and RCM-C meet
such criterion. We say that a consensus function C verifies decision invariance if
C(R]C(R)) = C(R) for each profile R. This means that the consensus ordering
does not change if we add to the society a new agent whose preferences coincide
with the previous consensus preorder. Under this restriction we obtain:

Proposition 5. Given M = (C, ∂pM), if C verifies decision invariance then M
verifies reinforcement.
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Proof. Since C(R] C(R)) = C(R), and using M(C(R) ] C(R)) = 1, one has

∇M(R] C(R)) = ∂pM(R] C(R), C(R))

=

(∑N
i=1M(Ri, C(R))p +M(C(R), C(R))p

N + 1

)1/p

=

(
N

N + 1
[∂pM(R, C(R))]

p
+

1

N + 1

)1/p

> ∂pM(R, C(R)) = ∇M(R),

where the last inequality derives from the fact ∇M(R) 6 1. Such inequality
becomes strict provided ∇M(R) < 1. �

An appeal to Proposition 5 permits us to prove that both RCM-B and RCM-
C verify reinforcement:

Proposition 6. RCM-B and RCM-C verify reinforcement.

Proof. We just need to prove that their respective consensus functions ver-
ify the decision invariance property which in conjunction with Proposition 5,
proves the assertion. Firstly we analyse RCM-B. Let us take the profile R
and denote RB = CB(R) with preference matrix PB . Recall that for
A(R) = A(R) − (A(R))t, the sum of the cells in its i-th file is β(xi), the
Borda score of alternative xi. We claim CB(R ] CB(R)) = CB(R). These or-
ders arise from the respective Borda scores, namely βB and β, obtained from
A(R ] CB(R)) and A(R) by summing up the cells in their rows. Observe
A(R ] CB(R)) = A(R) + PB − (PB)t. By construction β(xi) > β(xj) if and
only if xiRB xj . Because the sum of the cells in the i-th row of PB − (PB)t

is #{xl ∈ X : xi PB xl} −#{xl ∈ X : xl PB xi}, one has that xiRB xj if and
only if the sum of the cells in the i-th row of PB − (PB)t is greater or equal
than the sum of the cells in the j-th row of PB − (PB)t. This proves our claim
βB(xi) > βB(xj) if and only if β(xi) > β(xj) throughout.

We now analyse RCM-C. Let us take the profile R and denote
RC = CC(R) with preference matrix PC . Recall that for Ã(R) = sig(A(R)),
the sum of the cells in its i-th file is κ(xi), the Copeland score of alterna-
tive xi. We claim CC(R ] CC(R)) = CC(R). These orders arise from the re-

spective Copeland scores, namely κc and κ, obtained from Ã(R ] CC(R)) and

Ã(R) by summing up the cells in their rows. Thus our claim boils down to
κc(xi) > κc(xj) if and only if κ(xi) > κ(xj) throughout. This holds if we prove
sig(A(R]CC(R))) = sig(A(R)). Observe A(R]CC(R)) = A(R)+PC−(PC)t.
By construction κ(xi) > κ(xj) if and only if xiRC xj . Because cell (i, j) in A(R)
is positive (resp., negative) if and only if xi beats xj by s.s.m. (resp., xj beats
xi by s.s.m.) if and only if cell (i, j) in PC − (PC)t is positive (resp., negative),
the claim sig(A(R ] CC(R))) = sig(A(R)) easily follows from a cell-by-cell
inspection. �

In order to prove another interesting property of a suitable subclass of normal
referenced consensus measures we need some previous elaboration. The consen-
sus function C verifies responsiveness if for every R′ ∈W (X) and R ∈W (X)N ,
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the following equality holds eventually (i.e., for all sufficiently large m):

C(R]R′ ] m... ]R′) = R′ (2)

We proceed to prove that the Borda rule and the Copeland rule verify a re-
stricted version of this property, namely restricted responsiveness: for every
R′ ∈ L(X) and R ∈W (X)N , equation (2) holds eventually.

Lemma 1. The Borda rule and the Copeland rule verify restricted responsive-
ness.

Proof. We fix X = {x1, ..., xk}, R′ ∈ L(X), and R ∈W (X)N .
Firstly we analyse the Borda rule. Given xs 6= xt we can assume xsP

′xt
without loss of generality. Now irrespective of the Borda score that R attaches
to them –namely, βR(xs) and βR(xt)– it must be the case that for sufficiently
large m the Borda score with respect to Rm = R ] R′ ] m... ]R′ –which we
denote by βRm– is strictly higher for xs, since

βRm(xs)− βRm(xt) > m+ βR(xs)− βR(xt)

If m0 is such that m > m0 implies m + βR(xs) − βR(xt) > 0 then m > m0

implies that the ordering between xs and xt according to Rm = R]R′ ] m... ]R′
coincides with its ordering according to R′. Because there are finitely many pairs
in K, this conclusion can be simultaneously reached for every pair xs 6= xt of
elements in X.

We now analyse the Copeland rule. Given xs 6= xt we can assume xsP
′xt

without loss of generality. It is clear that for sufficiently large m the alternative
xs beats xt by strict simple majority according to Rm = R ] R′ ] m... ]R′.
Formally: denote by κ′ the Copeland score of the profile with the linear order
R′ only, and by κm the Copeland score of the profile Rm, then κ′(xs) > κ′(xt)
and it is eventually true that κm(xs) = κ′(xs) > κ′(xt) = κm(xt). Now the
argument goes through as above. �

Responsiveness can not be guaranteed in Lemma 1: even in the simplest
non-trivial instance where there are two candidates both the Borda rule and
the Copeland rule fail to be responsive as the next Example shows.

Example 8. Suppose X = {x, y} thus k = 2. Let R = (R1) be the profile of
one linear order given by xP1 y . We also let R′ be the complete preorder with
x I ′ y , which is not a linear order. Then CB(R]R′ ] m... ]R′) = CC(R]R′ ] m...
]R′) = R1 for each m, that is, both the Borda and Copeland methods suggest
the consensus ordering R1 6= R′. The reason is that irrespective of m, the Borda
score of x is a unit higher than the Borda score of y, and the Copeland score of
x is 1 but the Copeland score of y is 0.

We are now ready to define:

Axiom 7. M verifies convergence to unanimity if for every R′ ∈W (X),

lim
m−→∞

∇M(R]R′ ] m... ]R′) = 1.
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Axiom 8. M verifies restricted convergence to unanimity if for every R′ ∈ L(X)
and R ∈W (X)N , limm−→∞∇M(R]R′ ] m... ]R′) = 1.

We proceed to elucidate to which extent normal referenced consensus mea-
sures verify convergence to unanimity, with an especial attention to the RCM-B
and RCM-C cases.

Proposition 7. Given M = (C, ∂pM), if C is responsive (resp., restrictedly re-
sponsive) then M verifies Axiom 7 (resp., Axiom 8). In particular, RCM-B and
RCM-C verify restricted convergence to unanimity.

Proof. Suppose C is responsive, that is, for every R′ ∈W (X) and R ∈W (X)N

the equality C(R]R′ ] m... ]R′) = R′ is eventually true. Then one has

lim
m−→∞

∇M(R]R′ ] m... ]R′) = lim
m−→∞

∂pM(R]R′ ] m... ]R′, C(R]R′ ] m... ]R′))

= lim
m−→∞

∂pM(R]R′ ] m... ]R′, R′)

= lim
m−→∞

(∑N
i=1M(Ri ]R′)p +m

N +m

)1/p

= lim
m−→∞

(
N

N +m
[∂pM(R, R′)]p +

m

N +m

)1/p

= 1

where we are using that M(R′ ]R′) = 1 and ∂pM(R, R′) 6 1.
The case of a restrictedly responsive consensus function is proved analo-

gously. In particular, Lemma 1 ensures that RCM-B and RCM-C verify re-
stricted convergence to unanimity. �

We now investigate the relationship between the consensus of two parts of
the society and the consensus of the entire society. It is easy to show that our
general model does not verify the following very demanding property: when
the population is divided into two (or more) groups with the same consensus,
the overall consensus is also the same. In order to better link the consensus
of different groups we just need that they select the same collective preference.
In this case we can prove that the overall consensus should be a magnitude
in between the minimun and the maximun consensus of the parts, a property
called compensativeness (see Grabisch et al., 2009):

Axiom 9. M verifies compensativeness if for every pair of profiles R and R′
with C(R) = C(R′) it is true that

min{∇M(R),∇M(R′)} 6 ∇M(R]R′) 6 max{∇M(R),∇M(R′)}.

To analyse this property it is convenient to introduce the following concept.
A consensus function C is consistent if: R, R′ are such that C(R) = C(R′)
implies C(R ] R′) = C(R) = C(R′). Proposition 8 below checks our model
against Axiom 9.
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Proposition 8. If C is consistent then M = (C, ∂pM) verifies Axiom 9.

Proof. Let R ∈ W (X)N and R′ ∈ W (X)N
′

be two profiles satisfying C(R) =
C(R′). Since C is consistent, we infer

∇M(R]R′)p =
1

N +N ′

N+N ′∑
i=1

M((R]R′)i, C(R]R′))p

=
1

N +N ′


N∑
i=1

M(Ri, C(R))p +

N+N ′∑
i=N+1

M(R′i, C(R′))p


=
N

N +N ′
∇M(R)p +

N ′

N +N ′
∇M(R′)p.

Using this equality, it is straightforward to show

min{∇M(R)p,∇M(R′)p} 6 ∇M(R]R′)p 6 max{∇M(R)p,∇M(R′)p}.

Finally, we conclude by monotonicity of the function f(x) = x1/p. �

Now Proposition 9 below proves that the RCM-B proposal verifies compen-
sativeness, and Remark 1 below proves that the Copeland rule is not consistent.

Proposition 9. RCM-B verifies compensativeness.

Proof. We just need to prove that the Borda rule is consistent, which in
conjunction with Proposition 8, proves the assertion. Let R ∈ W (X)N and
R′ ∈ W (X)N

′
be two profiles with CB(R) = CB(R′). We observe that because

A(R]R′) = A(R) + A(R′) the Borda scores satisfy

βR]R′(xi) = βR(xi) + βR′(xi), for all xi ∈ X.

Since CB(R) = CB(R′) the scores βR and βR′ rank the alternatives in the same
way. Observe that the sum of these scores βR]R′ = βR + βR′ also produce the
same ranking. Therefore we deduce CB(R) = CB(R′) = CB(R]R′). �

Remark 1. The Copeland rule fails to satisfy the consistency property. Sup-
pose X = {x1, x2, x3} thus k = 3. Let R = (R1, R2, R3, R4, R5) and R′ =
(R6, R7, R8) be profiles of preorder given by:

y I1 z P1 x z P2 y P2 x y P3 xP3 z xP4 z P4 y

xP5 z P5 y xP6 y P6 z y P7 z P7 x z P8 xP8 y

Some simple computations yield CC(R) = x I y I z, and CC(R′) = x I y I z. Un-
der consistency the consensus function CC on profile R]R′ would associate the
indifference preorder x I y I z. However CC(R]R′) = z P xP y.

Remark 2. If a consensus function C satisfies the consistency property then C
verifies replication and decision invariance.
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The following Axiom 10 is a weaker version of Axiom 9. It claims that if the
society is composed by groups with the same collective opinion and consensus,
then the overall consensus does not change.

Axiom 10. M verifies quasi-consistency if for every pair of profiles R and R′
with C(R) = C(R′) and ∇M(R) = ∇M(R′) it is true that

∇M(R) = ∇M(R′) = ∇M(R]R′).

It is clear that RCM-B verifies quasi-consistency, because in particular Propo-
sition 8 assures that if C is consistent then M = (C, ∂pM) verifies Axiom 10.

4.2. On other requirements of referenced consensus measures

The literature on measurement of consensus has dealt with other desirable
properties that we briefly analyse in this Subsection. Axiom 11 below requests
that null and full consensus are possible.

Axiom 11. M verifies full range if there are two profiles R and R′ such that
∇M(R) = 0, ∇M(R′) = 1.

Neither RCM-B nor RCM-C verify this property in the sense that zero con-
sensus is impossible for particular values of N as seen in Subsection 3.3.

Similarly, we proceed to analyze the property of Monotonicity, whose formal
definition is given in Alcalde and Vorsatz (2008). Intuitively it say as follows.
Suppose that you measure the consensus in a society. Now one agent reverses
her/his opinion about the ordering of one particular pair of alternatives only.4 If
the alternative that the agent favours after the change beats the other alternative
in a pairwise comparison for the rest of the society then the consensus should
increase. And if both alternatives tie in a pairwise comparison for the rest of
the society then the consensus should not vary after the change.

Examples 9 and 10 below show that RCM-B does not verify any of the two
statements that jointly define Monotonicity. The same goes for Examples 11
and 12 regarding RCM-C.

Example 9. Suppose X = {x, y, z} thus k = 3. Let R = (R1, R2, R3) be
the profile of linear orders given by: y P1 xP1 z, xP2 y P2 z, y P3 z P3 x. Then
CB(R) is P1, that is, the Borda method produces P1. Some simple computations
yield ∇MB

(R) = 7
9 .

Consider the profileR′ = (R′1, R2, R3) whereR′1 is the linear order y P ′1 z P
′
1 x.

Under monotonicity this profile would have consensus 7
9 . However

∇MB
(R′) = 5

9 because CB(R′) is the complete preorder R′ for which y P ′ x I ′ z .

4Observe that this excludes from the analysis the case of a reversal of the order between x
and y e.g., in y I1 z P1 x or in y P1 z P1 x. These reversals modify the ordering between other
pairs of alternatives too.
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Example 10. Suppose X = {x, y, z} thus k = 3. Let R = (R1, R2, R3) be
the profile of linear orders given by: y P1 xP1 z, z P2 xP2 y, y P3 z P3 x. Then
CB(R) is P3, that is, the Borda method produces P3. Some simple computations
yield ∇MB

(R) = 2
3 .

Consider the profileR′ = (R′1, R2, R3) whereR′1 is the linear order y P ′1 z P
′
1 x.

Under monotonicity this profile would yield a higher consensus. However
∇MB

(R′) = 5
9 because CB(R′) is the complete preorder R′ for which y I ′ z P ′ x .

Example 11. Suppose X = {x, y, z} thus k = 3. Let R = (R1, R2, R3) be
the profile of linear orders given by: xP1 y P1 z, y P2 xP2 z, z P3 y P3 x. Then
CC(R) is P2, that is, the Copeland method produces P2. Some simple compu-
tations yield ∇MC

(R) = 2
3 .

Consider the profileR′ = (R′1, R2, R3) whereR′1 is the linear order xP ′1 z P
′
1 y.

Under monotonicity this profile would have consensus 2
3 . However∇MC

(R′) = 0
because CC(R′) is the complete preorder R′ for which x I ′ y I ′ z .

Example 12. Suppose X = {x, y, z} thus k = 3. Let R = (R1, R2, R3, R4)
be the profile of linear orders given by: xP1 y P1 z, xP2 y P2 z, z P3 xP3 y,
z P4 xP4 y. Then CC(R) is the linear order xP z P y (that is, the Copeland
method produces P1). Some simple computations yield ∇MC

(R) = 2
3 .

Consider the profileR′ = (R′1, R2, R3, R4) where R′1 is the linear order whose
asymmetric part is P above (that is, xP ′1 z P

′
1 y). Under monotonicity this

profile would yield a higher consensus. However ∇MC
(R′) = 7

12 because CC(R′)
is the complete preorder R′ for which x I ′ z P ′ y .

5. Related literature and concluding remarks

We conclude our paper with the following comments on our approach to this
controversial topic and related literature. 5

1. We have explored the normative properties of a general class of measures
of the cohesiveness in a society. The standard tendency in this regard re-
flects the intention to produce an absolute coefficient of consensus, and to
supply their axiomatic characterizations. Neither of those possible indices
are banned by our general concept of a referenced consensus measure. The
normality property permitted us to restrict ourselves to a wide framework
where many desirable properties of a measure of cohesiveness ensue. We
have made an extensive discussion of properties with a particular attention
to the analysis of societies that are divided into disjoint parts that produce

5Mart́ınez-Panero (2008) gives a concise survey of the different meanings that the term
consensus has traditionally had, both for philosophical and formal disciplines.
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the same collective decision; here we concluded that the Borda benchmark
permits a much better aggregative behavior than Copeland. Besides, our
model reconciles the measurement of magnitudes of (dis)agreement of pref-
erences with social choice theory in the vein of earlier works like: Kemeny
(1959), who proposes a social welfare ordering that maximizes the proba-
bility of agreement with a randomly selected member of the group; Baigent
(1987), who shows that social welfare functions that verify certain prox-
imity preservation property cannot both respect unanimity and be anony-
mous (see also Baigent, 1989; Nitzan, 1989); Klamler (2005), who started
comparing the Copeland rule to other aggregation procedures explicitly
based on distance information; Meskanen and Nurmi (2006), who study
how classical social welfare functions relate to distance functions between
rankings and profiles; or Kemeny’s generalization by Baldiga and Green
(2011) and to a lesser extent, Klamler (2008) more general approach by
choice functions, among others.

2. Alcalde and Vorsatz (2010) criticize the abuse of the intuitive approach
by mean aggregators of pairwise individual comparisons of similarity. The
bulk of their argument is that it is restrictive because it casts important
information that only the whole preference profile captures, as Example
1 in Alcalde and Vorsatz (2010) appears to show. Our approach does not
disregard that intuitive approach but we believe that it partially circum-
vents such supposed handicap for two reasons. For one thing, because it
contrasts personal preferences with a social target and this can collect the
global information of the profile. Let us consider their example, where
X = {x, y, z} are the alternatives, and a three-person society has the fol-
lowing profile P of linear orders: xP1 y P1 z, xP2 y P2 z, y P3 z P3 x. They
argue that cohesiveness should be higher at the following profile P̄ than at
P : x P̄1 y P̄1 z, x P̄2 z P̄2 y, y P̄3 x P̄3 z. Indeed some simple computations
yield ∇MB

(P̄ ) = 0.77 > 0.55 = ∇MB
(P ). For another, they claim that a

weakly higher weight has to be given to objects that are more important
at the social level. Because Definition 3 relies on generic consensus mea-
sures it can be designed so as to prioritize the socially relevant alternatives
as well as to gather global information of the profile. This indicates that
some route of escape that does not reject the intuitive original approach
can be found.

3. Our informational input is a profile of complete preorders, a more general
framework than the usual linearity requirement where ties are not allowed.
Specific welfare rules have been studied. Other possibilities come to mind
immediately. For example, the appeal to choice functions as in Klamler
(2008), or in other terms the use of other focal aggregation rules to obtain
the social objective. Links can be drawn between these possibilities since
for example, easy correspondences can be made between approval voting
and its generalizations (Brams and Fishburn, 1992; Laslier and Sanver,
2010) and choice functions.

4. We do not advocate for the universal adequacy of our model. How-
ever the question that a measure of the cohesiveness of personal prefer-
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ences is a convenient tool for the analyst has been exploited in Alcantud,
de Andrés Calle and Cascón (2011). There we compare the performance
of the Borda and Copeland voting rules for small numbers of alternatives.
A computational analysis reveals that an ex-ante advice on the rule that
should be adopted can be made in the wake of the chances that one rule
produces higher consensus than the other.
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