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Introduction

The work developed in this P.h.D thesis is related to different topics currently under study
in the frame of γ-spectroscopy with tracking detectors for nuclear structure research.

The first part is devoted to the developments and improvements on the capabilities
of highly segmented Ge detectors based on the tracking and imaging concepts when
used in γ spectroscopy systems. The work has been mainly focused on the new Ge
detection system proposed for the DESPEC experiment at the GSI facility and on the
developments in several tracking/imaging codes both for this future array as well as for
the present highly efficient tracking array, AGATA. The second one, corresponds to the
measurement performed in June 2010 at the Laboratori Nazionali di Legnaro (LNL):
Lifetime measurement in neutron-rich Ni, Cu and Zn isotopes (M. Doncel, E. Sahin and
A. Goergen). This measurement constitutes one of the first experiments performed at
the LNL with the AGATA Demonstrator. In particular, it has been the first time the
AGATA Demonstrator has been coupled to the differential plunger setup as well as to the
PRISMA spectrometer to perform a lifetime measurement through the Recoil Distance
Doppler Shift Method.

Its contents have been structured in four chapters and some conclusions. Chapter 1
contains a brief summary of the HPGe detectors evolution as well as the achievements
on nuclear structure studies associated to this evolution. A detailed explanation of
the nowadays best high resolution gamma ray spectroscopy system, AGATA, closes this
chapter.

The study of the best performance for the Ge array proposed for the DESPEC
experiment through Monte Carlo simulations is described in Chapter 2. Firstly the
optimization of the technical proposal has been done. Once it has been optimized, the
study of the more suitable configuration, in terms of peak efficiency and P/T ratio, has
been performed. Finally, the proposed setup is shown.

Chapter 3 is devoted to the developments of several algorithms for highly segmented
Ge arrays. In particular, a background-suppression algorithm have been developed for
the AGATA array, whose objective is to discriminate the origin of the γ rays by means
of tracking back the γ rays coming from different positions. This algorithm has been also
optimized for the particular conditions of the DESPEC experiment and it has been applied
to the Ge proposed setup for the experiment. Finally, a Compton imaging algorithm for
γ-ray tracking HPGe detectors has been developed for the unique experimental conditions
of the DESPEC experiment, trying to reconstruct the γ path inside the detector and
identify the γ-ray emitting source position in the focal plane.

The lifetime measurement performed at the LNL is described in Chapter 4. The aim of
the experiment has been to determine the lifetime of the excited states in 71Cu through the
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Recoil Distance Doppler Shift Method (RDDS) using the AGATA Demonstrator coupled
to the plunger setup and to the PRISMA spectrometer. The RDDS method and the devices
used for the measurement are firstly described. Then the data analysis is explained and,
finally, the obtained results are shown.



Chapter 1

Large scale instrumentation for γ

ray spectroscopy

1.1 Introduction to the high resolution γ-ray spectroscopy

The nucleus is a unique strongly interacting quantum mechanical system. Consisting of a
few up to a few hundred nucleons, its structure combines the macroscopic features expected
of nuclear matter in a bulk form with the microscopic properties associated with the motion
of a finite number of fermions in a potential. It represents a self-bound, complex system,
which displays a rich variety of excitation modes governed by the interplay of nucleons
in individual orbits and by their collective behavior. Understanding nuclear excitations
is one of the principal goals of nuclear structure studies. A tool to investigate nuclear
structure under extreme conditions is the high resolution γ-ray spectroscopy. The study
of the γ-decay properties of the atomic nucleus has provided a wealth information on the
behavior of such a system, for example, under the influence of high temperatures, high
spin or large deformations as well as for extreme isospin values and of the total nuclear
mass.

The de-excitation of nuclei that are created in a nuclear reaction in a state of finite
excitation energy, temperature and spin to the ground state is characterized by the
emission of a certain number of γ rays. The information about how the nuclear structure
changes during the decay while the nucleus loses energy and angular momentum is obtained
by investigating the properties of these excited states, such as their energy, emission
sequence and time relationship as well as their electro-magnetic properties, through
the measurement of the γ-rays emitted. New challenges for nuclear spectroscopy are
imminent nowadays when high intensity radioactive ion beams (RIB) are emerging in a
wide energy range: from the Coulomb energy regime, typical for the European ISOL
facilities as SPIRAL2 and HIE ISOLDE, to the intermediate and relativistic energy
regimes of fragmentation facilities, such as SIS/Super-FRS and, in particular, the new
international facility FAIR. In the Coulomb energy regime, classical reaction types as
transfer, deep-inelastic or compound reactions become available for few species with
intensities comparable to those of today’s stable beams. At intermediate energies, i.e.,
between 50 and 200 MeV/u, Coulomb excitation can be employed to populate low-spin
states of new far-from-the-stability-line nuclei: depending on the available beam energy,
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highly excited states up to the giant resonances can be reached. At higher energies,
secondary fragmentation becomes a powerful tool to create very exotic fragments that are
excited to relatively high spins; i.e., in violent collisions, spins of more than 30ℏ can be
reached [1]. Finally, at relativistic energies, the rarest species, those close to the drip lines,
can be studied using decay spectroscopy after implantation.

Exotic beams allow approaching and mapping the drip-line regions in order to answer
the open questions in nuclear structure physics and to explore nuclear stability at the very
limits. Nuclei far from stability allow amplifying and isolating particular aspects of the
nuclear interaction and dynamics and may favor the occurrence of new symmetries. First
and foremost, high-resolution γ-spectroscopic studies will open up unique possibilities
allowing a very rich physics program to be addressed that covers the full range of topics in
which the nuclear physics community is currently interested. The investigation of exotic
nuclei will be aiming at essentially all nuclear degrees of freedom, such as (i) proton-rich
nuclei at and beyond the proton drip line and the extension of the N=Z line, (ii) neutron-
rich nuclei towards the drip line in medium heavy elements and (iii) the heaviest elements
towards new super-heavy elements. The internal degrees of freedom of nuclei will be
exploited by investigating (i) ultra-high spin states produced in extremely cold reactions,
(ii) meta-stable states at high spins and at very large deformation, (iii) multi-phonon giant
resonances as well as other high-temperature phenomena, such as quantum chaos.

A sizeable part of the present knowledge of exotic nuclei comes from γ spectroscopy.
Although the study of the exotic nuclei is not the main reason for the development of
γ-detection systems, due to their good resolution and peak efficiency, they are suitable
for that. The quality of these systems related to nuclear spectroscopy is evaluated by
the resolving power (R) which is estimated by: the relation between the peak area to the
total spectrum area (P/T), the separation in γ energy of a certain cascade (SEγ) and the
effective energy resolution of the detector measured as the FWHM (∆Eγ). The equation
is as follows:

R = 0.76
SEγ

∆Eγ
P/T (1.1)

where the factor 0.76 is related to the fraction of the Gaussian peak taken into account
for setting the coincidences.

The inception of the high resolution γ-ray spectroscopy started with the development
of Ge semiconductor detectors [2]. Actually, good energy resolution, less than 1 keV
at 120 keV and about 2 keV at 1 MeV, can be obtained with this kind of detectors.
The fast progress of nuclear structure physics in the early 1970’s was clearly related to
the advent of the Ge(Li) detector. Along the sixties and the seventies, Ge(Li) detectors
were used in coincidence experiments studying nuclei populated in the decay of long-
lived isotopes as well as nuclei populated by fusion–evaporation reactions at particle
accelerators. For the first time, the efficiency and the energy resolution of a detector was
good enough to filter cascades of γ rays out of the complex in-beam spectra and to establish
detailed level schemes. An example of the new physics achievable with these systems was
the discovery of back-bending, the alignment of pairs of particles in time-reversed orbits,
by A. Johnson et al. in 1971, showing the validity of the collective rotational model [3].
This was identified in a γ–γ coincidence experiment with two small Ge(Li) detectors. It



1.1 Introduction to the high resolution γ-ray spectroscopy 3

was now possible to determine both, spins of excited states from the angular distribution
or correlation of γ rays and their parity from the measurement of the linear polarization
of the γ rays. From eighties these detectors were replaced by the High Purity Ge detectors
(HPGe) with better energy resolution and without the need to keep them permanently
cold.

The main drawback of Ge detectors is the limited volume of the crystals that causes a
low P/T value due to the scape of γ rays out of the crystal as a consequence of a Compton
interaction. The continuum background observed in γ spectra is due to the radioactivity
present in the detector and surrounding environment, to the cosmic radiation but mainly
at high γ energies to the Compton interaction of non-fully absorbed γ rays in the crystal
coming from the source. In the last years, a substantial improvement in γ-spectroscopy
systems based on high resolution HPGe detectors has been achieved. Besides the increase
of the crystal volume obtained from the improvements in the Ge crystal growing technique,
a new technology based on Compton-suppressed HPGe detectors, in which anti-Compton
detectors are surrounding the Ge ones, was developed (Fig. 1.1) [4]. The objective was to
improve the sensitivity by increasing the P/T ratio. In this way, events not fully absorbed
in the Ge detector have a high probability to be detected in the anti-Compton detector
and consequently can be rejected. With this method a P/T of 50% can be obtained.

Figure 1.1: a) Anti-Compton detector surrounding the Ge detector with the aim of
suppress the partially absorbed events in the spectra; b) detector composed by different Ge
crystals that allows to add the signals; c) segmented detector that allows the reconstruction
of the individual trajectory of γ rays [5].

The material employed for the development of anti-Compton (AC) shields has to be
selected in order to guarantee the maximum reduction of the background radiation. The
first AC detectors were based on the NaI(Tl) scintillator. From middle of eighties other
scintillator materials have been used, in particular, the so-called BGO (Bi4Ge3O12). Due
to its higher density and its higher mean Z value, it is up to 3 times more efficient per
unit length than NaI.
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The first arrays made up of escape-suppressed Ge detectors were TESSA (The Escape
Suppressed Spectrometer Array) [6–8] and HERA (High Energy Resolution Array) [9].
TESSA was developed in 1980 in Riso (Denmark) and was composed by five Ge(Li)
detectors surrounded by coaxial NaI(Tl) detectors. HERA was developed also at the
beginning of eighties in the Lawrence Berkeley National Laboratory (LBNL), but for this
array already n-type Ge detectors were used and the anti-Compton detectors were made of
BGO instead of NaI(Tl) as in TESSA. The high efficiency obtained with this system, about
1.5% at 1.3 MeV, made possible to measure γ-γ-γ coincidences for the first time. With
these arrays P/T ratios around 60% are obtained compared to the 20% of the unshielded
detector. The solid angle covered by Ge in these systems is limited and, therefore, the peak
efficiency. Other arrays were built in the 1980’s, all using BGO suppression shields and
between twelve and thirty n-type Ge detectors of 25%–35% relative efficiency. All these
arrays had some specific improvement in technology and were adapted to the specific
scientific interest of the collaborations devoted to built them. In particular, TESSA3,
which became well-known for the discovery of superdeformation in 152Dy [10], consisted
of sixteen Ge detectors with its respective BGO shields.

In the second half of the 1980’s the nuclear physics community started to plan the
next generation of γ-ray arrays. The goal was a 4π array of escape-suppressed Ge
detectors covering as large solid angle as possible to maximize efficiency. Projects based
on this idea were GASP [11, 12] in Italy, EUROGAM [13, 14] and EUROBALL [15–17]
as European collaborations and GAMMASPHERE [18] in USA. GASP was the first
4π detector developed in Europe, specifically in the Laboratori Nazionali di Legnaro
(INFN, Italy), in 1992 and it is still in operation. Different configurations can be
arranged for the array depending on the experiment to perform. The configuration
I is based on a polyhedron with one hundred and twenty two faces of which forty
are used for the HPGe detectors, twenty eight in the so-called ”hexagonal” positions
and twelve in the ”pentagonal” ones, two are devoted to the beam pipe and the
remaining eighty are used for the BGO detectors inner ball. Instead of the eighty
BGO detectors, a Pb shield made of two hemispheres smaller in diameter (19 cm)
having the same symmetry as the inner ball and playing a collimator role is inserted in the
Configuration II (Fig. 1.2). In such a replacement, the Compton suppressed Ge detectors
are moved nearer to the target reducing the target-detector distance from 27 cm to about
20 cm for the twenty eight detectors in the hexagonal positions and from 27 cm to 24
cm for the twelve in pentagonal ones. As a result of this geometry, the total photopeak
efficiency at 1.33 MeV is almost doubled: from a standard value of 3%, obtained with
configuration I, up to 5.8% which is preferred for the most of the spectroscopic studies
needing a large collected statistic. The gain in efficiency comes with a reduction of the
resolving power (R) due to the large Doppler broadening of the lines caused by the
increased solid angle of the Ge detectors. Therefore, in experimental situations where
a reduced resolving power is acceptable (e.g low recoil velocities), configuration II can be
an acceptable compromise. This is the case both when measuring lifetimes, either with the
Doppler Shift Attenuation Method (DSAM) [19–21] or with the Recoil Distance Plunger
Technique [19, 22], and in Transient Field g-factor measurements, where the precision of
the measurement is determined mainly by the collected statistic. Nowadays GASP is still
working coupled with ancillary detectors as ISIS [23] or the neutron n-ring system [24].
With the latter, innovative results have been obtained recently as the the identification of
excited states in 91Rh by Margineau et al. [25].
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Figure 1.2: Configuration II of GASP.

The largest Compton-suppressed Ge arrays built are EUROBALL and GAMMAS-
PHERE. GAMMASPHERE was developed in 1987 at the LBNL (USA). It is made up
by one hundred-ten hexagonal Ge detectors to achieve the spherical shape. With its con-
figuration 95% of the solid angle is covered of which 46% corresponds to Ge detectors,
obtaining P/T values of 68%. Important features of the system are the high symmetry
of the system around the target, like GASP, and the fact that in its last version of 1993,
seventy of the one hundred-ten crystals were longitudinal-electrically segmented improving
the energy resolution from 5.5 keV to 3.9 keV at a recoil velocity of 2%. Exciting new
results have been found for the structure of nuclei at the proton drip-line with this system,
for instance, in the study of the proton decay of 141Ho [26]. Nearly all of the known proton
emitters decay from spherical nuclei. The proton decay of 141Ho is thought to be one of
the few examples of proton decay from a deformed nucleus [27].

The segmentation of the electric contact in the Ge crystals, introduced firstly in the
GAMMASPHERE array, provides an improvement on the resolution power, as the granu-
larity rises and, therefore, the capability to solve multiple interactions in the same detector.
However, the main advantage of the electric segmentation is related to the energy reso-
lution because the opening angle of the detector considered for the Doppler broadening
correction decreases and, as a consequence, the photon energy can be more accurately de-
termined. As mentioned above, the FWHM of a γ line of energy 1.3 MeV measured with a
Ge detector is ∆E ∼ 2 keV but in most in-beam experiments the line width is broadened
due to the Doppler effect. The sign of the Doppler effect in the spectra is double. From
one side, the E0 energy of a photon which is emitted from a residual nucleus moving with
velocity v and detected at an angle θ with respect to the beam axis is Doppler-shifted and
is given by:
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Eγ = E0(1 +
v

c
cosθ) (1.2)

where Eγ is the measured energy and c the light velocity (Fig. 1.3). It should be noticed
that this relation is valid for low velocities, thus β < 1.

From the other side, besides the Doppler shift, due to the finite opening angle ∆θ of
the detector which results in an uncertainty in the real value of θ, the Doppler effect also
results in a broadening of the spectral γ line of:

∆Eγ = E0
v

c
sinθ∆θ (1.3)

The Doppler shift can be corrected by knowing θ when either the emitted nucleus or
the projectile is detected by a sensible position detector. The precision which the direction
of the emitted γ ray can be obtained with depends on how the interaction position inside
the detector is known. In conventional systems, where the maximum information is the
position of the hit detector, θ is calculated as the angle between the emitted nucleus and
the direction defined by the emitter point and the center of the detector opening window,
taking as uncertainty the detector opening angle ∆θ seen from the emitter point (Fig. 1.3).
The broadening is reduced with the segmentation due to the decrease of the opening angle.
For instance, for 1 MeV γ rays emitted by nuclei moving with v/c ∼ 5%, detected by a 5
cm radius detector placed at 20 cm and with 90º respect to the nucleus velocity vector, the
Doppler broadening is about 25 keV to be compared with the 2 keV intrinsic resolution.
Other effects which contribute to the broadening of a γ line are the angular spread of the
recoiling nuclei in the target and the variation of the velocity of the recoils.

Figure 1.3: The Doppler shift depends on the detection angle (θ) and the Doppler
broadening is related to the opening angle (∆θ).

In Europe, as an alternative approach to the segmentation concept, the evolution of
high resolution detector techniques in order to increase the granularity was achieved mainly
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by using composite detectors, i.e, detectors composed by several crystals packed in the
same cryostat, making feasible all the crystals to work as a single detector. In this way,
adding the interactions happened in all crystals placed in the same cryostat, the probability
to detect the γ-energy full absorption is incremented, decreasing the background and
increasing the P/T ratio. Two types of composite detectors were developed: Clover
detectors composed by four crystals [28] and Cluster detectors by seven detectors [29,30].
Within the EUROBALL developments, several arrays have been built in Europe with
these composite detectors. The first array was EUROGAM II, formed by two rings
made up by twelve Clover detectors, placed in the beam direction, and thirty individual
detectors from EUROGAM I in the forward and backward directions. The peak efficiency
increased from 5.6%, obtained with EUROGAM I, to 8.1% at 1.3 MeV. The next step
came with EUROBALL III developed by an European collaboration in 1997. It was
composed by EUROGAM II plus fifteen cluster detectors. This system, initially installed
at LNL, was moved to IReS Strasbourg, where two hundred and ten BGO detectors
in a spherical configuration were added, which gave rise to what is currently known as
EUROBALL IV (Fig. 1.4). By grouping the inner ball detectors, both Ge detectors and
BGO elements, into one hundred-sixty four subgroups of equal efficiency and solid angle,
an excellent performance for the determination of the total γ-ray energy and γ multiplicity
was achieved.

Figure 1.4: EUROBALL IV.

After the successful implementation of encapsulated crystals in the EUROBALL clus-
ters, several arrays have benefit from this technique. The encapsulation provides electric
isolation. It also makes independent the vacuum of the detector from the cryostat vac-
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uum that contains the cold part of the preamplifier needed close to the crystal to reduce
the crosstalk and to avoid electronic oscillations in the preamplifier. Besides, it has to
be taken into account that Ge detectors are damaged by the neutron flux in ”in-beam”
experiments. Fast neutrons, emitted in most of the nuclear reactions, impinge in the detec-
tor, disturbing the atoms in the lattice and moving them away from their initial positions
in the crystallographic net which creates charge traps. As a consequence, the charge col-
lection in γ events is spoiled and, therefore, the energy resolution of the system. In order
to recover the original characteristic of the detector is required a thermal treatment, called
annealing, in which the crystals are heated close to 1000 for a long period. The encapsula-
tion facilitates this process for complex detectors making viable the use of clusterization.

Between EUROBALL IV and GAMMASPHERE there are many similarities. Both
systems are based on a spherical configuration, BGO detectors are used as anti-Compton
suppressors and peak efficiency is close to 10% for both. The differences between them,
related to design and configuration mainly, provides them of different measurement
capabilities. For instance, the main advantage of GAMMASPHERE is the high symmetry
of the system, doing data analysis easier. EUROBALL IV has higher efficiency for
high-energy γ rays due to the cluster detectors and better sensitivity for polarization
measurements due to the Clover detectors, as the polarization is obtained in terms of the
Compton asymmetry between 00 and 900. Clover detectors, formed by four crystals in
a square configuration, are ideal detectors for this kind of measurement. Nevertheless,
although Cluster and Clover detectors increase the resolution power and the efficiency
of the system, they work under certain constrains. They, and in general, any composite
detector, suffer from a certain drawback: the so-called ”summing effect” when two γ rays
interacting in the same crystal are detected as only one with energy equal to the addition
of both energies. However, with their advantages and drawbacks, GAMMASPHERE and
EUROBALL are the summit of 4π arrays based on escape-suppressed Ge detectors.

The dawn of the last millennium saw the birth of the first-generation radioactive beam
facilities. These facilities, very challenging at this time, had very limited beam intensities.
In case of the facilities based on ISOL technique, experiments were performed with nuclear
reactions as Coulomb excitation or transfer reactions with inverse kinematics where the
multiplicity of γ rays is really low. The radioactive beam intensity is low about 103 − 105

particles per second and the velocity of the reaction products is high. So, this kind of
experiments requires high efficiency and high granularity to increase the energy resolution
after Doppler correction. To achieve this requirements, compact detection systems based
on electrically segmented Ge detector technology have been developed. Examples of such
a systems are, in Europe, EXOGAM [31, 32] and MINIBALL [33, 34] and, as it has
aforementioned, the last version of GAMMASPHERE at the United States. EXOGAM
was built to perform experiments for the SPIRAL project (Radioactive Ions Production
and on-Line Acceleration System) [35] in GANIL (Grand Accélérateur National d’Ions
Lourds) [36]. It consists on sixteen Clover detectors, each of them composed by four
Ge crystals 60 mm diameter and 70 mm length, electrically segmented in the azimuthal
direction in four equal segments. The Clover detectors are placed at 11 cm from the target
and the efficiency at 1.3 MeV is about 20% for low multiplicity. MINIBALL was developed
to perform experiments at REX-ISOLDE (Radioactive beam EXperiment at ISOLDE) [37]
at CERN, as a collaboration between Germany and Belgium. Forty encapsulated Ge
detectors, grouped in eight cryostats with three detectors and four cryostats with four
detectors, electrically segmented in six segments, make up the system. A digital processing
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of the preamplifier signals was used for the first time for MINIBALL. This treatment allows
to analyze the shape of the electric pulses and opens the possibility to determine the
interaction position of the γ ray in the crystal. The second generation of radioactive
ion beams facilities, now under construction, involves a major challenge in the γ-ray
spectroscopy instrumentation. The γ-ray tracking concept, has been extended by the EU
and USA communities in the last two decades as a brilliant solution to the instrumental
necessities of these new facilities.

1.2 Gamma-tracking arrays

The second generation of radioactive ion beam facilities which will be operative in few
years will open possibilities to study new regions of the nuclear chart. Exotic nuclei will
be produced in these facilities, most of them in small quantity, because the farther the
nucleus is from the stability line the lower the production cross section is. Therefore,
new developments on detection systems are needed in order to improve the sensitivity by
increasing P/T values and efficiency. Additionally, high granularity is required to avoid
the system to get blind during the beam flash. To respond to these requirements, a
new generation of γ-ray detectors based on Pulse Shape Analysis (PSA) and tracking is
currently being developed. Four-π solid angle geometry arrays will be suitable to profit
about this technique since anti-Compton detectors are not needed and the spectroscopic
system efficiency will be higher as most of the solid angle will be covered by Ge. In these
new arrays currently in development, the target will be surrounded from one hundred to
two hundred position sensitive Ge detectors, in such a way, that more than 80% of the
solid angle will be covered by Ge. Using digital electronics and the PSA technique it is
possible, as it is explained below, to determine energy, position and time of each γ-ray
interaction and, therefore, to determine the path inside the detector.

The studies needed to determine the feasibility of both high segmentation of Ge
detectors and reconstruction of the photon path, not only to a conceptual level but also
to a technical level, started in Europe with the italian project so-called MARS [38, 39],
which was incorporated later to the European network Developing of Gamma-ray Tracking

Arrays. In this project a highly segmented prototype was built. It was composed by a
coaxial crystal 90 mm length and 72 mm diameter. The external contact was electrically
segmented in twenty-five segments: six angular sections, four transversal sections and one
additional segment 10 mm diameter placed in the center of the frontal face. The good
results obtained in position resolution performance [40] were the starting point to the
AGATA project (Advanced Gamma Tracking Array), a 4π highly segmented Ge tracking
array for γ spectroscopy. However, the first conceptual design study for applying γ-ray
tracking to a proposed major new detector for nuclear structure physics studies was done
at Lawrence Berkeley National Laboratory (LBNL) in 1994 in which arose the project to
build an array named GRETA (Gamma-Ray Energy Tracking Array)) [41]. The current
design of GRETA is based upon a geodesic configuration, consisting of one hundred and
twenty hexagons arranged in a close-packed 4π geometry. GRETA will comprise a total
of forty cluster modules. GRETINA is the first phase of a staged approach to GRETA.
GRETINA will have thirty highly-segmented coaxial germanium crystals and is 1/4 of
the full GRETA. The European equivalent for the development of an array of HPGe
detectors based on the techniques of γ-ray tracking and PSA is AGATA [42–44]. It will
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be suitable for nuclear structure studies at the planned European radioactive ion beam
and high-intensity stable beam facilities.

In these new tracking arrays the Ge crystal contacts are longitudinally and transversally
segmented, while the aforementioned arrays (EXOGAM, MINIBALL) have detectors
segmented only in one direction. As a consequence of the two dimension segmentation,
the position of the interaction points can be determined inside the crystal thanks to the
position dependence of the Ge electric signal produced. With the interaction points it is
possible to reconstruct the single γ-ray tracks and therefore, to reject those corresponding
to not fully absorbed γ rays.

1.2.1 PSA techniques

To determine the interaction position, digital electronics and pulse shape analysis tech-
niques (PSA) are needed. Digital electronics allows for the complete signal digitization
instead of the analogue treatment of the signal that includes integration of the charge,
generation of a voltage pulse and measurement of the maximum signal amplitude to obtain
the energy as in conventional systems. PSA techniques have been developed to determine
not only the energy deposited but also time and position for each interaction inside the
detector with high precision. To obtain accurately the interaction position in three dimen-
sions, a detailed understanding of the signal shape versus interaction position is necessary.
PSA techniques have to take into account not only the real signal but also the induced
ones in the neighboring segments (mirror signals). As it will be shown, by a comparison
between calculated and experimental signals it is possible to get the position interaction
with high accuracy. To use pulse shape analysis to determine interaction position is, how-
ever, not unique for tracking arrays like AGATA or GRETA. This is for example done also
in MINIBALL, where the azimuthal position is obtained by comparing the amplitudes of
the mirror charges [45]. The radial position is obtained from the shape of the signal of the
hit segment. This is good enough to correct for Doppler effects, but it does not give the
z coordinate needed to do γ-ray tracking.

To determine the position in three dimensions accurately, an exhaustive understanding
of the signal shape is needed. A signal is shaped when electrons and holes are collected on
the electrodes producing induced charges of opposite sign. Induced signals are not only
produced in the segments where interactions have taken place, but transient signals in
the neighboring segments as well. The difference between both signals is that the signal
obtained in the hit segment is a net-charge signal with a non-vanishing integrated current,
while on the transient signals the integral of the current over the collecting time is zero.
The analysis of both net charge signals and transient signals enables us to determine
the position of the interactions with a higher resolution than the segment size which
is about few millimeters. For coaxial detectors, the radial position is derived from the
charge collection time, named drift time, which depends on the distance to the electrode,
and the integral of the current gives the charge which provides the energy measurement.
The azimuthal position of the main interaction within a segment is extracted from the
amplitudes of the mirror charges induced in the neighboring segments. The amplitude
of the mirror charge signal depends both on the distance of the main interaction to the
neighboring segments and on its radial position. Mirror charge signals in a n-type Ge
detector are positive for interactions close to the core where mainly holes are moving and
negative for interactions in the outer part of the detector where the net-charge signal
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is dominated by the collection of electrons. Fig. 1.5 shows an example of pulse shapes
measured on an AGATA detector with a collimated 137Cs source. Three different events
in which a photon is fully absorbed in segment F4 are shown: events a, b and c are depicted
in green, blue and red, respectively. In segment F4 the net signal is shown, but in the
other segments transient signals are observed. As events a and b are close to the core, the
mirror signals in the neighboring segments are positive while for event c, they are negative.
As an example we consider what happens in event c: the interaction has hit the segment
F4 close to A4, so the amplitude in A4 is larger than in E4. To extract the height in which
the interaction has happened, F3 and F5 segments are considered. The amplitude of the
mirror signal in segment F5 is larger than in segment F3 so the interaction takes place
closer to segment F5 [46].

Figure 1.5: Net core and transient segment signals shaped in an AGATA detector when a
γ ray is fully absorbed in segment F4. In green, blue and red are shown events a, b and c,
respectively. The position is extracted from the net signal in F4 segment as well as from
the amplitude and sign of the induced signals in the neighboring segments.

PSA algorithms work performing a comparison between the measured signals and
a signal data base. The data-base can be obtained through Pulse Shape simulation
algorithms. Many codes have been developed, as the MGS code (Multi Geometry
Simulation) [53] developed at Strasbourg (IRes), used by the AGATA collaboration. It
calculates the signal shapes in points belonging to a cubic lattice having 2 mm step.
The calculations so made are really fast but not very accurate due to the simplicity of
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the code which does not take into account the implementation of the inhomogeneities
in the impurity concentration and in the charge mobility. In order to improve the
simulated pulse data base, the crystals are scanned using radioactive sources. This method
has been employed in Liverpool and in Cologne [51, 52]. It gives a very precise pulse
shape information, despite of being a really slow process. To avoid the need of using
simulations and to improve the timing, new instrumentation is now being developed,
like the SAlamanca Lyso-based Scanning Array (SALSA) [54]. It performs the electrical
signal characterization through imaging techniques, obtaining experimental data much
faster than conventional scanning tables [55].

Different PSA algorithms have been developed by the AGATA collaboration. Actually,
one of the most simple implementations is being used, the so-called Adaptive Grid Search
algorithm (AGS), where the sampled pulse shapes are quickly compared to a database of
pulse shapes for different interaction positions [47]. The algorithm was originally developed
and tested on the experimental data from an ”in-beam” experiment with MARS, the
italian γ-tracking prototype [48–50]. The position calculation is based on the comparison
between both measured transient and net signals and calculated signals from a fine grid
of points in the crystal. The algorithm used for the comparison between the experimental
and calculated signals is done to be independent on the interaction position. Therefore,
no requirements about the geometry of the grid simulated basis used is needed. The signal
comparison is done evaluating the following figure of merit (FOM):

FOM =
∑

j∈NS

Tend
∑

i=T0

(Sm
ij − Sc

ij)
p (1.4)

where Sm
ij and Sc

ij are the measured and calculated signals respectively. The indexes j and
i stand, respectively, for the segment index and sampled time.

The algorithm evaluates the FOM over all the calculated points belonging to the real
segment and the smallest value identifies the coordinates of the interaction point. The
FOM defined in this way becomes a metric for positive values of p, in particular for p = 2
is the Euclidean metric. All the parameters in the algorithm have been optimized in order
to minimize the energy resolution, measured as FWHM after Doppler correction.

This algorithm shows some limitations as it searches only for one interaction point per
segment. When there are more than one, it takes all interactions in the same segment
as one placed in the center of gravity with energy equal to the sum of the individual
energy depositions. Therefore, about 30% of statistic is lost in the experimental conditions
because there is no possibility to identify those events. For events with more than one
segment fired, a hit pattern deduced from geometrical considerations is established in
order to avoid the interference in transient signals due to other interactions. For each
net charge found all neighboring segments are considered when there is not another net
signal on them. The best results are obtained taking into account neighboring segments
where an overlapping of transient signals of two interactions is found. If these events are
discarded a worsen energy resolution is found. An example of this pattern is showed in
Fig. 1.6. The signals registered from both the central contact and the net-charge segment
are not considered for the analysis since their inclusion in the FOM calculation results in
a worsening of the energy resolution.
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Figure 1.6: Pattern of one of the PSA algorithms developed for AGATA: the Adaptive
Grid Search. Black points are the segments where the net charges are produced and with
X are shown the neighboring segments.

In Fig. 1.7 is shown a comparison between the simulated and experimental data for
an AGATA detector. An energy of 791 keV has been deposited in segment B4. In black
are plotted the measured signals and in red the simulated ones. Different positions are
compared in order to extract the interaction position, and the one in which both datasets
are more compatible is assumed to be the real interaction point [56].

1.2.2 Gamma-ray tracking methods

We need to mention that in a large part of the energy range of interest in nuclear physics,
the most probable interaction is the Compton scattering. When followed by a photoelectric
in the last interaction point, the photon is fully absorbed. Conventional γ spectroscopy
builds spectra from the deposited energy by the γ ray in the active volume of the detector.
However, γ-ray tracking involves to build spectra from the reconstructed energy of the γ
ray by means of disentangling all the interaction points which belongs to the same event
and, later, determining the emission energy and the direction of the fully absorbed γ
ray [57]. This concept needs of detecting all interaction points of the scattered γ rays into
the active Ge crystal to combine them in order to find the right sequence which provides
the initial energy of the photons (Fig. 1.8). The interaction points belonging to a particular
γ ray are identified simply by their position and energy, being possible to determine when
a γ ray has been fully absorbed. Events where their γ-ray energy is partially absorbed can
be rejected decreasing the background and improving the P/T ratio. With this method it
is also possible to avoid the problem of random and coincidence summing because the full
γ-ray energy is obtained by summing only the interactions belonging to the track of this
photon.

The position of the two first interactions allows to determine the emission angle of
the γ ray from the source with respect to the detector where has impinged, which is
particularly important when detecting radiation emitted by fast moving nuclei after a
reaction since it determines the extent of the energy spread arising from the Doppler shift.
Tracking will be able to determine this position with much better accuracy (about 2 mm
FWHM) than existing detectors due to the high accuracy obtained by PSA. In addition,
the location of the first and the second interaction points gives the scattering angle, by
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Figure 1.7: Comparison between the simulated and experimental data for an interaction of
791 keV in segment B4 of an AGATA detector. Black and red lines correspond to measured
and calculated signals, respectively. After the matching the corresponding interaction
position is obtained as (10,25,46).

the Klein-Nishina formula, which provides information about the linear polarization of
photons. This information is essential to determine the parity of nuclear levels.

The fundamentals of the tracking algorithms are the electromagnetic radiation
interactions with matter in the energy range interesting for nuclear spectroscopy, from
10 keV to 10 MeV (Fig. 1.9). The interaction mechanisms of photons in a solid state
detector are restricted to photoelectric absorption, Compton scattering, electron-positron
pair production and Rayleigh scattering. The relevance of each interaction mechanism
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Figure 1.8: Path of the γ ray inside the detector reconstructed by tracking.

as a function of the energy is shown in Fig. 1.10. The mean free path of the photon
inside the material can be estimated in this way by the relation between the γ-ray energy
and the probability of interaction. The main interaction process in Ge for low energy
(E < 150 keV) is the photoelectric absorption. As it can be seen in Fig. 1.10, γ rays
with energy between 150 keV and 8 MeV are mainly interacting by a Compton scattering
sequence and finally, they can be completely absorbed in the detector by a photoelectric
interaction, if most of their energy has been lost in these sequence. Interaction position
and energy are parameters which are known from pulse shape analysis of the signals
corresponding to each interaction and both provide us a well defined relation between the
scattering angle and the energy deposited through the Compton scattering, as seen as
follows:

Figure 1.9: Interaction mechanism of photons with matter exploited by tracking
algorithms.

E
′

γ =
Eγ

1 +
Eγ

m0c2
(1− cosθ)

(1.5)

This relation is valid for all the Compton interactions taking place in the sequence until
the γ ray is fully absorbed by a photoelectric interaction or escapes out of the detector.
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Over few MeV, pair production becomes a significant process. In this process, for not
too energetic γ rays, the total energy of the photon minus the 2mc2 needed to create
the electron-positron pair are assumed by tracking algorithms to be deposited in the first
interaction point. Regarding the Rayleigh scattering, this is not considered in most of
tracking algorithms as there is no energy deposition. However, although its cross section
is only significant for low energies, it should be included in the calculations because the
direction of the γ ray is modified in the process.

Figure 1.10: Interaction cross sections for a γ-ray in germanium [58].

The performance of the tracking codes depends strongly on the precision of the spatial
determination of the interaction points of the scattered γ rays and, consequently, on
the quality and reliability of the PSA technique. Different codes have been developed
by the AGATA collaboration depending on the initial approach carried out to build the
tracks: Back-tracking and forward-tracking algorithms. Back-tracking starts with the
reconstruction of the interaction sequence taking as the initial point the last interaction.
It is assumed that a photoelectric absorption has taken place and then it goes back trying
to reconstruct the path of the γ ray until the initial source is reached. Codes based on this
idea have been developed by J. Van der Marel [59] and by L. Michelina [60]. Conversely,
forward-tracking codes make a clusterization of the interaction points according to their
relative angular separation in order to assign each cluster to a given γ ray. The starting
point is the emitting source and then the algorithm follows all the interactions until the
photon is fully absorbed in the detector. This approach has been followed in the MARS
Gamma Tracking code (MGT) done by D. Bazzacco [61], or in the Orsay Forward Tracking
code (OFT) developed by A. Lopez Martens [62]. However, another approaches have also
been tried like the fuzzy and the probabilistic codes.
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A comparison between the backward-tracking and forward-tracking methods has been
performed using the same Monte Carlo simulated data in order to clarify which is the
best approach for the tracking code [63]. The forward-tracking algorithm has shown
to be more efficient and to give a better P/T value than the back-tracking algorithm
for all incident γ-ray energies and for all event multiplicities, except in the case of high-
multiplicity rotational cascades in which the forward-tracking algorithm looses efficiency at
low energy because of summing. Once here, the AGATA collaboration has been decided to
use this kind of approach. MGT and OFT are very similar. The main differences between
them are related to the thresholds considered for the different process: OFT considers
photoelectric effect till 600 keV while MGT takes it into account till 1 MeV. MGT has
better capabilities than OFT related to peak efficiency and P/T but it is less sensible to the
emission point, therefore it cannot be used to perform background rejection. Currently,
the OFT is being used by the collaboration, but still efforts are ongoing to improve the
performances of the code.

Let us describe a typical forward algorithm in deep. The structure of these algorithms
is the following:

• clusterization process

• reconstruction of the trajectories

• validation by means of a figure of merit

For the clusterization, two criteria are used: the Link and the Leader algorithms. In the
first one, all the interaction points with an angular distance among them lower than a fixed
value belong to the same cluster. In the second approach, the angular distance is evaluated
respect to a reference interaction point. The Link algorithm gives better results for the
efficiency and the P/T ratio for low multiplicity events but with high multiplicity the
Leader algorithm shows a better response. Once the clusterization is done, the interaction
points are randomly ordered in a scattering sequence having as starting point the position
of the source. The energy of each γ ray, before each interaction, is calculated by adding
the energies of the clustered points which is true only when the photon is fully absorbed.
A complex figure of merit is used to evaluate the success of the process which includes
weighting factors for the number of interaction points in the sequence, for the clusterization
algorithm used and for the spatial isolation of the cluster related to other interaction
points. The figure of merit also considers different contributions of the interactions related
to their position in the sequence, as the energy deposited in the last interactions is lower
and, therefore, the uncertainty in the position resolution is higher. In case of photoelectric
interaction, the cluster contains only one interaction point and it should be distinguished
from events in which the photon interacts once escapes from the detector. The figure of
merit is calculated in terms of the mean free path of γ rays in Ge detectors and of the
photoelectric probability. When a cluster of energy higher than 1,022 keV is found, the
algorithm checks if there is any point belonging to the cluster with energy E = E0−1, 022
and if there are two sub-clusters inside with energy equal to 511 keV. If both conditions
are fulfilled, a pair production event is assumed and a new figure of merit is calculated.

The values obtained with this figure of merit are compared with a threshold to
determine whether the events have been well reconstructed or whether they should be
rejected. The performance of the algorithm depends on the chosen values for the threshold.
If low values are chosen, it can be assured that only good events have been reconstructed,
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but also good events having high uncertainties on position and energy can be rejected
as they give high values for the figure of merit. On the other hand, if high values are
considered for the threshold, bad events can be considered as good ones, so a compromise
between these values has to be adopted. Finally, the algorithm tries to recover some of the
wrongly identified clusters. For example, one type of incorrectly identified cluster comes
from a single γ ray being separated into two clusters. This γ ray can be correctly identified
by tracking putting together all pairs of bad clusters. When the result gives a small χ2,
the γ ray is recovered by adding the two clusters. The clusters which do not satisfy any
of the above criteria are rejected.

1.3 The Advanced GAmma Tracking Array (AGATA)

The Advanced GAmma Tracking Array, referred to by AGATA, is a highly segmented
γ-spectroscopy system developed by an European collaboration [42–44]. The project
was proposed in 1996 and after 12 years, the first commissioning tests were performed
successfully at the LNL (Italy).

The design goals for the array have been the following:

• efficiency larger than 40% for events with γ-ray multiplicity 1 and larger than 25%
for multiplicity 30;

• peak-to-total ratio around 60% for multiplicity 1;

• high granularity to minimize the probability of multiple hits in the same segment
even for high γ-multiplicity events and to improve the Doppler correction.

• position resolution better than 5 mm FWHM for the single interaction point;

• capability to run at high counting rates up to 50 kHz for each germanium detector,
either because of high radioactivity or because of high beam intensities;

• large free space to host ancillary detectors.

• capability to measure accurately the angular distribution and polarization of γ rays
which is provided by the tracking process.

1.3.1 Setup design

Several options for the design of the spectrometer have been investigated by the
collaboration, always having in mind a close-packed 4π geometry. The final design has
been chosen using a Monte Carlo code based on GEANT4 which simulates the interaction
of γ rays in the detector and allows inclusion of realistic shapes and passive materials [61].
The chosen geometry, shown in Fig. 1.11, is based on tiling the sphere with one hundred
and eighty hexagons. The one hundred and eighty crystals are grouped into sixty identical
triple clusters; each of them with three Ge detectors. In this configuration three slightly
different shapes are required to maximize the solid angle coverage (blue, green and red
crystals). The main characteristics of the geometry are summarized in Table 1.1.

As it has been discussed previously, in order to exploit PSA techniques achieving
high position accuracy as required for γ tracking, the HPGe crystals should be highly
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Figure 1.11: Geometrical configuration of the AGATA spectrometer obtained by Monte
Carlo simulations. Green, blue and red colors correspond to the three different crystal
shapes.

Table 1.1: Characteristics of the geometry of the AGATA array [43].

Number of crystals shapes 3
Number of clusters 60

Solid angle coverage (%) 82
Mass Ge (Kg) 362

Crystal face to center distance (cm) 23.1
Number of electronic channels 6660

segmented. A 36-fold segmentation with the outer contact divided into six azimuthal and
six longitudinal segments which provide thirty six electronically independent outputs, plus
the one from the core has been chosen for the coaxial Ge crystals in order to get a precision
of few millimeters. The crystals have a length of 9 cm and an initial diameter before
shaping of 8 cm. In order to fit into the 4π ball, the cylindrical crystals are tapered to form
a hexagonal geometry at the front of the crystal with an approximated 8º tapering angle.
A schematic view of the capsule is shown in Fig. 1.12. The detectors are located inside
a 0.5 mm thick aluminum housing, with an internal distance between the crystal surface
and the aluminum of 0.5 mm, instead of the 5 mm distance used in conventional detectors,
such as EUROBALL or MINIBALL. In this way, the detector vacuum is separated from
the cryostat vacuum and the capsules can be packed in a common cryostat Fig. 1.13.

The first stage of AGATA, the so-called ”The Demonstrator”, is currently working
at LNL (INFN, Italy) (Fig. 1.14). It consists on a sub-array of five triple cluster
modules, therefore with fifteen capsules. It is powerful by itself comprising the detectors,
the electronics, the acquisition system an all associated infrastructure developed for the
full AGATA. At the AGATA detector-to-target distance of 23.5 cm, which corresponds to
the nominal position, the Demonstrator has an efficiency of 3% at 1.3 MeV for multiplicity
1 and 2% for multiplicity 30.
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Figure 1.12: Schematic draw of an AGATA capsule with its segmentation.

Figure 1.13: Detailed view of the AGATA capsule with its preamplifier.

1.3.2 Data acquisition system and electronics

The AGATA array requires a significant development in digital electronics and the
associated data acquisition system to process the signals from the Ge detectors. The
full system has to deal with 6600 channels and a possible rate up to 50 kHz for each
detector. This causes an extremely high data flux which is too large to be stored and
which has, therefore, to be analyzed in real time in order to extract the useful physical
information. This is done by the Data Acquisition System (DAQ) shown in Fig. 1.15
[44,64].

The whole set of thirty seven charge pulses from each detector in the array have to be
digitized and stored. The electronics principle of AGATA is to sample these outputs with
fast ADC’s to preserve the full signal information in a clean environment so that accurate
energy, time and position can be extracted. From a technical point of view, the Data
Acquisition System (DAQ) considers the complete array as an aggregation of individual
crystals, where data are synchronously stored and time tagged by the Global Trigger
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Figure 1.14: View of the current AGATA stage: The Demonstrator.

System (GTS). For this reason, the data flow for each detector starts from the digitizers
for each detector channel to the PSA farm, where the position of the γ-ray interactions is
estimated (Fig. 1.16).

The model for the AGATA readout, shown in Fig. 1.16, is composed by two types of
trigger: a local trigger signal which generates a signal by using the central core contact
of each detector and an external global trigger which generates the validation from the
central trigger processor. This processor shares a global time reference supplied by the
GTS system, which is distributed through an optical fiber network.

The main components of the electronics are described in the following paragraphs.
The preamplifiers are the only analog part in the whole electronics and constitutes the
real front-end electronics of the apparatus. They can simultaneously read out the segment
and core signals of an AGATA detector through advanced charge–sensitive resistive feed-
back preamplifiers. There are two parts in the preamplifier stage. The cold part is
located close to the detector electrodes, at cryogenic temperatures, where a Field Effect
Transistor (FET) coupled with both a capacitor and a feedback resistor performs the
first amplification avoiding most of the inter-channel crosstalk. The warm part is out
of the cryostat, at room temperature, where the signal coming from the cold part is
aconditionated to be sent to the digitizer stage. After the preamplifiers, the digitizers are
the first digital electronics in the data flow and the last ones before leaving the experimental
room. They needs to be placed at a maximum distance of 5 meters to the detectors. Their
task is to digitize the preamplifier signals at 100 MHz with 14 bit ADC’s and to send them
through an optical link, by groups of six, to the preprocessing cards. Each digitizer, using
custom mechanics in a water-cooled standalone box, needs eight cards: six for segments,
one for core and one for power supply. The preprocessing system performs digital signal
processing to extract the useful information for each detected signal, i. e. energy, time
and a selection of the signals of interest made up by the segments where the interaction
has taken place. To be able to perform the requested operation in real time, which
means to analyze a sample every 10 ns, the signal-processing algorithms are implemented
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Figure 1.15: Schematic view of the DAQ of AGATA.

into powerful highly-parallel FPGA’s (Field Programmable Gate Array). These cards
transmit their outputs to the pulse processing part of the system which consists on a farm
of computers, where PSA is done.

In the AGATA scheme, the ancillary detectors can use a similar digital electronics but
can also use a classical VME-based analogue DAQ. In this case, the time correlation to
the AGATA detectors is performed by a dedicated VME module, called AGAVA, which
interfaces to the GTS system by reading its clock and time stamp, then by sending local
trigger requests and finally getting the corresponding validations.

Figure 1.16: Data flow for the AGATA readout.



Chapter 2

Conceptual design of a Ge array
with imaging capabilities for
DESPEC

2.1 The NUSTAR-FAIR facility

NUSTAR acronyms of NUclear Structure, Astrophysics and Reactions [65] is part of
the Facility for Antiproton and Ion Research (FAIR) [66] devoted to Nuclear Physics
experiments to be performed with the exotic beams produced with the Super-FRS
fragment separator, which constitutes one of the pillars of the FAIR scientific program.
NUSTAR is composed by several projects which cover the fundamental aspects arisen
nowadays on the nuclear structure investigation. The two parts of NUSTAR that
are relevant for this work are the experiments HISPEC, from HIgh-Resolution In-flight
SPECtroscopy [67,68], and DESPEC, from DEcay SPECtroscopy [68]. Before going into
a detailed description of the experimental requirements of these sub-projects, a short
description of the core instrument of NUSTAR, which is the fragment separator Super-
FRS, is necessary.

The Super-FRS is a large-acceptance superconducting fragment separator [69]. It
will be the most powerful in-flight separator for exotic nuclei at relativistic energies.
Rare isotopes of all elements up to uranium can be produced with a spatial separation
within some hundred nanoseconds, thus very short-lived nuclei can be studied efficiently.
Comparing to the actual FRS [70], the momentum and angular acceptance have
been increased, as it is shown in Table 2.1. The FRS was designed for the
production and separation of projectile fragments. Transmissions from 20% to 70%
are achieved depending on the mass region, but only about 1%-2% is obtained for
the transmission of fission fragments. The high interest of fission fragments as
radioactive secondary beams has promoted to solve this problem increasing the Super-
FRS phase space. The ion-optical resolving power has been preserved to guarantee
the separation quality and the momentum resolution for the spectrometer option.
The separation method of the Super-FRS is based in a dipole-∆E-dipole scheme
like the present FRS [70], i.e. a two-fold magnetic rigidity analysis before and
after a thick energy degrader providing spatially separated isotopic fragment beams.



24 Conceptual design of a Ge array with imaging capabilities for DESPEC

Table 2.1: Momentum and angular acceptance of the FRS and Super-FRS [71].

Facility ∆p/p (%) ∆φx ∆φy Resolution

FRS (Bρmax = 18 Tm) ±1% ± 13 mrad ± 13 mrad 1500 (20π mm mrad)
Super-FRS (Bρmax = 20 Tm) ±2.5% ± 40 mrad ± 20 mrad 1500 (40π mm mrad)

The Super-FRS magnetic system will consist of three branches connecting different
experimental areas: the Low Energy Branch, where the HISPEC and DESPEC projects
will be installed; the High Energy Branch, where complete kinematic reaction studies will
be performed; and the Ring Branch, where a novelty will be electron scattering from exotic
nuclei in the eA collide section.

The secondary beam production in the Super-FRS will be made, as it was at FRS,
through what is known as the in-flight technique [72]. It performs the separation of
the reaction products taking advantage of the reaction inverse kinematics. The fragment
separator acts as an spectrometer separating through magnetic fields, as well as energy
degraders, to select specific isotopes depending on their magnetic rigidity and Z. Z
identification is performed measuring ∆E with ionization chambers.

Since the primary beam is made of relativistic heavy ions, the radioactive ion beam
production target can be relatively thick, increasing the secondary beam sensitivity. At
each experiment the target thickness is determined by the energy loss, the secondary
reaction, the already produced radioactive ions and the straggling within the target. This
method can be employed for short lived nuclei (µs) as the time from the production
to the detection stage, the TOF, is in the range of hundred of nanoseconds. The in-
flight production technique allows to reach extremely exotic nuclear species. However,
the drawback of the in-flight production is the high background due to the interaction of
the beam ions along the fragment separator elements as well as with the elements of the
own setup. One of the first experiments performed in this way was the one done by T.
Symons to observe for the first time the 28Ne and 35Al [73]. However, the real impact of
the technique arrived in 1985 with the measurements of the interaction cross sections and
radii for 6He and 11Li, showing the existence of halo nuclei [74, 75].

Depending on the measurement itself, the Super-FRS can be set to operate in two
different modes: achromatic or monochromatic mode. In the achromatic mode, the
dispersion in the position is really small, but the energy dispersion is large; therefore
in the focal plane different spots corresponding to different nuclei will appear. In the
monochromatic mode it is just the opposite: the energy dispersion is low, so, in the focal
plane, only one not well defined spot will be displayed, being the energy dispersion for a
single nuclear specie quite low.

2.1.1 The HISPEC and DESPEC experiments

HISPEC is devoted to high resolution in-flight spectroscopy by means of nuclear reactions
of the secondary beam with a target. At the HISPEC set-up [68] these kind of studies
can be carried out with both radioactive beams of intermediate energies, as delivered by
the Super-FRS, and further decelerated beams of energies around the Coulomb barrier.
Single-step Coulomb excitations and fragmentation reactions at intermediate energies as
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well as inelastic scattering, transfer reactions and fusion evaporation reactions at lower
energies will provide information about transition probabilities, single particle spectro-
scopic factors, high spin states, etc. By observing the single particle and the collective
vibrational or rotational character of the states, we can conclude about basic properties
of a nucleus such as its shape. To achieve this objective, the best tool is the high resolu-
tion γ spectrometry with Ge detectors to measure the gamma de-excitation of the levels
populated. Actually, at HISPEC the core instrument is the already described AGATA
array. In addition, beam tracking and identification detectors will be placed before and
downstream after the secondary target to reinforce the experimental performance: charged
particle detectors, a plunger, a magnetic spectrometer and other ancillary detectors.

The DESPEC project also requires a high resolution γ-ray detector array and a
substantial part of the work performed in this PhD thesis is focused to identify the best
array and the best tracking technology for DESPEC. The DESPEC experiment is devoted
to the investigation of the nuclear structure measuring the de-excitation transitions
emitted following an isomeric or radioactive α, β or more exotic decay. Decay studies
are the starting point in the investigation of exotic nuclei, since they prove the existence
of the nucleus and provide information on its decay mode and lifetime. Even with a vague
estimation of the lifetime of an isotope, basic information about its decay is extracted.
Information of the first excited states in nuclei far from stability is frequently obtained by
means of decay spectroscopy. If the number of decays is high enough, it will be possible
to do precise spectroscopy and fundamental issues as isospin symmetry in mirror nuclei
or Gamow-Teller quenching in beta decay can be studied. Fermi super-allowed transitions
in odd-odd nuclei with N=Z will be used to investigate the unitarity of the CKM matrix
of the electroweak interaction in the Standard Model. For nuclei close to the drip lines,
unusual decay modes can be expected such as beta-delayed multi neutron emission, beta-
delayed fission or even direct neutron or proton radioactivity. DESPEC also intends to
study the de-excitations of isomeric levels with lifetimes of the order or longer than the
Super-FRS TOF. In Fig. 2.1 the expected fragmentation production rates for nuclei with
half-life higher than 100 ns, the Super-FRS TOF, are shown. As we can see in this figure,
many exotic nuclear species far from stability will be reachable, in particular, for neutron-
rich nuclei. The relative low production of some species is not an un-surmountable issue
in decay spectroscopy since no secondary reactions are needed and only the implantation-
survival has to be taken into account.

The activity related to the high resolution HPGe detectors at DESPEC will follow up
the present RISING (Rare ISotopes INvestigation at GSI) setup [76,77] in its stopped beam
configuration, meanwhile HISPEC will be the continuation to its fast beam configuration.
The RISING collaboration has conducted over the last four years several campaigns of γ-
spectroscopy experiments making use of the radioactive beams produced with the SIS/FRS
facility at GSI, Darmstadt. The γ-ray detectors used in the RISING experiment are, for
the stopped beam configuration, fifteen of the cluster Ge detectors from the EUROBALL
spectrometer and, for the fast beam configuration, eight sixth-fold segmented MINIBALL
triple Ge detectors in addition to the previous setup. The RISING array is, up to now,
the most efficient γ-ray detector system coupled to an in-flight radioactive beam facility
in the world. Efficiencies of 11% for γ rays of 1.3 MeV can be reached for the stopped
beam configuration where electromagnetic decay studies of the daughter nuclei in the
radioactive disintegration, including isomeric states, are performed with beam intensities
well below 1 particle/s. For the fast beam configuration, designed to detect γ rays emitted
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Figure 2.1: Fragmentation production rates for nuclei which half life is higher than 100
ns.

by radioactive beams moving at relativistic energies, and being excited via Coulomb
excitation or via fragmentation reactions at a secondary target, efficiencies about 3%
at 1.3 MeV can be obtained. In the RISING stopped beam campaign a wide range of
isomeric states have been identified in, for example 82Nb [78], 86Tc [79] and 204Pt [80]. In
the fast beam configuration, intermediate energy Coulomb excitation was used to measure
shape co-existence in 134Ce and 136Nd [81] or the reduced probability transition (B(E2:
0+ → 2+)) in the neutron-rich 56Cr and 58Cr [82].

Limitations imposed by the setup are related to the large Doppler effects and to the
background caused by atomic processes and unwanted nuclear interactions. The main
atomic radiation contributing to this background are K-and-L-shell X rays from ionized
target atoms, radiative electron capture of the target electrons into the projectile K and/or
L shells, primary bremsstrahlung from target electrons produced by the collisions with the
projectile, secondary bremsstrahlung from energetic knock-out electrons which re-scatter
in the target and/or the surrounding material [83–85]. The atomic cross-sections of all
these processes depend strongly on the atomic number of projectile and target. Based on
experimental results, a limitation on the energy of the incident beam of 100 A MeV has
been imposed for γ rays lower than 400 keV.

The Ge array required for the DESPEC experiment needs to have high efficiency and
granularity to deal with the background originated in relativistic heavy-ion reactions.
Higher the granularity of the Ge array, better the resolving power, diminishing the risk for
the detector to get blind by the flash of particles coming in the implantation. Moreover,
the granularity is directly related to the possibility of measure isomers with short half life;
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as the granularity increases, the position can be better determined and, therefore, as it
will be shown later, the quality of imaging to associate the emission with the isomer also
increases. Overall, the best experimental situation is obtained when the origin of the γ ray
can be determined because in this case tracking can be improved. This is one of the main
reason to develop a highly segmented Ge array based on planar detectors as being those
with highest position resolution. The successful correlation of the implanted ion and its
emission will allow to reach higher implantation rates by measuring coincidences. Besides,
the emission position information will give access to the analysis of γ-ray polarization and
angular correlations; without forgetting, as mentioned previously, that tracking will also
contribute to the decreasing of the background values.

The initial concept for the DESPEC high resolution setup is shown in Fig. 2.2 and it
is constituted by the following building blocks:

• An implantation Double Side Silicon Detector (DSSD) called AIDA (Advanced
Implantation Detector Array) [86], which acts as an active stopper and whose aim
is to identify the implantation position of the ions and to detect the charged signal
of the decay, therefore, α, β and β+ particles.

• the high granularity Ge detector for γ-ray spectroscopy and

• the neutron detector [87].

Besides, it is foreseen to use fast LaBr detectors, a total absorption spectrometer and
additional detectors for g-factor and quadrupole moment measurements.

Figure 2.2: Schematic view of the main components of DESPEC [88].

The implantation of the ions in AIDA before the decay will be a common feature in
most of the experiments planned for DESPEC. An important requirement for AIDA is
the high pixelation, necessary to unequivocally correlate implantation signals with signals
following the decay process in AIDA or any other detector of the setup. To achieve these
objectives, AIDA will use large area double-sided silicon strip detectors (DSSSD) and a
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specific integrated circuit (ASIC) for the analogue treatment of the signals. The Ge array,
surrounding the implantation detector in a flexible geometry is the basis of this set up.
In addition, the neutron detector will be placed surrounding both the Ge detector and
AIDA. Complementary, g-factor and quadrupole moments measurements are expected to
be performed if the final design of the Ge array does allow it.

2.2 From tracking to imaging arrays

Currently available gamma tracking algorithms developed for multidetector arrays such
as AGATA [63,89] and GRETA [90,91] show a limited sensitivity to determine the origin
of the radiation. Nevertheless, a condition on the γ-ray origin would help to reduce the
background, specially in isomer-decay spectroscopy. For this reason, the application of
Compton imaging to nuclear structure experiments is under development. The concept of
Compton imaging was first introduced about 30 years ago by Todd for nuclear medicine [92]
and by Schoenfelder for astrophysical applications [93]. However, only recent developments
in three-dimensional position-sensitive HPGe detectors and improvements in electronics
provide the basis to achieve an imaging system with high resolution γ-ray detectors [94,95].
In our case, Compton imaging serves to reconstruct the emission point of the γ rays
in the implantation plane and, therefore, to identify the position of the source. For
stopped beam measurements, such as isomeric decay or g-factor determinations, where the
secondary beam is slowed down in an active stopper, imaging would increase the overall
efficiency identifying the origin of the photons and, therefore, giving the implantation
position. Then, with this technique, it is also possible to distinguish γ rays emitted by the
source from those originated outside, providing a new method to reduce the experimental
background which is critical in experiments with broad time conditions.

Let us shortly see the fundamentals of imaging. Let us think in a photon which
enters in a detector and interacts via Compton scattering until it is finally absorbed by a
photoelectric effect. Through the Compton scattering formula it is possible to calculate
the angle of the incident γ ray by measuring the first and the second interaction points.
Both the deposited energy in the first interaction and the energy of the incident γ ray
determine the scattering angle.

cosθc = 1−
(Eγ − E

′

γ)mc2

E
′

γEγ
(2.1)

If the direction of the Compton-scattered electron is not measured, it is not possible to
determine the scattering plane and, therefore, it is only possible to deduce the position of
the source as being within the intersection of a cone with the plane containing the source
(Fig. 2.3). The symmetry axis of the cone is determined by the position of the two first
interactions and the opening angle is given by the Compton scattering angle of the first
interaction. By analyzing the superpositions of the cones obtained for different γ rays, the
source distribution is reconstructed.

The quality of imaging with Ge detectors depends on the reduction of uncertainties
induced by both the opening angle and the symmetry axis of the cone. The uncertainty
due to the opening angle is caused directly by two effects: the energy resolution and the
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Figure 2.3: Schematic view of the imaging process.

Compton profile. The scattering angle, as it has been mentioned before, is obtained by
the Klein-Nishina formula, therefore, it clearly depends on the detector energy resolution.
This formula is obtained assuming that the scattered electron is free at rest but in reality
it is bound and it has a finite momentum whose distribution is called Compton profile.
Because of this momentum distribution, the scattered electron energy will depend not
only on the scattering angle but also on the initial momentum, resulting in an inaccuracy
in the γ scattering angle determination if the standard Compton formula is used. More
details can be found in the work of Y. Du and collaborators [96], where it is shown that the
effect of the Compton profile can be even larger than the one due to the energy resolution.
On the other hand, the position resolution obtained with PSA techniques is affecting the
determination of the two interaction points position and, therefore, the determination of
the cone axis which indirectly also affects the angle determination.

In order to evaluate the influence of the different factors on the imaging performance
with Ge coaxial detectors, a comparison of energy, position and Compton profile derived
uncertainties has been made [97]. The test was performed at the Laboratori Nazionali di
Legnaro using a 60Co radioactive source positioned at 1 m from the AGATA prototype
detector S#001. The intrinsic energy resolution of the detector is a function of the energy
with the following shape:

FWHM =
√
a+ bE (2.2)

assuming respectively 1.0 keV and 2.3 keV at 122 keV and 1,332 keV photon energies,
respectively. Regarding position uncertainty an energy-dependent position resolution was
considered which produces 5 mm FWHM for 1,332 keV photons. The contribution of the
Compton profile to the overall uncertainty was taken from ref. [98]. This study concluded
that the most important source of uncertainty is the position resolution, so PSA techniques
are the key to do imaging.

It is well known that position resolution is considerable better in planar Ge detec-
tors [99,100] than in coaxial ones [101]. Because of this fact, currently, tracking and imag-
ing capabilities of planar detectors are investigated. The use of planar detectors was al-
ready explored during the preparatory phase of AGATA [102,103] but the production tech-
nology of planar detectors limited the thickness by < 2 cm. Although, nowadays, thicker
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planar crystals can be produced, to achieve a good enough efficiency, these γ-tracking
arrays should be built based on stacks of planar detectors, each of them with a highly
pixeled electrode or with opposites electrodes pixeled in perpendicular bands. However,
the main difficulty remains regarding the use of planar detectors: the guard ring on the
crystal edge creates a dead layer which makes the solid angle and efficiency to depend on
its thickness. Furthermore, the high pixelation leads to a large number of channels, one
per electric segment.

2.3 Basic requirements of the Ge array for DESPEC

Let us fix some ideas already mentioned before starting the description of the study
performed in this work to obtain the most reliable design for the DESPEC Ge array.
According to the requirements of the experiment, considering the low production of the
species of interest and the high background of the setup, the specifications of the Ge array
for DESPEC have to fulfill what follows:

• High efficiency,

• high granularity and

• good position and energy resolution to perform tracking and imaging.

Regarding the latter, tracking is needed to improve the peak-to-total ratio by adding
events corresponding to the same track. A further reduction of the background comes
when tracking is able to distinguish not fully absorbed γ rays. Imaging would increase the
overall efficiency of the experiment by means of helping to find the origin of the emitted
γ ray in the implantation position, which also would achieve a further reduction of the
background coming from external sources.

High granularity is needed in order to avoid the lost of efficiency due to the flash in the
implantation reaction. This flash is related to the implantation of high energy ions in the
Si-DSSD at the focal plane. When the granularity increases, the probability of measuring
the γ rays emitted in the decay is higher because the signals coming from the interference
of the flash can be separated from the signals of interest.

On this basis, the most suitable approach considered by the collaboration for the
Ge array is based on planar detectors. The technical proposal (Fig. 2.4) for this Ge
detector array [68] foresees a setup of twenty four stacks, with three planar detectors
each one, placed surrounding a 24*8 cm2 focal plane where AIDA, the Si-DSSD
system, will be located. Nowadays tracking feasibility has been studied only for coaxial
detectors [59, 63, 91]. Therefore, our study with planar detectors would be useful to get
information about this promising application. The first stage of the study has been done
through Monte Carlo simulations to get the optimum geometrical design of the setup
attending to efficiencies and P/T.

2.4 MC simulations with the Geant4 toolkit

The best method to optimize the specifications regarding mainly the geometry of a γ-
spectroscopy system is the Monte Carlo simulation technique. Monte Carlo (MC) methods
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Figure 2.4: Current technical proposal for DESPEC based on planar detectors [104].

were introduced by Fermi, Ulam, Von Neuman and Metropolis during the Manhattan
project in 1943 for neutron transportation calculation. The MC approach provides a
method to solve probabilistic problems, where analytical calculations are very complex,
in order to obtain an approximate value for the solution [105]. Therefore, this method
is a good way to describe the behavior of particles because the interaction of particles
with matter is governed by probability distributions. This procedure reproduces the
behavior of both, systems and physics process through probability distributions of random
numbers [106]. The sequence of numbers used for the calculations is not random itself
because it is generated by algebraic algorithms. So MC method works with pseudo-random
numbers. Nevertheless, they almost have the same properties as random numbers. The
sequence can start in a specific point as well as in a random way. The first option is useful
for testing the codes because in this case all calculations should give the same value. The
second one is the right one to obtain the simulated results because contains the statistical
fluctuations, proper of the interaction processes, which arises when the MC simulation run
more than once. Otherwise, several runs make the results to improve. MC simulations
are highly useful to solve problems in complex experimental conditions, for example with
multiple detectors.

In a Particle and Nuclear Physics context, the MC simulation of an experiment means,
by one hand, the generation of the particles produced in a reaction or in a decay and,
on the other hand, the particle transportation into the matter, including the detection
systems, based on the interaction probabilities in the different mediums. At present the
most complete toolkit for the simulation of Nuclear and Particle Physics experiments is
Geant4. GEANT, acronym of GEometry ANd Tracking, is a tool with several versions.
Up to Geant3 they were developed at CERN in Fortran language. But since 1994 is
being developed and maintained by an international collaboration as an extended and
improved C++ version. Nowadays, Geant4 is free access and its documentation, user
manual, database, etc. can be downloaded of its web page [107,108].

The first step to perform a simulation is the implementation of the system geometry.
It should be described with the dimensions, shapes and materials of which is composed, in
the DetectorConstruction class. A complete design of the geometry can be implemented
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to reproduce with high precision the detectors used for the experiment. Once the geometry
is defined, the particles should be generated in a random way which involves to create an
event. This is done specifying the properties and type of the particles that will be thrown
by the PrimaryGenerator class and controlling the information at event level in the
EventAction class. The part of the code which checks the run of all the sequences of events
is the RunAction class. After the particle is generated, it travels through the implemented
geometry until an interaction happens. The distance between two consecutive interactions
is the step, the object in which the elemental information for the transport of the particle
through the material is contained.

To determine which interaction takes place, different aspects are considered. First of
all, Geant4 makes a classification of processes attending to the step:

• PostStep Processes: when they take place once the step has finished (i.e. Compton
effect).

• AlongStep Processes: when occurring while the step is happening (i.e. Ionization).

• AtRest Processes: when taking place once the step has finished and the particle is
at rest (i.e. Decay).

The processes included in the simulation, which are classified within the three types
mentioned above, are chosen by the user, being possible a combination of different types;
i.e. bremsstrahlung can be considered as PostStep and AlongStep. Once the processes are
selected from the Geant4 package, they are available for each interaction. Two methods
are applied in this case: IsApplicable and GetMeanFreePath. The first one evaluates
for the generated particle what processes can be applied. When a process is accepted the
second method makes the calculation of the mean free path (λ) as a function of its cross
sections. The cross sections are taken from experimental databases: EADL (Evaluated
Atomic Data Library) [109], EEDL (Evaluated Electrons Data Library) [110] and EPDL97
(Evaluated Photons Data Library) [111]. Geant4 chooses as right process the one with
smaller λ once is weighted by using a certain random distribution. Once the process is
determined, the probabilities are updated for the next interaction. At the same time
the properties of the particle (kinetic energy, position and time) are also updated. For
our particular case, γ rays are the initial particles. When photons interact with matter,
electrons and positrons are produced having to be also considered. For our range of energy,
low-energy electromagnetic processes should be used. The processes defined in the low-
energy electromagnetic package are valid in a range from 250 eV to 100 GeV. Processes
not defined here, as being not properly low energy processes such as electron/positron
annihilation, are taken from the Standard electromagnetic package.

The processes considered in our simulations have been the following: related to γ rays,
pair production, Compton scattering, photoelectric absorption and Rayleigh effect; and for
light charged particles, ionization, bremsstrahlung and multiple scattering. When the light
charged particle is a positron, positron-annihilation is also considered. Once the tracked
particle suffers an interaction it can disappear, create a new particle or simply change
its kinematic. The trajectory of the particle is followed until it disappears or becomes at
rest, or keeps a small energy, below a threshold, that is considered to be absorbed in the
last interaction. This lower energy limit is established in the code in terms of a length
value, the step length, and converted directly to an energy value. The useful information
regarding the interaction happened is generated at the step level. After each interaction
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the response of the detector is obtained and information like energy deposited, position,
momentum, time, secondary particles generated, etc can be extracted. The control of the
information is made by the SteppingAction class. It is directly related to the Hit class,
where the interactions are stored, and to the SensitiveDetector class, where the detector
itself is declared as sensible. Regarding the visualization of the implemented geometry, as
well as the physical events occurred, different displays can be used. In our particular case,
the vrml viewer has been used.

Geant4 has been widely validated for photons and low-energy electromagnetic
processes, the expected processes for DESPEC where γ rays emitted in a range from
10 keV to 10 MeV are foreseen [112–114]. Once it is assured that the results provided by
Geant4 are good enough, the toolkit can be safely employed to determine the response of
a Ge detection system designed for photon measurements. In our particular case, we need
to perform a study which leads us to determine the more suitable characteristics of a Ge
detection system made by planar detectors, placed surrounding a rectangular focal plane,
to obtain maximum values for the efficiency and for the P/T ratio.

Regarding efficiency, two performance figures are of interest for each given energy, i.e.
the total efficiency that gives us the number of γ rays that have interacted in the detector
and the peak efficiency that corresponds to the number of γ rays completely absorbed in
the detector. In both cases, values are related to the total number of γ rays emitted by
the source. Besides peak efficiency, the performance of the detector is evaluated in terms
of the P/T ratio, number of γ rays completely absorbed with respect to the number of γ
rays detected at a certain energy which corresponds to the ratio between peak and total
efficiency. Obviously the highest the performance the better the spectroscopy system.
Furthermore, this parameter (P/T) is directly related to the sensitivity of the system
because it shows an implicit relation between the peak and the background in the spectrum.
Higher the P/T, higher the area of the peak respect to the number of total counts. A
variation on this value because of the geometry means an improvement on the probability
to detect γ rays completely absorbed and so a better response of the system.

2.5 Performance study of the DESPEC Ge array

The starting point of the present study is the technical proposal for the DESPEC
experiment. The Ge array described in this proposal consists on a system made by twenty
four stacks, each one with three Germanium Double Sided Strip detectors (Ge-DSSD’s)
of 72*72*22 mm3. Therefore, in total, the complete system is composed by seventy two
crystals (see Fig. 2.4). A Ge-DSSD is characterized by a large number of electronic channels
because its opposite surfaces are electrically segmented. In our case, a segmentation in
eight strips giving sixty-four sensitive pixels has been chosen to determine the position
interaction.

The twenty four stacks are placed surrounding AIDA, the implantation detector of
the experiment. AIDA is a Double Sided Stripped Silicon Detector (DSSSD) of 24*8 cm2

area. As a first stage in the simulations, AIDA has not been considered and a vacuum
focal plane, where photons coming from the decay are generated, has been implemented.
Each stack is a rectangular box of an AlMgSi alloy (98% of Al, 1% of Si and 1% of Mg)
with dimensions 93*101*122,5 mm3. Inside this housing the Ge crystals are placed, each
one with its own support made of the same previously defined alloy. Besides, stack housing
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works also as a cryostat to keep the detectors at an optimum temperature, the one of the
liquid nitrogen. The individual support of the crystals together with its inner elements
are shown in Fig. 2.5. On one hand, the support (grey in the figure) is shown with the
empty space needed for the Printed Circuit Boards (PCB’s). On the other hand, one can
see in the figure the Ge crystal in blue, some pieces to fix the crystal to the housing in
dark blue, and, finally, the electronics (green area). This picture corresponds to the design
in development at GSI (Germany).

For all simulations performed, the same energy range has been considered: from 100
keV to 8 MeV. In particular, photons with energies of 100 keV, 250 keV, 500 keV, 1 MeV,
2 MeV, 5 MeV and 8 MeV have been simulated. Within this range, most values of γ-ray
energies produced in the experiments proposed for DESPEC are covered. A maximum
energy of 8 MeV has been selected as a sensible limit for γ rays emitted following β-
decay processes with the largest Q values. The simulations have been performed with
multiplicity one (M = 1). Therefore one event corresponds with one γ ray at a certain
energy. To obtain results with enough statistic, 100.000 events have been used by default.

Figure 2.5: Detailed view of the Ge crystal with its support.

The first step to investigate the technical proposal performance is done studying the
effect of the crystal parameters on the detector capabilities, taking as fixed parameters the
guard ring of the crystals as 5 mm and the distance between crystals in one stack as 7 mm.
The electric contacts, placed in the opposite surfaces of the Ge-DSSD, have been taken
into account in the simulations. At present this parameter is not fixed because the contacts
that will be used are not already defined. The typical Ge detector contact size is of the
order of µm and so, the worst, although unrealistic, case has been simulated to check its
influence in the results. Several configurations including different Al2O3 contact thickness,
ranging from 0.1 mm to 1 mm, as well as a shield between two adjacent crystals to avoid
crosstalk, were simulated. The obtained results show that the total efficiency is almost
equal, about 35% at 1.3 MeV, for all studied cases; but the peak efficiency decreases from
7.5% to 5% at 1.3 MeV when the material surrounding the active Ge is increased, so the
P/T ratio is also worsen going from 21% to 15% in the most unfavorable case. Therefore
0.1 mm for the Al2O3 contact thickness and no isolated crystals have been considered as
starting point for the rest of studies.
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The most important factor determining the efficiency of a system is the amount of
active Ge material. Two different issues are directly contributing to the reduction of this
material in Ge planar detectors. The first one is the guard ring which is produced by
the segmentation made in the own crystal to avoid border effects when an electric field
is applied. The thickness of the lost material, which is Ge, has been included in the
simulation by a variable parameter ranging from 3 to 5 mm, although 5 mm is a more
realistic value. The second effect is related to the dead layers which can be produced in the
upper and lower surfaces of the Ge crystal due to the contribution of the electric contacts
employed in the system design. As it has been mentioned before, the characteristics of the
contacts have not been defined yet, so it is not possible to determine the amount of lost
material by this effect. Nevertheless, the expected thickness of the dead layers should not
be too high as nowadays most of the manufactures employs the thin contact technology,
getting contacts about few µm by means of Li contacts in planar detectors.

Another important parameter affecting the performance of the array is the distance
between the crystals inside each stack. With the current design, this value ranges from 7
to 10 mm: 7 mm in case all the individual housing are as close as possible and 10 mm in
case of maximum separation.

To study how these two parameters: guard ring thickness and crystal-crystal distance,
affect the basic capabilities of the system, simulations have been performed to calculate
peak and total efficiencies, so obtaining also P/T ratios, changing their values between
the limits above established. Specifically three different simulations have been performed:
the first one, with 5 mm guard ring thickness and 7 mm distance (SIM1); the second one,
with 3 mm thickness and 7 mm distance (SIM2); and the last one, with 5 mm thickness
and 10 mm distance (SIM3). The results are shown in Table 2.2 for γ rays of 1,332 keV.

The results of these MC simulations have been used to fix optimal values in the crystal
and in the cryostat because of their influence in the global performance of the full DESPEC
array. From our study it could be concluded that the separation between crystals is not
a critical parameter as is shown by the P/T value (Table 2.2) but guard ring thickness
does it because it is directly related to the amount of active Ge and, therefore, when it
decreases the capabilities of the system improve. However, the thickness has to be fixed at
5 mm because nowadays it seems the only realistic value. This parameter plays a decisive
role in the design of the system and, therefore, a compromise to get the minimum value
should be considered as long as the electric signal generation is not affected because of the
field distortion effects in the borders.

Table 2.2: Total efficiency (εT ), peak efficiency (εp) and P/T values corresponding to
photons of 1,332 keV for the different configurations. SIM1 corresponds to 5 mm guard
ring thickness and 7 mm distance between crystals, SIM2 is 3 mm and 7 mm and SIM3 is
5 mm and 10 mm, respectively.

Configuration εT (%) εp (%) P/T (%)

SIM1 35.86 7.51 20.94
SIM2 38.77 9.40 24.24
SIM3 36.32 7.72 21.26
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To determine the influence of the contact dead layer thickness on the performance of
the system, simulations have been performed modifying this value from 0 to 2 mm, each
0.5 mm. As it is shown in Table 2.3, the thickness which depends on the type of contact
used for the detector has a high impact in the performance of the array. As it has been
mentioned above, we expect to use thin contacts, so, from now in advance their thickness
has been fixed to zero in the simulations as in ideal conditions, although some material
will be lost inevitably. In Fig. 2.6, one can see the peak efficiencies corresponding to
the different emission points within the AIDA plane, which have been obtained with the
optimized values for the technical proposal configuration.

Figure 2.6: Peak efficiency (εp) of the technical proposal for 1,332 keV γ rays.

Once the effects of the individual stacks on the capabilities of the detection system
have been studied and optimized but realistic values have been chosen, the next step
is related to study different possible geometries adapted to the requirements of the γ-
detection system with the ideas arisen within the DESPEC collaboration. From now on
an approach to the AIDA setup has been considered. It consists on three silicon layers
of 240*80*1 mm3, separated 3 mm, placed in the center of the array. The central slide
is divided in one hundred ninety two 1 cm2 pixels and the photons are thrown from the
center of each pixel so one hundred ninety two different emission positions are considered,
positions which have an associate efficiency as we can see in Fig. 2.6.

In the previous simulations, it was already noticed the efficiency loss because of the
use of square planar detectors due to the long distances between the crystals belonging
to different stacks. Therefore, configurations with large rectangular crystals were also
analyzed. Placing a long crystal instead of two squares ones makes the solid angle to
increase and, what is more important, the internal hole where γ rays are more probable
to be detected to be covered.

For the sake of clarity, in this new study the technical proposal has been called
GEDESPEC1 and the equivalent one with rectangular crystals GEDESPEC2. Both
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Table 2.3: Total efficiency (εT ), peak efficiency (εp) and P/T values at 1,332 keV for
different dead layer thickness.

Dead Layer thickness (mm) εT (%) εp (%) P/T (%)

0.0 35.86 7.51 20.94
0.5 34.38 6.75 19.63
1.0 34.73 5.38 15.49
1.5 33.01 4.98 15.09
2.0 31.68 4.53 14.30

geometries shown in Fig. 2.7, have the same Ge volume but for GEDESPEC2 the crystals
are 74*22*138 mm3 and so, some distances have changed, as the housing or the stack
dimensions. In GEDESPEC2 only twelve stacks are needed, instead of the twenty four
we have in GEDESPEC1, thus the number of crystals goes from seventy two to thirty
six although the amount of Ge is preserved. If we also reconsider the technical proposal
geometry, it seems interesting to check the effect on the efficiency of the crystals placed in
the corners of the array since they are situated further away from the emission focal plane.
Therefore, two new geometries have been implemented: one with square detectors and the
equivalent one with rectangular detectors both without the stacks placed in the corners:
their names, GEDESPEC3 and GEDESPEC4, respectively shown in Fig. 2.8. Another
alternative for the Ge system is to consider stacks made up with four rectangular Ge-DSSD
instead of three: GEDESPEC5 and GEDESPEC6 without and with corners, respectively
drawn in Fig. 2.9. In Table 2.4 the implemented configurations are summarized.

Because of the experiments proposed for DESPEC and the two operational modes of
the Super-FRS: achromatic or monochromatic, the ion implantation in the AIDA plane
will not be homogeneous. To evaluate the basic benefits for the different geometries, the
most relevant parameters are the peak efficiency and the P/T ratio, therefore, mean values
of these parameters ((εp) and (P/T )) have been calculated in a surface of 22*6 cm2 of
the AIDA central slide since in this region ions will be implanted with higher probability
(Table 2.5). Other important parameters that should be considered in the choice of the

Table 2.4: Main characteristics of the geometries under study. It should be noticed that
for GEDESPEC5 and GEDESPEC6, stacks with four crystals instead of three have been
used.

Configuration Nº of stacks Nº of crystals Crystals type

GEDESPEC1 24 72 square
GEDESPEC2 12 36 long
GEDESPEC3 16 48 square
GEDESPEC4 8 24 long
GEDESPEC5 8 32 long
GEDESPEC6 12 48 long
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Figure 2.7: Peak efficiency (εp) obtained for two of the implemented geometries for the
DESPEC Ge array: GEDESPEC1 (up) and GEDESPEC2 (bottom) at 1,332 keV. For
GEDESPEC1 one million of events have been simulated to increase statistic.
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Figure 2.8: . Peak efficiency (εp) obtained for two of the implemented geometries for the
DESPEC Ge array: GEDESPEC3 (up) and GEDESPEC4 (bottom) at 1,332 keV. For
GEDESPEC3 one million of events have been simulated to increase statistic.
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Figure 2.9: . Peak efficiency (εp) obtained for two of the implemented geometries for the
DESPEC Ge array: GEDESPEC5 (up) and GEDESPEC6 (bottom) at 1,332 keV.
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array geometry are the number of electronic channels and the amount of Ge employed in
the design, because they are directly related to the cost of the system. These values are
summarized in Table 2.6. In Table 2.5 it can be seen how the efficiency decreases when
the γ-ray energy is increased. The probability of going through the system and escaping
not depositing the total energy on the array rises when the photon energy is increased.
We observe the same behavior for the P/T ratio.

Table 2.5: Peak efficiency (εp) and P/T (P/T ) for the different configurations at three
energies. For GEDESPEC1 and GEDESPEC3 one million of events have been simulated
to increase statistic.

E = 100 keV E = 1,332 keV E = 8,000 keV

Geometry εp (%) P/T (%) εp (%) P/T (%) εp (%) P/T (%)

GEDESPEC 1 27.28 86.10 7.35 20.30 1.43 4.44
GEDESPEC 2 33.74 87.66 10.08 26.87 2.43 7.39
GEDESPEC 3 25.10 86.48 6.12 20.16 1.11 4.20
GEDESPEC 4 32.36 87.88 8.52 26.36 1.93 6.92
GEDESPEC 5 31.80 87.89 9.26 27.89 2.32 7.93
GEDESPEC 6 33.37 87.69 11.06 28.50 2.98 8.55

Table 2.6: Number of electronic channels and amount of Ge employed corresponding to
the different arrays. For the geometries based on long crystals, 16*8 strips have been
considered instead of the 8*8 used for the squares ones.

Geometry Nº of electronic channels Ge volume (cm3)

GEDESPEC 1 1,152 8,212
GEDESPEC 2 864 7,869
GEDESPEC 3 768 5,474
GEDESPEC 4 576 5,246
GEDESPEC 5 768 6,995
GEDESPEC 6 1,152 10,784

To better understand the results obtained in Table 2.5, the 1,332 keV peak efficiency
mapping for all geometries is shown in Fig. 2.7, Fig. 2.8 and Fig. 2.9. We observe how
it increases as long as we move in the implantation plane from the center to the borders.
This effect is due to photons emitted close to the edge because they travel less distance
to get the detector being more likely to be completely absorbed. It is also caused by the
fact that the active material seen by these γ rays is bigger leading to a larger solid angle
coverage.

Attending peak efficiency and P/T, GEDESPEC2, GEDESPEC4 and GEDESPEC5
are the most suitable geometries, all based on rectangular crystals, independently of the
active amount of Ge involved. It can be noticed how GEDESPEC1 is the three-crystal-
stack geometry with higher Ge volume and number of channels and so, the most expensive.
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However, its basic performance is even worse than the one of GEDESPEC4, the array in
which both parameters are minimum.

The study of the feasibility of the production of long crystals was carried out meanwhile
the conceptual design of the array was under development. Unfortunately technical
problems were found on the production of long crystals due to their impurity gradient
orientation. To get long crystals, the raw germanium crystal once grown should be cut
along the axial direction; while in square crystals, the germanium is cut perpendicular to
the axial axis. For square crystals the impurity gradient goes in the direction in which
the electric field is applied and so, an inverse potential can be applied in the contacts
to generate the depletion layer. However, for long crystals the impurities increase in the
perpendicular axis in which the electric field is applied. Therefore, is not possible to
polarize the crystal without losing a huge amount of dead material. Due to the technical
problems emerged in the manufacturing process, it has been rejected the use of long
crystals in the design of the Ge array.

2.6 Through the imaging concept with Ge-DSSD’s

In the last section different configurations considered for the DESPEC Ge array have
been explained. Globally, their characteristics in terms of peak efficiency and P/T have
resulted to be not as good as it was expected. But we did not consider whether the
different configurations studied were suitable to an imaging array or not. In Fig. 2.10
it is sketched how Compton imaging is performed in a planar detector. In this section,
we intend to analyze what characteristics a system with imaging capabilities should have.
The requirements that an imaging array should fulfill are the following:

• Good position resolution to determine the interaction positions with high precision,

• minimum source-Ge distance and, in case of an active implanter like AIDA, parallel
surfaces between AIDA and Ge array in order to decrease the area projected by the
imaging cone on AIDA, which defines the emission position,

• large separation between Ge crystals in the stacks as the distance between the
interaction points of the same γ ray is a decisive parameter in the Compton angle
uncertainty determination.

First requirement is fulfilled by any array made with Ge-DSSD’s. However, the second
one is not fulfilled by the configurations in which planar detectors surround AIDA placed
perpendicularly to the implantation plane. This is the case for all the proposals studied
previously. Therefore, an imaging array should have its detector windows parallel to the
implantation plane. The configuration which fits better to these requirements is a wall
placed in front of AIDA as seen in Fig. 2.11 because the intersection area between the
cone that defines the emission point and AIDA is smaller.

Several options have been studied but all of them have the same idea behind: detector
surfaces parallel to the AIDA plane. In the simulations, only the Ge crystals without
cryostat have been implemented, being their dimensions the same ones as those considered
previously. The guard ring thickness is 5 mm and no dead layers are considered. The
separation between crystals in both the X and Y axis is 21 mm and 10 mm in the Z axis.
These values have been applied to all simulated cases, the main difference between them
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Figure 2.10: Image reconstruction on a planar detector. The points inside the planar
detector, in blue, green and red, respectively correspond to different tracked γ rays. Each
track through its two first interaction points defines a cone, showed in the picture in its
respective color. The γ-ray origin is given by the intersection of the different cones.

is the positioning of the crystals in the different rows and how these rows are placed one
with respect each other in the total array configuration, although the first row is always
placed 18 mm distance to the central slide of AIDA. Besides, to perform a high quality
imaging a large segmentation is needed: higher the position resolution better the imaging
capabilities. Therefore, 12*12 strips instead of the 8*8 considered before, have been taking
into account. As the number of crystals employed is different, the number of electronic
channels and the amount of Ge employed is not the same for all the arrays.

In Fig. 2.12, Fig. 2.13 and Fig. 2.14 peak efficiencies of several of the implemented
geometries corresponding to 1,332 keV γ rays are shown. The results obtained for each of
them, in terms of peak efficiency, P/T, number of electronic channels and Ge volume are
shown in Table 2.7. Both peak efficiency and P/T values have the same order of magnitude
as the ones of the perpendicularly faced geometries. It means the basic capabilities of the
system not to improve attending these parameters although we gain an imaging array.
However, a main disadvantage for these configurations arises: the fact that detectors
placed after the beam line will be not working properly due to the high beam intensity
going through AIDA. These detectors will receive a large amount of background radiation
that might make them inactive and, superfluous for the array. Therefore, some empty
space should be left in front of AIDA and, consequently, the peak efficiency and the P/T
will decrease as the detectors replaced by the holes have a high influence in the performance
of the system.

Summarizing all the results obtained in the MC simulations of all the configurations
made up by realistic planar detectors, efficiency values between 5% and 11% and P/T
values between 18% and 36% could be reached. The highest efficiencies and P/T
correspond to arrays with an inaccessible number of detectors or with the currently
technically unfeasible long planar detectors, which shows that with a proposal based only
on planar detectors is not possible to get a Ge array with a basic performance substantially
better than the one of the conventional RISING array, with about 11% efficiency for the
stopped beam configuration. Even if imaging could be performed with these setups, the
low values obtained for efficiency and P/T makes senseless to achieve this capability.
Therefore, new ideas have been explored for the conceptual design of the DESPEC γ-ray
array taking the advantage of the large-efficiency AGATA array.
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Figure 2.11: Comparison between the intersected areas by the expanded cone and the
implantation plane in AIDA for both types of geometries. For the technical proposal, in
the best conditions, the intersection is about 15% of the area, while in the wall geometries,
in unfavorable conditions, this value is about 5%.
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Figure 2.12: Peak efficiency (εp) at 1,332 keV for different implemented wall geometries
of the Ge array for DESPEC.
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Figure 2.13: Peak efficiency (εp) at 1,332 keV for different implemented wall geometries
of the Ge array for DESPEC.
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Figure 2.14: Peak efficiency (εp) at 1,332 keV for different implemented wall geometries
of the Ge array for DESPEC.
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Table 2.7: Peak efficiency (εp) and P/T ratio for 1.332 keV γ rays, number of crystals
and number of electronic channels considering 12*12 strips instead of the 8*8 for the wall
configurations. It is also given the amount of Ge involved in the different configurations.

Geometry εp (%) P/T (%) Nº crystals Nº channels Ge volume (cm3)

WALL 1 5,11 18,94 36 864 4.106
WALL 2 7,92 28,95 39 936 4.448
WALL 3 6,91 26,56 34 816 3.878
WALL 4 4,65 18,79 54 1.872 6.159
WALL 5 7,85 29,05 39 936 4.448
WALL 6 10,80 36,14 78 1.872 8.896

2.7 Towards the telescope system: Ge-DSSD shell +

AGATA

It has just been shown that an array based on planar detectors does not fulfill the
capabilities needed for a Ge array for the DESPEC experiment. Now, with the idea
of optimizing human and financial resources, a new configuration has been investigated
involving AGATA, the tracking array up to now with better capabilities. AGATA, as
it has been explained, is a Ge gamma array based on the tracking concept. AGATA
is though to be shares among the main laboratories in Europe with radioactive beam
facilities. It has been planned to be in SPIRAL2 at Ganil, in FAIR at GSI and at the
LNL. Therefore, it could be available for the DESPEC experiment. When coupled with
Ge-DSSD’s we could gain a γ-ray telescope, providing the highly efficient AGATA with
imaging capabilities (Fig. 2.15). Therefore, the objective is to exploit the high efficiency
of AGATA, about 40% at 1.3 MeV, and the high position resolution of planar detectors,
about 1-2 mm [99,100] versus the 5 mm for the coaxial detectors of AGATA [101].

To check the maximum capabilities that could be obtained with a full 4π array of
DSSD’s and AGATA coaxial detectors, an ideal case has been implemented. It consists
on two shells of 2 and 9 cm thickness, the narrower one imitating the DSSD shell and the
wider one as AGATA (Fig. 2.16). The DSSD shell is centered at 12 cm of the origin of
the system, so its face is at 11 cm and the rear at 13 cm, while the AGATA shell window
is located at 24 cm. The MC results obtained for three different energies: 100, 661 and
1,332 keV are given in Table 2.8.

To analyze the effect of each shell in efficiency and P/T ratio for every energy, we select
the MC events to calculate: the global values for the whole system, referred to as AGATA
+ Ge-DSSD; the values corresponding to events with interactions just in AGATA, referred
to as AGATA; as the previous one but for interactions only in the Ge-DSSD shell, referred
to as Ge-DSSD; and, finally, aiming to isolate the most favorable cases for imaging, the
values obtained when only the first interaction happens in the Ge-DSSD shell, referred to
as AGATA + Ge-DSSD-1

At low energies, all events fully deposit their energy in the detectors, either in the
AGATA shell or in the Ge-DSSD shell or in the complete system, even for events having
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Figure 2.15: The Ge imaging telescope concept based on coupling an AGATA capsule to
a Ge-DSSD.

only the first interaction in the Ge-DSSD shell. At 661 keV if only the Ge-DSSD shell
is considered, a 52% of events suffer some interaction although just a 24% is completely
absorbed. Peak efficiency corresponding to AGATA events is higher, about 86%. If the
array is composed by both systems this value rises to 92% while if only events having
the first interaction in the Ge-DSSD shell are considered, the peak efficiency decreases
to about 33% although the P/T ratio goes to 98%. At 1,332 keV, when going from the
composed system taking into account all events to consider only those events in which

Figure 2.16: Ideal implementation of AGATA coupled to a set of Ge-DSSD. In blue, the
AGATA shell and in purple the Ge-DSSD shell. The inner part of both shells is depicted
in red. In green the trajectories of some photons of 1,332 keV thrown from the center of
the system.
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Table 2.8: Peak efficiency (εp), total efficiency (εT ) and P/T ratio at different energies
for the different implemented arrays. AGATA + Ge-DSSD corresponds to the complete
system, AGATA to the shell imitating AGATA; Ge-DSSD to the shell simulating Ge-
DSSD, and AGATA + Ge-DSSD-1 to the full array but only events having the first
interaction in Ge-DSSD have been selected for the analysis. Ten million events have
been considered to increase statistic.

Geometry Energy (keV) εp (%) εT (%) P/T (%)

AGATA + Ge-DSSD 100 100 100
AGATA 100 100 100 100
Ge-DSSD 99 99 99

AGATA + Ge-DSSD-1 99 99 100

AGATA + Ge-DSSD 92 98 93
AGATA 661 86 96 90
Ge-DSSD 24 52 46

AGATA + Ge-DSSD-1 33 34 98

AGATA + Ge-DSSD 79 94 83
AGATA 1,332 71 91 78
Ge-DSSD 14 41 33

AGATA + Ge-DSSD-1 19 20 93

we are interested, the peak and the total efficiencies decrease but the P/T value raises.
Therefore, if imaging constrains are applied, efficiency is lost but we gain in terms of
P/T and so, for experiments where the statistic is good enough, imaging can involve an
additional capability for the system.

It should be noticed that this implementation corresponds to maximum values
obtainable for two Ge shells. However, the real configuration, that will be available in
few years, will not include the 4π AGATA array and it should benefit of the advantages
of the planar detectors which are now being developed in the frame of the DESPEC
collaboration.

The configuration approved to be installed in GSI is the so-called S2’ configuration
consisting on ten triple clusters and five double clusters covering a 1π solid angle [115].
With the idea of profit about planar detectors, one configuration has been proposed to
the collaboration for the DESPEC experiment. A modified version of the AGATA code
described in [61] with a detailed geometrical implementation of the S2’ configuration has
been implemented in the simulations. A set of six planar HPGe detectors of 70*70*20 mm3

(Ge-DESPEC) placed between AIDA and the AGATA detectors has been added to the
aforementioned configuration. In the geometry implementation, a 1 mm thick aluminum
housing surrounds each planar crystal, which in its turn has a 5 mm width guard ring.
Therefore, the active area remains 60*60*20 mm3. AGATA detectors are located at the
nominal position of 23 cm from the target. However the planar array is placed as close
as possible to the emitting source, at 12 cm of the implantation plane, but always inside
the solid angle covered by the AGATA detectors. This is done for the first interaction to
have a higher probability to occur in one of the planar detectors. In Fig. 2.17 the peak
efficiency obtained for 1,332 keV γ rays for the most feasible configuration on this context
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is shown.
Peak efficiency (7,3%) as well as P/T (44%) obtained are almost the same as the

ones obtained with the S2’ configuration without the Ge-DSSD. In Fig. 2.18 the peak
efficiency for both configurations is shown. The picture on the left shows the value for
the S2’ configuration (AGATA) and the one on the right side shows the value for S2’
configuration with the set of planars (AGATA+Ge-DSSD). Therefore, in terms of these
parameters is not worth to use a complementary array of planars coupled to AGATA. The
main advantage of this setup is obtained in terms of imaging: if the first interaction takes
place in the Ge-DSSD, as it has better position resolution than AGATA, an improvement
of the quality of imaging can be achieved.

Figure 2.17: Peak efficiency (εp) for the configuration based on AGATA S2’configuration
+ Ge-DSSD. In orange and green the X and Y axis, respectively. Ten million events have
been considered to increase statistic.
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Figure 2.18: Peak efficiency (εp) for the S2’ configuration (up) and S2’ + Ge-DSSD
(bottom) for γ rays of 1,332 keV. Ten million events have been considered to increase
statistic.



Chapter 3

Towards the full exploitation of
γ-ray tracking capabilities through
the use of imaging algorithms

3.1 Background suppression algorithm for the AGATA
array

As we explained in Chapter 1, in RIB facilities beam intensities will be orders of magnitude
lower than those reached on the existing stable beam facilities. As a consequence,
experiments will be performed with high background levels coming from both, the cocktail
of nuclear species reaching the secondary target and the partial decay of the secondary
beam. In case of in-flight production, nuclei of interest are produced by secondary beams
with v/c up to 50% obtained by projectile fragmentation so the lower intensities are
expected (a few pps for the most exotic species). An example of what is currently known
is offered by the RISING device, installed at the focal plane of the FRagment Separator
(FRS) at GSI. A detailed study of the radiation components in the target area [76] showed
that background sources are either the beam dump or the implantation detector, but also
the decays occurring at a distance between 1 and 4 m upstream from the target which are
likely originated in the FRS tracking detectors and degraders.

A way to reduce the background is the use of very narrow time gates [76]. But to have
a sizeable effect, a FWHM time resolution of the order of 1 ns would be required for the
detectors. Unfortunately, this resolution is far exceeding what is currently achievable with
a conventional large-volume germanium detector. However, the use of segmented-contact
germanium detectors could lead to a significant background reduction. Currently efforts
are ongoing in order to: improve the timing properties of germanium detectors with the use
of pulse shape analysis [116]; discriminate gammas from neutrons, which constitute another
important background contribution [117, 118]; and use optimized electronics, as the fast-
reset preamplifiers, to avoid long dead times due to signal saturation produced by the high-
energy-charged-particle background [119]. In this context, an additional technique aiming
to improve the response function with the objective to reduce the background relies on the
capability of γ tracking to provide partial information of the incoming direction of the γ
rays, thus allowing a reduction of the γ−ray background coming from sources with different
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origin as the target. To quantify the imaging capabilities for the AGATA array, which
will be used for the HISPEC experiment, we have developed a background suppression
algorithm based on the Compton scattering formula [120]. Its objective is to discriminate
the origin of the γ rays on an event-by-event basis, tracking back the γ rays coming from
different positions and assigning them to specific emitting locations. The algorithm has
been tested with experimental data from a measurement performed at the Laboratori
Nazionali di Legnaro (LNL), using an AGATA 36-fold-segmented symmetric germanium
detector prototype. This is the first time that the background reduction capability of
AGATA detectors has been investigated experimentally. Besides, MC simulations have
been made to check the performance of the algorithm under ideal conditions.

3.1.1 Algorithm implementation

As mentioned above, in setups as RISING, the three main sources of background are
the fragment separator detectors and degraders which are placed upstream, the target in
the center of the setup and either the beam dump or the implantation/tracking detector
for the reaction products after the target. In order to emulate in a simplified way the
experimental conditions, in the algorithm implementation three sources placed around
an AGATA detector prototype have been considered, trying to reproduce the incoming
direction of the radiation in an in-beam experiment from target, beam dump and beam
line. The algorithm has been implemented trying to take maximum advantage of this
particular geometry.

The algorithm performs a comparison between the scattering angle of the γ ray in the
first interaction as it is obtained from the kinematics of the Compton scattering (θC) and
the angle estimated from geometrical considerations (θG). Considering the three positions
of the sources, the three values of θG are obtained for each interaction point. The Compton
angle (θC) is calculated using a simple probabilistic tracking, i.e. assuming that the first
interaction recorded is a Compton scattering and that the γ ray is fully absorbed in the
detector. The scattering angle can be calculated with the Compton scattering formula as
follows:

cosθC = 1−
(Eγ − E

′

γ)mc2

E
′

γEγ
(3.1)

where Eγ , the initial energy of the γ ray, and E
′

γ , the energy after the scattering, are
known.

The difference between both angles |∆θ| = θG−θC is evaluated for the three sources and
the γ ray is assigned to the source giving the smaller difference. In this way, three spectra
are obtained, each of them incremented when the γ ray is assigned to the corresponding
source.

As explained in Chapter 2, the two first interaction points of a γ ray emitted by a
given source defines a cone. From a qualitative study (Fig. 3.1), it can be seen that the
uncertainty in the cone axis is given by the following relation:

δθ2p ≃ (δr21/∆r)2 + (δr22/∆r)2 =⇒ δθp ≃
√

(δr21 + δr22)

∆r
(3.2)
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under the approximation δr << ∆r ∗ senθ, where δr1 and δr2 are the uncertainties in the
position resolution of the first and the second interaction points respectively, and ∆r is
the distance between the two interaction points [97].

Figure 3.1: Schematic picture to show the dependence of the cone axis uncertainty (δθp)
on the position resolution uncertainties of the two interaction points (δr1 and δr2).

Therefore, for a given position resolution, the distance between interactions becomes
the most important parameter. To ensure a good enough resolution on the scattering angle,
we used a threshold (dmin) on this parameter to select the events. As a consequence, all
events with distances between interactions lower than dmin are disregarded in the analysis.

An extra condition on the maximum deviation allowed for the Compton angle with
respect to the geometrical scattering angle, defined as ∆θ, has been used to further improve
the background suppression capability. For this purpose, it has been defined a simple
empirical angular acceptance, Aθ, using the position resolution and the distance between
the interaction points. |∆θ| has to be less than the angular acceptance (Aθ) given by

Aθ = arctg(
2FWHM

|−→∆r|
) (3.3)

where ∆r is the distance between the interaction points, FWHM is the full width at
half maximum in position resolution and the factor 2 comes from the optimization of the
algorithm. A good assumption for FWHM is 5 mm as reported in [101].

It has been determined that approximately 70% of the correct events will give an
angular difference |∆θ| within the limits defined by this Aθ empirical acceptance. In
Fig. 3.2 a schematic view of the algorithm is shown.

3.1.2 Experimental details

The measurements used to check the algorithm have been made with one of the single
symmetric AGATA crystal prototype, the so-called S#001 equipped with charge-sensitive
fast preamplifiers (Fig. 3.3). This crystal has the outer contact segmented in thirty-
six segments. The thirty-seven signals, thirty-six from the segments and one from the
central contact, were acquired using CAEN model N1728A digitizer cards with 14 bits
resolution and 100 MHz sampling rate. These NIM-standard digitizer modules directly



56
Towards the full exploitation of γ-ray tracking capabilities through the use of

imaging algorithms

calculate the amplitude, therefore the absorbed γ-ray energy of the input signal through a
moving window deconvolution algorithm [121] running on the on-board FPGA, providing
also the data corresponding to the sampled pulses. Proper synchronization of the thirty-
seven channels is fundamental considering the subsequent analysis to be performed. A
common clock was distributed in a daisy-like chain to all of the modules, while the trigger
signal, which was generated by a leading edge discriminator sensing the central contact
of the AGATA detector, was distributed through a star connection. Each module was
independently read out, the full event being reconstructed off-line by exploiting the time
stamp information. In order to limit the rate of data transferred, only the first 200 samples
were read out for each channel together with the energy value internally calculated, as
explained above.

Sources of 60Co emitting photons at 1,173 keV and 1,333 keV, 137Cs with a γ ray at
662 keV and 152Eu with γ-ray emissions at 122 keV, 244 keV, 344 keV and 1,408 keV,
have been used for the test measurement. As said above, the positions of the sources have
been chosen to roughly reproduce the incoming direction of the radiation from target,
beam dump and beam line in an in-beam experiment. Considering a Cartesian coordinate
system in the center of the frontal face of the crystal, with the Z axis pointing to the
center of the detector, the position coordinates in mm for the three different sources are
the following: 60Co (807, 586, 68); 137Cs (-147, 147, -978) and 152Eu (-816, -567, -104).
The raw spectrum obtained considering only events having two interaction points inside
the detector is shown in Fig. 3.4.

Figure 3.2: Outline of the algorithm implementation.
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Figure 3.3: Experimental setup.
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Figure 3.4: Raw spectrum considering only events having two interaction points.

In order to obtain the position of the interactions the analysis of the pulse shapes was
performed using the Adaptive Grid Search PSA algorithm [47] mentioned in Chapter 1.

3.1.3 Monte Carlo simulations

Monte Carlo simulations have been performed, using the AGATA code described in [61],
with a detailed geometrical implementation of the AGATA symmetric capsule. The
simulated events consist on monochromatic photons at the characteristic energies of the
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sources employed in the experimental test. Photons are emitted from the corresponding
source positions in order to mimic the experimental setup (Fig. 3.5).

The simulation provides the single interaction points inside the AGATA detector given
with arbitrary precision in energy and position, i.e, the finite resolution of the detectors
is not taken into account. Hence the simulated data have been twice processed, firstly
by smearing the values given by the MC simulation according to the detector energy
resolution. Secondly, for the data to be comparable to the experimental ones, a packing
and another smearing have been performed to simulate the effect of PSA. As the used
PSA algorithm works for only one interaction per segment, the simulated energy deposits
were packed to their center of gravity calculated by weighting the individual positions
with the energy deposited in each interaction. Once the interaction point is defined, a
smearing in the position resolution of FWHM of 5 mm with a Gaussian distribution is
applied. The simulated data has been exactly analyzed with the same procedure used for
the experimental one.

Figure 3.5: Geometrical description of the position of the sources with respect to the
detector. The crystal is 80 mm diameter and 90 mm length. The sources are placed
around the detector at approximately 1 m distance. For pictorial needs the scale is not
respected.

3.1.4 Results and discussion

It is important to notice that the functionality of a single segmented AGATA detector
cannot be directly scaled to the full tracking array, mainly because the typical γ-ray
energies seldom release the full energy in the volume of a single crystal.

A fundamental parameter for the imaging analysis is the minimum distance requested
between interaction (dmin) as the average distance between interactions bears severe
differences in its value when evaluated for a cluster of several AGATA capsules. However,
in the present work, it has been decided to perform the imaging analysis in the conditions
expected for a real full tracking array by means of requesting an average distance
corresponding to the most probable distance between interactions in the full array.
Distances larger than 2 cm correspond to about 70% of the total events for 1-MeV γ rays in
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the full AGATA, and when larger than 1 cm about 90% of the events are embraced in the
above mentioned conditions. Concerning the multiplicity of the interactions, although not
representing a handicap in a real tracking array, the reason to limit our test to γ tracks of
two interactions has been to simplify the signal decomposition in the Pulse Shape Analysis
process. Monte Carlo simulations for the full AGATA shows that 95% of photopeak events
have more than two interactions and reduces to 82% if all events are included. If only
events with two interactions are considered, the values go to about 25%. Therefore, the
procedures described in this work have a wide applicability for AGATA detectors.

Previously to obtain the results which provides some insight in the imaging capabilities
of a single AGATA capsule, we have studied the influence of the two most relevant
parameters: dmin, the minimum distance between two interactions, and Aθ, the angular
acceptance. The value of dmin has been optimized using the variational method where
several values of the minimum distance between interactions have been selected. These
values are dmin = 0, 1, 2 and 4 cm. For each value, the algorithm selects the events
corresponding to the three possible source origins, giving as result three different spectra.
We should remember that in each position a different source is placed. Therefore, in these
spectra the emissions coming from the source placed in the corresponding position should
be enhanced with respect to the other ones.

In Fig. 3.6 the ratios between the number of reconstructed events assigned to 60Co,
137Cs and 152Eu positions, related to the total number of reconstructed events are shown
as a function of dmin. The picture makes clear how the assignment of the events to the
right source position raises up when the distance between the interaction points increases.
However, relative peak efficiencies calculated with respect to the number of reconstructed
events drop as the distance increases, going down from 75% for dmin = 1 cm, to 40% for
dmin = 2 cm and 6% for dmin = 4 cm. As a compromise between this selectivity parameter
and the efficiency, a value of dmin = 2 cm has been selected in the following. With this
threshold the number of events correctly assigned to the source is about 50% of the total
reconstructed events, while the ratio of events wrongly assigned to this source is about
25% for each one of the other two sources.

In order to evaluate the effect of the angular acceptance, Aθ, the results obtained with
and without considering Aθ in the analysis of the experimental data are compared. The
ratios between the number of correctly assigned events and the number of total assigned
events are shown in Fig. 3.7 for the positions corresponding to the 60Co, 137Cs and 152Eu
sources. Overall, the ratio of well-assigned γ rays is slightly higher when imposing an
upper limit to ∆θ, increasing an amount ranging from 1 to 4%. It is also observed as
correspondingly the assigned background simultaneously decreases.

The spectra for 60Co, 137Cs and 152Eu positions obtained from the experimental data
once the algorithm optimization has been accomplished are drawn in Fig. 3.8 where one
can observe that the peaks shaped by the emissions of the source placed in the position
corresponding to the reconstructed spectrum are enhanced with respect to those of the raw
spectrum. With the analysis performed by the algorithm a sizeable background reduction
is achieved. In Table 3.1 it can be seen how the P/T ratio shows an enhancement factor
of about 3.5 in the peaks of the spectrum corresponding to the source with the associated
emission.
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Figure 3.6: a) Ratio of reconstructed events for the main γ-ray lines with respect to the
total number of reconstructed events (nR) for different values of dmin assigned to the 60Co
position. White, black, grey and ruled bars correspond to a dmin of 0, 1, 2 and 4 cm,
respectively. In b) and c) the same ratio is shown but for the 137Cs and 152Eu positions,
respectively.
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Figure 3.7: a) Ratio of reconstructed events for the main γ-ray lines with respect to the
total number of reconstructed events (nR), with (black bars) and without (white bars)
Aθ in the analysis for the position corresponding to 60Co. In b) and c) the same ratio is
shown but for the 137Cs and 152Eu positions, respectively.
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Figure 3.8: Spectra of the γ radiation assigned to each source position using the
background suppression algorithm. The spectrum in the top is incremented if the event
is assigned to the 60Co position; the central one corresponds to 137Cs and the one in the
bottom to 152Eu.
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Table 3.1: P/T ratio for the total, 60Co, 137Cs and 152Eu spectra.

E(keV) Total (%) 60Co (%) 137Cs (%) 152Eu (%)

244 1.51 1.34 1.72 2.28
344 2.64 2.64 3.39 6.10
662 2.59 3.20 10.13 2.76
1,173 1.64 5.33 2.37 2.04
1,333 1.42 4.69 2.08 1.81
1,408 0.67 0.91 0.97 2.11

Finally, it is meaningful to mention that the ratios of well-reconstructed events with
respect to the total reconstructed events in experimental spectra are about 80% of the
simulated ones. This means that there are still effects on the real data which are not
reproduced by the simulation.

3.2 Background-suppression algorithm for the composed

system based on Ge-DSSD + AGATA

As it has been discussed in Chapter 2, we have investigated a possible configuration for
the Ge array of the DESPEC experiment based on the coupling of the AGATA array and
a set of planar detectors. For the composed system to profit of both, the high efficiency
of the AGATA setup and the high position resolution of planar detectors.

As position resolution is directly related to the electric signal production, planar
detectors have better response than the quasi-coaxial ones. Electric signals from planars
are better understood than the ones from coaxial detectors since the former ones are
generated by a simpler electric field generated between the contacts placed in the opposite
surfaces of the crystal. For quasi-coaxial detectors, whose geometry is cylindrical, the
inner contact is placed along the axis, and the outer one, on the surface of the detector;
so the electric field cannot be uniform due to the geometry itself (Fig. 3.9). Besides, the
crystal lattice influences also the electric response of Ge detectors. Drift velocities are not
identical for the three crystallographic directions being their maximum relative difference
of 1.3. Planar detectors are usually cut in a way that the < 001 > direction is parallel
to the applied electric field. However, in coaxial detectors the charge motion can occur in
any direction with respect to the crystallographic axis, most of the time radially, resulting
in different velocities and, therefore, in a deviation between the electric field direction and
the charge drift velocity vector. Nowadays, as already mentioned, standard values for the
position resolution is, for AGATA detectors, about 5 mm [101] and 1-2 mm for planar
detectors [99,100].
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Figure 3.9: Top and bottom pictures show, respectively, the potential mapping for an
AGATA detector and for a planar detector (in volts). The pictures have been obtained
with the MGS code described in Chapter 1.

It has been previously shown that with the coupled system, the peak efficiency is almost
the same that the one obtained only with the 1π S2’ configuration, about 7%. Therefore,
in terms of efficiency, the addition of an inner array of planar detectors is not significant.
This combined system is only meaningful if it provides better imaging capability. At this
point an improvement in the Doppler correction as well as a significant reduction of the
Compton background is expected if the first interaction takes place in planar detectors.

To study the performance of the combined Ge array in terms of imaging, the
background algorithm developed for AGATA, described in the previous section, has been
applied [122]. The main objective of the study is to characterize the capabilities to
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discriminate between γ sources placed at different locations of the system made up of
a set of planar Ge detectors in a daisy configuration and AGATA detectors in their next
configuration, the so-called S2’: a semi-spherical distribution covering a 1π solid angle
which will be running at GSI for 2012 and 2013. As the full system is not currently
available, this study will be done through MC simulations.

3.2.1 Method

The Monte Carlo implementation of the setup has been already described in Chapter 2
but for the sake of clarity the simulated setup is shown again (Fig. 3.10). The geometry
implemented was the 1π S2’ AGATA configuration coupled to six planar Ge detectors.
AGATA detectors were placed at their nominal position, 23 cm from the target, and the
planar array was placed at approximately 12 cm of the implantation plane, inside the solid
angle covered by AGATA detectors. Planar detector dimensions were 70*70*20 mm3 but
due to the 5 mm guard ring thickness, the active area remained 60*60*20 mm3.

Figure 3.10: MC implementation of the system composed by the implantation detector
AIDA, the set of planar detectors and AGATA in the S2’ configuration. Red, green and
blue correspond to X, Y and Z axis, respectively.

Point sources of 60Co with emission energies of 1,173 and 1,333 keV, 137Cs with its
γ emission at 662 keV and 152Eu emitting at 244, 344 and 1,408 keV, are placed in
the same plane as AIDA with coordinates (15,0,0), (0,0,0) and (0,15,0) cm, respectively.
The simulated events are simply monochromatic photons at the γ energies of the sources
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emitted from the different source positions.
The simulated data have been pre-processed to emulate the experimental ones. The

procedure followed has been already described in the previous study involving only
AGATA, but now we take 1 mm FWHM for the position resolution of the planar detectors.
The pre-processed data become the input of the background-suppression algorithm, a
modified version of the one specifically developed for the coaxial detectors of AGATA,
which is based on the Compton formula. In the data processing, only events with two
interactions are taken into account reducing the possible events to the following three:
coaxial-coaxial events (CC), planar-planar events (PP) and planar-coaxial events or vice
versa (PC). With respect to the free parameters of the algorithm, dmin is set to 1 cm to
increase statistic and Aθ is evaluated with a FWHM of 5 mm for the coaxial detectors and
1 mm for the planar ones.

3.2.2 Analysis and results

The background-suppression algorithm adapted to the DESPEC experiment also assigns
the events to one of the gamma sources during the reconstruction process, being its output
a spectrum for each source. The efficiency after Compton reconstruction is about 35%,
CC events representing 33% and PP and CP ones about 1% each one. The results
are summarized in Table 3.2 where it can be seen how the number of events correctly
reconstructed is higher for PC events than for CC or PP ones. This is mainly due to the
fact that all the events consisting of one interaction in a planar detector and another one
in an AGATA detector always satisfy the condition on the minimum distance between
interactions imposed by the algorithm.

Table 3.2: Ratio (%) for the main γ-ray lines of reconstructed peak events assigned to the
correct source with respect to the total number of reconstructed peak events in all the
source spectra for the different cases considered in the study. PC column corresponds to
events having one interaction in a planar detector and the other in an AGATA detector;
PP and CC columns, to events having both interactions in planar or AGATA detectors,
respectively; and the Total column to all cases considered together.

Source E(keV) Total PC PP CC
60Co 1,173 60 81 73 59

1,333 62 83 79 61
137Cs 662 53 80 69 51
152Eu 244 62 74 78 60

344 60 77 74 58
1,408 63 85 81 62
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The use of our algorithm results in an enhancement of the P/T ratio. An improvement
between 2 and 3% is obtained in the 60Co, 137Cs and 152Eu spectra with respect to the
raw data. In Table 3.3, P/T results for every source spectrum are given attending to the
different kind of events. It is clear how the P/T ratio is better in the case of PC events for
all energies, except for the 244 keV emission line of the 152Eu source. This is because the
lower the energy the higher the probability of having two interactions at short distances,
as happened for PP events. In Fig. 3.11, Fig. 3.12 and Fig. 3.13 the 60Co, 137Cs and
152Eu source spectra obtained for CC and PC events are shown, respectively. It can be
observed a better source identification of the PC events with respect to the CC ones but
with the drawback of the worse statistic since most events are CC ones. Therefore, an
array composed of AGATA and planar detectors presents better capabilities for imaging
purposes due to the better position resolution of planar detectors.
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Figure 3.11: Spectra of the γ radiation assigned to the 60Co source for CC events (top)
and for PC events (bottom).
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Figure 3.12: Spectra of the γ radiation assigned to the 137Cs source for CC events (top)
and for PC events (bottom).

Table 3.3: P/T ratio (%) for the 60Co, 137Cs and 152Eu spectra for the different cases.
PC, PP, CC and Total columns have the same meaning as in Table 3.2.

Source E(keV) Total PC PP CC
60Co 1,173 13 18 10 13

1,332 11 16 8 11
137Cs 661 27 60 45 26
152Eu 244 30 34 40 30

344 33 38 34 33
1,408 12 13 6 12
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Figure 3.13: Spectra of the γ radiation assigned to the 152Eu source for CC events (top)
and for PC events (bottom).

3.3 A new Compton imaging algorithm to study the

capabilities of the Ge array for DESPEC

We intend to go a step further of the background-suppression algorithm willing to propose
a new Compton imaging algorithm which affords the determination of the γ-ray origin in
a probabilistic way. As it has been explained in Chapter 1, current tracking algorithms
are mainly based on statistical methods, using a clusterization process through different
algorithms to group the interaction points in the detector. All of them have the same
constraints with events of one interaction, because it is not possible to distinguish those
photons that have been completely absorbed in the detector through a photoelectric
interaction from those which have interacted through an unique Compton scattering and,
therefore, contributing to the background. In these codes, the γ track is disentangled
by using a figure of merit weighted by different factors as the energy deposited in the
interaction, the number of reconstructed points or the clusterization process used.
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In this context, we have developed a new Compton imaging algorithm for γ-ray tracking
HPGe detectors for the unique experimental conditions of the DESPEC experiment [68].
The objective is to reconstruct the γ path inside the detector correctly identifying the
positions in the sequence of interactions that takes place inside the detector. The purpose
of Compton imaging is to identify the γ-ray emitting source position in the focal plane.
In doing so, imaging increases the overall efficiency providing the implantation position
which makes possible to identify the γ-ray origin in the isomeric experiments. With
this technique it is also possible to distinguish photons emitted by the source from those
originated outside the focal plane, providing a method to reduce the spectral background.

The tracking process is performed through a back-tracking method, assuming that the
photon is completely absorbed in the detector and, therefore, taking the last interaction
as a photoelectric one which will be the starting point for the reconstruction process.
The main differences respect to previous algorithms are: first, the consideration of all
possible combinations for the interactions to reconstruct the γ path instead of using a
clusterization process and, second, the fact that the reconstruction process is based on the
Compton probability instead of the direct application of the Compton scattering formula.
The pair production process is not included in the implementation, neither events having
only one interaction point.

As it has been explained in the previous section, the performance of the Ge array for
the DESPEC experiment in terms of imaging is under study. To evaluate the performance
of the algorithm we have studied the imaging capabilities of the geometry composed by a
set of Ge Double Side Strip Detectors (Ge-DSSD’s) coupled to AGATA which is described
in detail in Chapter 2. To test the algorithm, Monte Carlo simulations of the ideal
array, consisting in two shells have been used (Fig. 2.16). The algorithm’s purpose is
to reconstruct those events having the first interaction in the Ge-DSSD shell to get ride
of its 1-2 mm position resolution in comparison with the 5 mm one of coaxial detectors.

3.3.1 The imaging algorithm

Our algorithm works in an iterative way. It means the algorithm to search for all
possible tracks considering all combinations of the interaction points. To disentangle the
tracks from the interaction positions given by the PSA, the algorithm proceeds following
a backtracking method. From the pool of the interaction points, it takes one interaction
position as the last one for the trial track assuming as hypothesis that the photon is
completely absorbed and, therefore, that the last interaction is a photoelectric interaction
characterized by its mean free path (λ). Then, the traveled distance in Ge between
this point and all possible second interactions is calculated. This parameter is called
effective distance because it is not the geometrical distance between the positions of both
interactions. This effective distance calculated for each pair is compared with the mean
free path and those points that verify: def < 3λ are considered as candidates to be the
second interaction point in the backtracked sequence. To select one among all points that
have satisfied the criterion, the total Compton cross section is calculated for the couple
formed by the first interaction, actually the last one in the track, and each possible second
one as follows:

σt = 2πr20

[

1 + α

α2

[

2(1 + α)

1 + 2α
− ln(1 + 2α)

α

]

+
ln(1 + 2α)

2α
− 1 + 3α

(1 + 2α)2

]

(3.4)
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being α = E0(keV )
511 and r0 the classical electron radius (r0 = 2.818 fm).

The pair with the maximum value of the cross section is selected as the most probable
and, therefore, the second interaction point is chosen. The same procedure is followed
for all the sequence in the event until a track is obtained although the mean free path
is calculated assuming a Compton interaction. The track finishes when there is not any
point verifying the condition on λ. A schematic view of the algorithm implementation is
shown in Fig. 3.14.

Figure 3.14: Outline of the algorithm implementation.
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The mean free path is calculated through the attenuation coefficient: either of Compton
scattering or of photoelectric interaction if the last interaction is involved in the pair.

λ =
1

τ
(3.5)

The attenuation coefficient is obtained through the differential cross sections for the
different processes as:

τi =
σiNAvogρ0

M
(3.6)

where σi = σc or σp is the differential cross section for Compton or photoelectric effects
respectively, NAvog is the Avogadro number, M is the atomic mass of the material and ρ0
is the material density (ρ0 = 5.323 g/cm3 for Ge). The cross section data have been taken
from the Evaluated Photons Data Library [111]. The values for the energies of interest
can be obtained interpolating linearly from this library.

Once the path in Ge of the γ ray is determined, with the two first interaction points,
imaging can be performed. The line defined by these two points gives us the axis of the
imaging cone while the incident direction is obtained from the Compton angle defined
by the first interaction. The emission position will be obtained superimposing all cones
corresponding to events of the same total deposited energy obtaining a well-defined spot
in the focal plane. This performance will be included in future developments of the code.

3.3.2 Monte Carlo simulations

The Monte Carlo simulations performed to test the imaging algorithm have been made
with the Geant4 tool. The geometry implementation of the ideal system consists, as it
has been mentioned in Chapter 2, of two Ge shells of 2 and 9 cm thickness, imitating the
Ge-DSSD shell and AGATA, respectively (Fig. 2.16). The shells are placed concentricly:
the planar one goes from 11 to 13 cm and the coaxial one from 24 to 33 cm with respect to
the geometrical centre. Monoenergetic gammas of 1,333 keV and 662 keV thrown from the
centre of reference have been used for the analysis. Only the information on the gamma
interactions has been considered in the simulation output. Therefore, data corresponding
to secondary particles, provided also by Geant4, have been skipped. Actually, in real
experiments only the interaction positions of γ rays in Ge can be obtained through PSA
techniques altough they are a consequence of the absorption position spread of secondary
particles. However, we have checked by simulations that the spot size is some orders of
magnitude smaller than the position resolution of the detectors. Finally, the analysis has
been restricted to multiplicity one although in future implementations it is expected to
work with higher values.

As it has been explained in previous sections, to get a response of the detector
comparable to the experimental results a pre-processing data is needed. Therefore, both
packing and smearing processes have been applied to the simulated data, taking into
account 5 mm FWHM for the position resolution of the detectors. The pre-processed data
become the input of the Compton imaging algorithm.
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3.3.3 Results and discussion

Due to the ideal geometry implementation for the data analysis, both peak and total
efficiencies obtained with the simulation are unrealistic but they are useful to compare
ideal performances among different setup proposals. In this respect, the efficiency values
obtained are clearly higher than those obtained for the designs based only in planar
detectors. The values are shown in Table 4.2.

In Table 3.5 the ratio of events having one, two, three and four or more interactions
with respect to the total number of events, after the pre-processing, for the γ-ray emission
lines of the sources is shown. It is clear that after the processing, most of the events
consists of one or two interaction points. As the algorithm does not consider those events
having only one interaction point, the reconstruction process is reduced to about 50% of
the simulated events. The results obtained once the algorithm is applied are summarized
in Table 3.6, where the ratio between the number of well reconstructed events having
one, two, three and four or more interactions and the total number of events with the
same number of interactions is shown. From these data it can be said that the algorithm
works quite well when the track consists of two points: almost 95% of events are well
reconstructed whereas only about 50% of events having more than two interactions are well
reconstructed. In Table 3.7 are shown the same ratios but considering only those events
having the first interaction point in the Ge-DSSD shell. These events should be obtained
with better position resolution and, therefore, they are better candidates to provide an
accurate imaging analysis. A sizeable number of well reconstructed tracks fulfills this
condition. Therefore, in principle, this geometry is suitable for imaging purposes.

An improvement in terms of P/T values is obtained when the imaging algorithm is
applied (see Table 3.8). It means our algorithm works rejecting mostly not completely
absorbed events, those which contribute to the background, and reconstructing those
tracks belonging to photons which have deposited all their energy inside the detector.

In Fig. 3.15 the spectra of the different sources are displayed. In green, red and blue
colours are shown respectively, the output of the MC simulation, the spectra when all
well reconstructed events are considered and the spectra if only well reconstructed events
having the first interaction in the Ge-DSSD shell are considered. The reduction in the
continous background is achieved mainly at low energies although is substantial in the
whole energy range.

Table 3.4: Simulated peak (εp) and total (εT ) efficiencies for the two energies studied
corresponding to emission lines of 60Co and 137Cs sources. One million of events have
been simulated to have a good enough statistic.

Source E (keV) εT (%) εp(%)

60Co 1,333 94.5 77.6
137Cs 662 97.8 90.2
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Table 3.5: Ratio (%) of events having one (Ev1), two (Ev2), three (Ev3) and four or more
interactions (Ev4), respectively, with respect to the total number of events for the main
γ-ray emission lines of a 60Co and a 137Cs sources.

Source E (keV) Ev1 Ev2 Ev3 Ev4
60Co 1,333 49.9 41.8 7.6 0.7
137Cs 662 53.9 38.3 7.5 0.3

Table 3.6: Ratio (%) of well reconstructed events having two (N2), three (N3) and four or
more interactions (N4), respectively, with respect to the total number of events with the
same number of interactions at 1,333 and 662 keV.

Source E(keV) N2 N3 N4

60Co 1,333 97.0 54.2 57.1
137Cs 662 96.3 50.0 50.0

Table 3.7: Ratio (%) of properly reconstructed events of two (N2p), three (N3p) and four
or more interactions (N4p), respectively, with respect to the total number of events with
the same number of interactions when the first interaction is in the Ge-DSSD shell.

Source E(keV) N2p N3p N4p
60Co 1,333 63.3 47.2 57.1
137Cs 662 73.0 38.9 50.0

Table 3.8: P/T values obtained with the simulated data after pre-processing (MC), with
the data obtained from the algorithm considering all reconstructed events (AR) and
considering only reconstructed events having the first interaction in the Ge-DSSD shell
(PR).

P/T (%)

Source E(keV) MC AR PR
60Co 1,333 82 91 94
137Cs 662 92 97 94
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Figure 3.15: Spectra obtained for the 1,333 keV γ-emission line of 60Co (top) and for the
662 keV γ-ray of 137Cs (bottom). Green, red and blue correspond, respectively to: the
output of the MC simulation, the spectra of well reconstructed events and the spectra of
well reconstructed events if only those which have the first interaction in the Ge-DSSD
shell are considered.
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Chapter 4

Lifetime measurement of
neutron-rich nuclei in the region
of the double magic 78Ni with the
γ-tracking AGATA demonstrator.

4.1 Introduction

The ”Magic Number” is probably the most fundamental concept governing the structure
of the atomic nucleus at low excitation energy. The incept of the nuclear shell model was
triggered by the identification by Goeppert-Mayer and Jensen of the magic numbers and
their origin [123]. Since then, the nuclear structure studies have followed and advanced on
the ground of the shell model. For long time, these studies have been performed for stable
nuclei or nuclei close to the stability line. For those nuclei the magic numbers suggested
by Goeppert-Mayer and Jensen are valid and, therefore, the shell structure can be well
understood in terms of the harmonic oscillator potential with a spin-orbit interaction. As
we move away for the beta-stability line, the nucleon-nucleon residual interaction plays an
important role modifying the known shell structure for stable nuclei.

The exotic nuclei provide unusual opportunities for testing models of nuclear structure
that have been proposed and optimized for nuclei in, or near, the stability valley. The
lightest neutron-rich exotic nuclei are especially relevant due to the large isospin values
reachable within the boundaries of the neutron drip line. Neutron-rich nuclei are as well of
extreme relevance for the stellar nucleosynthesis. In particular, nuclei in the intermediate
mass region, close to 78Ni, play an important role in the nucleosynthesis via r-process.

In 1975, the first indication of an anomalous ordering of the single particle levels, on
exotic isotopes of Li and Na, was obtained through mass measurements performed by
C. Thibault and R. Klapisch and collaborators. For 11Li a binding energy of 170 ± 80
keV was found, when this isotope had been predicted to be unbound. Furthermore, it
was noted that 31Na and 32Na were considerably more bound than predicted theoretically
considering a N=20 shell closure [124, 125]. This re-ordering of the shell structure was
suggested to be originated by deformation. The 31Na and 32Na binding energies were
reproduced through Hartree-Fock calculations considering the promotion of neutrons from
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d3/2 to the f7/2 intruder orbit (the f7/2 orbit is called an intruder orbit because it belongs
to the next major shell) [126]. The occupation of intruder orbits was very surprising,
since N = 20 was believed to be a magic number and no excitations across the shell gap
should be present at low excitation energies. Later, mass measurements were extended
to Mg isotopes and it was found that both 31Mg and 32Mg were as well far more bound
than expected. These studies were repeated and extended with different techniques (for
recent tabulated values see [127]). In the cases of Ne, Na and Mg isotopes around N = 20
even most improved models assuming a closed sd shell cannot reproduce the experimental
binding energies, although they are successful in other cases. Moreover, nuclei with the
same number of neutrons, but more protons do not exhibit such shell changes. The initial
idea that the deformation induces a re-ordering of the orbital inverting the single particle
energies, gave rise to the name of ”island of inversion” for this particular region.

Recent theoretical calculations [128–130] and experimental results have indicated that
magic numbers can change depending on where they lie on the nuclear chart due to the
residual nucleon-nucleon interaction thus implicating a more local applicability of the
concept. In particular, due to the residual tensor interaction (στ).

To understand the underlying single-particle properties of a nucleus and, therefore,
the shell evolution we can make use of the effective (spherical) single-particle energies
(ESPE’s), evaluated as a measurement of mean effects on a nucleon in a specified single-
particle orbit from the other nucleons. The ESPE of an occupied orbit is defined to be the
separation energy of this orbit with opposite sign (the separation energy is the minimum
energy needed to take out a nucleon from its orbit). The ESPE of an unoccupied orbit
is defined as the binding energy gained by putting a proton/neutron into this orbit with
the opposite sign. The ESPE of an orbit j varies as an orbit j′ is filled. If this energy
change becomes sufficiently significant, the shell gap can disappear due to the reduction
of the spin–orbit splitting. The tensor component of the residual interaction is the main
responsible of this energy modifications and it is expected to depend strongly on the filling
of the orbitals near the Fermi surface.

The nature of the monopole part of the tensor interaction is such that an attraction
(repulsion) is expected for orbitals with anti-parallel (parallel) spin configuration [131].
Fig. 4.1 a) shows a nucleon on j=l-1/2 (j<) which is interacting with another on j’=l+1/2
(j′>). Due to the high relative momentum between them, the spatial wave function of
their relative motion is narrowly distributed in the direction of the orbital motion. The
spins of the two nucleons are parallel in this case, giving rise to basically S=1. The ellipse
in Fig. 4.1 a) represents such relative-motion wave function being spread more along the
total spin S=1. The same mechanism holds for two nucleons in j> and j′< (or vice versa).
On the other hand, as in Fig. 4.1 b), the tensor force produces a repulsive effect for two
nucleons in j> and j′> (or vice versa) because the wave function of the relative motion is
stretched in the direction of the orbital motion.

The single-particle energy of an orbit j is given by its kinetic energy and the effects
from the inert core (closed shell) on the orbit j. As some nucleons are added to another
orbit j′, the single-particle energy of the orbit j is changed (Fig. 4.2). The nucleons
on j′ can generate various many-body states, but we are interested in monopole effects
independent of details of such many-body states. The two-body matrix element of the
interaction depends on the total angular momentum (J) of the two interacting nucleons
in orbits j and j′. Since we are investigating a mean effect, this J-dependence is averaged
out with a weight factor (2J + 1) and only diagonal matrix elements are taken. Since the
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angular correlation is taken away, two nucleons can be at any magnetic sub-state, yielding
the same binding energy. The monopole component of the tensor interaction is thus given
by the matrix element [129] and references therein:

V T
j,j′ =

∑

J(2J + 1)〈 jj′|V |jj′ 〉JT
∑

J(2J + 1)
(4.1)

where 〈 jj′|V |jj′ 〉JT stands for the matrix element of a state where two nucleons are
coupled to an angular momentum J and an isospin T.

Figure 4.1: Dependence of the tensor component with the orbital filling. Taken from [129].

Figure 4.2: a) Schematic picture of the monopole interaction produced by the tensor force
between a proton in j>,<=l± 1/2 and a neutron in j′>,<=l′ ± 1/2. b) Exchange processes
contributing to the monopole interaction of the tensor force. Taken from [129].

Therefore, in evaluating the effects of the monopole interaction in a system with many
valence nucleons, only the number of nucleons in each orbit matters. This implies that
the effect can be accumulated and, therefore, it becomes larger as the orbit occupation
increases. Different regions of the nuclear chart where nuclei have large neutron excess,
have been studied in the context of the shell evolution as the p-shell and sd-shell [131]. In
this work, we are interested in the neutron-rich isotopes around the double magic nucleus
78Ni involving the fp-shell.

4.2 Towards 78Ni

The region of neutron-rich nuclei around Z=28 (Ni) is of particular interest for
understanding the evolution of the shell structure for nuclei with large neutron excess.
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In fact nucleus 78Ni is, as far as we know, the bound double magic nucleus with the
highest neutron-proton ratio (N/P ∼ 1.78). In the neighbourhood of 78Ni, the addition
of neutrons to the 1g9/2 orbital changes the relative energies of the proton 2p3/2, 2p1/2
and 1f5/2 orbitals due to the strongly attractive proton-neutron spin-flip interaction. In
particular, it is predicted that the Z=28 gap for protons in the fp-shell becomes smaller
moving from 68Ni to 78Ni as a result of the attraction between the proton f5/2 and the
neutron g9/2 orbits and repulsion between the proton f7/2 and neutron g9/2 configurations,
thus modifying or even inverting the effective single particle states [129–132].

In Fig. 4.3 the ESPE’s predicted within the shell-model calculations with the GXPF1
effective interaction [133], with the changes due to the tensor force in the proton fp-shell
as neutrons occupy the 1g9/2 orbit going from 68Ni (N=40) to 78Ni (N=50) are shown.
The proton 1f5/2 is pulled down while the 1f7/2 is lifted up, as N increases. Thus the
Z=28 gap becomes smaller as approaching to 78Ni and the sequence of the orbits is quite
different when comparing 68Ni to 78Ni [134].

Figure 4.3: Proton ESPE’s predicted by the shell model with the GXPF1 effective
interaction in Ni isotopes as a function of N.

The tensor component of the residual interaction is predicted to affect the transition
matrix elements. In particular to drive the B(E2 : 2+ → 0+) matrix elements of
the Ni isotopes towards large values when approaching 78Ni. The B(E2 : 2+ → 0+)
values for the Ni isotopes have been measured up to 70Ni where a large E2 strength
of B(E2 : 2+ → 0+) = 860(140)e2fm4 has been found [135]. Such a large transition
probability has been attributed to the effect of the large core polarization caused by
the strong spin-isospin interaction when the number of neutrons in the g9/2 orbital
increases [135]. The increase of the core polarization results in an enhancement of the
B(E2 : 2+ → 0+) corresponding to an enhancement of the nuclear collectivity.

It is worth to mention the unexpected behaviour found for the 68Ni isotope having
N=40. Its large 2+ excitation energy E(2+) = 2.033 MeV, measured by Broda [137],
together with the value for the reduced transition probability measured through Coulomb
excitation by Sorlin [136], B(E2 : 2+ → 0+) ∼ 260(60)e2fm4 is really slow compared with
the values of the neighbouring nuclei as 66Ni about 620(100)e2fm4, points to a possible
N=40 shell gap pointing to a double magic character for the 68Ni nucleus. However,
this gap gets reduced (or even disappears) when protons are removed from 68Ni. The
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nucleus 66Fe, with only two protons less, shows a sudden change in nuclear structure
with an increased collectivity manifested via its low-lying 2+ state. Along the iron chain,
indications for a collective behaviour come from the systematics of the 2+ states [138]
as well as from the recent measurement of the B(E2) values in 64,66Fe [140, 178]. The
evolution of the B(E2) values in iron isotopes points to a sudden increase of collectivity
when approaching N=40. Another case where the N=40 sub-shell closure could be in
principle explored is the 80Zr nucleus (N=40, Z=40) as for protons the Z=40 sub-shell
closure has been clearly demonstrated in the 90Zr nucleus [141]. However, the 80Zr nucleus
has been found to be strongly deformed and does not show any trace of shell closure [142].
Therefore, the sub-shell closure in N=40 seems to be a local phenomena in the 68Ni
nucleus [143].

In Fig. 4.4 the experimental B(E2 : 2+ → 0+) values for the Ni isotopes are reported
together with different theoretical predictions. The N=40 shell closure clearly appears as
a local minimum of the electromagnetic transition rates for 68Ni, in very good agreement
with the local maximum observed for the 2+ excitation energy. A similar behaviour is
expected for the N=50 78Ni. Between these two shell closures, the occupancy of the
νg9/2 orbital is predicted to produce a region of higher collectivity enhanced by the core
polarization mechanism. Transition probabilities are therefore expected to be large, of the
order of B(E2 : 2+ → 0+) ∼ 1000e2fm4 [144,145], as indicated already by the measured
B(E2) in 70Ni [144]. Note the good agreement obtained between the experimental value
and the SM calculations reported in Fig. 4.4 obtained only if an unrealistically high value
of the neutron polarization charge of en = 1.5e is assumed. The reproduction of the
experimental data is already lost for en = 1.0e [145] giving a trend basically similar to
other theoretical descriptions (shown in the figure).

Figure 4.4: B(E2 : 2+ → 0+) values in the Ni isotopes. Taken from [144].
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4.2.1 The Cu isotopes

Neutron-rich Cu isotopes, having one proton outside the Z=28 shell, are also good probes
of the single particle structure in the region of 78Ni. The characterization of their
excited states allows searching for possible shell modifications due to the tensor interaction
mentioned above. Shell-model calculations including the effect of the tensor force predict
a lowering of the πf5/2 state causing an inversion of the πf5/2-πp3/2 effective single particle
states around 75Cu which has been recently confirmed by nuclear spin and magnetic
moment measurements performed at the ISOLDE facility [146]. In these measurement
the spin of the ground state of 75Cu has been identified as I=5/2 (Fig. 4.5).

β-decay and Coulomb excitation studies have provided detailed information on the
excited states of the neutron-rich Cu isotopes up to A=73 [147–149] providing several
candidates for states of mainly single particle character πf5/2, πf7/2 and πp1/2 (Fig. 4.6). In
particular, in Ref. [149] the single-particle nature of the Iπ=5/2− state for 71,73Cu isotopes
has been confirmed through the measurement of the reduced transition probabilities by
Coulomb excitation (Table 4.1). In the same work, the Iπ=1/2− states have been identified
as low-lying collective states, while Iπ=7/2− ones as particle-core states following identical
behaviour in their (A-1) Ni neighbour nuclei (Fig. 4.7)

Figure 4.5: Energy of the lowest levels from experiment compared to large-scale shell-
model calculations. See [146] and references therein.
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Table 4.1: BE(2) experimental values (W.u.) compared with the results of the large
scale shell-model calculations(SM). The shell-model BE(2) values were calculated with
the effective charges eπ = 1.5e, eν = 0.5e.

71Cu 73Cu

exp (W.u.) SM (W.u.) exp (W.u.) SM (W.u.)

B(E2 : 1/2− → 3/2−) 20.4(22) 7.3 23.1(21) 7.5

B(E2 : 5/2− → 3/2−) 3.9(5) 1.7 4.4(5) 1.3

B(E2 : 7/2− → 3/2−) 10.7(12) 1.5 14.9(18) 2.3

The present experimental work aims to determine the collective or single particle
character of the Iπ=7/2− states in n-rich Cu isotopes and in particular in 71Cu where lies at
981 keV excitation energy. From the shell-model calculations three different configurations
can give rise to the 7/2− states:

Figure 4.6: Low-lying excited levels in 71Cu and 73Cu isotopes.
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Figure 4.7: Top: Systematics of the energies of the 1/2−, 5/2−, and core-coupled 7/2−

states in the odd 63,73Cu along with the 2+ levels in the 63,73Ni. Bottom: Experimental
B(E2) values in odd 63,73Cu and 62,70Ni. The lines connect the experimental points for
the states of same spin but do not imply that the structure remains the same. Taken
from [149].

• either a coupling of the single-particle configuration of πp3/2 to the 2
+ core excitation

leading to the 7/2− [πp3/2 ⊗ 2+] levels,

• or similarly, a coupling of the single-particle configuration of πf5/2 to the 2+ core
excitation leading to the 7/2− and 9/2− [πf5/2 ⊗ 2+] levels,

• or finally, the excitation of one proton hole into the πf7/2 orbit, which results with

the 7/2− [πf−1
7/2] level.

The characterization of such states and, in particular, the identification of the πf−1
7/2

particle-hole excitations across the Z=28 shell will provide essential information on the
shell gap size and, therefore, on the evolution of the aforementioned Z=28 energy gap.
The knowledge of the electromagnetic transition matrix elements de-exciting such states,
obtained through lifetime measurements and the comparison with shell-model calculations
will also contribute to the shell gap determination.

The estimated values for the lifetimes obtained considering the reduced probability
transitions measured by Stefanescu and collaborators are shown in Table 4.2. The
estimation has been done assuming a single particle configuration for the Iπ=7/2− state
(B(E2)=4 W.u) and a collective character for the Iπ=9/2− state (B(E2)=11 W.u) [149]
using the following relation taken from [150]:
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Table 4.2: Expected lifetime values for the Iπ=7/2− and Iπ=9/2− states in 71,73Cu
calculated taking the B(E2) values obtained by Stefanescu et al [149].

Nucleus Eγ (keV) Iπi → Iπf B(E2) (W.u.) τ (ps)

71Cu 1,251 9/2− → 5/2− 11 1.4
981 7/2− → 3/2− 4 12.9

73Cu 1,132 9/2− → 5/2− 15 1.6
844 7/2− → 5/2− 4 26.4

T (E2) = 1.22 ∗ 109E5B(E2 ↓) (4.2)

where T(E2)=1/τ (s−1) is the transition probability, E (MeV) is the energy of the γ
transition and B(E2) is the reduced transition probability (e2fm4)

4.3 Structure studies on neutron-rich nuclei in a stable-
beam facility: Multi nucleon transfer reactions

Multi-nucleon transfer reactions with heavy ions have demonstrated to be a very useful
tool to populate neutron-rich nuclei. This has been shown in different measurements, for
example, the one performed by D. Mengoni and collaborators to measure the lifetimes
of low-lying excited states of the neutron-rich 44,46Ar nuclei [151], or the one in which
the identification of gamma energies up to A=75 for neutron-rich Cu isotopes has been
performed [152]. In our particular case, i.e. excited states in Cu isotopes with relatively
high spin, it is feasible to use this reaction mechanism for the nuclei production. In
the following paragraphs a brief introduction to heavy-ion nuclear reactions mechanism,
at energies close to the Coulomb barrier, is given, with a more detailed description of
multi-nucleon transfer reactions, since it has been the reaction mechanism employed in
our experiment.

A simple classification scheme of processes taking place when two heavy nuclei collide
at energies above the Coulomb barrier is shown in Fig. 4.8 [153]. In the most peripheral
collisions, shown on the top, quasi-elastic reactions take place and the two weakly excited
final nuclei are identical or very similar to the initial target and beam nuclei. The
processes include Coulomb excitation, nuclear inelastic scattering and few nucleon transfer
reactions populating a small number of selected states which decay by single gamma
transitions or low multiplicity gamma cascades. In central collisions shown below, the
fusion reaction produces the compound nucleus with high angular momentum and well-
defined high excitation energy released by subsequent evaporation of particles and high
multiplicity cascades of gamma rays. At extreme values of angular momentum the
compound nucleus cannot sustain the rotation and undergoes fission. This fusion–fission
reaction produces two fragments broadly distributed around the symmetric splitting of
the mass of the compound nucleus. As both primary fragments are highly excited the
secondary particle evaporation is followed by gamma emission.
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The deep-inelastic collision, shown schematically in the central panel of figure 4.8, takes
place at all intermediate impact parameters between the peripheral and central collisions.
During the contact of nuclear matter (interaction time about 10−22s) large transfer of
mass, energy and angular momentum takes place between both colliding ions. These kind
of reactions, known as deep-inelastic reactions, are not completely understood because the
nucleon-exchange mechanism becomes extremely complicated as the number of transferred
nucleons increases.

Figure 4.8: Schematic classification of reactions taking place in collisions of heavy ions
at energies above the Coulomb barrier. Quasi-elastic including multi-nucleon transfer
reactions and deep-inelastic collisions are called generally ”Grazing reactions”.

Deep-inelastic collisions tends to equilibrate the proton-neutron ratio of both reaction
partners, nevertheless,this process occurs with a broad distribution centred in the
equilibration line and, therefore it can populate neutron-rich nuclei, nevertheless, the
largely inelastic process results on high excitation energies of the outcoming target-like
and projectile-like products and frequently the products evaporate several neutrons, thus
reducing the cross section for the most exotic channels. An intermediate situation is
reached with the multi-nucleon transfer reactions, performed at energies around 10% to
20% above the coulomb barrier and detecting the reaction products at the grazing angle
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which corresponds to the highest cross section. Therefore, is a quasi-elastic mechanism.
Recently it has been noticed that the yield of the (-2p) channels are reproduced only

by using a form factor that takes into account the proton-pair transfer in addition to the
classical sequential transfer, indicating that the proton pair mode may be an important
degree of freedom in the transfer process leading to the population of neutron-rich nuclei.
At present the pair transfer is only treated at a phenomenological level and it is difficult to
relate microscopically its strength to the pair correlations in target and in projectile [154].
Therefore, these reactions are extremely important because they permit to populate, with
a sizeable yield, moderately neutron-rich regions of the Segré chart that cannot be reached
with fusion-evaporation reactions on stable beams and targets. For energies close to the
Coulomb barrier transfer reactions play the most important role in the loss of flux from the
elastic channel. At higher energies and with heavy ions, the availability of many nucleon
transfer channels allows us to study the importance of particle and pair transfers and
provide information on vibrational states, single particle states and their coupling, and
therefore, allowing to study the shell evolution when one gradually moves away from the
stability line, namely as a function of N/Z.

Some features of these reactions are:

• The collision preserves the binary character of the system. The ejectiles are similar
to the initial nuclei, having exchanged a few nucleons. Therefore, it is possible to
distinguish a projectile-like (or beam-like) ejectile from a target-like ejectile,

• Angular momentum is transferred from the relative orbital motion to the intrinsic
spin of the two reaction products,

• The generated ejectiles de-excite primarily through evaporation of light particles
such as neutrons, protons and α-particles and through γ-decay.

The cross section of multi-nucleon transfer reactions is determined by two factors: the
form factor and the dynamic factor [155]. The former expresses the process dependence
from the nuclear structure and, in particular, from the initial and final wave functions
of the transferred nucleon. The latter comes from the reaction dynamics, and takes into
account the excitation energy of reaction products. Depending on the relative relevance
of these two parameters, the nucleon-transfer process happens in different regimes. If
the ejectiles excitation energy is high enough (E> 20 MeV) that the transferred nucleons
are in a continuum of quantum states (the density of energy levels increases with the
increase of energy), the quantum-mechanical amplitude of the nucleon-exchanging process
is almost only a function of the dynamic factor, and thus it does not feel the effects
of nuclear structure. As a consequence, the model adopted to describe this reaction is
thermodynamical, and the exchange of protons and neutrons is treated as a diffusive
process. These reactions are called deep-inelastic reactions or also dumped reactions.
On the contrary, if the excitation energy of ejectiles is not very high (E< 20 MeV),
the picked-up or stripped nucleons are in discrete energy levels. Therefore, the process
probability strongly depends on the single-particle levels of the involved nuclei, and a
statistical approach is not valid. Multi-nucleon transfer reactions is the name usually
employed to describe this process.

In a multi-nucleon transfer experiment it is very important to know the angle at which
the reaction cross section is peaked: in fact, detectors such as those for ion identification,
should be placed at this angle to reach the highest possible statistics. This angle, in the
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laboratory frame, is called the grazing angle, and it indicates the direction of the ejectiles
which are the products of nuclear reaction. It is thus defined as the angle θG at which
the distance of the closest approach equals the sum of the nuclear radii, so that the two
interacting nuclei are just ”touching” each other.

Multi nucleon transfer reactions and deep inelastic collisions have been used
successfully in the last two decades to study the structure of nuclei far from stability
in the neutron-rich side of the nuclear chart. Already in the 80’s M. W. Guidry et al. [156]
suggested the possibility to populate high spin states in transfer reactions induced with
heavy projectiles. Since then the use of these reactions in nuclear spectroscopy studies
has increased, following the evolution of the gamma multidetector arrays, in some cases
compiting successfully with results from first generation radioactive beam facilities. A good
example are the neutron-rich nuclei around 68Ni, for which investigation of the structure
have revealed the quasi-doubly-magic character of N=40 Z=28 [137], and who has been
investigated with both fragmentation and deep inelastic collision techniques [137,157,158].
Ancillary devices capable of identifying the reaction products or at least one of them, were
already used in early works: PPAC counters in kinematic coincidences [159–161] or Si
telescopes to identify the light fragment [162]. The increasing of the gamma efficiency in
Compton suppressed arrays allowed to apply techniques purely based on the detection of
gamma-gamma coincidences between unknown transitions from the neutron-rich nucleus
and known ones from the reaction partner. The method was first used by R.Broda et
al. [163] and since then it has been successfully applied up to the present days. The
increasing interest for going further away from the stability for neutron-rich medium mass
or heavy nuclei, has created the necessity of new techniques to univocally assign the gamma
transitions to the product of interest.

A sizeable step forward in instrumentation to perform structure studies using multi-
nucleon reaction was based on the coupling of a large acceptance magnetic spectrometer to
a high efficiency and high resolution Ge detector array for gamma spectroscopy. Magnetic
spectrometers have played an important role in the study of transfer reactions, as they
provide a complete identification of the reaction products and allow the extraction of
differential and total cross sections. Such instruments, coupled to modern arrays for
gamma detection, allow to investigate structure properties of nuclei at the limit of the
present production capabilities. This is the case of the AGATA-PRISMA setup employed
in this work, at the INFN National Laboratory of Legnaro (Italy). Multi-nucleon transfer
reactions have been widely used at LNL in order to complement the nuclear structure
information on neutron-rich nuclei, especially for high spin states.

Cross sections: the GRAZING code

The calculated cross sections have been obtained by using the semiclassical model
GRAZING [164, 165]. This model calculates the evolution of the reaction by taking
into account, besides the relative motion variables, the intrinsic degrees of freedom of
projectile and target. These are the isoscalar surface modes and the single-nucleon
transfer channels. The multinucleon transfer channels are described via a multistep
mechanism. The relative motion of the system is calculated in a nuclear plus Coulomb
field where for the nuclear part the empirical potential based on the Wood-Saxon of [166]
has been used. The excitation of the intrinsic degrees of freedom is obtained by employing
the well-known form factors for the collective surface vibrations and the one-particle
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transfer channels [167, 168]. The model takes into account in a simple way the effect
of neutron evaporation. The predictions from the semi-classical GRAZING model have
been successfully tested against more complex DWBA calculations and also compared to
a number of experimental data. In particular it has been already successfully applied in
the comparison of different multinucleon transfer data [154, 169] and, recently, of fusion
excitation functions and barrier distributions [170].

The cross sections calculated obtained with the GRAZING model and the experimental
values obtained in the present measurement are shown in Fig. 4.9. As it can be seen in
the figure the predicted cross section values are in good agreement for the elastic channel
(76Ge) but as far as we move to more neutron stripping channels the calculation get
worse because of the neutron evaporation process in GRAZING is only included in a first
approximation and, therefore, cross sections are not well reproduced for these channels.
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Figure 4.9: Theoretical and measured cross sections in the present experiment.

4.4 Recoil Distance Doppler Shift Method (RDDS) for

Lifetime measurements

The current spectroscopic data for Cu isotopes are very scarce. Therefore, information
on energies of excited states and on transition strengths is really important to understand
the role of the νg9/2 orbital for the development of the collectivity. The measurement of
the reduced transition probability (B(E2)), obtained trough the direct measurement of the
transition lifetime (eq.4.2), can provide spectroscopic information as its value is directly
related to the enhancement of the collectivity. Presently, most of the B(E2) information
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available, in the region under study, corresponds to indirect measurements obtained using
low energy (safe) and relativistic Coulomb excitation in radioactive beam facilities or direct
measurements using fusion-evaporation reactions when possible [140,171–173]. In the last
decades, mainly after the incept of the high-resolution gamma spectroscopy technology,
a variety of techniques in order to measure lifetimes in different time ranges for in-beam
experiments have been developed (Fig. 4.10). For example, the Recoil Shadow Anisotropy
Method (RSAM) is used for identifying isomers in the nanosecond range and measuring
their lifetimes [19]. The Doppler Shift Attenuation Method (DSAM) is used for lifetime
measurements in the femtosecond range. It is based on the analysis of the detected energy
distribution of the emitted γ rays during the slowing down process of an excited recoiling
nucleus. Energetic ions come to rest typically in about 1 ps inside a solid material,
therefore, from the line-shape of their emitted γ rays, with and attenuated Doppler-shift,
lifetime values from tens of femptoseconds to few picoseconds can be evaluated [19–21]

Figure 4.10: Techniques developed for the lifetime determination in different time ranges.

In our case, the lifetime of the excited states of interest is expected to be of the
order of several picoseconds and we have resorted to the Recoil Distance Doppler Shift
method (RDDS) [19, 22]. This method has been widely used for the determination of
lifetimes in several regions of the Segré chart. Some examples are the determination
of the 8+1 and 10+1 excited states of 120Xe [174], or the one performed by A. Dewald
and collaborators [175], in which the lifetimes of two superdeformed states in 192Hg were
measured using the GASP setup at the LNL. A differential version of the technique was
developed for grazing Reactions, i.e. for Ge arrays coupled to magnetic spectrometers,
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and commissioned with the 64Ni (400 MeV) + 208Pb reaction for the first time in a
CLARA-PRISMA campaign at the LNL in collaboration with the IKP University of
Cologne group [176]. Afterwards, successful measurements have been performed with this
method, i.e, the one performed by J.J. Valiente-Dobón and collaborators, to determine
the lifetime of the neutron-rich 50Ca and 51Sc isotopes [177] or the lifetime determination
of the low-lying excited states of the neutron-rich 44,46Ar performed by D. Mengoni and
collaborators [151]. Later, the technique was used with the EXOGAM-VAMOS setup
to measure the lifetime of the 2+ states in 62Fe and 64Fe [178]. Another example is
the determination of the lifetime of the 9/2−1 and the 3/2−1 states in 63Co and the 9/2−1
state in 63Co [179]. In this work, we have used for the first time this technique with the
AGATA Demonstrator coupled to the PRISMA spectrometer and the Cologne plunger.
The main improvements with respect to previous experiments, are coming from AGATA
detector. As it has been shown before, AGATA is a position sensitive detector and,
therefore, a better Doppler correction with respect to conventional arrays can be done.
Additionally the higher efficiency and counting rate capability for γ-ray detection of the
AGATA Demonstrator further improve the measurement.

Conceptually, the differential RDDS method [19,22] consists of a thin target at a fixed
position and an energy degrader to change the velocity of the incoming ions. The γ rays,
measured with a gamma-ray spectrometer (in our case AGATA Demonstrator), are emitted
by ions, whose mass, atomic number and velocity are measured in a magnetic spectrometer
(PRISMA). The method requires measuring the intensity of the γ rays emitted before
or/and after the degrader by the beam-like products, as a function of the target-degrader
distance. Since the Doppler correction is done with the information provided by PRISMA,
different Doppler shifts are originated depending on where the γ-ray emission takes place,
as the ion velocity distribution after passing the degrader is peaked at lower values than
the initial one due to the energy loss. This results on each γ transition producing two
peaks corresponding to the two recoiling velocities (Fig. 4.11). The degrader thickness
should be large enough to assure that the energy shift between the two peaks is higher
than the energy resolution of AGATA detectors (∼ 2.4 keV at 1.3 MeV and larger in
in-beam measurements). The fit of relative intensities of the two peaks, as a function of
the target-degrader distance, allows to determine the lifetime of the state of interest.

One of the limitations of the RDDS method is due to the so-called side feeding of an
excited level after the reaction. If the feeding process is not well determined, for example
due to feeding, of our levels of interest, by unobserved transitions, unrealistic lifetime
values may be obtained. The advantage of using the differential RDDS technique in a
setup with a magnetic spectrometer like PRISMA is that information on the contribution
of side feeding can be obtained. In grazing reactions the excitation energy of the partners
can be estimated measuring the kinetic energy loss of one of the partners (TKEL). The
magnetic spectrometer allows to gate in the kinetic energy loss and therefore to set limits
on the excitation energy of the reaction products.

Velocity distribution of the recoiling nuclei

The energy of the emitted γ rays before and after the degrader (Ebef and Eaft, respectively)
can be obtained through the Doppler relation for small velocities (β < 1):
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Figure 4.11: Principle of the RDDS method. γ rays emitted after and before the degrader
feel different Doppler shifts due to the different velocity distributions of the emitting nuclei,
so they appear at different energies in the gamma spectra.

Ebef = E0(1 + βbef cosθ)Eaft = E0(1 + βaftcosθ) (4.3)

where E0 is the correct energy for the γ transition, θ is the angle between the emitting
nucleus and its corresponding γ ray and βbef and βaft are the velocity distributions before
and after the degrader, respectively.

With PRISMA is possible to obtain the velocity distribution of the ions that have
passed the degrader (βaft). Therefore, the right Doppler correction is obtained for γ
rays emitted after the ions passing the degrader and, thus, this transitions appear like a
peak at the correct energy in the spectra (unshifted peak), while ions decaying before the
degrader give a lower energy peak wrongly Doppler corrected with βaft (shifted peak).
The wrongly-corrected γ rays appear on the γ spectra in a shifted peak, with an energy:

Eshifted
0 = Ebef (1 + βaftcosθ) (4.4)

Once the ion velocity distribution after the degrader (βaft) is determined, the average
velocity before the degrader (βbef ) can be obtained substituting Ebef from the eq.4.3 and
re-arranging the resulting equation:

Eshifted
0 − E0

E0
= (βbef − βaft)cosθ (4.5)
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The Doppler correction of the emitted γ rays is performed on an event-by-event basis,
giving a better resolution for the corresponding peak (FWHM∼ 3.5 keV) than the one
obtained for the shifted component (FWHM∼ 6 keV).

Radioactive decay of excited nuclei. Lifetime determination

The time evolution of nuclide concentrations undergoing a linear decay chain is a
probabilistic process, governed by a set of first-order differential equations, called Bateman
equations. If N1 radioactive nuclei are present at time t, the number of decays for a certain
state is given by:

dN1

dt
= −λ1N1 (4.6)

where λ1 is the decay constant and N1 is the population of the state. The solution comes
as a typical exponential law:

dN1(t) = Noe
−λ1t (4.7)

When a radioactive nucleus (1) decays with decay constant λ1 to nucleus (2), the
differential relation for the last one becomes:

dN2

dt
= λ1N1 − λ2N2 (4.8)

And successively, for the ith nucleus:

dNi

dt
= λi−1Ni−1 − λiNi (i = 2, n) (4.9)

where λi is the decay constant of ith nuclide and Ni is given by the initial population of
the state.

Solving the equations, with the initial population for the excited state considered
as initial conditions, the lifetime can be calculated as the inverse of the decay constant
(τ = 1/λ). Therefore, the number of decays after an before the degrader can be expressed
in terms of this radioactive decay equations as follows:

Iu(t) = N0e
(−d
vτ

) Is(t) = N0 −N0e
(−d
vτ

) (4.10)

Iu(t) and Is(t) are the intensity of the peaks after (Iu(t)) and before (Is(t)) the degrader
respectively, obtained by calculating the area of the peaks through a Gaussian fit. To
obtain an independent value of the number of nuclei produced in the reaction, the ratio
R is defined as:
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R =
Iu

Iu + Is
=

N0e
(−d
vτ

)

N0
= e(

−d
βcτ

) (4.11)

With this relation is possible to extract the lifetime of the excited state as a function of
the distance between target and degrader. Nevertheless, often the error of the determined
lifetime is sizeable since both peaks shifted and unshifted are used in the normalization.
The use of a Ion tracking Spectrometer, as PRISMA, where the mass and Z is determined
in an event-by-event basis, allows a new approach to determine the lifetime, using only
one of the peaks, the shifted or the unshifted one. In this case the normalization is done
considering the number of nuclei populated in the reaction and detected in PRISMA (N0).
To our knowledge this is the first time that such technique is used. In this case the R ratio
mentioned before is obtained as:

R =
Iu
N0

= e(
−d
βCτ

) (4.12)

R =
Is
N0

= 1− e
( −d
βCτ

)
(4.13)

if the unshifted and shifted peak are used, respectively.

The main difference between both methods is that meanwhile, in the first one, the
intensity of both peaks has to be measured, in the second one, the determination is done
in terms of only one of the measured peaks. This approach can provide information about
the lifetime of the excited state in measurements where the statistics is not high, like the
present case, and, therefore, depending on the value of the lifetime (short or long) one of
the peaks can not be accurately determined. It has to be noticed that the exploitation
of the approach through the shifted peak can be employed only when the lifetime we are
interested in is expected to be short because as we move to higher values the information
contained in the shifted peak is lost as most of the ions decay when moving after the
degrader.

The distance that should be considered for the lifetime determination is not
corresponding to the distance between the target and the degrader, because as it will
be shown later, the plunger was tilded 10º with respect to the Z axis in the experimental
setup (Fig. 4.13). So an effective distance has to be considered (d’):

d′ =
D + d

cosθ
(4.14)

where D is the real distance between target and degrader, d is the degrader thickness and
θ is the angle between the optical PRISMA axis and the target angle. Besides, the offset
of the target (different for each measured distance) should be considered. The distances
considered for the analysis are summarized in Table 4.3.
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4.5 Experimental details

As it has been mentioned above, it is possible to populate neutron-rich nuclei, like
the Cu isotopes we are interested in, through multi-nucleon transfer reactions. Due
to the low-cross sections involved in this reaction mechanism, high efficiency and very
selective detection systems are required. The AGATA detector coupled to the PRISMA
spectrometer (see Fig. 4.12) is presently the best setup for the measurement as it allows to
detect the beam-like reaction products and their corresponding γ rays with high sensitivity.

A multi-nucleon transfer reaction with a 76Ge beam of 577 MeV energy impinging
on a 238U target of 1.5 mg/cm2 together with a 1.4 mg/cm2 thick Ta backing has been
used to populate the excited states of the nuclei of interest. The backing is needed in
order to perform the stretching of the U target, i.e, to achieve a smooth surface. The
target was mounted in front of a Nb degrader foil of 4.17 mg/cm2 thickness in a compact
Plunger device, designed and built by the IKP University of Cologne. The Plunger
device has been placed in the geometrical centre of the reaction chamber of the AGATA-
PRISMA setup. Due to mechanical constraints, it could not be placed perpendicular to
the optical axis of the spectrometer, so it is tilted by 10º with respect to the optical axis
of PRISMA (Fig. 4.13). The projectile-like reaction products are detected and identified
in the magnetic spectrometer PRISMA, which was positioned at 55º with respect to the
beam axis, i.e, at the grazing angle. With PRISMA the mass, atomic number and velocity
of the different ions are identified providing a clean selectivity of the different channels.
Emitted gamma rays were detected with the AGATA Demonstrator located at backward
angles sensitive to their Doppler shift. Only four of the five clusters were available for the
experiment. Therefore the efficiency of the system was 3.2% at 1,332 keV.

The beam energy is selected taking into account several issues. The first one and more
important is the reactions dynamics. In order to produce, with high yield, nuclei far from
stability avoiding the excessive evaporation of neutrons, the multi-nucleon transfer should
be the dominating grazing channel, therefore, is advisable to use beam energies up to about
20 to 30% above the coulomb barrier, for most combinations of projectile and target. The
coulomb barrier in our case is about 400 MeV. Besides to be reachable by the tandem-
ALPI accelerator complex, the beam energy should be adjusted as well, accordingly to
the target-degrader thickness, to have sufficient energy on the reaction product to have
a good Z resolution with PRISMA. Ions should arrive, as we will discuss later, in the
ionization chamber with a higher energy than the Bragg peak within the second section.
Therefore, the target should be thin enough to keep a sufficient energy of the reaction

Table 4.3: Target-degrader distance (D), corresponding effective distance (d’) and final
distance.

D (µm) d’ (µm) df (µm)

100 106.42 112.01
200 207.96 211.97
500 512.59 512.00
1000 1020.30 1012.01
1900 1934.19 1912.00
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Figure 4.12: PRISMA spectrometer coupled to AGATA Demonstrator at the LNL.

products. However, it should be noticed that the yield of the reaction, is directly related
to the target thickness, so a compromise should be found. For the degrader, only the
energy losses have to be considered attending to the minimum separation between the
shifted and unshifted peaks to perform a good lifetime determination in the analysis.

Table 4.4 shows the energy of the beam and the recoils at the different stages of the
target-degrader system. The values were obtained with the Stopp code [180], that is
an implementation of the semi-empirical stopping power formulas by J. Ziegler and co-
workers [181]. The kinematics of the reaction has been calculated for the several cases
using the Reaction code [180]. The projectile-like reaction partners exit the target foil with
an average energy of 375 MeV (4.93 MeV/u) and a velocity of 31 µm /ps (β ∼ 10.5%).
The Nb foil degrades the energy of the ions to 250 MeV (3.3 MeV/u) and results in an
average velocity of 26 µm /ps (β ∼ 8.6%). With this degrader thickness, the difference in
velocity is large enough to distinguish γ rays emitted before and after the degrader foil by
their different Doppler shifts if an AGATA resolution of 2 keV for 500 keV and a minimum
requirement of 2*FWHM for an acceptable separation between both peaks are assumed
(∆E = 4keV = 0.8%). Assuming a minimum angle value of 120º between PRISMA and
AGATA, through eq. 4.5 we obtain the following value for the energy resolution:

∆v/c = 1.9% =⇒ ∆E = 4.75 keV = 0.95% (4.15)

Therefore, the degrader thickness is enough to provide the required energy separation
between the shifted and unshifted peaks.
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Figure 4.13: Schematic view of the setup. The 76Ge beam impinges on the 238U target
together with the Ta backing. The projectile-like reaction partners exit the target going
trough the Nb degrader and entering in the PRISMA spectrometer. The γ rays are
identified in the AGATA Demonstrator.

Table 4.4: Calculated 76Ge beam energies at the different stages of the setup and average
projectile-like energies after target and degrader, respectively (see Fig. 4.13).

ALPI After Ta Centre target End target projectile-like after degrader

577 MeV 547 MeV 532 MeV 518 MeV 375 MeV 250 MeV

In order to cover a range from approximately 2 to 30 ps, the range of expected lifetimes
of our isotopes, measurements have been performed for five different target-degrader
distances: 100 µm, 200 µm, 500 µm, 1000 µm and 1900 µm.

Cross section estimates

The GRAZING code was used for the cross section estimation [182]. However to
better estimate the yield of the different nuclei of interest a comparison with a previous
experiment performed at LNL was done. The reactions to be compared are:

70Zn(460MeV) +238 U (previous experiment)
76Ge(500MeV) +238 U (current experiment) (4.16)

The comparison can be done as the Q value for both reactions is about the same
order and the isotopes we are interested in are, in both cases, the same proton stripping
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and neutron striping or pickup channels. The exit channels of interest in our particular
case are Ni, Cu and Zn isotopes meanwhile in the previous experiment were Fe, Co
and Ni (Table 4.6). To prove that the scaling can be performed, the Q values for the
different channels in both reactions are shown in Table 4.5. The gain factor between
both experiments was calculated to be about a factor of 1.6 (Table 4.7). The beam was
reduced with respect to the previous experiment, giving a reduction factor of 0.7, the
target thickness gives a factor of 1.5 as in this case the thickness was a little bit thicker
than in the previous one; and finally the larger efficiency of the AGATA Demonstrator
with respect to CLARA gives another factor of 1.5. Table 4.6 shows the estimated number
of counts for Ni, Cu and Zn isotopes for the present experiment and their corresponding
channels for the previous experiment.

Table 4.5: Q values of the proton stripping and neutron striping or pickup channels for the
previous experiment (70Zn + 238U) and for the present one (76Ge + 238U) to be compared.

Reaction Exit channels Q value (MeV)
66Fe → (−4p) -26.73

70Zn + 238U 65Co → (−3p,−2n) -20.26
67Co → (−3p) -19.86

70Ni → (−2p,+2n) -8.93

72Ni → (−4p) -26.03
76Ge + 238U 71Cu → (−3p,−2n) -20.31

73Cu → (−3p) -19.68
76Zn → (−2p,+2n) -10.02

Table 4.6: Cross sections and number of counts obtained in the 70Zn (460 MeV) + 238U
experiment performed at LNL used for the comparison with the current experiment,
76Ge (500 MeV) + 238U. Expected cross sections obtained with the GRAZING code and
estimated number of counts for Ni, Cu and Zn isotopes for the present experiment.

Reaction Exit channels Grazing cross sections (µb) Counts Eγ (keV)
66Fe → (−4p) 100 Eγ(574keV ) = 80

70Zn + 238U 65Co → (−3p,−2n) 360 Eγ(1480keV ) = 700
67Co → (−3p) 790 Eγ(1610keV ) = 200

70Ni → (−2p,+2n) 1000 Eγ(1257keV ) = 300

72Ni → (−4p) 100 Eγ(1096keV ) = 80
76Ge + 238U 71Cu → (−3p,−2n) 340 Eγ(981keV ) = 1200

73Cu → (−3p) 750 Eγ(844keV ) = 300
76Zn → (−2p,+2n) 1500 Eγ(574keV ) = 470

In the following sections, the instruments employed in the experiment: the PRISMA
spectrometer, the differential Plunger and the AGATA Demonstrator are briefly described.
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Table 4.7: Gain factor estimation between the 76Ge (500 MeV) + 238U and the 70Zn (460
MeV) + 238U experiments.

70Zn + 238U 76Ge + 238U Gain

Beam time 7 days 14 days 2
Beam Intensity 2 pnA 2pnA 1
Target thickness 1 mg/cm2 2 mg/cm2 2

Efficiency at 1 MeV (CLARA) 2.6% (AD) 6% 2

4.5.1 The PRISMA Spectrometer

PRISMA [183,184] is a large acceptance magnetic spectrometer, which has been designed
for the identification of the reaction products of heavy-ion collisions with E = 5-20 MeV/A
of the XTU Tandem-ALPI-PIAVE complex accelerator at LNL. It allows us to completely
identify the reaction products in atomic and mass numbers, Z and A, and to measure their
velocities.

The most interesting features of PRISMA are its very large solid angle and momentum
acceptance, good mass resolution via TOF measurement; energy resolution, Z resolving
power and capability of rotation around the target in a wide angular range from -30◦

to 140◦. The above performance figures are achieved by software reconstruction of the
ion tracks using the position, time and energy signals from the entrance and focal-plane
detectors. In Table 4.8 the main characteristics of the spectrometer are summarized. Its
large angular acceptance is obtained using large optical elements which are a quadrupole
and a dipole magnet. Optical aberrations from these magnets are corrected via software
reconstruction of the ion tracks which provides a very good momentum resolution. Position
and angle measurements, for trajectory reconstruction, as well as energy and time of flight
(TOF) measurements, for ion identification, are performed by the PRISMA detectors.
The detectors of the spectrometer consists of an entrance detector based on micro-channel
plates (MCP) and of the focal plane detectors which consist of a MWPPAC (Multi-Ware
Parallel Plate Avalanche Counters) and an ionization chamber (IC) placed at the end of
the spectrometer. The ion flight average distance from the entrance detector (MCP) to
the MWPPAC focal plane detector is about 6.5 m. Timing signals needed in order to
measure the TOF are taken from the MCP and the PPAC detectors, both with good time
resolution. Then, considering an average velocity of about 10% of the speed of light, a
window of 200 to 400 ns is optimal to measure the time of flight. A simple scheme of the
spectrometer is shown in Fig. 4.14. In the following a detailed description of the different
elements and detectors of PRISMA will be given.

Quadrupole magnet

The quadrupole magnet is used to focus the ions in the vertical direction. It is placed 25
cm away from the entrance detector position. It has an aperture diameter of 32 cm and a
length of 42 cm.

Close to the entrance of the magnet, there is a mirror plate to limit the fringing field
effect (magnetic field extended over the geometrical limits of the magnet). For the analysis



100
Lifetime measurement of neutron-rich nuclei in the region of the double

magic 78Ni with the γ-tracking AGATA demonstrator.

of the experimental data the fringing field is not considered and an effective length of 51
cm is used instead of the real length giving a rather good approximation of the real field.
Detailed characteristics of the quadrupole are given in Table 4.9.

Figure 4.14: Schematic view of the PRISMA spectrometer.

Table 4.8: Performances and characteristics of the magnetic spectrometer PRISMA.

Solid angle 80 msr
Energy acceptance ±20%

Momentum acceptance ±10%
Energy resolution up to 1/1000

Z resolution ∼ 1/60
A resolution ∼ 1/200

Counting rate capability up to 50-100 KHz sec−1
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Table 4.9: Characteristic features of the PRISMA quadrupole.

Maximum field gradient (G) 5.3 T/m
Maximum pole tip field (B0) 0.848 T

Effective length (Leff ) 51 cm
Aperture diameter (d) 32 cm

Dipole magnet

The quadrupole singlet is followed by a large dipole magnet, placed 60 cm downstream
of the quadrupole, which purpose is to act as an analyzer deflecting the ion path in
trajectories depending on their magnetic rigidity. The bending angle of this magnet is 60º
and the bending radius (ρ0), corresponding to a trajectory lying on the optical axis, is
1.2 m. Since the maximum reachable field value is Bmax = 1 T, the maximum magnetic
rigidity is Bmax(ρ0) = 1.2 Tm. The entrance and exit surfaces form an angle of -20º and
5º, respectively, with respect to the optical axis. The pole gap for the magnet is 20 cm
and the frontal size of the entrance and exit windows are 1000 mm wide. In Table 4.10
the main characteristics are summarized.

Table 4.10: Characteristic features of the PRISMA dipole.

Maximum field (B) 1.0 T/m
Bending radius (ρ0) 1.2 m
Bending angle (φ) 60º
Entrance angle -20º

Exit angle 5º
Pole gap 20 cm

Micro-Channel Plate entrance detector (MCP)

The entrance detector consists of a matched pair of 80*100 mm2 area Multi-Channel
Plates (MCP) in chevron configuration and a position sensitive anode [185]. It provides
geometrical information, the positions on the X and Y axis, and a time signal. It is placed
at an angle of 135º with respect to the optical axis of the spectrometer to cover all the solid
angle of PRISMA at a distance of 250 mm from the target. The ions pass by a carbon foil
generating secondary electrons which are accelerated towards an anode by an electric field.
A weak coaxial magnetic field is used to improve the position resolution. The anode is
made of two orthogonal delay lines, on the horizontal and vertical axis respectively, which
provide information on the position of the ions by calculating the difference in arrival time
of the signals at the two ends of each delay line. The fast time cathode signal is used as
a START for TOF measurements between the MCP and the MWPPAC detectors. The
intrinsic time resolution of the MCP detector is about 250-300 ps and its efficiency for
heavy ions is close to 100%. In Fig. 4.15 a scheme of the setup and a MCP detector picture
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are shown.

Figure 4.15: Schematic view of the setup with the reaction chamber and the MCP (left)
and the MCP detector alone (right).

Multi-Wire Parallel Plate Avalanche Counter focal plane detector (MWPPAC)

The focal plane detector is an array of ten Multiwire Parallel Plate Avalanche Counters
(MWPPAC) placed 323 cm downstream of the dipole exit [186]. A view of the detector
is shown in Fig. 4.16. It consists of a three-electrode structure: a central cathode used
for the time signal and two orthogonal wire planes used to determine the horizontal and
vertical positions, with a total active area of 1000*130 mm2. The X position sensitive
anode is divided into 10 sections; each one is made of 100 wires (20 µ m diameter) with 1
mm spacing. The cathode consists of 10 sections, like in the X wire plane, with 330 wires
for each section (20 µ m diameter), separated 0.3 mm, with a total of 3300 wires. A fast
time signal is provided by each section of the cathode used as a STOP signal for TOF
measurements performed between the MCP and the MWPPAC detectors. The Y position
sensitive anode is composed of 130 wires (20 µ m diameter) with 2 mm wire separation,
shorted two by two in the delay-line side. The position resolution on the horizontal axis
is 1 mm, while on the vertical axis is 2 mm. The position information from MWPPAC is
obtained using delay-line method: An induced signal propagates on the delay-line in both
directions towards the ends of each independent section. The relative delay between two
signals is proportional to the position of the incoming ion. The array provides in total
thirty two signals:

• ten time signals one for each cathode section,

• twenty X position signals one for each extreme of the X delay line for each section,

• two Y position signal one for each extreme of the Y delay line.

The detector operates with Isobuthane (C4 H10) at a working pressure of about 7-8 mbar.

Ionization Chamber (IC)

The focal plane MWPPAC detector is followed by an ionization chamber (IC), which is
used to measure the energy loss of the ions in the gas [186]. In this way with the energy



4.5 Experimental details 103

Figure 4.16: Picture of the MWPPAC detector and the pumping system.

loss, using the ∆E/E technique, it is possible to determine the atomic number Z of the ion.
The detector covers a large area of the focal plane with 1200 mm long on the horizontal
axis, 130 mm wide on the vertical axis and 1000 mm wide in depth (Fig. 4.17). The
large dimensions of the IC allow to stop all ions inside the chamber and, therefore, to
have a long range for the incoming nuclei. In this way, a good resolution on the atomic
number (Z) can be obtained (∆Z/Z ∼ 1/70). The IC is divided in ten equal sections in
the x axis, corresponding to the MWPPAC sections, in a way that all ions coming from
MWPPAC can enter directly in the active area of the chamber, and in four equal sections
in depth. This depth segmentation allows to measure the energy loss in each section and
so, to define the sum of the energy lost in the four sections as the total energy (E). ∆E is
defined as the energy loss in the two first sections (like in our case) or only in the first one
depending on the ions to be stopped. For too slow ions only one section is used to obtain
a good ∆E −E telescope to determine Z. Additional sections are placed on both sides of
the chamber (side sections) to act as a veto for ions with a highly bent trajectory which
are not losing all their energy on the active volume. The detector is filled with Methane
(CH4) or Carbon Tetrafluoride (CF4), methane in our case, depending on the pressure
and stopping power required for the ions. The pressure ranges from a few tenths of mbar
to hundred mbar.

4.5.2 The Differential Plunger

The differential Plunger is a target-degrader complex device, provided by the University of
Cologne, built to measure lifetimes of excited sates in nuclei populated by multi-nucleon
transfer and deep-inelastic reactions at grazing angles, ranging from 0.5 to 500 ps for
β ∼ 10% [187, 188]. The main improvement respect to the previous Cologne plunger
devices is related to the optimization of the design performed for grazing reactions. In
multi-nucleon transfer and deep-inelastic reactions the recoiling nuclei of interest leave the
target in a direction which is normally different from the direction of the incident beam,



104
Lifetime measurement of neutron-rich nuclei in the region of the double

magic 78Ni with the γ-tracking AGATA demonstrator.

Figure 4.17: Schematic view of the ionization chamber.

given by the grazing angle. The plunger should be placed in this direction and, therefore,
a design that enables a rotation of the device with respect to the beam axis has been done
(Fig. 4.18). Assuming a 3 mm diameter for the beam, focused in the centre of the target,
a maximum angle of 55º with an accuracy of 0.5º, respect to the beam axis, the system
can be turned. It consists of a target and a degrader foils placed in their respective frames,
conical one for the target and flat for the degrader with a distance ring made of tantalum
located in between. Both foils should be stretched to get uniform surfaces and to avoid
changes in the fixed distance due to the heating of the foils when the beam hits them. The
target cone together with the distance ring are pressed into the degrader foil to stretch it
while the target should be stretched before it is glued on its frame.

Figure 4.18: Drawing of the plunger device with its supporting structure used for the
present measurement.

The target foil is fixed to the plunger while the degrader one is displaced with a
piezoelectric motor. Besides, an inductive transducer, which measures the position of the
degrader, in a range of up to 5 mm, with an accuracy of up to 0.01 µm is integrated. As
for Doppler correction detectors placed at 90º are not useful (no Doppler correction can
be performed at these angles), all the mechanical components have been mounted inside
the target chamber close to the foils under 90º. This is different from the concept followed
for the standard Cologne-coincidence-plunger [189], where most of these components are
located in a separate housing up-stream of the target chamber in order to minimize the
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Table 4.11: Specifications of the differential plunger for grazing reactions.

Target-degrader separation 0-10 mm
Precision of the target-degrader distance 0.1 µm

(piezoelectric motor)
Inductive transducer resolution 0.01 µm (0-40) µm range

0.1 µm (0-200) µm range
1 µm (0-5) mm range

Maximum rotation around the beam axis (55± 0.5)º

amount of dead material between the target and the germanium detectors. However,
for the present setup, no special considerations on this issue are needed since AGATA is
placed at backwards angles covering from about 135º to 170º. In Table 4.11 the main
characteristics of the differential plunger are summarized.

In the present experiment, the plunger setup includes a target of 1.5 mg/cm2 of
enriched 238U evaporated onto a 1.4 mg/cm2 Tantalum support to allow the stretching
of the target, and a thick 4.17 mg/cm2 Nb foil used as an energy degrader. Different
distances, ranging from 100 µm to 1900 µm, were measured during the experiment by
using the piezoelectric displacement motor and a high accuracy distance sensor which
ensures a separation accuracy of about 1% between the target and degrader. In Fig. 4.19 is
shown the differential plunger device standalone and placed inside the scattering chamber
in the experimental setup.

Figure 4.19: Picture of the plunger device before mounting and the device placed inside
the reaction chamber for the present measurement.
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4.5.3 The AGATA Demonstrator

As it has been explained before, the first implementation of the AGATA array is the
AGATA Demonstrator [188] (Fig. 1.14). It is composed by five clusters (15 detectors),
but for the present measurement only four of the five clusters (i.e. 80% of the efficiency)
were available. It was located at 18.1 cm to the target foil while the nominal distance for
the Demonstrator is 23.5 cm. The energy and efficiency calibrations were performed with
an 152Eu source placed in the centre of the reaction chamber (target position) using the
so-called Radware approximation.

As aforementioned, through PSA techniques, it is possible to get the interaction points
inside the detector with high accuracy. In this measurement the grid search algorithm,
explained in Chapter 1, has been used. An example, to show the amount of information
that can be obtained from PSA techniques, is presented in Fig. 4.20 and Fig. 4.21, where
the statistics for the interaction points inside the detector is displayed. Figure 4.20 shows
the interaction points inside the six sections of the 1B crystal, going from the bottom
(left) to the top of the crystal (right). Figure 4.21 shows the bottom and the lateral view
of the crystal if a cut in the X axis is done. It can be seen how the statistics decreases as
we move from the the centre to the borders of the crystal as well as when moving to the
higher sections of the crystal in the Z axis. In Fig. 4.22 some of the problems detected
with the online PSA are shown. Figure 4.22 (left) shows the fifth section of the 2G crystal,
where the A5 segment was missing (in blue); and in Fig. 4.22 (right) the fourth section of
the 4B where a noisy segment (D4 in red) was found. These problems were solved in the
off-line analysis, replaying the data and, therefore, improving the determination accuracy.
Once the PSA is done, tracking can be performed and the interaction sequence inside the
detector is determined. Figure 4.23 shows the first reconstructed interaction point for each
event inside the demonstrator This information will be used for the Doppler correction.

Figure 4.20: Interaction points in the six cuts corresponding to the transversal segmented
sections in the 1B AGATA detector.
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Figure 4.21: Different views of the interaction points in the 1B AGATA detector. a)
corresponds to the bottom view and b) to the lateral side.

Figure 4.22: (left) View of the fifth section of the 2G crystal where segment A5 is missing
(in blue); (right) View of the fourth section of the 4B crystal where it is shown the noisy
segment D4 (in red).
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Figure 4.23: First interaction position in the laboratory frame of the γ rays within the
AGATA Demonstrator that in the present experiment consists of four triple AGATA
cluster detectors. The first interaction points will be used for the Doppler correction.

4.6 Data Analysis

The analysis procedure of the AGATA-PRISMA data is done in two steps; first the
calibration of the detectors of PRISMA and the trajectory reconstruction of the ions
in the spectrometer. This will provide the mass number (A), the atomic number (Z) and
the velocity vector (β). Secondly, it will be performed the Doppler correction for γ rays, in
coincidence with the projectile-like ions on an event-by-event basis, taking the information
of the recoil velocity vector (β) determined by the reconstruction of the ion trajectories.
Once the γ rays have been univocaly identified for a given A, Z and β, the γ spectra of
the isotopes of interest is ready to perform the lifetime analysis. The data analysis has
been performed using the GammaWare code [190].
The first and probably most important step in the reconstruction of the trajectories and the
determination of Z and mass A is the calibration of the PRISMA detectors. In this section
it will be discussed i) the calibrations of the entrance and of the focal plane detectors of
the PRISMA spectrometer, ii) the procedure used for the trajectory reconstruction and
the identification of the ions and iii) the final procedure to obtain the γ spectra.

MCP signal processing

The MCP detector has to be calibrated in order to determine the ion entrance positions to
the spectrometer. The calibration is only performed for ions arriving at the focal plane of
PRISMA. Figure 4.24 shows the mask used for the calibration where the five calibration
points are highlighted. The two shadows correspond to two alignment tips that are placed
within the quadrupole and dipole of PRISMA. The electric field used to accelerate the
secondary electrons from the carbon foil to the MCP plates produces a distortion that
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should be also corrected. In order to reach the maximum position resolution, a magnetic
field, coaxial to the electron paths, is use to ”spiralize” the trajectories and therefore to
minimize the dispersion. The coordinates for the corrected points are shown in Table 4.12.
The raw and calibrated data matrix are shown in Fig. 4.25. Once the calibration is done,
X and Y position coordinates are converted to the ion entrance angles in the AGATA-
PRISMA reference frame.

Figure 4.24: (left) Uncalibrated MCP; (right) calibrated MCP. The five calibration points
have to be placed in their respective coordinates (Table 4.12).

Table 4.12: Coordinate positions of the reference points for the MCP calibration.

Point X (mm) Y (mm)

Centre 0 0
1 21.5 26.5
2 21.5 -26.5
3 -21.5 -26.5
4 -21.5 26.5
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Figure 4.25: Uncalibrated MCP detector (top) and the calibrated MCP (bottom). The
calculated MCP coordinates are given in the AGATA-PRISMA reference frame.
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Focal plane detector (MWPPAC): X coordinate calibration

The MWPPAC detector at the focal plane gives six raw signals:

• two signals for the horizontal position (left and right),

• two signals for the vertical position (up and down),

• one signal for the time of flight (TOF),

• one amplitude signal from the cathode.

The MWPPAC detector is divided into ten sections on the X-plane giving us position
and time signals individually. The horizontal position, the cathode and the TOF signals
are registered for each of the sections, while the vertical position signal is common to all
the sections.
When an ion enters the detector, it interacts with one of the ten sections producing two
signals, called Xleft and Xright, from the left and right edges of the corresponding section
delay line. The position information is extracted by measuring the delay-time difference
between them (Xfp = Xright−Xleft). The signals are then calibrated using three reference
points (the two extremes at 0 and 10 cm respectively, and a central wire). The vertical
position is only used to center the trajectory but is not used for the reconstruction process.
Therefore, no calibration has been done for the Y-plane. It may happen that one of the
two horizontal position signals is missing. To recover events with only one position signal
(right or left), normally related with extreme position in the MWPPAC section, it is
possible to use as reference the cathode signal, which replaces the missing signal in the
expression Xfp = Xright−Xleft, that becomes, Xc = Xright/left−Xcathode if the left/right
signal is missing. The procedure requires a calibration curve between the coordinates Xfp

and Xc in order to get the right reconstruction of the position for the incomplete events.
In order to avoid background signals from the cathode a polygonal gate on the matrix
Xright +Xleft vs. Xcathode is required. The cathode signal is the trigger of the PRISMA
Spectrometer. This condition is shown in Fig. 4.26.

Focal plane detector (MWPPAC): TOF calibration

The TOF measurement is fundamental in an ion-tracking spectrometer, it is the main
ingredient determining the mass of the ion since required for the calculation of their
absolute velocity values. This velocity is necessary for the ion mass determination and
the Doppler correction of the γ-ray energies measured in AGATA. The TOF signal in
PRISMA is measured as the time difference between the MCP detector (START) and the
MWPPAC cathode signal (STOP). This measurement only provides relative TOF and to
obtained absolute values is necessary first the TOF to be calibrated in ns. Different TOF
offsets have to be considered for all the ten sections (see Fig. 4.27). However, this process
does not give the absolute TOF and a fine tuning of the TOF signals is needed. This is
done using the Doppler corrected γ-ray spectra measured in AGATA. The TOF tuning
is done modifying a global offset until the main peaks in the gamma spectrum (inelastic
excitation of the beam ion) show the proper position in energy and the smallest FWHM.
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Figure 4.26: MWPPAC event distribution as a function of the Xright +Xleft (X axis) vs.
Xc (Y axis) signals. It can be seen the polygonal gate used to reduce the background
signals.

Trajectory Reconstruction

The identification of the ions is based on the reconstruction of their trajectories [191].
This reconstruction is done in terms of the geometrical and timing information, provided
by PRISMA, and by applying the equation of motion of a charge particle in a quadrupole
and dipole magnetic fields. The information provided by PRISMA for each ion is the
following:

• ion position coordinates in the MCP: (Xi, Yi),

• ion position coordinates in the focal plane (MWPPAC): (Xf , Yf ),

• Time-of-flight of the ions between the MCP entrance and the MWPPAC: TOF,

• Partial and total energy loss in the IC: ∆E, E.
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Figure 4.27: TOF vs. Xfp before the alignment of the ten sections of the MWPPAC (top)
and absolute TOF vs. Xfp after calibration (bottom).
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The trajectory reconstruction of the ions includes the determination of ion motions
inside the optical elements of PRISMA, after the ions pass through the start detector.
Therefore, the ion position coordinates determined from the MCP becomes the entrance
position coordinates in the quadrupole. Inside the quadrupole, magnetic field charge
particles are governed by the Lorentz equation:

~F = q~v ⊗ ~B (4.17)

where F is the Lorentz force or electromagnetic force, v is the velocity of the ion and B is
the quadrupole magnetic field.

Solving this equation a hyperbolic motion inside the quadrupole field is obtained, which
focuses the ions in the vertical axis defocussing them on the horizontal plane. As the length
of the quadrupole is a known magnitude, the coordinates of the reaction products leaving
the quadrupole can be obtain. From the quadrupole to the dipole, the trajectories follow a
straight line as they are supposed not to be affected by any magnetic field (ideal magnetic
fields). Following the quadrupole, the ions enter inside the dipole and due to the Lorentz
force their trajectories are bended with a radius R. The behaviour of an ion inside a dipole
magnetic field (BD) can be described again by the usual Lorentz force expression:

mv2

R
= q(v⊥ ∗BD) (4.18)

where q and m are the ion charge and mass, respectively, v⊥ is the perpendicular
component of the velocity to BD and R is the curvature radius of the dipole.

As the radial velocity of the ions is negligible, the bending radius can be expressed in
terms of the magnetic rigidity:

RD =
mv

qBD
=

ρD
BD

(4.19)

As soon as the quadrupole entrance point is known the trajectory from the quadrupole
entrance to the MWPPAC is determined in terms of two parameters RQ = ρD/BQ and
RD = ρD/BD, where RQ is the ion motion entering with a para-axial trajectory inside
the quadrupole and RD is the bending motion inside the dipole. The trajectory inside the
dipole is calculated through an iterative process; RD = 120 cm is assumed as the curvature
radius inside the dipole, corresponding to the central trajectory, and then the magnetic
rigidity is determined. Then RQ is obtained as follows:

RQ = RD
BQ

BD
(4.20)

Therefore, as the entrance of the quadrupole, the ratio BD/BQ and the curvature
radius are known, the ion impact point in the MWPPAC is fully determined. If the
calculated focal plane position does not match with the observed one (one mm difference),
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the iterative process starts again with a new guess for the curvature radius till the obtained
value is the correct one.
The ion trajectory is a straight line after the dipole and through the MWPPAC as
the magnetic force is not affecting the ions any more. Therefore, after the trajectory
reconstruction the total path of the ions inside PRISMA can be obtained. It is calculated
as the contribution of different terms:

• a straight line between the target and the quadrupole entrance (LTQ),

• a hyperbolic path inside the quadrupole (LQ),

• a straight line between the quadrupole and the dipole (LQD),

• a circular trajectory in the horizontal dispersion plane of the dipole (LD),

• a straight line between the dipole and the MWPPAC (LDM ).

in this way:

L = LTQ + LQ + LQD + LD + LDM (4.21)

Once the trajectory reconstruction is done, an improvement on the TOF offset
alignment can be performed. Since v = L/TOF andmv2/R=qvB, the following expressions
can be deduced:

TOF =
m

qB

L

R

R

v
= R

TOF

L
=

m

qB
(4.22)

From the first one, the TOF offset can be adjusted since if we represent this matrix
the slope corresponds to A/qB values and the average interception of these slopes gives
the common TOF offset (Fig. 4.28 top). From the second expression it can be seen
that different values of A/qB for the different sections of the MWPPAC give us different
TOF offsets and, therefore an alignment on A/qB is equivalent to the TOF alignment.
Figure 4.28 (bottom) shows the alignment on A/qB for the different sections of the
MWPPAC once the TOF offset has been adjusted.
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Figure 4.28: Two dimensional matrices of TOF vs. L/R for the TOF offset determination
(top) and A/qB vs. Xfp for the A/q alignment of all sections of the MWPPAC (bottom).
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Z identification

After passing the MWPPAC detector, the ions enter into the IC losing their energy by
interacting with the filling gas (CH4 in the present experiment). The conditions of the
gas filling the camera are adjusted in order to assure a complete energy release for all the
reaction products of interest inside the IC. The energy loss for a charge particle is given
by the Bethe-Bloch formula:

dE

dx
= − 4π

mc2
NZMρz2

Aβ2

e2

4πε0
ln

2mc2β2

I(1− β2)
− β2 (4.23)

where ZM , A, ρ and I are the atomic number, the mass number, the density and the
mean ionization potential of the stopping material; N is the Avogadro number and Z, β
and E are the atomic number, the velocity and the energy of the ion. For non relativistic
particles (β2 << 1)

dE

dx
∝ mz2

E
ln

E

m
(4.24)

The range of the ions inside the IC, defined as the distance travelled by a charge particle
till it is stopped, can be obtained from the stopping power as follows:

R(T ) =

∫ T

0
(
−dE

dx
)−1dx (4.25)

Different plots can be performed in order to identify the atomic number Z in the IC.
Figure 4.29 (top) shows the energy lost vs. the range of the ions (R) meanwhile the bottom
shows the energy released in the two first sections (∆E) vs. the total energy released in the
IC. In both plots, well separated line structures corresponding to the beam-like reaction
products can be seen. The most populated channel corresponds to Z=32 since 76Ge is the
beam, while the other channels, Ga (Z=31), Zn (Z=30) and Cu (Z=29) isotopes, can be
identified knowing that for a fixed total energy E, the atomic number grows with ∆E and
decreases with R.



118
Lifetime measurement of neutron-rich nuclei in the region of the double

magic 78Ni with the γ-tracking AGATA demonstrator.

Range (mm)
1200 1400 1600 1800 2000 2200 2400 2600

 (
a

.u
.)

IC
E

2000

3000

4000

5000

6000

7000

8000

0

50

100

150

200

250

300

350

400

450

Z=32

Z=31
Z=30

Z=29

 (a.u.)ICE
3000 4000 5000 6000 7000

 (
a

.u
.)

IC
(A

+
B

)
E

∆

2600

2800

3000

3200

3400

3600

3800

4000

4200

4400

4600

4800

0

50

100

150

200

250

300

Z=32

Z=31Z=30Z=29

Figure 4.29: Two dimensional matrices for the Z identification of the reaction products in
the IC. In the top the energy lost vs the range of the ions inside the IC is plotted and, in
the bottom the energy released in the two first sections vs the total energy lost in the IC
is shown.
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Identification and selection of the charge states

Once all isotopes have been determined by their atomic number (Z), the charge state
identification can be done. Due to the existence of several charge states, different A/q
values can be obtained for each Z. The identification is based on the relation given by
eq. 4.22

m

q
=

BR

v
; E =

mv2

2
; =⇒ E

v2
=

qBR

2v
(4.26)

Exact values for the charge states, for each element, can be obtained through the
matrix BR/v vs E/v2 as shown in Fig. 4.30 (top). For example, the identification of the
charge state values for the beam nucleus can be determined from this matrix knowing that
the most intense line corresponds to the 76Ge nucleus. A measured value for BR/v of 32.2
corresponds to this line and, therefore, the charge state can be determined as follows:

q =
m

BR
v

=⇒ q =
76

32.2
∼ 24+ (4.27)

The different lines shown in Fig. 4.30 (top) are associated to different charge states
which can be calculated in the same way. In our case, charge states from 21+ to 26+ have
been observed for 76Ge. The same relations used for the identification are used to perform
the charge state selection:

m

q
=

BR

v
; E =

mv2

2
; =⇒ E =

1

2
qB

LR

TOF
(4.28)

Figure 4.30 (bottom) shows the energy lost in the IC vs BRβ matrix for each Z, used
for the selection. Each line in the matrix corresponds to a different charge state value
(q). The conditions on individual charge states allows to build the corresponding mass
spectra (Fig. 4.31). The mass values in the spectra are assigned with respect to the most
populated mass, which is the beam nucleus 76Ge (Z=32; A=76). The same procedure is
performed in order to identify charge states and eventually to deduce the mass spectra for
the other ions. Charge states for the other Z values can be determined by comparing their
traces to those of Ge element, since the same charge states of different elements should be
relatively overlapped.
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Figure 4.31: Mass spectra for the different charge states of Ge.

Doppler correction

As previously mentioned, the Doppler correction of γ rays emitted in the reaction products
is performed on an event-by-event basis, taking the information from PRISMA and
AGATA. Before performing the Doppler correction, the γ-ray energies from AGATA are
calibrated with the standard 152Eu source, then the Doppler correction is performed using
the angle between the recoil velocity vector (~β) and the direction of the emitted γ rays
(~γ). The angle between the detected ion (determined by the MCP start detector position)
and its respective γ-ray (determined by the position of the first interaction of the γ-ray in
AGATA) is calculated as follows:

~β · ~γ = |β||γ| cos θ (4.29)

being ~β the position vector of the MCP and ~γ the position vector of AGATA.
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Once the Doppler correction is properly performed the energy of the peaks should not
display any dependency on this angle, as can be see in Fig. 4.32. The Doppler-corrected
γ-ray spectrum for 76Ge is shown in the Fig. 4.33.
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Figure 4.32: Doppler-corrected γ-ray energy of the unshifted peak of the 2+ → 0+

transition for 76Ge obtained for the 200 µm statistics vs the angle between the recoil
velocity vector and the direction of the emitted γ rays (θ).
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Mass spectra and γ-ray identification

Figure 4.34 shows the isotope yield distribution for Ge, Ga, Zn and Cu isotopes after
summing all the charge states.
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Figure 4.34: Isotope yield for Ge, Ga, Zn and Cu. The statistics shown consider all
distances measured in the experiment.

While PRISMA events were always acquired, regardless the presence of an AGATA
trigger, AGATA events were only acquired in coincidence with the PRISMA magnetic
spectrometer, thus, all γ rays measured by AGATA were unequivocally assigned to a
product nucleus. Figure 4.35 shows the coincidence time spectrum between both systems
(TSDiff) obtained as the difference of the time stamp spectra between AGATA and
PRISMA. It can be noticed the large background under the peak coming mainly from the
random coincidences due to the high counting rates. This background can be accounted
for setting gates on the coincidence spectrum shown in Fig. 4.35. During the analysis
procedure, different conditions are set, on the real AGATA-PRISMA coincidence peak
(continued blue lines), as well as in the random coincidence region (dashed red lines). In
this way the background subtraction can be performed. Figure 4.36 shows the final γ-ray
spectra for the 76Ge isotope after background subtraction.
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Figure 4.35: AGATA-PRISMA coincidence time spectrum. In blue it is shown the
AGATA-PRISMA coincidence peak and in red the gates performed for the background
subtraction.
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4.7 Results

To determine the lifetime of the excited states of Cu isotopes we have used the RDDS
method. Two different approaches have been employed to determine the lifetime of the
excited states we are interested in (see section 1.4). The first one is the ”conventional”
one that uses for the normalization the addition of the intensities of the unshifted and
shifted peaks. On the contrary, the new approach makes the normalization considering
the number of nuclei populated in the reaction and detected in PRISMA. To validate the
new approach, used in this work for the first time, the 76Ge beam has been used (section
1.7.2). In particular, the 4+ → 2+ transition at 847 keV. Another verification of the
approach has been performed for other isotope different of the elastic channel, coming
from the transfer of several nucleons. The 4+ → 2+ and 2+ → 0+ transitions at 847 keV
and 653 keV respectively, of the 72Zn isotope have been used (section 1.7.3). Once the
operation of the new approach has been sucesfully confirmed, it has been applied to the
determination of the lifetime of the 7/2− state at 981 keV of the 71Cu isotope (section
1.7.4). However, before this, the determination of the velocity distribution, essential for
the evaluation of the lifetime, will be discussed.

4.7.1 Velocity distribution

The analysis of the PRISMA data directly provides the velocity distribution of the
ions after the degrader, nevertheless, as discussed in section 4.4, it is possible to
obtain information on the velocity distribution before the degrader by applying eq. 4.5.
Figure 4.37 shows the β distribution after the degrader and Figure. 4.38 shows the angle
distribution (θ) between the MCP detector and the AGATA Demonstrator needed for the
determination of the velocity distribution before the degrader. The average value of θ is
1520.

These information together with the shifted and unshifted centroid energies (Eshifted
0 ,

E0) are the ingredients, according to eq. 4.5, to get information on the the beta distribution
before the degrader (βbef ). The values involved in the determination of βbef as well as the
value obtained for the βbef for the isotopes we are interested in are shown in Table 4.13.
The uncertainty on βbef has been calculated using the uncertainty propagation law but

as the uncertainties on E0 and Eshifted
0 are negligible with respect to the uncertainty on

βaft, the obtained values are the ones given by the FWHM of the βaft distribution.

Table 4.13: Energy shift between the unshifted and shifted peak in the spectra with respect
to the unshifted energy (∆E/E0) and velocity distribution of the ions before and after the
degrader, respectively, for the isotopes of interest.

Isotope transition Energy (keV) ∆E/E0 (%) βbef (%) βaft (%)
76Ge 2+ → 0+ 563 1.1 0.104(3) 0.091(3)
72Zn 2+ → 0+ 653 1.2 0.100(5) 0.086(5)
71Cu 7/2− → 3/2− 981 0.9 0.094(5) 0.084(5)

where the energy shifts of 76Ge, 72Zn and 71Cu have been calculated for the 563-, 653-
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Figure 4.37: Beta distribution (βaft) measured in PRISMA for Ge, Zn and Cu isotopes.
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Figure 4.38: Angle distribution (θ) between the MCP detector and the AGATA
Demonstrator.
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4.7.2 Verifying the method: Lifetime determination in the 76Ge inelastic
excitation.

Transitions observed in the inelastic excitation of the 76Ge beam have been used to
validate the new approach, to determine the lifetime of excited states, employed in the
present work. In principle, the use of the inelastic excitation of the beam may be not
the best way to test RDDS lifetime measurement techniques, since the inelastic excitation
reaction can take place in both, the target or the degrader foils. In our particular case,
the inelastic excitation cross sections for both, target and degrader, are about the same.
Therefore, meanwhile the shifted peak solely corresponds to events produced in the target,
the unshifted peak has the contribution of both, the excitations in the target as well as
in the degrader. However, since the contribution of the excitations in the degrader, once
renormalized to the number of ions, is constant for all the measurements, if the number
of distances is sufficient, it is possible to account for the degrader contribution during the
lifetime fit procedure.

For this test, the 76Ge 4+ → 2+ transition with 847 keV energy has been chosen. Its
transition lifetime is known to be 1.8(4) ps [192]. Figure 4.39 shows the Doppler corrected
γ-ray spectra of 76Ge, in the energy region of interest for the 4+ → 2+ transition, for the
different measured distances. The calculated intensities of the unshifted and shifted peaks
as well as the ratio R defined in eq. 4.11 as Iu/(Iu + Is) are shown in Table 4.14.

The second approach employs for the normalization the number of nuclei produced in
the reaction and detected in PRISMA. This number is calculated selecting those events
corresponding to 76Ge by integrating the peak in the mass spectra. The values are shown
in Table 4.15.

Table 4.14: Experimental values of the shifted peak (Is), the unshifted peak (Iu), and R
(R = Iu

Iu+Is
) as a function of the distance df .

E = 847 keV 4+ → 2+

d (µm) df (µm) Is (counts) Iu (counts) R

100 112.01 7584(239) 4439(187) 0,369(28)
200 211.97 8064(225) 1131(97) 0,123(11)
500 512.00 10705(382) 245(108) 0,0224(99)
1000 1012.01 10726(519) 248(172) 0,023(16)
1900 1912.00 9750(199) 271(54) 0,0270(54)
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Figure 4.39: Doppler corrected γ-ray spectra of 76Ge around the 4+ → 2+ transition for
the different distances. Two lines have been plotted in blue, the solid line corresponds to
the unshifted peak and the dashed line to the shifted peak.
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Table 4.15: Number of 76Ge nuclei detected in PRISMA (N0) for each distance (df ).

d (µm) df (µm) N0

100 112.01 2005818(1416)
200 211.97 1375631(1173)
500 512.00 1724937(1313)
1000 1012.01 1802040(1342)
1900 1912.00 1436109(1198)

To determine the lifetime an exponential fit has been used. n particular, for this
transition, the possible known feedings from other excited states as the 0+2 → 4+ at 501
keV (t1/2 > 0.8 ps [192]) have not been observed in the present measurement. The
equation employed for the fit has been the following:

R(x) = A+Bexp(−x/C) (4.30)

where C = (βct1/2)/ln2 being t1/2 the half life of the excited state.

In order to check the effect of the excitation of the degrader we have performed a
simulation. An arbitrary large amount of counts has been added to the area of the
unshifted peak corresponding to the 100 µm target-degrader distance. An equivalent
area, determined by renormalizing to the relative number of ions detected in PRISMA,
has been added for the rest of target-degrade distances (Table 4.16). The selected value
corresponds to about a 10% of the total number of 76Ge nuclei detected in PRISMA
(N0)(see Table 4.15).

Table 4.16: Number of counts added (Nadd) to the unshifted peak to emulate the degrader
contribution for each distance.

d (µm) df (µm) Iu (counts) Nadd

100 112.01 4439(187) 2000
200 211.97 1131(97) 1372
500 512.00 245(108) 1720
1000 1012.01 248(172) 1797
1900 1912.00 271(54) 1432

Table 4.17 shows the value of the parameters used for the fit of the experimental data
for all the approaches used in this work. The function fitted has been an exponential
one defined in eq. 4.32. In the function we have used an additional parameter (A) not
needed for an exponential fit. In principle, this parameter should be zero (except for
the case where the shifted approach is used) but, as it is shown, it is not the case.
In this parameter are included all contributions, like the contribution coming from the
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degrader, that are not influencing the exponential behaviour. Therefore the lifetime can
be determined in this way as the exponential part of the function is giving the same trend
for all approaches. Figure. 4.40 shows the various fits to the exponential performed for
the different approaches.

Table 4.17: Coefficients obtained from the fit of the experimental data of the 4+ → 2+
76Ge transition at 847 keV to the function A+Bexp(−x/C) for the different approaches.

E = 847 keV 4+ → 2+ R1(x) = A+Bexp(−x/C)

Method A B C (µm−1)

conventional 2.53(46) −02 1.48(26) 10+00 7.8(8) 10+01

unshifted 1.67(32) 10−04 7.7(12) 10−03 8.5(9) 10+01

shifted 9.9347(11) 10−01 1.37(43) 10−02 7.0(14) 10+01

unshifted (degrader) 1.17(21) 10−03 7.7(28) 10−03 8.5(26) 10+01
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Figure 4.40: Fit of the 4+ → 2+ transition at 845 keV considering the data obtained a)
when the conventional method is applied, b) when the unshifted peak is considered, c)
when the shifted peak is considered and d) when the unshifted peak and the degrader
contribution are considered.



4.7 Results 131

The values obtained for the half file, the lifetime and the reduced transition probability
of the 4+ → 2+ transition at 847 keV are shown in Table 4.18. The literature value is
displayed together with the values obtained if the conventional normalization is considered
for the calculation and if the normalization of the unshifted and shifted peak is used,
referred in the table as unshifted and shifted, respectively. It is also shown the t1/2
obtained if a fictitious contribution of the degrader is considered, referred in the table as
unshifted (degrader). The agreement between the literature value and the measured values
in this work allows to confirm that the new approach can be employed for the lifetime
determination. Furthermore, it can be assured that the contribution of the degrader is
not affecting the lifetime value of the state of interest.

Table 4.18: Half life (t1/2), lifetime (τ) and reduced transition probability (B(E2 ↓)) for
the 4+ → 2+ 76Ge transition at 847 keV.

E = 847 keV 4+ → 2+

Method t1/2 (ps) τ (ps) B(E2 ↓) (e2fm4)

literature 1.8(4) 2.6(6) 722(167)
conventional 1.8(2) 2.6(3) 722(83)
unshifted 1.9(2) 2.7(3) 696(77)
shifted 1.6(3) 2.3(4) 817(142)

unshifted (degrader) 1.9(6) 2.7(9) 696(232)

4.7.3 Lifetime determination for the 72Zn isotope

In order to further validate the RDDS method based on the normalization to the ions
detected in PRISMA (see section 4.4), the plunger analysis has been performed as well for
a neutron-rich nucleus that is populated through the multi-nucleon transfer only in the
reactions within the target, the 72Zn nucleus. In particular, the 2+ → 0+ transition at
653 keV. The lifetime value for this transition in the literature is 13.7(17) ps [193].

This RDDS lifetime determination method requires to know the number of nuclei of
interest detected in PRISMA for the normalization, in the present case, i.e. for the 72Zn
isotope, it has been calculated integrating directly the corresponding peak in the mass
spectrum. The obtained number of ions for each target-degrader distance are indicated in
Table 4.19. Figure 4.41 shows the Doppler corrected γ-ray spectra of 72Zn in the energy
region of interest, corresponding to the 4+ → 2+ and 2+ → 0+ transitions, and for the
different distances. The area of the unshifted and shifted peaks as well as the ratio R
defined in eq. 4.11 as Iu/(Iu + Is) for the 2+ → 0+ transition for the standard RDDS
method and as in eq. 4.12 as Iu/(N0) for the new approach are shown in Table 4.20.
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Figure 4.41: Doppler corrected γ-ray spectra for 72Zn expanded to the energy region of
interest, around the 2+ → 0+ and 4+ → 2+ transitions at 653 and 847 keV respectively,
for the different distances. The blue and red lines correspond respectively, to the 2+ →
0+ and 4+ → 2+ transitions, the solid line plotted corresponds to the unshifted peak and
the dashed line to the shifted peak.
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Table 4.19: Number of 72Zn nuclei detected in PRISMA (N0) for each distance (df ).

d (µm) df (µm) N0

100 112.01 55454(235)
200 211.97 43401(208)
500 512.00 49351(222)
1000 1012.01 51487(227)
1900 1912.00 41625(204)

Table 4.20: Experimental values of the shifted peak areas (Is), the unshifted peak areas
(Iu) and R (Rconv = Iu

Iu+Is
) for the 2+ → 0+ transition, for the standard RDDS and for

the new approach (Rnew = Iu
N0

), as a function of the distance df .

E = 653 keV 2+ → 0+

d (µm) df (µm) Is (counts) Iu (counts) Rconv Rnew

100 112.01 141(28) 523(54) 0.79(11) 0.009(1)
200 211.97 126(10) 417(17) 0.77(4) 0.0096(4)
500 512.00 276(40) 269(37) 0.49(8) 0.0055(8)
1000 1012.01 404(50) 102(24) 0.20(5) 0.0020(5)
1900 1912.00 423(23) 28(8) 0.06(2) 0.0007(2)

Finally the determination of the lifetime is done through an exponential fit of the above
mentioned ratios. Nevertheless, since it has been observed a sizeable population of the 4+

state in this nucleus, is necessary to take into account the feeding of the 2+ state, through
the 4+ → 2+ transition with 847 keV energy. The lifetime of the 4+ state is not well know
and, therefore, the RDDS analysis for the 847 keV transition, has been performed as well.
The expression employed in the fit to determine the lifetime of the 4+ state has been the
following:

R1(x) = Aexp(−x/B) (4.31)

where B = (βct1/2)/ln2 being t1/2 the half life of the excited state.

The expression employed in the fit corresponding to the 2+ state, determined using
the Bateman equations [194], is the following:

R2(x) = A(
C

B − C
)(exp(−x/B) − exp(−x/C)) +Dexp(−x/C) (4.32)

where C = (βct1/2)/ln2 being t1/2 the half life of the excited state.
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Figure 4.42 shows the exponential fits performed for the lifetime determination with
the two RDDS approaches. As the lifetime of the 4+ → 2+ transition is very short, the
longer distances are not plotted since the information of the exponential decay is coming
from the shorter distances (see Figure 4.41). The values obtained for the half file, the
lifetime and the reduced transition probability of the 2+ → 0+ transition at 653 keV,
obtained with both RDDS approaches are summarized in Table 4.21. As for the 76Ge
isotope, the agreement between the known value and the lifetime obtained with both
RDDS approaches let us state that the RDDS technique, using the normalization to the
number of ions detected in PRISMA, is as least as good as the standard approach.
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Figure 4.42: Fit of the 4+ → 2+ and 2+ → 0+ transitions with 847 keV and 653 keV
respectively, considering the data obtained a) with the standard ratio for the RDDS
method b) when only the unshifted peak, normalized to the number of ions detected
in PRISMA, is considered.

Table 4.21: Half life (t1/2), lifetime (τ) and reduced transition probability (B(E2 ↓)) for
the 2+ → 0+ 72Zn transition at 653 keV.

E = 653 keV 2+ → 0+

Method t1/2 (ps) τ (ps) B(E2 ↓) (e2fm4)

literature 13.7(17) 19.8(24) 348(42)
conventional 12.3(14) 17.1(19) 402(45)
unshifted 11.8(18) 17.0(19) 405(45)
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4.7.4 Lifetime determination for the 71Cu isotope

The nucleus 71Cu is a neutron-rich isotope already six neutrons away from the last stable
copper isotope. The accessibility to this nucleus, specially for in-beam experiments is
difficult and, therefore, there is scarce knowledge about its structure. In fact, this is the
first time the lifetime of the 7/2− excited state, lying at 981 keV of excitation energy, has
been experimentally determined.

For the lifetime analysis of the 7/2− state only three target-degrader distances have
been used: 100µm, 200µm, and 500µm. The spectrum of the larger distances (1000 µm
and 1900 µm) is irrelevant for the lifetime determination, as most of the information of
the exponential decay is coming from the short distances. Besides, they are the plunger
distances with less number of events collected, therefore, it has been decided not to include
these data sets for this particular lifetime analysis. Figure 4.43 shows the spectra for the
71Cu expanded in the energy region of interest and for the three relevant distances. The
areas of the unshifted and shifted peaks (Iu and Is) were calculated both with a Gaussian
fit and by the integration of the counts in the peak region. The results obtained with both
methods are compatible; therefore, only those coming from the integrals are reported on
Table 4.22. The new approach for the RDDS fit, with the normalization to the number of
ions detected in PRISMA, has been used for the lifetime determination since the statistics
for the shifted peak is quite low and introduces large uncertainties. The number of 71Cu
nuclei detected in PRISMA for each distance is listed in Table 4.23. For this transition,
the fit has been done in the same way as the 4+ → 2+ transition of the 76Ge, since no
feeding is expected from above, using eq. 4.32 but fixing the parameter: A = 0.

Table 4.22: Experimental values of the shifted peak areas (Is), the unshifted peak areas
(Iu) and R (R = Iu

N0
) for each distance df .

E = 981 keV 7/2− → 3/2−

d (µm) df (µm) Is (counts) Iu (counts) R

100 112.01 0(0) 41(13) 0.00244(77)
200 211.97 8(7) 30(12) 0.00225(90)
500 512.00 13(9) 15(10) 0.00102(68)

Table 4.23: Number of 71Cu nuclei detected in PRISMA (N0) for each distance.

d (µm) df (µm) N0 (counts)

100 112.01 16829(130)
200 211.97 13322(115)
500 512.00 14771(122)
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Figure 4.43: Doppler corrected γ-ray spectra for 71Cu expanded in the region of interest,
i.e. of the 7/2− → 3/2− transition with 981 keV for the used distances. The plotted solid
line in blue marks the unshifted peak and the dashed line the shifted peak.
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The obtained a value for the lifetime of the 7/2− → 3/2− state at 981 keV for the 71Cu
is τ = 20(16) ps, thus with relative uncertainty of the lifetime is of 79%. The reduced
transition probability obtained by using eq. 4.2 is B(E(2 ↓))=45(36) e2fm4. The values
are summarized in Table 4.24 and the corresponding fit is shown in Fig. 4.44.

0 100 200 300 400 500 600
d (µm)

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

R

7/2
-→3/2

-

t1/2 = 14(11)ps

Figure 4.44: Fit for the lifetime determination for the 7/2− → 3/2− transition with 981
keV. The new approach, where the unshifted peak is normalized to the number of ions
detected in PRISMA, has been used.

Table 4.24: Half life (t1/2), lifetime (τ) and reduced transition probability (B(E2 ↓)),
determined from the 7/2− → 3/2− transition with 981 keV energy in 71Cu.

E = 981 keV 7/2− → 3/2−

Method t1/2 (ps) τ (ps) B(E2 ↓) (e2fm4)

unshifted 14(11) 20(16) 45(36)
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4.8 Discussion

As it was mentioned at the beginning of this chapter, with the present study we intend
to contribute to the understanding of the nuclear structure in neutron-rich nuclei in the
vicinity of Z=28 and N between 40 and 50. This understanding includes as well how
the collectivity evolves adding protons and neutrons to the quasi-double magic nucleus
68Ni. In the discussion of the results I will resort to the Spherical Shell-Model calculations
to perform the comparison of the results with nuclear structure calculations. The early
Shell-model was hard to reconcile with the idea of the nuclear collectivity and nuclear
deformation, the increases in tractable dimensionalities were insufficient to promote the
Shell-model to the status of a general description of the nuclear structure [195]. Since
the 90’s there has been an impressive progress in the Shell-model approach due to the
appearance of the large-scale Shell-model (LSSM) calculations [196, 197]. One good
example is the fp-shell, where the middle of the f7/2 shell, nuclei show collective properties
similar to those observed in heavier nuclei, such as rotational-like bands, band termination,
and backbending phenomena. In this region it is possible to describe deformed nuclei
within both the mean-field and the large-scale Shell-model descriptions [198].

Shell-model calculations in the neighbourhood of 78Ni have been until recently a
challenge, due to the large space required. In particular, for the copper isotopic
chain [199, 200]. It has been shown that the Shell-model calculations using the f5/2,
p3/2, p1/2 and g9/2 neutron orbits (the fpg valence space) and realistic interactions, can
reproduce rather well the level schemes of Cu isotopes as well as their magnetic moments,
but underestimates the BE(2) [199,201]. To reproduce the larger quadrupole collectivity in
this mass region, the inclusion of the neutron d5/2 orbital is needed. This can be explained
in terms of the quasi-SU3 approximate symmetry: The deformation can be generated by
the interplay between the quadrupole force and the central field in the subspace consisting
on the lowest ∆j = 2 orbitals of a major shell [202]. Recently a new interaction, with the
appropriated model space for neutrons, and denoted as LNPS, has been proposed [208].
This interaction is based on several sets of realistic two-body matrix elements (TBME).
Its main building blocks being the following:

• The last evolution of the Kuo-Brown interaction (KB3gr) for the pf shell [203].

• The renormalized G matrix of Ref. [204] with the monopole corrections introduced
in Ref. [207], for the remaining matrix elements involving the f7/2, p3/2, f5/2, p1/2,
and g9/2 neutron orbits.

• The G matrix based on the Kahana-Lee-Scott potential [206] for the matrix elements
involving the d5/2 orbit. This potential was successfully employed in the definition of
the recent SDPF-U Shell-model interaction [207] for the description of neutron-rich
sd-pf nuclei.

In this context, the Shell-model calculations performed by K. Sieja and collabora-
tors [200], have considered an enlarged valence space that contains the pf-shell orbitals for
protons and f5/2, p, g9/2 and d5/2 orbitals for neutrons. The calculations have been per-
formed using ANTOINE code [195], allowing for maximally 8p-8h excitations with respect
to proton f7/2 and neutron g9/2 orbitals. The effective interaction starts with the same
sets of two-body matrix elements as used in Ref. [208]. However further monopole changes
to constrain the proton gap evolution from 68Ni to 78Ni have been introduced [199]. Two
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experimental constraints have been taken into account in the monopole corrections of the
interaction: the sizes of the gaps at N=40 and at N=50. While the size of the proton gap
in 68Ni is well established (5.8 MeV from binding energy differences), the corresponding
gap in 78Ni has been inferred indirectly from the recently measured B(E2 ↓) : 2+ → 0+

transition rate in 80Zn [209]. The calculated correlated gaps amount to 5.7 and to 5.0
MeV in 68Ni and 78Ni, respectively. Besides, fine changes in the multipole part of the
interaction have been performed, which however leave unchanged the physics of the island
of inversion studied in [208]. The effective charges used for the B(E2) calculations in the
region have been: en = 0.5e and ep= 1.5e. In Table 4.25 and in Table 4.26 are shown
the occupation numbers in the wave function of low-lying states in 71Cu for neutrons and
protons, respectively. Figure. 4.45 shows the occupation numbers in the wave function of
low-lying states in 71Cu for protons and neutrons via Shell-model calculations.

Table 4.25: Neutron occupation numbers in the wave function of low-lying states in 71Cu.

state p3/2 f5/2 p1/2 g9/2 d5/2
3/2− (GS) 3.94 5.40 1.50 2.83 0.32

7/2− (1041 keV) 3.94 5.26 1.25 3.18 0.38
7/2− (1336 keV) 3.94 5.08 1.32 3.34 0.32

Table 4.26: Proton occupation numbers in the wave function of low-lying states in 71Cu.

state f7/2 p3/2 f5/2 p1/2
3/2− (GS) 7.59 0.91 0.36 0.14

7/2− (1041 keV) 7.45 0.73 0.64 0.19
7/2− (1336 keV) 7.39 0.68 0.80 0.13

The LSSM calculation foresees two low lying 7/2− states in 71Cu, in good agreement
with our knowledge of it structure [149, 152]. As it is possible to see in Fig. 4.46,
the calculated excitation energies are in fair agreement with the experimental ones.
Nevertheless there are some particularities that required a extended discussion. The wave
function, of the 71Cu 7/2− states has some particularity for the proton occupancy, There is
a trend in the occupancy of the p3/2 and f5/2 orbitals. While the p3/2 occupation number
decreases as we go to the higher excitation energy state, the corresponding f5/2 increases.
The inclusion of the d5/2 in the valence space for neutrons, the SU3 partner of the f9/2,
should enhance the quadrupole moment improving the description of the B(E2 ↓) values.

Table 4.27 shows the energy and the reduced transition probability values of the
7/2− excited states in 71Cu obtained in the present measurement (exp), in a previous
measurement performed by I. Stefanescu et al [149] and the ones obtained within the
theoretical Shell-model calculations (th) of ref [200].

As it can be seen in Table 4.27 the reduced transition probability measured
experimentally for both 7/2− states (at 981 and 1,041 keV) is quite well reproduced within
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the Shell-model calculations performed by K. Sieja [200]. The B(E2 ↓) values obtained,
suggest a different collective character of both states coming from the mixing of the protons
in the p3/2 and f5/2 orbitals and from the inclusion of the d5/2 orbital in the neutron part of
the wave function that leads to an enhancement of the quadrupole contribution of the g9/2
and the d5/2 orbitals not considered in previous Shell-model calculations. Nevertheless,
the calculated excitation energies of both levels is inverted in the Shell-model calculations
with respect to the experimental findings.

We expect that the valuable information found in the present measurement that helped
to identify unambiguously the nature of both low lying states, will contribute to further
development if the effective interaction necessary to have precise calculation in the vicinity
of the double magic 78Ni.
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Figure 4.45: Proton and neutron occupation numbers in the wave function of low-lying
states in 71Cu.
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Figure 4.46: Low-lying excited levels in 71Cu obtained through Shell-model calculations
performed by K. Sieja et collaborators (top) [200] and in the present experiment (bottom).

Table 4.27: Energy and reduced transition probability values of the 7/2− excited states
in 71Cu obtained in the present measurement (exp) and with the theoretical Shell-model
calculations (th) of ref [200].
(1) corresponds to the experimental values measured by I. Stefanescu et al [149].

state E (keV) th E (keV) exp B(E2 ↓) (e2fm4) exp B(E2 ↓) (e2fm4) th

first 7/2− 1,041 1,1901 187(21)1 157.1
second 7/2− 1,336 981 45(36) 40.0
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Conclusions

Different configurations have been studied for the Ge array of the DESPEC experiment.
Our study has shown that the ones based on the technical proposal do not provide good
enough specifications in terms of peak efficiency and P/T respect to what is currently
obtained with present setups as for example the RISING array. Attempting to add imaging
capabilities, new geometries (based on planar detectors) have been proposed. However,
it has been demonstrated that they do not reach the values od efficiency needed for the
Ge array of the DESPEC experiment. Therefore, a new configuration has been proposed
involving AGATA aiming to profit from both, the high efficiency of AGATA and the high
position resolution of planar detectors. The particular configuration studied is based on
the coupling of the AGATA S2’ configuration, designed to be installed in GSI along the
current year, with a set of planar detectors. The study performed shows that altough no
gain in efficiency is achieved, an improvement in P/T is obtained by using the imaging
capabilities of the mixed array.

To this task contributes the background-suppression algorithm developed for the
AGATA array. At the current status of the algorithm, the analysis performed clearly
assigns the γ rays to the correct sources. The γ rays coming from sources such as
beam-dump, beam-tracking detectors or primary reaction target, that contribute to the
background of the measurement, can be identified using the present method and rejected by
background subtraction techniques. On an event-by-event basis, this algorithm represents
a contribution to the background rejection methods in development improving the peak-
to-total ratio by a factor between 3 and 3.5. A further step in the algorithm development is
foreseen, using the data provided by a larger AGATA detector array, including events with
three or more interaction points. The algorithm has been also optimized for the proposed
configuration of the Ge array for DESPEC showing a better source identification when
only events having one interaction in planar and one in AGATA, PC events, are considered.
Therefore, an array composed of AGATA and planar detectors presents better capabilities
for imaging purposes due to the better position resolution of planar detectors.

In the path to a full development of imaging with Ge detectors, the Compton imaging
algorithm developed for the Ge array of the DESPEC experiment has shown tobe able
to reconstruct quite well the path of the photons inside the detector. Reconstruction
efficiencies values show the good performance of the imaging algorithm. At its current
status, the algorithm is able to order accurately the interaction points of the γ rays
impinging the detector. On an event-by-event basis, the algorithm contributes to
background rejection improving the P/T ratio.

The lifetime of the 7/2− exited state at 981 keV of the 71Cu isotope has been measured
experimentally using the AGATA Demonstrator coupled to the PRISMA spectrometer and
the plunger setup through the Recoil Distance Doppler Shift Method (RDDS). This is the
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first time this setup has been used coupled together in an experimental measurement. The
measured value for the reduced transition probability (B(E2 ↓)=48(18) e2fm4) is in good
agreement with the Shell-model theoretical calculations in the very large fpgd valence
space using the LNPS interaction performed by K. Sieja (B(E2 ↓)=40 e2fm4). The
B(E2 ↓) values obtained, suggest a different collective character of the two 7/2− exited
states (at 981 and 1,041 keV, respectively) coming from the mixing of the protons in the
p3/2 and f5/2 orbitals and from the increasing occupation of the g9/2 orbital in the neutron
part of the wave function that leads to an enhancement of the quadrupole contribution of
the g9/2 and the d5/2 orbitals not considered in previous Shell-model calculations.
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