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A bstract

The kinks of the (1+ 1)-dim ensional W essZum ino m odel w ith polynom ic superpotential are investi-
gated and shown to be related to real algebraic curves.
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1

T he din ensional reduction of the (3+ 1)-din ensional W essZum ino m odel, produces an interesting (1+ 1)-
din ensional BoseFerm i system ; this eld theory enjpys N= 2 extended supersymm etry provided that the
interactions are introduced via a real ham onic superpotential, see EI]. In a recent paper [E] G bbons and
Townsend have shown the existence of dom ain-wall intersections in the (3+ 1)D W Z m odel, the authors
relying on the supersymm etry algebra of the (2+ 1)D dim ensional reduction of the system . A lthough the
dom ain-wall junctions are tw o-din ensionalstructures, their properties are rem iniscent of the one-din ensional
kinks from which they are m ade. In this letter we shall thus describe the kinks of the underlying (1+ 1)-
din ensional system .
The basic elds of the theory are:

Two realbosonic elds, ®(x ),a= 1;2 thatcan beassambled In the com plex ed: (x )= T(x )+
i?%(x )2 MapsR'1;C). x = (x%;x!) are bocal coordinates in the R** M inkow ski space, where we
choose themetricg ;9% = gl = 1;9'?2 = g?' = 0.

Two M ajprana spinor eds %(x ),a= 1;2. Wework in a M ajprana representation of the C i ord

algbraf ; g= 29 ,
o_ 2, 1o, 5_ 0 1_ 3
where !, 2, 3 are the Paulim atrices, such that @ = 2. W e also de ne the adpint spinor as
(x )= % ) °and considerM apranaW eylspinors: 2 (x )= < 5— % (x )with only one non-zero
com ponent.
Interactions are introduced through the holom orphic superpotential: W ()= 2 W *( *; )+ W *( 1; ?) .
One could in principle start from the supercharges:
Z " #
X X c
N ab be QW
QBC _ Xm fB (@0 a @1 a) b fC i a
ab c

whereW B ,B = 1;2, are respectively the realpart if B = 1 and the in aginary part if B = 2 of W ( ) and
£8  is efther the dentity or the com plex structure endom orphisn in R? E]:
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B=1 _
£ - 1

1
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N evertheless, the C auchy-R iem ann equations:

ew *  ew ? ew * Qw 2
@l e ez e’ W

tell us that the theory is fillly described by choosing etther W * orW 2. W ethussetW © = W * and nd the
basic SUSY chargesto be Gt = Q% :

z X ab Qw 1
0F = A £ @ et 5 (2)
abb
From the canonicalquantization rules
[Cx);2y)]1=1% ( yi)=£f ®(x1)ii °(v1)g (3)

one checks that the N = 2 extended supersym m etric algebra
0% ;0°g=2"%°p 05 0%g= (1P (*C2r+ PCorm) (4)

is closed by the fur generatorsQ® ,de ned in (E). Here

1 X
P = > dx' (@ % @ )@ % @ 7) 2i°%@ °* +
z Xa " 1 1 X 200 1 #
1 W W W
oo dx! il 21 = a v
2 @2 @2 @ 2@ ®
a b
are the light-cone m om enta and
Z

gl ewvie?
@ T @xt @ 2 @xt

Z
@ 1 @xt @ 2 @x!
the central extensions.
2
From the SUSY algebra one deduces,
2P0 = 2 3+ Q%  ( 1Q® Y =243+ @F (1P 2CQ°);

see [EJ. W e thus de ne the charge operators on zero m om entum states:

Z
X ew !
Qvl _ Qi Ql _ Xm @1 a e f a
7 ° ! !
X X b QW 1 X
QZ _ Ql Q2 _ Xm Q, a 2 a a f2 ac ¢
b
a b e c

Spatially extended coherent states built from the solutions of any of the two system s of rst order
equations, E]:

d! ew ! d ? Qw !
= @t E ()
d! ew ! d ? Qw !
. @2 - (6)



havem ininum energy because they are respectively annihilated by Q! (system (E)) and 0% (system @)) .
The ow mnR?’ C of the solutions of @) is given by:

ew ! ew ! ewl , ew! ,
TS a7 o czdl grdi=ani=o

(o)
N

(o

IfW ( ) ispolynom ic in , the solutions of B) live on the real algebraic curves determ ined by the equation:
WAt = (7)

where , isa realconstant. Sin ilim odo, the solution ow of (E) incC,

a2 ew! ew?! ° ew ' ., ew'!

dl el @? @l @ 2

runs on the real algebraic curves:
Wit %)= 8)
where isanother real constant. T here are two observations: (I) Solutions of system B&) live on curves for

whichW 2 = constantand solutions of @) have support on curves Hrwhich W ' = constant. (II) T he curves
that support the solutions of (E) are orthogonal to the curves related to the solutions of (@ ).

Assum e thatW ( ) has a discrete set of extrem a, form ing the vacuum orbit of the system : @@l =0,

v (i)
i= 1;2;:5n. K inks are solutions of (E) and/or(g) such that they tend to v ) when x; reaches 1 .v'*)
and v ) thus belong either to curves (ﬂ) or (d), and this xes the values of or , for which the real
algebraic curves support kinks. In R eference @} a general proofbased in singularity theory of the existence
of these soliton solutions, that counts its num ber, is achieved. T he energies of the states grown from kinks
arePp = = W lwH)) wlw')) for soltionsof ) and P = = W 2w®)) W iw®)) for
solutions of @). T he kink form factor is obtained from a quadrature: one replaces either ﬁ) or (H) in the
rst equation of (E) or @) and integrates.

T herefore, the ferm donic charges 0! and Q% are annhilated on coherent states K* and K ? that
correspond to the tensor product of the quantum antikink/kink, 1iving respectively on curvesW “ = constant
and W ! = constant,w ith its supersym m etric partners (the translationalm ode tin es a constant spinor). W e

nd

. 2 3
X ew ! 1
Ql K1 _ dx; 4@121 a ;15@1;1 . K! =0
a
2 3 1
Z a
X X Qw ! Ry
QE Kf = dxy 4@l;2+ a» b 325 P acg. c Kf =0
i @ K @
a b N © k2
2 3 I
P
Z ac c
X X Qw 1 (R
2 2 _ b c K 2 _
Q° K - dx; 4@]-;2 : @b ;25 @ a2 K+ =0
a b K

on solutions of (7) and/or (8); the SUSY kinks are thus %—BPS states. T he energy of these states does not
receive quantum corrections [l ], because N = 2 supersym m etry forbids any anom aly in the central charges.

3

W e focus on the case in which the potential is:

1X ew'lew ! 1 a1 2
U()=5 @a@a=§l 2(f+ 5)2 cos (n l)arctan—-k(f-kg

a

see [E] and ﬂ]. In polar variables in the R? intermal space,



x )=+ ['&x)F+[2&)F; (x )= arctan T )
the potential reads:
1
U(i=51 2" tcostn 1) + 0P ©9)
Thereissymm etry undertheD ,, 1), %22 Z, 1 dihedralgroup: 0= , 0= +n2 ji,j= 0;1;2;u5n 2.

In C artesian coordinates, these transform ations form the D ,(, ;) sub-group of O (2) given by:

@ 9= 2 9=

2 3 2 3 0 j
(2) lO=cos J 1 sin J 2; 2= sin Y4 cos ) 2
n 1 n 1 n 1 n 1
The vacuum orbit isthe setof (n  1)=xoots ofunity:
" (x) i2 « © Dom 1)
M = vi'i=egr 1 = ——="2, 1: (10)
Zy

W hen the v*) vacuum is chosen to quantize the theory, the sym m etry under the D 2(n 1) 9roup is sponta—
neously broken to the Z, sub-group generated by %= % ; this transform ation leaves a xed point,

v*), ifn iseven and two xed points, v) and v** *=), ifn is odd.
The 2, symmetry allows for the existence of (n 1) ham onic superpotentials that are equivalent:

. . (3)yn . 22 3
wPH)=%2 @ % 3) = &l T, allofthem leading to the sam e potentialU . T hus:
, 1 4 1
w3 = cos () = "cosn (J) w32 - sn (§) = "sin ()
n n
where (j)= + %.Therejsmom for closing the N = 2 supersym m etry algebra (@)jnn 1 equivalent
form s: de nethen 1 equivalent sets of SUSY charges:
(3)B ‘ ab i ‘ G W Dty
0 J _ dxl fB (@O (3)a @l (j)a) J @ o J ;
ab

also in term s of the "rotated" form ionic eds  O° , and the corresponding central charges T 3 and T3

O bserve that the N = 2 supersym m etry is unbroken, while the choice of vacuum that spontaneously breaks
the Z,, 1 symm etry does not a ect the physics, which is the sam e for di erent values of j.
The j pairs of rst-order systam s of equations:

2d (9)

al= sin (3) " lsnn (5) = = cos (j) "cosn (3J) (11)
d d (3
— = cos (3) " 1 osn (3) 2 (j)= sin (j)+ "sihn (3) (12)
dx, dx;

correspond to (E) and @) for this particular case. T he solutions lie respectively on the algebraic curves
"sinn (j) = ’ (13)

(14)

" cosn ()

Sl

which form two fam ilies of orthogonal lines in R?. In the fam ily of curves ) there are kinks pining the
0
vacua v and v*) ifand only if:

2 (k+ 9) 1 .2 (k+ jn 2 Ko+ 3) 1 . 2 &%+ j)n K
_ shn———=sn———— —sh——— = (15)
n 1 n n 1 n 1 n n 1 :



This xesthevalieof , = 5 for which the algebraic curve supports a topologicalkink. Sin ilim odo,

2 k+9) 1 2 (k+ J)n 2 &+ 9 1 2 &+ j)n X
cos—— —COS——X ™ = C0sS——m —COS—— X =

(1e6)
n 1 n n 1 n 1 n n 1

is the value of the constant if the kink belong to the orthogonal fam ily ). Solutions of @) and/or (@)
exist, respectively, if and only if

2(k+ K%+ 29)=n 1mod2n 1) 17)

and/or
k+ k%°+ 2= Omodn 1 (18)

G iven the kink curves, the kink form factors are obtained in the follow Ing way:
One solves for in ) or (@),

n = h( ¥ + =h, (X 19
— (") ; — 2 (27 ) (19)
and plugs these expressions into the rst equation of @) or (@),
d . K n 1 _: K d K n 1 K
— = sinh( " ; ) sinfpnh( *; )] ; —— = cosh; (5 ; ) cosnh, ( 5 ; )]

dx; dx;

which are inm ediately integrated by quadratures: if a is an integration constant

Z
d

smnh( ¥; ) » lsinhh(¥; )]
d
;) ™ lcoshh, (

= (X1 + a) (20)

(x1 + a) (21)

i)l
4

W e rst consider the Iower odd cases, only for W =9, The other kinks are obtained by application of a
Zn 1 rotation.

n= 3:
3
{ Superpotential: W ( )=% =
3 3
1 1 2 2 2 2
W= 2+ W °= + =
1 3 1 2 2 12 3
{ Potential: U ( 1; 2)= 2 [( 172+ 4 2]
{ Vacuum orbit:M = Dz—j =fW=1;v'= 1g
{ Realalgebraic curves:
: :
2 2
—_— 4+ = + — = 5y
1 3 1 2 ’ 2 1 2 3
{ K ink curve: , = 0( W ?= 0),tantamountto , = 0.

{ K ink form factor:

a)Solutbnsof &+ = (1 f)on 2=0: ) (x1)

tanh (Xl + a)

{ K ink energy: Pg[ k' = Ti= wiwd) wieh)

Wl

{ Conserved SU SY charge: o' Kt =0



n= 5:

{ Superpotential: W ( ):% -
1 a
Wis .1 de222 4wl 1 de222 £
> 5
{ Potential: U ( 1; 2)= %[( + 1) 4 %][( + 1% 4 g]
{ Vacuum orbit:M = 24 = £0=1;v' = ;7P = 1;v°= g

72
{ Realalgebraic curves:

4 4
1 L4222 d= 1 dy 222 2 o,
1 5 12 2 2 1 12 5
{ Kink curves:a) , =0 >,=0,b) =0 1= 0.
{ K ink form factor:
1 1
a) Solutions of ixi= 1 %on 2= O:arctan? +arctanhlf = 2(x1+ a)
2 2
b) Solutions of ZTf=l gon 1=O:arctan§ +arcta:r1h}2< = 2(x1+ a)
{ K ink energies: (a)Po[Kl = = wie®) wileE?) :%
B)Pol ¥ 1= = W 2wh) wWA?) = &

{ Conserved SU SY charges: @o! k! = O;(b)Q2 K? =0

n= 7:
7
{ Superpotential: W [ ]= % =
7 7
1_ 1 5 2 3 4 6 2 _ 6 4 3 2 5 2
W = 1 7+312 512+ 1 2 W = 2 12+512 312+7
7. . _ 1 6 2 2 2 2 2
{ Potential: U ( 1; )= 5 ( ) 2( 1 5) ) 16 1 3 +1
{ Vacuum ogpit: o o o e
Mo=Zr= Vi=Lvi=gedgvis gedgvi= Livis § o dgivi= g iy
{ Realalgebraic curves:
7 7
1 5 2 3 4 6 6 4 3 25 2
1 7+312 ST+ 13= 2 12+571 3 312+7:°

{ K ink curves: there are two choicesof , and three choicesof forwhich one ndskink curves.
T he other kinks associated w ith the other superpotentials can be obtained by Z¢ rotations.

a) - = 3—73:kjnk curve phing vt with v2
jo
2 = %:kjnk curve pining v* with v°
b) = %:kjnk curve phing v* with v°

% : kink curve pihing v? with v

0 : kink curve Ppining ¥ w ith v°

4

Q
Il

{Kinkenergies:a)Po[Kl]:jfj:j'\ll(vk) Wl(vk*l)j:%
2 P—
b)Pol ¥ 1= = 1 2(WF) W A= 2

C)Pol ¥ 1= 9= W 2(K) W lEr3)g= L2

=
{ Conserved SUSY charges: (a)0' K! = 0.(®)and (¢)Q0? K? =0



W e now study two even cases.

The st and m ost interesting m odeloccurs forn = 4. Here,we nd that the kink curves are straight
lines in W —space (true for any n) and curved n  —space, In agream ent w ith R eference E] :

4
{ Superpotential: W [ J=% -
1 % 3.2 % 2 3 2
Wwl= . - W= 1 +
1 4 o 12 4 2 1 12
h i
{Potentjal:U(1;2)=% ( )3 21(f 3§)+l
2 p_
{ Vacuum orbit:M = DZ—23=va= 1;v = %+ i73,v2= % i73g
{ Realalgebraic curves:
4 4
3
1 2 2 2 3 2
— 4+ — < = 1 + = 5
1 4 2 1 2 4 ’ 2 1 1 2
{ K iInk curve: = g
2
{ K ink form factor: on thekink curvewe nd ;| = f '[ (x+ a)]lwhere
Z
£(q1)= _
(1)_ q3 - q374
4 2
§+41+8l 31 §+41+81

( Kink energy: Pol " 1= F= 3 20*) W 2" 1)j= 22

{ Conserved SUSY charge: 02 K? =0
n= 6:

{ Superpotential: W [ ]=

N

6 6
5 5
1 1 4 2 2 4 2
T Tz 3t
10
wii= 5,1 I+=3137 1
3
{Potential:U(l;g):%( P 2.(1+53 102 5)+1
{ Vacuum orbit:M = DZ—ZS =0 = 1;vt = &5 2 = el ;i = el vt = elT g
{ Realalgebraic curves:
6 6
5 5 10
1 4 2 2 4 2 5 32 4
1?+§12 512+€:;21 1+?12 12 T 2
{ K ink curves: there are two values of giving kink curves: a) = 2—54(l+ 5): kink curve
Pining v? with v>,b) = 2 ( 1+ 5): kink curve pining v! with v*. The other kink curves are
obtained through Zs rotations.
2 5q 5 U3
{ K ink energies: a) Po[ ¥ 1= f'j= W > &*) Wz(v]”l)j:g -

2 — p—
P)Pol X 1= = W 2(*) W2 2)g= 2 2

o
N

{ Conserved SUSY charges: (@)and (b)Q? K? =0
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Figure l: Kink curves in then = 4,n= 5,n= 6 and n = 7 models
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