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We study the electric flux tubes that undertake color confinement in N = 2 supersymmetric
Yang–Mills theories softly broken down to N = 1 by perturbing with the first two Casimir opera-
tors. The relevant Abelian Higgs model is not the standard one due to the presence of an off-diagonal
coupling among different magnetic U(1) factors. We perform a preliminary study of this model at
a qualitative level. BPS vortices are explicitely obtained for particular values of the soft breaking
parameters. Generically however, even in the ultrastrong scaling limit, vortices are not critical but
live in a “hybrid” type II phase. Also, ratios among string tensions are seen to follow no simple
pattern. We examine the situation at the half Higgsed vacua and find evidence for solutions with
the behaviour of superconducting strings. In some cases they are solutions to BPS equations.
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I. INTRODUCTION

Certainly, one of the most beautiful ideas in the context of quantum chromodynamics (QCD) is the confinement
mechanism envisaged by ’t Hooft [1] and Mandelstam [2] through the condensation of light monopoles. In essence
it states that the QCD vacuum should behave as a dual superconductor where magnetic order takes place, and
electric flux tubes form thus producing color confinement. In the context of QCD it stands for a kind of descriptive
scheme, as long as it is not known how magnetically charged quanta can arise and condense in the effective low
energy theory. In this respect, the idea of Abelian projection proposed by ’t Hooft has received increasing support
from numerical simulations on the lattice in the last few years [3]. Even in the continuum, recent work using a novel
parametrization of QCD [4], points in the direction of the above scenario for color confinement [5]. From the analytical
side, the understanding of non-perturbative phenomena in four dimensional quantum field theory has been put several
steps forward since Seiberg and Witten constructed an exact solution for the low energy dynamics of SU(2) N = 2
supersymmetric Yang-Mills theory [6]. In particular, it was possible for them to show that the mechanism of color
confinement devised by ’t Hooft and Mandelstam takes place when supersymmetry is broken down to N = 1. These
results were soon extended to the case of SU(N) [7–9]. Furthermore, when N = 2 supersymmetry is softly broken
down to N = 0, the same mechanism has been shown to persist [10].

In spite of the fact that these results are well known, not much attention has been paid to the actual solutions in
the strong coupling limit corresponding to electric flux lines that would undertake quark confinement. In Ref. [8],
it was shown that this sort of vortices should have a spectrum of string tensions that distinguishes among different
factors in the magnetic U(1)N−1 theory arising in the infrared. The same result was found in the framework of the
M-theory fivebrane version of QCD, also named MQCD [11]. The string tension of the N − 1 electric flux tubes
Tk , k = 1, ..., N − 1 , is given –up to a dimensionful factor which is different for each theory but independent of
k–, by a dimensionless function fN(k) = sin(πk/N). This function is somehow universal as long as the soft breaking
perturbation is carried by a single Casimir operator [8,11,12]. Even in that case, the problem of finding such solutions
in the particular model that emerges in this context has not yet been addressed in detail, 1 probably due to the

1 Except for SU(2), both at the maximal singularity of the Coulomb branch for pure gauge [13], and on the Higgs branch in
the theory with massive fundamental matter [14].
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naive expectation that the effective theory consists of N − 1 copies of the standard U(1) Abelian Higgs model. It was
already shown by Douglas and Shenker that the magnetic U(1) factors of the infrared quantum theory describing the
neighborhood of the monopole singularities are coupled [8]. The existence of these off-diagonal couplings, τoff

ij , was
confirmed in two different frameworks. First, they appear in the expression of the Donaldson–Witten functional for
gauge group SU(N) [15]. Moreover, these couplings were shown to satisfy a stringent constraint coming from the
Whitham hierarchy formulation of the Seiberg–Witten solution in Ref. [16] where, in addition, a general ansatz for
τoff
ij is given.
In this paper, we extend the work [13] to the case of SU(N), N = 2 supersymmetric Yang-Mills theory softly broken

to N = 1. The analysis is performed in a “peculiar” scaling limit (named “ultrastrong” in [11]). We show that, even
in that limit, generically there are no BPS electric flux tubes. A perturbative analysis leads to the conclusion that
the phase of dual superconductivity is of type II i.e. there is a short range repulsive force between different vortices.
This fact supports the expectation that indeed electric flux lines are safely confined into stable flux tubes, a feature
of the confinement mechanism which is not a priori granted. 2 It is worth mentioning in this respect that numerical
simulations in lattice QCD seem to point out that the type of Abelian Higgs model behind the picture of dual
superconductivity is a critical one between type I and type II [18].

The plan of the paper is as follows. The setup of the problem is given in Section II where some aspects of the low-
energy dynamics of N = 2 supersymmetric gauge theories softly broken down to N = 1 are reviewed. We emphasize
the existence of non-vanishing couplings between the different U(1) factors –even at the maximal singularity–, which
play an essential rôle in our results. In Section III, we show that the string tension of vortex-like configurations obeys
a Bogomol’nyi bound in the ultrastrong scaling limit. However, there are no BPS electric vortices in the system unless
the complex phases of the soft breaking parameters corresponding to different Casimir operators are aligned. Even
in this case, we show that the string tensions of the resulting BPS vortices are governed by a dimensionless function
fN (k) which is different from the one obtained in [8,11], the latter being recovered as a particular limit of our system
corresponding to a single quadratic N = 1 perturbation. In Section IV, we focus for convenience on the group SU(3)
and analyze the critical vortex solutions in certain simplified cases. We speculate about the full spectrum of such
configurations. A perturbative analysis of the dynamics expected for nearly critical vortices is performed in sections
V and VI by means of energetic arguments. This analysis reveals the existence of repulsive forces among vortices
corresponding to different magnetic U(1) factors. Thereafter we refer to this phase as an “hybrid” type II phase.
In Section VII, the half Higgsed vacua are considered. The similarities and differences with the model proposed by
Witten to describe cosmic superconducting strings [19] are discussed. We find solutions to the Bogomol’nyi equations
with the behavior of superconducting strings. Finally, Section VIII is devoted to our conclusions and further remarks.

II. INFRARED DYNAMICS AT MAXIMAL SINGULARITIES

The quantum moduli space of vacua MΛ of SU(N), N = 2 supersymmetric gauge theory has a singular locus
given by hypersurfaces of complex codimension one which may intersect with each other [7]. Along each of these
hypersurfaces, an extra massless degree of freedom –whose quantum numbers can be read off from the monodromy
matrix corresponding to a closed path encircling the singularity–, must be included into the effective action. At the
intersections, many states become simultaneously massless. Of special interest are those singularities where N − 1,
i.e. the maximum allowed number of mutually local states, become massless. They are accordingly called maximal
singularities. 3

The addition of a microscopic superpotential breaks supersymmetry and leads to an N = 1 theory

WN=1 =

N
∑

k=2

1

k
λk TrΦk . (1)

2 It could happen, for example, that the electric vortices result to be unstable, and their core grows and smears in such a way
that they do not lead to confinement of electric charges [17].

3 In SU(3), for example, the singular locus is given by the complex curves

4u3 − 27(v ± 2Λ3)2 = 0 ,

where u = 1/2〈Trφ2〉 and v = 1/3〈Trφ3〉 are the gauge invariant order parameters constructed out of the scalar field belonging
to the N = 2 vector supermultiplet, and Λ is the quantum dynamical scale. Higher intersections of these curves lead to the
so-called Z2 and Z3 singularities, given respectively by the points {u3 = 27Λ6, v = 0} and {u = 0, v2 = 4Λ6}.
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Notice that those contributions in (1) with k > 3 are non-renormalizable. However, this does not necessarily mean
that they do not affect the low-energy dynamics. They could be dangerously irrelevant operators [20,21]. We will not
discuss these subtleties here, and shall restrict ourselves to the case of up to cubic perturbations,

WN=1 =
1

2
µ TrΦ2 +

1

3
ν TrΦ3 . (2)

This breaking is soft, in fact renormalizable. The continuum vacuum degeneracy is lifted except for a given set of
points which depend on the actual values of the parameters µ and ν. 4

Let us focus on the low-energy effective field theory near a maximal point that we choose, for simplicity, to be that
with real quadratic Casimir, u = NΛ2. This is a dual N = 2 supersymmetric gauge system with gauge group U(1)N−1

which includes both chiral multiplets ΨD
i = (χD

i , V
D
i ), as well as hypermultiplets Hi = (Mi, M̃i) that correspond to

the monopoles that become light in that patch of the moduli space. One can choose a homology basis for the cycles on
the auxiliary curve such that each monopole has a unit of charge with respect to each dual gauge field. The quantities
χD

i , Mi and M̃i are chiral N = 1 superfields, while V D
i are N = 1 vector superfields (and WDi

α their corresponding
superfield strengths). For completeness, we give also the N = 0 content of these superfields

χD
i = (φD

i , ψi, Fi) V D
i = ((AD

µ )i, λi, Di)

Mi = (φmi
, ψmi

, Fmi
) M̃i = (φ̃mi

, ψ̃mi
, F̃mi

)

where the notation for fermionic, bosonic and auxiliary components is the standard one. Setting aD
i ≡ 〈φD

i 〉, the
coordinates at the point of maximal singularity that we are focusing on are aD

i = 0. The dominant piece of the N = 2
low energy effective Lagrangian is given in terms of a holomorphic function F , called the effective prepotential

LN=2
eff =

1

4π
Im

[

∫

d4θ
∂F(χD)

∂χD
i

χD†
i +

1

2

∫

d2θ
∂2F(χD)

∂χD
i ∂χ

D
j

WDi
α WDαj

]

+

∫

d4θ{M †
i e

2V D
i Mi + M̃ †

i e
−2V D

i M̃i} + Re

∫

d2θ W (χD,M, M̃) . (3)

The monopole fields have been “integrated in” in order to soak up the singularity of the effective action when
aD

i = 〈φD
i 〉 → 0 where Mi becomes massless. The effective superpotential at low energies is

W (χD,M, M̃) =
√

2Miχ
D
i M̃i + µ U(χD) + ν V(χD) , (4)

the last two terms being the effective contribution of the supersymmetry breaking superpotential (2). In fact, U and
V are the Abelian superfields arising respectively from the quadratic and cubic Casimir operators in the low-energy
theory. The vacuum expectation value of their lowest components, U and V , are the holomorphic coordinates in MΛ,
〈U〉 = u and 〈V 〉 = v.

Written in component fields, the bosonic sector of the system is described by the Lagrangian

LN=1
eff, B = −1

4
bij(Fµν)i(F

µν)j + (Dµφmi
)∗Dµφmi

+Dµφ̃mi
(Dµφ̃mi

)∗ + bij∂µφ
D
i

∗
∂µφD

j

−
[

1

2
bijDiDj + bijF

∗
i Fj + F ∗

mi
Fmi

+ F̃ ∗
mi
F̃mi

]

, (5)

where the auxiliary fields are solved as

Di = −b−1
ij (|φmj

|2 − |φ̃mj
|2) Fi = −b−1

ij

(√
2φmj

φ̃mj
+ Cj

)

(6)

Fmi
= −

√
2φD

i

∗
φ̃∗mi

F̃mi
= −

√
2φD

i

∗
φ∗mi

, (7)

whereas field strengths and covariant derivatives are given by

4 For instance, in the case of SU(3), the theory has generically five N = 1 vacua, three of which are the maximal Z2 points.
In the limit µ → 0, the remaining vacua approach the Z3 points [9].
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(Fµν)i = ∂µ(AD
ν )i − ∂ν(AD

µ )i , (8)

Dµφmi
= ∂µφmi

+ i(AD
µ )iφmi

Dµφ̃mi
= ∂µφ̃mi

− i(AD
µ )iφ̃mi

. (9)

Concerning Cj in (6), it stands for

Cj(φ
D) = µUj(φ

D) + νVj(φ
D) ≡ |Cj |eiβj , (10)

where Uj and Vj are the derivatives of U and V with respect to φD
j [8],

Uj(φ
D) = u

(0)
j Λ +

∑

p≥1

u
(p)
j (φD)Λ1−p , u

(0)
j = −2j sin θ̂j (11)

Vj(φ
D) = v

(0)
j Λ2 +

∑

p≥1

v
(p)
j (φD)Λ2−p , v

(0)
j = −2j sin 2θ̂j , (12)

while u
(p)
j (φD) and v

(p)
j (φD) are homogeneous polynomials in φD

i of degree p, so that Cj are regular functions in the

vicinity of the maximal singularity. Finally, bij is ( 1
4π times) the imaginary part of the period matrix τD

ij ,

τD
ij (φD) =

∂2F
∂φD

i ∂φ
D
j

=
1

2πi
log

(

φD
i

Λi

)

δij + τoff
ij + O

(

φD

Λ

)

, (13)

where Λj = Λ sin θ̂j and θ̂j = jπ/N . When expanding around the vacuum expectation value aD
i = 〈φD

i 〉, τD
ij (φD)

yields the effective coupling constant matrix. The logarithmic singularity when aD
i = 0 corresponds to the perturbative

running of the dual coupling constant up to the maximal point, displaying the asymptotic freedom of the dual
description. The coupling flows to zero due to the fact that the quantum fluctuations of massless monopoles have
been integrated out. This is fine as long as one is interested only in searching for vacuum solutions. Then M and
M † in (3)–(4) stand for the zero modes of the monopole field (see the discussion in [10]). Here, however, in order
not to run into double counting of degrees of freedom we should introduce, on physical grounds, an infrared cut off
for the monopole loop integrals. In each U(1) factor the natural energy scale is set by the soft breaking parameters

aD
i ∼ |C(0)

i |1/2 with

C
(0)
i = µu

(0)
i Λ + νv

(0)
i Λ2 = −2iΛ(µ sin θ̂i + νΛ sin 2θ̂i) , (14)

and the perturbative couplings of each monopole to its corresponding dual vector field,

4π

g2
Di

≃ − 1

4π
log

(

|C(0)
i |

Λ2
i

)

, (15)

show logarithmic variations among different U(1) factors. 5

Even in the close vicinity of the singularity, different magnetic U(1) factors are coupled through τoff
ij [7,8]. Exactly

at the singularity, i.e. at aD
i = 0, the generic expression proposed in [16] for these off-diagonal couplings is

τoff
ij =

2i

N2π

N−1
∑

k=1

sinkθ̂i sin kθ̂j

N
∑

p,q=1

τ (0)
pq cos kθp cos kθq , (16)

where τ
(0)
pq is given by

τ (0)
pq = δpq

∑

k 6=p

log(2 cos θp − 2 cos θk)2 − (1 − δpq) log(2 cos θp − 2 cos θq)
2 , (17)

5 In other words, we are dealing here with a macroscopic (classical) theory of the Ginzburg–Landau type, and we should
consider the coupling constant of the Mi and M̃†

i classical fields to V D
i : wave-particle duality connects gD with the running

coupling constant of the quantum theory through the formula ~gDi = gDi(a
D
i ∼ |C(0)

i |1/2), the strong coupling limit becoming
the classical limit for the magnetically charged quanta [22].
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with θp = (p − 1/2)π/N and p, q = 1, ..., N . In the case of SU(3), for example, τoff
12 = i/π log 2 [7,8,16]. These

interactions are also present in the effective potential obtained from the terms in square brackets of (5),

Veff =
1

2
b−1
ij (φD)(|φmi

|2 − |φ̃mi
|2)(|φmj

|2 − |φ̃mj
|2) + 2|φD

i |2(|φmi
|2 + |φ̃mi

|2)

+ b−1
ij (φD)(

√
2φmi

φ̃mi
+ Ci(φ

D))(
√

2φmj
φ̃mj

+ Cj(φ
D))∗ . (18)

Notice that, b−1
ij being positive definite, the potential is either positive or zero. Given the expectation values of the

complex scalars,

〈φD
i 〉 = aD

i 〈φmi
〉 = mi 〈φ̃mi

〉 = m̃i , (19)

N = 1 supersymmetric vacua are in one to one correspondence with zeroes of Veff :

√
2mim̃i = −Ci(a

D) , (20)

mia
D
i = m̃ia

D
i = 0 , (21)

|mi| = |m̃i| . (22)

i = 1, 2, ... N − 1. From (21) we learn that monopole condensation can only occur at hypersurfaces where aD
i = 0 for

some i. At the maximal singularity, every aD
i vanishes, and it is clear from (20)–(22) that N − 1 monopoles have a

chance to condense. While soft breaking is parametrized by µ and ν, monopole condensation is controlled by Ci. If

for some j we have aD
j = 0 and adjust C

(0)
j = 0, the corresponding U(1) remains unbroken (mj = m̃j = 0), and the

vacuum is said to be “partially Higgsed”. Summarizing, the Higgs vacuum H at the maximal point is given by

H = {mi, m̃i / |mi|2 = |m̃i|2 = |C(0)
i |/

√
2 , m̃j = −eiβ

(0)
j m∗

j} , (23)

with C
(0)
i = |C(0)

i |eiβ
(0)
i given in equation (14). Since the absolute phases of mi are not fixed, it has the topology of

a torus of genus g = N − 1. Equation (23) shows that the scalar components of the monopole superfields condense
in the vacua placed at the maximal points. Although the presence of condensation suggests that confinement indeed
takes place, some further analysis is required before this can be definitively established. An important question to be
answered is whether the collimation of the electric (or dual magnetic) flux lines is energetically favored or not. This
is a dynamical issue that goes beyond the simple vacuum analysis.

III. BOGOMOL’NYI BOUND IN THE ULTRASTRONG SCALING LIMIT

The resulting effective theory we have arrived at, in the bosonic sector, is an Abelian (N − 1)–Higgs model with
coupled U(1) factors and a quite non-standard Higgs potential. The search for stable vortex solutions in the complete
system is a hard problem. On general grounds, one should not expect to have BPS string solutions in spite of the fact
that N = 1 supersymmetry is enough, generically, to have BPS vortices in four dimensions [23,24]. At least, this is the
case of N = 1 QCD, where the strings are conserved modulo N so they cannot carry an additive conserved quantity
such as a central charge [25]. There is a limit, however, in which the system simplifies and admits BPS vortices
[11]. It happens whenever the condensation parameters (10) are independent of φD, something that corresponds to
linear perturbations in the superpotential (4), i.e. Fayet–Iliopoulos terms. This kind of terms together with properly
normalized quartic potentials are known to lead to Abelian Higgs models that admit BPS vortices [24,26,27]. Taking
into account (11)–(12), one should consider Λ → ∞ and small values of the soft breaking parameters µ → 0 and

ν → 0, such that µΛ and νΛ2 remain finite. In this “ultrastrong” limit, Ci(φD) → C
(0)
i are constants, and one can

easily check that setting aD
i = 〈φD

i 〉 = 0 is a consistent constraint. One may then study the existence of extended
solutions in the remaining fields.

The (bosonic part of the) effective Lagrangian adopts the following form:

LN=1
eff, B = −1

4
b
(0)
ij F

i
µνF

j µν + (Dµφmi
)∗Dµφmi

+Dµφ̃mi
(Dµφ̃mi

)∗

−
[

1

2
b
(0)
ij D

(0)
i D

(0)
j + b

(0)
ij F

(0)
i

∗
F

(0)
j

]

, (24)
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where b
(0)
ij stands for the actual value of bij at the maximal singularity and D

(0)
i , F

(0)
i are obtained from (6) by

replacing bij with b
(0)
ij . It is now feasible to give an expression à la Bogomol’nyi [28] for the energy per unit length

corresponding to static and magnetically neutral ((AD
0 )i = 0) vortex-like configurations (i.e. configurations with

translational symmetry along one axis) by means of the remainder N = 1 supersymmetry [23,24] (see also [26] where
a multi Higgs system has been treated). Indeed, the energy density can be rearranged as follows:

Eeff =
1

2
b
(0)
ij

(

F i
12 ±D

(0)
i

)(

F j
12 ±D

(0)
j

)

+ |(D1 ± iD2)φmi
|2 +

∣

∣

∣
(D1 ± iD2)φ̃mi

∣

∣

∣

2

+ b
(0)
ij F

(0)
i F

(0)
j

∗
∓ ǫab∂aJb , (25)

where the last term, corresponding to the current Jb = −i(φ∗mi
Dbφmi

+ φ̃∗mi
Dbφ̃mi

), does not contribute to the string
tension for finite energy configurations. It is easier to analyze this system in a different set of variables, obtained from
the above ones by means of an SU(2)R transformation yielding

D
(0)
i −→ D̂

(0)
i = −

√
2 Re(eiαF

(0)
i ) , (26)

√
2F

(0)
i −→

√
2F̂

(0)
i = −e−iα

(

D
(0)
i + i

√
2 Im(eiαF

(0)
i )

)

, (27)

φmi
−→ φ̂mi

= − i√
2
(φmi

− e−iαφ̃∗mi
) , (28)

φ̃∗mi
−→ ˆ̃

φ
∗

mi
= − i√

2
eiα(φmi

+ e−iαφ̃∗mi
) . (29)

The tension σeff =
∫

d2x Eeff now reads

σeff =

∫

d2x

[

1

2
b
(0)
ij

(

F i
12 ± D̂

(0)
i

)(

F j
12 ± D̂

(0)
j

)

+
∣

∣

∣
(D1 ± iD2)φ̂mi

∣

∣

∣

2

+
∣

∣

∣
(D1 ± iD2)

ˆ̃φmi

∣

∣

∣

2

+ b
(0)
ij F̂

(0)
i F̂

(0) ∗
j ∓

√
2F i

12 Re(eiαC
(0)
i )

]

. (30)

The last term breaks explicitely SU(2)R symmetry. Finiteness of the string tension demands regularity of the fields
on R

2, and vanishing of the potential energy, field strenghts and covariant derivatives at infinity. Altogether, these
requirements make the space of solutions to split into ZN−1 disconnected pieces that differ by the winding numbers of
each φmi

over the border of the plane. The electric-fluxes label these sectors. In particular, in the (n1, n2, ..., nN−1)–
sector they are

Φj = −
∫

d2x F j
12 = 2πnj , j = 1, 2, ..., N − 1 . (31)

The string tension of possible vortex configurations with topologically quantized (n1, n2) electric flux, exhibits a
Bogomol’nyi bound

σeff ≥ 4
√

2πΛ
∑

i

|(µ sin θ̂i + νΛ sin 2θ̂i) cos(α+ β
(0)
i ) ni| , (32)

which is saturated for configurations solving the following set of first order equations:

F i
12 = ±

√
2 Re(eiαF

(0)
i ) , D

(0)
i + i

√
2 Im(eiαF

(0)
i ) = 0 , (33)

(D1 ± iD2)φ̂mi
= 0 , (D1 ± iD2)

ˆ̃
φmi

= 0 . (34)

The second equation in (33) implies

|φmj
| = |φ̃mj

| Im
(

eiα
[√

2φmj
φ̃mj

+ C
(0)
j

])

= 0 . (35)

These constraints should hold at any point, in particular, at zeroes of the Higgs field. Thus

φmi
= −eiβ

(0)
i φ̃∗mi

. (36)
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with α+ β
(0)
i = 0 or π. Consequently, for i 6= j, β

(0)
ij ≡ β

(0)
i − β

(0)
j = 0 or π. Summarizing, there are no BPS electric

vortices in the system unless the complex numbers C
(0)
i are aligned or anti–aligned. This alignment, in turn, requires

supersymmetry breaking parameters to have no relative complex phases. Notice that this corresponds to having a
CP invariant bare Lagrangian. For definiteness, in the case of SU(3) one easily sees that

C
(0)
1 =

√
3Λ(µ+ νΛ) ; C

(0)
2 =

√
3Λ(µ− νΛ) , (37)

so that β
(0)
21 = 0 or π if and only if arg(νΛ) = argµ+ nπ and |νΛ| < |µ| or |νΛ| > |µ| respectively.

A comment is in order at this point regarding the string tensions of unit vortices, whose existence will be discussed
below. It is immediate to read, from (32), the string tension of electric vortices carrying a single flux quantum
nk = 1, ni6=k = 0. Up to a common factor, it is given by

Tk ∝ ΛfN(k) fN(k) = |µ sin θ̂k + νΛ sin 2θ̂k| . (38)

This result makes clear the dependence of fN (k) on the supersymmetry breaking deformation entering the superpo-
tential. It generalizes previous results in [8,11,12] and, in particular, it shows that for perturbations other than the
quadratic one, the string tensions are modified with respect to those in the above mentioned results. In particular,
notice that when µ and ν do not vanish it is possible to have different string tensions even in the case of SU(3) and,
in general, Tk 6= TN−k.

IV. ALIGNED VACUA: CRITICAL VORTICES

We will focus hereafter on the case of SU(3). When the constants µ and ν are fine tuned in such a way that the

phases of the two complex energy scales C
(0)
1 and C

(0)
2 are either aligned or antialigned, i.e. β

(0)
21 = 0 or π respectively,

we are at the self dual point. The Bogomol’nyi equations (33)–(34), after (36), read

F i
12 = ±1

2
b
(0)−1
ij ǫj(|ϕj |2 − v2

j ) , (39)

(D1 ± iǫjD2)ϕj = 0 , (40)

where ǫj = ei(α+β
(0)
j

) = ±1 and b
(0)
ij is

b
(0)
ij =

(

g−2
D,1

1
4π2 log 2

1
4π2 log 2 g−2

D,2

)

, (41)

Also, we have performed, for convenience, some redefinitions of the fields, ϕj = 2φmj
, and parameters, v2

j = 2
√

2|C(0)
j |.

Let us further remark that Eq.(39) gives an unusual contribution to the electric field of each dual U(1) factor from
zeroes of both Higgs fields. This is a straight consequence of the presence of off-diagonal couplings and leads to
interesting results. It is clear that solutions to (39)–(40) also satisfy the Euler-Lagrange equations. Without loss of

generality, we can adjust α so that ǫ1 = +1, ǫ2 ≡ ǫ = eiβ
(0)
21 = ±1. Let us focus on the BPS solutions with upper sign.

The first order system can be written as

F 1
12 = λ1(|ϕ1|2 − v2

1) − ǫγ (|ϕ2|2 − v2
2) , (42)

F 2
12 = −γ (|ϕ1|2 − v2

1) + ǫλ2(|ϕ2|2 − v2
2) , (43)

(D1 + iD2)ϕ1 = 0 , (44)

(D1 + iǫD2)ϕ2 = 0 , (45)

with

λi = b
(0)−1
ii =

(

1 −
g2

D,1g
2
D,2

16π2
log2 2

)−1
g2

D,i

2
(46)

γ = b
(0)−1
12 =

log 2

8π2
(g2

D,1λ2 + g2
D,2λ1) . (47)
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Note that, as we are in the weak gD-coupling regime, γ < λi. Naively one would suspect that in the scaling limit we
are interested, the system diagonalizes. Notice however the important fact that the relative factor between λi and γ
vanishes only logarithmically. Hence, for example, setting |Ci|/Λ2

i ∼ 10−10 in (15) yields γ ∼ (log 2/5)λi ∼ 0.13λi.
The topology of the configuration space determines global properties of the solutions in two ways: the quantization

of the fluxes is due either to the asymptotics of the Aj fields or to the existence of a prescribed number of zeroes of the
ϕj . These global inputs should be made compatible with the differential equations, as it happens in the Abelian Higgs
model. In the present situation things are less clear; from Eqs.(44)–(45), where no mixing between both U(1)s shows
up, one reads the electric fluxes using Stokes theorem and the asymptotics of Aj . On the other hand, Eqs.(42)–(43)
mix the factors and both ϕ1 and ϕ2 contribute together to each F i

12. In this respect, our system is quite awkward as
compared with other non-diagonal models as, for example, non-relativistic non-abelian Chern-Simons theories [29],
in which the same mixing appears in the field strength and covariant derivative equations. Here, there is mixing in
the former but not in the latter, and given such an asymmetry, it is much more difficult to show whether the local
equations and the global conditions reconcile or not.

On general grounds, it is reasonable to expect that the equations (42)–(45) will exhibit solutions in the topological
sector (n1, n2) with n1, n2 representing the integrated flux of an “ensemble” of noninteracting vortices located at
different (maybe coincident) positions. Indeed, the smallness of the ratio γ/λi suggests to consider this system as a
pertubation of the diagonal situation, so that the above solutions would come out from continuous deformations of
the standard critical Abrikosov vortices. Only in some simple cases, the question about the existence of solutions can
be answered by taking advantage of known results from the standard Abelian Higgs model. This will be done in the
following two situations

• Solutions of type (n, 0) and (0, n).

Clearly it will be enough to prove existence of one type, say (n, 0). Assume therefore that ϕ2 = |ϕ2|eiξ2 is
nowhere vanishing on the finite transverse plane. As usual, (45) couples ξ2 and A2. So, if |ϕ2| has nowhere
a zero, regularity of the phase enforces A2 to have vanishing circulation around any loop. By Stokes theorem
F 2

12 = 0 everywhere, an inserting this back into (43) yields a constraint that correlates the profiles of |ϕ1| and
|ϕ2|,

|ϕ2|2 = ǫ
γ

λ2
(|ϕ1|2 − v2

1) + v2
2 . (48)

Existence of the required vortex profile for |ϕ1| can be proved by inserting (48) into (42), which leads to the
standard Bogomol’nyi equations for the critical Abelian Higgs model (after a suitable re-normalization of the
Higgs field)

F 1
12 = λ1

(

1 − γ2

λ2

)

(|ϕ1|2 − v2
1) , (49)

(D1 + iD2)ϕ1 = 0 . (50)

We learn from (48) that if |ϕ1|2 ranges from 0 (at the origin) up to v2
1 (at infinity), |ϕ2|2 will correspondingly

interpolate between −ǫ γ
λ2
v2
1 + v2

2 and v2
2 . To remain consistent with our initial asumption that |ϕ2| vanished

nowhere we must set either β
(0)
21 = 0 with v2

2 >
γ
λ2
v2
1 , or else ǫ = −1, i.e. , β

(0)
21 = π. We observe that the latter

possibility is less contrived.

• Solutions of type (n, n) for a single perturbation.

Let us briefly consider the case of SU(3) N = 2 supersymmetric Yang–Mills theory softly broken to N = 1 only

by means of a single Casimir operator, i.e. µ = 0 or ν = 0. In both cases, β
(0)
21 = 0 or π, and the theory is

critical. Moreover, λ1 = λ2 ≡ λ, C
(0)
1 = C

(0)
2 and hence v1 = v2 ≡ v, so that the Bogomol’nyi equations have an

almost trivial solution of vorticity (n, n) (or (n,−n)), by imposing the ansatz ϕj ≡ ϕ, Aj ≡ A (or ϕ∗
2 = ϕ1 ≡ ϕ,

−A2 = A1 ≡ A) in the case β
(0)
21 = 0 (or π). The system is again reduced, after a suitable normalization of the

Higgs field, to the critical Abelian Higgs model

F12 = ±(λ− ǫγ)(|ϕ|2 − v2) , (51)

(D1 ± iD2)ϕ = 0 , ǫ = eiβ
(0)
21 . (52)

It is crucial, for the system to admit regular solutions, that γ < λ as it indeed happens. As it is well known,
the general solution to this sytem represents an assembly of n separated vortices centered at the zeroes of ϕ. In
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our case, every such zero is doubled and we have assemblies of n couples of superimposed vortices of both U(1)
fields.

Also, self-dual configurations in which the center of the vortices of different types split apart, can be easily

constructed along the lines in [30,31]. To see this, we perturb one of the solutions just described for β
(0)
21 = 0

ϕ′
j = ϕj + δϕj , A′

j = Aj + δAj , (53)

and linearize the self-duality equations to get

− 4i∂zδA1 − 2λϕ∗δϕ1 + 2γϕ∗δϕ2 = 0 , (54)

−4i∂zδA2 + 2γϕ∗δϕ1 − 2λϕ∗δϕ2 = 0 , (55)

igDϕδAj + (∂z̄ + igDAj)δϕj = 0 , (56)

where we use the notation ∂z = 1
2 (∂1 − i∂2), Aj = 1

2 [(A1)j + i(A2)j ], j = 1, 2, and fix the gauge conditions as

∂c(δAc)1 = −λ|ϕ|2δΩ1 + γ|ϕ|2δΩ2 , (57)

∂c(δAc)2 = γ|ϕ|2δΩ1 − λ|ϕ|2δΩ2 . (58)

By writing δϕj = ϕξj and using (56), the vector perturbations are found to be δAj = i
gD
∂z̄ξj and the system of

linearized equations reduces to

∇2W± = 2(λ∓ γ)gD|ϕ|2W± , (59)

with W± = ξ1 ± ξ2. Notice that in both equations (λ ∓ γ)gD > 0. Although they have not regular square-
integrable solutions, we can admit singular ones provided the singularities of ξj fit with the zeroes of ϕ in such a
way that δϕj is well-behaved. Take for instance the case of a radially symmetric solution of vorticity n centered
at the origin of the complex plane. Then, for small z

ϕ(z, z̄) ≃ zn , (60)

and a singularity of W± at the origin is harmless if its order is lower or equal than n. Equation (59) has indeed
solutions with such a behaviour [32]. To be exact, two sets of linearly independent self-dual perturbations
Wm

± (z, z̄),m = 1, 2, 3, ....., n with

Wm
± (z, z̄) ≃ z−m, z ≃ 0 . (61)

In particular, if we consider W± = −aWm
± , we get, near the origin,

ξ1 ≃ −az−m ξ2 ≃ 0 , (62)

so that

ϕ′
1 ≃ zn−m(zm − a) ϕ′

2 ≃ zn . (63)

This perturbation realizes the splitting of a (n, n) vortex at the origin into a (n −m,n) at that point and m

(1, 0) vortices located at the m roots of the coefficient a. The analysis for β
(0)
21 = π (i.e. ǫ = −1) is totally

equivalent and yields nothing but vortices of type 1 and anti-vortices of type 2 or viceversa, moving freely with
respect to each other.

For the general analysis, following Jaffe and Taubes [33], the Higgs fields should be “couched” as

ϕj ≡ vje
1
2 (uj+iΩj) , (64)

to recast the Higgs system in the following form

∇2u1 = 2λ1v
2
1(e

u1 − 1) − 2ǫγv2
2(e

u2 − 1) + εbc∂b∂cΩ1 , (65)

∇2u2 = −2γv2
1(e

u1 − 1) + 2ǫλ2v
2
2(e

u2 − 1) + εbc∂b∂cΩ2 . (66)
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The gauge fields are determined by

(Ac)1 = −1

2
(∂cΩ1 + εca∂au1) , (67)

(Ac)2 = − ǫ

2
(∂cΩ2 + εca∂au2) . (68)

At each (n1, n2) sector, regularity implies that ϕj has exactly nj zeroes on C, say zj
1, z

j
2, . . . , z

j
nj

. Also, these are the
only points at which the singularities of the phases can occur. We can then choose the particular gauge

Ωj(z, z̄) = 2

nj
∑

l=1

arg(z − zj
l ) , (69)

in which the problem reduces to

∇2u1 = 2λ1v
2
1(e

u1 − 1) − 2ǫγv2
2(e

u2 − 1) + 4π

n1
∑

l=1

δ(z − z1
l ) , (70)

∇2u2 = −2γv2
1(e

u1 − 1) + 2ǫλ2v
2
2(e

u2 − 1) + 4π

n2
∑

l=1

δ(z − z2
l ) , (71)

where both uj should vanish at space infinity. The general analysis is involved, and usually goes through by numerical
relaxation techniques or hard Sovolev estimates.

V. HYBRID TYPE II VORTICES

By itself, the Abelian Higgs model we are dealing with is worth a detailed analysis. For the moment, and awaiting
a sounder analytical or numerical study of its solutions, aside from the two simplified samples considered above little
can be said about the generic (n1, n2) vortex solution. An interesting peculiarity comes from the fact that there are
only two overall choices of signs available in equations (39) and (40): either upper or lower sign have to be taken
simultaneously on all the equations or, else, the bound (32) will not be saturated. This should be contrasted with
the situation in the standard diagonal Abelian Higgs model, where each U(1) can be conjugated independently. To

better grasp what is going on let us consider the Bogomol’nyi equations (42)-(45) with β
(0)
21 = 0

F 1
12 = ±(λ1W1 − γW2) , (72)

(D1 ± iD2)ϕ1 = 0 , (73)

F 2
12 = ±(λ2W2 − γW1) , (74)

(D1 ± iD2)ϕ2 = 0 , (75)

with Wi = (|ϕi|2 − v2
i ) . If γ << λ1, λ2, (±n1,±n2) vortex with n1, n2 > 0 come from solutions to the previous

equations with the upper (lower) sign which should correspond to deformations of analogous configurations in the
case γ = 0. In the diagonal limit γ = 0 the vortex-antivortex solutions (±n1,∓n2) would also solve the previous
equations but with a choice of sign for (72)–(73) and the opposite one for (74)–(75). If γ 6= 0, as is now the case,
solutions with this second choice of sign do not saturate the bound (32) and, indeed, there is an energy remnant
coming from the off-diagonal piece E = π |n1v

2
1 + n2v

2
2 | + δE

δE =

∫

d2x δσeff =

∫

d2x 2b
(0)
12 F

1
12F

2
12 =

log 2

2π2

∫

d2xF 1
12F

2
12 (76)

For anti-aligned magnetic fields, this extra term is negative and tends to increase the overlap by attracting the cores
of vortices of different kind.

A similar reasoning can be carried out of β
(0)
21 = π. In this case, the equations read

F 1
12 = ±(λ1W1 + γW2) , (77)

(D1 ± iD2)ϕ1 = 0 , (78)

F 2
12 = ∓(λ2W2 + γW1) , (79)

(D1 ∓ iD2)ϕ2 = 0 , (80)
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and critical configurations are naturally of the form (±n1,∓n2), n1, n2 ≥ 0 saturating the bound E = π |n1v
2
1−n2v

2
2 |.

Here, in contrast, vortex-vortex solutions of the form (±n1,±n2) would lead to the same energy surplus as in (76).
But now δE ≥ 0 for aligned magnetic fields, and this term decreases by minimizing the overlap, hence by taking the
cores far appart.

In summary, to a first approximation, we see that, if not neutral, vortex-vortex (vortex-antivortex) configurations
behave repulsively (attractively) as in type II superconductors. Since this interaction involves vortices of different
U(1)’s, we speak of an “hybrid type II” phase.

Let us discuss the peculiarities that arise whenever one tries to model confinement in the present scenario. First we
fix some notation for convenience: the chromoelectric fluxes (n1, n2) of the basic vortices arising in the dual Meissner
effect are (1, 0) (“vortex 1”) and (0, 1) (“vortex 2”). In turn, quarks enter the system as external probes with
chromoelectric charges (Q1, Q2) equal to (1, 0) (“red quark”), (0,−1) (“blue quark”) and (−1, 1) (“yellow quark”).
(h1, h2) is the “monopole” basis of the Cartan algebra of the dual SǓ(3) group and the fundamental BPS monopoles
correspond to the simple co-roots of SU(3). In other words, the chromomagnetic charges of the ϕi–field quanta is

hi = 1, hj 6=i = 0. Consider now, for example, the case β
(0)
21 = 0. According to our previous analysis, chromoelectric

flux tubes of both (1, 0) and (0, 1) type form in response to parallel external electric fields ~E1 and ~E2. Vortices of type
1 end at pairs of red quark-antiquark and vortices of type 2 finish at pairs of blue antiquark-quark. There is therefore
confinement of red and blue quarks in a critical phase between Type I and Type II superconductivity, whereas the
yellow quark confinement occurs in a hybrid Type II phase. The weak repulsion between the vortex 1/antivortex 2
pair pull slightly apart the flux lines from each other. Thus, the quark/antiquark potential energy would increase
slower than linearly with the distance, and one is allowed to expect deviations from the area law, but the force is still

confining. If, instead, β
(0)
21 = π, a pair of yellow quark-antiquark will now be joined by a stable and non-interacting

vortex 1/antivortex 2 pair of flux tubes. In conclusion, the cases β
(0)
21 = 0 or π can be physically distinguished by

the behaviour of the yellow quark-antiquark force. At large separation W-pair production leads to instability of the
string and the lowest string tension governs the large distance regime [8,11].

In the framework of condensed matter it is well known the fact that, in standard type II superconductivity on a
finite piece of material, though mutually repelling, vortices tend to form a regular pattern by lying at the sites of a
triangular lattice. This fact can be reproduced analytically by variational methods [34]. We expect a similar situation
here, the difference being that now repulsion involves vortex cores of distinct Higgs fields. Upon substitution of (36)

into (24), the exact second order equations with β
(0)
21 = π, corresponding to vortices of type 1 and 2, in a finite piece

of material

b
(0)
11 ∂a(Fab)1 + b

(0)
12 ∂a(Fab)2 =

i

2
(ϕ∗

1Dbϕ1 − ϕ1Dbϕ
∗
1) , (81)

b
(0)
22 ∂a(Fab)2 + b

(0)
21 ∂a(Fab)1 =

i

2
(ϕ∗

2Dbϕ2 − ϕ2Dbϕ
∗
2) , (82)

DcDcϕ1 = − 1√
2
ϕ∗

1b
(0)−1
1j (|ϕj |2 − v2

j )(−1)β1j , (83)

DcDcϕ2 = − 1√
2
ϕ∗

2b
(0)−1
2j (|ϕj |2 − v2

j )(−1)β2j , (84)

should now be supplemented with periodic boundary conditions. Thus, the system of differential equations is defined
in a torus of modular parameter τ = L2/L1 e

iθ. We have chosen the x1-axis as the direction of the first L1 periodicity;
the length and direction of the second periodicity is determined by L2e

iθ. Application of the Rayleigh-Ritz variational
method as in [34] plus previous work on the rôle of Riemann Theta functions in magnetic systems [35], suggest the
field configurations

ϕ1 =
∑

m1∈Z

Cm1 exp[in1m1Imz −
1

2
(Rez − n1m1)

2] , (85)

ϕ2 =
∑

m2∈Z

Cm2 exp[in2m2Imz −
1

2
(Rez − n2m2)

2] , (86)

where n1, n2 are integers and z =
√

gD(λ− γ)

(

x1 + ix2

L1

)

, as trial functions to model extremals of the energy. In

fact, the choice of the coefficients Cm1 and Cm2 in such a way that
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ϕn1
1 (z) = exp{−πn1

(Imz)2

Imτ
}

n1
∏

l1=1

Θ

[

0
l1
n1

]

(z| τ
n1

) , (87)

ϕn2
2 (z) = exp{−πn2

(Imz)2

Imτ
}

n2
∏

l2=1

Θ

[ 1
2

l2
n2

+ 1
2

]

(z| τ
n2

) , (88)

leads to (meta)-stable solutions to the field equations. Here li = 1, . . . , ni, and Θ[ab ](z|τ) are the Riemann Theta
functions with characteristics, see [35] and references quoted therein.

FIG. 1. The Type II hybrid lattice. Black and white circles represent the core of vortices corresponding to different U(1)
′s.

Notice that the solution describes n1 chromoelectric vortices, located at the zeroes of ϕn1
1 , and n2 vortices of the

other kind centered around the zeroes of ϕn2
2 . It corresponds therefore to a hybrid static triangular lattice of vortices;

see the Figure. One can check, from a dynamical point of view that a configuration like this where a vortex of type 1
is at the center of a square with vortices of type 2 at the vertices and viceversa is stable against small fluctuations.

VI. MISALIGNED VACUA

As discussed earlier, there are no BPS vortices in the generic case where soft breaking parameters are not aligned.

We would however be interested in the response of the BPS configuration when an infinitesimal misalignment β
(0)
21 ≡ ε

or β
(0)
21 ≡ π + ε is turned on. The dynamics of the system drives the configuration off the constraint (36) which,

therefore, can no longer be imposed consistently. In fact, though the Higgs mechanism yields a critical mass spectra
for any value of ε (an obvious consequence of supersymmetry), the eigenvectors do depend on this phase difference in
such a way that when it is different from 0 or π, massive excitations do not respect the constraint surface (36).

In the same vein as above, for small values of ε we will treat the system as a perturbation of the critical situation
in which the net effect of the misalignment reflects itself in a force between the former noninteracting vortices. The
shortcut to obtain the sign of this force is to split the energy (30) of the configuration as a BPS contribution plus
an additional perturbation. Namely, after inserting the ansatz (36) into (24), solutions to (39)–(40) exhibit a string
tension σeff = σSD

eff + δσeff where σSD
eff is given in (32) and

δσeff = ǫ
γε2

8

∫

d2x (|ϕ1|2 − v2
1)(|ϕ2|2 − v2

2) . (ε << 1) (89)

with ǫ = 1 for β
(0)
21 = 0+ε and ǫ = −1 for β

(0)
21 = π+ε. Consider a vortex configuration of type (1, 1) where the zeroes

of each Higgs field are well separated. Then, the above surplus of energy is positive for ǫ = 1 and decreases as the cores
are taken further appart and the overlap diminishes hence the interaction in this case is repulsive. When perturbing

around the anti-aligned case, β
(0)
21 = π+ε, the energy increment (89) reverses sign. Previously non-interacting, (1,−1)

antiparallel vortex configurations tend to increase the overlap in order to lower the perturbation, and hence the force
is attractive.
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In summary, when perturbing around the aligned or misaligned scenarios, the vortex configurations are not neutral
anymore, and the interactions follow the pattern that was previously named “hybrid type II” where, if made of distinct
U(1)’s, parallel vortices repel and antiparallel vortices attract.

VII. HALF HIGGSED VACUA

As pointed out in [9], for particular values of the soft breaking parameters µ and ν we have four instead of five
vacua. This happens whenever one of the two half Higgsed vacua {aD

1 6= 0, aD
2 = 0} with C1(µ, ν) = 0, or (1 ↔ 2),

meets and replaces one of the normal vacua at {aD
1 = 0, aD

2 = 0}. This possibility is actually achieved by turning off

C
(0)
i for i = 1 or 2. Since precisely at the Z2 point we have (37), this amounts to µ and ν fulfilling µ = ∓νΛ. Let us

choose for definiteness, C
(0)
2 = 0. Inserting this back into (18), the effective potential at the maximal point reads

V =
1

8
λ1(|ϕ1|2 − v2

1)
2 +

1

8
λ2|ϕ2|4 −

1

4
γ cosβ1|ϕ2|2(|ϕ1|2 − v2

1) . (90)

Observe that the phase of ϕ2 is free. When cosβ1 < 0 this is precisely the type of situation that was studied by
Witten [19] and shown to lead to superconducting strings for specific ranges of parameters. Let us briefly recall the
essence of the mechanism. As the vacuum equations (20) exhibit, only the first U(1) is broken by the v.e.v. 〈ϕ1〉 = v1,
whereas the second U(1) remains intact since 〈ϕ2〉 = 0. This is fine for vacuum solutions, but suppose now that ϕ1

developes a vortex line. At the core of the vortex 〈ϕ1〉 = 0 and, in turn, it may become favorable that 〈ϕ2〉 6= 0 there.
Actually the model considered in [19] is slightly more general than ours involving the potential

V =
1

8
g(|ϕ1|2 − v2)2 +

1

4
g̃|ϕ2|4 + f |ϕ1|2|ϕ2|2 −m2|ϕ2|2 . (91)

The detailed analysis of the dynamics showed that for parameters in the range fv2 ≥ m2, instability actually takes
over and the superconducting string indeed forms. We see easily that the present situation lies precisely at the
boundary of the region of validity, since in our case fv2−m2 = 0, and the induced mass term for ϕ2 exactly vanishes.
In [36], this situation was also studied and seen to yield a power law decay of the profile of ϕ2 which leads to a long
range scalar attractive interaction among vortices.

At this point we would not like to put forward too strong a claim, but simply point out the ocurrence of this
coincidence among models. The possible existence and relevance of structures like superconducting strings in the
microscopic context of confinement models should be handled with care. For example the question of quantum
tunnelling will be certainly much more relevant here than for cosmic strings. Incidentally this question was also
addressed in [36] where it was seen that these power law solutions are more stable than the usual ones.

As compared with Witten’s model, the one here involves the additional feature of the non-diagonal kinetic term
for the (dual) vector particles (cf. eq. (24)). But precisely the fact that the quadratic forms of kinetic term and
potential are related paves the way to the possibility of rewritting the energy as a sum of squares (30). We may
therefore expect vortex solutions of the superconducting type with dynamical properties of BPS configurations. We
can check that this is indeed the case by looking at the smooth deformation of a generic (anti-)aligned scenario. 6

Let us follow a continuous line of anti-aligned (β
(0)
21 = π) vacua C

(0)
1 6= 0, C

(0)
2 → 0. Precisely in this situation, (48)

presents no obstruction to a smooth deformation of the (n, 0) solutions down to the situation where v2 = 0. In this
limit the profiles of |ϕ1| and |ϕ2| are correlated in such a way that both vanish at opposite ends. In fact, as |ϕ1|2
varies from zero up to v2

1 far away, |ϕ2| interpolates between γ
λ2
v2
1 = (log 2/8π2)g2

D,1v
2
1 at the origin (which need not

be small !), and 0 at infinity. Moreover, since the phase of ϕ2 is free, the same arguments of ref. [19] can be used to
show that a persistent current occurs. We would call this a BPS superconducting string solution.

VIII. CONCLUDING REMARKS

The present paper is devoted to the low energy dynamics of N = 2 supersymmetric gauge theories softly broken
to N = 1 by a superpotential containing up to cubic perturbations. The effective lagrangian in the neighborhood

6 As we approach the situation when C2 → 0, the parameters that enter (90) are such that γ, λ2 << λ1 (see eqns.(15) and
(46)–(47)). Hence at very low energy the second U(1) seemingly decouples. This is suggested by the N = 2 exact effective
solution, although it is reasonable to expect modifications of the renormalization group flow in the N = 1 theory.
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of maximal singularities of the quantum moduli space corresponds to an Abelian U(1)N−1 multi Higgs system with
couplings among different dual U(1) factors. The case of SU(3) has been analized in some detail. There are generically
no BPS electric vortices in the system unless the soft breaking parameters have coincident complex phases (or they
differ by π) and the ultrastrong scaling limit [11] is taken. We have seen that the effect over a BPS configuration of
turning on an infinitesimal misalignment among these parameters is the appearance of a net repulsive force between
parallel vortices corresponding to (zeroes of) different Higgs fields. In a finite piece of material, metastable solutions
take place and vortices develope static triangular lattice. We call this phase “hybrid Type II” dual superconductivity.

When the theory is perturbed with a cubic superpotential, the ratio of string tensions differs from that computed
in the quadratic case [8] both when the TrΦ2 perturbation is present or not. In the former case, we found that
these ratios even depend on the supersymmetry breaking parameters. These results were obtained after imposing the
ultrastrong scaling limit. It would be certainly interesting to know if similar results emerge in the context of MQCD.
This is intriguing in the sense that string tensions in MQCD are given by the distance of D4-branes which, for a
single Casimir perturbation, are stretched at the roots of unity over a circle of radius of order Λ [11], so one would
not expect them to be modified (except, possibly, for a global factor due to an induced change in Λ) as compared to
the purely quadratic case.

A natural extension of the present work involves the case of N = 2 supersymmetric theories softly broken down to
N = 0, and possible soft breaking by higher than the two first Casimir operators. This program can be addressed
within the Whitham approach to the Seiberg–Witten solution, where the slow-times of the hierarchy can be used as
spurionic sources of soft supersymmetry breaking [21].
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