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A bstract

The low energy dynam ics of degenerated BP S dom ain walls arising in a generalized W ess-
Zum ino m odel is described as geodesic m otion in the gpace of these topological walls.

1 Introduction

A coording to a fruitfil idea by M anton, geodesics in the m oduli space determ ine the slow m otion
of topologicaldefects , [1]. T he adiabatic principle [2]has been successfully applied to black holes
[3], m agnetic m onopoles [4], and selfdual vortices, both In H iggs, [5], and C hem-Sin onsH iggs,
6 H7H8H9],m odels. R ecently, them odulispace of BP S dom ain wallshasbeen discussed by Tong
[10] and, follow Ing M anton’s m ethod, the low energy dynam ics of solitons has been studied by
Townsend and Portugues [11] In variations of the W essZum ino m odel.

In this paper we shall study the low energy dynam ics of BPS kinks living in a topological
sector of a supersymm etric (1+ 1)-din ensional system proposed by Bazeia and co-workers in [13].
In [14] Shifm an and Voloshin have shown that the (1+ 1)D system comes from the din ensional
reduction of a generalized W essZum ino m odelw ith two chiral super- elds; in this latter case, the
kink solitions appear as BP S dom ain walls.

From a one<dim ensional perspective, the systeam encom passes several topological sectors and
Shifm an and Voloshin in [14 ]discoveraed that there exists a degenerate fam ity of BP S dom ain walls
In a distinguished sector. In [15], three of us found that for som e critical values of the coupling
param eter there exist m ore degenerate kink fam ilies in other topological sectors, although the new
walls are generically nonBPS.

FEach BPS dom ain wall, however, seam s to be m ade from two basic walls, which belong to
other topological sectors. T his interesting structure has been explored by Sakai and Sugisaka,
who found in [16] an intriguing bound-state of wall/antiwall pairs. The ain of this work is to
describe how the basic kinksm ove in the space of BP S topologicalkinks. To achieve thisgoalwe
shallapply M anton’sm ethod and we shall thus extend the applicability of the adiabatic principle
to one-din ensional topological defects.
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T he organization of the paper is as follow s: In Section x2 we brie y summ arize the general
fram ework of (1+ 1)D supersymm etric eld theory. Section x3 isdevoted to describing them oduli
space of BP S superkink solutions. In Section x4 we unveil them etrdic Inherited from the adiabatic
kink m otion in the space of kink solutions, determm ine the geodesic orbits, and describe the low
Soeed m otion of BPS kinks. Finally, in Section x5 we interpret these results from the point of
view ofm oving walls.

2 N = lsupersymm etric (1+ 1)-dm ensional eld-theoretical
system s

U sing non-din ensional space-tin e coordinates and eldsasde ned in R eference [15], we consider

Bose, "(x )= 2:1/\a(x )e, ,and Fem i,
2 A
roF )
(x )= ~s e, ;
a=1 2(X )
elds. Here, x = (x°;x') are Jocal coordinates .n R** spacetine;e, @, = ., is an orthonom al

basis In R? intemal (iso-spin) space, and the Ferm i elds belong to the M ajprana representation
ofthe Spin(1;1;R ) group: iff ; g= 29 ,g = diag(l; 1),istheCl ord algebra ofR !, we
choose °= ?; '=itl.Alp, °= O 1= 3, wih *'; ?; 3the2 2 Paulim atrices.

T he canonical quantization procedure dictates the equaltin e com m utation/anticom m utation
o’

a0 (x ), we have that:

relations am ong the eldsand theirm om enta. D e ning C(x )=

P x);PEl=1i® x y) ;0 £0x); Py P xy) 1)

where ; = 1;2 areM ajprana soinor indices and a natural system of units —~ = c= 1-hasbeen
chosen.
Interacting N = 1 supersymm etric eld theory isbuilt from the nom alordered super-charge

operator: 7 n N

A N N

0= dx: Ovx )R ~(x )+ 197 (x )FEW (x ) : : 2)

Interactions com e from the gradient of the superpotential W (x )=
supersym m etry algebra:

f§ ;0 g=2( % P 21" T ; ; =1;2 (3)
encom passes the energy,
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’ e e~ 2L Laan
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the m om entum , 2 3
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and the anom alous topological/central charge,
2 3
g e~ 1
T= dx:id—2 W+— W 5: ; (6)
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operators. In formulas (4)~5)—(6) wehavede ned ~ (x )= “t(x ) 0, and
va L L XX el .. X enf
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are respectively the H essian and Laplacian operators applied to W . Note that there isno anom aly
In the central charge if the superpotential is ham onic, the condition for the existence of N = 2
super-symm etry.

The usualde nition of BP S states in this system , [12], isderived from (3):

A 1 A A 2 A, N N .
PO:E Q1 Q2 + I3 ; Q1 Q, BPSi=0 (7)
as the requirem ent of m inIn al energy in each super-selection sector. To nd these states a varia-

tionalm ethod, using the coherent states

as trial states, is conventionally applied. "~ (x) and 7 (x) are respectively scalar and M a prana
spinor static classical eld con gurations and, on these states, the (7) BPS condition becom es:

|
a~

(%) o

FW Jx);T(x)i=0 PpTox)= Tix) T (x) (8)

because the expectation values in this kind of state of nom alordered operator functionals are
equal to their classical counterparts, see eg. [17].

T hus, the BP S statesare the coherent states forw hich the scalar eld con gurations correspond
to the ow lines of gradW , whereas the corresponding ! eigen-spinor ~ con gurations are
zero. M oreover, super-symm etry forces the surviving (non-null) spinor con gurations to satisfy
the equation:

a”~ ~
— )= W (7)) x) 9)



3 The BPS kink m oduli space

O ur choice of superpotential is:
W (*)=4 2

Thus, we deal w ith the supersymm etric extension of the BNRT m odel analyzed In [15] for the

1

special value of the param eter = 2.

In Reference [15]the BP S kinks were shown to be In oneto-one correspondence w ith the kink
orbits: 1 .
2 2 4
+ - 2=+ ¢ : 10
Tr s =gl (10)

T he explicit analytical expressions for these fam ilies of BP S kink/antikink solutions are:

0 1

j o
sinhh 2 2(x+ a) b
<Y e+ & €2A (11)

p_
P+ cosh 2 2(x+ a)

~K 1
x;a;b]= @ = —
2c06h 2 2(x+ a) + P

for arbitrary jntegr&ijon constantsa;b2 ( 1 ;1 ). The constant b isde ned In tetm s of ¢ 2

(1;3)as:b= Pll=4c,see [15]. Thus, the plane is the space S¥ of BPS kinks : there is a

one-to-one correspondence betw een the points (a;b) 2 S¥ 7 R? and the space of topologicalkink
solutions of the eld equations. The ;—and ,;-com ponents of these solitary waves are shown in
Figure 1 fora = 0 and several particular values of b. T he dependence on a of the kink pro le is
trivial; the value of a only determ ines the \center" of the kink.

T his sequence of F igures show sus them ain characteristics ofthedi erent BP S kinks. Ifb= 0only
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one of the two eld com ponents — § —isdi erent from zero and the kink con guration Interpolates
between them nnum ,A, = %el,and themaximum ,A = %el,ofw , the vacua of the theory.
T herefore, the (a;0) kinks are topological solutions w ith one non-null com ponent and, for obvious
reasons, In the literature they are called TK 1 kinks. Iffb 6 O, I§ is also di erent from zero but
the el con gurations still interpolate between theA. = 2e and A = e vacua. Allthese
topological kinks have the two eld com ponents di erent from zero and they are thus called TK 2
kinks. Note that changing bto  bm erely am ounts to changing 5§ to 5 .



The associated BP S ferm jonic form factors, the solutions of (9) for ~¥ , are:
"

#
~K ~K
T=0 T kadif]l= de—kablt £ kiabl " (12)
1
where d;f are real ntegration constantsand " = " wo=2;" = | areconstant

elgen-spinors of !. ( See Figures 2 and 3, where the ferm ionic partners of the bosonic solitary
waves for the sam e values of the b param eter as above, are plotted ) .

@~K

Figure 2: First (a) and second (b) com ponents of i -
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Figure 3: First (a) and second (b) com ponents of o -

The M ajpranaW eyl soinors shown in (12) span the tangent space to the space of BPS kink
solutions T S¥ / TR? because they are linear com binations of the bosonic zero m odes. M oreover,
these ferm jonic con gurations also solve the static D irac equation of the coupled system and
therefore, do not contribute to h™ (x);” (x)j:PAO 177 (x); 7 (x)i; the BPS superkinks, form ed by the
com bination of the bosonic and ferm ionic solutions, also saturate the topological bound.

T he properties of a solitary wave determ ined by a point in S* are encoded in the bosonic
energy density:

P P P-
@7 @™ 4+ TWcosh2 2(x+ a)l+ 4B'cosh[d 2(x+ a)l+ Boosh[6 2(x+ a)]

— n
- I

@x  @x 2(0F + cosh2 2(x+ a)))?

EX [x;a;b]l=
(13)



Figure 4 shows a plot of EX [x;a;b] fora = 0 and the sam e values of b as in the above F igures.
The dentity EX [x;a;b]= E® [x;a; b]is a consequence of the invariance of the theory under the

action of thegroup G = Z, Z, generated by the re ections ;| ! 17 2! 2. 1! 1
m erely replaces kinks by antikinks but taking a quotient by 5 ! 5, both in (10) and (11) we

nd them odulispaceM ¥ ’ S$¥ =7, of BPS kinks. Thus, a and I¥ are good coordinates in M ¥,
which is isom orphic to the upper halfplane: H = ( 1 ;1 ) [0;1 ).

T here are two regin es in the I¥-param eter classi ed by the dependence on b of the critical
points of the energy density, ie. the zeroes of:

p— P

@EK[ . 2@?@“1{ N @ 5e 5 4 2sihh2 2(x+ a)
X;a;b]= = .

@x @x @%x @x @%x (7 + cosh2 2(x+ a))
P 2 3 P 4 2 P

Ps(cosh2 2(x+ a)) cosh”2 2x+a) booh™2 2(x+ a)+

( 3+ 4f)cosh2 2(x+ a)+ 55 4

|
Py(cosh2 2(x+ a)) (14)

+

Note that (14) relates the shape of the energy density to the shape of the kink pro .

Figure 4: Energy density EX [x;0;b].

Apart from the obvious solution, x = a, ie. sjnh2p§(x+ a)= 0,8, we can classify the
solutions of@@E—:[x;a;b]E 0 In temm s of the roots of the cubic polynom jalP3(cosh2p§(x+ a)).
W riting P5 as Ps(cosh2 2(x+ a)) = P (u), where P (u) is the bicubic polynom al P (u) =
W)y + &+ 3w’ @ AT 6)w) 4P+ 1 o inthevarbleu’(x)= 1+
cosh 2 i(x + a), a classical analysis of the roots of P'(u), based on the Cardano and the V ieta
form ulae and use of R olle’s theoram , show s that:

P (u) has no realroots in u(x) if¥ 2 [0;1]. Thus, @@E—:[x;a;b]= Oonly orx = a,which
is the only critical point of EX as a function of x. M oreover, EX [ a;a;b]= ﬁ is the
m axinum valie of EX on the realline; ¥ therefore m easures the height of the solitary wave
energy density , see Figure 4.

T hings are m ore interesting if b 2 (1;1 ): P has two realroots. As a cubic polynom ial in
u?, P has a single positive root r (¥ ) that depends on the value of ¥ ; hence, u = P T are



the realroots of P (u). Besidesx = a,which isam ininum , two other critical points of EX
aricatx= a m () iIfF > 1,wherem (F)= Eé—zarcoosh(1+ r)) .

T hese two points arem axin a of EX and the solitary wave ism ade from two lum ps ifl¥ > 1.
T he distance between the peaks grow s w ith ¥, and I m ust be understood as the relative
coordinate of a systam of two \particles" if ¥ > 1,whereas a is still the center of m ass
coordinate.

A Tfematively, one can trust M athem atica and just look at Figure 4.
Exactly attheb= 1 Iim its, the solutions

r

1 — 1 —
~ o Rixe; ;1= (1) 71(1 (1) tanh( 2(x+ x0))e 5(1+( 1) tanh( 2(x+ xo))e;  ;
(15)
(; ;= 0;1) living In other topological sectors, appear, see Figure 5. The jrll)tggraijon constant
Xy 2 R detemn ines the center of mass of the im p: Xcy = Xo + E&—Ehl+8l7 ~the shift with

regpect to what one expects for the center of m ass is seen in Figure 5(b). Note that the in ection
polntsin [ and § donotcoincide. “® [x;xo; ; Jarealso ow linesofgradW but start or end
ata saddle point e, of W -the other two vacua of the theory— . T he shape of the energy density

€(X)

2 4
Figure 5: O ne of the solitary waves (15) (a) and its energy density (b).

for large values of Jjsuggests that the ~® solitary waves are the basic kinks in the topological
sector of the ~* fam ily. Near pj= 1 the dentity

14

~K ~B

[X;a;b]b| ;x5 ;1;00 ((x  a)+ ™ [x;x,;0;1] x a) ; (16)

P__
5 1 1+ 17
Xo= a m¥E)+ Pp=Dn
2 2 8

where (z) is the Heaviside step function, approxin ately holds. ITn fact, one can prove that the
approxin ation becom es exact at the j= 1 Iim it, where the two ~® kinks becom e in nitely
separated. Thus, they are not accessible in the kink space S* but belong to the boundary; the
circle of in nite radius in R?: @S¥ = S7 .




Besdesb= 0 and b= 1 , there are two other special points n S¥ : b= 1. The corre-
sponding kink orbits are the upper and Iower halfellipses f+ £ 5= 7 and we shalluse the tem
TK2E to refer to these two-com ponent kinks, which form the frontier n M © between solitary

waves carrying one or two lum ps of energy density.

4 G eodesic m otion in the kink space S¥

In our fram ework, the adiabatic principle is equivalent to restricting tinm e-evolution to the sub-

soace of BPS kink states. The expectation value of the kinetic energy in these states -there is

no contribution of the ferm ionic variables to the kinetic energy because the D irac Lagrangian is
rst-order in tin e derivatives- is:

z
K = % dx B ;a )b B &) x): 5 kiat)bi k=
1 2 1 2
= Z%a (@;b)a’ + gap(@;blab+ E%(a;b)b 17)
where:

Z 1 @~K @~K Z 1 @~K @~K Z 1 @~K @~K

aa (@70) = ) dx %2 @a i Japl@;b) = 1 dx ™ a5 7 Gwp(@;b) = 1 dx T
(18)

W e think of K as the Lagrangian for geodesic m otion in the kink space S* with a metric
inherited from the dynam ics of the bosonic zero m odes. A ftematively, the ferm ionic partners of
the BP S kinks acquire a direct geom etricalm eaning; they are the zw eigdbeins ( \the sqyuare root"
) of the m etrdc In the sense that,

Z Z

g @b) = dx ~* x;a;0;1;017 x;a;0;1;01 ;9 (@b) = dx " [x;a;0;0;117F [x;a;0;0;1]
gz (@;b) = dx ™" [x;a;0;1;017" [x;a;0;0;11= gy (a;b)

T hem etric tensor is Z ,—sym m etric — invariant under b ! b—

p_ p_
2 2 2 2
Gaa (850) = 3 ;7 Q@)= 0 ; ggpl@ab)= —h()
1 ’ arctan pl K
1
hp) = —— 428 55+ 3—p SIS (19)
4 1)° 1

p_
C om putation of the Integrals (18) hasbeen perform ed by changing variablestoy = exp2 2(x+ a)]
n such a way that the quadratures reduce to rationalde nite integrals in y. T he transition from
one to wo umps is seen In formula (19) in the trading of arctan by iarctanh that happens at



b= 1. h(b),however, is also real for Jpj> 1 because the denom inator becom es purely in agihary
In this regin e, see F igure 6.

b

-3 -2 -1 1 2 3

Figure 6: G raphic of the function h (b).

There is an Im portant di erence w ith the low energy dynam ics of other topological defects.
In this case them oduli space M ¥ isan orbifold: the orbit of every point in the TK 1 line (a;b=
0) 2 S¥ by the action of the Z,-group is a single point whereas any other point in S¥ is not
Invariant under the b ! b re ection. T herefore, geodesic motion in M ¥ would lead to non-
an ooth dynam ics at the TK 1 line. Fortunately, the generic orbit is a two-elem ent set and one can
safely pursue the analysis of geodesic m otion in S¥ .

T he geodesics of a m etric In the kink space S¥ of the form

P
ds® = = da” + h(b)d’
Rp

are easily found (at least in plicitly). W riting them etric in term sofa new variable, b= h (b)db,
we have :

3 2 2 2 P
Psds’=da’+ dF ; db= hBID

and the geodesic curves are straight lines in the a b plane. If ki, k;, kJ, kI, are integration
constants, the geodesics are:

Z
P
alt)= kit+ ky ; b(t) = h(b)db= kft+ kg : (20)
0
In term s of the new integration constants, | = % ;o= kg 1k, , we can also represent the
geodesic paths by w riting b as a function of a:
Z
| S—
b= ho)db= a+ : (21)

W e Inm ediately dentify a simple kind of geodesic m otion: taking | = 0 in (21), orbits with
b= constant are found. T hism otion corresponds to free digpolacam ent of the kink center ofm ass,
for all types of solitary wave, w ithout changing the shape of the kink pro le, see Figure 7.
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Figure 7: Energy density evolution along straight geodesic lines w ith b= constant: (a) b= 09, a single
um p ismoving (b) b= 10, synchronousm otion of two lum ps. T m e runs from left to right

R pIn a search for the m ore general geodesic m otion, the problem is to nd the explicit form of

h (b)db. Because perform ing this integration explicitly is out of reach by analyticalm eans, we
propose two altemative ways for describing the geodesic m otion of BP S kinks.

4.1 N um erical integration

In Figure 8(a) aM athem atica num erical plot of several geodesic orbits (21) isshown. ; hasbeen
st to 3, 2 and 1, whereas the freedom In , hasbeen xed by setting the value of b= 0: -near

the TK 1 point in the space S¥ —at the nstant t= t—j T he features comm on to these generic

geodesics are as follow s: the starting point at t= 1 is the point n @S¥ that corresponds to
theb! 1 Im it of (16). Com ing from very far apart, the two basic lum ps begin to approach
each otherwhen Jojdecreases. T his approach occurs sin ultaneously to a globaldisplacem ent from

1 ofthe center ofm ass: a increases. The two kinksm erge in a single TK 2E  um p at the point
b= 1 in the space S* , and then m ove together, becom ing higher and thinner until they becom e
the TK 1 kink when b= 0. From this point the com posite um p m oves towards the ~®+ kinks,
becom ing shorter and thicker until the critical value b= 1 isreached,where am elosisofa TK 2E,
kink takes place, giving back rise to two sgparate um ps. The geodesic evolution is com pleted
through the increasing separation of the two lum ps, Jojincreasing , and the center ofm assm otion,
a Increasing , asym ptotically running towards theb ! 1 Im it of the (16) con guration.

A closer Jook at the geodesic orbits near the TK 1 point depicted in F igure 8(b) show s us that
the bigger ; the shorter the tin e that the two lum ps ram ain aggregated. At the ;=1 Ilm it,
the geodesic curve becom es a vertical straight line in the space S¥ and there is no m otion of the
center of m assatall. D i erent values of , give di erent geodesic orbits by setting the kink point
crossed at the instant t= 2.

In summ , a generic orbit describes the follow ing low energy dynam ics: the m otion starts from
two in nitely separated ~® [x;xq; ; ]kinks (15) living in the topological sectors in which any
con guration asym ptotically connects the vacuum v* =  Ze, with the vacuum v} = e, and, v;

10
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Figure 8: G eodesic orbits in thea bplane (a). D etail of the geodesic orbits (b).

with v} = Ze . The end point, however, corresponds to two ~®*

X;x0; ; lkinks,also In nitely
separated, (15) connecting v* = Ze with v° =

e ,and,v® with v} = Ze,. The wholk picture
is synthesized In Figure 9. T he energy density along thegeodesic | = 2,k; = 1,k; = 0 isplotted

as a function of x and t, show ing the adiabatic evolution of the two basic kinks. In the draw ing,
tin e runs from Jleft to right and the spatial coordinate x grow s from bottom to top.
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Figure 9: Evolution of energy density along a generic geodesic curve.

4.2 A sym ptotic behaviour of geodesics

It is possible and indeed appropriate to nd analytically the geodesics near the special points
b= 0,b= 1 andb= 1 s*

421 b O

Closeto theTK 1 pointin S¥ , them etric can be obtained approxin ately from the series expansion
ofh((b) around b= 0:

3
h(o) = — 25 + 0 () :

11



T he geodesic orbits are given in this region by :

r_ P
2po__ %273 4b 3 16D+ 3 arcsin(si)
at = h (o)db 5 2Pdb- P . (©22)

T herefore, equation (22) analytically describes how the TK 1 kink is reached from kink con gura—
tions in its neighbourhood and viceswersa. N ote that this statem ent is tantam ount to saying that
(22) determ Ines how the two basic kinks becom e com pletely aggregated on the TK 1 kink, b= ",
and how they start to split, b= ".

422 Db 1

T he expansion of h (b) around theb= 1 points;

h(b) L1 @) (l )
21 joF
Jeads to the geodesic asym ptotic behaviour
g 1
1at o= h(b)db’ ?—Esjgn(b)thj ; (23)
which shows how the two ~®* [x;1 ; ; lkinks (15) are reached exponentially fast in a, or, how
fastthetwo ™® [x; 1 ; ; ]lumps start to approach each other.

There is a subtlety: liny,, ; h((b) = 0 and the m etric ceases to be a rank+4wo tensor at these
Iim its. D ynam ically this breakdown of the geom etrical m eaning is due to the fact that by taking
the bj= 1 lin it we go out of S¥ because the separation between the two basic kinks is in nite.

423 Db 1

T here are still two other special points corresponding to the two-com ponent topological TK 2E
kinks where the m elting into a single imp o=  1-or the splitting into two Ium ps b= 1-take
place. D espite appearances, themetric at b= 1 is regqular and the series expansion of h (b) in
the vicinity of these points reads:

4
hio)= < b 1)+0(b 1))
T herefore, the geodesic equations

p— 7 34 4 ¢
1at+t = hb)Jdb” - — <=b
6 35 7

analytically rule the low energy process of two—lum p fusion into TK2E / TK2E, ssion Into two
lum ps in the vicinity of the TK 2E  kink points of the S¥ space .
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5 From Ilow-energy kink dynam ics to the slow m otion of
dom ain walls

W e nish thispaperby o ering som e com m ents about the im portance of the m odel that we have
studied within the context of the low energy e ective theories ingpired in string/M theory. In
R eference [14], the authors analyzed a generalized N = 1 supersymm etric W essZum ino m odel in
(3+ 1)-<im ensional space+tim e w ith two chiral super- edds , 1; , ,and interactions determ ined
by the superypotential:

W (i1 2)== 5 1+2 13 : (24)

W e in plicitly assum e non-din ensional eld variables and that is a non-dim ensional coupling
constant between the two chiral super- elds. D istinguishing am ong real and im aginary parts for
thesuper-elds, 1= 1+11, 2= ,+ 1 ,,therealand Im aghary parts of the superpotential
W =W '+ W ? read:

4
W (1 o2) = 1[§§4f+2(§ 5) 11 4 12 (25)
4
W21 o2) = 1[4§§f+2(§ 5) 114 15,
T herefore, the restriction to the real part of themodel -, = , = 0;W 2 = 0 - Jeads to the

BNRT systam proposed In [13]and discussed from the point of view of kink defects in [15]. In
fact, the BP S kinks described in [15]are in oneto-one correspondence w ith the BP S dom ain walls
discovered in [14]. In particular, the m oduli space of BP S kinks is identical to the m oduli space
of BP S walls of the generalized W essZum ino m odel and all that we have concluded for the slow

m otion of BPS kinks in the = 2 case can safely be transhted to the adiabatic m otion of BPS

walls in the corresponding generaijzed W essZum ino m odel.

This combination of dim ensional reduction and reality conditions poses a problem from a
(1+ 1)-6in ensional perspective. W e denote by W = W ! the real part of the reduced super-
potential. Tt hasbeen shown in R eference [14] that there is a partner \quasi-super-potential", W,

In the sense that the generalized Cauchy-R iem ann equations

@w @w-
=2 "j.d "an= "m ja=1;2 b= 1;2 : (26)
@ 5 @y
aresatised . ( )= 2 j2]é+l is the Integrating factor used in Reference [15]to nd the ow

lines of gradW . In fact, the solutions of the rstorder equations (9) in [15]-w ritten here in (10)
for =+ —satisfy:

Qw QW

—d; —d;= ()dW =0

@, Q@ ;
Thus, dW” is an exact one<om on the solutions (in R? ) and W rem ains constant on the kink
orbits. Only if = 2 will the dim ensional reduction that we are considering coincide w ith the

13



outcom e of the standard din ensional reduction in the genuine W essZum ino m odel. In this Jatter
case, there isno nead for any integrating factor because (26) becom es strictly the C auchy-R iem ann
equationsand W ;W are conjigate ham onic functions that allow a com plex super-potential to be
built . If 6 2 this isnot so and there is no possibility of obtaining N = 2 (1+ 1)-din ensional
super-symm etry, which, In tum, m eans that one m ust expect one-loop corrections in the surface
tension of the walls.
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