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A bstract

W e express the Ham ilttonian of the quantum trigonom etric C alogero-Sutherland m odel related to the
Liealgebra D 4 in temm sofa set of W ey Hinvariant variables, nam ely, the characters of the fundam ental
representationsofthe Lie algebra. T his param etrization allow s us to solve for the energy eigenfunctions
of the theory and to study properties of the system of orthogonalpolynom ials associated to them such
as recurrence relations and generating fiinctions.

1 Introduction

Integrable m odels play a prom nent role in theoretical physics. T he reason is not only the direct phe-
nom enological nterest of som e of them , but also the fact that they often provide som e desp insights into
the m athem atical structure of the theories In which they arise. Som etim es, they even reveal unexpected
relations am ong di erent physicalorm athem atical theories. In classicalm echanics, integrability not only
show s up itself in som e of the m ost In portant and tin e-honored problem s, such as the K eplerian m otion
or the Lagrange or K ovalevskaya top. It appears also in a plethora of new hypothetical, highly nontrivial
sytem s discovered m ainly during the three last decades of the past century (see [1, 2] for com prehen—
sives review s). Am ong these, the so<alled Calogero-Sutherland m odels form a distinguised class. The
rst analysis of a systam of this kind was perform ed by Calogero [3]who studied, from the quantum
standpoint, the dynam ics on the in nite line of a set of particles interacting pairw ise by rational plus
quadratic potentials, and found that the problem was exactly solvable. Soon afterwards, Sutherland [4]
arrived to sim ilar results for the quantum problem on the circle, this tim e w ith trigonom etric interaction,
and M oser [5] showed that the classical version of both m odels enjpyed integrability in the Liouville
sense. T he denti cation of the general scope of these discoveries com es w ith the work of O Ishanetsky
and Perelom ov [6, 7], who realized that it was possible to associate m odels of this kind to all the root
sytem s of the sin ple Lie algebras, and that all these m odels were integrable, both in the classical and
n the quantum fram ework [8, 9]. Nowadays, there is a w idespread interest in this type of integrable
systam s, and m any m athem atical and physical applications for them have been found, see for instance
[10].

T he elgenfunctions of the C alogero-Sutherland H am iltonian associated to the root system ofa sinple
Lie algebra L are proportional to som e polynom ials which form a com plete orthogonal system in the
quantum H ibert gpace. For the specials values = 1, where g = ( 1) are the coupling
constants, they coincide w ith the irreducible characters of L. For L = A, these polynom ials provide
natural generalizations to n variables of the classical orthogonal polynom ials In one indeterm inate. In
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particular, for the case w ith a trigonom etric potential, one obtains a generalized system of G egenbauer
polynom ials. A s it was shown in the papers [11, 12, 13], these generalized G egenbauer polynom ials obey
a set of recurrence relations w hich constitute a -deform ation of the C lebsch-G ordan serdes of the algebra.
The nding of these recurrence relations opened the way to obtain m any concrete results on the system of
polynom ials, as for exam ple explicit expressions, Jadder operators or generating functions [14, 15]. The
recurrence relations are also the key ingredient to form ulate a perturbative approach to m ost general
am ong the C alogero-Sutherland m odels, that involving the W ejerstrass } function as potential [16].

The ain of this paper is to extend som e of the results which have been ocbtained for A, to the
polynom ials related to other sin ple algebras. W e think that it is a good idea to begih w ith a concrete
case. W e choose to work In the rstplace the problem associated to D 4 because of the triality symm etry
exhibited by this algebra, which will help us in sin plifying of the treatm ent. T he organization of the
paper is as follow s. In Sect. 2, we explain how to express the C alogero-Sutherland H am iltonian in temm s
of the fundam ental characters of the algebra and how to solve the Schrodinger equation. Then, in Sect.
3, we obtain the m ain recurrence relations am ong the polynom ials and use them to give algorithm s to
calculate som e subsets of them . Sect. 4 is devoted to nd the generating functions for som e classes of
characters and m onom ials functions of D 4. M ore recurrrence relations and som e other relevant results are
included in Sect. 5,and nally, In Sect. 6, we give som e brief conclusions. A Iso,we 0 er two appendices.
In Appendix A , for the convenience of the reader, we collect som e of the basic facts about D 4 which we
use In them ain text. In Appendix B we list som e polynom ials, characters and m onom ial functions.

2 The eigenvalue problem

T he Ham iltonian operator for the trigonom etric C alogero-Sutherland m odel related to the root system
of a sin ple Lie algebra of rank r has the form
1 X

H = S(pip)+ ( 1)sin ( ;a); (1)
2R *
whereqg= (q;:::;9 ), p= (E1;:::50:), ( ;) isthe usualeuclidean inner product in R *,R* is the set of
positive roots of the algebra, and are constants such that = if7d =73 7. In particular, for
the case of the algebra D 4 (see Appendix A ), this leads to the follow Ing Schrodinger equation :
H = E ;
() 1
1 x4 5 x4 ) x4 Q@2
H = > + ( 1)@ sin (g @)+ sih “(qy+ a P ; = @3 (2)
<k <k =17

The g coordinates are assum ed to take values in the [0; ] interval, and therefore the equation can be
interpreted as descrbing the dynam ics of a systam of four particles m oving on the circle. Let us notice
that there is not transkhtional invariance. W e recapitulate som e In portant facts about thism odelw hich
follow from the general structure of the quantum C alogero-Sutherland m odels related to Lie algebras [9].
T he ground state energy and the (non-nom alized) wavefunction are

Eo() = 20;) =287 .
< va -
0@ = sin(g q)sin(gy+ &), i (3)
" 3<k ’
P
where is the standard W eyl vector, =% or+ ,With the sum extended over all the positive roots

ofD 4. The excited states depend on a four-tuple of quantum numbersm = (m 1;m o;m 3;m 4)

H , = En()

.
m /



En () = 20+ 5 + ) (4)

P
where isthe highest weight of the irreducible representation of D 4 labelled by m , ie., = Lil:lmi ir
and ; are the fundam entalweights of D 4. By substitution in (4) of
n @= @  @); ()
we are ked to the eigenvalue problem
n= " () o 6)
w ith ! 1!
1 X d @
=5t ctol@y @) -—— —— +tcol@+t k) —+ — (7)
2 i<k @qy Qg 5 @k
and
"m ()=En () Ee()=2(; +2 ) (8)

Introducing the inverse C artan m atrix Ajkl= ( 55 x),wecan give a m ore explicit expression for ", ( ):

x4 x4
"« () = 2 Ajklmjmk+4 Ajklmjz2(m%+m§+mﬁ)+4m§+2(m1m3+m1m4+m3m4)
jk=1 jk=1
+ dmoymi+mz+mg)+ 12 M1+ m3+mg)+ 20 m5: (9)

The main problem is to solve equation (6). A s it has been shown for the case of the algebra A,
[11,12, 13], the best way to do that is to use a set of independent variables which are invariant under
the W eyl sym m etry of the H am iltonian, nam ely, the characters of the four fundam ental representations
of the algebra D 4. Unfortunately, the expression of these characters in tem s of the gvariables (which
play the role of coordinates on the m axin al torus of D 4) is not very sim ple. D enoting the character of
the irreducible representation of m axin alweight 5 asz;,we nd

x4 x4
Z1 = X5+ Xj !
j=1 j=1
x4 x4 x4
Zy = XiXq + (xix5) Ly X, lxj
K] K] 1]

Z3 = X — + — Xis
i=1 Xi x i=1
4
1 1X
Zy = X+ —+ — XiX5
X X,
i< j
where x4 = 25 ,and X = X1XpX3Xg . T hese expressions m ake the direct change of variables from g; to

7, quite cum bersom e. W e refrain from trying that approach, and choose an indirect route which has the
added advantage of being also applicable to other algebras in which the expressions for the characters
are even m ore lnvolved. W e can infer from (7) the structure of when written in the z-variables:

X! xth o) @,
= A, e, v B+ V@) 6, (10)

jk=1 =1



On the other hand, as it iswellknown [17], the , are polynom ials which, with som e precise partial
ordering for the m onom ials to be described later, start as follow s:

n (Zi)= P, (z3)= zinlz;”zg“zzn‘l +

T herefore, m aking use of (9), we conclude that

a (z1) = ZAjkl 25z, + lower order tem s;
(r) (r) (r)
bjr (z1) = cjr z5 + oljr ; r= 0;1: (12)

Now , to obtain the full expressions for these coe cients, we rely on the fact that, for = }%’ theP
polynom ial gives the character of the rreducible representation of D 4, w ith m axin al weight ‘il: IRUEEEY
while for = 0 the sam e polynom ial is the corresponding sym m etric m onom ial function [9]. Both,
characters and m onom ial functions, can be com puted by using the inform ation available In the literature
(see, for instance, the \R eference C hapter" of [18]). In fact, the follow ing short list of polynom ials

(1)
2000(2) = Zf z 1;
(1)
Piapp(2) = Z=1Z2  3Z4;
(1)
Pioan) = =73 a;
(1)
Poooo(z) = z§ 42324 t Z2;
(0)
PZ,O,O,O(Z) = Zf 2@
isallwe nesd to obtain . By substituting these polynom ials in (6) and using (9), (10), (12) and the

triality sym m etry (that here In plies that the nalexpression for should be Invariant under pem uta-
tions of the indices 1,34), we get enough sin ple linear algebraic equations to x all the coe cients. W e
give here only the nalresult:
1 h i
2 2 2

> = z2 2z 8 @fl + 275 4 zi+ Z5+ 7z 27 2324+ 82 @52 + z3 2% 8 @53

+ z; 2z 8@+ (mzy 63zs 83)@, 0, + (zizz 82)@, @

+ (2124 83)Qy @y + (22223 6724 83)E;, @ + (22324 673273 87) @ @y

+ (z3zg 82)Qy @y, + (6 + 1)z1Qy + 2(5 + 1)zz+ 8( 16, + (6 + 1)z30@,

+ (6 +1)z4@Qy: (13)

O nce the explicit expression for the operator in the z variables is given, the Schrodinger equation
can be solved iteratively. By direct application of  to z" 4'zy%2;°z ¢, we nd

xt X X
M = mo )Zm a;; 7 i b% 70 ( 2+ 5) cl‘lnj 70 ( 2+ i+ 5)
=1 21 ij2T
X
2% ZU (2 2%+ ) g " (1+2 2+ 3+ 4)
ij2T
4 a% Zm (142 2+ 3+ g4+ j); (14)

21
w here the sets of indicesare I = £1;3;4g and T = £13;14;34g, and

ar = 4dmim; 1); hi=12mzmj;o

= 16mim 4; An ( )= 16m,€2 m, +  m4P o



m

A llm onom ials in z" take the form z" with asa positive root. T hus, the polyncm ialP has the
form %
P, (z)= cz" (15)

20" (m )

w here we choose the nomn alization ¢ = 1 and, ifQ ¥ is the cone of positive roots,
0F (m )= 207" 42" iswellde ned if z; zy z32za = 0 : (16)

T he abovem entioned partial ordering of m onom ials is given sin ply by the height of ,1i. e. z™ >
zZ™ 2 ifht( 1)< ht( 7). From (14), the coe cients ¢ obey the iterative form ula

C = n " (17)
mn () m ()
w ith

Xt X X

_ i

N - am ( l)C 1+ bm ( 2 j)c ( 2+ j)+ Cm ( 2 i j)c ( 2+ it ])

=1 21 52T
X 2

+ 2 An (2, j_j)c (22+i+j)+dm( 122 3 S (142 2+ 3+ 4)
92T
X

+ 4 I 122 3 a4 j)c (142 2+ 3+ g4+ 5)°
21

A Jong w ith the explicit expressions for the roots given in A ppendix A , it is suitable for the in plem entation
on a sym bolic com puter program . A list of polynom ials obtained through the use of this form ula iso ered
In Appendix B.

3 The structure of the recurrence relations

A s itiswellknown, all the system s of orthogonal polynom ials in one indeterm inate z, such that Py (z) =

m

z" + satisfy a recursive formula @B = ay Pn+1(2)+ by Pn (2)+ G Pn 1(2z). In particular, the
orthogonal polynom ials associated to the trigonom etric C alogero-Sutherland m odel for the case of two
particles and Lie algebra A1 are the classical G egenbauer polynom ials, w hose recursive form ula is known

to be

m (m 1+ 2)
zP_(z)=P

n (z)+

m+1 Pm l(z):

(m 1+ )m + )

This form ula is rem niscent of the C lebsch-G ordan series for A, . In fact, for = 1 it reduces exactly
to this C lebsch-G ordan series: the polynom ials are the characters of A1 and the coe cents are equal to
one. Inm ediately the question arises about the existence of analogous recurrence relations, ie., w ith the
structure of -deform ations of the corresponding C lebsch-G ordan serdes, for the polynom ials related to
C alogero-Sutherland m odels associated to other sin ple Lie algebras. As itwas shown in [11], the answer
tums out to be in the a m ative for all root system s, but to obtain the expressions for the deform ed
coe cients it is necessary to proceed through a caseby-case analysis. O nce the coe cients are known,
m any applications are possble. The ain of this section is to x the structure of the basic recurrence
relations for the case of D 4 and to give a sim ple illustration of their use.

W e want to study the formulas for z;P, (z), i= 1;2;3;4. T herefore, as Pnﬁl)(z) =z form 5= (51),
and the recursive form ulas are deform ations of the C lebsch-G ordan series, we need to know the weights
of the irreducible representations w hose integraldom inant weightsare 1, ,, 3 and 4. For the case of



1, 3 and

4, these representations have dim ension eight. O n the other hand, if we act on the highest

welght w ith the W eylgroup In the way explained In the Appendix A , we obtain eight di erent weights.
T hus, these representations include only one orbit of the W eylgroup and we aredone. For thecase of 5,
the representation hasdim ension 28 and the orbit of the W eylgroup containing , hasonly 24 elem ents.

But , =

{2 , the highest root, and thus this representation is the ad pint one and includes a second

orbit: the Cartan subalgebra, w ith four elem ents of weight zero. Let us sum m arize.

W eights in ¢: 17 (1 2); (2 3 4); (3 4)
W elghts in z: 27 (2 24); 22 1 3 a)i (2+ 1+ 5 k)i (it 5
k)i (2 1 3 4);0,with i;37;k 2 I:
W eghts in z: 3i (3 2); (2 1 4); (1 4):
W eights in z: 4i (4 2); (2 1 3); (1 3)
W ith these weights, the structure of the recurrence relations results to be as follow s:
1 1
Zle1m2m3m4(Z) = Pm1+1:mz.m3:m4(z)+ a'm( )Pml 1m2m3m4(z)+bﬂ( )Pm1+lm2 1:m3m4(z)
1
+ Cﬂl“( )Pml 1m2+1m3m4(z)+dm( )Pm1m2+1m3 1mg l(z)
1 1
& )Pmlmz l.m3+1:m4+l(z)+ fm( )Pm1m2m3+lm4 1(2)
1
+ gm( )Pm1m2m3 lm4+1(z)
1
ZZPm1m2m3m4(Z) = Pm1m2+lm3:m4(z)+Am( )Pmlmz lm3m4(z)+Bm( ) Pml 2m 2 1:m3m4(z)
3 4
+ Bn () Pm1;mz 1ms 2m4(2)+Bm( ) Pm1mz lm3mag 2(2)
1
+ Cn () Pml Imz 2m3 1myg 1(Z)+Dm( ) Pml Imz 1Im3 1mg 1(2)
3 4
+ Dn () mi lmy lms 1mg 1(Z)+Dm( ) Pm1 Im, 1msz 1myg l(z)
1 3
+ En () Pml Imomsz 1Imyg 1(Z)+Em( ) Pml Imomz 1mg 1(2)
4
+ En () Pml Imomsz 1Imyg 1(Z)+Fm( ) Pml Imz 1ms 1Img 1(2)
+ G ( )Pm1m2m3m4(z);
3 3
Z3Pm1m2m3m4(z) = Pm1m2m3+1m4(z)+ 3 ( )Pm1m2m3 lm4(z)+bﬂ( )Pm1m2 1m3+1m4(z)
3 3
+ Cm( )Pm1m2+lm3 1m4(z)+dm( )Pml Imo+1lmazmyg 1(2)
3 3
+ em( )Pm1+lm2 1m3m4+l(z)+ fm( )Pm1+1m2m3m4 l(z)
3
G )Pm1 1:mzm3.m4+1(z);
4 4
Z4Pm1m2m3m4(z) = Pm1m2m3m4+1(z)+ 3 ( )Pm1m2m3m4 1(2)+ 1y )Pm1m2 1m3m4+l(z)
4 4
+ Cm( )Pm1m2+lm3m4 1(Z)+dm( )Pml Imz+1ms 1.m4(z)
4 4
& )Pm1+lm2 1m3+1m4(z)+ £ ( )Pml 1m2m3+1m4(z)
4
+ On ( )Pm1+1:mzm3 lm4(z);
whereBy ( )l Pml 2m lm3m4(z)meanSBm( )H Pm1+2mz 1m3m4(z)+Bm( )l Pm1 2m2+lm3m4(z)'

etc, and it is understood that all polynom ials involving negative quantum num bers are zero. The re—
currence relations re ect triality in the fact that not all the coe cients appearing in these form ulas are
Independent. T here are concidences upon perm utations of the quantum num bers, for Instance

1 _ 3 _ 4 .
Amimomama - Cmsmomimas - Fmamomamgf (18)



and sin ilarly ﬁ)r]q?1 ;C}% ;d,?1 ;e% ;fn]{ ;g% . In the sam e fashion, we have also

1 _ 3 _ 4
Bm1m2m3m4_Bm3m2m1m4_Bm4mzm3m1 (19)
and sin ilarly ﬁ)rD% ;Enj;
A san exam ple, et usconsidera sin ple case in w hich only one ofthequantum num bers isnonvanishing,
nam ely,

Zle,o,o,o(Z)z Pm+1,o,0,o(z)+ an ( )P, 1,0,0,0(2)‘*' Gn ( )P, 1;1,0,0(2); (20)
wherewewritea, ( )= ar}],@,{m( yand ¢, ( )= CI:TLMO,@,O( ). Using form ulae
mm 1)4%+4m 2) + @ 1)m 2), , mm@m 1), ,
P _ m m m +
nonp(2) = 21 m 1+ )m  1+3)m 2+ ) ' m 1+ 1 =
4 ( 1)m 2+ 2 )
P, . = 2z 2+ T+ ;
m 100 () AR i1 5 )m + 2 )m 1+ )L
we obtain the coe cients in (20)
0) m@m+ 2 )m 1+ 4 )(m 1+ 6 )
a = 7
" m 1+ )m 1+ 3 )m+3)m+5)
m (m 1+ 2)
G () =

m + )m 1+ ):

A s a byproduct of triality, we can also w rite other two recurrence relations w ith the sam e coe cients:

ZBPo,o,m,o(Z) = PO,Om+1,O(Z)+ an ( )PO,Om 1,0(2)‘*' Cn ( )PO;lm 1,0(2)

Z4Po,0,om (z) = PO,O,O,erl(Z)+ an ( )PO;O,Om 1(Z)+ Cn ( )PO;l,O,m 1(2)3 (21)

The st of these recurrence relations can be used to devise an algorithm for the calculation of the
polynom &als of the form P, 44,(z) and Py 44,0(z). By multplying (20) by the di erential operator
W 1a0p( ), the tem involving P 1100 cancels. U sing the explicit expressions (9), (13),we nd

1 1+ 4
Phnii1pop = m[ 721 1Py 000 (2) Za +
m@m+ 2 )m 1+ 4 )m 1+ 6 )

(m 1+ )m 1+ 3 )m + )m + 3 )Pm l;O;O;O(Z);

) ZFm 000 (2)

w here, from (13),

2

[ szl = 427 23 8@+ 2(zizz 8a)C;, + 2(zzs  83)C,

+ 4d(z12 3324 47 )@z, + 2(6 + 1)zg:

w here, from (13),

2

[ szl = 427 22 8@+ 2(zizz3 8a)C;, + 2(zzs  83)0C

+ 4 (zp2 3324 47 )@z, + 2(6 + 1)z;:
O nce the polynom ials P, 000 (2) are known, the recurrence relation (20) provides a form ula for each

Puano(2)

Gn+1( )P, ;1,0,0(2)= 21Pm+1,0,0,0(2) Pm+2,0,0,0(2) Go+1( )Pm,O,O,O(Z): (22)



4 Som e generating functions

W e present in this section the generating functions for som e characters and sym m etric m onom ial fiinc-
tions. Let us consider rst the case of the m onom ial functions w ith only one non-vanishing quantum
num ber in the form PHEO,%,O,@ (z). The generating function for this subset is

* (0)
Fol(tz)= P, 000(2): (23)

m=0

In term s of the x variables, the general expression for these m onom ial functions is

n pop ) = x5+ x50 (24)

and, In particular,we de neP 0(%),0,@ (z) = 8. In these variables, the com putation of Fy (£;x) only requires
to sum the geom etric series: 0 1
x4 1 1

Foltx) = @l D<-+1 —h (25)
] <.

=1

T he change to the original z variables can be done by the inspection of the coe cients of the powers of
t in both the num erator and denom inator of this rational expression, w ith the result

Fo(t:2) N (t;z) 26)
iz)= ———i
0 D (t;z)
w here
Ng(t;z) = 8 73 t+ 6221.2 5(z 24 a)t3+ 4(z§+ zf 2% 2)¢ 3(z2za z_)t5
+ 222t6 z_t7;
D(tz) = 1 3t+ 22t2 (24 z_)t3+ (z§+ zf 2% 2)¢ (24 z_)t5
+ ozttt gt + B (27)

T here is an altemative approach. A s the m onom ial fiinctions are eigenfunctions of ~ ©

"2 000(0)= 2m?,we have

) w ith eigenvalues

1 ©0)
5 Dotz = m i P, ();

m=0

and, therefore, we can write a di erential equation for F (t;z):

© (t@)® Foltjz)= 0;  Fo(0;z)= 8: (28)

N

O ne can verify by substitution that (26) satis es this equation. W hen Fq(t;z) is known, we can easily
obtain the generating function

S (0)
Gol(tjz) = 2 PLao0 (@) (29)
m=0
by only recalling (20),which for = 0 is sinply
0 0 0 0
2P Do 0(2)= Pl oo 2)+ B o2+ B (2 (30)



T his gives
G o (t:2) M o (t;z) (31)
iz)= ———
0 D (t;z)

w ith

Mo(tiz) = 2z 4+ (6a 3zz;)t

8 2% 103 z§+ 4z§+ 2712324 + 4z§)€

1021 + 5212 32_{25 4274+ 207324 ?vz_zﬁ)t3

+
+
+ Bz 4%2 + 225 zzzg + 4712374 zzzf)t4
+ ( 63 6272 ZBZ4 + 222324)t5+ (8 + 6zf+ 227y é)t
+ (107 + zmz)t+ (4 )t
T he com putation of the generating fiinctions for the characters Pnil;)O;O;O and Pnil;)l,o,ﬂ goes through sin ilar
argum ents. In this case, the elgenvalues are ", 900 (1) = 2m % + 12m . Hence,

® (1) (1)
Fi(tz)= P, 000(2)i Pyoop(2) 1 (32)
m=0
is the solution of the equation
1w 2
> (t@) otq Fi(tiz)= 0; F1(0;z)= 1: (33)

The W eyl character form ula In plies that the denom inator of F'1 (t;z) should be the sam e D (t;z) found
before. Thus,we try an Ansatz

N (t;z)
Fi(z)= ———— 34
1(t52) D (t:2) (34)
and obtain the sin ple answer
Ni(gz)=1 ¢£: (35)

Applying the recurrence relation (20)) we obtaln the generating function G (t;z) for the characters
©
m1:00°

1 0 o
Zy BZst+ (z§+ zf 2% 1)’8 (24 a)t3+ Z5 t Ztt5+ £ (36)

5 M ore recurrence relations and other results

In this Section, we give the ram aining recurrence relations involving the product of a fundam ental char—
acter tin es a polynom ialw ith only one non-vanishing quantum num ber. W e also com m ent the existence
of som e peculiar values for for which the polynom ials associated to som e special excited states are
proportional to integer pow ers of the fuindam ental state wavefunction.

To obtain the m entioned recurrence relations, it is necessary to com pute the coe cients of a lim ited
num ber of tem s of the polynom ials nvoled. O nce the form of these term s is known, we can obtain
the coe cients in the recurrence relations solving a system of linear algebraic equations. W e do not give
here the full expressions for the coe cients of the required tem s, because som e of them are too long,
and only list them :



m m 1 .
Piomp(2z) = z123 + Azy “zg+ ;

Ponmaoplz) = 2z +Bz) Yyl 2+ Dzl Yz3zat+ E 7Y Czzzm
+ F (Zfzg1 24 zy 2z§+ zy 2zi)+ ;
Pi00(2) = 2125 +G 712 lzi+ H zy Yoaza + ;
Ponaa(2) = z3z3z4+ Izyz) + ;
Poooo(z) = 2z +J2] 2+Klen 27, + ;
Poaoo(z) = 2] zp+ Lz 27, + N zy Yrazg+ M 2+ ;
Pnooaa(z) = 2z z3z4+ N 27 lzp+r 0t ;
Pioaa(2) = 2123 2324+ Pz +Q 712 Yoszs + R (zfzé“ + zy z§+ 7y zf)+ S z§+l+ ;
Pyyoo(z) = zfz%n + Tzy +Uz2) Yosza+ W zg”l+

T he use of the quantities denoted A to W 1In the previous form ulas in the general structure of the
recurrence relations give the follow Ing results:

Fom ulae of type 2P0,y o (2):

21Poom 0(2Z) = Piromo@)+ b ( Poom 12(2)
21Popom (2) = 100m (Z)+ 1 ( Popam 1(2)
3Py 90p0(2) = 0202+ o ( P 1002 (2)
z3Popom (2) = Pogam (2)+ I ( Proonm 1(2)
ZaPn 000(Z) = Ppgpa(z)+ b ( P 1020(2)
Z4Poom 0(2Z) = Pooma@)+ b ( Prom 10(2)
w ith
b ()= m (m 1+ 4)
T m 1+ )m + 3 )
Fom ulae of type 2P, 00 (2):
21Pom 00(2Z) = Piu00@)+ dn ( Pim 1002)+ & ( Poy 124 (2)
Z3P0,m ;O;O(Z) = PO,m ;1;0(2)+ dm( )PO,m l;l;O(Z)+ em( )le 1;0;1(2)
24Pom p0(2Z) = Pompa@)+ dn ( Pom 1022)+ & ( P1gy 12,0(2)

w ith

2m (m + )(m 1+ 3 )m 1+ 4 )(2m 1+ 6 ) .
m 1+ )m 1+2)m+3)2m 1+5)2m+5 )
m (m 1+ 3) .
m 1+ )m+2)°

10



Form ulae of type 2P, ,OIO,O(Z):

22Pn 000(2Z) = Ppano@)+ fn ( )Pn 22,00@)+ gn ( )Py 1007 (2)+ hy ( )P 000(2)

22Poom 0(2Z) = Poamo@)+ In ( JPoam 20@)+ dn ( Pion 12(2Z)+ hn ( )Poonm 0(2)

22Po00m (Z) = Poapom 2)+ fn ( )Pogpm 2(2)+ dn ( )P1pam 1(2)+ hn ( )Pooom (2)
w ith

£ () = m (m 1)(m 2+ 2 )Ym + 2 )(m 1+ 4 )m 1+5.)
"  m 2+ )m 1+ ¥m 1+ 3)m+3)m+ 4 )"

() = m (m 1+ 3) .
i m 1+ )Ym o+ 2)
4 334524 (6m 1) + m? 1)

(m 1+ )1+ 3 )Ym +1+5)

Fom ula ﬁ)rgPOm ,OIO(Z):

ZZPOm ,@,0(2) = Pom+1f?,@(z)+ kn ( )PO,m l,O,O(Z)+ P ( )P]_m 1;1;1(Z)+ G ( )P]_m 2;1;]_(2)
1

+ Im () sz 1,0,@(2)"" POm 1;2,@(2)"" POm 1,0,-2(2) + Sp ( )PO,m ,@,0(2)

dmm + )M+ 2 )m 1+ 3 )m 1+ 4 ¥(2m 1+ 4 )m 1+ 5 )@m 1+ 6

(m 1+ )m 1+ 23%m + 3 )?’m + 4 )(2m 2+ 5 )(2m 1+5 %@m + 5 )

() = m (m 1+2).
Bro  m 1+ )m o+ )

- 2nm L+ Fm  2+2)m  1+3§@m  1+6) _
& Com 2+ )m 1+ fm  1+2Fm+2)2@n  1+5)C2m +5)

m@m+ )m 1+ 3 )m 1+ 4)

) = T Jm 1r 2 m s 2 )m 3y
4k ()
S ()= ( + )@m 1+ )m+ 1+ 4)@2n  1+5)2m +1+5 )
t () = ( 1+ 5m? 4dm*)+ @+ 25m Tm? 4m+ 2m?) + (20 35m  123m° + 20m °) ?;

+ (22 115m + 63n?) 2+ ( 19+ 65m )Y+ 20 °:

Finally, we m ention that for = %(n 1), n 2 N, the polynom ials associated to the dom inant
weight which isn tin es the W eylvector are proportional to a pow er of the ground state wavefunction,

nam e]y 38 9 N
1 12n < - - -
Py = ( 1)27  sinlgy  q)shig+ o),

i<k !
T his form ula can be veri ed quite easily by direct application of D in the form (7) to the right-
hand side: one nds that the Schrodinger equation (6) w ith the appropriate eigenvalue is satis ed. The
m ost convenient way to x the proportionality constant is by perform ing an analytic continuation to

com plex ¢; and considering the region x; 2 R and x; X5 X3 Xq 0. Then, the polynom ials are
1
Imn 1
dom nated by the leading order term , P, ° oy z1'zy 23 75 ,and, on the other hand, using the form ulas
for the fundam ental characters displayed in Section 2. one nds z17;7374 ' X3x5x3 and §<k shh (g
G )sin(ay+ )’ 2 lzx:fx%}g . This gives the proportionality constant w ritten above.

11
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6 Conclusions

In this paper, we have shown how to solve the Schrodinger equation for the trigonom etric C alogero—
Sutherland m odel related to the Lie algebra D 4 and we have explored som e properties of the energy
eigenfunctions. Them ain point is that the use of a W eyldnvariant set of variables, the characters of the
fundam ental representations, leads to a form ulation of the Schrodinger equation by m eans of a second
order di erential operator which is sin ple enough to m ake feasible a recursive m ethod for the treatm ent
of the spectral problem . T he eigenfinctions provide a com plete system of orthogonalpolynom ials in four
variables, and these polynom ials obey recurrence relations which are extensions of the C lebsch-G ordan
series of the algebra. T he structure of som e of these recurrence relations hasbeen xed and, for particular
cases, the coe cients involved have been com puted. A 1so, som e generating functions for the polynom ials

with parameter = 1 and = 0 have been obtained. These generating fiinctions can give som e hints
about the form of the generating function for general , see [20].
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A ppendix A : Summ ary of results on the Lie algebra D,

In this appendix, we review som e standard facts about the root and weight system s of the Lie algebra
D 4 that the reader could nd usefill to follow the m ain text. M ore extensive and sound treatm ents of
these topics can be found In m any excellent textbooks, see for instance [18], [19].
T he m ost convenient explicit representation of D 4 is
( ! )
m b } .
Dy= - nt jm ;b;creald 4 m atrices and 1 = b; &= c

Thisgivesdin D 4 = 28. O ne can choose the follow ing linear basis:

My = Ejx  Egygaexi Jik = 1;2;3;4
Bix = Ejurx  Expue i Jik= 1;2;3;4; jJ<k
Cik = Eugix  Earxgi Jik=1;2;3;4; j<k

w ith (Ei;j)kl: ik 91- The Cartan suba]gebrals
(o )
H = h = Cj_M i1 jCj_Z R
=1

and this con m s that the rank of D 4 is four. Them atrix com m utators

hM ikl = (& @M
hiBskl = (5+ &x)B ;s
h;Cx] = (+ & )C

allow us to classify the 24 roots In two groups

wh) = o &; j6 k;
x M) = G+ )i J< k:

12



O ne can extract the follow ing basis of sin ple roots

1 1; 1; 0; 0 = 125 2 0; 1; 1; 0 = 237
3 0; 0; 1; 1 = 34 1 0; 0; 1; 1 = 3,
where we have given the decom position of these roots In the basis of H dual to diagM™ 1), =1,2,3A4.

T he euclidean relations am ong the sin ple roots are

(17 1) = 2 i= 1;2;3;4;
(27 1) = 1; i= 1;3;4;
(17 5) = 0; i= 1;3;4:

T hus, the C artan m atrix reads

0
0 1 0 2

T he positive roots are  i5; L. ;1< j,and they can be classi ed by heights as indicated In the table. The

Height | Positive roots
1 17 27 37 4
2 13= 1+ 27 2a= 2+ 3; = 2+ 4
3 14 1+ 2+ 35 4= 1+ 2+ 4i 3= 2+ 3+ 4
4 1—3: 1+ 2t 3+ 4
5 o= 1+2 2+ 3+ 4

Table 1: Heights of positive roots.

W eylgroup is easy to describe. The W eyl re ection on the hyperplane in H orthogonal to the root
iss (v)=v 2% . Applying this omula to 455 ijr one readily nds that the m ost generalW eyl
re ection consists in a perm utation of the com ponents of v in the e; basis plusan even num ber of changes

of the signs of these com ponents. Thisgives 1 j= 1%2 for the order ofthe W eylgroup. T he fundam ental

weights 1 can be obtained from the equation ;= j 1Ay 5. They are
1(2 2 ) l(2 0; 0; 0)
= 3 + + 3+ =—-(2; 0; 0; ;
1 > 1 2 3 4 >
1 1
2 = 2(2 1+42+23+24)=5(2; 2; 0; 0);
1 1
3 = = 1+ 2 242 3+ )= —-(1; 1; 1; 1);
2 2
1 1
a = Z(1+ 22+ 3+24)==-(1; 1; 1; 1);
2 2
and the geom etry of the weight system is sum m arized by the relations
[
k ]_](=k 3k=k 4k= 1; k 2k= 2;
1
(17 2)=1; 1= 1;3;4; (iiy)= i 5= Li3ia:

13



The W eylvector is
1
25 = 5= =3 1+5 2+3 3+3 4= (3; 2; 1; 0);

and the W eyl form ula for dim ensions applied to the irreducible representation associated to the integral
dom inantweightm =mq1 1+ m, 2+ m3 3+ my 4 gives

. Y (m+ ) P
dim r(m )= =
( ;) 1440
2R *

w ith

Ve Y Y
P = mi;+ 1) Mmoo+ myi+ 2) Mmo+my+me+ 3)Mi+me+mz+myg)mi+ 2my+ma+ my)

=1 ] j<k

w here the indices j;k take the values 1;3;4. In particular, for the fiindam ental representations, one nds:
dim r( 1)= 8; dim r( )= 28;
din r( 3)= 8; dimn r( 4)= 8:

A ppendix B : Som e polynom ials, characters and m onom ial functions

W e list here all the polynom ials, characters and m onom ial functions w ith total degree lower or equal to
three up to trdality.

Polynom ials

Pl,o,ﬂ,o(z) = Zz
Poioo(z) = zo+ u);
e 5 +1
Pyoon(z) = 1zt ’ 2 °
1+ 1+ )1+ 3)
2 3
Posonle) = 2 1+2 wss <1i( )11: 2) R At Z(11(+3+><15++26><3++45 >) “r
16( 1+ )3+ 10 +32+23)
" 1+ Y1+ 2)2+5)3+5)
Piigo(Z) = =12 7324 + A 1+ ) 1+ 2 )zl
1+ 2 1+ 2 )2+ 5)
Pipap(z) = z123 1+43 Z4
P3g00(z) = zf 6 Z1Zy + —6 7374 121+ 2 + 2 2) Z1
2+ 1+ )2+ ) 1+ )2+ )2+ 3)
2
Pogno(2z) = zg 2+6 712273274 + W&) (zfz§+ zfz§+ zﬁzf) (i(f+)2;+ )) (zfzz+ ZZZ§+ zzzf)
6(10+ 17 +21 2+10°+2 %) , 3(30+53 +4 2 15%+8 %)
+ z5 712324
51+ )¥P@+ ) 51+ )42+ )

14



12 (8+ 10 + 3 o, 5, 1230+ 119 + 159 2+ 124 3+ 80 *+ 24 5+ 4 %)
1 (zi + z3+ z5)+ 1
5(1+ )42+ 5(1+ )22+ )4+ 5)
.\ 16( 30+ 103 + 4402+ 359 2+ 98 4+ 86 >+ 20 %+ 4 7)
Y2+ )3+ 5 )4+ 5)
2 1+ 3 a( 1+ )72 4
2 2 2 2 2
Poapn(z) = 2z1z 14 2 )22123Z4+ 1+ )2(3+5)zl+ s )2(z3+ z7)
409+ 27 + 28 2+ 16 2) 163+ 5 + 2 3)
Z
1+ )2@2+3)3+5) 2% 1+ )»2@2+3)3+5)
2 1+ 3 2( 1+ ) 5
P1;2,O,O(Z) = zlz§ 17252324 1+ )2222324 1+ sz )zf+ 1+ )2(zlz§+ zlzf)
N 4 1+ )9+ 19 + 102+ 4 3) 4C 1+ Y 5+ 2)1+ 3)
Z12Z Z37Z
1+ )2(1+ 2 )4+ 5) Loz 1+ )2(1+2)4+5) ™
N 8( 9 57 722+ 28 3 2444 9)
Z
1+ )2(1+2)3+5)4+5) s
8( 1 412+ 23 112+ 6 3
Piaao(z) = z12023 ———(27z4 + 2524) ( * ) ZpZ4 + (12 + i )2123
1+ 2 1+ 2 )2+ 3) 1+ 2 )2+ 3 )3+ 5)
8(3 22 + 472)
Z.
1+2)2+3)3+5)°*
. - 4 2r Pt e 12 N 16(1+ 5 )
aa 2 = Z1237Z — (Z Z Z Z
10A7 12324 T LT A )@+ 3) Y @+ 2)@+ 3 )2
C haracters
Pl(i)),@,o(z) Z1
Poaon (@) 22
P00 (2) 2 5 1

1)
Poann(2)

1)

Pi2nn(2)
1)

Pi1ap(2)

(1)
Pioan(2)
M onom ial functions

(0)
Pl,O,ﬂ,O(Z) = 7

2
Zy + Zp 24 Z3Z4
2123 BZ4
21273 %
3
z] 247y + 7324 27

2.2 2.2 2.2
27797324 + 2725 + Z]Z5 + 257

7 4 4+1

77374 + z§+ zi 2% 1

3 2
z5 + 325 + 32
2 2
(% + z3+ 2z5)Z2 2 2374
2
Z1Zp %2

2

2125 % 2324 z

2
%7324 + 21 (25 + 27) Z
712073 + 2123 (ﬁ+ z§ )Za + Za

212324 ﬁ ﬁ

ﬁ-i— Zo + 2
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(
Po;l,o,o(z) = 2z 4

(0) 2
Pooon(2) = zi 22
0
PO(,.Z),@,O(Z) = z% 277374 + 22% + 2z§ + 225 4 8
(0)
Plaoo(2) = z1zp 3324 + 271
(0)
Pioapn(z) = mz3 4z
p.% (z) = z2 3 + 3 3
3000 = 4 422 2324 Z
0
PO(;3),O,O(Z) = zg + 6z§ + 9z,  3732pZ324 + 32%2% + 3zfz§ + 3z§z§

3(% + z% + zf)zz 97 7324 4

Pz(?l),@,o(z) = z%zz 252 47374 + 42% + 4z§ 6z 8

Pl(?z),@,o(z) = 2125 2%2324 27374 + 2zf + 521(z§ + zf) 927 7, 57724 627
Pl(;ol);l,o(z) = zi12p23+ 82123 3(Z + Z5)za + dzpzs 4z

Pl(i));l;l(z) =  Z1Z3Z4 4212 4% 45 + 12z, + 16
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