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A bstract

Supersym m etric extensions of H am ilton-Jacobi separable Liouville m echanical system s
w ith two degrees of freedom arede ned. It is shown that supersym m etry can be In plem ented
In this type of system s In two ndependent ways. T he structure of the constants of m otion
is unveiled and the entanglem ent between integrability and supersym m etry is explored.

1 Introduction

Since the discovery of superstrings [1 ] and non-linear supersymm etric eld theoreticalm odels [2]
at the beginning of the seventies in the past century supersymm etry has becom e an extram ely
active area of research in both theoretical physics and m athem atics. In particular, supersym m et
ric non-A belian gauge theories In several din ensions are of broad interest passing through the
phenom enology of elem entary particles [3]to di erential invariants of fourm anifolds [4].

At a very early stage in the developm ent of thism atter, several researchers started to focus on
understanding Bose/Ferm i symm etry in the realm s of classical and quantum m echanics of nite
din ensional dynam ical system s [5], [6]. Tn supersymm etric quantum m echanics, the ferm ionic
variables are realized as the generators of a C1li ord algebra satisfying the quantization rules:
£ I(t); ¥(t)g= ir . Therefore, they are (G rassn ann) anticom m uting variables £ 7; *g= 0 at
the ~ = 0 classical Iim it [7]. T he geom etry of m anifolds including variables of thiskind is described
In D&l itt’s book [8]. Thus, in classical supersym m etric theories the con guration space is a su-—
pem anifold, In D W itt’s sense: the dynam ical variables take thejr values J'nPa G rassn an a]gebra
B. . Any elem ent of By, is the com bination of the L. generators ;‘k,b= Iyl + bil nﬁ ;11 A
w here the coe cients bil nﬁ are realnum bers. Iy is usually referred to as the body of the super—
num ber b whereas the sum of the other tem s in the G rassm an expansion is accordingly nam ed
as the soul of b. The Lagrangian fom alisn of classical m echanics can be extended to the super-

sym m etric fram ew ork and the H am iltonian form alian can also be im plem ented in supersym m etric
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dynam ical system s, see [9, 10]. Several sin ple m echanicalm odels, w ith bosonic and ferm ionic dy—
nam ical variables valued in a G rasan an algebra have been investigated by C asalbuoni [5], B erezin
and M arinov [6], Junker and M atthiesen [11]. M anton and Heum ann have recently in proved on
these works, obtaining supersolutions in several interesting m odels [12, 13, 14]

The main them e in the present work is to nvestigate the interplay between supersymm etry
and integrability in dynam ical system s w ith two bosonic degrees of freedom . T here is a broad
class of tw o-din ensional classical system s, called Liouville systam s, that, besides being com pletely
Integrable, have the stronger property of being Ham ilton-Jacobiseparable, see [15]. Am ongst
them rank som e im portant physical system s: the two-din ensional K epler and two New tonian
centers of force problam s, the G amier system [16], to quote jast three. T he existence of a second

rst-ntegral in involution w ith the Ham iltonian guarantees, via Liouville’s theorem , com plete
Integrability. T he second Invariant is usually referred as corresponding to hidden symm etries; we
shall show that, via the introduction of generalized m om enta, these Invariants can be related w ith
well known constants of m otion. M oreover, the hallm ark of Liouville’s system s, the separability
of the H am ilton-Jacobi equation, reduces the analytical solution to independent quadratures in
the two degrees of freedom .

In our attem pt to buid supersymm etry In system s of the Liouville type we face three m ain
tasks:

1. Construction of supersym m etric extensions to be called superl. iouville m odels.
2. The search for the second invariant in the supersym m etric fram ew ork.

3. To look at the fate of H am ilton-Jacobi separability when ferm ionic degrees of freedom are
added in a supersym m etric way

T here are precedents of the study of constant ofm otions in supersym m etric classicalm echanics
In the literature. P lyushchay identi ed invariants in supersym m etric classical and pseudo classical
m echanical m odels invol/ing one bosonic degree of freedom in [17]. Heum ann [14]Jand W iofetal
[18]dealt w ith the supersym m etric version of the R ungel.enz vector respectively in the classical
and quantum supersymm etric Coulomb problem s. W hether or not the invariants of a classical
system prom ote Invariants in the supersym m etric extension isa crucialquestion regarding integra—
bility. There are also precedents of connecting classical integrable system s w ith supersym m etry,
see the recent paper [19]where the classical 1im it of SUSY quantum m echanics is used to de ne
two din ensional integrable systam s. C onnections between non-linear supersymm etry and quasi-
exactly solable system s have been pointed out in the interesting papers [20] and [21], where
the dynam ics of a charged spin % In amagnetic eld is described using deas of SUSY quantum
m echanics.

In supersymm etric m odels w ith one bosonic degree of freedom the H am iltonian and the su-
percharges are obvious (non-independent) rst=integrals. The analytic solution of these m odels
can thus be reduced to quadratures via the G rasan an/M anton/H eum ann expansion as in [13].
T here also exist som e com binations between the ferm ionic variables which are conserved, such as
was shown in [17]. The situation ism ore di cult in m odels w ith two bosonic degrees of freedom ,
where the identi cation of invariants is an arduous task even within the purely bosonic fram e-
work. R egarding this latter point, one of m ost celebrated work is that of H letarinta [22]: all the



Integrable system s of type H = 2pf + sp2, + U (x17%;) are analyzed, with U a polynom &l x;
and x, ofdegree 5 or less, and the second Invariant is at m ost of fourth order In p, and p,. The
procedure usad is conceptually sin ple: the existence of a second Invariant I, in nvolution w ith
the Ham iltonian guarantees classical integrability In two-din ensional system s. A polynom ial of
any order in the coordinates, but at m ost of degree 4 in the m om enta w ith arbitrary coe cients,

is proposed as a candidate to becom e the second invariant I. A ccordingly, the Poisson bracket
fH ;Igp is com puted. System s where I can be found such that fH ;Igr = 0 are integrable. This
strategy hasbeen followed in otherworks [23, 24 ]and was extended to supersym m etric system s in
[25]. Here, we shall apply again H ietarinta’sm ethod to two-din ensional supersym m etric classical
m echanics in the search for the second nvariant in superl.iouville m odels. T his w ill be possible
because the H am iltonian form alisn has also been wellde ned In the supersymm etric fram ew ork
[10].

Below we o er the conclusions that we have reached w ith respect to the three tasks:

1. Thareexist N = 2 extended supersym etric versions of L iouvillem odels. U sually, interactions
In supersym m etric theories are determ ned from the superpotential. T he surprise is that
In superliouville m odels one can choose between two di erent superpotentials leading to
di erent supersym m etric dynam ics. T he reason is that the H am ilton-Jacobiequation theory
of the parent Liouville m odel adm its four di erent solutions for the H am ilton characteristic
function ( the superpotential ). Two of the solutions di er from the other two by a global
sign that m akes no di erence at all. The other two induce di erent Bose/Ferm 1 Yukawa
couplings.

2. There exist second invariants in other the superl,iouville m odels. T he Bose contribution to
the Ham iltonian does not depend on the choice of the superpotential but the Ferm i contri-
bution, the Yukawa couplings, is di erent for the non-equivalent superpotentials. Exactly
the sam e situation occurs w ith respect to the second invariants.

3. T he superl. jouville m odels are not H am ilton-Jacobi separable. The Yukawa term s spoil the
Separability of the two degrees of freedom .

O n the physical side, we m ention two applications of supersym m etric classical system s. F irst,
the structure of the farm jonic contribution to the second invariant naturally show show the spin of
the superparticle is determ ined as a quadratic product of G rasan an variables: s'? = it 2. This
explanation for the ferm ionic degrees of freedom com es back to [6] and was given a desp group
theoretical m eaning by A zcarraga and Lukierski in R eference [26]. Second, N = 2 superl.iouville
m odels can be understood as the dim ensional reduction of N = 1 supersymm etric eld theory in
(1+ 1)din ensions. From this point of view the separatrix ( nite action ) supertra fctories are
seen as the BP S superkinks of the eld theory ( supersymm etric BPS domain walls in (3+ 1)-
din ensions) . In References [27, 28, 29] we have approached the problem from this angle of
attack.

T he organization of the paper is as follow s: ITn Section x2 we describe N = 2 supersym m etric
classicalm echanics, both in Euclidean and R dem annian 2D m anifolds; the notations and conven—
tions are Introduced also in this Section. Section x3 is devoted to de ning N = 2 superl jouville
systam s after a rapid summ ary of the properties of the parent Liouville m odels. In Section x4,



the second ( and other ) Invariants of the superl. louville m odels are denti ed, follow ing the above
m entioned H jetarinta strategy. Finally, In Section x5 a procedure is outlined to generalize the
Ham ilton-Jacobim ethod to the supersymm etric fram ework. It is shown how to search for the
supersolutions of the system in a layerby-ayer resolution.

2 N = 2 supersym m etric classicalm echanics

In this Section we Introduce N = 2 supersymm etric classical m echanics, which can also be
described as a dim ensional reduction of N = 1 supersymm etric (1+ 1)-din ensional eld theory.
W e restrict ourselves to m odels w ith tw o bosonic degrees of freedom .

T here is In the whole form alisn an underlying G rassn an algebra By, w ith L odd generators ,
such that o 5 = s aA;B =1;2; ;L ,seeReferences [8]and [12]. The G rassm an algebra is
the direct sum of even and odd sub-algebras: By, = By + B[ .

2.1 N = 2 super-tim e and con guration super-space

T he evolution is characterized by the N = 2 supertin e which is the R'¥ superm anifod in the
term inology ofR eference [30]. A given \super-instant" (t; '; #) isdetem ined by theeven,t2 B¢,

and odd, 2 BY; = 1;2,param eters, satisfying the com m utation/anticom m utation relations:
 1=0 ; f ; g=0

The N = 2 con guration superspace is the C = R?* supermaniold. A superpoint in C

is determ ined by the coordinates (x7; 7);j = 1;2; = 1;2, satisfying the comm utation/anti-

com m utation rules:
k5 f1=0 5 £7;%g=0 ; £7; g=0

Thus, (x';x%; 1; 3; 2; 2)2BS BS B° B° B° B? and a \superpath"

X t; %) R 1R

Xt H=xwm+ T +dFIw

The FI(t) com ponents of the superpath are needed to m atch the num ber of \bosonic" (even),
x3;F 7, and \farm ionic" (odd), 7, degrees of freedom .

Besides the tin etranshtion invariance generated by the Ham iltonian operator H = i@, we
seck a super-dynam ics that is also invariant under the two left supertim etranskhtions:

supersymmetry 1: ! b oomoo2q 2 t! £t itm
supersymmetry 2: 1! 1 S L G B



where " is an in nitesin al odd param eter. The generators of these transform ations are the
super-charges,

oy=1i'e @& ; Q,=1i%@ @ ; e =g
that close the N = 2 superalgebra
fQ ;Q g=2 H ; O ;H]=0 ; H;H]=0 (1)

w ith the H am iltonian. T he action of the super<charges on a superfpath expressed on the com po-—
nent paths is:

Supersymm etry 1 Supersymm etry 2
8 J— nJ 8 J— w3
3 X 1 3 X 2
J_ ingJ J n J
) X = 1"x- X ) , ;= 1"F
XI=rux ) h Ty X T =) 3_ e
3 1= 1F 2 2= 1%
lF]_ n J ZFj_ vv_%

The generatorsD = i @+ @ of right supertin etranshtions are usually called covariant
derivatives because fQ° ;D g= 0 and:

D X)="0D X'=D X/

From the free superdagrangian Lg,

L ) 1 ) X
Lox’; 7;F7] = Zl" D XD X
1 i .
= ng 51(&J§+ iF)
2,3 73 I g 21 1 I3 153 g J
+ = (X7 )+ 5&&+§ 24+ —FF (2)

and the \superpotential", a function W [X I(t; '; ?)]of the superpath,

. . QW QW QW
e 1. 2y7= j j 12 .m3 J k .
WXt "7 )]=W x (9] o + F G @axs L2 ; (3)
the \super-action" is built:
2 1
S= dud 'd? Z"DXjD X7+ W X ] ; (4)
which is invariant under the two left supertimn etranskhtions. Here, " is the com pletely anti-
symmetric symbol: ™2 = "l = 1;" = 0. To check that the transform ations generated by ¢
are \supersymm etries" of S isnot di cult:
Lo="0 Lo="(1 @ @)L, ; wo="gw ="d 6 @)W



Both i" @Lgand i" @W areexact tin ederivatives and as such do not contribute to variations
ofS.@ Loand @ W areatmostlinearin . TheBerezin ntegration m easure on odd G rassn an
Varjab]es, 7, 7,

d =0 ; d = ;

R R
tellsusthat d 'd @ Lo= d'd?@wW = 0.

2.2 Lagrangian and H am iltonian form alism in Euclidean R?2*

Berezin integration in S, (4), plus use of the constraint equations FJ = % to elim inate the
auxiliary bosonic variables lead us to the supersym m etric Lagrangian:
i 1QW QW R

1 . . oL )
L= —xIx1+-—- 712 . , i— J
25T 2% 2exd exd exiexx !

5 (5)

T he Lagrangian isde ned on even elam ents of C. Besides the natural Lagrangian on the bosonic
degrees of freedom w ith a positive sam de nite potential term , the G rassm annian kinetic energy
and a Yukawa coupling between bosonic and ferm ionic degrees of freedom enter to guarantee
supersym m etry. T he necessary and su cient condition for extending classicalm echanical system s
to the supersym m etric fram ew ork is therefore:

U ) 1Q@W Qw ©)

X1 ;X i — .
LT 2 exd @xd
T he potentialenergy U (x7) isequalto the square of the nom of the gradient of the superpotential.
T he Eulerd,agrange equations are:

. QU @w

+ b @’w ] @w ] . (7)
T e Texiexex :

i
@xi@xy * K exi@Ext !

1 _ i_
12=0 T=

Looking at the rst formula in (7), we notice that even though the bosonic variables were real
ordinary m agnitudes at the initial tin e, the evolution of the systeam would convert them into
G rasan annian even variables.

N oether’s theorem dictates that the Ham iltonian functions associated to the vector eUds
H ;01,0 are respectively:

1. lew ew | @w g,
H = —x%7+ -c————+ i— 12
2 2 @x3 @x? @x3I@x*
c s QW cos QW
_ i3 J S I ]
Ql X 1 @Xj 2 QZ X 2+ @Xj 1

H ,Q, and Q, are thus rst-ntegrals for the system of ODE (7).
W e shall now brie y discuss the Ham iltonian form alisn [9], In order to describe how H , Q4
and Q, induce the ows associated to the tin e- and super-tin estranslations in the co-tangent



bundle to the con guration super-space. The usualde nition of generalized m om entum p5 = %

is extended to the G rasgn annian variables as follow s: N

= L& = & J
Q2 2
There isa 12-din ensionalphase space T C w ith Iocalcoordinates (x7; 7;py; ). Note, however,

the dependence of the farm ionic generalized m om enta on the G rassn an coordinates, com ing from
the fact that the G rasan an kinetic energy isof rstorder in tim e derivatives. T he associated four
second-class constraints are enforced through G rasan ann Lagrange m ultipliers ; J[101:

1 1QW QW QW

Hr = —psps + ——— -+ 1—
T PP Sk ek | Texiexs ! 2

1 . )
(1 3 2) 3
The m otion equations are of the canonical form :

@H ¢ . @Hqg

@p; @xJ @ Q

o W e

N ote should be taken of the di erence in sign between the bosonic and ferm ionic canonical equa—
tions. U sing the constraint equations @@H—jT = 0,wewrite

1@W QW Q7w
20x) @x)  @xIEx<
to rule the right Ham iltonian ow in the phase space.

T he Poisson brackets for two generic functions F and G are also generalized to the G rasam an
variables:

1 J
Hr = Epjpj+ 1

=,

! ! ! !

@F @G @F @G 1 1 i
fF;Ggp = —— ——+ g & @ Zp @ €, p @ €. 1, € @,
@p; @’ @ @p;y @@’ 2 Q@ 50" 2 @@ ; 4 @ 5@ 5
and the canonical equations are of the form
df—fH ;£
e T L9

forany £ = x7, 7 pj, ;. In general, the tin e dependence of any observabl F is determ ined by
the Poisson structure: <& = fH 1 ;Fgs . Therefore, the constants of m otion, ie. the hvariants,
are the physical obsaervables com plying w ith the relationshio fH : ;F gp = O.
Tn practical term s, it is better to work on the reduced (eight din ensional) phase space. T he
reduced Ham ittonian is
H=}p'p-+}@i@i+' )k sOW oy = ew
27777 2 exd exd S T exdexk

w hereas the reduced Poisson brackets

.
’

@F @G @F @G @ @
F——-=G

fF ;G Op = ———= + - -
@p; @ @’ @py e’e’



are obtained from the follow ing Poisson structure:

fpsix‘ge = fxIix"gp = fpjip;ege = 0 £7; Fgp = 1"

A Iso, the canonical equations and the invariant obsaervablesm ust be referred to the reduced H am il-
tonian H . The m ost ram arkable feature of the super<charges

R M BT RIT g
is seen through the Poisson structure:
01,019 = 2H 0270200 = 2H
. QW
fO Hop =0 fO01;029 = Ioyj—— (8)
@x?

The Ham iltonian functionsQ and H close a centralextension of theN = 2 SUSY algebra (1) by
a topologicalterm : Z = jpj% is a totalderivative w ith physical im plications only if non—trivial
boundary conditions or a non-trivial topology of the con guration superspace are considered. T he

ow generated by Q 1n the cotangent bundle to the con guration super-space,

Supersymm etry 1 Supersym m etry 2
133 = "0y xige = "] 2x) = "£Q,;xIge = " ] ;
1 1= "fQ1ixIge = i"p; 2 1= "fQ.ixIge = i"G5

- g, = qmen
= "f0ixlg = 1"G3 2

N
N
Il

1 "£Q,;x’ge = i"p;

represents the tw o odd super-tim e translations. T hus, there isa bosonic invariant, the H am iltonian
H itself, due to invariance of the theory w ith respect to even super-tin e transhtions. T here are
also two farm jonic constants ofm otion, the super<charges Q ; and Q , —their Poisson bracket w ith
H is zero—show Ing the invariance of the systam w ith respect odd super-tin e transhations.

Asih every N = 2 supersymm etric theory, there is an R -sym m etry w ith respect to rotations
of the com ponents of the ferm ionic variables. Tn our system , 3 can be understood as G rass-
man M aprana spinors and one checks that the reduced Ham iltonian is wvariant under the R
transform ation :

~J 3 ~J

— )3 ol . _ C 3
7= cos! {+ sih! ; ; 5= sih! {+ cos! ;

The In nitesin al generator of this ferm ionic symm etry is the, quadratic in the odd coordinates
but bosonic, invariant S, = i ] ], see Reference [121]:

£S;; fgp = § 7 £S,; ggp = i
Q .
It was pointed out by P Iyushchay, [17], that there is another bosonic Invariant, S; = qu: 112
when the number of degrees of freedom SN . IfN = 2 ,S;= 1 3 ? 3= 157 and also comes

from theR symm etry. Them ain goalofthiswork is to study what happensw ith super-sym m etric
extensions in integrable bosonic dynam ical system s, where m ore invariants than the H am iltonian
exist.



2.3 Supersym m etric classicalm echanics on R iem annian m anifolds

If the bosonic piece of the con guration super-space isa generalR jem annianm anifold M ? equipped
w ith a m etric tensor g4, the G rassm an variables #7 under a Jocal change of coordinates x7 | %
changes as: #7 = S%i#k .
If the \body" of the con guration super-space is a two din ensinal R iem annian m anifold the
N = 2 supersymm etric action reads:
Z

1 . .
S= dtd 'd? Zgjk(xl) D XD X¥+ W X7] : 9)
T he expansion of the superpath in the supertim e
X3 Y =%+ 4+ FIm Y

the m etric tensor,

(Gl @gk @’ g
1y _ 1 kg1 12 ko1 Jk yrys
g (X 1) = gy (x7) + @xl# l@xlF @xr@xs#l#z
and the superpotential,
WG ;)] = W K(D)] W PP AW W ] )
ew @*W L ew
= ’ W o5k =

= N - - - . kA1
T exd @xI@xk T @xt

are richer than for atm anifolds. %k are the Christo el symbols.
Berezin integration and use of the constraint equations for the auxiliary elds leads to the
super-sym m etric action :
Z
1 ,CGW QW

1 . i . 1 .
S= dt Egjkg>i‘+ Egjk#th#k+ ZR jkh#i#é#ﬁ#g -9

2 wowe Woasht 00

w here
Dotd = 43+ I x7#°

is the covariant derivative for the G rassn an variables, R 41, is the curvature tensor of the m etric,
and

. 1 ., @W @w
U Xj - _ jk . : 11
) 27 @x3 @xk (1)
N other’s theoram applied to the nvariance of the action w ith respect to the transform ation,
. . . . . QW oo
n . _ im . _ o k : k .
1Xj = #i 7 ]_#i = 1 PLJ H 1#; = 1 J @ 1 il#i#z 7

gives the conserved super<harge:

. W .
Q1= gjk?ij#lf @#3



Invariance w ith respect to

. k . k .
oxI= ") ;] =1" o —— 1] ## ;o oy = 1"

@xk

=

Jeads to the second conserved super-charge:
) @w )
Q2= gux#s + @#i

T he Ham iltonian is: . . S
) . QW @AW ;
H = Egjk}ij}ik + Egjk@@ + W s (12)

3 Integrability versus supersym m etry: from Liouville to
SuperLiouville M odels

An N din ensional H am iltonian system is said to be com pletely integrable in the sense of A mold—
Liouville if there exist N integrals ofm otion, I ; y sWhich are in Involution; ie.,

fI,;kge = O ik = 1;2; N ;

seeg. [31]. In practicaltemm s, explicit integration of them otion equations ism ore accessible if the
H am ilton-Jacobiequation is separable in som e appropriate systam of coordinates. In such a case,
a com plete solution of the Ham ilton-Jacobi equation is available that, in tum, provides explicit
form ulas for the tra fctordes via the Ham iton-Jacobim ethod. Choosing I; as the Ham iltonian,
the tin e-independent H am ilton-Jacobiequation for zero energy I (p; ;x))= 3= 0andV = U is
nomore than the PDE (11). T hus, the body of the superpotential is the H am ilton’s characteristic
function for a natural dynam ical system with potentialV = U: S(x’;t) = W (x’) 4Ht. A
supersym m etric m echanical system is built with a solution of the associated Ham ilton-Jacobi
equation from the start.

For a special type of com pletely integrable systam , term ed as H am ilton-Jacobiseparable, the
H am ilton-Jacobiequation (11) becom esequivalent to a system of N non-coupled O D E ’s. Liouville
system s [15]are N = 2 Ham ilton-Jacobiseparable system s of the form : L = % (g1 (x;x?)xtx! +
O (x};x2)x%%%)  V (x!;%?). The com plete solution of (11) consists of 2" independent solutions
com Ing from the com binations of the solutions of N one-din ensional problem s. Tn this Section we
shall describe the di erent 2 supersym m etric extensions of classical H am ilton-Jacobi separable
m odels obtained from the distinct 2V Ham ilton’s characteristic functions, in the special case of
Liouville m odels [15].

3.1 Liouville m odels
Liouville m odels are two-dim ensional com pletely integrable natural system s w ith dynam ics gov—
emed by Lagrangians of the form :

1 2,2

L= 3m (!t + g (xxP)xR?) V (xE %)

10



T he key property enpyed by this class of systam s is that the H am ilton-Jacobi equation for them

is separable using two-dim ensional elliptic, polar, paralbolic or C artesian system s of coordinates.
T here are four types classi ed by the kind of system of coordinates suitable for solving the HJ
equation and the two classical Invariants In involution are well known for each Liouville system .
W e brie y describe the four possibilities:

Liouville M odels of Type I:Letusconsiderthemap :B ! D?,whereD? isan open

sub-set of R? w ith coordinates (u;v),and kt ! :D? ! R? be the inversem ap:
1 1p
xx )= Tuv)= Cuv; - @ A)E vP)
c c
(X ;x%)= (u;v)
1 P o
uo= (x'+ )+ x*x?+ (x!  c)?+ x*x?
1 P p
v = - (x!' + c)? + x%x? (x' ¢+ x°x?

2

T he u;v variables are the elliptic coordinates of the bosonic system : u 2 [c;1 ), v 2 [ c;c]
and D? is the closure of the in nite strip: D? = [c;1 ) [ c¢;cl. Let us assum e the notation

for the induced m ap in the functionson R?,ie. U (x';x?)= U ( (x;x%)) U @u;v), o
wewillwrite U forU (x';x?)and U forU (u;v) and a sin ilar convention w ill be used for
the functions in the phase and co-phase spaces.

In the new variables the Lagrangian of a Liouville m odel of Type I is constrained to be of
the follow ing form :

u2

w?
u¢ &
where f (u) and g(v) are arbitrary functions. O bserve that, apart from a com m on factor, the
contribution to the Lagrangian of the u and v variables splits com pletely. T he Ham ilton-—

<L
Q
Q
<L

1
L = —
2

N

uu+ g(v) (13)

vV,
&z v u?  v? u

Jacobi equation for zero energy and V. = U, formula (11), written in elliptic coordinates
reads:
. u? sz( )+c12 V2 ) 1u? & dF 2+lc2 v de ° (14)
u? vl u? vzg 2u? v? du 2u? v¢ dv
assum Ing separability: W = F (u)+ G (v)) ¢ _ g,

Quev
A com plete solution of (14) consists of the four com binations of the two Independent one-

din ensional problem s:
Z Z

p p
du 2f(u) ; G (v)= dv  2g(v)
Z Z
(ab) p b b
W © = ( 17 du 2f@)+ ( 1) dv  2g9(v) ;ja;b=0;1 : (15)

1
=
[

11



The in age of (14)—«15) in the C artesian plane,

1 QW (ab) QW (ab)
2 @x)  @x]

U (Xl;X2)= ;8a;b= 0;1 ;

show s that there are four di erent superpotentials for the sam e T ype I natural Lagrangian.

(ab)
In Cartesian coordinates the separability condition @@:—@Vi 7 2 0 reads:
@2W (ab) @2W (ab) @2W (ab) @W (ab) @W (ab)
xx? + (x2x2 xtxt+ ) + x° x* =0 (1o0)
@x'@Ex?! @x?@x? @x!@x? @x! @x?2
T he H am iltonian
B _ }p'p* }@W @b) gy @o .
! 27777 2 exd exd ’

Independent of a;b, is an obvious Integral of m otion. In elljptic coordinates it reads:

®) _ 1 2

L= o v )L+ 2£ N+ (€ V)R + 29(v) ;

where

uw v uw vl
u ; =

uz 2 ! B & v?

T he inverse In age of the second invariant is:

puz

1
(B)

PR —
2 2

W )¢ V) dc ° drF

2?2 v?) dv du

T he direct in age provides the Intricate second nvariant in nvolution - fIl(B : ;IZ(B ‘g% = 0 -
w ith the Ham iltonian:

"
2
1 QW (@® Qw @b QW @d @y @b
L’ = 2 X’p x'p . Fppt X X &

@x! @x? @x?2 @x?

(17)
T he ram arkable fact is that IZ(B ' s independent of a;b, ie. the four superpotentials also
leads to dentical second Invariants !, not only to the sam e H am iltonian.

In the literature about Integrable dynam ical system s it isusually stated that the existence of
the second invariant obeys a hidden symm etry. T he de nition of the generalized m om enta,

(aD) QW (ab)

@xJ

12



sheds Iight on the nature of such (non-linear) symm etries. In tem s of the generalized
m om enta we obtain:

. (@b . (@b ) 1 5 @o 1 @b (ab)
F+ 5 ;I x x & ;8a;b

@ _ 17,
2 1 2 4

a5}
and welkknown Invariants w ith p; replaced by are recognized. 5 = @(L@;?T ) can be
understood as the canonicalm om enta com ing from the addition of a com plex topological
plece

(aib)
j

. - QW
LT = l}ij—
@x?
to the Lagrangian L, in agreem ent w ith the central extension shown in the SUSY Poisson
algebra (8). Note that II(B) can thus be written a Ja Bogom olny:

@w

®B)
1 5 -
@x3

1
L =553

It is also possible, however, to Interpret that the generalized m om enta by them selves close
another extension, now of the ordinary Poisson algebra:
2
W

21- ¢ .

@xI@x*
Both the rst and the second invariants obey symm etries related to (non-linear) transfor-
m ations generated In the fram ework of the generalized Poisson structure (18).

fxI;x%gp = 0 N T P e (18)

Liouville M odels of Type II:

T he type TI Liouvillem odels are tw o-din ensionaldynam ical system s forw hich the H am ilton-
Jacobiequation is ssparable using polar coordinates. Thedirect — :R> ! D2’ R? f0g
—and nverse - ! :R? f0g ! R? —m apsdetem ine the change from polar to C artesian
coordinates and viceversa:

N

pi

(7)) = (o ;x%) = xx! + x?x?;arctan X—l

X
x';x*) =  '(; )= ( cos ; sh ) ;o 2100;1); 2100;2)

T he Lagrangian of the Liouville m odels of T ype IT reads:
Lo 2 L. £() ! () (19)
= — + — - :
277 2 T 29

Again, besides the metric factor g1 = 1, g, = 2, the contributions of and  appear
com pletely separated in the Lagrangian. H ere, the zero energy tin e<independent H am ilton-—
Jacobi equation (assum ing ssparability) (11) is:

2 2

1 dG

1
22 d

N
Q‘%

13



T he com plete solution

P
F() = du 2f( ) ; G()= dv 2g9()
Z Z
(ab) a b P
W = (1) d 2f()+ (1P d  2g9() a;b= 0;1 ;
provides us w ith four di erent superpotentials to build supersym m etric extensions:

1@ @ @y @»

1.,2) _ Qa e ().
U (x ;x7) > ex a0 ;8a;b= 0;1
(ab)
In Cartesian coordinates the separability condition @;—@W - 0 reads
@2W (ab) @2W (ab) @ZW (ab) QW (ab) QW (ab)
1.2 1,1 2.2 1 2

XX + (x XX + x X =0 (20

@xt@xt @x2@x? ( ) @xt@x? @x? @x?t (<0)

The two Invariants In lnvolution, w ritten in polar coordinates, are:

1 1 1 1 1
(B) (B)
IlB = EPZ + ppZ + f( )+ _Zg( ) H IZB = ppz + _Zg( )

In Cartesian coordinates they are easily shown to be independent of a and b:

1) = i 4 lew ©7ew @7 _ 1l en. @o.
1 2pjpj 2 @x @x 2] 5 D5 d
2
1 2 1 Qw @) QW @) 1 ' '
®) 2.1 1,2 2 1 5> @D) L @n)
I = - xx xx +- x— x - = %
2 2 - - 2 @Xl @X2 2}< 1 2 f

Liouville M odels of Type IIT :
Tn this type ofm odel, the H am itton-Jacobiequation is ssparable using parabolic coordinates.

Thedirect — :R? ! H? —and nverse - ! :H? ! R? —maps between the halfplne
and the plane dictate the change from parabolic to C artesian coordinates and viceversa:
R S — d 5
u;v)= (x;x°)= xixl + x2x2 + x1; xixl + x2x? x?
1.,2 1 1 - 2
(x";x%) = (u;v)= E(u vT)iuv
H?=( 1;1) [0;1) ; u2 (1;1);v21[0;1)

A Liouville m odel of T ype ITI obeys a Lagrangian of the fom :

1 1
2 2 u+ vv)

o @)+ g) (21)

14



T he zero-energy static H am itton-Jacobi equation

1 1 aFr

)+ g(v))=

dG

- 4+
u? + v? du dv

is solved by the four \separate" superpotentials:
Z Z

(ab) _ a p b b
W = (1) du 2f@)+ ( 1) dv  2g(v)
(@)
T he separability condition gigu *” = 0 in Cartesian coordinates takes the form :
2y @) 2y @b 2(g (ai) W @b
w2 ¢ P & =0 (22)
@x2@x? @x'@x? @x'@x? @x?

In parabolic coordinates the two Invariants In lnvolition can be chosen as:

I:L(B) _ 1 o+ Pt o+ ! (f)+ g(v))
2+ v?) T T uP v
1 u? v
B) 2 % 2 g
I - = —p- + u‘gv vt
| e g% P g) ()

They can easily be translated to Cartesian coordinates, giving the sam e result for all the
values of a and b:

B _ }p-p~+ lew @P gy @P _ }j w0 aps
' 27597 2 exd ex 271 j
(@) @p) (a)
B) 1 2 1 @W 2 @W @W
L = X X + X x
2 EZ b1 P @X2 . @Xl @X2
i
2 (ab) 1 (@b, (ab)
= Re (x° ; x5,

Liouville M odels of Type IV :

In the fourth type of Liouville m odels the dynam ics of the two degrees of freedom are
com pletely independent:

‘¥ f(x) gx?) (23)

N

1
L=—-xx +
2

In this case there is no need to change the system of coordinates to sole the HJ equation
and it is clear that the four superpotentials are:

Z Z
p_
W eP (k)= (1P dxt fH+ (1) dx® gx?)

15



T he sgparability condition is

Q2w @®
aoiaaz = 0 24
@x1@x? (24)
and the two invariants can be chosen as:
18 = Lo 1ew P ew &7 _ 1l em @o
' oPPIT 2 Te exo LR R
1 1QW (ab) QW (@) 1 _

(B) . (@b) . (@b

I = = + = = — :

2 2P1p1 > e axl 2j s I

3.2 SuperLiouville m odels

The strategy for building N = 2 supersymm etric Lagrangian system s w ith Liouville m odels as
the bosonic sector is clear: sim ply consider the hybrid non-linear Sigm a/W essZum ino m odels of
subsection x2.3 whose target space is the R iem annian m aniold M 2 = D? equipped w ith them etric
Induced by themaps , and for Types I, 11, and III, and the Euclidean m etric for Type IV .

SuperLiouville M odels of Type I: The m etric and the Christo el sym bols induced by

themap +D?= (c;1 ) ( cjc)are:
1
0 W ;
Guu = 2 Guv =
) — ur & C
giv) = & » A
gvu_ gvv_ C2 V2
1
O uu u2 Cz uv O
g )= 6 urv 2 2 A
L u(c2 v2) e v(u2 CZ) o u L v
2 w22 @) T w2 v (@ wR) W v gz 2
. v v?) . u@® &) .. u
w2 vy @) T v (@ Ry T T w2 2

Besides the bosonic (even G rasam an) variables u , v , ruled by Lagrangians of Type T as
discussed in the previous sub-Section, there are also ferm jonic (odd G rasan an) M a prana
soinors #% , #V in the systam . A supersymm etric two dim ensional m echanical system is a

super-Liouvillem odelof Type I if the Lagrangian isoftheform L = Lg+ Ly+ Lgr
with:
I SRR SR Loy S| sy O 2
= —Quu (WV)uu+ —gy (WvIvv.  —g' (u;v) —— -9 (u;v) — ;
BT 50 27 29 du 27 dv

i u u l v v
Ly = 2 G (u;v)#°D #" + ng(u;V)# D # ;
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u

and,
d*G dr L, dG oL
—— i+
\Y4

L1 _ d°F , dF , dG pog g
BE du? U4y Wy L2 dv? YV du Vg
u dF v dG u v v u
L (#1#2+ #1#2)

+i UV_ uv
du dv
T he ferm ionic kinetic energy isencoded in Ly and thereareYukawa term sin = Lgy ruling

the BoseFem i Interactions.
SuperLiouville M odels of Type II: Everything is analogous trading elliptic for polar

coordinates. T hem etric and the Christo el sym bols are:

g =1 g =0 .o1,,_ 9 1 g
g( ) g =0 g i 9 () g -0 g =

and

T herefore, the Lagrangian of a superd,iouville m odel of T ype IT including bosonic
ferm ionic #  , # variables is the sum of the three pieces:
2
drF 1 dG
d d d

2

2

L i# D : # D#
= — + J—

F 5 t 29 t
d°F . dfG dr . de
LBF = lﬁ#l#Z 1 F — #1#2 + 1 d—(#l#Z + #1#2)
SuperLiouville M odels of T ype III: The supersymm etric extensions of Liouville T ype

ITIm odels is easier in parabollic coordinates. The m etric and the Christo el sym bols are:

2 1
_ u + v@ 0 . 1, v 0
g(u;v)= 0 w2+ v ’ g (u;v)= 0 21 ,
uc+ v

u _ \4 _ \4 _ u u . u _ u _ v \4 _ v

uu ~ uv ~ vu VV_U.2+V2, uv ~ vu ~ wv uu_u2+V2
Thedynam ics of the SU SY pairsofvariablesu ,#" and v ,#" isgoverned in a superLiouville
modelof Type IIT by the Lagrangian L = Lz + Ly + Lgr,where

L1 1 1, dF % 1 . dg °
= —- uu + —gyw\Vv_ - v + — —_— M
B guu_ Zg 2g du Zg dV ’

.
14

Lp = ! #°D #"” + ! #7D #7
F = Zguu t 2gvv t
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. . dF , dF , dG pog g d’G L dF , dG R
BE du? "M du Wy 172 dv? WV du Vg 172
., dG dr v v
tiowg ﬁva (#1H5 + #74#5)

SuperLiouville M odels of T ype IV :Finally, the de nition of Superl,iouville M odel of
Type IV is straightforward. T he Lagrangian is

. ) )
L=}xjj+—lj_j }@WI@W' i@W 11 i@W 2 2
2 2 2 @x3 @xJ xl@Ex! * 2 @x2@x2 * 2

and the system can be understood asan (N = 2) (N = 2) SUSY modelin (0+ 1)dinen—

sions.

There is an obvious st ntegral that can be written in a uni ed way for all four Types of
superl, iouville m odels using C artesian coordinates:

n,=1"

F) ®) 1 1QwW (ab) QW (a) F) _@2W (ab) | .
- 2

. 11 , elw P
th P TSPt ST T P T g

Il(B " is form ally dentical to the Ham iltonian of the parent Liouville m odel but we stress that p;
and %3 are now even G rassn an variables. It is, in any case, independent of a and b. Il(F " com es
from the Yukawa couplings between bosonic and ferm ionic variables. Note that Il(F ) depends on
choosing either b= 0 or b= 1; thus, each Liouville m odel adm its two di erent supersym m etric
extensions achieved from di erent solutions of the tim e-independent H am itton-Jacobiequation for
the H am ilton characteristic function (the superpotential). The choice ofa = 1 instead ofa = 0
changes Il(F "o Il(F );thjs Ip of sign can be absorbed by exchanging positive and negative energy
for the ferm ionic tra fctordes.

A  nalrem ark is that the separability of the purely bosonic Liouville m echanical system s is
Jost In the supersym m etric fram ew ork because of the Yukawa couplings, except for Superl, iouville
m odels of Type IV .

4 On the Bosonic Invariants

Liouville m odels have a second invariant in involution w ith the energy the rst invardiant-that
guarantees com plete integrability in the sense of the Liouville theorem . W e shallnow show that
the Superl.iouville m odels also have a second invariant of bosonic nature. O ur strategy in the
search for such an invariant, fI;H gp = 0, follow s the general pattem found in the literature: see
[22]. The ansatz for invariants, at m ost quadratic In the m om enta, is:
I = EHljpj_pj‘FK(Xl;Xz)‘F Fljig-I-Gljii-l-Jlj;;'l'
LR ) S+ M P st NEDPi P 5+ Sigat s 1o

Here, we assum e that:
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i) K isa function.

ii) HY isa symm etric tensor depending on x*. T here are three independent finctions to deter-
m ine.

iii) Li and M § also depends only on x* and are antisymm etric in the indices j and k: L, =
Ly/M 5 = M. They incluide four independent functions.
iv) Gj_j and Jij areﬁmctjons,antisymmett:icjnthe jndjOeS,Oin:Gj_jz ij_ and Jij = in.A
PrioriF i (x*) however, is neither sym m etric nor antisym m etric; it contains ur independent
functions.

v) Fially, Sijkl(xi) is antisym m etric in the exchange of the indices i;j and k;1land symm etric
n the exchange of the pairs ij;k1. There is only one independent function to determ ine in
this tensor.

T he com m utator w ith the H am iltonian is:

’ 2 @xt T @xI@x* @x*  @x!
. e%w QF QW Q%W
£oEY e Legege Mbgeas PO
@x*@x1Ex? @xn @x™ @x, @xm @xk
Q%W R°W QW . QT Q%W
+ Fi+ MM k 3 + J N k . 13
@xlxk 3 kJ Qx"QAxl @xl 2 2 @xk ™3 axm @xl 2 2
. (cR P 1l ew ew i, 8Gn; L ew 0"
exiexk "* Maxlexk @xk t L @xt nkaxi@xk oLl
Y5 Q%W Q%W 1.5 @w ew | K,
exiexk “axnex! | 2 "kexiex!ext 2
QL% N S, eNg .
@le PPn 1 1 @xi PiPs 2 5 @le PiPn 1 ot
n @3W Jk 1m @Snjkl n k Jj1

The relationship fI;H gp = 0 guarantees that I will be an invariant of the supersym m etric m e-
chanical systam . T herefore, conditions m aking the Poisson bracket vanish (shown in the table 1)
m ust be Im posad.

The sum in expression a) in the box 1 ranges over all the permm utations of the indices i;3 and
k. Wedealwith a overdetermm ined system of partial di erential equations: there are 31 PDE
relating 15 unknown functions. In the table 1, we have organized the conditions in a step-lby-step
distribution, ie. , generically solving conditions in a given box is required to solve the conditions
In the follow ing box. In boxes 1 and 2, the equations handled by H jetarinta in the bosonic sector
are reproduced . N ote too the possibility of the existence of several solutions, giving rise to di erent
supersym m etric invariants.
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X en?
BOX a) A =0
ligk ]
Box V1Y @°w @wWw @K
@xI@x* @xk @xt
QL . QL!
BOX 3|a) F—F 4 F_F_
@xli @xil
by # M @
@xt @x?t
. W F ‘W W
BOX 4| a)H I I 2jL§m@7+2jMf-@.7=O
@xkz(iixl@xj @xn ) @x™ @xt J@xI@xk
o @'w L @W o @w
b) 4 ——F MK — -
@xiExk Jexk@xt @xt
3 W ‘W QW
o) 8 S0 g, i@—@— =0
@xI@xk J@xkE@x! @xk
i 1
fox @GN  @Nj _
@xt @xi3
b) ij karm < —
* exiexliEx®
QG i Q°w
BOX 3 = i -
2) @xt *exiexk
2
@xk T JExm @xt
' G @*W @*W 1o Q%W @wW
Cc H o T — —N - —_— =
Texi@xk “exipxl 2 Fexiex! @x!

BOX

i3 k1881 _
@xr

a)

Table 1: Conditions on I to obtain a supersymm etric invariant.
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4.1 Second invariant In SuperLiouville m odels

In order to solve the above conditions, we proceed In a recurrent way :

i) Theequations N BOXES land 2aresu cientto ndH “andK . W e recover the inform ation
about the second invariant of the purely bosonic sector.

i1) The equations in BOX 3 are solved if the independent com ponents of L}, and M j are of
the fom ,
Li,=c 97+, Mi =D IxI+B;

whereA;,B;,C y D are constants.

iii) The equations in BOX 4, together w ith the previous inform ation, lead to the com putation
of F';5. The existence of a solution in egquation 4a) requires com pliance w ith the dentity

2 2 .
€ra - ©Fa which becom es

@xt@x? @x2@x!t ’

ZW 2W i . 3W
e, e n @W da EW (25)

mn _ + M7
@xm Fexiex! taxkexd 2 @xJExk@x?!

M oreover, if we restrict Fi; to be symm etric under the exchange of indices and dentify
L, = M j ,equation 4b) becom esequalto 4c). K esping in m ind the form ulae (16), (20), (22)
and (24), this Jatter condition and (25) becom e dentities, choosing in each type of Liouville
m odels the appropriate values of the integration constantsA ;,B;,C and D ,obtained in the

previous point. Thus, the com patibility of the equations is satis ed and we obtain nally
Fy; from formula a).

iv) The equations of BOXES 5, 6 and 7 are satis ed if we consider:
Gij= Ji3= Nyj = Sijaa= 0

T he second invariant in superl,iouville m odels is of the form

B F
L=1""+17

where IZ(B ) agrees w ith the purely bosonic second Invariant but bearing in m ind that the variables

have an even G rassn annian character and IZ(F " includes tem salso nvolving the ferm ionic variables

t.We nd:

4.1.1 SuperLiouville M odels of Type I:

"

#
2
1 QW @ QW @ QW @D @y @b

®B) 2 1 2 2 1
I = - X X & + X— X — &

2 5 il P2 P22 ax! @x2 @x2 @x2

2 (ab) (ab) 2 (ab)

(F) 2 1 12 - 18°W @w LW 2 2
I = ix X ) + i 2x X +

? BroE b @x2@x? ax! exlEx? ! 2
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2y (@ab) (aib) 2t (@b)

12 21
T @x?@x? @x! *x @x!@x? (12+ 1207 (26)
L@y @ L@ @» , L@y e .
" * @x? * @x!@x? xx @xt@Ex?! L2 @7
4.1.2 SuperLiouville M odels of T ype II:
2
1 2 1 Qw @ Qw @®
®) 2 1 2 1
I = - X X + - X X
2 p B P2 2 @x! @x?
(@b) 2r7 (ab) (@b
E) .2 1 12 .2 _2@W 1 @°W Qw 11
L - ortER xR X @xtEx?! % @x'@x? @x? 12
2 (ab) (ab) 2 (ab)
W W W
L2 » @ +@ Xl@ (124 21y,
@xt@Ex?! @x! @x2@x? L2 L2
2 217 (ab)
N N l@ W (ab) QW (ab) XZ@ W ab 5 5 (28)
@x?@x? @x! @x!@x? L2
4.1.3 SuperLiouville M odels of Type III:
(ab) ab) (ab)
®) 1 2 L GW Scul ew
I = X X + X — X
g b2 B P2 @x2 @x! @x?
2r7 (@) 217 (aib)
1E) 1o Lo RfW R l-xz@wa'b 24 21y,
z B 2 @xl@Ex2 ' ? @x2@x? 2 L2
217 (ab) (@b) 217 (ab)
+1i 2x1@w o XZ@W RN (29)
@x2@x? @x! @x!@x? L2

W e obsarve a comm on feature in the second invariant of superl iouville m odels of Type I, 1T,
and III: I'? = x'p, x%p; can be replaced by 32 = x'p, x%p+ i ! ? —ivariant only if there is
rotationalsym m etry —and, thus, s'? = i ! ? can be interpreted as the spin of the supersym m etric
particle. By adding S5 to the second Invariant in m odels of T ype Tand ITwe obtain a new invariant
n the form of:

®B)

0_ F)
IZ_IZ

+ I, '+ ng
There isa tem ,
1 1
27 T2
in IJ w ith an obvious physicalm eaning. Th m odels of T ype III, I, contains the tem §p, w ithout
the need to add anything.

1 2 102 2 .
X P2 X'ppt+ 1 ’
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414 SuperLiouville M odels of Type 1V :

1 1Q@W @® ey @ @2y (@)
®B) ) : 11
L == + = I, "= i—v— 30
2 ToPPT e e ’ exiex 1’ =)
Like Il(F ', IZ(F " depends on b: the second invariant in superL iouville m odels di ers for di erent

supersym m etric extensions of the parent Liouville m odel.

4.2 O ther invariants

From the pattem shown in the table we also conclude that the generator of R symm etry S, and
their highest non—zero power — 522 In two dim ensions —are invariants.

The condition in BOX 7 is not coupled to the rest of equations in table 1. It sets the only
independent com ponent of S;41 to be constant, S1212, = ¢. Thus, asm entioned at the end of
sub-Section x2.2 ,we check that

is a constant of m otion, an invariant forallthe N = 2 supersym m etric m echanical system s
w ith two bosonic degrees of freedom because no restriction on the superpotential has been
I posed.

Ifall the tensors vanish in the generic expansion of the invariant, except the cholce By = 45,

one Inm ediately sees that
L1 1, 1202
Spy=17,+17 3

2 supersym m etric m echanical system s.

isa st ntegral in two din ensionalN

5 Supersolutions

G ven the \even", I; = Il(B) + Il(F) , L = Iz(B) + Iz(F) , S, and \odd", Q , Invariants of a

superl, iouville m echanical systam , the supertra gctories are constrained to satisfy:
L(x);ps; 7)= 4 ; L ps; 7)= i (31)
0 (ipsi N)=gq ; S2( )= (32)
where 1, 1,,9 ,and s, are tin e-independent arbitrary quantities. T he system of equations (31)-
(32) relates bosonic, x7(t), to farm ionic, 7, variables; the x’ (t) coordinates cannot be ordinary

functions; instead,, they take values in the even subalgebra B; ofthe underlying G rassn ann algebra
By .
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51 The Heum ann-M anton m ethod

To solve the com plicated system of equations (31), we propose them ethod envisaged by H eum ann
and M anton in [12]. L = 4 issu cient forourpurposes, so that the identity and the realm onom ials

A ’ AB = 1la B 7 ABc — 1a B C 7 1234 = 1234 ’

where A ;B ;C = 1;2;3;4, provide a basis of B, . The key dea is to expand x7 (t), p; (t) and 7 (t)
on this basis:

x)(t) = x (t>+ Kap (0) ap + Xipsg (0 123 7 P3O = PO+ B (0) ap + PY(E) 1234 (33)
To= L.+ JABC (t) anc ; (34)

w here xJ (t), 55 (t), ( thebody ), ), 05" (t t),x),,, (t),and p}*** (t) are ordinary function w hereas
jA (t) and jABC (t), are ordjnary M aprana spinors. O f course, there is antisymm etry in the

A ;B ;C indices ofxgB ,P® and jABC .

To facilitate the notation, we ca]lID;B) = By (x7;p;),M = 1;2,and ID;F) = Fy (x7;pj; 7) the
term s of the nvariants w ithout and w ith ferm ionic variables respectively . T he expansion of all
the invariants

By (Xj;Pj)= Boe + By® ap + B§234 1234 ; Fy (Xj;pj)= Fo® ap + FMl234 1234

0 (Xj;pji Ty=0" 4+ 0*%C ,5c i S,( )= SEP ap + 55234 1234 ;
together w ith a parallel expansion of the integration constants,

. © , JAB 11234 . . ., AB 11234
L =43+ 1 ast L 1234 ; 32—12+f ap T 1 1234
BC . _ B 234 .
qquA‘i'qA ABC /Sz—SZ; AB+52 1234 ;

pem its a layerby-ayer w riting of the (31) system :

BS= P ; BS= i (35)
BAP | pAR _ f° ; BAP 4+ FA® - £ 36)
B]]:234 + Ff.234 _ Ji234 ; B 1234 + F1234 _ 12234 . (37)

Here, 1 ,£%,1%, &, 8¢, 5P, and s5*** are real num bers and a tedious calculation gives:

By = By (xJ;p9)

@By - @By -
AB _ -0,k -0\ AB
B, = o (%705 )%ap + o (2] 705 )P,
@B . @B . 1 @%B
23 M M 23 M
Bl\%l = axk (Xg;pﬁ)x}fm + —@pk (Xgip})-)pﬁ : E@Xk@xl (Xo;pcj?)"ABCD X;}:B XéD +
@By - 1 @By - 1@%By -
+ n Xj; q CD - Xj; o AB 1 + = J; AB_CD
5 ABCD 7@Xk@p1( o7P5 )% ABpl 2@pk@xl( o 71P5 )P 2 epCpy (%] p])pk B
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2
ew -

AB __ nw
F17 = e o) 2Bcn 1
2 3
F11234: "ABCD 7@ il () ]i é + ]I % )+ il (%] )5 ]I %
@Xk@xl O A BCD ABC D @Xk@Xl@Xm O AB C D
0* = o k " @ﬂ( iy x
A @Xk o A
QW Q%W
ABC — o k " J k " DE k " k 1 k
Q = B asc axk (%3) "apc * "aBcp P F @Xk@xl(xo)XDE F
AB _ ¢ 1 1 2 2 . 1234 _ y 11 2 2 1 1 2 2
S2 — ABCD ic 2o T 1c 2 ’ Sz - ABCD( ia 28cp T 1a 28cpt 1aBc 20T 1aBcC 2D)

Tt is not possble to calculate the F2® and F)?** com ponents of the second invariant in a
uni ed way because they are di erent for di erent Types. Nevertheless, the rst three Types
share a comm on structure, nam ely:

Fodipy; )= P dpd) P 2 £ KL

w here fkl(xg) can be denti ed from (27), (28),and (29) in each case. W e thus nd:

AB 12,.3..0y 1 2 k1,09 k1
F,” = "apcp 17(x] ) ¢ Tp I (%3) 1c 2o
| 01" S
1234 12 Loy, 12 1 2 oy k AB, 1 2
F2 = "ABCD l (X(])Ip)( A BCD + ABC D )+ ( (p')XAB + (X(j))pk ) C D +
J @Xk J @pk
kl,.9y, k 1 k 1 QE | k1
1] J 3 J m
+ "apcp TUXG)( 1 Zmcp to1amc ) l@Xm (%3)%38 1c

T he equations for the basic layer (35) ruling the dynam ics of the body of the system can be
reduced to quadratures, as in the original Liouville m odel. Except for Liouville m odels of T ype
IV , this not longer holds for equations (36)—«37) in the rst and second layers, w here the variables
describing di erent degrees of freedom becom e entangled. Nevertheless, we can be helped by
considering equations (32) provided by the ferm ionic invariants:

0F = ; QRPC = ffBC (38)

SAB _ 2B ; 5123 o gl . (39)

5.2 Supersym m etry versus separability

In Type IV m odels, the two degrees of freedom com pletely split in equations (35), (36), (37): we
have tw ice the solutions discussed in Reference [12]. W e shall now analyze the situation in the
other three cases using the coordinate system w here the equations for the basic layer are separable.

25



1. Typel

U sing elliptic coordinates, the invariants of the T ype I system s are:
"

Q = p,#°

2. Type III

In parabolic coordinates the, Invariants of the T ype III system s read:
"

N 2(u? + v4)

#
ac
Y+ (& VI — )
dv
vid v')  dG g
w2 v u? &)dv 2
#1#7 + #745)
vwr d) dGe ...
— #i#)
uz v (c* v?)dv
2# 1] 2#)
2, daF
Pu du
vo°S v o
uz & u? 2 dv 172
HBUBY 4 $THD)
daF v &) de vy
du (@@ V)& v?)dv 12

#1145 #1147

SZ = l(u

)

#

2
, dG

+pl+ —

dv

v dG

_+ -
u+ vvdu uf+ v2dv

- 4
u? + v2 dv

#14#,

dr

u? + v2 du

#H1# + #7#2)

v dG

uw+ v¥du u?+ v2dv

##;



2 2
1 , , dG , , dF
B,= ——— u +  — v + —
z 22+ v?) P dv By du
d?F u  dF v dG
F, = i +oup #UE WP —+ ——— 1 — #u4H
: VP, Bv) du? uf+ v¢du u?+ v dv 12
. u  dG v dF Uy -
Wi vy wrvian (et k)
Lo d*G .\ u , v dG vy
Jll —_— —_—
dv? u? + v2 du wl+ v2dv °
dr dG
Q =pu#t " e pdT T Sp = itu’+ Vi) (IH] + #147)

U s of the expansions

u(t)= us(B)+ uap (£) ap + Wi23a (L) 123a 7 V()= Vo (B)+ Vap (£) ap + Viz3a (L) 1234

P =@+ % () ar + PN 123 5 D)= PO+ 2P () ar + PN(E) 1034

# (o) = UA (t)a + UABc(t) ABC H # (0 = VA (t)a + VABc(t) ABC

n the system of equations ruling the dynam ics of the Type T and T ype III system s,

L = L 5 L=1 ;
L = 4 ; L=1 ;

Q =gq Sy = s (40)
Q =9 Sz = S ; (41)
Jeads to a layerby-layer solution of the problem .

In the basic layer, w ith no G rasan an variables at all, the dynam ics of the u and v variables
are com pletely independent w ith respect to each other and a solution by quadratures is at
hand. O ne can easily check that this is not the case in the second and third layer: ow Ing to
the Yukawa temm s, the dynam ics of the u and v variables are no longer independent in the
supersym m etric extension of this kind of system .

. Type IT
T he behaviour of Type IIm odels is dentical to the behaviour described above for Type 1

and ITT system s. W e thus m erely list the Invariants of this T ype of m odel for com pleteness
using polar coordinates:

" 2# " 2#
I - ISR ¢
1= 3 P d 22 P d
d°F d*G dr

. 1dG
—#1#2 + 1 d— + d— #1#2 + _d—(#l#Z + #1#2)
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2 2
1 dG , . L,dG
Bz—a p2+ d— ; F2= lzp## +12—d2#1#2
dr dG , 5
Q = p # " _# + p # " —# ; 82: l(#1#2+ #1#2)

d d

T he expansions

®= o+ ap®)as + 123a(0) 1238 7 = o®+ as(®)as + 123a(0) 1234

PM=p"O+ PP M2z + P M ;P O=F O+ M)+ PO 123
# 0= L,@®ar+ a5c®asc i # 0= L@ a+ ,5c®asc
allow to organize the dynam ics In a layerby-ayer structure.
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