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A bstract

P lnar Quantum E lectrodynam ics is developed when charged ferm ions are under
the In uence of a constant and hom ogeneous extemalm agnetic eld. W e com pute the
cross-length for the scattering of optical/ultraviolet photonsby D iracd.andau electrons.
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1 Introduction

T he second quantization m ethod and the associated occupation num ber form alism are basic
pillars in quantum el theory. Both in \fundam ental" elem entary particle physics and con—
densad m atter systam s one deals w ith m any-particle ensam bles and the num ber of particles
isnot conserved [l]. T he farm ionic/bosonic Fock gpace isbuilt out of the one particle H ibert

space of states by the antisym m etric/sym m etric tensor product: F = ’ Iﬁ _oA=S ! LZR™),
where N and n are respectively the num ber of particles and the dim ension of the con gura-
tion gpace. U sually, eigenfunctions of either them om entum or position operators are taken as
a \basis" n L?(R ") and thus planeswaves or -functions are the one particle wave-functions
on which the procedure is based.

T he interaction of photons, electrons and positrons when ferm ions are subgcted to a
constant extemal m agnetic eld is essentially described by quantum electrodynam ics on a
plane orthogonalto thedirection of them agnetic eld B'. Thus, herewe shalldiscussQED ,, ;
starting from a basis of Landau states in LR *), B]. Apart from providing an exam ple of
the occupation num ber form alisn not dependent on planewave states, the D irac equation
n an extermalm agnetic eld also presents in portant novelties w ith respect to the zero eld
case, eg. spectral asym m etry.

W e shall analyze the scattering of photons by electrons under the action of an extemal
hom ogeneous m agnetic eld in perturbation theory. W e set thus forth a physical situation
closely related to that occurring in planar Hall devices at very low tem peratures and very
high magnetic elds. To t this in with the relativistic approach, we shall com pare the
theoretical outcom e w ith electrom agnetic radiation scattering in sam ples w here the electron
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e ective mass is very anall. Such a Hall device could be the Hg Cd Te M ISFET (m etal-
Insulator-sam iconductor- eld-e ect—ransistor), see ],whjch worksatvery low tem peratures
of around 1 degree K elvin; this setting therefore also allow s for a zero-tem perature eld—
theoretical treatm ent. M easures of the optic Hall angle in this system , sin ilar to those
perform ed in high-T ¢ superconductors [4], m ight be addressed within the fram ework of
plnarQED .

T he organization of the paper is as follows: in Section x2 we study the D irac equa-
tion in a hom ogeneous m agnetic eld and quantize the D iracL.andau eld. Section x.3
is devoted to developing perturbation theory and its application to the understanding of
Com pton scattering. Finally, in Section x4 we com pute the crossJdength for the scattering
of optical/ultraviolet photons by D fracdL.andau electrons and com m ent on several issues.

2 Field expansion in D irac-Landau states

2.1 The D irac equation In a hom ogeneous m agnetic eld

T he D irac equation goveming the quantum m echanics of a relativistic charged particle of
massm and spin 1=2 is,

ihe + —iA’*t(x) x)=mc (x) (1)
if the farm ion m oves in a plane under a tin e-independet and hom ogeneous m agnetic eld.
O ur conventions for them etric, 2 2 D iracm atrices and the lke are explained in appendix
A and plknar D irac ferm jons in extemal elds are described in Reference 1. W e work in
the W eyl and Landau gauges w here the threevector extermnal potential reads as A (x) =
(0;A(x)) and A1 (x) = Bxy,,A,(x) = 0. This produces a constant and uniform m agnetic

ed B = BZXK and the stationary states g (x)e N satisfy the spectralequation H g () =
E g () for the Ham ilttonian D irac operator:

mc D
Ho= DY mc (2)

D

p—— |
2eBhca’ ;DY = 2eB hc a

The solution of the non—relativistic Landau problm in the plhne iswellknown, see 1.
In tem s of the annihilation and creation operatorsa and aY,

n ! # " ! #
1 @ @ 1 @
a=p— T I +x, ;al=p— P —+i— +x
YT ex, ex, 21 ex, Gx; -
that do not commute, [a;a¥] = 1, the Schrodinger operator is: Hg = h! a‘a+ % . Hg
comm utes In the Landau gauge wih p; = jh@%; thus, there exists a com plete set of
elgenfunctions comm on to H g and p; form ed by products of H emm ite polynom ials and plane-
waves. ! = £ and ¥ = % are the cyclotron frequency and the m agnetic Jength.



G iven the N = 22 ejgenfunctions ofH 5,

2 hc
1 ipixg
n ;p1 (x): p?e b n ;p1 (XZ) (3)
1 "
1 Xy + By 1 P1 122
np (K2)= =P 2np 11Hﬂ ]_h e ar it (4)

w ith the center of the orbjtxg = pf Jocated in a rectangular enclosure ofarea A = L1L,,
one can easily nd the eigenfinctions for the D irac operator H . Th ), @) n = 0;1;2;

label the Landau levels, pj=h = 2 g=h, so that g 2 Z is the \discrete" m om entum in the
0O X ;direction and H ,, [x ] are the H em ite polynom ials. T herefore, the energy eigenvalues of

H are

P
E = 2éBhcn+ m?2?c* ;n= 1;2;

n
E; = +mc

w hereas the corresponding eigenspinors read

s 0 1
E, mc e B
n
n;pl(x): ZED % 50 A ;n= 1;2,'
. . T ooma nlp:(®)
0

fE,= £, jandE’= + F 2eB hc n. A ccordingly, the D irac-L.andau spectralproblem shares
the follow ing properties w ith the non—+elativistic counterpart: (1) The spectrum is discrete
and the D iracL.andau energy levels are labeled by a non-negative integer. (2) Each energy
level is degenerated and the eigenvalues of p; characterize the degeneracy. N evertheless,
there are two Im portant di erences: (1) Tn nite negative energy levels appear and we can
tak ofa D iracd.andau sea. (2) The spectrum show s a spectral assym m etry associated w ith
the fundam ental or ground state; for n = 0 there are states w ith positive energy which are
not paired with others of negative energy. It is rem arkable that the energy of these states,
which form what we shallcallthe rst Landau level, is lndependent of B . At the zero m ass
Im it, the rst Landau level is spanned by \zero m odes" of the D irac operator.
For later convenience we introduce the notation:

s 70 (%) 1
1 ipyxg En m c? npL 2 C
n,pl(:>§)=19?e P U, (X2) G U, (R2) = T% . X ;né6 0
1 n E ,
. . T oong nip: (X2)
1 ipyxy + N 0P (XZ) C
op () = BI=€ T Uy, (x2) Uy, (2) = 8 & (7)
! 0
and de ne the Fourier transform and its Inverse for the two-sphorsu,,, and u’, :
1 “a ikoxo + 1 1 + ikoxo
Uy, (X2) = > Upp, (kp)e™™dky ; ug,, (x2) = > Ugp, (k2)e™* 2 dk; (8)

(6)



21 24

l j.kzxz + 1 + j.k2X2
Unp, (ko) = 1, Ym (x2)e dx; ; Ugg, (ko) = 1, Yom (x2)e dx;
Bearing in m iInd that k;, = p,=h,we nd
0 1 0
s - @@ ’n k ’
E, mcp e (k2) c . R 00 (K2)
Unp, ko) = ————¢ K ;U (ky)=€ X 9)
2E EQ
Eoom n1p: (K2) 0

where ' 5 (k;) are the Fourder transform s of the non—relativistic Landau wave-functions:

Z b — 2 2.2
7 1ot ik 2%z 2 [LELPE 2
np (K2) = 1, °m (%2)e dx, = TiHPZD—nD_Hn kplle™ = 2 (10)

2.2 The D irac-Landau eld

W aveparticle duality,E = h! ,p= hK and heriy = e, allow s the understanding of equation
@) i classical eld theory instead of reltivistic quantum m echanics. In this fram ework the
D iracfL.andau equation appears as the Eulerl.agrange equation for the Lagrangian:

L=c (x) ihe + A% (%) mc (x) (11)
C

Thus, in the W eylgauge the el theoretical D irac Ham iltonian is:

Z h h i i
H= d’x Y(x)~( ihct + e x))+ m (x) (12)

where = %and 7= J,9=1;2,and (x)= Y(x) °.
In order to quantize this system , see []], we In pose the anticomm utation relations at
equal tin es:

£ () Y(Gy)g = @z y) (13)
f (Gx); (Gy)g = £ Y(&=x); Y(Gy)g=0

The expansion of the D irac eld and itsadjpint

x) = ‘"®+ ®+ &) ,
x h N Egt mpet X iE gt
= Cop, np, ®)e 7+ DY (x)er  + Ay, g (X)e T (14)
np1 P1
x) = "+ )+ ‘x) _
X iEnt y N et X y L iEot
= D np, np (x)e &=+ Crlpl N ()er  + Aoy, op (2)e" &
np1 P1

is com patible with {3) if the coe clents C ,p, , D np, and Ay, are operators satisfying the
anticom m utation relations:

£Cpp, ;crylolpolgz D pp, ;D I{O,polg= N pe, ; TAop, ;Ag,polgz s (15)
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and every other anticom m utator between these operators vanishes.
T he farm ionic Fock-L.andau space adm its a basis built out of the vacuum

Chp, Pi=Dpp Pi= A, Pi= 0; 8n;8p

by the action of strings of creation operators

J nlp} nlp% Op} nV plf nN plf Oplf 1
Y nlpl Y nlpl Y opl Y nN pN Y nN pN Yy opN .
/L 1D R e 1 DY, L M Y 1 pi (e

w here i are 0 or 1, com plying w ith Ferm i statistics. T herefore, the states of

nipt 7 nipt7 opl
the basis are eigenvectors of the num ber operatorsN, = CY Cp, ,N, , = D} D, and
Nop, = Agp Ao, - From () one can easily deduce that Cpp, and CY, annihilate and create
respectively, electrons in the n® Landau level, whereas D npy and D gpl do the sam e b w ith
positrons. A g, and Agpl are the annihilation and creation operators of electrons occupying
the rst Landau level. The spectral asymm etry of the D racd.andau operator forbids the
ocupation of the rst Landau level by positrons in the second quantization fram ework for
this systam .

O ur states of the basis are eigenvalues of the Ham iltonian, com ponent one of the m o—
m entum and charge operators, w hich properly nom alordered read:

® R . . R v
H = En(CnplCnpl + ananp1)+ Eg AOplepl
n=1p1= 1 p1= 1
Xl XL Yy Yy '
P, = hql (© nplcnpl +D nplD npy )+ hqlA OplAOpl (17)
n=1p1= 1 pi= 1
)é- XL Yy Y )é- Yy
Q = e (C np; Cﬂpl D nplD npi ) e AOplAOPl
n=1p1= 1 p1= 1

P
Notice that WOD Pi= 5 (0), (s)= .22 foq ni + 1, because we do not have the Ay, and

Agpl nom ally orderad. This choice is m ade to distinguish the D iracd.andau sea from the
nom al situation where all the particles have their anti-particles. T he states () how ever,
do not have de nite spin because we are working in the Landau gauge.

T he anticom m utation relations at di erent tim es are

B g==1 &) (ig=0;f &) lg=15 & ) (18)

where the 2 2matrix function S (x)= S* (x)+ S (x)+ S%(x) is

- X . . iEn (xg vo)

iS"x y)= np B pp, (¥)e ne
njp1

, X iEn (xg vp)

S x y)= npr &) op, (¥)e Ee (19)
NP1
X iE g (xg vp)

5% y)= op (®) op, (¥)e T Pe



T he farm ion propagator in a m agnetic eld is the expectation value of the tin e ordered
product Tf (x); (y)gatthe vacuum state:
Sp(x y) = WOFE (x); (y)gPi (20)
= 1 0 vST&E y) W xS x y)+ik ws'x y)

( (x) is the step function, (x)= 1ifx> 0, (x)= 0 ifx < 0). Taking Into account nite
tem perature e ects requires that one m ust de ne the propagator as:
Trie " Tf (x); (¥)9)

Sp (% y)= — (21)

where is the inverse tam perature. Tam perature G reen functions like this can be com puted
In the canonical formalism , see [d]: T & 0 e ects are ncluded by considering a com plex
M inkow ski tin e and (anti)jperiodic eldds in the Im agihary com ponent of period i . One
considers a contour C between 0 and 1 containing the realaxis and de nes the path ordering
along C . Thisam ounts to doubling the elds: = (X¢;%); »= (X0 iE ). IE D1

, decouples and , equivalently, only the vaccum state contributes to Sy (x  y), which is
given by (2Q) . Thus, at very low tem peratures we reach a very good approxin ation by
consdering =1 QED.

3 Planarquantum electrodynam icsin am agnetic back-
ground

31 QED,,; In external hom ogeneous m agnetic elds

Our goal is to descrlbe the interactions of two-din ensional electrons and positrons w ith
photons when there is a constant hom ogeneocusm agnetic eld in the background. W e choose
the free- eld Lagrangian density in the form ,

. e ext 1 1 ext
Lo=N ¢ (x) th@ + AT~ (x) mc (x) Zlf (x)f (x) ZF (X ot (%)
c

(22)
after the descom position of the electrom agnetic threesrector potential in term s of the radi-
ation and external elds: A (x) = a (x)+ A®"(x). The associated antisymm etric tensor
F = f + F%"alo splits and the quantas associated with the ed a (x) are the planar
photons discussed in appendix A . The quanta corresponding to  (x) and (x) have been
analyzed In Section x2.

T he interaction Lagrangian density is

h i
L:=N e (x) a (x) x) (23)
and the action integral reads
Z
1
s = ExN ¢ (x) he + SA (x) me  (x) zlf ) (x)
C
z h i
=N F=H®)F . (%) (24)



There is a natural length scale to the problam ; the m agnetic length 1 and the product
e?l= Pee% isdimensionless ifd = 2 iIn the na. system . Thus, we express the ne structure
constant in the form :

e e

= —p—— (cgss:) or - v (na:) (25)
4 eBhc 4 eB

T his is consistent: In rationalized m ks units the ne structure constant is de ned as

e e

= (d= 3) or = —p—— d= 2)
4 ,hc 4 o eBhc

where ¢, has din ensions of pem itivity by length. The natural choice ¢ = o 22, the
pem itivity of vacuum tin esm agnetic length, m eans that
e’ e’ 1

4 ohc 4 g eBhc 137:04'

although the rationalized charges e—z and £ have di erent din ensions. W e could also have

o
de ned the rationalized charge as i where ag = OmLc , the vacuum perm itivity tin es the
electron C om pton wavelength , but using them agnetic length as length scalem akes it possible
to take the lin it of m assless ferm ions In this problem .

Perturbation theory isbased on the S-m atrix expansion in powersof . In the interaction
picture the n® tem is the chronological product of the interaction H am iltonian densities at
n di erent points, integrated to every possible valie in R 1#:

2 o(ap® f

s = - dxid’x;  xATfH (i H1x:) @9 (26)

n=10

Here,H;(X)= L:(x)and the di erencesw ith the B = 0 case, see reference [E],Jjeon the
nitial, naland Interm ediate states in the expectation values of the S-m atrix at given orders
of Perturbation Theory. From now on we shallwork in naturalunits.

3.2 A process in lowest order: C om pton scattering

T he transition
Ji= CL Y ®DPL | Fi= Clyo PER)PL
from one electron in then™ D fracL.andau levelw ith m om entum py, (E, ;01 ), and one photon
w ith threem om entum k = (! ;K) in the hitial state to one electron in the n™ D iracL.andau
level w ith m om entum P}, (E ,0;p)) and one photon with k°= (! %R% in the nalstate, isa
scattering process of am plitude hf F jii. T he dom inant contribution to thism atrix elem ent
com es from the operator
Z h i
sW= & dxdyN (x) a X)iSp(x y) aly) (y) =S.+ Sy (27)

which appears up to second order in  in the S-matrix. A subtle point is that to apply
W ick'’s theorem we also nom alorder the creation/annihilation electron operators in the



rst Landau level. T his iswhat ism eant by the symbolN and avoids tadpole photon graphs
w ith ferm ions running around the loop.
U sing,

1 | .
Tx)E Eaipi= ﬁiieL:u;,pl (xp )& ¥re B %0
1

1 ,
a' (x)j Ki= ﬁiﬁﬁ (K )e **

X 1 . .
(x)Pi= £ GE, ;plip—_u;,pl (3, )e 151 gl nxo
njp1 L
X 1 N
20!
i3
one obtains
Z Z "w 1 # n 1 #
hf i = & &’xd’y P?u;tJ,po (%2)e o ixit 0% % (RO)e™
1
n 1 1 # 0 1 ° #
. ik i iE g
iSp (x y) ?ﬁ R)e ™ 19?111; oy (v )Py e (28)
Taking into account form ulas (), (@) and
1 Z 1 eiz .
(z)= — d—5Im ! 1; >0
21 1 i
the propagator can be w ritten in the form :
8 (r) (r) 9
104 < gy . 2 gy =
iSp (x = d d — U’ U ——U U
F ( Y) (2 )31 q . . l rap (CI2) roy (qZ) . l rap (qZ) rap (qZ);
(29)
w here q(r) = ( qér); q) wih qér) = Er and g = (;%). Alo pluigging the Fourier

transform of the ongoing and outgoing spinors n [§), we are ready to perform the x—and
y—integrations. T he outcom e of the xq—and yy—integrations is energy consarvation:
z z
dxo explixg (Eno+ 7 E. )] dyp expliyo ( E; En )]

=2V Eo+!° E, ) (E E, !)

Sim ilim odo, the spatial integrations
Z z
dxj explix; (@ P! k{1 dy;expliys (p5+ k5 )]

=2V @@ p; k) ®+ks @)
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lead to m om entum conservation.
The -functionsallow us to com pute the -, g—and g-integrations. W e obtain:

z 7 1

REP.Ji=2 T dpdg; @+ ! En D) PR p R)—
1

T M oaeip)

(30)
w here

M oaipy) = €Ulo(;)  RDiSe En+ Lip+ K)  ®WUg, (02) (31)

is the Feynm an. The m om entum space propagator reads:
iS¢ (8En+ l;p+ K) (3

_l< % Ur+;(p1+ k) (P2 + Ko )UrJr;(p1+ k) (P2 + ko) ® Yripr+ 1) (P2 + ko Weipr k1) (P2 + ko)

l:rzo E. En+ 1) i =1 E.+ Ep+ 1) i 7

)

I N

T hem atrix elem ent hf 1,711 correspond ing to the exchange graph isgiven by an analogous
expression to 30),M . (p,;p)) being replaced by the Feynm an am plitude:

M ople2ip) = €Ulo@) ®iSe B, % ) &)U, (02) (33)

4 | O. O
iSg %En Yip KD (3%)
1% Ul oy KU o) k) # Upe yoy KU 02 K2)=
IS E, (E, !9 i . E,+ (E, !9 1 ;

W e express the result for the S-m atrix elem ent in the form

Z

i
2 2
nFp@4i s = 2 dp; 8¢ (P22 + k2 kD)

Y 1 1=2
sPmim+ke kD=2 P Eo+'° E, ) @+K2 p k) —
ext L,
v 1 Yo
—  M.@iptk KD+ M o@ipt ks k) (35)
ext ZA'E

N ote that despite the form al dentity w ith the scattering am plitudes for the planar C om pton
e ect at zero extermalm agnetic eld, there are profound di erences: (1) The D racdL.andau

spinors and the ferm ion propagator include H emm ite polynom ials that depends on the m o-
mentum In the O X ,direction. (2) Because there isno invariance w ith respect to transhtions
In the O X ,direction, the initialand nalstates are not eigenvalues of the P, operator; thus,
we obtain contrdbutions from all the possble eigenvalues p, and p) and we need to integrate
over their full range. Nevertheless, there is invariance under m agnetic trashtions, see E],
and because of this p, and pg are not com pletely independent but related by the condition:
D)=+ ky k5.



3.3 Feynman rules for QED,,; In a m agnetic eld

Follow Ing the pattem shown in the derivation of the planar C om pton e ect, it ispossible to
establish a set of Feynm an rules for w riting the S-m atrix elem ents directly for the Feynm an
graphs in QED ,, ; when there is an extemalm agnetic ed such that B (x)= BX.

The Initial and nal states for any process are tensor products of photons occupying
plane wave states and ferm ons In D iracL.andau states. T hus, the \quantum " num bers are
the photon m om enta and the energies and m om enta in the O X ;direction of the ferm ions.
For the transition jii ! i, the S-m atrix elam ent takes the form :

12 12 12 £
1 2) (n 1) 1) (@) . 1) i
REBJ=—— de o~ dp - de Bale e i 2P iPr Pp) (36)
w here pél) ;pf); én,ﬁare them om enta in the O X ,-direction of the extermal ferm jons. Here,
we have:
i ST T A S TR ST
Py = Bt ki Py = | < ky
a=1 a=1 a=1 a=1
i £ omx! X
Plf _ pll?(a) n kf(a) ;P2: plzf(a) n kizf(a) (37)
a=1 a=1 a=1 a=1
f
) )
pzn = pZm = PZl P2 ’
and,
1 @) n 1) £ h 5 £ ;
Sei(py iR i 20 iP5 P,) = g5+ (2 ) (Et Ei; P  Pp) (38)
| |
Y 1 X 1 1) (@) m1) i _°F
p— — M (D i 25D iPS P,)
ext Ly ext 27

E; and E¢ are the total energies of the initial and nal states; the pmdﬁcts extend over all
extermnal form jons and photons w ith nom alization factors 1= L; and 1= 2A !, respectively.
£

1, (@),

T he Feynm an am plitude M (p; );pz ; ;n;fo) ;PéL P ,) isthe sum of the contributions

) £
M ™ )(pél) ;péz); én;gl)) ;P P,) forall orders In perturbation theory. The contribution

toM ™) from each topologically di erent graph is obtained from the ®llow ing Feynm an
rules:

For each vertex, w rite a factor ie

For each intemal photon line, lbelled by the threem om entum k, write a factor:
Dy (k)= iZr.

Foreach Intermal ferm ion line labelled by the energy E and them om entum = (g;%),
w rite a factor

" #
12 Ul @)U/, @) ® U, @)U, @)

iSp (E j&) = - m B e m B e P (39)
1., Er E 1 1 Ert E 1
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For each extemal line, w rite one of the follow ing factors:

{ foreach hitialekctron: U} (p2) orUg,, (p2)
{ for each nitialpositron: U, . (P2)

{ Preach nalelectron: U, (p;) orUJ, (p2)

{ reach nalposiron: U, o (P2)

{ reach mnitialor nalphoton: ; (K)
R
There isaz~ dp, integration for each extermnal ferm ion.

P
Because of energy conservation, E = _E,,where E, is the energy of each particle
created or annihilated at any given vertex. T here is also m om entum conservation at
each vertex.

For each photon threem om entum that isnot xed by energy-m om entum conservation

carry out the integration (21)3 d®g. O ne such integration w ith respect to an intemal

photon m om entum occurs for each closed loop.

Foreach closed ferm ion loop, there is one ferm ion energy and onem om entum w hich are

not xed by energy-m om entum conservation. O ne m ust perform the integration over
these variables and also take the trace and m ultiply by a factor ( 1). For instance, for
the graph of vacuum polarization by D irac-L.andau electrons one obtains:

> Z Z !
e . .
kl = 55 d’p d Tr  iSp (Eq Lip X) iSp (En  ;P)(40)
m=0
2 | | #
m=1
where iS¢ ( Ep ';p K)isgivenby BJ)withE = E, 'andg=p &k
and
_ 1 U, ., @)U, ., ©2)
iS; ( Eg p) = - = =

1 1

4 Com pton e ect on D irac-Landau electrons

In this Section we shalldiscuss the scattering cross-ength for the C om pton e ect on electrons
In a constant m agnetic eld up to second order in perturbation theory. W e bear in m ind
the quantum Halle ect where a two-din ensional gas of electrons at very low tem peratures
is subcted to a strong m agnetic eld, from 6 to 26 Teslas, which is constant, uniform and
perpendicular to the plane where the electrons m ove.
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4.1 T he scattering am plitude of photons by D irac-Landau elec—
trons

U nder these circum stances we expect the electrons to be in the lowest (non— lled) Landau
level. Thus, we consider the initial and nal electrons occupying two states in the rst
Landau level. The S-m atrix elem ent and the Feynm an am plitude for the transition jii =
£ Eoip); 1! Fi= R Ee;p)); K)iaregiven by:

20y @+k p k)2
hEHji = %—1 - dpdpy, @+ ks P ky)
AL, !0
M . (00)+ M p;00)]
b @+ k)7
L0y a2 0 , 0\, Jripirks P2 2
M a(p2/p2) = !l K) K) 0p? (pz) Opl(pZ)r:1 EE m + ')2 (42)
2 e, k0@ kDT
Moppip) = 1 R) B o (0) op (P2)
r=1 Er (m )

To obtain these formulas we have rew ritten (3]]) and (33) according to the follow ing
Inform ation:
!
! op1 (pZ )

’ 0 +
Ugo 02) = "0 (B2) O i Ug, (e2)= .

Dx)= (0;~" (%)) such that ~) (k) ¥ = 0 is the only transversal polarization vector

of the incom ing planar photon. W e de ne ) = él)(k) + iil)(k) and its com plex

conjigate: K)= él)(k) iil)(k).Then,

0 &)
k) O

T here is an dentical form ula for the outgoing photon.

Yk) =

T he ferm ion propagator splits into three parts:
h i

Sy (B ;i) = 1 Sf (F;q;%) Sy Eiqip)+ SY(E ;&%)

w here
S (B ;q50) = fé Er m
PR = _L2E.(E, E i) )
0
Q ’rch(qZ)’rql(qZ) Efrm erql(qz)’r]_ql(qZ) 2
0 0
1, (@) (@) e 10, (@) g, @)
and !
1 "o (@) g (@) O
sYE g i) ———— @ O
r Eqix) E. E 1 0 0

In ourprocesswehaveE =m + ! ,gg=p+ ki and g = p, + k, orM a(gz;pg)and
E=m !g=p kKandg=1p k}BrM ,(m;p);thefactorE’=+ E2 m?2
appears in the norm alization.
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Now replacing,
2P - b 1 2 .
Tt (B3) 05, (P2) = “exp [ ilplR) mip)Plexp (0 + 2y )Y

EZ @+ !)=2Bk+cljc= -2
1010
2 m  19%=2BE+ d]; = 2

y p— 242

Ir 10, @)F = 2+ e H 2 kplle @
nM ,,whereq = p+ k;, =+ ky,and nM ,,whereq = p k¥, q=p, kj,we
obtain:

. P — n 1
0 iz 0 . 0.0 2 15 022
M 2(@2ip) = Te! K) Klexp  1Upp, pip2)l exp 5(p2+ p, )
ROHZ [+ kp)l] e @rrieNT
P2 1)l r+c (43)
r=1 °
o~ P — h i
M (oY) = 2 0 . 0.0 P 1 5 022
p(P27P;) = B - €) Klexp  ilpp, ©ip2)l exp 2(pz+pz)
R OHZ [ kI e Pz kE
L 28D 1) rt
In order to sum the series In (43), we consider the spectral problam
c n(®)= [ L(x)
c=n+c+ 1;n=0;1;2; ; n(X)=—]_9—Hn[x]e%xz;
=47 2nn!
h i i
for the elliptic di erential operator . = % %+x2+ 2c+ 1 on L?(R ). The Green
function for the spower of . isde ned as:
R X
_ (5
n=0 n
W e inm ediately notice that:
2 HZ. (o + ko)1 e P2tk )P
. . P Y\rl 2 2
G _(x;x;1) = PEne 1y o X7 (P2 + ko)1
(44)
A HZ (KDY e i
LJ_

G ,xixil) = 20D (r 1)l r+ &

r=1

T his is related to the heat kemel

K _(x;y; )= e ° (%) .(y)



of the operator . through a M ellin transfom :

1 %1
G (xyyis)= — d K _xyy; )
[s] o
Wewrite .= + c+ 1=2, <0 that,
K _(x;y; )=e “ 7K (x;y; )

T he heat kemel for the di erential operator of the Ham onic oscillator is very well know n
[[J]and we obtain:

1 %1
G . (x;x;1) = — d K _(xx; )
11 o
(45)
e () #
K . (xjx; ) = P————exp x'tanh— ;
2 sinh 2

and a sim iar expression ©or G (x;x;1). Before perform ing the integration we plug the

integralform ofG | and G, into
z z

M = dp, dpy @+k) b k)M L)+ M p(pp))]:

W e rst integrate in the variables p, and pg and then In  to reach the nite answer:

i E 2 1
M .= el k) ®lexp iEk) pk, )T é(k§+ k9%
" 0 : 0 2# 0 2 0 2#
[(©) pr)+ iky + kI)FF c+ 1] 3 [(ko+ k) 1® p)FE
exp 1F1 c+ 1;c+ —;
8 c+ 3=2] 2 8
(46)
'pE 2 1
1 .
M = ?e! k) KOexp ik, pk))PP 5(]<§+ k9%
" 0 . 0 2# 0 " 0 : 0 2#
[(p; p1) dky+t kz)]zl c"+ 1] 3 [(ky + k) + ip; p1) FE

&Xp

Fl CO+ l,'CO‘l' 5,’

8 0+ 3=2]" 8

where ;F,[a;b;z]is a degenerated con uent hypergeom etric function, see [[J]. T he integra—
tion in the variable pg is perform ed Imm ediately because of the -function;we are left with
G aussian Integrals In p, which can be easily calculated. Finally, the integration In the
variable produces a degenerated hypergeom etric function. Iffwe had chosen to integrate rst
In the variable,wewould have usad som e regularization procedure to avoild the dangerous
singularity at = 0 thatrendersG _ (x;x;1) strictly divergent.

4.2 The di erential cross-length

The di erential cross-ength is the transition rate into a group of nal states for a scattering
centre and unit ncdent ux. If! = jszjz is the transition probability per unit of tin e for
our process, we have:
0 2720
d =1 1 dp, dK
Ve A (2 ) (2 F
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where we use nite nom alization tine T and area A . There are Z?zdz)k; photon nal states

w ith m om entum belonging to the interval (K%k°+ dk°) and L(Z—dfjg electron nalstates in the

rst Landau level and p; 2 (&2;0) + dp?). vie=A is the incident ux of incom ing particles.
U sing
TL,
2 7

Lo ) d+x p k)T = (¢ @k p k)

we obtain

ik dp?  d?k°
d =2 ¥ (% 1 9+ k0 k 1
2 7 ( ) @+ k) o 1>162!le TBRE )22!0ﬂf

Because of the conservation of energy and m om entum it is easy to Integrate this expres—
sion w ith respect to p? and %% Note that d°k°= %"#%’H , and

d iy E
4 32 2!vrelj\4
bearing in m ind thatp) = pi+ k; k¥and !°= !.

T he above result is referred to a general reference fram e. W e choose the laboratory fram e
characterized by:

1) initial state; one electron in the lowest D iracd.andau state with energy Eg = m and
momentum p; = 0 plus a photon ofmomentum k = (! ;K), X = (k;;0) and polarization
~ &)= (071).

2) nal state; one electron also in the lowest D iracL.andau state but w ith m om entum
p) 6 0 plus a photon with momentum k° = (!%K°%), such that ¥ %X°= !!%0s , and
polarization ~ (k%) = ( sih ;cos ).

Consarvation of energy and m om entum requires that,

0 0
Eo+!=Eo+!,’!=!

o+ k1=p8+ kf;pg= '(1 cos )

T here is no Com pton shift in wavelength for the photon because the energies of the nal
and initial electrons are the sam e; however, there is a shift in the electron m om entum . The
recoil angle of the electron is given by cos , = ;—;j = ji—goj, and the relative velocity is
Vel = K3F! = 1. Inelastic scattering would require a di erent D iracl.andau state for the
outgoing electron.

In the bboratory fram e the caloulation of ¥ F=M ;M _+M M +M M _+M M ,
=Xaa+ Xapt+ X + Xy, gives:

n !#"
2 te? 17 e L c+ 1]
Xaa = —exp —— sih® + 2sin— —
¥ B? 2 2 [c+ 3=2]
2 !23 2

3 122 sin i1 cos )
1F14C+ l;c+ —; 5

2" 2 2
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X = — —— sh® + 2sin"—
” ¥ BZT T2 0+ 3=2]
2 123 5
3 1% sh + i(l oos
Frad+ 10+ = ( ) s
2 2
"w ]
X = X = 2 462!_2@Xp ﬁ SJhZ + 2S:|n2— [C+ 1] [CO"F 1]
BT * B2 2 2 o+ 3=2] [0+ 3=2]
1] # 2 ! 3
. 122 . e 4 . 5'212 sin l(l (@6} ) 5
exp 21 + il“Isin s 1Fi%c+ 1;c+ —;
2 2 2 2
2 3
) . 3 12P sn + il cos ) 2
1Fréc+ 1;00+ —; 5
2 2 2

W e nally write the di erential crossJength for the scattering of photons by D iracd.andau
electrons In the plane:

! " L #
d e 127 5 L
— = exp —— sin® + 2sif —
d . eB 2
8 ab
" o 2 !23 2 " #2
< c+ 1] 3 1?% sh i(l ocos ) c®+ 1]
—_— 1Fréc+ l;c+ —; S o+ —
> o+ 3=2] 2" 2 2 [0+ 3=2]
2 | 3 2
. o 3 1?F sh o+ il ocos )° c+ 1] [+ 1)
1F14C+ l,C+ ’ 5
2 2 c+ 3=2]1 [c%+ 3=2]
2 " n 2 !23
3 12P sin i(1 cos
Redexp 2i + i?Psin sif— F;4%c+ ljc+ —; - ) s
2 2" 2 2
2 1,339
3 1?? sn + i(1 cos =
F Al ;04 2 = ) 55 (47)

2 2 2 ;

4.3 Angular distribution and total cross-length

In this Section we shall discuss the physical m eaning of the in portant formula (47). It is
convenient to express the di erential cross-length in term s of the din ensionless constants

= m'— and = i—g,and also to introduce a new constant, L = %%,whjch is a length
associated w ith the systam . Equation ([&7) becom es:
L ! 2 Ly 13
— = —exp? — sin® + 2sif - 5
Ly d |, 2
82 3, 2 | L3,
:n 22 (+2)3  ( +2)  sn il cos )’
4 > 1F141 i ;o >
b3 [3:2 (+ )] 2 2 2 2
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1 ( 2) . . Y2
. [ 5 ]5 P41 ( 2) 3 ( 2) sn + i1 cos ) <
=2 2] 22 2 2
1 (+2) 1 ( 2) 2 2 Yo 3
2
2 > s—Refexp? 21 + 21 — shn si? =5
B=2 2] R L2 2
2 | | 3
Yo
(+2)3 ( + 2) sin il cos )
4 = . 5
1Fl 1 2 12 2 ’ 2
2 | | 339
Y2 1072
( 2) 3 ( 2) sn + i(1 cos ) =
4 _ _ 55
1Fl 1 2 12 2 ’ 2 ; (48)

In a Halldevice, the electron e ectivem ass and the constant hom ogeneousm agnetic eld
aregiven. Thismeans that is xed and i— . isa function of two variables: = !=m,
the ratio of the energy of the incom ing photon to the electron e ective m ass, and , the
scattering angle. W e analyse In tum the dependence of the di erential scattering cross-
length on the photon energy for xed and the angular distribbution of the scattering for

xed

In order to unveil the values of forwhich S- .

erties of the con uent hypergeom etric functions and the G amm a function.

. diverges, we sum mm arize the prop-

A . Fiab;z]is:

{ i A convergent series forallvaliesofa,band z fa$ nandbé n’ withn,
n' positive integers.

{ ii. A poynomialofdegreen in z fa= nand b6 n’ Fi[a;b;z]hasa
smplepolkatb= nifa= n,b= nandn> n’ ,Fi[a;b;z]isunde ned if
a= n,b= nandn’ n.

. [z]lissihglevalued and analytic over the entire com plex plane, except for the points
z= n,n= 0;1;2; where it has sin ple poles.

q

Inourfornmulba= nistantamountto! = m 2B (n+ 1)+ m2whereasb= n

d

requires ! = m 2eB (n°+ 3=2)+ m 2. Both dentities cannot happen sin ultaneously for
d

any values of n and n® and there are no divergences in T b due to singularities of (F;.
a

0

The Gamm a function entering the term in i— Lbduetodjrectscatterjnghaspolesatthe
q a

valuies ! = m 2B (n+ 1)+ m 2. Thus, j— . becomes n nitewhen ! = E,.; Eg,
corresponding the physical situation when the incom ing photon is captured by the electron
to juom p to the (n + 1) Landau level. T he other sign cannot arise in this physical process (!

would be negative) but this divergence is the signal for the opposite phenom enon: photon
am ission. In tk}{e exchange temm , however, the sihgularities in the G amm a function appear

when ! =m 2B (n+ 1)+ m?.Again,only theplussign for ! isacceptable and we have

a divergent i— wahen ! = Eyg+ Eny1=Eyp E , 1 .The lhcom ing photon is captured
a.

by an electron that occupies a negative energy state in the D iracl.andau sea and jum ps to
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the rst Landau level. O f course, this process can be re-interpreted as \pair" creation and,
also, the other sign, w hich isnot com patible w ith the incom ing photons, would correspond to
\pair" anniilation of electrons and positrons. O bsarve that there isa 2m gap w ith respect
to the other \divergences". It should be noticed that in the Interference term of fl— . the

tw o kinds of divergences enter together. a
In short, the di erential and total cross-lengths present divergences at values of the on—
going photon energies corresponding to the energy gaps between the lowest and the other
(positive & negative) D racl.andau states. For these energies there is no scattering but the
absorption of photons and transitions from one D iracd.andau state to another takes place.
W e encounter a phenom enon well known in the quantum theory of radiation: resonance
uorescence. In the scattering of light by atom s described by the K ram ersH eisenberg for-
mula, sin ilar divergences appear, see reference [[]]. W e are also wrongly assum ing that
the lifetin e of the Interm ediate states is in nity. T hese states are indeed unstable due to
goontaneous em ission of photons. T he energy picks an in aginary contrdbution thatm easures
the resonance width , = 1= ., the Inverse of the lifetine; replacng E, by E, 1 =2 in
fomula (43), c and & becom e in aginary in such a way that the products of the Gamm a
function entering in ) are regular and j— reaches nitemaxmafor! = E, E , 1 ).
Tn practice, for othervaluesof ! . can be ignored. The di erential crossZength of scat-

tering is regular and a study of the angular distbution of i— . ispossible. A MATHE-
a

M AT ICA pltof the antenna pattem encoded by fomula (E§) Erj— isdepicted in Figure 1
for incom ing photon energies in the ultraviolet/infrared range of the electrom agnetic spec—
trum . Here we are thinking of a M ISFET , at 12 K elvin degrees of tam perature and a very
low 1Iling factor;also,m = 0:006m .,B=c= 6 Teshs,ie. Ly = 743 10° an . i thecgs.
system .

In this range of photon energies, far from the pair creation zone, the graphic work reveal
a general pattem which can be explained as follow s:

1.! < E; Ejy.Thephoton com es through the x,-axis toward the electron, which is in
one state of the E y—level. T he charge distrdbution is accelerated up and down the x;axis in a
m otion of very low am plitude by the incom ing transverse electric eld. T he antenna pattem
of the electrom agnetic eld am itted by this oscillatory shaking of the electron is sim ilar to
the sam e distrbution in the B = 0 case: we nd maximum probability of photon em ission
In forward and backward scattering.

2.1 = E; Eg.Theongoing photon is absorbed by the E (—level electron and a resonance
n the E;-devel is form ed. In the excited level the electron oscillates up and down the x,—
axis; recall the H ; (x5 xg) factor in the wave function. T hus, the angular distribution of
the spontaneously em itted photons undergoes an abrupt change: there is now m axin um
probability of nding the scattered photons at the angles = 90 and 270

B efore going on, notice also that the photon energy values

S
'= m+ (@n;+ 3)eB +m? n, s n1= 0;1;2;

arespecial. If! = |, the contrbbution of the direct and Interference term s to thedi erential

cross—length is zero; the scattering is solely due to the exchange diagram . A s a function of
and < _, shows saddlepointsat ! =
a

14 ni *
3.E1 Ep< ! < ,.Theprobability ofresonance uorescence decreases w ith increasing
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! In this interval. N on—resonant am plitudes becom e m ore and m ore In portant and interfere
w ith the resonant one. There are two com peting e ects of the photon collision: wst, the
resonance uorescence induces an oscillatory m otion of the electron on the x,-axis; second,
the non—resonant am plitudes shake the electron up and down the x;-axis. Them ore to the
Jkft on the energy interval the m ore preponderant is the rst m ovem ent over the second.
Thus, 90 and 270 are favoured, although them axin a are attened throughout the interval
from left to right. It isam using to note that for these energies photons scatter out of electrons
n a Halldevice jast like the quasifparticle anyonic excitations in the quantum Halle ectdo
between them selves.

4. ! E, Eq. IfE! = ,,the angular distrbution is isotropic within one
part In a million. This is due to the perfect balance of the resonant and non-resonant
am plitudes in the direct scattering, leaving only the contridbution of the exchange graph; in
this bram sstrahlung there are no preferred directions. Beyond this point, the non—resonant
am plitudes are preponderant and the antenna pattem in therange ( < ! < E, Ej isas
ntheB = 0case. W hen ! = E, Eg, the next resonance is reached and a new change in
the angular distribution appear.

Below the pair creation threshold ! = 2m , this behaviour is periodically repeated. The
forw ard-Jackward and leftxight sym m etrdes, how ever, cease to be alm ost perfect for higher
valuesof dueto strongerquantum uctuations. Instead, = 0 scattering In the rstregine
and = ¢ in the second becom e dom inant. For lighter efective m ass, this behaviour is
reached before. Figure 2 show s plots of the di erential cross-ength as a function of for

= 0. In the second graph the e ective m ass has been chosen In such a way that the
threshold for pair creation occurs at values of for soft X ways. The = 2:35 angular
distrdbution of photon eam ission is due to pair annihilation and thus shows a m aximum at
= 0. Beyond this energy, the resonances are so short-lived that the angular distribution
does not change when they are form ed. Tt seam s that rather than two quantum m echanical
processes of absorption/em ission, a single resonant scattering takes place when ! > 2m .

There are also no changes In the antenna pattem, either in the saddle points ! = | orin
another type of saddle point reached when:
g
'!'=m+ (@2n,+ 3)eB +m?= ;2 n, = 0;1;2; (49)
In these last points there is no contrbution of the exchange diagram to i— . and only
a.

the direct graph contributes to a very weak light/X -ray scattering.

Num erical integration of the di erential cross-length provides us w ith the total cross-
length of scattering. A picture of the function + ( ) is shown in Figure 3. A s expected,
divergences appear at the values of that coincides with the Landau energy levels. In
contrast to the ordinary planar C om pton e ect, no Infrared divergence due to soft photons
arises In  ; because them agnetic eld supplies an infrared cuto .
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A Gamma M atrices and the E lectrom agnetic F ield in
3-dim ensional Space-tim e

The D irac (C 1i ord) alyebra in the 3-din ensionalM inkow ski space M 5 = R '# is built from
the three gamm a m atrices satisfying the anticom m utation relations:

£ 7 g=2 (50)
= 071;2 ; g =diagd; 1; 1)
and the hem iticity conditions Y= ° %, The tensors
;7 vty P 7 1< < 3 (51)

with respect to the SO (2;1)group, the piece connected to the dentity of the Lorentz
group In atland, om the basis of the D irac algebra, which is thus 2°-dim ensional. 1 and

o2 3= 1 ' 23] areregpectively scalar and pseudo-scalar ob Ects. isa threeector
but ' ? can be seen altematively as a antisymm etric tensor or a pseudo-vector, which
are equivalent irreducible representations of the SO (2;1)group. If we denote by the

com pletely antisym m etric tensor, equal to + 1(-1) for an even (odd) perm utation of (0,1,2)
and to 0 otherw ise, the -m atricesm ust also satisfy the com m utation relations:

=S50 i 1= (52)

The -m atrices are the Lie algebra generators of the spin(1;2;R ) = SL (2;R )group, the
universal covering of the connected piece of the Lorentz group and the irreducible represen—
tations of the Lie SL (2;R )group are the spinors. O ur choice of the representation of the
D irac algebra is as follow s:

where the ¢,a= 1;2;3 are the Paulim atrices.

T he canonicalquantization of the electrom agnetic el in (2+ 1)-dim ensions isequivalent
to the fourdim ensional case. W e shall follow the covariant form alismn of G upta and B keuler,
see [[J]. W e consider the Ferm iLagrangian density

1
L = > (@a (x))(@a (x)) (53)
wherenow a (x); = 0;1;2 is the threesvector potential. The elds equations are
2a (x)=0 (54)

which are equivalent to M axwell’s equations if the potential satis es the Lorentz condition
@ a (x)= 0.W eexpand the free electrom agnetic eld in a com plete set of plane wave states:

a x) = a’'x)+a &)
X 1 , .
= g=—— ,®)b®)e™ + _®)DH(EK)e™ (55)
K ZAIR
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Here, the summ ation is over wave vectors, allowed by the periodic boundary conditions in
A,with k% = %!k = K. The summ ation over r = 0;1;2 corregponds to the three linearly

Independent polarizations states that exist for each K. The real polarization vectors . (K)
satisfy the orthonom ality and com pleteness relations
& ®) R)= . i ris= 0;1;2 (56)
. K), RK)= g (57)
r
o= 1; 1= 2=1
T he equaltin e comm utation relations for the elds a (x) and their m om enta (x) =
~a (x)are
[a (x;0);a @%0)]= [ x;t);a &%H)]= 0
b (e ®%50)]= g P K (58)
T he operators b (K) and K (K) satisfy
h(k);k%/(]zo)]z r rs gpo (59)

and all other com m utators vanish. For each value of r there are transverse (r = 1), longi-
tudinal (r= 2) and scalar (r = 0) photons, but as result of the Lorentz condition, which in
the G upta-B leuler theory is replaced by a restriction on the states, only transverse photons
are obsarved as free particles. T his is accom plished as follow s: the states of the basis of the
bosonic Fock space have the form ,

h In., B In,, 66 )

T, Ky, (K2) o M )1/ &l (Ry) al, (K, )i al (K) Pi;
wheren, (Ry) 2 2" ,81i= 1;2; ;N and
a,K)Pi= 0, r= 0;1;2
de nes the vacuum state. To avoid negative nom states the condition
h i

a,®) ap®) jJi=0;8 K() hN,K)Ji=h N (K)Ji

is required on the physical photon states of the H ilbert space. T herefore, In two din ensions,
there is only one degree of freedom for each K of the radiation eld.
From the covariant com m utation relations we derive the Feynm an photon propagator:

O fa (x)a (y)gPi= thadD, x V) (60)
where 1 7
_ - 3 g ikx
Dy (x)= 27 dkk2+ ie (61)
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Choosing the polarization vectors in a given fram e of reference as

o (K) = = (1;0;0)

1K)= (0;~(K)) i~ (K) K=0 (62)
K k (kn)n

2 (K)= (O;Ej): (kn)y k2)i=2

it is possible to express the m om entum space propagator from  (61)) as

g
Dr (k) = K2+ 1
= Dop(k)+ Dyoe (K)+ Dpg (k) ) #(63)
3 1 ®) ®)+ nn N 1 k k kn)kk n + kn )
k244 P kn)2 k2 k2+ i (kn) k2

The st tem in (F3) can be interpreted as the exchange of transverse photons. The
ram aining two term s follow from a linear com bination of longitudinaland tem poralphotons
such that
0,02 2p ik x2

d“Ke i 00 1 1
Dpc (%)= - d’e ™ = g% = n— ); (64)
) ® 4 *®J

This term corresponds to the instantaneous Coulom b interaction between charges in the
plane, and the contribution of the ram aining term D . (k) vanishes because the electrom ag-
netic el only Interacts w ith the conserved charge-current density, [[J].
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Figure 1: Angular distribbution %T i— as a function of the scattering angle for several values
of : (@ Inthiscase,! < E1 E . b)! > E1 E g. (¢)! < E, E ( and the straight lne
corresponds to ! = ;) the rstsaddlepoint. (d) ! > E,; E o and thestraightlinefor ! = . (e)
! <E3 E gand nally (f) ! > Es E . In thiscase, = 0009 and Lt = 743 10 °an . We
have chosen the [0;2 ]intervalbecause the ! symm etry is not evident from the formula.
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Figure 2: The di erential cross-Jength distribution %T i— asa function of for = 0. (a) For

= 0009 and Lt = 743 10 an. (b)For = 09 and thesamelLry.
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F igure 3: Total crossdength LTT asa function of . = 0009 and Lt = 743 10 % an .
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