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A bstract

W e discuss classical and quantum aspects of the dynam ics of a fam ily of dom ain walls arising
in a generalized W essZum inom odel. These dom ain wallscan beembedded In N = 1 supergravity
as exact solutions and are com posed of two basic lum ps.
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Introduction

Currently the topic of supersym m etric extended ob fcts is extrem ely fashionable. Before the advent
of the new braneworld, however, only a few workers paid attention to the physicaland m athem atical
properties of super em branes of various din ensions. Am ong such pioneers, wem ention the work on
the cohom ological interpretation of the topological charges associated w ith these extended ob fcts by
J.A .de A zcarraga and collaborators, see [1]. R elevant contributions to the sub fct can be found also
in thework of M .Cvetic, S.J.Rey et al, 2]. In this paper,we o er a brief summ ary of our work on
a related topic -the dynam ics of BP S dom ain walls- to honor A dolfo, P rofessor and friend to several
of us from the Salam anca years circa 1977.

W e focus on a generalized W essZum inom odelw ith two N = 1 chiral super elds, rst discussed
by Bazeia et al. in Reference [3]. Slightly Jater in [4], it was shown by Shifn an and Voloshin that this
m odel adm its a degenerate fam ily of BPS dom ain walls. T he general variety of both non-BPS and
BPS solitary waves has been described in [5], studying the (1+ 1)-din ensional version of the systam .
M ore recently, Eto and Sakai, see [6], have discovered how to de ne a \local" superpotential in such
a way that the dom ain walls of the generalized W essZum Ino m odel ram ain exact solutionsin N = 1
(3+ 1)-din ensional supergravity.

A rem arkable feature of this supersym m etric system is the availability ofanalytic descriptions of the
dom ain walldynam ics along orthogonal lines to the \two"-branes. BPS wall/BPS antiwalldynam ics
have been discussed In [7], analyzing the energy density of non-BP S wall/antiwall con gurations. In
81, however, several of us unveiled the adiabatic dynam ics of BPS two-walls by studying geodesic
m otion in the m oduli space. The dynam ics inside the wall at low energy is ruled by the \e ective
action", see [9], govern ing the evolution of G oldstone bosons through the twobrane. A Ithough Lorentz
nvariance forbids dependence on the center of m ass of the wall, in our system with two real scalar

elds the e ective action depends on the relative coordinate that labels the distance between walls;
the inertia for G odstone bosons running either on distant or intersecting walls are di erent, sm oothly
varying from one to another.
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T he above results conceming the classical dynam ics of dom ain walls are based on a crucial pro—
perty: the degeneracy of the classicalm oduli space of dom ain walls. T he question arises as to w hether
this degeneracy survives quantum uctuations. Analyse of the onedoop uctuations around the wall
solutions in the \body" of the supersymm etric system reveal that repulsive forces, decaying expo—
nentially w ith distance, arise between the fundam ental lum ps, see [10]. H owever, a general theorem
warranting the dentity betw een the one-loop corrections to kink m asses and the anom aly in the central
charge ofthe N = 1 SUSY algebra, see eg. [11], tells us that at the quantum level wall degeneracy
occurs In the fully supersym m etric systam .

2 M oduli space of solitary waves in generalized

W essZum ino m odels

W e shall consider the (3+ 1)dinensional N = 1 supersymm etric W essZum ino m odel, where the
superpotential

4
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determm ines the interactions between the two chiral super eds!: 1(xo;x; ); 2(x0;x; ) . Here,

the fourwectorsx = (xO

In N = 1M inkow skisuperspace. istheonly (non-din ensional) coupling constant.
In our search for dom ain walls, we need to explore only the \body" of the theory, ie. we shall
focus on the zrst tem s of the G rassn an expansion of the elds and the superpotential: 1j _g =
1+ 117 2] =0 = 2+ 1 5. M oreover, the reality condition ;1 = 5, = 0 and the requiram ent
of ndependence of the (y;z) variables (din ensional reduction), 1(x%;x) = 1x";x); 2x%;x) =
2 (xO ;%x), lead us to the (1+ 1)-din ensional superpotential:

;) and theG rassman W eylspinors provide (non-dim ensional) coordinates
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T herefore, the dom ain walls of the originalW essZum ino m odelare in one-to-one correspondence w ith
the solitary waves (kinks) of the (1+ 1)-din ensional system , w ith dynam ics governed by the action:
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T he vacuum m oduli space, characterized as the set of critical points of W m odulo the intemal parity
symm etry group of the problem , contains the \two" points: (\1]1 = % ; Zl = 0), ( \1]2 =
. Vo 1
0 i = P2:).

2.1 The search for K inks

W e shall focus only on the topological sector connecting the V; vacua. G enerically, solitary waves
in other topological sectors are not BP S kinks; the problem of kink stability is studied in [12] from
a geom etrical point of view . The energy for static con gurations can be written a la Bogom oy,
resulting in:
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'W e shall use non-din ensional el variables and coupling constants throughout the paper in order to keep the
form ulas sin pler.



G ven a polynom ial superpotential such asW , the solutions of the rstorder equations
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are alﬁolute minina of E , usually referred to as BPS kinks that saturate the topological bound:
Er= _dW =3 (+1) W ( 1)].
From (3),the ow lines of gradW are denti ed as the solutions ofthe ODE :

T here is an integrating factor, j »j (2+1) 4 6 0, € 1,and the ow lines K ink orbits- are the
curves:
, 1 c |

1+72=Z+2—]2] ; 4)
wherec?2 (1 ;¢ = %l— 2 );l ) is an integration constant.

T hem eaning of these solutions can be sum m arized as follow s: therearetwomaximaof U ( 1; 2)
w ith the sam e height. K ink solutions which pass from one maxinum to the other depend on a
param eter, ¢, which m easures w hether the particle m oves through the bottom of the valley or m ore
along the sides on the curve (4). There is a critical value ¢® of ¢ w here the particle m oves as high as
possible; when ¢ increases beyond this critical value the particle crosses the m ountain and fallso to
the other side, see Figure 1.

ng potential (Jeft) Flow-lines: in the ranges c2 ( 1 ;c5) (middk

) (right).

Exactly at the critical value, the kink orbit starts at the point V1 and ends at the other point
~V2 ; this is in contrast to any other kink orbit for ¢ < ¢, which starts at V1 but ends in ~"1 .
T hus, there are two kinds of kinks living in di erent topological sectors of the system : \link" kinks,
Interpolating between di erent points of the vacuum m oduli space, and \loop" kinks, Jpining vacua
denti ed as the sam e point of the vacuum m oduli.

To nd the kink form factors, one plugs formula (4) into (3) so that the problem is reduced to
soking the quadrature:
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2.2 Special cases: Liouville system s

Explicit analytic integration of (5) in tem s of elem entary functions is only possible if = 2 and
= % . The reason is that the analogousm echanical problem that one needs to solve in the search for

one-din ensional solitary waves is an integrable Liouville system . Also, when = 3;4;% and %, the

quadrature can be found analytically, but in these cases one is forced to dealw ith elliptic functions.

W e present the analtic outcom e of nding I and its fnverse I ! in the two Liouville cases. In
1

Figure 2 we show kink pro les for severalvaluesofband = 3.
=2
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where ; = 0;1,and a 2 R is the center of the kink. T he param eter b is related to the integration

constant as ollow s: b= Pcz—cm,sothath (1;1 ).
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Again,a 2 R is the kink center,bjsre]atedtocasb2= 1911:%2 0;1), ; = 0;1.

0.6 0.6 /u/ \
oaf ST 1574 Nt /o /\,< _________
4 2 OIZ, 2 4 4 -2 G.'é, 2 4 4 -2 ok 2 4 o,
77777777777 _9./4 . 64 777777__1/-/0/11 0.4
. 1 , pP— —
Figure 2: Solitary waves for = 3 corresponding to: (a) b= 0, (o) b= 035, (c) b= 1 and (d) b= 30
2.3 M odulispace of BPS kinks
To elucidate the physicalm eaning of the b param eter, we focus on the = % case because it provides

an analytical description of the generic behaviour. In Figure 3, pictures of the energy density are
depicted for the sam e kinks shown in Figure 2. Note that for ¥ > 1 the energy density presents two
um ps, whereas if ¥ < 1 the density is of the usualbellshaped form . A Iso, because changingbto b
In the solution is equivalent to changing , to » and the energy density is not sensitive to the sign
of b, it is sensible to describe the m oduli space of kinks as the halfplane param etrized by the (a;b’)
coordinates: a xes the center of m ass of the two lum ps, and b’ can be interpreted as the relative
coordinate that m easures the distance between them .

T his qualitative description can be precisely established In an analytic fashion by looking at the
m axin a of the energy density EX [x;a;b]. These can be found through a classical analysis, applying
the Cardano and V jeta form ulas and R olle’s theorem . W e obtain the follow ing conclusions:
1. IfK¥ 2 [0;1],x = 0 is the only critical point (m axinum ) of EX and EX [0;0;b]= ﬁ . T herefore,

I m easures the height of EX i this regin e w here the two lum ps are aggregate.

2. I 2 (1;1 ),x = 0 isam ininum .B;cause@@E—:[x;O;b]z T P [coshx ], where Ps [coshx ] is a
third order polynom ialw ith realroots r(?),see Bl,wedentify x = m )= arccosh[l+ r(F)]
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Figure 3: Energy density EX [x;0;b]lPr (a) b= 0, o) b= " 05, (c) b= 1 and (d) b= 30.

as the two m axin a of EX obeyig to the peak of the energy density of the two lum ps. ¥ m easures
(In a highly non-linear scale set by the know n function r(bz)) the distance between um ps.

3 Low -energy classicaldynam ics of BP S dom ain walls

In this section, we recover the (3+ 1)-dim ensional point of view where our kinksbecom e dom ain walls.
The ain is to study the low-energy classical dynam ics of these BP S topological walls, which can be
understood as com posed of the two basic Iink walls. W e shall focus on the = % case, for which

analytical form ulas are available.

3.1 Adiabatic m otion orthogonal to the wall

W e rst analyze the m otion orthogonal to the wall. In the case of walls grown from kinks of a single
real scalar eld, this analysis is not necessary because Lorentz invariance takes care of the m atter.
Besides the a coordinate, describing the m otion of the wall center ofm ass in the orthogonal direction
ruled by Lorentz symm etry, there is another param eter in the m oduli space of dom ain walls: the
relative coordinate b. T he dynam ics of the m otion on the b-coordinate along the x-axis is non-trivial;
the dependence of b on tim e precisely characterizes how the two basic walls Intersect and split on their
way along the x-axis.
Starting from the Ham iltonian of the reduced system ,
Z K K K K Z
H1; 2i2i=2l= dX%@l@l @2@20+ dxE  ;

we apply the adiabatic hypothesis of M anton [13] to study the low -energy dynam ics of topological
defects as geodesic m otion in the m oduli space. T he an ooth evolution on the m oduli hypothesis

F%x)= ¥ xiamibm)l E%x)= 5§ xa);b)]

is plugged into the action and, after integrating out the x variable,we nd that S becom es the action
for geodesic m otion in the kink m oduli space w ith a m etric inherited from the dynam ics of the zero
m odes:

7
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T he com ponents of the m etric tensor are: g,; (@;b) = %; dap(@;b) = 0; gp(a;b) = %h(b), w here
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A s expected, the m etric is Independent of the center of m ass a. D espite appearances, the behaviour
of the m etric is reqular in the transition of ¥ from lower to higher values than 1. For a m etric of the
form given, the geodesics are easily found: they are m erely straight lineson thea bplane:
Z
0 0 P —
a(t)= kit+ ks ; b(t) = kit+ k; = db hi(b) : (8)

.

ki,ko, kf and kg are Integration constants. It is worthw hile to use (8) to express the geodesic orbits
n the kink space:
P — k? 0
b= db h()= a+ - Poo1T i 2=k  1ke 9)
1

T here are two m ain types:

Choosing 1 = 0 b= constant in (9) we obtain geodesics descrlbing free m otion of the center of
m ass w ithout any variation in separation of the two lum ps, see F igure 4.
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Figure 4: Energy density evolution along straight geodesic lines w ith b= constant: (a) b= 09, a sihgle um p is
moving (b) b= 10, synchronousm otion of two Ium ps. T in e runs from left to right.

Ifwe choose 1 6 0 the geodesics also describe a non-trivialm otion of the relative coordinate. A
MATHEMATICA num ericalpltchoosing 1= 3, 1= 2, 1= lwhereas , is xed by settingb= 0:1
att= t—i is shown In Figure 5(a). C learly, these geodesics describe exact solutions at the adiabatic
lin it for intersecting walls. T here is analogy w ith the scattering of solitons in the sine-G ordon m odel,
although, in this case, shapepreserving collisions only occur in the topological sector w ith a loop
kink. A s com pared with sin ilar phenom ena, we nd hybrid behaviour in our system between the
sineG ordon and (4 )2 m odels.
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Figure 5: (a) Evolution of energy density along a generic geodesic curve. (b) P Iot of the fiinctions £2 (b) (up)
and f! (o) (down).



3.2 E ective action for intersecting walls

The e ective action for dom ain walls m odeled on kinks w ithout intemal structure is derived by ex—
panding the action around the classical solution and taking into account only the zero m ode in the
direction orthogonal to the wall, see [9]. W e proceed along the sam e way to unveil the e ective action
induced by the zero m odes for intersecting walls. T here are two zero m odes in the direction orthogo-
nal to these com posite two-dbranes. T he collective coordinates corresponding to these zero m odes are
precisely the coordinates of the kink m oduli space.

The Hessian driving the sm all uctuations orthogonal to the dom ain wall is

’ = £ 6sinh’x | __Gbsinhx _ 1
2 > -
K = " o (cosh x+ 1) (cosh x+ )2 A (10)
__ 6bbsinhx a2 3K 3enn?x 1
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and by expanding the (3+ 1)-din ensionalaction restricted to the B ose sector around the kink solutions

1650 = TR 2pgably (it 2ty = 3K Zkazbly 5 (xit)

up to second order in sm all uctuations we obtain:
Z

N ote that the m etric found in the previous subsection in plies that the (non-dim ensional) constant
energy per unit of area, the surface tension ? of thewall, s T = % .

Because the solutions only depend on x,we now attem pt to separate variables

1(x5y52it) = 21 (X)X 1 (yizit) ; 2(X5y5zit) = Zo(x)X 2 (yizit) ;
and because the spectrum of the (1+ 1)-din ensional H essian has a m ass gap # ,at low energies the
only contribution to Z com es ﬁ:oné the zero m odes. T herefore, the e ective action is
Z . —
< X2 £ (b)

Serr= T dtdydz 1+ @X )P (@,X5)°  (@,X 4)° ; (11)
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w here the functions fl(b) and fz(b) are de ned from the zero m odes:
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A s In the case of the m etric tensor com ponents these integrals are independent of the center of m ass
a and can be perform ed by changing variables to u = ex+al.
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Again we obtain a regular answer: see the graphics of f1(b) and fz(b) in Figure 5(b). Fomula (11)
tells us that the two G odstone bosons X 1 (t;y;z) and X 5 (t;y;z) living inside the wall feel a di erent
tension that are functions of the relative coordinate. T he dependence of the surface tensions on how
far or how close the two basic um ps are follow s the graphics in Figure 5(b).

2y sing full din ensional variables, where the superpotential isW (~) = L f a’ .o+ 2 %, we would have

3 2
obtained T = 2a’ , see [10].



4 One-loop renomm alization of the surface tension: induced repul-
sive forces
Do quantum e ectsm odify the picture that we have described? Is the dynam ics of dom ain walls in

the quantum world di erent? To answer these related questions, we develop a sem iclassical analysis
of the dom ain walls in the B ose sector of the generalized W essZum ino m odel.

4.1 TK1 kink m ass in the generalized W essZum ino m odel

W e startw ith the one-com ponent topologicalkink arishgwhen c= 1 . Thesecond-order uctuation

operator around the TK 1 kink is a \diagonal' m atrix-valied Schrodinger operator:
|

L+ 4 6sech’x 0

K = dx 12
0 &£, 2 ( + 1)sech®x (12)

T here are contributions of the \tangent" and \orthogonal" uctuations to the sam i<classicalkink m ass:
M (TK1)= M K 1)+ M K 2)

41.1 One-loop correction to the TK 1 kink m ass

W e shallapply the generalized DHN form ula
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that was derived in [10]. T he follow iIng conventions are de ned:
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(+1)
cosh?x

whjchg'wevf=4,vll(x)= 6 ,v§= 2ar1d\/22(><)=

s . cosh?x
generalized W essZum no m odel.

For the tangent uctuations, we recover the old result of D ashen, H asslacher and N eveu:

In the case of the TK 1 kink of the

!
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T he contrdbution of orthogonal uctuations ism ore di cult to com pute. T here are even and odd

phase shifts,
1 Im (T R
. (@) = ~arctan (T (@) @) ;
4 Re(T (@) R (@)




to be read from the tranam ission and re ection coe cients

(+1 i@ (i) (+1 i) (i) ()
T = ; R = -
@ T i) ( i) @ T+ ) ( ) ( @

T he spectrum ofK; ,
( . . 5 _ )
[ i= 0710511 ]fl i= i2 l)g [ f& + 9o2Rr* if ZN
Spec(Kz2)= 1l i . LS 5 _
i=0;1;:; 1L-417 l( l)g [ f! = = gSl: :% [ fq2 + quR+ if 2N
show s di erent pattems according to whether is an integer or not; In the st case the re ection
coe cient is zero and there is a halfbound state. In any case, one needs the form ula
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= 2Re[ (i9) ( + dg)]+ (14)
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In Ref. [10],a Tablk iso ered with theresult for M (TK 1) and values of between 04 and 3:3.
It is also possible to apply the formula

8 9

M ®)=~m[ o+ Dp,] X2 mg 1 K 1 2 ; (15)
§Dn0= [an ka K) [n2r1 2,a] ; n02N§
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w hich was derived using zeta function reqularization m ethods -as those developed In [14]and applied
to supersym m etric kinks-in R eferences [15]and [16],to nd M (TK 1). Here, j= 2 is the num ber
of zerom odes, [n l;vg ]are incom plete G amm a functions, and [a, Ls (K ) are the Seeley coe clents
of the high—tem perature expansion for the heat kemel of the K operator. Figure 6 (left) the good
agreem ent between the exact and the asym ptotic result for > 1.

4.2 Sem iclassicalm asses of kink fam ilies

W e now try to com pute the one-loop correction to the classicalm ass for the whole kink fam ily

This task is easy if = 2. Although the fam ily of Schrodinger operators governing the sm all
uctuations around the TK 2 kinks is non-diagonal,
0
42 snh? 2x )+ 7 1 P——— snhx)
K (o) = @ @zt 0 (cosh (2x)+ b)2 2 12 1(cosh(2x)+ N .
B 1P {_sinnex) &, psnn’@orE 1, !
(cosh (2x )+ b)? dx? (cosh (2x )+ b)?
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Figure 6: Oneloop correction to the one-com ponent topolgical kink (TK 1) mass in units of ~m . , DHN
formul . 2, asym ptotdc series (keft) The One-loop Quantum M ass Correction in the cases = 15, = 20

and = 25 (right)

a rotation of 45° in the jntemalspaceRz,el = p%(”l+ X)), e = pl—z(“l X,), show s that the system

isuncoupled. W riting ¥ = 1% + ,*,,we have that:
2 2
1 d 1 d 1 1
T _2= = -1 sz =2 ; U_,=14 f - + 4 % -
2 dx 2 dx 8 8

and the degenerate kink fam ily is given as:

1 1
Trx 2 Xjar;azl= (—Zp%tanh(X+ ap) + —Zp%tanh(X+ az ™

T he altemative form of the H essian is:

@, e 0
K (a;;a5) = dx? cosh? (x+ a1 ) ,
’ d 6
0 dx? +4 cosh? (x+az)
Therefore, M (TK 2 [a1;a2]) = ~m (15‘1—§ %). The kink degeneracy is not broken by quantum uctu—

ations at the one-oop level.
For generic  there are no analytical solutions available. W e can however solve the rstorder
equations (4) by standard num ericalm ethods and setting, for exam ple, the \initial" conditions:
c 2 1

2000 —3200)3 ==

0)=20 ;
1(0) 2 2

2(1 )
T he polynom ial kink solutions thus generated allow one to com pute the coe cients [a , ks (K ). The
results obtained via this num erical procedure are shown in Figure 6 (right). There is a breaking of
the degeneracy for values of c close to ¢® if 6 2. Them ass correction is Jower when the two basic
um ps are far apart; henceforth, repulsive forces are induced by the quantum uctuations.

The = % case provides us w ith a qualitative understanding of what is going on. T he plot of the
diagonal com ponents of the potential in the Schrodinger operator (10) for several values of ¢ show s
that the potential in the second com ponent starts to be repulsive at the value of ¢ where the two

um ps start to split.
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Figure 7: D iagonal com ponents of the potential for =30, c=-1, c=0.1, c= 0.245 and c=0.249.
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