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Them ass shift induced by one-Jloop quantum

uctuations on selfdualANO vortices is com puted

using heat kemel/generalized zeta function regularization m ethods.
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1. In this note we shall com pute the oneloop m ass
shift for Abrikosov-N ielsen-O lesen selfdual vortices in
the Abelian H iggs m odel. Non-vanishing quantum cor-
rections to themass of N = 2 supersym m etric vortices
w ere reported during the last year in papers El] and E].
In the second paper, it was found that the centralcharge
oftheN = 2 SUSY algebra also receives a non-vanishing
one-loop correction w hich is exactly equalto the one-loop
m ass shift; thus, one could tak about one-loop BP S satu—
ration. Thislatterresult tsin apattermn rstconctured
n E] and then proved in 4] for supersym m etric kinks.
Recent work by the authors of the Stony Brook/V iena
group, E ], unveils a sin ilar kind of behaviour of super-
symm etric BPS monopoles in N = 2 SUSY YangM ills
theory. In this reference, how ever, it is pointed out that
(2+ 1)-din ensional SUSY vortices behave not exactly in
the same way as their (1+1)- and (3+ 1)-din ensional
cousins. O ne-loop corrections in the vortex case are In
no way related to an anom aly In the conform al central
charge, contrarily to the quantum corrections for SU SY
kinks and m onopoles.

W e shall focus, how ever, on the purely bosonic A belian
H iggsm odeland rely on the heat kemel/generalized zeta
function reqularization m ethod that we developed In ref-
erences E 1, B] and EJ to com pute the one-loop shift
to kink masses. Our approach pro ts from the high-
tem perature expansion of the heat function, which is
com patible w ith D irichlet boundary conditions in purely
bosonic theories. In contrast, the application of a sin -
ilar regularization m ethod to the supersym m etric kink
requires SU SY friendly boundary conditions, see [9]. W e
shallalso encounterm oredi culties than in thekink case
due to the jum p from one to two spatialdim ensions.

D e ning non-din ensional space-tin e variables, x !
eivx ,and eds, ! v =v(1+1,),A ! vA ,from
the vacuum expectation value of the Higgs eld v and
the U (1)gauge coupling constant e, the action for the
Abelian Higgsm odelin (2+ 1)-dim ensions reads:

withU( ; )= 3( 1. = z isthe only classi-
cally relevant param eter and m easures the ratio betw een
the m asses of the H iggs and vector particles; is the
Higgs eld selfcoupling. For = 1 one nds selfdual
vortices w ith quantized m agnetic ux g = %l, 127z,
andmassMy = 3 asthe solutions of the rstorder

equations D iD, =0,F, %( 1)= 0,or,
(@ 1+A1 2) (@ o2 A, 1)=0 (1)
(@ 1+ Az 2)+ (@1 2 A1 1)=0 (2)

1

Fio 5( T+ 2 1)=0 (3)
w ith appropriate boundary conditions: $1 =1,
Di 3, = (@  iA;)j, = 0, thatis, F, = e
and A, = 1 @ F, . In what ©lows, we shall fo-

cus on solutions w ith positive 1: ie., we shall choose the
upper signs in the rstorder equations.

2. L’-ntegrable second-order uctuations around a
given vortex solution are still solutions of the rstorder
equations w ith the sam e m agnetic ux if they belong to
the kemel of the D irac-like operator,D (x¢) = O,m]
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where ' (%) = (a1 (x)jaz(x);’1(x);"2(x)). We denote
thevortex solution edsas = 1+ 1 ,andVy,k= 1;2.
A ssam bling the anall uctuations around the solution

(%) = )+ " (x), A ()= Vp(x)+ ax(x) In a four
coluimn (%), the rst component of D gives the de-
form ation of the vortex equation (3), whereas the third
and fourth com ponents are due to the respective defor-
m ation of the covariant holom orphy equations (2) and
(1). The second com ponent sets the background gauge
B(aki'; )= @ax ,’1)on the uctuations.
T he operators
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arede ned asH " = DYD -the second order uctuation
operator around the vortex in the background gauge-and
s parthnerH = DDY.

One easily checks that dim kerD¥ = 0. Thus, the
din ension of the m oduli space of selfdual vortex soli-
tions w ith m agnetic charge 1 is the index of D : IndD =
din kerD dimkerDY. We follow W einberg ], us—
ing the background instead of the Coulom b gauge, to
brie y determ ine .ndD . The spectra of the operators
H* and H only di er in the num ber of eigen-functions
belonging to their kemels. For topological vortices, we
do not expect pathologies due to asym m etries between
the spectral densities of H* and H and thus indD =
Tre Tre H | See m,m]fbrthecaseofChemf
Sin onsH iggs topological vortices. p

The heat traces Tre " = tr , dExKy (2% )
can be obtained from the kemels of the heat equations:

@
—I+H Ky

a ey; )= 0
Ky (v;00=1 @ y)
Bearing in m ind the structure H = 4 T+ I+

Q, ®)@+V (¢),onew rites the heat kemels In the form :
Ky @&ivi )=C (x;y; Ku, ®iy; )
& v3
with C (%;%;0) = I. Ky, (xjy; )= 5— I e’

is the heat kemel for the K lein-G ordon operator H o =
( 4 +1)I,which isthe second-order uctuation operator
around the vacuum in the Feynm an—'t H ooft renomm aliz—-
able gauge, the background gauge in the vacuum sector.
C (x;v; ) solve the transfer equations:

X
— I+ k73&( 4 T+

61 o)
@ el

+Q, &G +V C (y; )=20 4)
ghe high-tem perature expansions C (x;v; ) =
izocn(x;y) ", ¢ (;x) = I, trade the PDE {@) by

the recurrence relations

1
MI+ (xx  vk)(@I EQk )k, (y) =

=4I O, & V I ;&) 5)

2V @y

4 +2(3 F+ 1)+ Ve

am ong the coe cientswithn 1. Because

% x4 2
H _ e 2 . n _
Tre = — d*x ey L, (%5%) =
n=0a=1
e % x4
_ n
= 1 1. H ) 6)
n=0 a=1
and ¢ (x;%)= V (x),wecbtain in the = 0 -n nite

tem perature— 1im it:

1
jndD:4—‘a: gE") g@E ) = &FxVix)=21

the din ension of the selfdual vortex m oduli space is 21.

3. Standard lore in the sam iclassical quantization of
solitons tells us that the one-loop m ass shift com es from
the Casin ir energy plus the contrbution of the m ass
renom alization countertems: M ¢y = M § + M &,
T he vortex Casin ir energy w ith respect to the vacuum
C asin ir energy is given form ally by the form ula:

h =
STr HT 2

i
STr(Hy) ;

=

m
C
M=

N

wherem = ev is the H iggs and vector boson m ass at the
criticalpoint = 1. W e choose a system of units where
c = 1, but ~ has dim ensions of length mass. The
\super traces" encode the ghost con‘a:fblutjon to suppllfess

the pure gauge oscillations: STr (H* )? = Tr (H")?

Tr H® : and STr(HO)% = Tr(Ho)% Tr HS . The
trace for the ghosts operators is purely functional: ie.,
H® = 4 +3 F,HS = 4 +1 are ordinary -non-
m atricial- Schrodinger operators. The star m eans that
the 2n zero elgenvaluesofH ¥ m ustbe subtracted because
zero m odes only enter at two-loop order.

In a m inin al subtraction renom alization schem e, one

adds the counterterms LS., = ~mI §F 1 ,L2%. =
2
s mIA A with I= S5 P—=— to cancel the di-
K R+ 1

vergences up to the one-loop-order that arises In the
H iggs tadpole and two-point function, and in the two—
point functions of the G oMdstone and vector bosons. F i-
nite renom alizations are adjusted in such a way that
the critical point = 1 is reached at rstorder in the



loop expansion. T herefore, the contribution of the m ass
renom alization counter-term s to the vortex m ass is:

M g= Mo+ MIo=-~mI (V)
. _ 2 . 1
where ( V)= dx°[1 FF) VeVl

W e regularizeboth M § and M & by meansofgen—

eralized zeta functions. From the spectral resolution of
a Fredholm operatorH , = , ,,onede pes the gener-
alized zeta function as the series y (s) = L, which
is a m erom orphic function of the com plex var:iabn]e s.We
can then hope that, despite their continuous spectra, our
operators ts in this schem e, and w rite:

n

. 2 sn
C — - -
My (s) = 2 o2 ge (8) 4o (8) 4
o
+  me(s) m,(8)
M E(s) = —— 5, (8) (Vi)
v (8) = ) H, (S rVk
m?L? (s 1) .
where g, (s) = e and is a param eter

of Inverse length din ensions.
. C R _ .
ling, 54 $(s), M ¥ = Im
e S RACIE
4. Together w ith the high-tem perature expansion the
M ellin transform of the heat trace show s that
Z
1 ® 0 1
(s)= — d

(8) _, o (s)

Note that M § =

1 M B(s)and I =

1 1 =
s! st 3 \%

By (s)

is the sum ofm erom orphic and entire By (s)-functions
of s. Neglecting the entire parts and keeping a nite
num ber of term s Ny In the asym ptotic series for y (s),
we nd the follow ing approxin ations for the generalized
zeta functions conceming our problam :

Xo x4

N s+n 1;1]
g+ (8)  m,(s) ChEka(HT)
4  (s)
n=1la=1
Xo o Is+n 1;1
e (8)  pe(s) ’ G HT) ;
’ n=1 4 <S)
R, ,
+n 1;11= d stn <2g is the incom plete

Gamm a function, with a very well known m erom orphic

structure. C ontrarily to the (1+ 1)-din ensional case, the

value s = % for which we shall obtain the Casim ir en—
ergyjsnotapo]%.
Writhg o, = o b ') o (HC), the contri-

bution of the rst coe cient to the Casin ir energy

2 S
(1)c ~ [s;1=2]
M s)! = — o —
v BTS2 T g
is niteatthes'! % Iim it
(1)c ~m [ 1=2;1]
M 1-2) " o (V) ———=
v ( ) 4 ( ’ k) (1=2)

and exactly cancels the contribution of the m ass renor-

m alization counter-term s -also nite for s = %—:

R , " . [s 1;1]

M § (s) e ( N\L) O
R 4 , ~ . [ l=2;11_
MOJA=2) s )

Subtracting the contribution of the 21 zero m odeswe -
nally obtain the follow ing form ula for the vortex m ass
shift:

"w #
~mo ;11 X° s+n 1;1]
2 sl z (s) n=2 4 (s)
n #
~m 1 Xo
= 21 [ =11+ G I 3=2;1] (7)
16 2 2 s

5. Com putation of the coe cients of the asym ptotic
expansion is a di cult task; eg. the second coe cient

+

+ 1 + l + +
G ()= %4 Vo o(x)+ EQk ()0, =)WV (%)

1 + + 1 + + 1 +
2@ IV )+ 2Oy BV (x)+ SV F(x)

D e ning the partial derivatives of the coe cientsaty =
% as

@ 17 2o Iy (xy)
y! x @Xll@xzz

w e w rite their recurrence relations

k+ 1 + o+ l)(l;z)c}i-fil<x)=("1+2;2)C]i-p(x)+(1;2+2)C;—P<x) ]
Xt X1t Xe r+ tn 1] r+ tq 1]
1 2 ¢ Q1(1 r+1; 2 t)cjp( ) + ¢ Q2(1 T 2 tJrl)ij(X) +
r t k r t k
=1r=0t=0 r t @xT@x3 @xT@x3
X% Lxe £+t 1
+} . 1 1 @ Ql (1 1 ;2 t)cjp (%) +
r t  exiexs k+l

=1 r=0 t=0



X % 1x: + £~ 13
:_L 2 1 e* Q2 (1 ti2 1 r)~7Jp
* z t  @xt@xt Crorr )
=1 r=0 t=0 r 1%
X Xz X1 r+ tyr ij
u< 1t 2 r)ij(x)
t  r exiexs K

j=1r=0t=0

starting from ¢ 7 c P (x).

We notige that [o ko (x) = O0)c P (%) and thus
@)= | &xle ki(x).

T hings are easier ifw e apply these form ulae to cylindri-
cally symm etric vortices. The ansatz (r; ) = f (r)et
and rA (r; )= 1 (r) plugged into the wstorder equa-
tions leads to:

2l 2y S Zeon @) e

rdr 21 dr r

Solutionsof (@) w ith the boundary conditions rJljm1 f(r)=
1, rJ,jm1 (r) = 1, zeroes of the H iggs and vector eldsat
the orjgfﬁl,f (0)= 0, (0)= 0,and integerm agnetic ux,
eg = ~1 @A =2 1,can be found by a m xture of
analytical and num ericalm ethods [13]. Henceforth, we
shall focus on the case 1= 1.

The heat kemel coe cients depend on successive
derivatives of the solution. T his dependence can increase
the error in the estin ation of these coe cients because
wehandle an Interpolating polynom ialas the num erically
generated solition, and the derivation of such a polyno-
m al introduces inaccuracies. It is thus of crucial in —
portance to use the rstorder di erential equations (&)
in order to elin inate the derivatives of the solution and
write the coe cients as expressions depending only on
the elds. The recurrence form ula now gives the coe —
cients of the asym ptotic expansion in tem s of £ (r) and

(r),eg.:

x4 2 (r)? )
[c1 hi(x; )= 5 > 5f (r)
. r
i=1
x4 1
2hilr; )= ——B7r*+ 4 (©)* 8r® 7T+ 8r® £(r)*+
) 1214
i=1
+27c £(@)f + 8% (r) 1 l4f(x)® +
+8 ()2 2 3rf+ 9rff(r)® ]
X4 1 6 2 3 2
[c3 hi(r; )= ——[ 4 (r) 28r° (r) 2+ 5f(r) +
, 120 ¢
i=1
+4 (r)? 20+ 9r® + 32r% £(r)? 2r? (r) 4 16+ 9r® +

2

+ 32+ 331r% f@)+ 57f £+ (x) 256 144r?

117r% + 212 56+ 18317 £(r)®+ 99r* £(r)* + r* ( 16+

+151r% + 392 321r° f(r)®+ 20+ 199r% f£(r)

2912 £(r)® ]

Plugging In these expressions the partially analytical
partially num erical solution for £ (r) and (r), it is pos-
sible to com pute the coe cients -also for the ghost op—
erator via sin ilar but sin pler form ulae- and integrate
num erically them in the whole plane. T hus, orm ula (1)

M ¢ 1 Xe 3 1
= B G [ =+ n;1] =
~m 16 2 2

n=2

provides us w ith the one-loop vortex m ass shift, where
we recall that

X4
G = hla @)

a=1

ch (H®)
The results are shown in the Table I:

TABLE I:Seely Coe cientsand M ass Shift

n Pj.izlqiqi(HJ') cnH®) No My (Ng)=~m
2 30.3513 2677510 2 -1.02814
3 13.0289 0270246 3 -1.08241
4 4.24732 0.024586 4 -1.09191
5 1.05946 0.001244 5 -1.09350
6 0207369 0.000013 6 -1.09373

The nalvalue for the vortex m ass at one-loop order is:

v 2
My =m < 1:09373~ + o(~7):
T he convergence up to the sixth order in the asym ptotic
expansion is very good. W e have no m eans, how ever, of
estin ating the error. In the caseof ( )5 kinkswe found
agream ent between the result obtained by this m ethod
and the exact result up to the fourth decim al gure, see
a7 .
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