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A bstract

In this work we dentify the m anifold of solitary waves arising n a three-
com ponent scalar eld m odel using the Bogom ol'nyi arrangem ent of the energy
functional. A rich structure of topological and non-topological kinks exists in
the di erent sub-m odels contained in the theory.

1 Introduction

T he search for solitary waves is an ongoing topic in both M athem atics and Physics
because thiskind of quasisoliton plays an in portant r&le in a huge num ber of branches
ofnon-linear science. In F ield T heory, they usually appear in m odels that support spon—
taneous sym m etry breaking, the m ost prom inent exam ples being kinks/dom ain walls,
vortices, and m onopoles [1l]. Starting w ith theories that involre a high num ber of elds,
the usual procedure followed to investigate the existence of solitary waves “topological
defects- is to obtain an e ective scalar el theory, In posing severe restrictions on the
original theory. In m ost cases, one is com pelled to pursue an e ective theory that w ill
corresoond to a single scalar eld m odel, w here the existence of topological defects can
be checked easily. T he reason for this is the good-understanding of this kind of systam ;
as paradigm atic exam ples, the wellknown kink and soliton in the one-din ensional *
and sine-G ordon m odels should be noted. Both kinds of solitary wall can be thought
of as thick walls, the topological defects in a three-din ensional pergpective. N everthe-
Jess, the general fram ew ork is that the e ective theory depends on several scalar elds
and thus the truncation m ay involve an im portant loss of inform ation conceming the
presence of topological defects and the structure of spontaneous sym m etry breaking.
It is therefore desirable to Investigate the general properties of dom ain wall solutions
In a multiscalar eld theory.
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In (1+ 1)din ensional eld theory, solitary waves are non-singular solutions of the
non-linear coupled el equations of nite energy such that their energy density has
a spacetin e dependence of the form : "(x;t) = "(x vt), where v is the velocity
of propagation. In relativistic theordes, Lorentz (or G alilean) invariance provides all
the kink solutions from the purely static ones. The search for niteenergy static
solutions in onedin ensional eld theordes is tantam ount to the search for nite action
tra fctordes In a natural dynam ical system where, the x-coordinate plays the rdl of
tin e; the eld com ponents transm ute to positions in the con guration space, and
the eld theoretical density energy becom es m inus the m echanical potential energy.
No wonder the di culties nvolved In nding kinks In m ulticom ponent scalar eld
theories: one faces m ultidim ensional m echanical system s where Integrability is not
ensured.

At a very early stage in the (pre-)history of the sub gct, a (1+ 1)din ensional eld
theoreticalm odel w ith two real scalar elds becam e relevant. M ontonen and Sarker—
TrullingerB ishop proposed the deform ation of the O (2)-inear sigma m odel with a
potential energy density of U ( 1; 2)= 3[( 1+ 5 1)+ ? 2], see . twasclear
that the zeroes of the potential are two points and hence the hunt for kinks started
inm ediately! . U sing a trialorbitm ethod in the associated tw o-din ensionalm echanical
system , Rajfaram an denti ed two di erent topological kinks Ppining the two vacua
of the system that live on a straight line and halfellipses respectively. Only one
com ponent of the scalar eld is non—=zero in the rst case, but the two-com ponents
di er from zero in the second kind of solution; for this reason, these solitary waves are
referred to asTK 1 (straight line) and TK 2/TK 2* (upper/low er halfellipse) kinks in the
literature that appeared later. Rafaram an also found one kink associated to a closed
tra ctory starting from and ending at the sam e point of the the vacuum orbit. M agyari
and T hom as [3]realized that them echanical system associated w ith theM STB m odel
is integrable -there is a second invariant in involution with the m echanical energy—
and usad this fact to show that there exists a whole fam ily of two-com ponent non—
topologicalkinks (NTK 2),all of them degenerated in energy with Raaraman’sNTK 2
kink; explicit kink form factors were only described by num erical m ethods.

Them ain breakthrough in analytically nding all the solitary waves of theM STB
m odel em erged in R eference |4]. Tto discovered that the m echanical problam was not
only Integrable but that itwasH am ilton-Jacobi separable by using elliptic coordinates.
In this setting, he showed the analytic form ulas for the kink orbits and the kink form
factors, unveiling the m athem atical reasons for the previously obsarved striking kink
sum rule. Imm ediately, the stability of this degenerate kink fam ity was questioned;
application of the M orse index theorem solved thisproblem in [9]. A parallelw ith the
M orse theory of geodesics was established som ewhat later In Reference [6]. Thus, a
clear connection arose between solitary waves, their stability, and dynam ical system s.
In Reference [/], several of us showed that the M STB m odel is not unique in this
respect; two (1+ 1)-din ensional eld theoretical m odels with two real scalar elds —
referred to asmodel A and B in that paper- have m anifolds of solitary waves w ith

M e shall refer to the zeroes of the potential as vacua throughout the paper, anticipating their
role In the quantization of this classical eld theory. A lso, because these tw o points are related by the
Intemalsymm etry group Z, Z, generated by 1 ! 1 and 5 ! 5, we shall som etin es refer to
this set as the vacuum orbit.



sin ilar structures. To nd the analytic expression for the kinks of m odel A , we were
prom pted to solve an integrable dynam ical system classi ed as Liouville Type I, see
8]. The system belongs to the sam e class as that found in the M STB m odel -the
two-din ensional G amier system [9} but there are three di erences: (a) the potential
energy density is a polynom ial of sixth order in the elds (instead of fourth); (b) the
vacuum orbit has ve points (instead of 2), and (c) there are m any m ore stable kinks
than in theM STB m odel. M odelB is characterized by a fourth-order potential energy
density in the two scalar elds. The main feature, however, is the need to solve a
Liouville integrable system of Type III, ie. Ham ilton-Jacobi ssparable in parabolic
coordinates. The vacuum orbit has four points and there are m anifolds of stable and
unstable kinks.

In recent years, all this work has proved to be fruitful in the fram ew ork of super—
sym m etric theories. In the dim ensional reduction of a generalized W essZum ino m odel
w ith two chiral super elds, Bazeia-N ascin entoR beiro-Toledo (henceforth referred to
as the BNRT model) [1L0] found one one-com ponent topological kink (TK 1) and one
tw o-com ponent topologicalkink (TK 2). In this case, the vacuum orbit has four points
and the potential energy density is a polynom ial in the elds of order four. Under—
standing the BNRT m odel as a deform ation of m odel B, som e of us discovered the
wholem anifold of kink orbits [11l]. T here is kink degeneracy, also found slightly earlier
by Shiffm an and Voloshin in one of the topological sectors [12], and, for two critical
values of the coupling constant, analytic form ulas for the kink form factors are avail-
able. O ne of them corresgponds exactly to m odel B ; the other one leads to a Liouville
system of Type IV, Ham ilton-Jacobi separable in Cartesian coordinates. Interesting
consequences have been translhated to the dynam ics of intersecting branes [13]. How
thick walls grow from one-com ponent kinks is well known. Com posite kinks give rise
to a non—trivial low energy dynam ics for intersecting walls as geodesic m otion in the
kink m oduli space (the space of the Integration constants w ith a m etric inherited from
the el theoretic kinetic energy). A nother supersym m etric m odel that show s a rich
pattem ofkink solutions is the W essZum ino m odel itself. The BP S kink states of this
N = 2 supersymmetric (1 + 1)D modelwith a com plex scalar ed and holom orphic
superpotential were discovered by Vafa et al. in [14]. In [15], two of us studied this
system from the point of view of the realanalytic structure. T he vacuum orbit having
been denti ed, the ow between the vacuum points was determ ined as the gradient
of the real(in aginary) part of the superpotential. T hus, kink orbits are denti ed w ith
real algebraic curves.

Here, we continue to struggle w ith the extension of these studies to eld theoretical
m odels w ith three real scalar elds. In [16], som e of us explored the generalization
of the M STB model. The solution of the threedim ensional G amier system using
three-din ensional Jacobi coordinates revealed the existence of an extrem ely com plex
variety of kinks. N evertheless, the structure of the kink m anifold and its stability was
com pltely unraveled In [1/]. Them ain goalof the present paper is to dentify the kink
m anifold arising in a fam ily of three-com ponent relativistic eld m odels w ith a vacuum
m anifold that contains several elem ents or points. T his fam ily can be interpreted as the
natural generalization of the generalized M STB m odel studied in {(16]17] in the sense
of Stackel-ype systam s. T hem ost interesting feature of this generalization is that the



num ber of elem ents in the vacuum m anifold depends on the range of relative values
of the coupling constants. Therefore, we can nd di erent subm odels of our systam ,
which have a very rich structure of kink m anifolds. W hen the energy density of these
kinks or solitary waves is studied we nd that several fam ilies of these solutions are
degenerate, which allow s us to clain that som e kink fam ilies indeed consist of m ore
basic kinks, such that their energy density displays several lum ps associated w ith the
basic kinks. In ourm odel, we are able to nd solutions w ith two, three or four lum ps.
T he organization of the paper is as follow s: In Section 2 we introduce the m odel,
w riting the expressions in Stackel form and describing thedi erent spontaneous sym m e-
tryJoreaking scenarios. Section 3 is divided into four sub-sections. In 3.1, we dentify
rst-order di erential equations satis ed by the kink solutions, reproducing the Bo—
gom olnyi procedure in this context. Sub-section 3.2 contains the resolution of these
equations. In 3.3, we detem ine the regions where the solutions live and, nally, In
Sub-section 3.4, som e general com m ents about the determ ination of the stability of
the kink solutions are o ered. In Section 4 we describe the behaviour of solitary wave
fam ilies in one of the regin es of the m odel, at the sam e tin e discussing their stabil-
ity properties. Finally, in Section 5 we address som e points conceming the di erent
extensions of the m odel

2 Them odel

W e focus our attention on the search for kink solutions arising in three-com ponent
scalar ed models in a (1+ 1) M inkow skian space-tim e, whose dynam ics is govermed
by the action functional
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wherew e use E instein 's convention forG reek Indicesw ith theusualm etric 1; = 09 =
1, 2= 2= 0,andwhereU ( ) isa sn ooth non-negative fiinction thatdependson the
threecom ponent scalar ed = ( 1; 2; 3). W e use naturalunits, hence c= 1, and

we shall henceforth denote x°  tand x!  x. The EulerLagrange equations in this

case are w ritten as the follow ing system of second-order partialdi erential equations
@? i @? i QU .
iZ ex? @—i( 17 25 3) 1= 1;2;3: (1)

K nksare nite-energy solutionsof (), such that the tin e dependence isdictated by

the Lorentz nvariance: ¢ (t;x)= (pxl—"vtz),and they can be interpreted as extrem als
of the positive sam ide nite energy functional
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E[ ]= dx"(x)= dx < +U( 17 27 3) ; (2)
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which m aintains this functional nite: E[ ]< +1 , see [1l]. Therefore, solitary waves
m ust com ply with the asym ptotic conditions
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where M is the set of zeroes or absolute m Inim a of the potential tetm —that is,M =
£( 1; 25 3) 2 R3=U( 1; 2; 3) = Og—which are usually referred to as vacua of the
theory because the elem ents of M play this r&le in the corresponding quantum theory.

T he usual procedure for tackling the search for kinks in this kind of theory is to
interpret (A) as the action functional of a m echanical systan In which we think of the
variable x as \tine"; as the coordinates of a unitm ass point particle,and V. = U
as the potential function. From this point of view , {{l) are m erely equations of m otion
In the new system . In reference [16], the authors deal w ith the m odel involving the
potential function
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(T+ 5+ 5 P+ 73+ 5 3 (4)
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and show that the m echanical analogue is not only com pltely Integrable but also
H am ilton-Jacobi separable by using a system of three-din ensional elliptic coordinates.
In [11], the stability properties of kinks are analyzed and a new approach to search
for kinks based on the Bogom olnyi decom position are given in the above system .
The authors prove the equivalence between the Ham ilton-Jacobi equation and the
B ogom olnyiapproach. T he potentialfunction {@)hastwo zeroes,v = ( 1;0;0);v" =
(1;0;0). T herefore, the kinks in thism odel can be classi ed into topological and non—
topological kinks according to w hether the solution connects two di erent vacua (open
orbits) or the solution departs and arrives at a vacuum (closed orbits).

T he search for new Integrable m odels is not an easy task. In this sense, we would
rem ark the follow Ing quotation from Jacobiin his \Vorlesungen uberD ynam k", which
allow s us to see the issue from a di erent perspective: \Them ain di culty in integrat-
ing given di erential equations is to introduce suitabl variables which cannot ke found
by a general ruke. Therefore, we must go in the opposite direction and, after nd-
ing som e ram arkablke substitution, look for problem s to which it could ke successfully
applied”.

T he goal of this paper is to generalize the above m odel, focusing our attention on
m odels w ith a greaterthan-wo number of elements n M , such that we can nd a
m ore sophisticated sym m etry-breaking scenario and a richer plethora of solitary waves
than before.

U sing the sam e notation as in the reference [16], we now introduce a system of
Jacobielliptic coordinates = ( 1; ,; 3),with constants =1 3, 2=1 2
and 1,which isde ned as:
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1= — (1 1)1 2)(1 3)
2 3
> = - : : (2 5
2 T Tz02 2)(2 (2 2)( 5 3) 5)
2 3 2
2 1 2 2 (2
3 2( 2 2)( 3 l)( 3 2) 3 3)/
3V 2 3
In which the range of the coordinates is:
1 < 1< < ,< 5< 3<1: (6)



It should be noted that this coordinate transform ation is invariant under the group
G = 223 generated by . ! ( 1)@ ;b= 1;2;3.
Invoking (1), the energy functional can be w ritten as
7 ( )
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where the metric coe clents g 45( ) = %( —0 _fj(z))( —7; have been introduced.
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Here,we sst £5( )= (5 x)-
k=1k% j

In the new variables, the potential {4) is w ritten as:
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v

and their zeroes vy v© aremapped to onepointv  ( J; 57 ¥)= (0; 3; 7) in the
elliptic space because of the above-m entioned invariance.
In order to generalize expression (d), we introduce the follow ing potential function

X3 1X3 2( ) —2)( . —2)( ) 2)2
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which becom es a polynom ial function of eighth degree In the origihal elds. Notice
that we have added a new factor ( ;  ?)° to each of the summ ands in (). Thus, @)
introduces new degenerate vacua in M , which for xed ~3 and ~% depend upon the
value of the coupling constant 2 = 1 2. Therefore, new scenarios of spontaneous
sym m etry-breaking and a richer kink m anifod arise In thism odel. Taking into account
the range (@) for the elliptic coordinates and form ula @), we can observe that the new
structure of the set M depends on the relative values between the constant 2 and the

xed constants 2, % and 1. For instance, for 2 > 1 the new factor ( ; 2)? does
notvanish forany valie of ; and thereforeM has the sam e structure as that in m odel
@). However, for ?2 ( %; 5)we nd new vacua located at the points (3; % 9)
and 0; %; 2).

W e shallnow Introduce di erent scenarios for ourm odel depending on the value of

the constant 2. W e shalldistinguish the num ber of vacua in each case.

Regine E 1: A sm entioned above, for 22 (1;1 ) there exists only one vacuum
in the elliptic space, m inin izing the potential function: ¥ = (0; 5%; ,%). We
have a sin ilar situation if the constant “ takes the discrete values 0,5 or 3.
For this reason we de ne the set Ly = £0;73; 59 [ (1;1 ), taking into account
that if 2 2 L, ourmodel only has a vacuum , “*, in the elliptic space. In the
C artesian space, the vacuum m anifold M can be regarded as the orbit generated
by the action of the group G =H ; over the vacuum v;,whereH, =1 Z, Z,
is the group that leaves the coordinates of v; invariant. T here are therefore two
vacua in the Cartesian spaceM o= £ v = ( 1;0;0)g.



Thekink solutions in thism odeldisplay the sam e behaviour as those of them odel
studied in {1d], although the explicit expression of the equations ofm otion ism ore
com plicated because we have a polynom ial of degree eight In the original elds.
O w Ing to this sim ilarity, we shallnot dealw ith this regin e in our study.

Regine E2: W e now consider the range 2 2 L; = (O;_g) for the coupling

constant. In this regin e, new zeroes of the potential arise on the plane ; = 2,
2 2

in the elliptic space that corresponds to the ellipsod — + w45+ ——= = 1
2

3
in the Cartesian space. In fact, two vacua arise In the elliptic space, Vo=
0; 5%; »%)and ¥ = ( %; 3%; ,%),both nvariant under the subgroup H, = H ;.
C om:espon%ijngly, there are four vacua in the C artesian space that correspond to
the orbit = 7 ,(G=H;)vi. Therefore, we have M ; = £ ™ = ( 1;0;0); % =

( ;0;0)g,asdepicted n Figure 1.

(SENTEN

It is interesting to rem ark that the range of values 2 2 ( 1 ;0) is om ally
analogous to that in which 2 2 L;, interchanging the rdles of the ellipsoids
1= 0and ; = 2 in the previous reasoning. W e shall therefore focus our

attention on the range of values L; .

v, Vo F3

Figure 1: Vacuum m anifold in the C artesian and elliptic spaces: Regine E 2. F1, F, and F3
stand for the foci of the ellipsoid; B and C are the extrem es of the m inor sem iaxis, and A
represents the um bilical points.

Regine H1l: In thiscase, ? 2 L, = (3;75). From the values of ? and the
range of the elliptic coordinates, the zeroes of the potential term (@) arise on
the plane , = 2, which is equivalent to the hyperboloid of one sheet

2 2
—~= = 1+ ——= in the Cartesian space. W e nd three vacua located at the

2 3

B 1 2 3
ponts vV = (0; %; 5), YV = (3; %; %)yand V = (0; %; ). The vacua

vi and v, rem ain Invariant under H ;, whereas v; is Invariant under H; = 1
%23 1. T here are eight vacua in the C artesian space corresponding to the orbit

i:1(G=Hi)\é-l,wjrh coordinatesM ,= £ Y = ( 1;0;0); > = ( ;0;0); V=
( —;0; = 2 2)g, as shown In Figure 2. In section 4, for the sake of
clarity we shall focus on this regim e in order to describe in detail a particular
kink m anifold of the m odel instead of discussing it in each single regin e.

2
1
= +

1

Regine H 2: This case is characterized by ? 2 L3 = (5;1). Applying the

sam e reasoning as before, we nd that new vacua arise on the plane ;= ?2;
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Figure 2: Vacuum m anifod in the Cartesian and elliptic spaces: Regime H 1.

2 2 2
that is, the hyperbolod of two sheets —5 = 1+ —*%7 + = In Cartesian

3

2
coordinates. In particular, the potential has four minima: ' = (0; 5; 2);
Veo= (5; %2; %); = (0; 3; “),and " = (0; 5; ?). The vacuum v, is

nvariantunderH, =1 1 Z,,and the Cartesian vacuum m anifold is the orboit
ol
: (G=H ;)vi; nam ely,

=1

M3 = £7=1(1;0;0); %= ( ;0;0)
Bq Zq
= _IOI - 2 % IV4: — — 2 5!0
3 3 2 2
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Figure 3: Vacuum m anifold in the C artesian and elliptic spaces: Regine H 2.

Regine H 2: Tn this case, the coupling constant 2 is set equal to unity. In
the intermal elliptic space we can read theminina as " = (0; %; 3), 2 =
( §; 5;1), V= (0; g;l)and V& = (0; §;l),which correspond to eightm inin a

In the Cartesian space: M §= Jz:m Ms=f "= ( 1;0;0); ?= (0;0;0); =
[
(0;0;  3); ™= (0; 2;0)9.

In this latter case, the plane 3 = 1 is introduced into the elliptic space. Unlke
the previously Introduced planes, this is no longer a regqular one, and this can
be readily seen in the degeneracy exhibited by the H 2 vacuum m anifold at the
limit 2 ! 1;this singular plane corresponds to the plane ; = 0 in Cartesian
coordinates. R egarding the kink m anifold, this is basically the sam e as that of
the H 2 m odel, except that the kink solutions existing on the two sheets of the
hyperboloid and in between them now degenerate Into kink solutionson the plane
1 = 0. This situation is the 3D analogue ofm odelA in [/].



3 First-order equations and K ink M anifolds

3.1 The superpotential and the Bogom ol'nyi arrangem ent

W e notice that the potential (@) determm ines a Stackel system [8]. Therefore, the

H am ilton-Jacobi equation of the m echanical analogue is separable using the system
of Jacobi elliptic coordinates. However, here we shall m ake use of the Bogom olnyi
arrangem ent In order to obtain the kink m anifold of ourm odel. The two procedures
are equivalent (see [114]) but the second one allow s us to dentify the supersym m etric
extension of our el theory, given that if the energy functional (@) can be written as
SRS @, 1ew ()’

E[l 1= dx— — dxdw ()
B 933 @x 955 @ 5 dx

(10)

for som e function W ( ;), then the underlying eld theory hasa supersym m etric exten—
sion in which the function W plays the r6le of superpotential in the supersym m etric
eld theory, see [18]. T herefore, the superpotential W m ust com ply w ith

2 2 2

@w @w @w
20()=9g, () — +g,() — +gs() —
911 @ . 922 e, 933 @,
P lugging the expression of the potential function (@) and them etric coe cients into
the above equation, we have

0
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which can be solved easily by theansatzW = W 1 ( 1)+ W,( 2)+ Ws( 3). The three
resulting decoupled ordinary di erential equations
s 2y

= ; 1= 1;2;3
d; 40 o "

X3 1 X3 p
Wizl )= W, ()= — ( 1)*Po( ) 1 i i= 071

whereP,( ;)= 2d+d ; 3 ?,withd= (5 2 4).
E xtrem al tra fctories for the energy functional {I0) arise if the follow Ing system of
rst-order di erential equations

d s (1) gt (s
dx eh d
s s T THp

(1):2




where ;= 0;1land i= 1;2;3 issatis ed, because the squared term s in (I0) are always
positive and the last one is a constant. D ue to the indeterm inacy of the signs ;, »
and 5, () constitutes eight systam s of ordinary di erential equations. N evertheless,
this set of systam s is easier to solve than second-order (Eulerd.agrange) equations. In
order to obtain a com plete kink solution we have to Ppin solutions from the rstorder
di erential equations w ith di erent choices of the signs ( 1) * in di erent Intervals
covering the real line. T he reason for this is that the rstorder di erential equations
Inherit the inform ation of the second-order equations de ned piecew ise. A ssum ing
that we search for continuous and di erentiable solutions, the sequence of signs ( 1) *
corresponding to the di erent pieces that constitutes a solution is prescribed. In section
4 we shall fllustrate this approach in several cases. From (I0) it is readily seen that
the energy of a solitary wave, solution of {Il) w ith only one piece, depends only on the
topological charge of the solution. In this case, it is said that the B ogom olnyibound

is saturated. However, if the orbit isgiven by = gzl 3, where J is the num ber of
pieces of and 7 stands for the % piece, we have:
X Z aw () X z X3 QW £ g5
B[] = dx - ———d
dx , . @
pieces of 3 i=1
XJ
= W) ) W) (12)

B

where £ gy represents the values of the ; param eters for the % piece of the solution.

3.2 Solutions via quadratures

In order to solve system (Il), we rew rite it in the form :

(12T i o) fl)

where we havede ned c= ( °

of these equations gives

; %; §; f)and f= 0 for future convenience. T he sum

X3 d -

M ultiplying each side of (I3) by ; and summ ing over i, we cbtain:

— S =0: (15)

Also,multplying I3) by ¢ and summ ing again over iwe reach the equation that
establishes the dependence of the kink com ponents on x

X3 29

i=

10



W e shallnow determ ine the kink orbits and the form factor by invoking {I4), {{3),
and {Id). Integration of the rst two equations,

3 Z
oy d
I Yy = 2
=1 2 1 i jzl( i CJ)
3 7z
(1) _ _id i B
I A - 3
=1 2 1 i jzl( i Cj)
Jeads us to the expression of the generic kink orbits:
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T 1+ 1 c T 2+ 1 c T 5+ 1 c !
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(18)

pP—0
where F4(c) = 1 ¢ il;léj(cj c1),and , and 3 are arbitrary real constants
that specify a particular kink orbit.
T he integration of (18)

3 7z
L oonT 2d
5 © oA = 1t+X
=1 1 i jzl( i Cj)
gives us the form factor of the kink:
(1) 1% (1) 2c? (1) 3c%
3 i3 i3 i
S Y Pg ; pl 5 Ti@ YW Pg . To Fi@ Y Pg . To Fi0@
e = .
T 1+ 1 c T o+ 1 c T 5+ 1 c !
=1 =1 =1
(19)

1 being an integration constant associated with the transhtional invariance of the
system . Expressions {I1), {I8) and {I3) provide usw ith the whole m anifold of solitary

waves.

3.3 Frontiers and barriers. B asic kinks

W e shallnow prove that the set of solitary waves is con ned to living in a bounded
region of the intemal space, which in fact corresponds to a parallelepiped in the elliptic
space. 3For the sake of clarity, we shall restrict our study to the range 2 2 L, where
L= _,L;istheset in which thekink m anifold is richest, see Section 2. T his include
the regines E2, H 1, and H 2. Squaring the rst equation n ({3), and de ning the
generalized m om entum 1 = gyq ( )dd—; ,we have:



Equation {Z0) can be regarded as that goveming the m otion of a particle m oving
under the In uence of the potential function

2 2
3 18(11 ) ; 1 < 1< ¢
U(q)= ( 1)
?
1 ;i< 1< 1
The function has at least onemininum in ; = 0 and a second one In | =

23 2 2 L;. Furthemore, the function U( ;) goesto 1 as ; tendsto 1 .
T hus the bounded m otion can only occur in the interval [0; §]. T his, com bined w ith
the boundary conditions, leads us to the conclusion that the kink solutions lie in the
parallelepiped P5(0)= [0; 21 [ %; 21 [ 2;1).

T here is stillm ore inform ation that can be extracted follow ing this procedure, ow ing
to the appearance of a second m ininum . Let us rst x a value 2 in L, and let us
st 2 2 L; for some i that depends on 2. Squaring the i equation of the system
(I3) and de ning the generalized momentum  ; = gy ( )ixi , We arrive at a sin ilar
one-din ensional dynam ics:

20
12 A T 0 (21)

A ccordingly the corresponding potential function isnow de ned by U( ;) ifi= 1
and 38

; minfl,g< ;< maxflig

1 H i%Li

ri= 2;3. Themiinum ;= 2 now separates the bounded m otion of the one-

din ensional system into two intervals —the ;2 L, = [minfLg; ?]intervaland the

12 LT = [ %;maxfLig] nterval -, and into the trivialmotion ;= LY = . This,
together w ith the asym ptotic conditions, leads us to conclude that, besides lwving in
P5(0), the kink solutions lie entirely in the sets

P5(0) ®* = £ 2P5(0) with ;2L,""g:

T his decom position of the parallelepiped P35 (0) is, for the case we shall study in
detail, regine H 1, as follow s (see Figure 2):

P;(0) = P3(0) [ Ps(0)° [ Ps(0) =10; 21 [3%; %1 [5:111
[0; 51 £7% [5;110 10; 31 [ %51 [3:11:

The parallelepipeds P5(0) and P53 (0)" contain fam ilies of solutions that depend
on two and three param eters, whereas the plane P (0)° only contains tw o-param etric
solutions.

T hus, introduction of the factor ( ;  2)? into the potential function U ( ) leadsus
(w ithin our range of study) to a new con nem ent ofkink solutions in the parallelepiped

12



P5(0). The generic kink solutions divide into two sectors and, in addition to this, a
new kind of two-param etric solitions arises: those satisfying ; = 2. Consequently,
the kink m anifold can be decom posed as follow s:

cC=c¢C, tclccl; (22)
w here C; o
regpectively.

represent the class of kink solutions with , 1= and ;

3.4 Stability

In this sub-section we discuss how to detemm ine the stability properties of the kink
solutions. For the whole variety of kink solutions in this system , it is not possible to
soke 1; , and 3 In tem s of eleam entary functions of x. T herefore, it is not possible
to explicitly w rite out the H essian operator for any kink in the m odel and, hence, the
stability properties cannot be studied through analysis of its spectrum .

To determ ine the stability of the solutions, we use instead the argum ents developed
In Ref. [16]based on the Jacobi elds along kink solutions. A lthough the treatm ent
depicted in that paper is for a deform ed Sigma O (3) m odel, the extension to this
m odel can be readily carried out. Follow ing this procedure, a rule establishing the
stability (instability) of the solutions is obtained: each solution crossing either the
edgeF1F; £ 3; 5; sgortheedgeAF, £ ; %; 5gbecomesan unstable solution,
since these two edges constitute lines of con jugate points of each vacuum of the theory.

T he key point is that the superpotential fiinction is not di erentiable over either
of these two edges and, consequently, the energy of the kink (IJ) is not a topological
quantity since it depends on the value of the superpotential at the crossing points.

In what follow s, and bearing this rem ark in m ind, we shallonly m ention the char-
acter of each of the kinks described.

4 D escription oftheK inkm anifold in theH 1 regm e

T he description of the kink m anifold in the di erent regim es arising in our m odel
is a Jong and tedious task. W e shall therefore focus our attention on a particular
exam ple: the H 1 regin e. Nevertheless, this case will su ce to illustrate the general
features that also arise in other regin es of our model. W e shall now describe the
behaviour of the kinks that arise In the H 1 regine of ourmodel. W e can nd basic
kinks, sin ilar to the solutions TK 1 and TK 2 in M STB m odel, that are placed on the
edges of the characteristic parallelepiped in the elliptic space (see gures 4,5 and 6).
T hese solutions are the sin plest kinks in ourm odel and they consist of a single lum p,
such that they can be interpreted as an extended particle. W e shall show that the
kink m anifold includes other kink solutions involving several lum ps associated w ith
the basic kinks.

W e recall som e ram arkable pointsofthe H 1 regin e from the previous sections: T he
num ber of m inin a ig three In the \elliptic" gpace, and eight in the C artesian one (sge
Figure 2): M , = "= ( 1;0;0); ™= ( ;0;0); ¥ = ( —;0; = 2 3

3 3
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The ellipsod E S+

I\)I\)|I\JI\J

+ —§ = 1 (thatis, = (0; ,; 3)), the onesheet hyper-
3

2 2

2

boloid H 1§2+ P —z = 1(r ;= %), and the plnes ,5 = 0 are
distinguished surfaces In the intemal space. In 3.3, we have proved that all the topo-
Jogical solutions are con ned w ithin the abovem entioned ellipsoid E . From this point
of view , these surfaces play the role of ssparatrices am ong threeparam eter fam ilies of
solutions, as proved above. T hese solutions are associated with nite values of the in—
tegration constants, ;. It isusualin the literature [16]to refer to this class of solutions
as generic solutions. O n the other hand, these surfaces also contain the tra fgctories of
tw oparam eter fam ilies of solitary waves, w hich correspond to asym ptotic values of the

constants ;. A ccordingly, they are called non-generic solutions.

Finally, we describe the kink m anifold in these cases. W e can distinguish: A ,Non-—
generic, two-param etric fam ilies, and B, G enerdc, three-param etric fam ilies of solitary
waves:

A Two-Param etric fam ilies of solutions:

A 1 Solutionson the ellipsoid E .

T he potential term U, vanishes on this surface. A ccordingly, the superpo-
tential function is:

X3 1 X3 P
W R, )= W, ()= — (1)Po(y) 1 io5 1= 0;1:

. 15
i=2 =2

T he orbit of these solutions is given by

(1) 2cy ( l)3cj

p p o p p T
ezz_YB ﬁl 5 ﬂl c s Y3 wl 3 ﬁl o ()
YT L+ 1 g T L+ 1 g ’

=1
» being an arbitrary real constant. W e have two kind of solutions:

i) T.'™ : Stable topological solutions that connect them inima v' and v°

after having crossed the plane ; = 0.
i) N.° : Unstabl non-topologicalsolutions that pin them inin um v° w ith
itself. T he tra Ectory of these solutions starts from vs, reaches the plane
1 = 0, and -after crossing the um bilical point A — retums to the sam e
point v° ; see Figure 4.

T he energy of these solutions can easily be calculated by integrating dw
along their respective orbits:

Z Z Z
E [I'EVerB] — dW — dw (O,‘O)_I_ dw (0;1)
T;’l”?:
Z Z
’ 0 . 0 1 2
= 2 aw , + 2 2OU/\T3=1—5 Po( %) sP2(3) 2 2P2( )
3 2
3 3 3
- Z 3 2 2
5 5 3 5 z
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0 X
50 60 70 80

Figure 4: Solitary waves on E in the Cartesian (kft) and elliptic (m iddk) spaces. Energy
density of a kink of the fam ily T, ™ (right).

7 Z Z Z Z
ENS] = aw = dw P+ aw P+ aw P+ gw O
N3
Z 2 Z 1
2 1
= 2 awl+4 dWl= = 2,P,(2%) 2P,(7?
2 2 15
5 5
_r s 2 s 2
3 % 5 5

A 2 Solutionson the plane ;= 0.
In this case, the term s U, and U, of the potential vanish, but not sim ulta—
neously. The fom er vanishes over , = 5, and the htter over ; = 2.
Because of this, two superpotential finctions appear, and hence two sys—
tem s of di erential equations m ust be involred in order to detemn ine this
solution. N evertheless, we can synthesize W as follow s:

1 X
5

, P
(1) "Py(3) 1 io7 1= 0;1;
k;3

W (5=

wherek= 1for ,= f,andk= 2for ;= 3.Theeguations of the orbit

on theplne , = £ are:
(1) Kiej c3) (1) 3 c3)
s P p o) g P p o)
e 2= i L ox 1 g j K 1 s L g i
- ™ ~ ™ ~
o 1 vt 1 g o 1 3+ 1 g

Again we have two kinds of solutions:

i) T"#" : Unstablke topological solutions linking the vacua v' and v°.
These solutions lave v, Intersect the axis , and the segm ent FF;
consecutively, and nally arrive at v?, as depicted in Figure 5.

ii) N2 : Unstable non-topological solutions connecting v?. The solutions
go from v?, intersect the axis , = 0, cross the focus F,, and retum to
the initial point v*.

15



)‘3 €(x)

Fy

Vi Fs )

V2

Fy

Figure 5: Solitary waves on 3 = 0 in the Cartesian (kft) and elliptic (m iddk) spaces.
Energy density of a kink of these fam ilies (right).

T he com putation of the energies is as follow s:

&)

B[] =

N
\)
U-'|t\>m
N W

1
5

EN™] = =+ 3

3

wld wiN
&

U-'|Nm

A 3 Solutions on theplane , = 0,see Figure 6.
Now , the term s U3 and U, of the potentialvanish over ;= Zand ,= 32,
respectively. T he two superpotential functions that appear can be synthe-
sized In a sin flarway:
W k)=ix ( 1)iP2(i)pl i 1= 0715
15

=1k

wherek = 2for 3= Sandk= 3for ,= 5. Theeguations of the orbit

on theplane , = 3 are:
(1) Ly e) (1) k(cg cp)
v4 P 1 P 1 Fj(cj) v P 1 P 1 Fj(cj)
- ~ &~ ~ |4
=1 1 1+ 1 G -1 1 kT 1 &

W e now have three classes of solutions:
i) T"# : Stable topological solutions that Pin them nina v' and v*, as
can be observed in Figure 6.

ii) TY : Unstable topological solutions that connect the point v° with the
m Inin um , which is its re ection by the transform ation 3 ! 3, pre—
viously crossing the focus Fs.

iii) TV?# : Unstable topological solutions that link the points v* and v°.
In this case, the solutions depart from v*, and nally arrive at v® after
intersecting the axis 5.
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0.002

0.001
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Figure 6: Solitary waves on , = 0 in the Cartesian (kft) and elliptic (m iddk) spaces.
Energy density of a concrete kink of the fam ily TV2~°> (right).

T he energies for these solutions are:

2 1
Emuvy] = 2 - 2 _ 3
) 3 5 5
E[I|V3] _ 4 1 2 ° 3 .
27 3 5 5 ’

providing a sin ple kink energy sum rul: 2E [TV ]= E[T" ]. The
ram aining energy is:

5 5

0w
w w
N
w
N

E[I'VZI'V3]_ 2
> 3

In gure 6(right), we have depicted the energy density "(x) of a m em ber of
the fam ily T . W e notice that the kinks of this fam ily consist of three basic
um ps.
A 4 Solutions on the hyperboloid.

The tem U, vanishes over , = 2 and hence the superpotential fiinction
is:

W (g )= B (L0 T 5 5 =05l

14 15 . 1 1 14 1 14
i=1,3

T he equation of the orbit is:

In this case, only one fam ily is found.
T”™ : The trajctories of these stable solutions connect the points v
and v°, previously intersecting theplane ; = 0,asisshown in Figure 7.
N otice that the energy density in this case com prises two basic lum ps.
T he energy is:

2

E VeV s 2
Ty "] 3

U—'|mm
w w
gl
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Figure 7: Solitary waves on H in the Cartesian (left) and elliptic (m iddlk) spaces. Energy
density of a kink of this fam iy (right).

B T hreeParam etric fam ilies of solutions. W e nd three kinds of solutions:

B 1 Solutions located inside the ellipsoid and outside the hyperboloid, see F igure
8:
i) TV : Stable topological solutions that pin v and v*. The solutions
am erge from v, Jater cross the plane ; = 0,and nally arrive at v2.
ii) T¥ : Unstabl topological solutions, which start from a m ininum v°,
consecutively cross the planes 1 = 0 and ;= 0, Intersecting the F1F5
edge, and nally arrive at v>. Notice that the energy density in this
case com prises four basic Ium ps.

A3 £(x)

0.015

V2

2 120 140 160 180 200 220

F igure 8: G eneric solitary waves in the C artesian (keft) and elliptic (m iddle) spaces. Energy
density of a kink of the fam ily TY* (right).

T heir energies are:

al .

E [IV1N2] —

N w

EXV] =

wld wliN
gl ol

5
5

B 2 Solutions located inside the hyperboloid:
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i) TV : These are unstable solutions. They leave v, cross the plane
1 = 0, lJater intersect the hyperbola AF,, cross the plane ; = 0 again,
and nally arrive at the point v°; see F igure 9.

V )
p) 2

Figure 9: G eneric solitary waves in the Cartesian (left) and elliptic (right) spaces.
T he energy In this case is:

2 2 1 2
Erp%2™ 1= Z _3 - 2 > _2
T ] 3 5 5 5

ww
N W
N
w

To com plete the previous energy calculations, the kink energy sum rules satis ed
by the generic solutions are o ered:

{ EX™™]=E[["7"]
{ 2E@"7]=ENg ]+ E[[,*7 ]+ E[T727]
{ 2E[T™]=E[,' "1+ B[] 3ET7™)

See Sub-section 3.1 of Reference [16] for an explanation of the origin of these
rules in a sin pler setting. W e stress that the decom position of the kink energy
density In several um ps is due to the kink energy sum rules.

Finally, as an exam ple we depict the kink form factor (Fig. 10 and Fig. 11) for the
tw o unstable generic solutions.

5 Further Comm ents

It is possible to generalize this kind ofm odel in two senses; we enlarge the intermal
space with N scalar elds and we include a greater num ber of coupling constants 2.
1. To study the generalization of this kind of system to N dimensions, it is rst
necessary to introduce N -din ensional Jacobi elliptic coordinates. An appropriate ex—
planation of these can be seen in [1d]. T he potential function we propose for the system
is as ollow s:

j:Z( i
()

X 122y 2@ 2)

’



0.8

0.6

0.4

Figure 10: Factor form for the T2 and T"? solutions. For the TY? solution, we have taken
1=0, 2=5and 3= 5,whermas for the T"?"? solutdon the consantsare ;1= ,= 3=

0.

Figure 11: Form factors in the Cartesian space for the T and TV?"? solutions
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w here the coupling constants together w ith the coordinates satis es the chain

1 < 1< < ,<imi< g 1< < y<1= Z:

Q
Ij.éi( i 5),and 2 is a real positive constant. The

function U ( ; 2) is positive sem ide nite and presents a num ber of zeroes, depending
on 2. Themost interesting kink m anifold appearswhen 22 L;;i= 1;:::;N ,and
becom es richer as i Increases, the L; intervals being the trivial generalization of those
appearing in the threedin ensional potential.

The denom lnator is £5( ) =

W e challnow brie y study the vacuum m anifold in alltheN di erent casesatonce.
Letusset “ such that ? 2 L; for some jbetween 1 and N . To nd a zero of the
function U ( ; ?),wemustm ake every term U;( ; 2)vanish. To visualize the process,
we shall seek help from the follow Ing graphic

4) : ¢|> : ¢|> <|> )\j $ )\j+l $ #AN_l # :
0 5,2 o2, a2 O iy 53 1
j+1 - N-j

Each circle in the | block represents a value that | can take to m ake the tem
Ux (; ?)null. Each value appearing in the vacuum coordinates w ill be represented by
a fullcircle, and hence each vacuum in the elliptic space is represented by N full circles.
To 1lltheN j circles to the right of 2, there is only one possibility, as seen in the

gure, but to 1l the ram aining j circles we have a num ber of di erent ways equal to
the num ber of perm utations of j+ 1 elem ents, j of then being repeated. T herefore,
we have Pj(;jfl) = j+ 1 zeroes of the U ( ; ?) function, j of them being on the plane

5= 2. To gure out the num ber of corresponding C artesian vacua, we only need to
take Into account the m ultiplicity of each elliptic vacuum . By doing this, we conclude
that by introducing a regular plane 4 = 2thereareV = 4+ (§ 1)2Y ! Cartesian
vacua. The kink m anifold thus decom poses into V ? disconnected sectors [7].

2. The second generalization considers not only one param eter, 2, but several of
them . T he generalized potential is constructed as follow s.

:1:+ ny ) di erent param eters  §;, such thatforeachn; 6 0, £ 2 Lyand j= 1;:::;n;.

ijr

W e can therefore construct the N -dim ensional potential:

% ., 1% 2 D
U= U;( ; i'): = i =
. ’ 2. £i( ) ‘ ’
=1 =1

The case in which Pliil
m odel [16]and the case
prev:ioups sections.

As |, n;increases, thevacuum m anifold becom esm ore and m ore abundant ow ing
to the appearance of an increasing num ber of roots In the potential. An easy way to

n; = 0 corresponds to the deformed O (N ) linear sigm a

L0y =1,with N = 3, isprecisely them odel studied In the
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acocount for the vacuum m anifold V is through the corresponding generalization of the
previous graphic

e

In this picture (n; + :::+ ny ) additional circles appear, -holes for short, since
every fj iseasily seen to be a root of the U; term In (Z3). C om putation of the num ber
of vacua now proves to be an easy task given that, as before, each vacuum point is
represented by N Iled circles. Tt happens that the num ber of vacua -including v,
w hich corresponds to all the -holes em ptied—-is given by:

)‘N—l

X
Card(V)= 1+ Ng;
ag=1
where N 4 is the num ber of vacuum pointswith g lled -holes,which can be calculated
readily using com binatorial technigques.

R egarding the kink m anifold,and looking at the corresponding rst-order equations,
for each fj we can deduce a con nem ent of the solutions in P3(0) sim ilar to that
ocbtained in section 3. Therefore, a num ber of 201%™ ) gybgets of P4 (0) that host
general kink solutions appear.

T he purpose of this construction is now clear. R ecalling the stability criterion and

the con nem ent of the solitions due to the factors ( ; fj )?,we can isolate the edges

FiFs=f %2; 2; s;gandAF,= f ;; 5; 59.Proceeding in thisway,wecan nd subsets
of the con guration space In which only stable solutions em erge.
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