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A bstract

Superpotentials in N = 2 supersymm etric classical m echanics are no m ore than the Ham ilton
characteristic function of the Ham ilton-Jacobi theory for the associated purely bosonic dynam ical
system . M odulo a global sign, there are several superpotentials ruling Ham ilton-Jacobi separable
Supersym m etric system s, w ith a num ber of degrees of freedom greater than one. Here, we explore
how supersymm etry and separability are entangled in the quantum version of this kind of system .
W e also show that the planar anisotropic ham onic oscillator and the two-N ew tonian centers of force
problem adm it tw o non-equivalent supersym m etric extensionsw ith di erent ground statesand Y ukaw a
couplings.

1 Introduction

Supersym m etric quantum m echanics was tailordesigned for the purpose of studying the subtle and
crucial concept of spontaneous supersymm etry breaking by E. W itten [1] In a context as basic and
sin ple as possible. Very soon, the strength of that idea exploded in an unexpected direction: SUSY
quantum m echanics on N-dim ensional R iem annian m anifolds [2] provided a physicist’s approach to the
very deep index theory of elliptic operators, w ith far reaching consequences for the exchange betw een
the com m unities of m athem aticians and physicists. T he physics of supersym m etric quantum m echanics,
however,wasm ainly studied In the case of only one degree of freedom . T his task proved to be interesting
enough to produce a huge body of literature; here we quote only References [3], [4], [5], and [6] as the
background to our work.

Follow ing previous work on the factorization m ethod on N -din ensionalquantum m echanical system s
[7], the general form alisn of m ultidin ensional supersym m etric quantum m echanics was established in
the m d-eighties by a SanktPetersburg group; see [8]. M ore recently, researchers in the entourage of the
sam e group have explored the interplay between two-din ensional supersym m etric quantum m echanics
w ith integrability and separability at the classical lin it, [9], [11]. In Reference [12] we addressed this
problem in a systam atic way; we lin ited ourselves, however, to the classical theory as our scenario,
pro ting from theH am ilton-Jacobiequation to obtain the supersym m etric extension of classical invariants
of H am itton-Jacobi separable 2D system s. In the present work, our goal is to address the sam e issue in
a purely quantum setting. W e shall describe how the spectra of m atrix di erential operators of di erent
rank are Intertw ned. W e shall also show that the ground states (zero m odes) have a particularly sin ple
form in this kind of system .

T he organization of the paper is as follow s: in Section x2, for convenience of the reader, we sum m arize
the general form alism of N = 2 supersymmn etric quantum m echanics for system s with N degrees of
freedom . In order to set the stage for novel developm ents, we brie y rework the theoretical basis of
N -din ensional SUSY quantum m echanics as origihally presented in the papers [7H8]. They use the
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C1i ord algebra form alism for the st tin e in this context, better than the exterior calculus of [1] for our
purposes. W e also try to adapt this fram ew ork to the cohom ological approach proposed in R eference [13]
to solve the supersym m etric Coulom b problem in any din ension by algebraic m eans. T he entanglem ent
between Ham ilton-Jacobi theory and the separation of variables of the quantum Schrodinger equation
is exam ned in Section x3. In Section x4 we discuss two interesting two-din ensional physical system s.
Finally, we o er a brief Summ ary in Section x5.

2 N = 2 supersym m etric quantum m echanics

2.1 N -dimensionalN = 2 SUSY quantum m echanics

Let 3, N*J3,9=1;2; ;N be the Hem itian generators; ¥ = J, (¥*3y = N*J oftheCli oxd
algebra C RN ) of RN ¢ £ 3; kg= 2 F, £ N+3, Nokg_ 2 Ik £ 3, N+kg - 0, whege f3; g denotes
anticom m utator. Because the din ension of the irreducible representation of C R 2V ) is IE:O Nf =N,
the generators of C R N ) are 2V 2N Herm itian m atrices. The lnear com binations f = %( j
(IR D PR %( I+ 1 N*3J) of the generators satisfy the anticom mutation rules: f 3; kg =&,
£ J; %¥g=f 9; ¥g=0.Thus, ] and 7 can bethoughtofas \creation" and \annﬂlﬂatjozr)l"émjonjc
operators. From these operators one de nes the ferm ionic total num ber operator, £ = Ijq.zl 3 j,
which allow s one to assign a grading to the space of the irreducible representation of the C 1i ord algebra
~the ferm ionic Fock space—: F = Fy F; N F= IE:OFf,fFf = fF¢, . :F¢ ' Feon,

:Fe ! Fge 1.

The key ingredients in de ning a N -din ensional quantum m echanical ! system with N = 2 super-
symm etry are the supercharges:
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algebra:
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Here,H isthed -nvariant Ham iltonian:
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C om pare these expressions w ith the H am iltonians, supercharges and SU SY algebra of [8] (Section x3)
and [13] (Section x3). T he H ibert space of statesH = F L°RY ) inheritsa grading from the ferm ionic
Fock space:

H=Ho H; yH Hy= [ Hs ; He=F: LRY)

Let us choose an orthonom albasis e5; j= 1;2; ;N ;es = 5 IR N The Ham iltonian acting on H g
is an ordinary Schrodinger operator w ith potential energy:
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V)= = £W )FW (x)+ r°W (x) ;o = —e  ;  ri=  — (5)
2 j:1@xj

W e take a system of unitswhere ~= 1.



ie. it isobtained from thegradient and the Laplacian of the function W , called the superpotential for this
reason. A cting on H ¢, however, H isa Nf Nf -m atrix of di erential operators but all the interactions
are also determ ined by the superpotential W , see (4). In particular, the Yukawa term s -interactions
sensitive to the ferm ionic num ber of the state-depend on the second partial derivatives of W . W fully
determ Ines the supersym m etric m echanical system .

T here is perfect analogy w ith de R ahm cohom ology, see also [8] (Section x4). The SUSY charges play

the role of the exterior derivative and its ad pint such that, in the SUSY com plex,

Q+ Q+ Q+ Q4 Q+
Ho ' H1 ' Hp ' " Hy 1 ° Hy ;
g g g o) g
£ KerQAf .
onede nesthe SUSY cohom ology groups: H * (H ;C ) = Wf*l . Because the superchargesare nilpotent,

+

there is a H odgetype decom position theorem —-H = d,H ¢ H Kerdl —where thekemelofH isa
nite-din ensional subspace spanned by the zero m odes. T he proof is easy: invert H on the orthogonal
subspace to K erff and write:
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g plays the ol of the Laplacian and we talk about Q' -exact and H -hamm onic states.

A's In Hodge theory, zero m odes play a special vdle. E = 0 elgenfunctions (zero m odes) satisfy
¢, 5=6¢ =0 f2Kedf. ¥ §=-G, {',§ d, - 0mplesthat § ;5= . ; F=-
0. T hus, non-trivial zero-energy states are all the Q' -closed states that are not § -exact. Spontaneous
supersym m etry breaking w ill occur if all the cohom ology grouEps Hf@H;C)are tr'wjaPL TheW itten index
is the Euler characteristic of the SUSY com plex: T r( 1f = £, dimH & @ ;C) £ dinaf @ ;C),
where £, (f ) runs over even (odd ) num bers of ferm ions; see [1]. T his Index is frequently used to decide
w hether or not a given system presents supersym m etry breaking because T r( l)f is easier to com pute
than the cohom ology groups.

2.2 Two-dim ensionalN = 2 SUSY guantum m echanics

In system swith N = 2 degrees of freedom , the form alisn of N = 2 supersym m etric quantum m echanics
can be developed quite explicitly. Creation and annihilation ferm ionic operators are de ned from the
four din ensionalD frac/M a prana m atrices:
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which are related to the operatorsbi/ andbgde ned In [8] (Section x5). The supercharges are the

2 2-m atrices of di erential operators:

’ 0 0 0 0’ O R I 0 ;
B @ ow B ex! @x? @x? @x? o -
6. B 0 0 08 4 _ o 0 0 o o &
T e 0 0 0K’ €0 0 0 S+ fox 7
0 et o wr e O o0 0 0



A

which are nilpotent: §2 = 0= §? . The SUSY alyebra

6,0 g=288 ; B.HI=K HI=0
closes In a H am iltonian of the form
“po g ot
2 =28 o A® o A ;
0 0 ﬁ(Z)
w here
2hE =0 = r 24 PW EFW + rw and 2h5 =2 = 24y PwWEW  rw ; (6)
are ordinary Schrodinger operators, and
|
SAE- 1) _ r2+ 7w £ 22w 28w 02 _ e’ e’ o
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@x1@x?2
isa 2 2-matrix Schrodinger operator; see [8], Section x5.
G ven an ejgenstateofHA mHowithE & O,
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we have thatQA éo)(xl;x2)= O—ji:stA -closed—-. H ow ever,
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is a elgenstate of H with the sam e energy and ferm ionic number £ = 1:

Q) G ) e &) (rr o) g xhix?)
ﬁ Qx Qx = F @x @x
(rer ) & (x15x7) (fer =) & (x15x7) ’
A9 45 intertw ined with AY) and one says that él) = A+ éo) jsa§5+ -exact state. Sin ilim odo, starting
from ejgenstatesofHA with E 6 0 .n H, allofthem Q, <losed, ie. o é2)= 0-,
0 1
0
A ) 0 C
A% x'ix*)=E § x'x%) @ xlix?) - § ., & ;
g (x'7x%)
one easily sees that —the § -exact state—
0 1
0
& @) 1.2, s (rr + &) & (x'x%) C
O g )= & (@§1+§¥1)E(xl;xz) A
0
is a elgenstate ofH :
Q) (e ) g b)) (o ) g x'x?)
ﬁ @x Qx = F Qx @x
(g7 + To) & (x1ix7) (for + ) & (x1ix7)

7@ and hY) are also intertw ined. N ote, how ever, ’chatlrQA éZ)jQA+ éo)i= 0 and h(© is not intertw ined

with A@) . See R eference [10]to nd how two scalar Ham iltonians are intertw ined through second-order
supercharges.



2.3 Zero energy eigenstates: spontaneous sym m etry breaking

The zero energy wave functions for the scalar Ham iltonians satisfy respectively: o éO)(Xl,‘XZ) = 0,

¢  Pix'i;x?)= 0. Thereore, ¥ by o(x'jx?)= W ,# by o(x';x*)= FW ,and
0 1 0 1
expW (x';x%)] 0
0 B C 2 B 0 cC
o x!ix®)= C@ A i J&ixh)=ce . E 8

0
0
0 exp[ W (x';x%)]
T here are nom alizable zero-energy statesin H g orH , —and H £=0 (H;C)orH f=2 (H ;C ) are non—trivial-
if 7 7 7 7
dxldx? M D o4 or dxldxZe 1 &) o 4

R? R?
U nbroken supersym m etry due to bosonic zero m odes arise in 2D SUSY quantum m echanics under the
sam e requiram ents as in 1D SUSY quantum m echanics, see [15]. H ow ever, the search for wave functions
belonging to K erh® is slightly m ore di cult.

& W), 1.2 & W), 1.2
Q 4 xxm)=0=0Q, [, x7;x)

requires integration of the equations

ew ew Loy O QW

# log o(xt;x%)= @el‘*' @ez 7 T lg oxTix%)= @el @ez 9)

Note that in the odd cases the gradient of the log of the wave function is equal to the gradient of the
superpotential on a plane w ith the reverse orientation. T he solutions of (9) are:

0 1 0 1 0 1 0 1
0 0 0 0
él)(Xl;XZ): Clg P g{l;X2)]%+C28 expl W“O(xl;x2)]% = Cl% O(X;;X2) %+C2% (x?;xz) 5 7
0 0 0 0
(10)
where W is such that: % = % ;% = %. T here are nom alizable zero-energy states in H, —and
Hf=1{H ;C ) is non—trivial- if either
Z 7 Z 7
dxldx? ™ R ¢ 4 and=or dxldx?e 27 A ¢ 4
R? R?

T here are requirem ents on the superpotential to nd unbroken supersymm etry com ing from ferm ionic
zero m odes sin ilar to those m et in the bosonic sectors.

3 H am ilton-Jacobi theory, supersym m etry and separability

The quantum system described in Section x2 enpysN = 2 supersymm etry by construction; the datum

needed to set the interactions is the superpotential W (x). A ltematively, there m ght be interest in
know ing if a given Ham iltonian adm its N = 2 supersymm etry; in that case, the datum is the potential
energy \4 (x) and the identi cation of the superpotential requires that the R iccati-lke PDE (5) must
Be s%kled In [13], the superpotential for the quantum Coulom b problem is shown to be: W (x1;x5) =

x% + x2 Teamn porarily recovering the P lanck constant, one nds:

n r #

N
¥
N
N
N2
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T he classical and zero-G ragn ann lin it of this supersym m etric system is therefore the free particle; the
second partial derivatives of the superpotential arising in AM) are alsom ultiplied by ~.

In [14], the superpotential for the supersym m etric C oulom b problem is chosen in such a way that the

Coulom b potential energy arises at the classicalnon-G rassn an lin it: W (% ;%) = 2 Z_(X% + x5 )i isthe

solution of the H am ilton-Jacobi equation for the C oulom b problam , instead of (5):
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W e shall follow this point of view and brie y sum m arize the connection between the superpotential and
the solutions of the Ham ilton-Jacobi equation, an issue fully developed in Reference [12]. Interesting
work on the link between 2D classical integrable systam s and SU SY quantum m echanics has also been
perform ed in [9]. W e stxress, however, that it is not equivalent st to solve the HJ equation, de ne the
classical supercharges, and, then to quantize these latter as to rst quantize the purely bosonic system ,
soke (5), and then de ne the quantum supercharges.

3.1 H am iltonian form alism and the H am ilton characteristic function
Let theN = 2 classical SUSY Ham iltonian be:
1 ¥ 1% ey e XX

H = - 05 + — —_—
S PIBIT S axd exd
j=1 j=1

- Q%W
k
1 ; W =

W o J -
S ¥z @xI@xk
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Them om enta and coordinates in the phase superspace are pj ;x3, f; g, w here f and g are the up and

J . .

down com ponents of N G rassn an M a prana spinors: 1} , Jky kK IJI_0, ; =1;2.
GF @G,

@p; @xJ

2

T he Poisson superbrackets of any superfunction on the superspace fF;Ggp =

er ec
@x] @p; +

iF %%G are obtained from the Poisson superstructure de ned by the basic superbrackets:
fpjix‘ge = § £x7;xgp = fpjipegp = 0 £; %gp = 15
T he classical SUSY charges

b Sew X ;Qw
Q1= Py 1 o] ; i P

=1 =1

[NeRu)
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close the classical SUSY algebra: £01;0109p = £02;0.09p = 2iH ,fQ0 ;Hop = 0,£f01;0290 = Jpj% .
In the canonical quantization procedure. Poisson superbrackets are prom oted to supercomm uta—

tors: RI;pPF1 = 17, £ ;Akg = Ik . The representation of this Heisenberg superalgebra by
j_ 1 @ .si_ 3 MN_ J.~_ 3 J_ A 3 Iy o 3. I L3 3y i N+3
pj_ E@/ﬁj_xj/ 1 17 2 — ZrWhere 1= pl_z( + T )_ 'pl_i j/ 2 = p—z( + )_ pl_z =

are theM aprana -m atrices, leads to the quantum supercharges (1), (2) and the quantum superalgebra
(3) of Section x2.

Setting all the G rassm an variables ] equal to zero -the \body" of the superspace- , we have a
Ham iltonian dynam ical system with Ham iltonian and H am ilton-Jacobi equation:

RS L . @s @S @S es 4, ;
H=- P+ V (xx7; ; i+ H (i X Y k=0
2 PPt VA % et axl'@x2’  @xh %
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T here being no explicit dependence on tim e in H , one looks for solutions of the form S (t;xt;x2; N ooy

Wo(x! ;xz; Nox  4t, and the tin e-independent H am ilton-Jacobi equation reads:
R Qw_en ¥ e an
== _— X x5; ; :
b2 e ex

Wo(x! ;xz; N oaxis usually referred to as the H am ilton characteristic function. A ssum ing sam ide nite

positive potential energy U (x!;x?; Nk 0, we state the ©llow ing:

The superpotential of a N dim ensional N = 2 supersymm etric dynam ical system is a solution of
the tine  independent Ham ilton Jacobi equation (11) for i3 = O and V (x)= U (x).

T herefore, there are asm any superpotentials as there are solutions of the H am ilton-Jacobi equation
w ith zero energy In m inus the potential energy of the body of the supersym m etric system . M ore pre-
cisely: given a Ham iltonian system w ith potential energy U (x!;x?; N.y there are asmany N = 2
supersym m etric extensions as there are zero-energy solutions of the H am itton-Jacobi equation (11) for
V (xtx?; Vik= U (xhx%; ¥k

Further understanding of the consequences of this statem ent is provided by system s for which the
Ham ilton-Jacobi equation is separable. Separability in connection with pseudo-H em itcity has been
Eonsjdered .jn the context of 2D SU SY quantum m echanics in [11]. In particular, ifU (x*t ;x2; N o=

Ijq.: 1 U;(x7), there are 2N solutions of (11). If there are no cyclic coordinates,
W (@raz; N?)i(xl;XZ; N;k: ( 1w 1(x1)+ ( 1)*2w 2(X2)+ + (ONIW ") 7

where ajjas; vs&E 0;1. N = 2-din ensional system s for which the Ham ilton-Jacobi equation is
separable In C artesian coordinates are called Type IV Liouville system s; see [16]. In this case, changing
aglbbalsign n W ©® m erely exchanges Ho by A2 and ﬁ%l by ﬁ%z : ie., it is tantam ount to H odge duality.
Choosing W 1) (x!;x%)= W 1 (x') W ,(x?) Instead of W P (x};x%)= W, (x')+ W ,(x?), one replaces
W by W and the second supersym m etric extension based on W exhibits a fermm ionic zero m ode if the

rst extension has a bosonic zero m ode. T he other eigenfunctions also change and the supersym m etric
system s are not equivalent.

Even if the Ham ilton-Jacobi equation is not separable, one can still envisage situations where a

m anifold of solutions is available. Let us consider a H am iltonian system w ith two degrees of freedom and
potential energy :
o x? 2
ZCos n arctan = + ;

1

1.,2 2(1 2,2 X1+XX

U (x;x°)= xtxl+ x%x%Y 2 (x 2x?)

where and are realphysical param eters. It isnot di cult to show , see [17], that there is a circle of
1
X

zero energy solutions of the H am ilton-Jacobi equation w ith V (Xl;x2 y= U ( ;x2 ). fwede ne
n X2
W (x';x%)= —x'x' + x?x?)2cos n arctan - x? ;
n X
n X2
W (x';x?) = — (x'x* + x?x?)7sin n arctan — x? ;
n X
the oneparam etric fam ily
w O xhix?) cos  sh Wo(x';x?)
w O (xt ;x2) sin cos W o(x! ;XZ)

form s such a circle of solutions. T he proof is based on the fact that W and W are harm onic conjugate
functions and satisfy the real analytic C auchy-R iem ann egquations % = Gw &w o _ W g necessary

@XZ ’ @XZ @xl 4

and su cient condition to buid N = 4 supersym m etric extensions in this system .



3.2 Quantum super Liouville Type Im odels

T here are other dynam ical system s that are H am ilton-Jacobi separable in two din ensions. W e shall focus
on system s that are separable using elliptic coordinates classi ed by Liouville as T ype I. For a thorough
analysis of this kind of N = 2 supersym etric classical system ,we refer to [12].

3.2.1 Classical super Liouville m odels of Type I

Let us consider them ap :R?> | D?,whereD? isan open sub-set of R?, w ith coordinates (u;v), and
ket !:D? ! R? bethe nversem ap:
1 1P
x'x*) = tupv)= “wvi o w2 &) v?) ; (;x%) = (u;v)
p ! p p !
(x!+ c)? + x%x2+ (x! )+ x%x? (x! + ) + x?x? (xt  c)? + x°x?
u= V=
2 2

T he u;v variables are the elliptic coordinates of the bosonic system : u 2 [c;1 ),v2 [ c;cland D2 is the
closure of the in nite strip: D? = [c;1 ) [ c;cl. Let us assum e the notation for them ap induced in
the functions on RZ;Le. U (xl;x2)= U ( (xl;xz)) U (u;v). Thus,we shallwrite U forU (xl;xz) and
U orU (u;v) and a sim ilar convention w illbe used for the functions in the phase and co-phase spaces.
T he Ham ilton-Jacobi equation for zero energy and V. = U, formul (11), written In elliptic coordi-
nates, reads:
u’ & ¢ VP 1w & dF ¢ 1 v dg “

U= ———f)+ —5gW)= g —— 4+ —e ; 12
u?  v2 ) u? vzg() 2u? v? du 2u?  v?  dv ! (12)

assum Ing separability: W = F (u)+ G (v) ) @gu@"i = 0. Note that £ (u);g(v) com e from the bosonic

potential. A com plete solution of (12) consists of the four com binations of the two independent one-
din ensional problem s:

Z Z
p p
Fu) = du 2f @) ; G (v)= dv  2g(v)
Z Z
(ab) a P b P
W = (1) du 2f@)+ ( 1) dv 2g(v) ;a;b= 01 (13)
Themap induces a non-Eucldean m etric in D? = (c;1 ) ( c;c) with m etric tensor and C hristo el
sym bols:
0 2 . 1 0 . NER . . 1
Juu Juv = g = g =
gu;v) = 8 ut @ 2 & ;g tuiv)= 6 ut v E VP i
gvu — O gvv — c2 v2 gvu — O gvv — u2 v2
w ul@  v?) . _— vu? P) . . u v
2 vy @) VY w2 vy vE) R Ve g2 2
v v V%) . . uu? &) . v v u
T2 vy @) Y w2 vy vE) L u e vu g2 2

Besides the bosonic (even G rasan an) variables u, v, there are also ferm ionic (odd G rasam an) M a prana
spinors #% , #V In the system . W e choose the zweibein

u;v) = e (u;v)es (u;v) ; g’ ;v)= el (uyv)el (u;v)



in the fomm :

N
Q
N
Q
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el (u;v) = 4 < ; e u;v) =
1 7 U2 V2 ’ 2 7

Curved and at G rassn an vardables are related as: #" (u;v) = €7 (u;v) Lo#Y (upv) = el (u;v) L
A supersymm etric two-din ensional m echanical system is a super- Liouville m odel of T ype I if the

Lagrangian isoftheform L= Ly + Lg + Lgp,with:
. L ot ta ) Lo gy S| W sy S z
= = u;viuu + — u;vivy.  — u;v) — — u;v) —
B Zguu ’ =1 ngv ’ YV Zg ’ du 29 ’ dV
i u u i v v
Ly = Eguu(u;v)# Dt ng(u;V)# D #
d’r dr dc d’G dF dc
I _ : u v uyu . u v Vv
LBF - 1 duz uua uua #2#1 1 dV2 Wa WE #2#1+
) dr dG
+ 1 Eva zvg (#‘2]#11l + #121#‘{)

T he ferm jonic kinetic energy isencoded in Ly , where the covariant derivatives are de ned as:

D 4!
D 47

o+ g udt + o noudt + o out + o viY

v \4 u v v v u v v
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The Yukawa tem s goveming the BoseFem i interactions are prescribed In = Lgr . The generalized
m om enta of the supersym m etric system and the supercharges are:

i i
Pu = Guu@iv) w o#" 4" S vt
Tyv v gu 1 u ou yv
Pv = gVV(u;V) v 5# Vu# Eguu (U.;V)# W# ;
' L dF
° ia,b) B Pu#tll " E (guu#u Ev#v + gvv#v Xu#u )#111 ( 1)a du #lél
i dG
+P#T] + > (Goodt? VY b gt BBV EN )BT 1)ba#\2’
i dr
QEP = Bkt S Gt LA gk LA (1P

i dG
+ Py #y + 3 (Goott” To#T + guutt SHVHEDHD + ( 1?”@#{

3.2.2 Quantum supercharges and H am iltonian

Passing to M a prana-W eylspinors, #," = 191—5(#121'V W), 40 = Pl—z(#g’v+ i#7"), the farm fonic quan-
tization rules lead us to the Fem ioperators in non-Euclidean space: “ (u;v) = €} (u;v) L Vv =

e (u;v) 2. Setting eg. a= b= 0, and also quantizing the generalized m om enta,ﬁu = %&,PAV = ll%,
we obtain the quantum supercharges:
~ u v
_ cu . u v v v . v u u
Q = 1°ry, 1C2 72 i1'r,+ 1u2 2 ;
or, In m atrix form :
0 1
0 0 0 0
B u
. B er, 0 0 o§ @ ar
L = 1B v ; u T T o 7 14
© l@ STy 0 0 0 X * Qu du (14)
0 e r, p—— e ryt o 0



0 1
B 0 e ry+ 37 V2 e ry 3z V2 0
& B 0 0 0 &r (é ¢ dc
Q = 18 2 +v ; T, _— Pl (15)
0 0 0 eiri A Qv dv
0 0 0

In order to m ake clear how separability and supersym m etry are entangled, it is convenient to w rite
the di erent pieces of the quantum H am iltonian , H = %f @+ ; (5 g,

0 1
~O), e .@ ..
N 1 h (@—u ,@—V,U.,V) 0 0
H = ﬁ@ 0 ﬁ(l)(@%;&;u;v) 0 A ; (16)
2(u ve) 0 0 B(Z)(i . @ S 5V)
Qu’rev’—’

separately. O n the subspacesH ¢ and H ,, the di erential operator H splits into the follow ing structure:

A A A
MO(E S vy = O E )+ KO E v).

Qu '
1] #
d @2 u e dF ¢ d%F u dF
20y w? &P e L e
J (@u )= ) @u?z u? c2Qu du du?  u? &du
n 2 2 2 #
A~ @ @ v @ dG d“G v dG
£O gy — (&P 2 S I A
(@v V)= v @v2 & v2Qv dv dv? &£ v2dv
A (&G ) = 3G )+ k2 (G ).
1] #
e @? u e dF % d&%F U dF
s &yl oy & w & dm s dF u dF
J (@u u)= ) @u? u? Qu du du?  u? E&du
" 2 2 2 #
A @ @ v @ dG d-G v dG
k(=)= (& 2 - 4+ = —_— ——
(@v V)= v @vZ & vZ@v dv dv? £ vidv

T herefore, we conclude that In the bosonic sectors the dynam ical problem is separable In the u and v
variables.

T hings, however, becom e m ore Involved in the ferm ionic sectors. W e write the H am iltonian acting
on H 1 as follow s:

0 1
e @ Pt m+ £ (& v+ g @) £ @)
P —i—uv)= @ A
Qu @
o £ @iv) P m+ £ (& v+ g v
Here, " #
2
l(l)(i 1) = (u2 CZ) @_2 LE + d_F dZ_F .
Qu’ @u2z u? Qu du du? !
" , ) , #
(1)(£ W= (& @ v e dG. d G
Qu’ @v? ¢ V2 Qv dv dv? !
r - @
WD gy WV 2F) dE - dG @2 A)E v dF o d6
g A u?  v? du dv ! ! (u?  v?)? du dv

The variables u and v are mixed in =~ A", It seem s that supersym m etry breaks down separability.
N evertheless, the non-null specttum of A is given by the non—null spectra of A and 3(2),
operators w ith separable spectral problam s.
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4 Two exam ples in two din ensions

4.1 The Planar anisotropic harm onic oscillator

Thisisa Type IV Liouville m odel. Ifa; ;a, = 0;1, the potential, superpotentials and supercharges are:

Ky K, (1P 172 P
U (X1;X5) = ?x% + Exé ; W @A) (xqx,) = > kim 1x2 + kom 5%3
oo 0 0 . 0 g gl 0
N p— a1 0 0 0C N p_ (az)¥
QialpaZ) i 2 q%az) x Q(alpaZ) h 2]5, 0 0 0 4, , §
4 0 0 0 0 0 ql(al)
S - 0 0 0 0
r r
( 1 a kim ¢ (@) _ 1 @ kom 2
qlal) = > ex, (1) > X1 ; CI2a2 = ?—E@? (1) 2 Xo
1 2
From the annihilation operators
r__ r__
IS 1 @ kq 2 1 @ ko
1= Pe—=="""* —X1 2= P—=—=""1+ X2
2m 5 @x; 2 ’ 2m 5 @x, 2 ’
9 — 9 —
their ad pints, and the natural frequencies ! | = k—ll s o= k—22 one obtains the H am iltonian
2 2
aS A aS AN 1
O = by KNS+ S+ (1Y) ;  h@® = Ly A?Aﬁz(l (1)) ;
=1 j=1
1
P Ay A ag a
A _ s Ky 3 e L 0
= 0 P2=1|j A+ 1 +<12>“1| <12>“‘2|2

T he Fock space basis

A A 1 A\ A\
Aq1P;0i= A,P;0i= 0 ; Jipnpi= pm(A{)“l &Y' ;01
1412.

. . . A A . . . . A A . . N .
provides the eigenfiinctions: A{Alpl;nﬂ: nljll;nzl,AgAzj’ll;nzl= np,ni;nyi. Thus,

1

A 1 . ~ |
spec h® = £2 1 ny+ SAs CDM1 spech® = t2  1iny+ S )

ail a2
Specﬁ(l)=t§:1!j(nj+%) ( ]2-) !1 ( ]2-) !2
T he ground state
1%
(x17%2) = Tx1 %o Pj0i= expl - 1ym x5
j=1

bebngsto: (@) Hg,ifa; = a, =1, b)H,,ifa; = a,= 0,(c)H,,ifa; 6 a,. Forthea; = a, = 1 case,
the SUSY partner states —allof them with energy E = n1!; + ny!, —are:

Jiingi
0
0
A A
Q4 & Qo
0 0
Jni l;npi 0
0 Jniiny 11
0
A A
Q+ & Q4

0
0
0
Jng 1l;ny 1i

O ther choices for a; and a, require perm utations between the vertices of the rhom bus.
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4.2 Two Newtonian centers of force on a plane

Let us start w ith the energy potential for the problem of two attractive centers of force w ith non-equal
strengths (see Figure 1(a)):

U (x1%2) =

11011
'/I;Z”/IIIZ;”‘

7 iy
4 5%
55555555
%%
N % 5%
GRS
55

L
eebppty,
AR
4‘2%"3’7
/"n'"‘/

Figurel:a)U (x1;x2),c=1, 1=2, 2= 1.b)exp W (x1;x2)).

T he distances from the centerﬁ are appropriately giﬁn In tem s of the ellptic coordinates: u =

%(r1+ ), Vv = %(rz ), = (x1 c)+ x% T = (%1 + c)? + x% The Ham iltonian in elliptic
coordinates,
1 1 5 5 5. 2 kyu kv
H=§m (u C‘Z)pu"'(c2 V)pv"'W ;
depends on the coupling constantsk = 1 and show s that we are dealing w ith a type I Liouville

system . TheansatzS = Lt+ F [u;4; ]+ G v ;i ]leadsto the i = i, = 0 Ham iltton-Jacobiequation:

2 2
kiu k v 1, dF 1, dc
- —— _Z — 4+ = — : 17
u? v 29 du 29 dv a7

N ote that in this case the potential energy is sam ide nite negative and, to nd real solutions, we do not
replace U by U in the Ham ilton-Jacobiequation. T herefore, the solution of (17) in tem s of the elliptic
and com plete elliptic integrals of the st and second kind, [18],

" r__ ! r_ ! v 7#
b o— . ; u cl ., u c1 22 @)
Fu)= 2 kic F sh ;= 2E  sin PR ;
u 2 u 2 uc
s P —h . lq 2v .1 lq Tov .1 2v(v+ c)
% 2 c 2E sh v c’2 F sn v c’2 c(v c) c<v 0
G (V)= .

¥ p_nh !
2 k c2E st =¥;2 2E[1=2]+F s ' <¥;2 K[@=2] 0 v<c

provide the superpotentials
W @R (xy ;%)= ( 1)PF W)+ ( 1)°G )

for two repulsive N ew tonian centers. Nevertheless, the Laplacian of the superpotential — given by the

term s r _ r_
dr 2k, u ) dG B 2k v
dau u? & ! dv 2 v

dFF 1 u'+ & dF . dG6 1 F+ v dG

du?  2u@? &)du ! a2 2v(@  v2)dv
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com Ing from the quantization of the Yukawa couplings- induce attractive forces in the supersym m etric

extension of two repulsive N ew tonian centers and there is hope of nding nom alizable eigenstates.
In fact, choosing a = b = 0 we obtain the zero-energy wave function In the Bose/Bose sector,

3, o(xix2)=0:
0 10 1
0 0 0 0 o (u;v)
B & (L 4 0 0 0GB 0
18 eg(z@% f—f) 0 0 07%% 0 Z%:O
0 gl L o) & £ 0 0
if
@ @ dr dG
el g o (u;v)e; + e‘z’ﬂ (u;v)e, = el —e; + ej—ep
Qu Qv du dv
T herefore,
(0)
o(u;v) = o0 (K1ix2)= CexplF (U)+ G (V)] ; (18)

which is nom alizable, see Figure 2, is the ground state of the N = 2 supersym m etric particle, even
though the particle’s \body" is repelled by two centers.

w

°
)
N

1 2 3 4 5 -1 -0.5 0.5 1

Figure 2: Plotofexp[F (u)]and exp[G (v)]as a function of u and v respectively.

Figure 1(b) show sa plot of the (18) wave function in C artesian coordinates. It isam using to check how
well it ts in with the expected behaviour of a quantum particle in a potentialwellw ith two N ew tonian
holes; see, eg. , [19]t0 nd an approxin ate wave function for the ground state of the m olecule=ion of
hydrogen. T he reason is that the e ective quantum potential n the H ¢ sub—space

1 o ! 0)

V O (%1 5x%5) = > o (153200 2 2y 5%2)
A 1 .t v Q u @ o d v
(0) . _ -_0 ’ 2 . 2 .
VO i) = S5 <) w2 ag Wt & V) v I w;v)

is attractive tow ards the two centers.

5 Summ ary

Interactions In supersym m etric classical or quantum m echanics are prescribed by superpotentials. In
this paper we have dealt with the follow ing inverse problem : G Iven a Ham iltonian system , is there a
superpotential from which forces are derived? If so, a supersym etric extension of this particular physical
systam ispossible. W e have encountered a two-old way tom eeting am biguities In answ ering thisquestion.

1. First, the outcom e dependson the fram ew ork . For classical systam s, superpotentials are solutions of
zero-energy tin e-independent H am itton-Jacobiequations. In the quantum dom ain superpotentials
solve R icattidike PDE’s. M oreover, canonical quantization and supersym m etric extension do not
com m ute: the supersym m etric extension of —eg., the quantum Coulom b problem —di ers fom the
quantization of the classical supersym m etric C oulom b system .
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2. In din ensions higher than one, superpotentials are far from unique. For instance, In Ham ilton-
Jacobi separable system s there are 2V di erent superpotentials leading to supersym m etric system s
w ith the sam e \body" dynam ics. The ground states can be easily found in this kind of system
because one needs to solve only rstorder ODE’s: one per each variable In which the dynam ics
Separates.
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