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A bstract

M ass shifts induced by one-loop uctuations of sam iHocal selfdualvortices are com puted. T he proce—
dure is based on canonical quantization and heat kemel/zeta function reqularization m ethods. T he issue
of the survival of the classical degeneracy In the sem iclassical regin e is explored.

1 Introduction

In this com m unication we shalldealw ith one-oop m ass shifts for the sam ilocal selfdual topological solitons
-SST S in the sequel-that arise in the (2+ 1)-din ensional sam ilbcal A belian H iggs m odel; see [1] for a review
of the history and properties of these classical solitonic backgrounds. On the analytical side, a formula
w ill be derived that Involres the coe cients of the heatkemel expansion associated w ith the second-order
uctuation operator. Additionally, num erical m ethods are used to generate the solutions and to com pute
the coe cients. A 11 this together w ill allow us to obtain num erical results for one-loop SST S m ass shifts.

Control of the ultra-violet divergences arising in the procedure is achieved by using heat kemel/zeta
function reqularization m ethods. In the absence of detailed know ledge of the spectrum of the di erential
operator goveming second-order uctuations around vortices, the expansion of the associated heat kemel
willbeused In a way akin to that developed in the com putation of one-loop m ass shifts for onedin ensional
kinks; see [@]. In fact, a sin ilar technigque has been applied previously to com pute the m ass shift for the
supersym m etric kink [4], although in this Jatter case the boundary conditions m ust respect supersym m etry.
In the case of vortices, the only available results refer to either supersym m etric vortices, achieved by Vas—
silevich and the Stony Brook/W ien group, [B], [@l], or non-supersym m etric selfdual vortices, cbtained by
our group, [1].

T he closely related issue of com puting the quantum energy of QED  ux tubes due to ferm ionic  uctu-
ations has been addressed in [10]and, m ore recently, in the papers [11l]and [12]. Quantum energies of the
m ore subtle electrow eak strings caused by ferm ionic  uctuations have been thoroughly studied in [13] from
a (2+1)dimensibnal point of view for = 0 W ennberg angle. W e shall concentrate on the value = 5.
For thisweak m ixing angle the SU (2) gauge eld decouples , the strings becom e topologically stable, and a
broader class of topological solitons arise because the H iggs vacuum m anifold becom es the S °-sphere H opf
bundle. W e shall restrict ourselves, however, to consider only the bosonic uctuations over topological soli-
tons saturating the Bogom olny bound. This is in contrast to the work m entioned above where ferm ionic

uctuations dom inate because the farm ions carry a high enough num ber of colors.

The study of quantum  uctuations of topological defects arising in m odels that describe sub-atom ic
phenom ena is a very Im portant and di cult sub fct. W ith the exceptions of sine-G ordon and  ( )3 kinks,
the know ledge of the spectrum of the second-order di erential operators goveming these uctuations is non
com plete. T herefore, asym ptotic m ethods, phase shifts, high-tem perature expansions, etcetera, m ust be
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used. In particular, onem ust com pute the L? trace of the square root of a second-orderdi erential operator,
a problan for which the zeta function/heat kemel reqularization techniques, see [14]], are specially suitable.
Unfortunately, di culties w ith this procedure increase w ith the din ension of space-tim e. N evertheless, the
experience w ith these planar exam ples m akes conceivable the possibility of com puting the one-loop m ass
shift for BPS m agnetic m onopoles som etim e in the future.

2 The planar sem i-local A belian H iggs m odel

W e w rite the action governing the dynam ics of the sem iHocal AHM in the fmel:
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Besides the Abelian gauge eld A (x ), there is a doublet of com plex scalar elds. The action is nvariant
w ith respect to U (1) gauge (local) and global (rigid) SU (2) transform ations, and it is no m ore than the
bosonic sector of the electro-w eak theory when the weak m Xing angle is . Note that we de ne the electric
charge unconventionally: Q = T 3+ %Y ,In such a way that the neutral scalar el is the upper com ponent
of the weak isospinorialH iggs eld.

A shift of the com plex scalar eld from the vacuum
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and choice of the Feynm an—t H ooft renom alizable gauge R A ;G )= @ A (x ) G (x ) lad us to write
the action in term sofH iggsH , realG odstone G , com plex G odstone ’ , vector boson A and ghost elds:
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2.1 Vacuum energy

C anonical quantization prom oting the coe cients of the plane wave expansion around the vacuum of the

elds to operators provides the free quantum H am iltonian. Besides the plane wave expansions in a nom al-
izing plate of very huge area L2 of the elds of the Abelian H iggs m odel considered in the third paper of
R eference [7]we m ust also take into account the m assless com plex G odstone bosons:
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D etails of our conventions and calculations are given in [8]



The vacuum energy is the sum of ve contrbutions: if4 = 2._ = & denotes the Laplacian,
J
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com e from thevacuum uctuationsof the vector boson, H iggs, realG oldstone, com plex G odstone, and ghost
eds. Ghost uctuations, however, cancel the contribution of tem poral vector bosons and real G olstone
particles, and the vacuum energy in the planar sem iHocal AHM is due only to H iggs particles, com plex
G odstone bosons, and transverse m assive vector bosons:
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2.2 Sem i-local selfdual topological solitons

At the critical point between Type Iand Type II superconductivity, 2 = 1, the energy can be arranged in
a Bogom olny splitting:

Z Z
m2 2 a4

m
E-—5 &x 1 Do F+Fu 307 DF o+ — 5 g= dxFp-2151272

T herefore, the solutionsof the rst-order equations Dq i, = 0= Fqp % (Y 1) areabsolutem inin a
of the energy, hence stable, in each topological sector w ith a classicalm ass proportionalto them agnetic  ux.
Tt hasbeen shown in [J] that there is a 41-dim ensionalm oduli space of such solitonic solutions interpolating
between the N ielsen-O lesen N O in the sequel- vortices of the Abelian H iggsm odel and the CP ! m ps of

the planar non-linear sigm a m odel.
A ssum Ing a purely vorticial vector eld plus the spherically sym m etric ansatz
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to be solved together w ith the boundary conditions
Im f(r)=1 ; lm h(r)= 0 ; Im (x)=1
r! 1 r! 1
£(0)=0 ; h(0)= ho nyp ; 0)=0; (2)

required by energy niteness plus reqularity at the origin (center of the vortex). A partly num erical, partly
analytical procedure explained in detail in [8]provides the eld pro ls f(r), (r) aswellas them agnetic

ed B (r)=2—lr‘ji—r and the energy density :
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2T he upper (lower) signs correspond to land n positive (negative). F inite energy solutions only exists if hj< Jlj.



W e have worked com pletely In the last Reference the 1= 1, n = 0; = 0 case and plbtted the eld
pro les and the energy density for four values of hy. T he physicalm eaning of the param eter hy, giving the
size and the phase of the , eld for the solution at the origin, is also explhined there. W e ram ark that
solutionsw ith hp = 0 are the NO vortices em bedded in this system and the grow th of hy corregponds to the
spread of the energy density of the generic SST S solutions. Solitions w ithhyj= 1 are the C P '-lum ps w ith
energy density hom ogeneously distributed over the whole plane.

2.3 Casim ir energy of sem i-local selfdual topological solitons

Let us consider an all uctuations around vortices (x;x) = S(x)+ S (x;x) ; Arx(Xe;x) = Vi (2)+
& (Xp;x), where by S (x) and Vi (x) we respectively denote the scalar and vector eld of the sam i-Hlocal
vortex solutions. W orking in the W eyl/background gauge
i
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the classical energy up to O ( ?) order is:
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T he general solutions of the linearized eld equations
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where A = 1;2;3;4;5;6 and by u'™ (k), u(k) the non—zero eigenfunctions of K and K ¢ are denoted re-
spectively: I = 1;2;3;4, Ku® )= ! ®uP @), I=5;6,Kul(x)= &uP(x),Kux)= ! ®u®x).
C anonical quantization
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leads to the quantum free H am iltonian
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and the ground state energy (all the m odes non-occupied) of the topological solitons reads:
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w here the starm eans that zero eigenvalues are not accounted for. N ote that the ghost eldsare static in this
com bined W eyloackground gauge and their vacuum energy is one-half w ith respect to the tin edependent
case. Only the Goldstone uctuations around the vortices m ust be subtracted. The zeropoint vacuum

energy renom alization provides the Casin ir energy for selfdual ( 2 = 1) sam Hocal topological solitons:
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2.4 M ass renorm alization energy

In (2+ 1)-din ensionalm odel only graphsw ith one or two extemal lines are divergent In the vacuum Sector.
W e choose the follow Ing counter-termm s to cancel these d vergences:
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m ust be added to the bare action (Il) to tam e the divergences arising in one-loop order. T his speci c choice
xes nite renom alizations according to the follow Ing criteria:

1. W ehave used a m Inin al subtraction schem e taking care only of In nite quantities.

2. By doing this, the choice of scalar eld counterterm s sets the no-tadpole condition for the critical
value 2 = 1 between Type I and Type II superconductivity, precisely the regin e n which we are
interested . Vanishing of the tadpole ensures nom odi cation of the VEV < >= (1;0} at oneJoop
level. This condition is standard In the com putation of one-Zoop m ass shifts to supersym m etric and

non-supersym m etric kinks and vortices, see [4]and [3].



3. Considering no nite countertem s for the derivative term s of the H iggs, H , and G odstone, G, ',

elds, as well as their threevalent and four-valent vertices, sets the poles of their m asses at their tree
levelsimy = ,mg = 1,m, = 1,with residue one.

. The m ass counterterm for the vector boson eld plus the no addition of nite countertem s for
derivatives and three—and four-valents vertices of this eld keeps also the vector boson m ass at its tree
level: m, = 1. Note that am ass term for the A arises already at the tree Jevel in the action () as a
consequence of the H iggs m echanisn in the renom alizable gauge. T his point is crucial for staying at
the criticalvalue 2 = 1 in the oneloop level.

. W hen the zeta function regularization m ethod is used In the com putation of one-loop m ass shifts to
non SUSY and SUSY kinks, the lJarge m ass and heat kemel subtraction schem es are known to be
equivalent to the vanishing tadpole condition, see [3], [4], and [15]]. Essentially this m eans that the
no-tadpole condition determ ines a contribution of the counter+tem s to the one-loop kink H am iltonian
energy density which exactly cancels the contribution of the rst coe cient of the high—tem perature
heat function expansion ¢ (K ) to the kink Casin ir energy. O n the other hand, the contribution to
the kink Casin ir energy of the zero-order coe cient is exactly canceled by the zeropoint vacuum
energy renomm alization. T hese two cancelations together ensure that there are no divergences and no
quantum corrections in the energy in the In nite m ass lin it, as it should be: there are no quantum

uctuations of n  nitem ass.

In the (2+ 1)-dim ensional A belian H iggsm odelalso, only the contributions of ¢y (K ) and ¢ (K ) to the
vortex C asin ir energieswould benon—zero (In fact, in nite) n thein nitem asslim it. T he contribution
of ¢y (K ) is canceled like In the kink case by subtracting the zeropoint vacuum energy. T he vanishing
tadpole condition, however, is necessary but not su cient to cancel the contribution of ¢; (K ): one
needs also the counterterm to the vector boson m ass considered above, see [7].

. Finally, it would be possble to express all the divergent Feynm an am plitudes, up to nite parts, n
tem s, eg., of the divergent integral I(1). O ur choice of counter-termm s, how ever, respect the global
SU (2) symm etry which allow s the existence a prioriof other topological solitons than the NO vortices.

A detailed calculation of som e Feynm an am plitudes needed to perform this one-loop renomm alization
iso ered in the last A ppendix ofR eference[9].

T he contribution of these counter+term s to the one-loop m ass shift of the SST S reads:
Mig=— dx IMMQ $1F B2F) 2vuvel+ 1O $1F Fof) 2vivi]

and, form ally, the total onedoop m ass shift ist 4 M 15 = 4 M TCS + 4 M ?S.

3 The high-tem perature one-loop vortex m ass shift form ula

From the high-tem perature expansion of the heat kemels
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the SST S generalized zeta functions can be w ritten in the form :
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The diagonal Seeley coe cients [c, ha (K ) of the K -heat function high-T expansion (resp. the Seeley coef-
cients ¢ (K © )) are the integrals over the whole plane of the Secley densities [c, ha (x;%;K ) which arise in
the associated K -heat kemel expansion (resp. the Seeley densities ¢, (% ;% ;K G):
Z Z
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N eglecting the entire part and setting a large but nite Ny, the SST S Casin ir energies are reqularized as
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w here the 41 zero m odes have been subtracted: the zero-point vacuum renom alization am ounts to ruling
out the contribution of the ¢y (K ) and ¢ (K 6)coe cints. Also, M TRS is reqularized in a sin lar way
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T he physical 1im its s = % for M TCS and s = % for M ?S are regular points of the zeta functions. The

contribution of the 1rst coe cient of the asym ptotic expansion is not com pensated by the contribution of

the m ass renomm alization counter-tem s:
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M assless particles spoilthe Jargem ass subtraction criterion, see [4],and we nally obtain thehigh-tem perature
one-loop SST S m ass shift formula:
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4 N um erical results

Num ericalm ethods are now im plem ented in a two-step procedure. F irst, the Seeley densities are found by
m eans of a sym bolic program run in a M athem atica environm ent on a PC . Second, num erical integration
of the Seeley densities on a disk of (non-dim ensional) radiusR = 10* allow s us to com pute the heat kemel
coe cients. W e thus nd, by setting Ny = 6 and 1= 1, the follow Ing num erical results for one-loop m ass
shifts of sem iHocal selfdual topological solitons

M E = 01) = v : ~ ~2y =1 = 03)= v : ~ ~?
15 hp=01) = m - 1:55133 +0o(~") ; Mg (hgp=03)=m = 0:252586 + o(~7)

M 1:1 p— o — v o, 2 . 1:1 p— o p— v o 2 .
75 hhp=06) = m = + 641655~ + o(~7) ; Mig (hp=09)=m = + 60:9433~ + o(~7) ;



as com pared w ith the one-doop m ass of the em bedded N ielsen-O lesen vortex:

=1 v 2
Mg (hop= 00)=m z 167989~ + o(~7)

O ur num erical results suggest a breaking of the classical degeneracy, the NO vortices rem aining as the
ground states of the topological sector with 1= 1. T hese results are reinforced by the follow ing qualitative
argum ent. T he long-distance behavior of the Seeley densities is:

1. Embedded ANO vortex hg = 00: 2 rtg (r) / %,2 rtd) (r) / %,2 e (r) ! O(r—13),2 e (r) ’
0(5),2 rxd(r)’ 0(e™),2 rx (r) O (e ),n> 2,whenr! 1.

2. Sem Hocal topological soliton hg > 0:0: 2 rg (r)/ +,2 roxd (r)/ <,8n,whenr! 1 .

Ifhg = 0,only thec; coe clentdiverges, like logR ,but its contribution is cancelled by m ass renorm alization
counterterm s. If hy > 0, all the Seeley coe cients are logarithm ically divergent and infrared divergences
grow out of control.
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