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A bstract

Links between supersym m etric classical and quantum m echanics are explored. D iagram m atic
representations for ~-expansions of nom s of ground states are provided. The W KB spectra of
supersym m etric non ham onic oscillators are found.

1 Introduction

In this essay, w ritten to com m emn orate the sixtieth birthday ofJ.C arinena, we discuss severalelem en—
tary issues in one-din ensional supersym m etric quantum m echanics. T he rdle of the R iccati equation
in this fram ework has been thoroughly analyzed by Carinena and collaborators at the highest level
of m atham atical rigor by approaching topics such as the factorization m ethod or shape invariance
from a group-theoretical point of view , see [1], ] and []. O ur purpose here is to approach these
m atters from a rather physical point of view . To construct a supersym m etric quantum m echanical
system starting from a physical potential energy we shall be led to dealw ith the Ham ilton-Jacobi or
the Poisson equations, although in both cases there is an associated R iccati equation. W e shall focus
on studying the relationship between supersym m etric classical and quantum m echanical system s, fol-
Jow ing the standard R eferences [4]and [H]and them ore recent Lectures of A . W ipf [@]. In particular,
m odels w here supersym m etry is unbroken and instantons exist w illbe analyzed at length. Them ain
m otivation to discuss these 1D SUSY QM m odels is to take pro t of the know ledge acquired to study
highly non-trivial 2D system s as those proposed in [19]. A nother issue to be treated w ith care is the
sem iclassicalbehavior of supersym m etric quantum system s, thisdone w ith the help of the enlightening
paper of A . Com tet et al. [T11].
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2 R 6le of the H am ilton-Jacobi, R iccati and P oisson

equations in SU SY guantum m echanics

Let us start w ith a natural Lagrangian of one degree of freedom and the action functional:

Z
m dx dx 2
S = dt ———  V (x; ;k) ; [ I=ML °T
2 dtdt

2, kl=MT *? : 1)

W e shall consider potential energies V (x; ;k) that depend on two pargm eters and k of din ensions
i o
given in {ll) and w e shall introduce the non-din ensionalvariables: x ! IS x,t! % t,V (x; ;k)=

k? V (x), such that the action and the Ham iltonian read (non-dim ensional variables w ill be used in
w hat follow s):
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2.1 One-dimnensionalN = 2 SUSY classicalm echanics

A N = 2 supersymm etric extension of a classical m echanical systam of one degree of freedom is
constructed as follow s:
1. We add two \ferm ionic" degrees of freedom to the \bosonic" degree of freedom with the real

coordinate x. T he ferm ionic coordinates form a G rassm an M a prana spinor:
= ; + =0 ; 8 ; =152

2. A superPoisson structure is de ned in the phase superspace w ith coordinates p;x; 1; 2 . G Iven
two superfunctions F and G on the superspace, the Poisson superbracket
eF @ erec X @

+ i F—LG

fFFiGgp = ——r ——t
# " @pex exep e @

isread from thebasicbrackets: 8 ; = 1;2;,fp;xgp = 1,fx;xgp = 0,fp;p9p = 0,f ; g =1
Note that In the \soul" of the system - the subspace of the superspace spanned by the G rasan an
variables- the con guration space and the phase space coincide. T he reason is that the Lagrangian
ruling the dynam ics of the ferm ionic variables is of rst order in tim e derivatives. Thus, the tin e
derivatives of G rasan an variables w ill not appear in the H am iltonian.

3. TheclassicalSUSY charges: Q1 = p 1 Célx 2,Q00=Dp 2+ Célx 1, Close the classical supersym m etric
algebra:

fO01;019p = £0 ;02090 = 2iH g ; fO ;Hsge = 0 ; £f01;Q29p = 0

4. The classical H am iltonian H g

“ 1, 1dw dw d°w )

TP T 2Tax ax Taxz %
is Invariant by construction w ith respect to the supertransform ationsgenerated by Q 1 and Q , . Besides
the kinetic energy of the bosonic variables, there are two Interaction energy term s in the H am iltonian



) proportional to the (square of) the derivative and the second derivative of the arbitrary fiinction
W (x),usually referred to as the superpotential.
T herefore, a given classical Ham ilttonian: H = %pZ + V (x), adm its an extension to a N = 2

supersym m etric partner H 5 if and only if the superpotential satis es

ldw dw

2o A ©

N ote that Ci‘{’qz enters in H 5 as the expectation value In G rassm an states and disappears in a purely
bosonic setting.
Let us now consider the Ham iltonian for the \ ipped" potentialV (x) = U (x) and the associated

Ham ilton-Jacobi equation:

H 12+U() @S+H(@S )= 0
- — X . S — X)) =

F 2p ’ @t F @X,

T he tin e-independence of the Ham iltonian suggests solutions of the form S (x;t) = Et+ W (x),

leading to the reduced HJ equation:
1dw dw
. T 4 UEX)=E . (4)
2 dx dx

T herefore, the superpotential is no m ore than the Ham ilton characteristic function for E = 0 of
the m echanical system with Ipped potential. In sum , to nd the superpotential, allow ing for the
supersym m etric extension of a classicalm echanical system , one m ust solve a related H am iltton-Jacobi
equation, see R eference [1].
In general, for any E , the H am ilton characteristic function is:
Z
W (x;E)= dx 2(E U (x)) : (5)

The energy E tra fctories satisfy the OD E

dx  dw P— dx
dt dx 2(E (x

2.2 Onedin ensionalN = 2 SUSY quantum m echanics

C anonical quantization of the above systam to obtain the analogousN = 2 quantum supersym m etric
system proceeds as ollow s, see, eg., R eferences [8], @], [4]and [19:

1. Replace Poisson brackets by com m utators for the bosonic variables and anticom m utators for the
ferm jonic variables:

Ripl= 0 pPR= i~ ; £, g= + = ~ ;

w here the non-din ensional P lanck constant ~ = ———~ has been ntroduced.
m2k?2
2. W e choose the coordinate representation for the bosonic variables but the classical G rassm an
<

variables becom e Ferm i operators in the quantum dom ain: P = li%,2= x,A1= ~ 1,A2= ~ 5,

f 17 29=0.



T he Ferm ioperators are represented on the Euclidean spinors n R? by the antiH emm itian 2 2 Pauli

m atrices:

1 1 ~2 ~2 ~ 1 O A
1=PF= 17 2= P=2; 1= 5= = 7 £1729=0; [1;2]= 1~ 3
2 2 2 0O 1
3. The quantum supercharges, Q1 = 175y Lloge Q2= 2~g; + L1957 sare
= d dan : = d aw :
d:= i - 0 Tax dx ¢, = z 0 “ax T ax
. 2 .4, odi 0 ’ z 2 .4, i 0
dx dx dx dx

and satisfy the quantum algebra: £§1;019= £0,;0,9= 2~Hs ,£01;029= 0, B1;Hs 1= B2Hs 1=
0,w ith the quantum SUSY Ham iltonian:

0 1

! L2042  dw dw _d%w 0
dx? dx dx dx? 8
A

R ﬁ(O) 0 1
Hg = A =3
0 A 2

0 L2482 odn dw 4w
dx? dx dx dx?

N

Itjsa]sojnteJ:estjngtoworkwjthnon—hemnji:iamsuperchargesQA =%(QA1 0 5),

r ! r _ !

R 0 ~4 d R 0 0
g, = i dx dx ;Q _

and reshu e the quantum superalgebra in the form : £ (o)Fe) g= 2~HAS o ;HAS = 0 ;HAS ]= 0.
4. The quantum Ham iltonian is a block-diagonal2 2 m atrix di erential operator h€=9) and AE=1)
are ordinary Schrodinger operators acting respectively on the subspaces of the H ilbert superspace
labeled by the eigenvalues of the Ferm inum ber operator:

|

A A A ~ 0 0 A
£-" N - ; -

5. W ave functions in the subspaces w ith zero and one Fermm i num ber anniilated respectively by

§5+ andQA :§5+ éo)(x)= O,@ él)(x)= 0, are elgenfunctions of the H am iltonian of zero energy.

T herefore,
0) expl~ "W (x)] 1) 0
exp[ ~ 'W (x)]

1

R
are theground states of the supersym m etricquantum system ifthey arenom alizable: [ dx S A

+1 or
R oW )~ ! . 0) (1) .
R dx e ® < +1 .Note that either g Or ( can benom alizable.

2.3 The two-fold way to supersym m etric quantum m echanics

G ven a physical systam , the issue of buiding the associated supersym m etric quantum m echanics can
be addressed in two di erent ways.



Q uantization of a classical supersymm etric system . In the rstm ethod, it is assum ed that the clas-
sical supersym m etric extension has been perform ed. T he denti cation of the classical superpotential
requires that wem ust solve the ODE

1dw dw

Zax ax B
the tin e<independent H am ilton-Jacobiequation {) for zero energy and ipped potential energy. T his
dea hasbeen applied to ntegrable but not separable systam sw ith tw o degrees of freedom in R eference
[T9]. C anonical quantization, as in the previous Section, provides all the interactions in the quantum

sy stem
1dw dw  ~d’W ) 1dw dw  ~d’W
2 dx dx 2 dx?
in tem s of the H am ilton characteristic function.
Supersym m etrization of a quantum system . The identi cation of the \quantum " superpotential

VO (x) =

2 dx dx 2 dx?

would require one to solve one of the two R iccati di erential equations

1awW awW  ~a%u

2 dx dx 2 dx2

=V (x) ; (7)

the sign m arking the subspace where the the potential energy V is expected to act. There is no
dependence on the P lanck constant in the potential energy of any physically signi cant m echanical
systam . T herefore, w e change the strategy and look for superpotentials that soke the Poisson equation :
a%w p
dx?

(x)=V (x) ; (8)

w ith the sam e criterion for the signs. Physically, thism eans that the Yukawa interactions provide the
potential energy at stake. M athem atically, the solution of the Poisson equation (8) WAP provides a
solution to a pair of related R iccati equations [@):

1dWp dfp  ~d?Wp

N 1dW s dfp  ~d?Wp
2 dx dx 2 dx?

o ok Zme S voE ©)

=V

for other related potential energies: v (©) (x),\? W (x). 0 nce again, thedatum isV (x) in (@) from which
V0 (x),V 1) (x) are derived .

3 Exam ples: Anharmm onic oscillators of sixth-order

To put these deas to work , we choose as exam ples one-dim ensional oscillators w ith term s proportional
to x* and x°® in the potentialenergy. Papers, review s and even books dealing w ith the x* case abound.
W e shalldiscuss the x° case because it provides a splendid arena to disentangle two e ects, nstantons
and spontaneous supersym m etry breaking, which in the x* case com e together. T he potential energies
are: .

=¥ ¥ K ; Vi) - 2kt 1 (10)
describing respectively a single (+ sign) or triple (- sign) well. W e shall only describe the st line
of attack here from the solution to the HJ eguation (where the potential energy is not found in the
Yukawa interactions) and leave the Poisson route for another publication.



3.1 Quantization of classical supersym m etric sixth-order w ells

311 Singlewell

1. Supersymm etric chssical m echanics. The solution to the HJ equation for E = 0 and U (x) =
%XZ(X2+ 1)? is:
z 4 2
2 X X
W (x)= dxx(x“+ 1)= —+ —
4 2

T he supersym m etric classical H am iltonian and the supercharges read:

1 1
Hg = —p°+ =x°(x*+ 17 UBx*+ 1) 24 ;i Q0 =p  x&2+ 1)

2
In the \soul" of the related supersym m etric system w ith Jpped potential, the H am ilton characteristic

function and the tra fctories are given analytically by hyperelliptic integrals:
Z p Z dx
W (x;E)= dx x°+ 2x*+ x°+ 2E ; P = t+ t
%6+ 2x% + x2+ 2F

For E = 0, there is only one constant tra jctory, where the particle sits on the top of the potential:

x(t)= 0,which is also the unique BP S tra fctory of the supersym m etric classical systam .
2. Supersymm etric quantum m echanics. T he quantum supercharges are:
|

= d 2 : r—= d 2
g.= i - a 0 ) Yo xEOH L) ; 0o = - a 0 5 Yo X&) ; (11)
2~ xExT+ 1) 0 2~ kx4 1)
and the potential energies arising in H 5 read:
4 (0) 1 2.2 2 2 4 (1) 1 2,2 2 2
VU(x)= E(X (x“+ 1) ~(3x°+ 1)) ; VU (x)= E(X (x“+ 1) ~(3x°+ 1)) : (12)
T hus, the zero energy ground states are:
0 . 1 0 1
Cr+ ) 0
P -c@ ST TgA G Prg-c sy B
0 expf—*—~=—g

The supersym m etric quantum system has always one ground (BPS) state and supersymm etry is
unbroken: if we choose W = X—44 + X—22 as the superpotential, the ground state belongs to the Fem i

subspace - (()O) isnot nomn alizable—, the choice of W =

él) becom es non-nom alizable.
O ne can guess the energy and the type of eilgen-fiinction of the next energetic states by looking at

2 4
% + XT forces a Bosonic ground state w hereas

the \e ective" potentials:

V, (x)= %(XZ(X2+ 1% ~3x%+ 1)) ; V (x)= %(XZ(X2+ 1%+ ~3x% + 1)) ;

= O’Xl =

ither V (0 or v () dep%ndjng on the choice of W . The critical points of V. (x) are: X
e S

2 1 9~ _ 2+ 1 9~

d*v
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Figure 1: Potentialenergy V. and BPS ground state € (x) (red) fOr:

(@)~= 0001, )~=0d,(c)~= 2,d)~= 4.

Xp Isamininum ofV, if~ < % and becom es a m axin um otherw ise. x; are always im aginary roots
but x, are realand becomem nimna ofV, for~ > %

There is a uniguem nImum forv , xg, and the wave function of the st level over the ground

state is well approxin ated by a G aussian around it:
|

root 0 ' P -
)y , ;1 = 143 ;  E"T @+l ) :(13)
~ expf '2—~X2g 2
T he supersym m etric partner state in the subspace of 8 is obtained by acting on P14 ith d,:
1 3 | 2 !
o N 1o~ x>+ 1+ ! x)exp[ —x“]
S)=0, F)= 1 . . JEf =E : (14)
V-[X] V-[x] V-[X]
LJLJX & X —— X
Vi [X] V4 [X] V+[X]
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Figure 2: PotentialenergiesV . D egenerate in energy F1o(x) (green)

+

E

and ' (x) (blue) wave functions: (@) ~= 0:01, (b) ~= 01, (c) ~= 1.
)
3. Zero—energy ground state. T he dependence of % (%)= exp[ ——2—]on ~ is rather nvolved and
can be described analytically through the asym ptotic behaviorwhen ~ ! ~. and ~. = 0 is the classical
value:
( !
C L E e et SE P e =
ex — (= + x ! ex —(—+ x + — ~
PL oo L TE ~2 B x?)
| | 9
-2 ‘3 —
1 2~ 2~ 1+ 6~c(~ 1) 2~
+ ~ + ~ +
2~¢ £+ x2)  © 6~8 4 x2) ;

It is also Interesting to analyze how the nom of the BPS ground state | (x) dependson ~:

z <4 %2 p_2% gh P —
N (~)= dx exp >~ - = - dz exp — z? ; X= ~z : (15)



T his non-gaussian Integral is no m ore than the partition function Z (~) = N (~) ofa QFT system In
(0+ 0)-spacetin e dim ensions and Lagrangian [T0]:

T he partition function can be expressed as a series in ~,

}é‘ Z 1 3~ m Z l 41‘[1 ] _
Z (~)= gz L7 dzzim e @ = M) P— (17)
oo 1 (4" m ! 1 (2m ) 122m
by perform ing in nite G aussian integrals:
Z(~) X (3 (4m)! 1(3 . 5 7(3 2 5 7 1(% " . (18
S o @rm !l @ g 32 3 ¥ '
The expansion (I8) of the partition function show s an essential singularity at ~ = 0 -the classical

lim i=and it is an asym ptotic series. T he best approxin ation to the integral is reached by keeping a
num ber of term sm ¢ such that the quotient between two consecutive term s is of the order of one:
am o+ 1 (dm o+ 3)(4m o+ 1)

1
- ~ ~2mg 1) mg —  ;
Dmar 1 2 o 1) mo o7

am

and the error assum ed by neglecting higher-order tem s is bounded by exp| % 1.

It is tem pting to explain the pictorialdescription of the series using Feynm an diagram technology.
W riting the partition function in the fom ,

one discovers the follow ing Feynm an rule: there is a single tetravalent vertex with a factor ().
T he lowerorder tem s in the series {I8) correspond to the weights of the vacuum diagram s - the
factor of the vertex divided by the com binatorial factor, the num ber of equivalent graphs of the sam e
topological type-up to second order in perturbation theory shown in the next Table.

Vacuum graph W eight Vacuum graph W eight




31.2 Triplewell

1. Supersymm etric chssical m echanics. The solution to the HJ equation for E = 0 and U (x) =
%XZ (x* 1) is:
z 4 2

5 X X
W (x)= dx x (x 1)= — —

T he superpotential is thus the \som brero" potential. T he supersym m etric classical H am iltonian and
the supercharges read:

1 1
Hs=5p2+5x2<x2 17 iEx* 1) 3. ;0 =p oxx1)"

A Ithough feasble, we shall not attem pt to search for tra fctories w ith non-null G rasan an degrees of
freedom .

Tt is interesting, instead, to ook at solutions in the \body" of the related supersym m etric system
with Ipped potential because of their r&le In the quantum H g system . The Ham ilton characteristic
function and the tra fctories are given analytically by hyperelliptic integrals:

Z p Z dx

W (x;E)= dx x° 2x%'+ x%+ 2E ; e = t+ 4
x6  2x%+ x2+ 2F

ForE = 0, the Integrations are easily perform ed and two kinds of tra fctories are found:

C onstant tra fctories, w here the particle sits on the top of the potential: x(t)= 0,x(t)= 1.
T ra ctories w here the particle starts from am axinum ofthe potentialatt= 1 and slowly m oves
toreach x= 1 (in nite action) or anotherm aximum ( nite action) att= 1 .
2 2 1 2 , 1
1 e 2®&®) 1+ e 2t 1)

T he constant tra fctories are special due to the fact that they are also zero energy (BPS) classical

Figure 3: (a) Potentialenergy U (x). (b) Ham ilton characteristic function (superpotential) W  (x).
(c) Zero-energy, nite action, tra gctories (instantons).

solutions to H 5 because the classical superchargesQ = (p ix (x? 1)) are annihilated by them

for any value of
2. Supersym m etric quantum m echanics. T he quantum supercharges are:

r _ ! r

d.= i z . -z ;
! 2 L & 1) 0 2 L 1) 0



and the potential energies arising in H 5 read:

v O (x)= %(XZ(XZ 1) ~@Bx% 1)) ;i Vl(x)= %(XZ(XZ 1) ~(Bx% 1)) : (21)
T hus, the zero-energy ground states are:
0 ., 1 0 1
(0) expf Mg (1) )
o (x)=C @ - A ; o (x)=C @ a2, B
0 expf——=*—g

The supersym m etric quantum system always has one ground (BPS) state and supersymm etry is

unbroken: ifwe choose W = x—44 X—22 as superpotential the ground state belongs to the Ferm i subspace
- (()O) is not nom alizable-, the choice of W = X—ZZ XT;} forces a bosonic ground state whereas él)

becom es non nom alizable.
N evertheless, despite unbroken supersym m etry this systam has instantons. To analyze the coexis-
tence of these two phenom ena one needs to study how

evolve In response to changes in ~. Note that either V, orVv areqejther VO orv (l)qdependjng on

2 1 9~ 2+ 1 9~

the choice of W . The critical points of V. (x) are: xg= 0,x; = —— /%X, = 3 ,
d?v d?v p d?v b
o2 (xp)=1 3~ ; @(xl)z 4(1 3~ 1 9) @(xz)z 4(1 3~+ 1 9~)
V4 [X] Vi [X] V4 [X]
X
X
Vi [X] Vi [X] V4 [X]

A/ X
X X

Figure 4: Potentialenergy V., and BPS wave function § (x) (red) plotted as functions of x

for severalvalues of ~: (a) ~= 0001, (b) ~= 01, (c) ~= 2.

1
3/
see Figure 2. T herefore,

X, arealwaysm inina ofV, (x), xg iIsam nimum ofV, if~ < %butbecomesamaxjmum if ~ >

1

and X, aremaxina of V, for ~ < %,notanymorecrji:icalpojntﬁ)r~> 5

2+ 1+9~ 1 1+ 9~
3 9

because V, (x0) = 5 > V, (x, )=

5 2~ + 5,x%p Isa false vacuum that decays to

the true vacua x, when ~ < % . The decay am plitude can be com puted from the classical bounce for

the 1Ipped potential, starting and ending at xg, which is very well approxin ated by an instanton-—
anti-instanton con guration for an all valies of ~. It is ram arkable how well this behavior is described

by the ground state wave function % (x); even m ore ram arkable, 8 (x) also m atches the expected

1

behavior for ~ > 5 where there isno tunnele ect at all, see again Figure 2.

10



Xo, however, is the absolute m nimum of V (x); if ~ < é,xz are also minina of V (x), but

V (x0) = <V ()= = 31 S 91 > 4 2~ 5. I~ > %xo is the single critical point
(m Inimum ) ofV (x). T herefore, the eigenfunction of the low est eigenvalue of the Schrod inger operator

w ith potential energy V  (x) is approxin ately a G aussian centered at xg = 0:

og oy P
(x) ' — expf;xg; 1= 1+ 3~ ; E, ’

(! 1) : (22)
F1 (%), the rstelgenfunction of H 4 outside the kemel, lives In the subspace orthogonal to the sub—

space of € (x). For~ < % , E1 grow s from the decay of the false vacua x, ruled by instantons/anti-

Instantons now starting and ending at x, . M athem atica draw ings of these wave functions are o ered

U

V-[Xx]

J ) AL

Figure 5: Potentialenergy V (x) and wave function

in Figure 3.

Ea (x) (green) plotted as functions of x
for severalvaluesof ~: (a) ~= 0:001, (b) ~= 01, (c) ~= 1.

A cting on ! (x) with the supercharge operator d.,,an approxin ate eigenfiinction of Hg is
obtained in the subspace of © (x). T he supersym m etric partner of E1 (x) is thus,
|

S e N & (1 ! x)expl 'Z—Nxz] ; E] =E, 7 (23)

and E I is the lowest-lying eigenvalue in the subspace of the zero m ode (ground state). P lots of these

\odd" wave functions are shown in Figure 4 for several values of ~. T he wave function has a node at
the origin.

X4 X2

3. Zero-energy ground state. T he dependence of § (x) = expl 4fT)]on ~ is som ew hat involved

and can be described analytically through the asym ptotic behavior when ~ ! ~. and ~. = 0 is the

clssical value:
( !
C L E ) et S 2] 14 i

expl —(— x expl —(— x — ~

2~ 2 ! 0 ~e 2 ~2 (% x2) ©
| . 9
2 -3 _

L1 2 2~ LIt 6vele 1) 2~ .
N N 6~8 & =) j

11



Vi [ V+[x] +[x]

W
]

B Y e

+

Figure 6: Potential energy V. (x) and wave function El (x) (blue) as a function of x

for severalvaluesof ~: (a) ~= 0:001, (b) ~= 01, (c) ~= 1.

Thenom oftheBPS ground state %‘ (x) isagain a non-G aussian integral. D enoting z = zia% ;22 =

and %~= ,we obtain:
z xt x? -P -7 ~z* P - 3 2
N (~)= dx exp 2_+ Z - ez o~ dz exp 7 2 ~z 27 : (24)
N (~) = Z (~) is the partition function for the Eucldean (' )é%n odel w ith spontaneous x ! X

symm etry breaking in (0+ 0)-space tin e dim ensions and the Lagrangian:
P

1 3
L = _12 _14 _13 : (25)
2 41 3!
Perform ing in nite G aussian integrals
Z p_—
21 ¥ X% (P T3 e iy,
AP T 3 oml,  (Abmml (BHF(2K)!
one obtains the asym ptotic ~-expansion:
201 ® R op (P (4m + 6k)! o6
&SP 7 = oo @mml BN (2K)!L (2m + 3k)pEm 3k
5 7 5 7 1 3 5 5 5 7 1L, 5 7 11 13 .17
=1 gt 75 o 3]3+ 6 ke 2 T T = 5 7
| 2 b l—Az—) ¢ {z

A gain, the optin um value of the num ber of term sofk type can beestin ated. K eepinga xed but nite
valie ofm = m ¢ such thatm o << kg, the quotient between two consecutive k = kp and k = ko + 1
term s m ust be of the order of one:

Bmotkotl 1 (4m o + 6ko + 6)(4m o + 6ko + 5) G 6ko+ 1) B ]
Bm o+ ko (2ko + 2)(2ko + 1) (2m o+ 3ko+ 3)(2m o+ 3k + 2)(2m o + ko + 1) (31223
1
27 k 1 k — ;
0 ) 0 27 ’

and the error assum ed by neglecting higher-order tem s is bounded by exp| % 1.
W riting the partition function in the form
H { H —

)74 ( yr 4 P —

Z
z[ 1 x % (4" 41 3 TR %'2d’ 27)

12



one sees that the Feynm an rules encom pass one tetra-valent vertex and one trivalent vertex that are

proportional respectively to () and (p3_). Four-eg vertices com e from % n the integrand

of 1) ; threeJleg vertices are due to (});4’3 term s in (Z) and only contribute in pairs. C om parison

w ith the ~-expansion (28) show s that pictures of the k = 0 tem s, collected in the st two blocks of

the rst row, are provided by the diagram s shown in Table 1. D iagram s w ith one tetra—valent and

two threewvalent vertices, k = m = 1, shown In Tabl 2, provide the second block in the rst row :
32 32 3¢ 32 32 32 35 72

26 32 24 22 23 3 2 2

D iagram W eight D iagram W eight

3%+ F 89+ 5
oo S

37 37
] R (},() ]
@ ) 23 ) 3%

In Table 3 only diagram s w ith trivalent vertices,m = 0, are displayed:

Vacuum graph W eight Vacuum graph W eight
3 3
O—O ! > | ~
' 2 = ’ 3 2
oYe) I 32 2 ' 32 2
O_O : 27 @@ . 3 %
32 2 32 2
! | >
@8 > 000 >

| 322 @ | 322
00 - > : 3 2

D jagram sw ith tw o trivalent vertices contribute: z—3+ % 2—53 , W hereas the contribution ofdiagram s
. . . . 32 2 32 2 32 2 32 2 32 2 32 2 32 2 5 7 112
WJrhﬁ)urtrNaJentveItJQeSJs.z—7+W+2—5+W+T+7+ = — .

13



4 Supersymm etric W KB approxin ation

T he sam iclassical regin e is characterized by the inequality:

dZW<)<<di<>—'<) (x)F ; <)—pzv<)
d_X2X d_xx —jX X H X )= X
T hus,
~ 2V (x)
— = Pp= <<
2 2V (x) dV =dx

is satis ed in the lin it of short wave lengths. To obtain the W KB eigen-functions of the SUSY
Ham iltonian In,eg. , the subspace for which the zero Fermm inum ber is zero —because supersym m etry
W KB egenfunctions of non-zero energy in the Ferm i sector are given autom atically —one starts from
the W entzelK ram m ersB rillouin ansatz in the classically forbidden region E < V (x):

fit= Ak) epl iy B (28)
T he Schrodinger equation for V, (x) becom es
, d’hnA dinAa dina
~ ?(XH (x) (x
X dx dx
d’w ¢ dw g d
~ o2 (xX)+ 2InA (x) ™ (x) &(x) + Weg (x) W (x) (x) (x)+ 2E = 0 (29)

w ith three tem s of respectively order 2,1,and 0 In ~. The usualW KB strategy starts by solving the
equation {29) for the ~-independent term s to  nd:
Z
Wgx)= dx (%) (x) 2E ;

w ith the novelty w ith respect to thenon SU SY case that the tuming points are those corresponding to
V (x), rather than those set by the e ective potential V, (x). T he second step is to plug this solution
into the equation for the tem s proportional to ~:

n #
dinA 1 1 (x) d
)=+ P — (x)
dx 2 (x) (x) 2E (x) (x) 2E dx
Integration of this equation provides the SUSY W KB wave functions:
1 . p 2
Ax)/ Jix)+ (x) (x) 2E : (30)

N ote the otherdi erence: in the non-SU SY case the num erator of this expression is 1. In the classical

allowed regions, 2E > ?(x),however, the W KB ansatz reads,

I (x)3

()= A (x)exp[ i 1 (31)

and one obtains:

14



Tomatch theW KB wave functions (28) and (Zl) analytically at the classical tuming points x = a <
x = b,such that ?(a)= 2E = ?(b), the follow ing supersym m etric quantization rule is required:

2y

dx 2E x)?=n ~ n2zt : (32)

a

T he appearance of the num erator in (30) ism agic: rstly, because this term m odi es the process of
analytic continuation necessary to m atch the exponential and periodic W KB wave functions at the
tuming points In such a way that the 5~ term that appears in the non SUSY version of (Z2) does not
enter the SUSY case. To obtain the W KB wave function in the classically allowed region

Pp———r
q — g .
E 2E 243 0 1 Rx dxop 2B 2(x0) 1R dxop 2E Z(XO)O

2 Cie- » + Cre ~ 0

+

Ex)y=e

IS

(2E %)

from the W KB wave functions in the forbidden regions

P— pP——
2 2E + 37 R, P——— 2 2B+ 37 R, _
E x)= C e% . dx? 2(x% 2E E (x) = CO e% " dx’ 2(x% 2E

(2 2B) (2 2E)

one chooses paths in the x-com plex plane that goes around the tuming pointsa and bat great distance,
either in the upper or the lower halfplanes. Unlke to the non-SU SY case, there isno e 7 factor left
and two wave functions are cbtained In the classically allowed region, one from the left and the other
from the right:

9p
5 Z
2E x)+ 1 (x) 1% p—
Ex)=cC . cost  dx” 2E 2(x9)]
(2E 2(x))t T b
Tp————
Y 20+ i) 122 p
Ex)=c? . cost  dx” 2F 2(x0)]
(2E 2(x)): T ox

T hese expressions are dentical if and only if {3J) holds. Secondly, E = 0 is a solution of {32) for
n = 0,whereas (28) becom es the exponential of the superpotential: the exact ground state isa SUSY
W KB wave function !

4.1 W KB analysis of the single well

W e shall consider as exam ples non-hamm onic oscillators of fourth order to avoild hyperelliptic integrals
and dealw ith (slightly!) m anageable expressions. In the case of a single well w ith potential energy

Vi(x)= 3 (x? + ¥)? we have, using non-din ensional variables:
1 4 2 2 x°
V(x)=§(x+2x+l) ; x)=x°+1 ; W(X)=?+X
T he tuming points are the real roots of the quartic equation :
q_--
4 2 P
X"+ 2x a=20 ; a= 2E 1 ; X = 1+ 1+ a : (33)

15



T he supersym m etric quantization rule is therefore:
Z

X+p I
I(E;;x X+ )= a x* 2x%dx=n ~ : (34)
X
. p—— W .
DenotingA = 1+ 1+ a,thede nite integralin 31) reads:
4p — P A
IE; ;x ;x4)=— A a+ 1K E ; (35)
3 A, A,

where K (k%) and E (k?) are respectively the com plete elliptic ntegrals of rst and second type. T his

result is shown in Figure 8.

V+[X] V+[X] V-[x] V-[X]
W X )& X W X )QLL

Figure 7: Graphics of V. (x) or~= 01 —(1),(3)-and ~= 1 «2),(4)-.

|

o

3 1

w
]

5

27

o

SE

2 7 6 8 10 12 14 2 0.2 0.4 0.6 0.8 1

Figure 8: M athem atica plot of I (E ;x ;xX, ) asa function of a and intersection with n ~ for low n and
~=1 (left) and ~= 0:1 (right)

The rst three (double, see Figure 7) elgenvalues for ~ = 1 and ~ = 01 are: E;, = 2:18674ﬁ,
E,= 4239425 B, = 654445 ,and B, = 0645005 ,E, = 0:78289 5 £ 5 = 0:95403 &, respectively.

4.2 W KB analysis of the double well

For a non-ham onic oscillator of fourth order and a double well things are even m ore di cult. The

potential energy sV (x) = 5 (%2 IS )2 , such that in non-din ensional variables we have:
1 4 2 2 x’
V(x)=§(x 2x°+ 1) ; (x)= x 1 ; W(X)=? X
T he tuming points are the real soluitions of the quartic equation:
. T— 1—
X 2X a=20 ; X = 1 1+ a ; X, = 1 1+ a : (36)
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Fora > 0 there are only two real roots and the supersym m etric quantization rule reads:

ZX++p

IE ;X 4 ;X404 )= a x%+ 2x?dx=n ~ : (37)
X 4
The com putation of I (E ;x ; ;%X 4+ ) Isqualitatively dentical to the previous case and results are shown
n Fig. 10(left).
If 1< a< 0 thihgsaremoredicul: there are four tuming points, four real roots, and the

quantization rule splits into two equations:

Z X4 pi Z X4+ pi
IE;x x4y )= a x%+ 2x%dx=n ~=I(E;X 4 ;X444 )= a x%*+ 2x?2dx
X X 4
(38)
The de nite integrals in (B8) now read:
" s I
I(E )= I(E ) 2 P31k - F i A Be
X X = X 4 X = — a arcsin ;
’ 755+ ’ + 754+ EpA— A A, ’ A
S U #
A , A A,
E + E arcsin ; : (39)
A, A, ' A

N ote that incom plete elliptic integrals of the wrst, F(u;m ), and second, K (u;m ), type also enter. In
any case, it is possible to plot these functions of a and nd the intersection points determ ining the

Spectrum .
V+[X] V+[Xx] V-[X] V-[x]
X X

Figure 9: G raphics of V. (x) for~= 01 —«1),(3)-and ~= 1 «2),(4)-.

nn

>
N

5 AR

|
o

4

37

2

Figure 10: M athem atica plotsof I (E ;x . ;x+. )for~= landa> 0 (left)and I(E ;x ;x, )for~= 0:1 and
1< a< 0 (right) as function of a. T he intersection points w ith n ~ giving the eigenvalues are also shown.

The rst three eigenvalues fora > 0 and ~ = 1 are: E; = O:82272k—2,E2 = 2:0833Ok—2,E3 =
563830 £
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In thecase of 1 < a < 0 egenvalues only exist if ~ < 0:95. Application of rule (B8) for the
tuming points on the Jeft gives: E; = 0191835 ,E, = 0:36384 %, B3 = 049993 K2 |

Because of formula (83) the choice of pair of tuming points is irelevant; E1,E;, E 3, etcetera, are
eigenvalues of the Schrodinger equation for both V, (x) and V

5 Outlook

T he next step is to study physical systam s of two degrees of freedom . It is tem pting to start by
discussing problem s of this type in Ham ilton separable systan s. Follow ing the works [T4HI9] on
supersym m etric quantum m echanics in m ore than one dim ensions, the general structure of supersym —
m etric classical and quantum Liouville system s has been described in R eferences [13]and [12]. An
In portant exam ple of this kind of system s is the supersym m etric classicaland quantum hydrogen atom

respectively analyzed by Heum ann [I1] and K irchberg et al [T8]. It seam s also plausble to address
sin ilar issues in non-separable but integrable systam s as those proposed in [19].
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