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O rbit-based deform ation procedure for two— eld m odels
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W e present a m ethod for generating new deform ed solutions starting from system s of two real
scalar eldsforwhich defect solutions and orbits are known. T he procedure generalizes the approach
Introduced in a previous work [Phys. Rev. D 66, 101701(R) (2002)], In which it is shown how
to construct new m odels altogether with its defect solutions, iIn temm s of the original m odel and
solutions. A s an illustration, we work out an explicit exam ple in detail.

PACS numbers: 11.10Lm ,11.27+d

I. NTRODUCTION

K inks, dom ain wall, vortices, strings and m onopoles are all well known exam ples of defect solutions w ith
topological pro les for eld theories in di erent dim ensjon@l;@,a]. T hese solutions have been Intensively
studied since the seventies n high energy physics. The interest has been continuously renewed in di erent
branches of physics since defect solutions In general appear in m odels of condensed m atter as well as string
theory. In particular, system s of real scalar elds have attracted attention with very distinct m otivation,
since they can be used to descridbe dom ain walls In supergravity Q] and branew orld scenarios w ith an extra
din ension E]. T herefore, it is In portant to nd explicit analytic solutions for this kind of system s and is in
this direction that the m ethod conceived in ref. @ lhas shown to be very useful. In that work it was shown
that know Ing a defect solution ofa scalar eld m odel for a single real eld is enough for generating an In nity
of new m odels w ith its solutions, allw ritten in temm s of the originalm odel and solutions.

For eld theories nvolving two realscalar elds, the m athem atical problem conceming the integrability of
the equations of m otion is m uch harder, as one deals with a system of two coupled second order nonlinear
ordinary di erential equations, and the con guration space show s a distrdbution of m Inin a that allow s for
a num ber of topological sectors. O ne way of sin plifying the problem is to consider potentials belonging to
the (wide) class corresponding to the bosonic sector of supersym m etric theories. This kind of system s can
be studied, via the introduction of a superpotential, In a rst order form alism which allows (stable) BPS
con gurat]'onsml. Even in this case nding explicit solutions can be a highly non—trivial task and therefore,
any m ethod for obtaining new solutionswould be of great utility.

For m odels w ith two interacting com ponents, the solutions on each topological sector determ ine orbits in
the con guration space, which can be expressed as a constraint equation O (1; )= 0.Based on this fact it
was Introduced In E ]a procedure called trialorbitm ethod consisting in shooting an orbit and testing it on the
equation corresponding to the m odel considered. Later, thism ethod was adapted @ ] for the searching of BP S
states of system s of st order ODEs, leading to som e advances. In recent years, other generalm ethods for
the investigation of com plicated nonlinear problem s arising in m any— eld system s which com prise m ultidefect
solutions have been developed; see, for instance, ,,,,,] and references therein. M odels of two
scalar eldshave also been used to describe com plex phenom ena such as the entrapm ent of topologicaldefects;
see, for Instance @,lﬂ,lﬁ ].

A swillbe shown below , the eld deform ation m ethod introduced in @] for one- eld m odels also works for
connecting ODE system softwo rstorder equations in m odelsw ith two scalar elds. T he equations arising In
this extended procedure are In generalm uch m ore com plicated than their counterpart for a single scalar eld,
given that not one but two deform ation functions are now required, and it happens to be di cult to realize
which pair of deform ation functions would do the b in the right way, generating a well behaved deform ed
potential and solutions consistent w ith the equations ofm otion of the systam . To overcom e thisdi culty,we
take into account the fact that the actual solutions connecting tw o vacua of a topological sector live restricted
to orbitsin  eld space. T herefore, by deform ing the rst order equations fora two— eld system while in posing
the orbit constraint, we assure the consistency of the solutions of the deform ed m odel at the level of the
dynam ical equations.

T he paper is organized as ollows. In the next Sec. IT we brie y review the deform ation m ethod for one
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com ponent system s, and we extend the deform ation procedure to two—- eld models. In Secs. ITT and IV we
show how the incorporation of orbit constraints allow s to obtain consistent deform ed solutions for two- eld
models. Then we work out an explicit exam ple in detail to illustrate the procedure In Sec. V. W e end this
work with som e comm ents and conclusions in Sec. IV .

II. THE DEFORMATION M ETHOD

W e start with a system of a sihgle real scalar ed (x) :R'? | R, o a bidiensional M inkow ski
spacetine ( = 0;1with x% = xg = t;x! = x; = x),descrbed by a Lagrangian w ith the usual form
1
L=-@ @ V() 1)
2
w here the potentialV ( ) gpeci es the m odel.
For static con gurations ( = (x):R ! R),the equation of m otion reads
&> av () 2)
dx? a '’
and the energy functional associated to the static solutions is given by
" #
Z
E[ 1= dx L d 2+V() (3)
- 2 dx

R equiring for the energy of the solutions to be nite results in the boundary conditionsd =dx ! 0 and
V()! Oasx! 1 . Thus, the physical solutions are constant at in nity, and their asym ptotic values are
m Inin a of the potential. Perform ing a  rst integral of the equation of m otion under these conditions, we get
to the st order equation

— =2V ( ): (4)

In this work we w ill restrict our study to solutions of this st order equation which present topological
(kink-like) character, In the sense that they connect two di erentm inin a of the potential.

Tt is convenient to consider potentials of the form V ( ) = % W ° )P, where the prin em eans derivative w ith
respect to the argum ent, and the functionalW ( ) is the superpotential. T his allow s us to w rite equation (4)
as the gradient ow equations ofW

d

@ _ 0
ax w () (5)

Let usnow describe the deform ation procedure for a single real scalar eld m odel, as introduced inl§]. The
prescription is the follow ing. First, we de ne the deform ed potential as

VI(E())

U( )= (6)
[0 )P’
where £ is the deform ation function.
This new potentialdetermm ines the m odel for the deformed eld  through the deform ed Lagrangian
L= l@ @ U(): (7)
= 5 .
The wstorderODE detem ining the defect pro Il in the deform ed m odel reads
4 =2U0( ); 8)
dX 4



with U ( ) given by [d). This can also be seen as the gradient ow equation of the deform ed superpotential
W ( )de ned by

W OE ()

= W 0 . W 0 — 9
= () ()= 9)
Second, we connect solutions of the originaland deform ed m odels through the deform ation function
x)=£f[ X)) (10)

H ere the deform ation function £ ( ) is assum ed to be bifctive —see however [11].
T herefore, if defect solutions (x) of {d) are known, the link between the two m odels provides the defect
solutions (x) of {8) by just inverting the eld transform ation [CJ)

x)=f *( (x)): (11)
JII. EXTENSION TO TW O-FIELD M ODELS

At the evelofthe st order equations, the deform ation m ethod can be directly generalized to m odels w ith
two scalar elds. W e start w ith the m odel

1
L=-Q@~ @~ V(~); (12)
2
where ~ isan isogpinorialreal eld ~= (1; 2). Suppose that the potential energy density can be w ritten In
the form
2 2
1 @w 1 @w
v . - Z T 13
(17 2) > - > 3 (13)

where the superpotential W is a well behaved fiinction in the space of scalar elds ~(x;t) 2 M aps®'?;R?).
A subtle point is the ollow ing: Because (I3) is a PDE equation there can be several independent solutions
for W —-notmerely a global change of sign as In the one- eld case — seel|l9]. Then the static nite energy
solutions (topologicaldefects) of thism odel satisfy the rstorderODE system

8 d 1 _  ew
< ax T e 1
(14)
d . _ @w
dx @ ,
Now we choose a deform ation finction £ :R? ! R? such that
8
< 1x)=1f1(1(x); 2(x))
~x)= (")) , ; (15)
2(x)= f2( 1(x); 2(x))
where ; and , arethedeformed elds.Then the rstorderODE systsnIE) becom es
< @1f1dd—xl+ @2f1d;1—x2 = @ W
; (16)
@1f2dd—xl+ @2f2dd—x2 = @fZW
w here
@fi( 17 2) QW (£1( 17 2);E2( 17 2))

g o tr2) d W :
¢ @ | an e, er,



T his system can be rew ritten as

8
2 S = g (@EesW  @fenW )
(17)
2 d
- ﬁ (@51 G, W @i Qe W )

where J (f)= @, f; @,f, @,f; @;f, (the Jacobian of £) ,and we assum e that J (f) 6 0. (Note that this fact

can be relaxed by restricting the defom ation m ethod to act on a fam ily of open sets in R? where J (£) 6 0).
Equations {I7) can be interpreted as the rstorder ODE system

< i - @1W
(18)
Eraia

where W ( 1; 2) is the superpotential of the deform ed system and the right hand side derivatives denote

_ewW (15 2)
e = Lo,

In tem s of the original superpotential, the deform ed one is determ ined by the PDE system
8

> ﬁ (@f2 @, W @f1 @e,W ) = @W
(19)
? ﬁ (@11 Ge, W @2 Qe W ) = @W

T herefore, if any two-com ponent defect solution ~ (x) of (14) is known, the link between the two m odels
provides tw o-com ponent defect solutions ~ (x) of {18) by calculating

V ice versa, if tw o-com ponent defect solutions ~ (x) of {18]) are know n, the link betw een both m odels provides
tw o-com ponent defect solitions ~ (x) of (I4) by applying the transform ation

The existence of £ ! isassociated to the above m entioned precisions about the zeros of J (£f) via the Inverse
Function T heorem .

At thispoint, thedi erencesbetween working w ith one orm ore scalar elds appear. First, the ODE systam
{18)) is supposed to give the solutions for the deform ed system . This will be true only when those solutions
satisfy, besides the rst order systam , the dynam ical equations for the deform ed potential

1 2 2
V(1;2)=5[(@1W) + (@W )k (20)
T his isautom atically satis ed by any solution of[l8). But beside this, one is assum ing that the deform ation
leads to wellbehaved, sm ooth potentials. Therefore, we should ask for the st order derivatives of the
deform ed superpotentialW ( 1; ») to be continue or, altematively, for its second order crossderivatives to be
dentical @,W = @, W . Imposing this condition on the system s {I8)) and (I9) leads to a very com plicated
constraint which suggest no obvious choice of the deform ation functions £; and £, . For this reason, in order
to m ake progress w e need to introduce som e assum ptions to sin plify the situation to a tractable case. W e w i1l

consider functions of the form f; = £ ( 1) and £, = f,( 2). This signi cantly reduces the com plexity of the
constraint, w hich becom es the sin ple condition

@£ (@5 @neW @f @f =0 (21)

This is true whenever f; and f, satisfy @;f; = @;f, but,asf;( 1) and £, ( ) are functions of di erent
elds, this expression seem s to be nonsense. H ow ever, since the solutions 1 (x) and ;(x) live on an orbit in



con guration space, condition [21]) m ust be understood as a function of the solutions, therefore we rew rite it
as

dt dt
(1) 2( 2) (22)
d d2  oit
W hen the deform ation fiunctions depend on one eld only, the PDE system [[9) takes the sin pler form
8
@, W [f1;£2]
QW ;o) =
% W (17 2) Ot
% (23)
@, W [f1;f2]
- QW ; = — "
2W (15 2) &f,

E ach one of these equations resem bles the deform ation recipe applied to the case ofa single scalar eld m odel,
50 one could think that it is just a duplication of the one- eld procedure. H ow ever, the superpotentialW now
depends on both deform ation functions f;( 1) and £, ( 2), as a consequence of the Interaction between the

elds, and then the deform ed superpotential W dependson both ; and ;,and the resulting deform ed m odel
describes interacting elds.

A s we have shown, requiring that the deform ed m odel has a an ooth potential leads to a condition on the
deform ation functions. U sing this, and the fact that the elds are enforced to obey an orbit we are able to
construct a consistent deform ation procedure, detailed in the follow ing section.

v . THE ORBIT BASED DEFORMATION

Taking into account the considerations above, we present an orbitbased procedure for constructing the
deform ation pair of finctions. The steps to be followed for deform ing two— eld interacting m odels are the
follow ing:

1. Choose a deform ation function for one of the elds, for exam ple a function f( 1). Then, as stated In
(I89) we de nethedeformed ed by 1= f1( 1) (or,equivalently, | = f; l( 1)). For the other eld,
2 = fg( 2)wecanwm'i:e
Z Z

d
2= @, () o= :

— (24)

@1 f2 (2)

2. Choose the topological sector to be deform ed and an orbi O ( 1; )= 0, associated to this sector. U se
this equation to write 1 asa function of ,,ie. 1 =F ( 2).

3. Then in pose the condition (22) on (24) and use the expression | = F ( ;) to obtain

Z Z
= d = @ f T( 1) d ,: (25)
2 = = 1 1 _ 2.
@fr £ TEF(2) ' =R

A fter Integration we obtain , as a function of ,, which is nothing but the inverse of the deform ation
function f,. T his is the key result of the present work.

T hus, the chosen function £; ( 1) and the constructed one £, ( ;) form a pair that takes the originalm odel
and solutions to a deform ed m odelw ith a sn ooth potential, and solutions satisfying the rst order equations
as well as the equations of m otion.

N ote that the procedure described above is orbit-dependent and the possibility of nding the second defor-
m ation flinction is restricted to the ability of explicitly integrating eq. (29).

V. A DETAILED EXAM PLE

A s an exam ple of application of the extended deform ation m ethod we consider the m odel @ ,@}

W o= 1s 5 2 26
*131 ri1 5,7 rZ2R (26)



Ttpresents4dminina: vaa = [ 1;0]on the ; axis,and vgg = [0; pl—zlon the , axis.
T he corresponding rst order system of equations is
8
d 2 2
< d_xl =1 1 rj
(27)
dd—; = 2r 1 o

T he Integrating factor for this system can be found explicitly, and this allows to nd the ow-lne fam ily of
curves

1

1 1
r; (1 20001 %H+Cc ;g =0; ré S (28)
where C is an Integration constant. Realvalues of C ngye orbits starting or ending in vax m inin a, but there

— .1

exist som e critical values. W hen C = C% = 2r( ° r)r the orbits start and end at di erent axis, pining
vaa and vgs m Inin a. T he existence of these critical values determ ines severalranges of C In R for which the
corresponding solutions of (28) are not kink orbits —see 211

So we have a two— eld m odel and its general orbit equation depending on two param eters (r and C ). In
order to apply the orbitbased procedure described in the previous section, we w ill consider separately the
di erent kind of orbits, corresponding to di erent regions in param eter space.

A . Eliptic orbit deform ation

Letus rstconsider the sin plest case in which the integration constant C is taken to be zero and r restricted
to the interval ( O;% ). In this case, the orbits are ellipses and (28) can be rew ritten as

2=F(1)= % (C=0; 0<r<3) (29)
r

A two- el static solution for the system [27), which satis es this constraint js@}

r

1 2r
1 (X)= tanh(2rx); (X)) = sech (2rx): (30)
r

In gurdl]we show the vacua structure and som e orbits of them odel fordi erent values of the r param eter.
W hile the two m Inim a in the horizontal axis form a topological sector (A A -sector), the two m inin a in the
verticalaxis (B B -sector) cannot be connected by solitions of the rst order system [27).

X2

Figure 1: M Inin a and orbits of the undeform ed m odel for C = 0 and di erent r valies (r = % ;

’
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e
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’

Now , follow Ing the prescription established in the preceding section, we choose a deform ation function for
1

1= £ '( 1)= arcsinh( 1) (31)



For constructing the deform ation function for the other

ed, ,,we calculate the integral (28) using (29)
and (Z1)
z d z d
2 0 1 - r Z (32)
fl fl (F< 2)) 2 r 2
1 2r 2
W e obtain
r r
£ 1( ) 1 2r . r (33)
= arcsin _— :
SR r 21 2r) °
T hus
r r
2(1 2r) | r
fa( 2)= sin 2 (34)
r 1 2r

W ith the deformm ation fiinctions at hand, and m aking use of (23), we are able to write down the deform ed
potential, which reads

h q
U(1;251) = 2 1 shh’(1) 20 in®

q
+2r(l 2r)sinh®( 1)tan® 5=

(35)

Evaluating the elds ;1 and ; at the solution of the originalm odelwe obtain a solitonic solution of the
deform ed model speci ed by U (15 »2)

r P_
) 1 2r 2
1 (x) = arcsinh [tanh (2rx)];

s (x) = arcsin  — sech (2rx) (36)
r 2

Condition (22) is autom atically satis ed by this solution. This m akes it consistent w ith the second order
equations of the deform ed system , as can be explicitly veri ed.

To show how this deform ation acts, in  gurdd we plot both, the deform ed and the origihal solutions.

X2 (X) 4 $2 (%)

Substituting the original elds by its corresponding deform ed partners in [28]) we obtain the deform ed orbit

r
r
cosh?( 1) 2co¢ P 0: (37)
1 2r
which allow s writing , asa function of 1
r n p_ ! #
1 2r 2

arccos — cosh( 1) + k (k22);
r 2



Figure 3: Som e vacua and orbits of the deform ed m odelwith C = 0,r= 1=4.

and this explicitly show s that the new m odel presents a periodic vacua structure. Such structure and som e
orbits of the deform ed m odelare shown in g [3.
W e can sum m arize the results obtained for the A A —sector as follow s

8
orln a trso %r)(l 2y=0; Vaa = £[1;0%[ 1;0h
~(x) =  tanh2rx; %= r2r sech 2rx
P_
£ = shh ;; 2 sin =L ,
2 T T or
2 °r (39)
orbya ges : cosh® ; 2co8 P 2 = 0:
Vander = 05 1T2r arcsjnp#)+ k
P_
~(x) = arcsihh (tanh2rx); -2 r2r arcsin %sec’h2rx

B . Linear orbits deform ation

Tt is also possble to nd explicit solutions for the BNRT m odel[2d) in other regions in param eter space.
For exam ple, for speci ¢ values of the integration constant C and param eter r, there are orbits connecting
onem ininun on the ; = 0 axiswith oneon the , = 0 axis (AB —sectors). A s an illustration we address now
the r = 1 case, and deform orbits for integration constants C = C5 = 2. There are four linear orbits, one
for each sector, thatwe labela, b, c and d, starting from the rst quadrant and m oving forward clockw ise, as
shown in  gurddl.

X2

Figure 4: AB -orbits (C = 2,r= 1).

In order to deform these linear sectors we choose again the deform ation function for one of the elds as
1 = f1( 1) = sihh( 1), and construct the f,( ;) by using the corresponding orbits. The resulting vacua
structure and orbits for the deform ed m odels are shown below .



For the a sector we obtain

8 (a) (@)
orb, 5 : o2+ 1 1=0; vyp = £[1;05;0;1
% ~@(x) = 2(1 tanhx);3(1+ tanhx)
2 @ = (sihhh 1;1+ shh ;)
(a) (40)
Oy 5 gqeg : SMh 2+ sinh ;=10
v . = £0;050; sihh '(2)}sihh *(1);shh '( 1)Jlsih ' 1);shh Y( 1)y
CrRx) = sinh *1( 1+ tanhx);sinh 1 ( 1+ tanhx)
X2 (o]
1
1
a
) 1 X1 -1 1 1
a
° -1
-1
(a)O riginal orbit (b)D eform ed orbit
Figure 5: D eform ation of AB ) sector (C = 2,r= 1).
XY (%), 63 (%)
1 /’/’,, ,,,,,,,
1 /
2,
75 = 5 *
1
-5 5 X
Figure 6: Com pared pro les of original (dashed line) and deform ed (solid line) defect solutions. AB @) sector.
For the b sector we get
8 b b
ot : o, 1+ 1=0; v = £11;050; 1Y
§~(b)(x) = 1(1 tanhx); Z(1+ tanhx)
2 g® = (sihh 1; 1+ sihh ;)
(0) (41)
O g ger ¢ SNh » sinh ;=20
v . = £0;0}0;sihh ' 2)fsinh (1);sihh ' (1)]fsinh '( 1);sinh ()Y
) = sinh *%( 1+ tanhx); sihh "1( 1+ tanhx)
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X2 ®2

1

1

L]
b
X1
-1 1 1 T 1

-1

-1

(a2)0 riginal orbit (b)D eform ed orbit

Figure 7: D eform ation of AB ¥ sector (C = 2,r= 1).

c 6 (%) P (=), o (x)
N
2
5 = 5 *

\\

1

RN

5 5 x -1 B R

Figure 8: Com pared pro les of original (dashed) and deform ed (solid) defect solutions. AB ®) sector

In the case of the ¢ sector we obtain

L+ 1=0; v = £[ 1;0%0; 1b

- tanhx); (1+ tanhx);

£ = (sihhh ;; 1+ sihh )

© . . (42)
orb, 5 ges sinh ,+ sinh 1 =0
V) e £00;05;0;sinh ' 2);[sihh ' (1);sinh " (1)J;[shh T ( 1);sinh N(1)Y

8 (c) .
orb, ; N
~Px) = 34

~ O (x) sinh *1( 1+ tanhx); sinh "1 ( 1+ tanhx)

X2 &2

1
1

c
X1
- 1 1 T 1
C

-1

(a)0 riginal orbit. (b)D eform ed orbit.

Figure 9: D eform ation of AB ©) sector (C = 2,r= 1).
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Figure 10: C om pared pro les of original (dashed line) and deform ed (solid line) defect solutions. AB ) sector.

F jna]Jy, for the d sector we have

orbAB : o, 1 1=0; v = £[ 1;050;1Y
% = %(l tanhx);%(l+ tanh x);
£ = (sinh ,;1+ sinh ;)
(43)
orbABdef sihh , sinh 1=0
v}(\d};def = £[0;0}0; shh '2)[sinh ‘(1);shh '( 1))}[sinh *( 1);shh *( 1)h
~@(x) = sinh '1( 1+ tanhx);shh "% ( 1+ tanhx)
X2 (0P
1
d
) 1 X1 -1 1 1
d
_l °
-1
(a)0 riginal orbit. (b )D eform ed orbit.
Figure 11: D eform ation of AB ) sector (C = 2,r=1).
(=), Y (%) 1Y (%), o3P (%)
-5 5 X 1 et
1|/
2,/
=5 — 5 %
1

Figure 12: Com pared pro les of original (dashed line) and deform ed (solid line) defects. AB @) sector.

In the above exam ples, we have considered two cases In which C hasbeen xed. Letusnow m ove to other
regions in param eter space, letting C to be undeterm ined. T his w ill of course increm ent the com plexity of the
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problem but,aswew ill show below , there is stilla lot of possibilities of generating new m odels. T his illustrates
the richness of results that can be obtained by exploiting the deform ation m ethod extended to interacting eld
m odels.

C. An integrable case

R ecall the general orbit equation (28])

=1 R c_ i, (44)

' 1 2r? 1 2r *°

Now , follow ing the prescription for generating the deform ed m odel, we are led to
1= f1(1)=sih y; 1= £, 7( 1)= arcsihh (45)
and
Z
d >

2= & - (46)

2 r 2 C T

1 2r 2 1 2r 2

Integral (4d) is highly non trivial for arbitrary values of C and r. However it is integrable for som e values

of r, in particular forr = % For this valie there is only one critical constant C 5 = 3—12,and kink orbits arise
ifC 2 [€%;1 ). In this case, [44) is an elliptic integral, that can be w ritten i the form
Z
! d (47)
2= P——= P 7
2c (3 (3 2)
, . p— . P—
wih ;= = 14+ 14 64C and ;= T 1 1+ 64C

8C
By an appropriate change of the integration variable, integral {41) can be solved in term s of Jacobian elliptic

functions 24]. T he resul is

r_!

1
2= P—pP—— ! pi_; —2 . (48)
1 2C 2 1

W e note that for all the Jacobi elliptic fiinctions appearing In this work we have to take its real part, aswe
are dealing w ith real scalar elds and they are solutions of a physical problem .

This solution presents distinguishable behaviors depending on C taking values on the regions ( 355 6—14 ),
( & ;0)or (0;1 ). For the specialvaluesC = Oand C = 6—14 , the deform ed system presents eld solutions in
term s of elem entary functions rather than Jacobielliptic fiinctions.

Putting the original el solitions in tem s of the deformm ed ones

1

r__
) p— p—p___ B
1= sihh 1 ; 2= 2 < 1 2C 2 — (49)
1
we can write the explicit form the deform ed m odel potential. W e obtain
1 1 , P—p p i
U(l;Z;z;C): 51 sinh® 2 &N 1 2C 2; 2= sech®
p—pP IS
C L, = 1 2C 25 2=
sinh® T P—p D (50)
dn 1 2C 25 2= 1

A el solution of the undefom ed system [27)), satisfying the orbit (44) forr = % is

(x) = o) ()= 2P (51)
X)= ; X)= 7
! cosh (x) + : cosh (x) +



13

P
where ¥ = 1= 1+ 32C. Therefore, using the deform ation functions {49), the solutions for the defom ed
system read

" p__ r _#
(x) = arcsinh sinh ) (x) 1@17 S > e & (52)
! ¥ + cosh(x) z 2 ;,C cosh(x) + 2 1

In gurdldwe plt the originaland deform ed pro les of the el solution (taking C = 1). It is rem arkable
how sin ilar is the behavior of these solutions and the onespltted n  gurdd, despite the m uch m ore involved
analytical expressions in this last case (com pare form ula (80) w ith form ula (35)).

H(x), ¢ (%) X57H(x) 957 (%)

X

Figure 13: D eform ed (solid) and undeform ed (dotted) solutions for BNRT m odel (r = %,C =1).

From the results obtained above we stress that the orbitbased deform ations can be applied to every kink
orbit of the BNRT model (26) for the integrable case of r = 1=4. For aln ost any value of the constant C
we obtain di erentm odels in term s of elliptic Jacobi fiinctions, w ith two exceptions: C = 0 and C = 1=64.
A Iso, we note that there is only one kink solution for each m em ber of the fam ily of deform ed m odels, com ing
from the appropriate kink orbit in the originalm odel.

D . A nother integrable case.

Forr = 1 the deform ed m odel for every kink orbit can also be found, given that, as for the fom er case, it
is possible to integrate (46) for any valie of C . In fact, setting r= 1 in {4d) and taking | = arcsinh( |),we
obtain thedeformed , eld

1 9q —
2:]1'1 EC+ 2+ 2+ C 2+ % (53)

W riting the original eld solutions In tem s of the deform ed ones, we can nd the explicit form for the
deform ed m odel potential, which tums out to be

2

UCsi2m=1C) = jexch(2) 1 sip( 1) gre 7( g+ 4e®7 4Cer+C?y o)
+%sjnh( Pe 22 8se+ 42ei42e gccezrc;
T he solutions of the BNRT m odel for r= 1 can be written as
€*)? ci+ci 2C pe7*
PTG cip cif *T @ cup o2 59

with C, = 2C1=C and £ C° = 2.Aswas sai befre, the solutions given in form ula {53) are not kinks
if £ j< 2,asboth 1 and ;, becom e sihqular for this values of C .
T he corresponding deform ed solutions read
. ( 2x )2 c 2 c 2
1 = arcsinh 72“ cl)é+c§

(56)

h e} i
c 2C ,e* + o4 4C 2 (e2% )2 4C ; e2x

(e2x C1)2 C22 (eZX C1)2 C22)2 (eZX C1)2 C22

, = h

NI
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For the speci cvalie C = 2, the solutions [63) are both kink-lke, as well as the deform ed solutions (54),
and its pro les are very sin ilar to that of the case C = 2, plotted in Fig[I0.

ForC > 2we nd thatthepro lsof; and , i (83) are kink and lum p-like respectively, as shown in
Fig.[14.

X2 (x) . 6T (%) X572 (%), 9572 (%)

1

NI

Figure 14: D eform ed (solid) and original (dotted) solutions for BNRT modelforr= 1,C; = land C = 3.

Before ending this section, let us recall that the valuesr = 1=4 and r = 1; for which the integral {4d) can
be analyticaly in plem ented, present special features: kinks of the r = 1=4 fam ily are separatrix tra fgctories
of a m echanical problem which is Ham ilton-Jacobi separable in parabolic coordinates, and for r = 1; the
m echanical problem is separable in C artesian coordinates; these problem s are known as L iouville type IIT and
IV , respectivelly ]. H ow ever, even though the separable Liouville type problem s seeam to lead to integrable
expressions in equation (25), in practice not allthe kink orbits are algebraic, and thism ay prechide the presence
of analytical solutions.

VI. COMMENTSAND CONCLUSION S

In this work we have presented a generalization of the deform ation m ethod, wst introduced in @ ], which
allow s to generate deform ed potentials and solutions given a m odelof two real scalar el and its solitions.
The m ain new ingredient consist in the need of Im posing a constraint on the functions used to deform the

elds, required to preserve the relation between the original solutions, that live in orbits of the con guration
space. A s the construction of the deform ed solutions involves the orbit constraint, the deform ation m ust be
In plem ented independently on each topological sector. Consequently, di erent orbits (even when belonging
to the sam e sector) can lead to di erent ull deform ed m odels and solutions.

T he present version of them ethod applies to m odels w ith an associated superpotentialW ( ;; »):A Ithough
w e have considered deform ation fiinctions depending on a single eld, m ore general functions can be used, and
reduced to the form er case w ith the use of the orbit itself. D eform ation fiinctions depending on both scalar

elds are now being considered in the context of m odels w ith holom orphic superpotentja]s@ ], as is the case
of the bosonic sector of the (1+ 1)-dim ensionalN=2 SUSY W essZum inom odel. W e w ill further report on this
possibility In future work.

A s the described procedure is orbit dependent, whenever deform Ing a two—- eld m odel, the integrability of
equation (28)) has to be analyzed separately in each case. However, in case of two— eld theories which are
associated to separable m echanical system s of the Liouville type, it seam s that the present m ethod w ill w ork
very nicely, at least when one is restricted to consider algebraic kink orbits. Interesting exam ples of this kind
are known, as the celebrated M STB m odel ] and other m odels proposed recently in R ef. 1.

This new version of the deformm ation procedure provides a tool for studying m ore sophisticated system s. Tt
allow s one to generate a diversity of new system sw ith their corresponding solutions, which m ay contribute to
In prove the understanding of com plex problem s.
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