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BPS and non-BPS kinks in a m assive non-linear S?-sigm a m odel
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T he stability of the topologicalkinks of the non-linear S2—sjgm am odeldiscovered in E| ]isdiscussed
by m eans of a direct estin ation of the spectra of the second-order uctuation operators around
topological kinks. T he one-loop m ass shifts caused by quantum uctuations around the these kinks
are com puted using the Cahill-C om tet-G lauber form ula a]. The (lack of) stability of the non-—
topological kinks is unveiled by application of the M orse index theorem . T hese kinks are identi ed
asnon-BPS states. T here are two types of topological kinks com ing from the twofold em bedding of
the sine-G ordon m odel in the m assive non-linear sigm a m odel. It is shown that sine-G ordon kinks
of only one type satisfy rst-order equations and are accordingly BP S classical solutions. Finally,
the interplay between instability and supersym m etry is explored.

PACS numbers: 11.10. Lm ,11.27.+d,75.10. Pg

I. INTRODUCTION

The main theme In this paper is the analysis of the
structure of the m anifold of kink solitary waves discov—
ered in E|]. In particular,we shallo er a fulldescription
of the stability of the di erent type ofkinks. A sa bonus,
we shallgain inform ation about the sem iclassicalbehav—
dor of such kinks from the stability analysis, providing us
w ith enough data to com pute the one-loop m ass shifts
for the topological kinks.

P rior to ourw ork E| ], kinks in m assive non-linear sigm a
m odels have been known for som e tim e and profusely
studied In di erent supersymm etric m odels under the
circum stance that all the m asses of the pseudo N am bu-
G oldstone particles are equal. The study started with
two papers by Abraham and Townsend E}, Q] in which
the authors discovered a fam ily of Q kinks n a (1+1)-
din ensionalN = (4;4) supersym m etric non-linear sigm a
m odel with a hyperK ahler G bbonsH aw king instanton
as the target space and m ass tem s obtained from di-
m ensional reduction. In E}, how ever, these kinks were
re-considered by constructing the din ensionally reduced
supersym m etric m odel by m eans of the m athem atically
elegant technique of hyperX ahler quotients. By doing
this, the authors dealw ith m assive CPY or HPY m od-
els, a playground closer to our sin pler m assive S%-sigm a
model. SiniarN = 2 BPS walls in the CP *-m odelw ith
tw isted m ass w ere described In @ ]. In a paralleldevelop-
ment in the (2+ 1)-<din ensional version of these m odels,
tw o-din ensional Q -lum ps w ere discovered In ﬂ} and E].
T hroughout this eld, the m ost Interesting result is the
dem onstration in @] and ] that com posite solitons In
d = 3+ 1 ofQ-strings and dom ain walls are exact BP S
solutions that preserve % of the supersym m etries: ( See
also the review ], where a summ ary of these super-
sym m etric topological solitons is o ered.)

O ur Investigation di ers from previouswork in the area
of topological defects in non-linear sigm a m odels in two
In portant aspects: 1) W e remain in a purely bosonic
fram ework; In fact, we consider the sin plest m assive
non-linear sigm a m odel. 2) W e study the case when the

m asses of the pseudo N am bu-G odstone bosons are dif-
ferent. The search for kinks In the (1+ 1)-din ensional
model (domain wallsin d = 3+ 1) is tantam ount to the
search for nite action tra fctories in the repulsive N eu-
mann system , a particle m oving in an S%-sphere under
the action of non-isotropic repulsive elastic forces. It is
wellknown that this dynam ical system is com pletely in—
tegrable 1, ]. W e show ,how ever, that the problam is
H am itton-Jacobi separable by using elliptic coordinates
In the sphere. Use of this allows us to nd four fam -
lies of hom oclinic tra fctories starting and ending at one
of the poles which are unstable points of the m echanical
system . In the eld-theoreticalm odel the poles becom e
ground states, whereas the hom oclinic tra fctories cor—
respond to four fam ilies of non-topological kinks. Each
menber In a fam ily is form ed by a non-linear com bina-
tion oftw o basic topologicalkinks (ofdi erent type) w ith
their centers located at any relative distance w ith respect
each other.

It is ram arkable that the static eld eguations of this
m assive non-linear sigm a m odel are (aln ost) the static
Landau-L ifshitz equations goveming the high spin and
Iong wavelength lim it of 1D ferrom agnetic m aterials.
From this perspective, topological kinks can be inter-
preted respectively asB loch and Ising walls that form in—
terfaces betw een ferrom agnetic dom ains, sin ilar to those
discovered in the XY m odeldealtw ith in [331. The vari-
ety of our non-topological kinks, understood as solitary
spin waves, is thus form ed by non-linear superpositions of
one basic B loch walland one basic Ising wallat di erent
distances. Far from this non-relativistic context, degen-—
erate B loch/Ising branes have been studied In two-scalar

eld theories coupled to gravity In @,E,@}.

II. THE (1+1)DIM ENSIONAL M ASSIVE
NON-LINEAR S°SIGM A M ODEL

W e shall focus on the non-linear 82€jgm am odel stud—
ied in R eference E| ]. The action goveming the dynam ics
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with V.= V ( 1 (x); 2(5x); 3(x)). The scalar elds
are constrained to satisfy: ¢+ 2+ 2= R?,and thus
L (5x) 2 Maps®R*?;S?) are maps from the (1 + 1)-
din ensionalM inkow ski space-tin e to a S?-sphere of ra-
diusR ,which is the target m anifold of the m odel.
O ur conventions for R'# are as ollows: x 2 R,
= 0;1,x Xx=9g X x ,qg = diag(l; 1). x% = t,
t=x,x x=¢ x%;6@ =g @ =2=0@ @Z2.
T he infrared asym ptotics of (1 + 1)-din ensional scalar
eld theories forbidsm assless particles, see ]. W e thus
choose the sin plest potential energy density that would
be generated by quantum uctuations giving m ass to the
fundam ental quanta:

1 2 2 2
1

. . _ 2 2 2
V(lr 2 3)—5 1+ 2 2+ 3 3

; (2)

which we set w ith no loss of generality such that: 7
2 2
5> 5 0.

1. §ol\7jng 3 In favor of 1 and ,, 3 =
)

s(3) R? 2 2,we nd:
lZ
5:5 ddx f@ @ 1+ @ ,Q@ L+
(1@ 14+ 2@ 2)( 1@ 14 2@ 2)
R2 2 2 2V (1 2)
1
Vsz(1;2)=5 (2 ) T+ (3 2) 2+ const:
2 2
" T (tix) + — 5 (tix) (3)
with 2= (% %), ?=(% %, 2 °?

2. Thus, the interactions com e from the geom etry:

R2 2 g
1 1 2 1 2
! RZ 1+§(1+ 2)+@(1+ 2) +
(1@ 1+ 2@ 2)( 1@ 1+ 2@ ) ;

and R% is a non-din ensional coupling constant, w hereas
the m asses of the pseudo-N am bu-G oldstone bosons are
respectively and .

Taking into account that in the naturalsystem ofunits
~= c= 1 thedim ensions of elds, m asses and coupling
constantsare [ o ]= 1= R], [ 1= M = [ ],wede ne
the non-din ensional space-tin e coordinates and m asses
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to w rite the energy in tem s of them :

Z n
E= 5 o @ 1)+ (@ 207+ (B 1)+ (@ 2)
(1@ 1+ 2@ 202+ (1@, 1+ 2@ 2)
) RE T3
+ fx)+ Y Sgx) 4)

In the tin e-independent hom ogeneousm inin a of the ac—

tion orvacua ofourmodel, ¥ = Y =0, § = R
(North and South Pols), the Z, P Zo, a !

( 1)z ,, b = 1;2;3 symmetry of the action (1) is
spontaneously broken to: Z, Zio, (1) ,

;= 1;2.Finite energy con gurations require:
Tim =0 : (5)

T herefore, the con guration space C = M aps(R ;S%)=
E <4 1 gdis thewunion of four disconnected sectors C =
Cuny  Css Cys Csy lbeled by the vacua reached by
each con guration at the two disconnected com ponents
of the boundary of the real Ine.

W e now solve the constraint by using spherical coordi-

nates: 2 [0; 1,7 2 [0;2 )
1 (;x) = Rsin (t;x)cos’ (§;x)
2(Gx) = Rsin (§x)sin’ (tx)
3(;x) = Rcos (4x) =

In spherical coordinates the m ass term s (we shalldenote

in the sequel: = 1 2) are
R2
v ( ;’):753'1'12 (?+ 2cos ') ; (6)
the action becom es
Z
R? s
S = dtdx 7 @ @ + sSm @r@ ’
R2
—sin? (%+ 2cosz’) ;
2
and the eld equations read:
1
2 sh2 @ e’ cos” 2sin®’ = 0 (7)

@ (sin sh2’ = 0:(8)

Finite energy solutions for which the spacetim e de-
pendence is of the form :

X vt X vt
tix)= P=—= ; '(Gx)=' P——= ;
1 v 1 v

for som e velocity v, are called solitary waves. Lorentz
Invariance allow s us to obtain all the solitary waves In
ourm odel from solitions of the static eld equations

1 1
® S sin2 ("% = > co / + “sh®’ sh2 (9)
d 1
—(sh® % = = Zsh® sn2’ ;o 0)
ax 2



where the notation is: %= g—x, r0= 2—;. T he energy of
the static con gurations is:

Z
dx B( °x);°x); (x);7 (X)) ;

III. TOPOLOGICAL KINKS

Equation (8) is satis ed for constant values of / if and
only if: © = 0;3; ;37. D epending on which pair of ' —
constant solition we choose, (1) becom es one or another
sine-G ordon equation :

2

1
2 +-—sih2 =0; 2 +—=sh2 =0
2 2

T hus, sine-G ordon m odels are em bedded in our system
on these two orthogonalm eridians.

Figure l:a) V ( ;') deform ation osz,b) Em bedding of the

sine-G ordon m odelat ’ = 0, = Easseenjn V().

1. K=K, kinks. W edenote K ;=K ; the kink/antikink
solutions of the sG m odelem bedded inside the $? m odel

In the ", (x) = Eor’Kl(x)= 37mroha]yesofthe
single m eridian intersecting the , : 3 plne,
(x xo)

Kk, X)= k, (x)= 2arctan e ; (11)

1

see Figure 1. T he energy of these kinks, w hich belong to
Cys (kinks) orCsy (antkinks),is:Eg = Elgl =2 R?
2. K=K, kinks. Taking 'x,(x)= 0 or ,Kz (x)= ,
we nd the G kinks:

(x x0) .

k,X)= k,6 (x)= 2arctane (12)

2

The energy of the K ;=K , kinks, which also belong to
the Cys, Csy sectors, is greater than the energy of the
K1=K, kinks: E{ = Ef = 2 R?.

3. Degenerate fam ilies of Q -kinks. W hen 2 =
1, the system enpys SO (2) intermal symm etry and the
m asses of the two pseudo-N am bu-G oldstone bosons are
equal, there are degenerate fam ilies of tin edependent

Q kinks of nite energy. If = 1: ’9 ()= !'t+ ,
where ! and arerealconstants, solves (§) forany tin e~
independent (x).M oreover,by pligging ’? (t) nto (1)
one obtains:
pP—
9 (x)= 2arctane ‘! P x0). g (13)

Therefore,if0< 12 < 1,the (¢ (x);’9 (t)) con gura—
tions form a degenerate circle of periodic in tim e Q kink
solutions of energy :

In fact, these Q kinks can be viewed as the sG kinks ro—
tating around the m ain axis of $% w ith constant angular
velocity ! . In another reference fram e m oving w ith re—
spect to the Q kink CM w ith velocity v, the interplay
between x and t dependence ism ore com plicated :

0 t vx
iD= pP—— +
1 v
. ]( pve XO)
(x;£)= 2arctane v :
Atthe! = 0 limitwe nd a circle of static topological
kinks that form a degenerate fam ily of solitary waves of
the systam .

O fcourse, all the m ulti-soliton, soliton-antisoliton and
breather solutions of the 6 m odelare also solitonsofour
system In them eridians intersecting either the , : 5 or
the 1 : 5 planes. W e shallnotdiscuss these solutions in
this work and postpone their study to a future research.

IVv. TOPOLOGICAL KINK STABILITY
A . Small uctuations on topological kinks

T he analysis of sm all uctuations around topological
kinks requires us to consider both the geodesic deviation
operator and the H essian of the potential energy density.
Wewilldenote = *2[0; ], = 22 [0;2 ),and thus
the arcdength reads: ds® = R2d 'd '+ R%sin® 'd 2d 2.
W e also denote the K ink tra fctories and an alldeform a—
tions around them as: x (x)= (4 x)= ;2 x)="),

)= x )+ (), &)= ("x);*Ex).

Let us consider the follow Ing contra-variant vector

eds along the kink trafctory, ;13 2 (TS?% ):
(x)= 1(X)@@;1+ 2(x)@@;2 and 2 (x)= O@@;l+ ’O@@;Z,
T he covariant derivative of (x) and the action of the
curvature tensoron (x) are:
. @
o *
ro = =)+ 5 J a1
0. y0 _ 0O 3 kp1 8,
R(}(/ )k = (x) lek@_l'
T he geodesic deviation operator is:
2
+R(§;)§:r§r§ +R(g; )y

dx2
To obtain the di erential operator that govems the

second-order uctuations around the kink ¢ , the re—
m aining ingredient is the H essian of the potential:

ey e e
s Yer 7@l

i

r gradV =



evaluated at  (x). In sum , second-order kink uctua—
tions are detem ined by the operator:

0

xk = ror +R(2; )Y+ r gradv  (14)

0 0
K K
B. The spectrum of sm all uctuations around
K=K, kinks

P higging the K ; solutions into (I4), we obtain the dif-
ferential operator acting on the second-order uctuation
operator around the K 1=K ; kinks:

a? ! 2 2 2 . @
K1 = Ky = dX2 COSh2 % F
2 2 2 ,, @
+ > + 2 tanh X—X + F :(15)
The vector eds v(x) = v! (x)i1 + V2 (X)L2 parallel

@
along the K ; kink orbits satisfy: ‘é—‘? + %k Bv* = 0,o0r,
( 1

%{ =0 ; vVix)=1
dv? cotan (2arctane *)_ 2 0

dx + cosh x v =

T herefore, v; = @Ll ; Vp(x) = cosh x@% is a frame
fv;vog In (TS%%, ) parallel to the K, kink orbit n

which (I3) reads:

2 1 2
K1 = K = d + ( z 27) ! 1
1 dx2 COSh2 x
g2 2 5 2 )
+ ) V2o (16)
dx? cosh®  x
where = 'wvi+ 2v,, '= ',and ?= cosh x 2.

T he second-order uctuation operator (I6) is a diago-
nalm atrix of transparent P osch-T eller Schrodinger oper-
atorsw ith very wellknow n spectra. A s expected , degpite
the geom etric nature of 4 ¢, ,we nd in thev; = @@;1 di-
rection the Schrodinger operator governing G kink uc—
tuations. Finding another Posch-Teller potential of the
sam e type In the v, = @@;2 direction com es out as a sur—
prise because there is no a priori reason for such a be-
havior In the orthogonaldirection.

In the v; direction there is a bound state of zero eigen—
value and a continuous fam ily of positive eigenfunctions:

é(x): sech x ; "él): 0

ik ik) ; n(l)(k):

L (x)=¢e" "(tanh x 2k + 1)

In the v, = cosh x@@;2 direction the spectrum is sin ilar
but the bound state corresponds to a positive eigenvalue:

2 x)=sech x ;" , =1 250

Zx)=¢e* *(tanh x ik) ; " k)= “k*+ 1:

Because there are no uctuations of negative eigenvalie,
the K 1=K ; kinks are stable.

C . One-loop shift to classicalK ;=K ; kink m asses

T he re ection coe cient of the scattering waves In the
potential wells of the Schrodinger operators in (1d) be-
ing zero, it is possible to use the C ahill-C om tet-G lauber
formula a] (see also ] for a m ore detailed derivation)
to com pute the quantum correction to the K ; classical
kink m ass up to one-loop order:

c 1
Ex, () = EK1< )+ Ex,( )+O(¥)=
= 2 R? —[sih 1+ —sh » 1 COS 1
1 1
— ,c0s , ]+ O (;) (17)

In @@ .= arccosO= 5, » = arccos ,are determ ined
from the eigenvalues of the bound states and the thresh-
olds of the continuous spectra. T his sin ple structure of
the oneloop kink m ass shift occurs only for transparent
potentials. In ourm odel, we nd the formula:

Ex,( )=2R — 2 —arcoos( ) +0 (=) (18)

For instance, for % we obtain a result sin ilar to the

m ass shift of the  §-kink:

E.. ()= R? o 2 +0 (=)
Katplo 2 3 &3 R?2
Asinthe j-kink case,a zerom ode and a bound eigen—

state of eigenvalue "(;2) = %

tween the bound staAte eigenvalues and the thresholds
") = 2, "2 () = 1 of the two branches of the
continuous spectrum are the same In our model. The
gaps, however, are di erent from the gaps in the 3
m odel between the eigenvalues of the two bound states
and the threshold of the only branch of the continuous
spectrum . Both features contribute to the slightly di er—
entresult. The = 1 symm etric case ism ore Interesting.
W e nd exactly tw ice the spectrum of the &G kink: two
zero m odes and tw o gaps w ith respect to the thresholds
of the continuous spectrum equalto one. N o wonder that
the one-loop m ass shifts of the degenerate kinks is tw ice
the one-loop correction of the G kink:

contrbute. The gaps be-

M oreover, the quantum uctuations do not break the
SO (2)-symm etry and our result tsin perfectly wellw ith
the one-loop shift to the mass of the N = (2;2) SUSY
cp? kink com puted in @]where the authors nd tw ice
themassofthe N = 1 SUSY sineGordon kink. A dif-
ferent derivation of form ula (18) follow ing the procedure
of @], see also @,@ ], w ill be published elsew here.



D. The spectrum of sm all uctuations around
K=K, kinks

By inserting the K , solutions in {I4) the second-order
uctuation operator around the K ,=K , kinks is found:

d? ! 2 . e
K, = K, = o2 + (1 COSh2X) —@ I
2 2 2
d @
+ + 2tanh x— 22z — . (19)
dx2 dx @ °

Soling again the parallel transport equations, now along
the K, solutions, it is obtained the parallel fram e:
fuijupg 2 (TS%%,), w1 = g5, u2(x) = coshx gz,
to the K ,=K , orbits. {I9) becom es:

gz -t 2
= = +
e K2 dx? cosh? x
d? ~? 2
2 + ( ’ 2
dx cosh” x

1
)~ W

)~ Uyt (20)

with = ~u;+ ~%u,, = ~', 2= coshx~?.

Again, the second-order uctuation operator (19) is
a diagonalm atrix of transparent P osch-T eller operators.
In this case, there is a bound state of zero eigenvalue and
a continuous fam ily of positive elgenfunctions starting at
the threshod "W (0)= 1 in theu; = @@;1 direction:
~é (x)= sechx ; "él) =0
~ (x)= & (tanhx k) ; "“(k)= k*+ 1);

as corresponds to the G kink. In the u; (x) = coshx@@;2
direction, the gpectrum is sim ilar but the eigenvalue of
the bound state is negative, w hereas the threshold of this
branch of the continuous spectrum is "?)(0)= 2:

~2, 1 (x) = sechx ;"(22)1: 2 1<0

~Z(x)= e* (tanhx ik) ; " k)= k*+ ?:

Therefore, K ,=K , kinks are unstable and a Jacobi eld

fork = 1 arises: ~§ (x)= e *(tanh x ),"32)= 0.

E. One-loop shift to classicalK ,=K , kink m asses

O nce again we use the C ahilkC om tetG lauber form ula
to com pute the quantum correction to the K , classical
kink m ass up to oneloop order. A s before, the angles

1 = arccos(0) = S, 2 = arccos(i ), are detemm ined
from the eigenvalues of the bound states and the thresh—-
olds of the continuous spectra. T he novelty is that since
the bound state eigenvalue is negative , is purely I ag-
inary. T herefore,we nd:

Ex,( )=2R? — =+ 2 2 i=
hp ii
+ g 2 2

T he key point is that the one-loop m ass shift isa com plex
quantity, the in aghary part telling us about the life-
tin e of this resonant state. In the = 1 symm etric
case, however, we nd the expected purely real answer:
Ex,(1)=2 R? % +0 ().

F. BPS Q kinksasd= 1+ 1dyons

In the ? = 1 case there is symm etry with respect
to the expl z gl E 12 SO (2) subgroup of the O (3)
group. T he associated N oether charge distinguishes be-
tween di erent Q kinks :

Z Z

dx (1@ 2 2@ 1)=R?
Z

dx sin® ¢ = 2R%— :

dx sin® @’
QP ]=R?!

For con gurations such that

4

is tin e-independent and
is space-independent, the energy can be w ritten as:

R2Z
E=T dx sn? [ 'fT+[° tsin {
Z
+ R% dx !'sin? . 1% (22)

(" = %(t)),jn such a way that the solutions of the rst-

order equations:
T=1) % ()= lt+

(x xo0)

= l!sn ) 9 (x)= 2arctane ' ;

the Q0 —kinks, saturate the Bogom olny bound and are
BPS:

2 R?
Epps = —— = fl0+ ITg: (23)

Here, the topological charge T = F [ (+1 ;)]

W [ (1;0])coming from the superpotential W =
R?(1 cos ) valued at the Q kinks gives: T[Q ] =
2R?;8 . This explains why \one cannot dent a dyon"

(even a one-din ensional cousin), see ]. Conservation
of the N oether charge forbids the decay ofQ kinks,all
of them living In the sam e topological sector, to others
w ith less energy.

G . Bohr-Somm erfeld rule: Q kink energy and
charge quantization

The Bohr-Som m erfeld quantization rule applied to pe-
riodic in tin eclassical solutions in our m odel reads:
z. 7
dt  dx
z. Z

@I
dt  dx sin® e
= el

14

(t'X)@—(t'X)
T e

4

2 =2 n:
t

=R
0



In @] it isexplained how derivation of this form ula w ith

respect to the period T = 2,— leads to the ODE: g—g =

! 1E),or,
z z
" o EdE ——
dn = p—or——) E, = n?+ 4r*
0 Eo E? 4 2R*

starting from Eo = 2 R? and assum ing n to be a positive
integer. The Q kink energy is thus quantized and the
frequencies and charges allow ed by the Bohr-Som m erfeld
rule form also a num erable In nite set:

1

Ih = 1 — i Qun=n

V. THE MASSIVE NON LINEAR S*SIGM A
M ODEL IN SPHERICAL ELLIPTIC
COORDINATES

T he secret of this non-linear (1+ 1)-din ensionalm as-
sive $%-sigm a m odel is that its analogousm echanical sys—
tem isHam ilton-Jacobiseparable in spherical elliptic co—
ordinates. This fact will allow us to known explicitly
not only the kink solitions inherited from the em bedded
G m odels, but the com plete set of solitary waves of the
system .

A . The spherical elliptic system of orthogonal
coordinates

T he de nition of elliptic coordinates in a sphere is as
follow s: one xes two arbitrary points (and the pair of
antipodal points) in S%. W e choose these points w ith no
loss of generality In the form : F; (e; ), F2 (£;0),
Fio £70),F2 £i )£ 2 (077).

Thedistance between thetwo xed pointsisd= 2f =
2R ¢ < R,seeFiure2(a). Given a pont P 2 5%, ket

T
Wt T

!

"
s
R
Sttt
e
SN

Figure 2: a) Fociand antipodal foci of the elliptic system of
coordinates on S%. b) D istances from a point to the foci.

us consider the distances r; 2 [0; Rland n» 2 [0; R ]
from P to F1 and F».

r

r1 = 2R arcsin (1 cos fcos + sih¢fsin cos’)

r

Nl N

2R arcsin (1 cos ¢ cos sin ¢ sin cos’) ;

see Figure 2(b). The spherical elliptic coordinates of P

are half the sum and half the di erence of r1 and r,:
20= 1+ 1, ,2v= 1 rn. u2 R £;R( £)),
v2 (R ¢£;R ¢£).Weranark that this version of elliptic
coordinates in a sphere is equivalent to using conical co—
ordinates constrained to S?,asde ned e. g. In R eference
]. W e shall use the abbreviated notation:

u(t;x) v(tx) .
su = ——— ,;SV= sn———;SL= sn ¢
R
S, ugx) .o V(Ex) .
s’ = SJDZT’;SV2= sin? R, ;sF = sin®

and analogously forcu,cv,and cf. To pass from elliptical
to C artesian coordinates, or viceversa, one uses:

R (%) R
— susv oy ;X)= — Ccucv
sf ’ 3\Lr of

g
— (=?® s sv?) ;
sfcf

1(Gx) =

2 (Gix) =

w hereas the di erential arcJlength reads:

, s v su?  sv?
dssz = m dél‘l‘ ﬂ d€7
T he spherical elliptic coordinates of the N orth and South
Poles,and the fociare respectively: (uy ;w )= R ¢;0),
(usjvs) = R( £);0), (We, ve,) R ¢; R g),
(Wr,ive,) R R £), U, ive,)  R( £)iR £),
(Ug, ive,) R £);i R £).

B . Static eld equations and H am ilton-Jacobi
separability

W e choose a system of spherical elliptic coordinates
with the foci determ ined by ¢ = arccos , ie., 2 =
cof ¢, °= sin? £ . W e stress that the foci (and their
antipodal points) are the branching points m entioned in
the previous Section. In this coordinate system the ac-

tion for the m assive non-linear Sz—sjgm a m odel reads:

Z

s= du e us ST e

= X e u u ——— Vv v
su?  sf R £ sv?
V (u(tx);v(tx)) ;
2

V (u;v) = Ri suz(su2 sf2)+ sv2(sf2 sv2)

2(su?  sv?)

T he static energy reads:
Z

Eu;v]= dx E (@’ (x) ;v (x)ux);vx)) ;

2 2 2
su® s
o —— (P

2 su? sfzu)+sf2 sv2

Let us think of E [u;v]as the action for a particle: E as
the Lagrangin,x asthetime,U (u;v)= V (u;v) asthe

1 su® sv 0.2
(Vv7) + V (u;v) :



m echanical potential energy, and the target m anifold S?
as the con guration space. T he canonicalm om enta are:
Pu = % P = %,and the static eld equations can be
thought of as the New tonian ODE ’s:

4 = s gV
dx su2 u
d su?  sv@ % \Y
dx sf2 sv2 v

Because the m echanical energy is

1
Uuv) =  Viv)= P ; (E@)+ gv))=
su SV
R’ (sn® sP)+ s (sE sv?)]
- 2(su®  sv?)

this m echanical system is a Liouville type I integrable
system , (see ]). The Ham ilttonian and the Ham ilton-
Jacobiequation of sphericalT ype ILiouvillem odels have
the form :

hy + hy hy = 2 sB)p?  f()
H = ’ i 2\ 2

su?  sv? h, = E(sf2 )Pl gWv)
@s @S @s
=t —i——uv =03
@x Qu Qv

which guarantees HJ separability in this system of co—
ordinates. The separation ansatz S (x;u;v) = X +

Sy (u)+ Sy (v) reduces the HJ equation to the two sepa—
rated ODE’s, In the usual HJ procedure, leading to the
com plete solution: S = S (x;u;v;i ;i ):

S

2( + i su?+ £ (u))

S = Ix+ sgey) du w2 P
7z 3 :
2( =% i svi+g))
+sg(p,) dv R (24)
g (Py 2 o2

In term s of the m echanicalenergy I; = 1 and a second

constant ofm otdon: the separation constant I, = Rl—é .

VI. NON-TOPOLOGICAL KINKS

W enow dentify the fam ilies of tra fctories correspond -
Ing to the values i3, = i, = 0 of the two invardants
in the m echanical system . These orbits are separatri-
ces between bounded and unbounded m otion in phase
space and becom e solitary wave solutions in the eld-
theoretical m odel because the i3 = i, = 0 conditions
force the boundary behavior (). (See @] and @] for
application of this dea to the search for solitary waves In
other two-scalar eld m odels w ith analogousm echanical
system s which are HJ separable In elliptic coordinates.)
1. na rststepwe nd theHam ilton characteristic func-
tion for zero particle energy (i3 = 0= i) by perform ing

the integrations in 24): W (u;v) = S, ;i = 0;i =
0)+ Sy (vii = 03 = 0),

W(“Z)(u;v)= (1)(U)+G(2)(V)
with ( 1) ' = sypu,( 1)?= sypy syv,and

2. TheH g procedure provides the kink orbitsby integrat-
du dv _ 3

ng sypu (su?  sf?)jsu j by (sf?  sv?)jsvi 2¢
2 3 sgp.
ta u f ta u+ f ﬁ o
eR 2, of _ 2 T T 7
jtan 5z ]
2 3sgpv
6 jtan 553 7
2 25 (25)
v f v+ £ 2cf
tan -z tan ¢

In Figure 3(a) aM athem atica plot iso ered show ing sev—
eral orbits com plying with (28) for several values of the
Integration constant ,. Note that all the orbits start
and end at the North Pole and pass through the fociF;
such that we have shown a one-param etric fam ity of non—
topological kink orbits. Tn fact, there are four fam ilies
of non—topologicalkinks am ong the solutions of (29): the
orbits ofa second fam ily also start and end at the N orth
Pole but pass through F, . T he orbits in the second pair
of NTK fam ilies start and end at the South Pole ant pass
through either ¥} orFj.

J1
-]
Ry

Figure 3: a) Several NTK kink orbits. b) The same NTK
kink orbits in the elliptic rectangle.

Figure 4: NTK energy densities for three di erent values of

2:1) 2 = 3, highest peak on the lft (blue) 2) > = 0,
symm etrical peaks (green) 3) , = 10 highest peak on the
right (red).

3. The HJ procedure 1J{’equj:ces sin ilar Integrations in

TPy ey S oam ~ R+ 1) to nd

(su?



the kink pro les (or particle \tin e " schedules): , are plotted.
S9Pu
tan u(>2<P)\ £ tan u(zgf
ghlr et o et vyrE 5PV (26) 4. Reshu ing equations ([23) and (2d), it is possi-
tan —z— tan —; ble to nd the NTK fam ilies analytically, (27), based

In Figure 4 the NTK energy densities for three values of

(R ¢£;0). The other fam ilies, based on
£);0) are given by a sin ilar form ula.

on (uy jw ) =
(s ;vs )= R(

Uk (X; 15 2)

P
21+ [SIESY) tg

2R

Vg (X7 15 2)

4 4 4 4 4
\/e1+ &+t +eets \/(e1+ e+ tf +eelts ) 41+ e Velts

4 4 4 4 4
\/el + &+t redts \/(e1+ e+t ettt ¥ 401+ e )elts

2R

w here we have used the new

abbreviations: e = e

= (27)
ZLJ 1+ e t%

2 £

tang.

2(x+ 1)cf 5 sf?

R P

. _ X+
; & = € ! )

VII. NON-TOPOLOGICAL KINK the subsequent linear system . W e skip the (deep) sub-
INSTABILITY :M ORSE INDEX THEOREM tleties of this calculation and m erely provide the explicit
analytical expressions:
To study the (lack of) stability of NTK kinks, it is . ,
convenient to use the follow In tation for th pti NTK R (su SfQ)(SfZ sv)
g no n for the elliptic J (x; )=
variables: u' = u, u? = v. The static el equations su?  sv?
reads | SE) o TE) W 5 (29)
D odut  yd  dut &V 28)
ax ax 2 ax P 9 ew In Figures5a)b), 6 a)b) two Jacobi elds for two values

Let us consider a oneparam etric fam ity of solutions of

of ,,aswellasthe correspondingNTK el pro ks, are
plotted forthethree 1, ,, 3 origihal el com ponents.

29): u} (x; ). Thederivation of
D dué 5.1 .2, 8V @u]§
— + g7 g jusr )— =0 A
dx dax 9 Wk QuJ g Q
w ith respect to the param eter  in plies: ) ”
D? @ui eul eu eul R
dx? @ @x @ ex
x @2v 1 1 5 @v @ui Figure 5: a)Pro lesofthe eld com ponentsforNTK ;= 0
+g Qui@uk 3k (Ug ug )@_ul @ =0: kink. b) P ot of the Jacobi ed JY¥ ¥ (x;0)

In the last three form ulas the m etric tensor, the covari-

ant derivatives, the connection, the curvature tensor, and
the gradient and Hessian of the potential are valued on

1 ..,2 Quy
(ug sug

), see 391. Thus, 3

second order uctuation operator of zero eigenvalue. T he
derivatives of the NTK solutions {27) w ith respect to the
param eter , are accordingly eigenvectors of the second

is an eigenvector of the

order uctuation operator of zero eigenvaluies orthogonal

to the NTK orbit, ie., Jacobi

NTK kink to another w ith no cost In energy.

B etter than direct derivation

can be obtained from (28) and (2d) by using im plicit
derivation w ith respect to the param eter , and solving

Figure 6: a) Pro lesof the
kink. b) P lot of the Jacobi

eld com ponents or NTK
ed IV ¥ (x;1)

elds that m ove from one

of {Z7) the Jabobi elds

The zeroes of the Jacobi elds along a given ;-
NTK orbit (In the four disconnected sectors) are as



follow s: either A (ug ( ;2) = f; (1 2) =
0), F1 (uk (17 2) = R f\/k(lr 2) = ),
Fa (ug (15 2) = R fiw (17 2) = f), or,
A (ug ( 1 ;2)= R (1;2)=0)1F1

(g (17 2) = f;VK(l;Z): f) Fy (ug (17 2) =
f;vk (15 2)= f). Thus, the conjugate points w ith re—

spect to either the North or the South Poles along the
NTK orbits are listed below :

StartingPoint | ConjugatePoint | ConjugatePoint

NorthPole :A |AntipodalFocus :F; | AntipodalFocus :F»

South Pole : A Focus :F1 Focus :F»

In this two-din ensional setting, the M orse index the-
orem states that the num ber of negative eigenvalues of
the second order uctuation operator around a given or-
bit is equalto the num ber of con jugate points crossed by
the orbit @}. The reason is that the spectrum of the
Schrodinger operator has in this case an eigenfunction
w ith asm any nodes as the M orse Index, the Jacobi eld,
w hereas the ground state hasno nodes. The Jacobi elds
ofthe NTK orbits cross one conjigate point, their M orse
index is one, and the NTK kinks are unstable.

V IIT. NON-BPSNON-TOPOLOGICAL KINKS

T he availability of the H am ilton characteristic function
as a sum of one fiinction of u and another fiinction of v

allow s us to w rite the energy of static con gurationsa la
Bogom olny:

Z ( 2
S e su? sv? du su? sfdr (v
u;v] = — —_— —

2 su2 s dx s su? du
)
. w2 s? dv s sPdel?) ’

s w2 dx  su? su? dv

N dudr ¢ ) dvdG (2
dx du dx dv

Solutions of the rst-order equations

du  su’ szdF(l)i S s

dx  si?2 s2 du ROD su?  sv? sa30)
dv s sv? dG 2 - 2sf2 sv° -
dx  su? s2 dv 1 su?  sv? sv(31)

are absolute m inina of the energy and therefore are
stable. Note that the energy of the solutions of (30)-

(1)
dqu and

(Z1l) is positive or zero because squ’ = g

0_ dag ' v
YV = Fgo— -

Even though the NTK tra fctories are solutions of the
analogousm echanical system provided by the HJ proce-
dure that is closely related to the ODE systam (30)-{Z1),

they do not strictly solve (30)~{Z1l). Taking the quotient
of the two equations in (30)-(31) we nd the equation

du 12su2 sf su

d_v ) szi 7 (32)

sv? sv
which determ ines the kink orbit ow. Note that this
equation is dentical to the equation in the HJ procedure
that one m ust integrate to nd (28). The subtle point,
however, is that this ow is unde ned, %, at the our
foci: ¥, ,F,,F1,F,,and allthe NTK orbits pass through
one of these dangerous points, see F igures 3(a) and 3(b).
T he non—topologicalkink orbits solve (3A)—(Z1l) ora given
sign com bination before m eeting at a focus and are so—
lutions of (30)-(31) with another choice of signs after
leaving these orbit intersections. T hus, non-topological
kinks are classi ed as nonBPS in the term nnology of
\pre-supersym m etric" system s. W e rem ark that in el
liptic coordinates the pathology is not in the Ham ilton
characteristic function but in the factors induced by the
change to elliptic coordinates. T he conclision is that the
energy of the NTK kinks m ust be com puted piecew ise

along the orbit. Ef ;=2 G'21(0) G'2(vy) +
2 F'owl) Flidw,), ie,
Eg(,,= 2 R’°L 3+ 2R’P §= 2 R®*(1+ ) (33)

gives the kink energy as the action of the corresponding
tra gctory.

A . Singular K; and K, kinks: kink m ass sum rule

AnalysisoftheBP S/non-BP S nature of the topological
kinks In elliptic coordinates is illum inating. The K 1=K ;
kink orbits lie in the v = 0 line, splitting the two-halves
of the elliptic rectangle: vk , = vk | = 0, see Figure 3(b).
The rstorder equations (30)-Z1l) on the K ;=K ; kink
orbits ( 1 = 0 giveskinksand ; = 1 antikinks)and the
K 1=K ; kink pro les in elliptic coordinates are:

Uk, (x)= uxg (x)= Rarccos[ tanh(( 1)' x)]:

TheK =K, kink energy saturates the BPS bound:

ES = FOm, (1)) =2 R?

1

FO (g, (+1))

TheK ,=K , kink orbits are the four edges of the elliptic
Iecj:ang]e;uK2:uK2:RfrVKQZRfIVKQZ R ¢,
ug, = ug, = R £), see agaln Figure 3(b). The
K ,=K , kinks are accordingly threestep trajfctordes in
the elliptic rectangle.

I. 1 < x< Jogtan%anduézzuf(z:R( ),
the rstorderODE, and the solutions are:

2= 1;v'=

RJsvEve, (x)= v (x)= 2R arctané”



II. ogtan 5 < x < ogtan——=, %' = vlilz =R ¢,
the rstorder ODE and the solution are:
1= 0;u’= Rsujugl, (x)= ug’ (x)= 2R arctane *:

II. bgtan —— < x < +1 ,u1£121 = ulilzl,the rst-
order equation and the solutions are:

ITT I1T
(x)=

.0 = P
2= 0;vi= Rijsvjv VK

Antikinks are obtained by changing the choices of 1

and . In any case,theK ;=K , kink energy isnot of the
BPS fom :

Ef. = ¢ 1) G‘l)(v(]ogtan?f))

+ F(O)(u(logtan?f)) F<0><u<bgcotan7f))

+ G(O)(v(logcotan?f)) G(O)(v(+l )

= R?4 cfj+ R?j 2cfj+ R?j cf+1j= 2 R?:

Tt is ram arkable that these energies satisfy the follow ing
\K ink m ass sum rulk":

EC

_ 2
f.,,= 2R+

)= Eg, + Eg (34)

In fact, the j23j! 1 Imitofthe family ofK , (NTK)
kinks is com patible w ith equation (23) only at the edges
of the elliptic rectangle (form ing the K ;=K , orbits) and
the K 1=K, orbit. Therefore, the K; and K, form the
boundary of them oduli space of K , in such a way that
(34) show s this com bination as one of the NTK kinks.

IX. SOLITARY SPIN WAVES

Field con gurations that satisfy the Eulerd.agrange
equations:

3
A, X A A,
¢ (tix) = 2 (k) —= (tx) me)
@t a b t
b1
X x3 Q
= "Bl (5x)] —2 (x)
@t
b=1c=1
are extrem als of the \W essZum ino" action:
Z 3
2 X ¢ a
Swzl ]=R dtdx ALl (t;X)]E(t;X)

a=1

In particular a \m agneticm onopole " ed B.[ (fx)]=
% in the R® internal space where the S?-sphere is
em bedded is obtained by the choice of singular \vector

potentials":

Ayl (Gx)] = e B P

|
jol
jol

A, [ (Gx)] =

(x)= 2R arctane *:

10

A* [ (;x)]] is sihgular on the negative
a gauge transformation to A [ (;x)]] moves the
D irac string -henceforth a gauge artifact— to the
positive 3-axis. The scalar elds are constrained
to live In the f(t;x) + %(t;x) + %(t;x) = R?
sphere, a surface where this magnetic ux is con-
stapt. Tll?egegore, Stoke’s theorem tells us that Sy , =
R? dx s_,d 2(x)AL[ (x)]is the area bounded by
a closed curve in S2.

T he in portant point is that the Eulerd.agrange equa-—
tions for the sum of the two actions Sy 7 + S,where S is
the action of our m odel, are:

3-axis but

11X X @
= > (35)

b=1 c=1
At the long wavelength lim it, the ODE system (33) be-
com e the Landau-L ifshitz system of equations of ferro-
m agnetism . The connection between the sam iclassical

(high-spin) Iim it of the H eisenberg m odel and the quan—
tum non-linear S? —sigm a m odel is w ell established @ IR

A . Spin waves

P lugging the constraint into (33), we nd the system
oftwo ODE's:

Os
X - X
" el 3@ R 2 _@
R @t
P a 1
+ q_E—t At2 +m?
R2
"P P
D @ D+ @
+ xz w7
#
X
(@ @ + 2 ) =0: (36)
;o = l;2,mf = l,mg = 2. The ground states are

the hom ogeneous solutions of this system : 8 = 2 =0,

= R. In oder to visualize these con gurations i,
e.g., Figure 7wedraw the spin chain in such a way that
the , : 3 plne is perpendicular to the x spatial line
whereas 1 isaligned with the x-axis. W e stress that this
choice ofbasis is arbitrary but it iseasy to gure out the
form ulas and the graphics in another rotated basis for
the m agnetization vector: ~(x) = 1(x)e; + ,(x)e +

sx)es = Ix)e%h+ Jx)eh+ S(x)&%s. Themai fea-
tures of our preferred basise; ;e,;e; are: 1) The e vector
points in the direction of weaker V ( ;') potential, see
Figure 1(b). 2) e ;& ;&3 is the basis usaed in the contin—
uous XY (in fact YZ) m odel of easy-axis ferrom agnets
near the Curie point, see @,@] and R eferences quoted
therein.



;rf ]

=R .Allthe spins are aligned

Figure 7: a) G round state

pointing to the N orth Pole b) G round state 2= R .AIlthe
spins are aligned pointing to the South Pole.
The spin uctuations 1 (t;x) = 1 (Gx), 2Gx) =

2 (t;x) around the ground state
the linearized equations:

e » @* , e* ,

3(x) = R satisfy

0 = +
et e @x? '
0. &1, @ 2 @ o o, o,
et et @x2 2
T herefore, the spin waves:
1 X 1 L
(tix) = p=  p=—= a ()e'" ¢

(37)

satisfying periodic boundary conditions (tix) =
(t;x + L) are solutions of [37) for the frequencies
com plying with the hom ogeneous system of algebraic

equations:
I I I

124+ k%41 il ai (k) 0
il 124 k2+ 2 as (k) 0
(38)
At the long wavelength lmit !'? << !, [38) is tanta—
m ount to the non—relativistic dispersion law
PR = kK DK+ ?)

characteristic of ferrom agnetic m aterials, although the
quadratic term s in the free energy prevent the standard
I(k)= k? om .

B . Bloch and Ising walls

Onemay check that the K 1=K ; kinks (1) solve the
static Landau-L ifsh itz equations (38) on the ; = 0 orbit:
n #
@,
2 2 + 2 2

d227 2 (2dd—x2)2 &2

dx?2 R? % RZ 2 dx

TheK ;=K ; kinks of the non-linear sigm a m odelare con-
sequently solitary spin waves of this non—+relativistic sys—
tem , see Figure 8.

Sin ilim odo, the K ;=K , kinks (I2) solve (36) along
the , = 0 kink orbit:
d 1y 2
+

2
ds i 1

_ dx

(1 d 1
2 2
dx* R? § R? %

dX2

d
dx

11

a

Figure 8: G raphic arrow representation of the K1 kinks: a)
K1 spin chain. b) Perspective from one com ponent of the
boundary of s? R show ing how the spin ip happens by
means ofa —rotation around the -axis.

and are also spin solitary waves in this system , (Fig. 9).

Figure 9: G raphic arrow representation of the K, kink a)
K, spin chain. b) Perspective from one com ponent of the
boundary of S R showing a forward spin  ip.

Because the system of ODE’s giving static solutions
of the (39) PDE systam is the sam e as the static eld
equations of the non-linear S?-sigm a m odel, the NTK
kinks are also solitary spin waves, see Figure 10.

Figure 10: Graphic arrow representation of K , kinks: a)
K , spin chain. b) Perspective from the boundary of s? R
show ing the 2 rotation around the ;-axis of the spin to
com e back to the initial ground state.

In sum ,understood as solitary spin wavesK 1=K ; kinks
are Bloch wallswhereasK »,=K , kinks are Ising wallsde-
scribing interfaces between ferrom agnetic dom ains, see
@], @]. In this m odel we have thus found a m od-
uli space of solitary waves w ith an structure very sin —
ilar to the structure of the space of solitary waves of the
XY modeldescribed in R eferences @] and @]. T here
are Bloch and Ising walls and a oneparam etric fam ily
of NTK kinks that are non-linear superpositions of one
Bloch and one Ising wall with arbitrary separation be-
tween their centers. The novelties here are: a) there is
no need in the free energy of fourth-order term s in the



m agnetization in the non-linear sigm a m odel for nding
these m ixtures of B loch and Ising walls. b) T he analyti-
calexpressions (27) di er from their analogues in the X Y
m odel.

From the stability analysis perform ed in previous Sec-
tions, it is clear that only the B loch walls are stable and
saturate the Bogom olny bound. Things are di erent at
the = 1 lin it where all the kinks are topological, B loch
walls, and saturate the Bogom olny bound. In this lat-
ter case the structure of the kink space is akin to the
kink space structure of the BNRT m odel @], See @],
@], @}. T here is a oneparam etric fam ily of degenerate
B loch walls saturating the B ogom olny bound.

X. FURTHER COMMENTS:
SUPERSYMM ETRY AND STABILITY

Finally, we brie y explore the possibility of em bed—
ding our bosonic m odel w ith its m oduli space of kinks
n a broader supersymm etric fram ework. It tums out
that the smpler N = 1,d = 1+ 1 SUSY version of
the m assive non-Jinear S%-sigm a m odelonly exists if the
m asses of the pseudo N am bu-G oldstone bosons are equal
(= 1). Tt also seem s di cult to buid m ore exotic pos-
sibilities com ing from dim ensionalreduction ofm odels of
K ahler or hyperK ahler nature because the potentialen—
ergy density is not com patible w ith com plex structures
when & 1.

A . TIsotherm alcoordinates

Tt is convenient to introduce isotherm alcoordinates in
the chart > £(0;0; R )g,which are obtained via stere-
ographic pro ction from the South Pole:

1 1 R 1
9 s Sl 2 2
+ 5 R+ s9(3) R ] 5
2 R 2
‘= - P (39)

R+ sy( 3) R?

AN
ARV}

T hem etric and the action in this coordinate system read:

4R *
2 _ 14 1 24 2
ds (R2+Z T 1, 2 2)2(d d +d“d”)
2R*
1. 29_ 2 1 1
st "= dx R2+ 1 14 2 2y e e *
t@ 2@ 2 (ltty ozzzy o,

whereas the K ; kinks are given by :

£, ()=0; ¢ ()= Rexpl (x x)]; (40)

12

and we rewrite the second order uctuation operator

around theK ; kink with £ (x)=Re *))in the form :
d2 1 d 1
K, = R + 2 (1 tanh X)&
d d? 2
1 22+27%anh x ' — +
@ 1 dX2
d ? 5 , @
+2 (1 tanh x)— + (1 2tanh x) —_—
dx @ 2
In a parallel frame = 1(x)@@l + Z(X)@@2 2

(TS? %) d_ 4 %k( K)E kX = 0,albng theK ; kink:

’dx

d* 1 2

——+ (1 tanh) '(x)=0 =1l+e?*
= ( ) T (x) ) x)
d—2+ (1 tanh) *(x)=0) ?®)=1+e?*:
- :
w e recover the P osch-T eller operators:
a? ! 2 ° e
= (1 ——) ' a+e? ) —
K, a2 ot X) ( )@ I
d2 2 5 2 2 2 2 Q@
+ + _— 1+e ”%)— (41
il S gz (D)

Note thatnow theK ; orbitsare the positive and negative
ordinate halfaxes, the stereographic pro gctions of the
"= sand '’ = 37 halfm eridians, such that uctuations
orthogonalto the orbit run in the direction ofthe abscissa
axis.

B. TheN = 1massive SUSY sigm a m odel

In Reference ] we analyzed the relationship of the
com plete solution of the Ham ilton-Jacobi equation for
zero energy and the superpotential of a supersym etric
associated classical m echanical system . Thus, we are
tem pted to use the Ham ilton characteristic function

W(1;2) _ (l)lRZ 42
( )7R2+ 11y 22 (42)

gq
(+(2RZ+ (o)1 1e 22)7 42R21D Y
(,)=1 ( 1)? ,tobuidtheN = 1SUSY exten-

sion of our m assive non-linear S?-sigm a m odel. On one
hand we have that:

RZ( T T4
(R2+ 114

1 ”@W(l;z) @W(l;z)

ij _

2 @ 1 (.

222)

22)2;

8 1; 2.0n the other hand (47) is free of branch points
only for = 1. Supersymm etry does not allow superpo-
tentials w ith branch points and it seem s that H am iltton—
Jacobi characteristic functions are com patible with a
weaker form called pseudo-supersym m etry in @]. We



close our eyes to this fact for a m om ent and proceed to
form ally build the N = 1 SUSY extension of ourm odel
using (42).
There are also two M a prana spinor elds:
I

x )=

W e choose the M ajprana representation ° = 2; ! =

1.5

il; 5= 3oftheCliordalgebraf ; g= 29 and
de ne the M aprana adpintsas: * = ( ) °. The
action of the supersym m etric m odel is:
Z
dx? " o . C
s= — g e e Jrit @ I+ e =
e i1k uCW EW  ,DEW
6 U eie e e’
where @Di@gqj = g @{; T+ }i‘jgwk . T he spinor supercharge
g @w
Q= dxgi 0 e J+10”k@k (43)

acts on the con guration space and leaves the action in—
variant. T in e-independent nite energy con gurations
com plying w ith
d* . @W . .

R gljﬁ ;o) = 5 (x) (44)
annihilates the supercharge com bination Q1 + Q, and
these solutions m ight be interpreted as % BPS states In
this supersym m etric fram ew ork . In particular, the SU SY
K1 kinks

k,x)=0; f = Re * |
0 1
1 2 X
K1<x): 0 ’ K1(X)= Re 1
satisfy (44l) (with appropriate choices of 1, ;). Note
that ﬁl (x) is the SUSY partner of 12<1 (x) under the
action of the broken SUSY supercharge Q1 Q.. We

also rem ark that
d 2 1
—f Re *= R(1+e?*) ——
dx cosh x
ie., the ferm jonic partner in the SUSY kink is the zero

m ode of the second order uctuation operator back from
the parallel fram e to the K ; orbit.

4

C . Ferm lonic wuctuations

T he D irac equation ruling the am all ferm ionic uctua-
tions on the K ; kink reads:

D ‘yx) = i( %  te) f(tix)
it (k8 ) (®) F(Ex)
, D @wW
+g9( k) ———(x,) "(tx) (45)

@ Je *
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Acting on ({48) with the adpint D irac operator, the
search for solutionsofD YD i(t;x) = 0 ofthe stationary
orm H(gx)= et 9(x;! ) requiresus to dealw ith the
follow ng ODE system :

& i D@ewW D @W
2 j an
od Wt er Sge T
. d d
j Ko ol
+R§kl& Kigy K1 5 (%)
- QW D “@W
1413 ul — 12 o
i-°g 3 6l@ e g ™ (%) s (x)
valued at = k.
On egenspinors of i ' = !, %¥(x)= % (x) =

% (x), the above gpectral ODE system reduce to the
(sym bolically w ritten ) pair of equations:

d? o

— +w @ w w
dX2

o
°

+R W’

(46)
4 ; . is exactly equal to the second order di erential op—
erator ruling the bosonic uctuations. T herefore, n the

parallel fram e to the K ofoji:wewrjte4;1 n matrix
form :
|
a? 2 2 ’
v = wtl oo 0
K1 0 @ L2 2
dx? cosh? x

In the same frame 4 is the intertw ined partner, see

]:

I 6 1, there is a bound state in 4, of energy

1 2 unpaired with an eigenstate of the sam e energy
n 4, ,ra fact iIncom patible w ith supersymm etry as we
expected from the use of the com plete solution of the
H am ilton-Jacobiequation as superpotential, closing our
eyes to the fact that, related to the Instability of N TK
and K , kinks, the Ham ilton characteristic function has
branching points at the foci de ning the elliptic coor-
dinate system . A sin ilar problem arouse in @J and
@] where m erom orphic Ham ilton characteristic func—
tions have been found. It is an open problem to explore
w hether or not these m ider singularities allow the use of
these Ham ilton characteristic functions as superpoten—
tials to extend the bosonicm odels dealt w ith in ], ]
to the supersym m etric fram ew ork.
Ifthemassesareequal ( = 1),however, the H am ilton
characteristic function is free of branching points and the
unpaired statesare zerom odes. TheN = 1 SUSY m odel
is correct and we can apply the SUSY version of the
C ahill-C om tet-G lauber form ula proposed in @] to nd
the sam e oneJdoop correction to the SUSY S$? kink as

given in ]:

4E§?SY( =1)= N (S]n+ fCOS'): -t



Here ; = J = arccos(0) = 5 are the angles obtained
from thebound statesofd ;( L T here areno bound states

in the spectrum of4 , .
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