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1. Introduction

Quantum uctuations around background kink elds are sophisticated
cousins of vacuum uctuations. Van N ieuw enhuizen et al.l reported on the
state of the art In this topic In Q FEX T 03 for susy solitons as pointed out
by M ilton® .M ore recently, new results have been achieved by (aln ost) the
sam e Stony B rook/W ien group in the analysis of the quantum uctuations
of susy solitons of non-linear sigm a m odels’” . A In ost in parallel, we devel-
oped a sin ilar program ° ¢ for the kinks of the m assive non-linear S?-sigm a
m odel in a purely bosonic fram ework.O ur goal in this work is to describe
the quantum uctuations of the S3%kinks. The bosonic sector of the non-
linear version of the G ellM ann/Levy -model is precisely the system that
we are going to address. Being non renom alizable In (3+ 1)-dim ensions, it
was conceived as an e ective theory describing the low energy interactions
of nucleons and pions. In (1+ 1)-din ensions, however, the pion dynam ics
can be re-interpreted as the dynam ics of a linear chain of O (4) spin elds,
which was renom alized by Brezin et al'®. W e jist m erely add quadratic
term s in the elds to escape from infrared divergences.

2. M assive non-linear S*-sigm a m odeland topologicalkinks

Let us consider . (t;x);a = 1;2;3;4, our scalar eds in the (1 + 1)-
din ensional M inkow ski spacetin e R'. The action of the m assive non—


http://es.arxiv.org/abs/0911.2588v1

January 9, 2013 2043 W SPC -Proceedings Trin Size: 9In x 6.n  USA 09N orw s02

linear S>-sigm a m odel looks very sin ple
. ( )

1 ¥ e.e, 1%
S[1; 25 35 al= dwx = a2 = 2 2
[1/ 2r 37 41 2g a:1@x @x 2 a a<

a=1

where 7> 2> 2> 2 butthe elds are constrained to live in the
S’-sphere, 2+ 2+ 2+ 2= R? forming the in nite din ensional space:

M aps®'™";S%).W etakeg = diag(l; 1; 1;1)and the naturalsystem of
2 2 2 2 2 2
units ~= c= l.Weselect 2= 44 =2, 2= 4 4L = = such that

1 4 1 4

0< %< 2< ?=1,and de ne non-din ensionalcoordinates:x | *-.

T he extram ely non-linear dynam ics In plied by (1) plus the constrain
is unveiled if one solves 4, iIn favor of 1; ,; 3 In the action and intro—
duce the pow er expansion of the non-polynom ialterm . T his process show s
that: (@) There are an In nite num ber of vertices determ ining the inter—
actions betw een the three pseudo-N am bu-G odstone bosons. (b) R% is the
coupling constant. Vertices w ith di erent num bers of legs belong to dif-
ferent orders of perturbation theory: R%% arises as a factor in the ver-
tices w ith 2n legs. (¢) In (1 + 1)-din ensionsm assless bosons are discarded
due to the Infrared asym ptotics. W e consider the situation when the three

m asses are di erent. The oneldoop selfenergy graphs of 1, , and 3:

2027 3)= 35 1(2i3) 3(2i3)= 3 1( 27 3) arg divergent be-
cause 1(2; 3)= g5 IW+ I(H)+ I(5) withI(@)= {Fefs.To
tam e these In nities the one-loop m ass renomm alization counter-term s

_ 1 ) 2 2 2 2 2
Ler = ; 1(273) 1)+ 5 2x)I+ 3 3(x)

m ust be added to the bare Lagrangian. Searching only for sem i<lassical
e ectswe do not need to care about other divergent graphs.
T he classicalm inin a of the action are the static and hom ogeneous con—
gurations that annihilate the integrand in (1), ie., the North and South
Poles of S3. There is the possibility of the existence of topological kinks
and to search for them it is convenient to use polar hyper-spherical coor-

dinates: 1= Rsinh sin cos’, ,=Rsin sh sin’, 3= Rsih cos ,
4 = Rcoos , 2 0; ), 2 00; )," 2 [0;2 ). There are three types
of these kinks: (1) in the m eridians on the 3 4 pne, = O or ,

2 2 2
the non-trivial eld equation is: %7 27 + = sin2 = 0 and the kink

solutions, that we shall denote generically as K1, can be written in the

form g, (t;x) = 2arctane ¥ whereX = 5pf°—\7;’t;(2)ana]ogous]yjnthe
m eridianson the » 4aplne, =5,’" =5 or%,thekjnk solutions w il

be referred to as K ; and are given by «, (t;x) = 2arctane 2¥ and (3)
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3

K 3 kinks,which live in them eridianson the ; aplkne, =5,"=0o0r

,are ¢, (4;x)= 2arctane ¥ . The topologjcals3—kjnk classical energies
are:E(K1)= 2 R? 3< EK,)=2R? ,<E(K3)= 2 R?.

Changing slightly the notation by denoting = ', = 2,7 = 3,
an all uctuations around the kink solution (x) =  (xX)+ (x) =
<1% (x); é (x); ; EN+ (Tx); 2(x); (%)) modify the action as:

Z

R2
5[1;2;3]:S[§;§;§1+7 ddx (x) K) (x)+ 0 ( ?)

T he second-order operator goveming the kink small uctuations is the
geodesic deviation operator plus the Hessian of the potential: (K ) =
ror o +R(g; )g +r gradV .Standard geom etric calculations
allow usto conclude thatK ; an all uctuations are govemed by the m atrix
of Schrodinger operators:
K 1)= &2t I+ diag 2;1; 2 2)
dx? COSh2 3X B2
provided that a \parallel fram e" to the kink orbit, i. e., uctuations of the
form 2(x) = cosh 3x 2(x), 3(x) = cosh 3x 3(x), is chosen.
T herefore, them eson spectrum 1n the K ; kink sector has three branches
that share a perfectly tranam itting Posch-Teller well but have di erent
thresholds.The rstbranch correspondsto uctuations tangent to the kink

orbit. T here is a bound state, é (x)= ﬁ , of zero eigenvalue and one-
particle scattering states }1 (x) = e® ¥ (tanh 3x 1ik) with frequencies
12(k)= § k% + 1). In the orthogonaldirections the eigenfiinctions are the

sam e but the bound state energies and thresholds of the continuous spectra
are shifted respectively to: 1 2, 3 2,1and 7.

3. Spectral zeta function and kink m ass quantum correction

W e choose a nom alization interval of length 1= L and im pose periodic
boundary conditions on the uctuations: ( 51 )= (El ). At the end of the
com putations we will send the length 1 of the nom alization interval to
in nity. (K ) acts on the H ibert space L ? = Lf(Sl) L%(Sl) L%(Sl).
The heat trace ( isa ctitious Inverse tem perature or Euclidean tim e) is:

(K 1) _ +e(§ §) Erf[ 5 ]

1A 31 1?2
TrLze p4:+tanh7 1+ e 3
whereA = e : +e +e é.ItjsjnterestjngaJsotousetl'leshort
tin e asym ptotics of the heat trace. Due to the structure of the second-

order uctuations operator (2), a power expansion of the heat trace is
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sensible’ :
A X
Trn:e (K 1):TrLze 0 (K1) Cn(Kl)n:‘p: Cn(Kl)nr
n=10 4 n=0
2n+1 2n 1
where the coe cientsare:coK1)= 1, ¢, K1)= ———. .
]h (2n 1)I i
1
TheCasinirenergy E = E E =5 Tn. (K1) Tro- K1)

is ultraviolet divergent. W e shall regularize these divergences by us-
ing the zeta function method. The zeta gvmctjons are the M ellin trans-
form of the heat traces, (s) = (15) Ol d ° lTrLz e and thus
we regularize the divergence by assigning to it the value of the spec-

tral zetahﬁmct']on at a regular onnt of the s—com plex plane: E € (s) =
2 S
3 z ® 1) (8) o & 1) (8) . The behaviour of the kink Casin ir en—

ergy near the physicalpole s = % + "is:

c 3 3 2 26 2 2
E = —_— —+3]I'l—+]l’lﬁ 4+F[ 731+F[TB] (3)
2 " : 3 13 23 B >
_ (071,0,0) (1 .~.3. 2 _ 2 2 _ 2 2
wherewedenoteF [x]= 2F, 5:0;5/x], 3=1 3sand ;3= 5 3.
The kink energy due to the m ass renom alization counter-term s that
2
mustbeadded, E M® = S [I(1)+ I( $)+ I( 5)] dx §'(x)3'(x)=

2 3[@@)+ I( §)+ I( %)} is also ultraviolet divergent. T he loop integrals
becom e In the nite length nom alization interval divergent series suscep—
tible of being reqularized as spectral zeta functions:

L@y L * 1 e s+ 1) ©)
- = - - _ — =7 2
21 (Zn%+ )7 ler b 2 (s) w7
T he regularized m ass renom alization kink energy
2 s 2 2 s+l (s + l) 1 1
MR _ 2
e R
behaves near the physical pole as:
MR 1 " 3 3 g 2 2
E ( 5+ )=2— ++3nh—+ 34 2) In 55 (4)

From the short-tin e asym ptotics of the heat trace we obtain an approxi-
m ated form ula for the kink Casin ir energy by m eans of the partialM ellin
transform on the [0;b] ntegration interval of the truncated to N temm s
heat trace expansion:

E © (ojNg)= =
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where [c]l= [ 1;cland [z;c]isthe incom plete Eulergamm a function.

T he contribution E (Cl) of the tetm with ¢ (K1) = 4 3 to this approxi-

m ation to the kink C asin ir energy is divergent because z = 0 is a pole of

[z;c]. Fortunately, the divergent m ass renom alization kink energy E MR

C
(1)~

Finally, the K ; sem iclassicalm ass,E (K1) = 2 §R2+ E + O ( R%),js
obtained by adding (3) and (4):

exactly cancels E

3 2 2 g
E= —> 2+F[ =1+ F[ -1+ h—52- 5)
2 3 23 13 23

Because the wells In the second-order uctuation operator are transparent
the CahilkC om tet-G lauber omulk'’, E(K ;)= —[sih 1+ = sin ,+
—isjng 1COS 1 %20052 —§3COS 3lywih ; = arccos(0) = 5,

, = arccos 13 , 3 = amcos%3 , 9iring the one-loop m ass shift in tem s
only of the bound state eigenvalues and the thresholds of the continuous
spectra, can be applied!! . D espite appearances, the result

EK )= — 3 ﬁamcos( 13) ﬁamcos(ﬁ) (6)
3 3 2

is dentical to (5) as one can check by plotting of both expressions.A third
(approxin ate) form ula,usefiil in the casesw hen the spectral inform ation on
thekink uctuations isunknown,isderived from the asym ptotic expansion:

Xo 2 2
EM®N )= —p= — &) — [3bl+ bl+ — [3bl (7)
2 b 8 _, 3 2
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