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Abstract

In this paper we propose a refinement of the heat kernel/zeta function treatment of kink quantum
fluctuations in scalar field theory, further analyzing the existence and implications of a zero energy
fluctuation mode. Improved understanding of the interplay between zero modes and the kink heat
kernel expansion delivers asymptotic estimations of one-loop kink mass shifts with remarkably higher
precision than previously obtained by means of the standard Gilkey-DeWitt heat kernel expansion.

PACS: 11.15.Kc; 11.27.+d; 11.10.Gh

1 Introduction

In 1961 Skyrme [1] proposed the following bold idea about the bridge between Classical and Quantum
Field Theory: “If plane wave solutions of the field equations in the classical domain emerge as light mesons
in the quantum domain, solitary wave solutions make the quantum leap, becoming heavy baryons in a
non-linear quantum field theory”. This image from hadronic physics prompted the task of studying the
quantum nature and properties of topological and non-topological classical non-linear waves with far-
reaching consequences, ranging from Cosmology and Gauge Theories to Condensed Matter Physics. In
1962, see [2], Skyrme, together with Perring, found that the sine-Gordon equation with its roots in the
Geometry of Surfaces of constant (negative) curvature offered an ideal playground in which Skyrme’s
idea was materialized analytically. In the mid seventies, Dashen, Hasslacher and Neveu addressed the
investigation of one-loop kink fluctuations by developing the ~-expansion of the (1 + 1)-dimensional
φ4 and sine-Gordon scalar field models. In two brilliant papers, [3, 4], without and with fermionic
fields, the authors encoded their findings in the evaluation of kink mass quantum shifts up to one-
loop order, as well as the computation of the semi-classical/WKB corrections to the Bohr-Sommerfeld
spectra of the sine-Gordon breathers. In the review reports [5] and [6] later developments on the subject
achieved by several research groups in the USA and the EU between 1998 and 2006 are reported and
summarized. This renaissance in the analysis of topological soliton fluctuations addressed mainly, but
not only, supersymmetric versions of the same type of phenomena and/or generalizations to models with
several scalar fields, also touching on the very delicate point of the influence of boundary conditions and
their interplay with supersymmetry plus the choice of renormalization criteria.

Here we shall concentrate on an specific method to deal with kink fluctuations. The one-loop kink
mass shift induced by the kink quantum fluctuations is due to three contributions: 1) The kink zero point
energy collecting the energy of the kink ground state where all the fluctuation modes are unoccupied.
2) The analogous vacuum zero point energy that must be subtracted. 3) The energy induced by the
one-loop renormalization mass counter-term on the kink background (measured with respect to the same
effect on the vacuum). All these three terms are divergent and it was decided in [7] -supersymmetric
kinks- and [8] -bosonic kinks- to regularize these quantities by means of the spectral zeta function of
the kink and vacuum second-order fluctuation operators. In the sine-Gordon and φ4 models the kink
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Hessian operators are Schrodinger operators of the Pöschl-Teller type whose spectral problem is solvable.
Therefore, one can exactly compute the kink spectral zeta function.

In other interesting models the spectral information about the differential operators governing kink
fluctuations is usually grossly insufficient for gaining analytical knowledge of the spectral zeta functions.
The idea in the references quoted above was to rely on the determination of the spectral zeta function via
the Mellin transform of the heat trace of the same operator and then use the asymptotic expansion of this
latter spectral function to obtain information about the kink fluctuation asymptotics. With different stim-
uli from Mathematics [9, 10] and Physics [11], interesting developments concerning the high-temperature
expansion of the kernel of the generalized heat equation associated with a differential operator of the
Laplace or Dirac type took appeared in the mid sixties. In particular, Gilkey, following classical works on
the heat kernel proof of the index theorem, unveiled the meromorphic structure of the generalized zeta
function, showing that the residua at the poles of the spectral zeta function, determined from the Seeley
coefficients of the heat kernel expansion, are certain topological invariants/characteristic classes. In turn
DeWitt used the heat kernel expansion to deal with quantum fields on curved backgrounds. During the
last twenty-five years the use of heat kernel/zeta function methods in Quantum Field Theory has become
a very important area of research: we explicitly mention the reports and textbooks [12, 13, 14, 15] for the
reader to become acquainted with this important subject. During the last decade we (and our colleagues)
profited from the theoretical machinery available by applying these tools at our disposal to express the
one-loop kink mass shift as a truncated series in the Seeley coefficients of the kink-Hessian-heat function,
see [8, 16, 17, 18, 19], in several (1 + 1)-dimensional field theoretical models of a single real scalar field .

Our goal in this paper is to address a very delicate issue. The Gilkey-DeWitt heat kernel expansion
is an “inverse temperature” power series such that the zeroth order term is the heat kernel of the “free ”
Laplace/Helmotz operator. Thus, the GDW heat kernel expansion coincides at infinite temperature with
the free heat kernel. Nevertheless, because of the completeness of the eigenfunctions of the kink-Hessian
Sturm-Liouville problem the corresponding heat kernel cannot go to zero at low temperature if there are
zero modes in the spectrum, as happens in the GDW expansion. Given that there is always a zero energy
kink fluctuation, the translational mode, here we propose to modify the GDW heat kernel expansion
to incorporate this notion when heat trace/zeta functions techniques are to be applied to the study of
kink fluctuations. Even though the standard lore is that zero modes enter at two-loop order in the
~-expansion of quantum mass shifts, they play a hidden rôle noticed, for instance, in the Cahill-Comtet-
Glauber computation [20] in terms of the bound state eigen-values and the threshold of the continuous
spectrum. Thus, we shall assign special status to the zero modes that, somehow, is tantamount to
performing the heat kernel expansion around the sine-Gordon kink Hessian. The new procedure is not
only conceptually more satisfactory but enhances the numerical precision in the computation of the kink
mass quantum correction to a remarkable extent.

The organization of this paper is as follows: in Section §.2 we briefly review the semi-classical kink mass
DHN formula and variations of this expression obtained in the heat kernel/zeta function regularization
procedure. Section §.3 contains the main novelty in this paper: the modified heat kernel expansion
adapted to the existence of the kink zero mode is introduced. In the Section §.4, the new formula is
applied to the sine-Gordon and φ4 kinks to test the modified procedure. The response found in these
models is in complete agreement with the exact results, improving the approximation reached in the
traditional heat kernel expansion approach. We shall also work this method to evaluate the one-loop
mass shifts in the scalar field models recently addressed in [19]. The interest in these models lies in
the fact that full information about the kink Hessian spectrum allows us to know exactly the quantum
correction offering a very good playground to gauge all the methods. Finally, we shall run the new
procedure in two one- parametric families of scalar field models recently analyzed in [18]: a generalized
family of φ6 models and the double sine-Gordon model. In both cases the DHN formula is not applicable
and the exact result is not known. Nevertheless, interesting results can be obtained in the heat kernel
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approach, old in [18] and new in this paper. In the Appendix, a Mathematica code that automatizes the
computations involved in the new procedure has been included.

2 One-loop quantum kink fluctuations

In this Section we briefly review the standard lore about the conceptual understanding of quantum
kink fluctuations as well as the approach of our group to this subject in the heat kernel/zeta function
framework. We shall follow the notation and conventions fixed in the recent reference [18].

2.1 Classical field theoretical models and kinks

The action governing the dynamics in a (1 + 1)-dimensional relativistic one-scalar field theoretical model
is of the form:

S̃[ψ] =

∫ ∫
dy0dy1

(
1

2

∂ψ

∂yµ
· ∂ψ
∂yµ
− Ũ [ψ(yµ)]

)
.

Here, ψ(yµ) : R1,1 → R is a real scalar field; i.e., a continuous map from the (1+1)-dimensional Minkowski
space-time to the field of the real numbers. y0 = τ and y1 = y are local coordinates in R1,1, which is
equipped with a metric tensor that we choose: gµν = diag(1,−1), µ, ν = 0, 1.

We shall work in a system of units where the speed of light is set to one, c = 1, but we shall keep
the Planck constant ~ explicit because we shall search for one-loop corrections, proportional to ~, to the
classical kink masses. In this system, the physical dimensions of fields and parameters are:

[~] = [S̃] = ML , [yµ] = L , [ψ] = M
1
2L

1
2 , [Ũ ] = ML−1 .

The models that we shall consider are distinguished by different choices of the part of the potential
energy density that is independent of the field spatial derivatives: Ũ [ψ(yµ)]. In all of them, there will
be two special parameters, md and γd, to be determined in each case, carrying the physical dimensions:
[md] = L−1 and [γd] = M−

1
2L−

1
2 . We define the non-dimensional coordinates, fields and potential in

terms of these parameters:

xµ = mdyµ , x0 = t , x1 = x , φ = γdψ , U(φ) =
γ2
d

m2
d

Ũ(ψ) .

The action and the “static ” part of the energy are also proportional to non-dimensional action and
energy functionals, namely:

S̃[ψ] =
1

γ2
d

S[φ] =
1

γ2
d

∫∫
dx0dx1

[
1

2

∂φ

∂xµ
· ∂φ
∂xµ

− U [φ(xµ)]

]
(1)

Ẽ[ψ] =
md

γ2
d

E[φ] =
md

γ2
d

∫
dx

[
1

2

(
dφ

dx

)2

+ U [φ(x)]

]
, x1 = x , (2)

where we shall assume that U(φ) is a non-negative twice-differentiable function of φ: U(φ) ∈ C2(R)
and U(φ) ≥ 0 for φ ∈ R. The configuration space C of the system is the set of field configurations
C = {φ(t0, x) ∈ Maps(R1,R)/E[φ] < +∞}. We assume that the set M = {φ(i) / U(φ(i)) = 0} of the
minima of U is a discrete set. The simplest solutions of the field equations(

∂2

∂t2
− ∂2

∂x2
+ v2

)
φ(t, x) = −δU

δφ
(t, x) (3)

3



are static and homogeneous, and hence the elements of M. The small (quadratic) fluctuations around
any of these constant solutions, φ(t, x) = φ(i) + δφ(t, x), satisfy the linearized field equations:(

∂2

∂t2
− ∂2

∂x2
+ v2

)
δφ(t, x) +O[(δφ)2] = 0 with

∂2U

∂φ2

∣∣∣∣
φ(i)

= v2 . (4)

The solutions of (4), of the form δφk(t, x) = eiν(k)tfk(x), are the normal modes of fluctuation of the
system near one minimum of U . These linear waves are built from the eigenfunctions of the second-order
“vacuum”1 fluctuation differential operator:

K0 = − d2

dx2
+ v2 , K0fk(x) = ν2(k)fk(x) , fk(x) = eikx , k ∈ R , ν2(k) = k2 + v2 . (5)

We remark on a point usually unnoticed: there is a “half-bound” state at the threshold of the continuous
spectrum v2 with constant eigenfunction.

If the cardinal of M is greater than 1, there may exist spatially dependent static solutions of the
solitary wave type (non-dispersive non-linear waves), which in the literature are referred to as kinks or
lumps, see e.g. [21, 22, 23]. The static kink solutions φK(x) satisfy the first-order ODE 2

dφ

dx
= ±

√
2U(φ) , (6)

together with the asymptotic conditions guaranteeing finiteness of the energy:

lim
x→+∞

φK(t, x) = φ(i) ∈M , lim
x→−∞

φK(t, x) = φ(i∓1) ∈M , lim
x→±∞

∂φK(t, x)

∂x
= 0 . (7)

Small fluctuations around any of the equivalent kink/antikink solutions, φ(t, x) = φK(x) + δφ(t, x), still
solving (3) satisfy the linearized field equations:(

∂2

∂t2
− ∂2

∂x2
+ v2 + V (x)

)
δφ(t, x) +O[(δφ)2] = 0 ,

∂2U

∂φ2

∣∣∣∣
φK(x)

= v2 + V (x) . (8)

Again the solutions of (8), of the form δφk(t, x) = eiω(q)tfq(x), are the normal modes of kink fluctuations
coming from the eigenfunctions of the second order kink fluctuation differential operator:

K = − d2

dx2
+ v2 + V (x) (9)

We shall assume that the potential well goes to the same limit at both ends of the straight line:
limx→±∞ V (x) = 0. This is true in all models for which ∂2U

∂φ2
|φ(i) = v2 = ∂2U

∂φ2
|φ(i+1) , where φ(i) and

φ(i+1) are the vacuum solutions that are connected by the kink. The kink normal modes built from the
eigenfunctions of K as a linear superposition

Kfq(x) = ω2(q)fq(x) , ω2(q) = q2 + v2

are not plane waves but some dispersive wave functions distorted by the kink. Contrary to K0, which is
a Laplace/Helmotz operator, K is a Schrödinger operator for a potential well. Therefore, the spectrum
of K is formed by scattering states, bound states and, possibly, half-bound states.

The lowest K-bound state fluctuation (mesons trapped by the kink) is always a zero mode: f0(x) =
dφK
dx , ω0 = 0. ThisK-eigenfunction is no more than the Goldstone boson due to the spontaneous symmetry

breaking by the kink of the invariance of the system with respect to spatial translations: x→ x+ a.

1 We pass to use QFT terminology: the linear waves in the quantized theory are the light mesons, whereas the minima
of U are the vacua of the system.

2The kinks are also static solutions of the PDE equation (3).

4



2.2 Kink mass quantum correction induced by one-loop fluctuations

2.2.1 The “first” DHN formula

The problem of computing the shift in the kink mass induced by kink fluctuations in the one-loop order
of the sine-Gordon and λ(φ4)1+1 models was solved by Dashen, Hasslacher and Neveu in [3]. They
succeeded in building a formula that collects all the effects contributing to this quantum effect.3 We
describe the formula as a regularization-renormalization construction in two steps.

1. Zero-point kink energy renormalization: mode-by-mode subtraction of the zero point vacuum energy

In the first step, a zero point kink energy (the energy due to all the K-fluctuation modes being
unoccupied) renormalization is performed by means of a mode-by-mode subtraction of the zero
point vacuum energy -all the K0-fluctuation modes being unoccupied-. In the Appendix of [17], we
generalized the DHN formula to kinks other than the sine-Gordon and λ(φ4)1+1 kinks, using the
one-dimensional Levinson theorem, finding the formula:

4 E1(φK) =
~γ2

d

2

[
lim

Λ→∞

∫ Λ

0
dk

1

π

∂δ(k)

∂k

√
k2 + v2 +

1

2π
〈V (x)〉+

b−1∑
j=2

ωj + sbωb −
v

2

]
, (10)

where 〈V (x)〉 =
∫∞
−∞ dxV (x) and ρ(k) = 1

2π
∂δ(k)
∂k is the contribution of the phase shifts to the

spectral density. The two last terms in (10) collect the contribution of the possible half-bound state
of K and the ever-present half-bound state of K0 and represent the novelty in [17] with respect to
the DHN formula.

2. Mass renormalization counter-term contribution:

4E1(φK) in (10) is still divergent because in models with interactions there are more ultraviolet
divergences than the vacuum energy. In (1 + 1)-dimensional scalar field theory normal ordering
tames all the uv divergences. The ordering induces a self-energy counter-term that, in turn, via the
expectation value of the scalar field operator at the kink and vacuum coherent states, produces the
following contribution to the one-loop kink mass shift expression, see e.g. [6]:

4 E2(φK) = −
~γ2

d

8π
〈V (x)〉 lim

Λ→∞

∫ Λ

−Λ

dk√
k2 + v2

, (11)

The addition of these two quantities, previously regularized separately by choosing a cutoff that counts
the same number of eigen-modes over the kink as over the vacuum, provides the finite value of the
one-loop kink mass shift:

4E(φK) = 4E1(φK) +4E2(φK) .

2.2.2 The zeta function regularization procedure

In order to apply the above DHN scheme effectively in the computation of one-loop kink masses, it
is necessary to know the eigenvalues of the bound states and the scattering wave phase shifts of the
operator K. Only for the sine-Gordon and λ(φ)4

1+1 kink is this information fully available and other
approaches to the problem are necessary in the investigation of quantum fluctuations of more complex
kinks. The application of the zeta function regularization procedure has proved to be very effective in
such a situation. The vacuum energy induced by quantum fluctuations is first regularized by assigning

3We refer to this formula as the first DHN formula, to be distinguished from the “second” DHN formula applicable to
the quantum sine-Gordon breathers.
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it the value of the spectral zeta function of the K0-operator (a meromorphic function) at a regular point
in s ∈ C:

4 E(φ(i)) =
~γ2

d

2
ζK0(−1

2) → 4E(φ(i))[s] =
~γ2

d

2

µ

md

(
µ2

m2
d

)s
ζK0(s) , (12)

where µ is a parameter of dimensions L−1 introduced to keep the dimensions of the regularized energy
right. We stress that s = −1

2 is a pole of this function. The same rule is applied to control the kink
energy divergences by means of the spectral zeta function of K and, finally, the kink Casimir energy is
regularized in the form:

4 E1(φK)[s] = 4E0(φK)[s]−4E0(φ(i))[s] =
~γ2

d

2

(
µ2

m2
d

)s+ 1
2

(ζK(s)− ζK0(s)) (13)

The advantage of this procedure is that there is no need for detailed information about the spectrum
of K to calculate the spectral zeta function. It is possible to elude this problem in two steps:

1. First, an asymptotic formula for the K-heat trace can be obtained from the GDW heat-kernel
expansion in terms of the so-called Seeley coefficients.

2. The Mellin transform of the heat trace in turn provides the K-zeta function such that the regularized
kink energy reads:

4 E1(φK)[s] =
~γ2

d

2

(
µ2

m2
d

)s+ 1
2 1

Γ(s)

{∫ ∞
0

dβ βs−1 (hK(β)− hK0(β))

}
(14)

The energy due to the one-loop mass counter-term (11) can be also regularized by the zeta function
procedure:

4 E2(φK)[s] =
~γ2

d

2
〈V (x)〉

(
µ2

m2
d

)s+ 1
2

lim
l→∞

1

l

Γ(s+ 1)

Γ(s)
ζK0(s+ 1) (15)

Finally, we write the zeta function regularized DHN formula:

4 E(φK) = lim
s→− 1

2

4E1(φK)[s] + lim
s→− 1

2

4E2(φK)[s] (16)

3 Zero modes and the heat kernel asymptotic expansion

3.1 Conflict at low temperature between zero modes and the heat kernel factoriza-
tion

The spectral K-heat trace hK(β) = TrL2 e−βK admits an integral kernel representation in terms of the
fundamental solution of the K-heat equation:

hK(β) =

∫
Ω
dxKK(x, x;β) ,

(
∂

∂β
+K

)
KK(x, y;β) = 0 , KK(x, y; 0) = δ(x− y) .

The trace, of course, is in the functional sense, Ω is a finite (but very large) normalization interval on
the real line, and β is a fictitious inverse temperature. From Sturm-Liouville theory, the eigen-function
expansion of the heat kernel

KK(x, y;β) = f∗0 (y)f0(x) +

b∑
n=1

f∗n(y)fn(x)e−βω
2
n +

∫
dk f∗k (y) fk(x) e−βω

2(k) (17)
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is founded in solid grounds. Writing (17) we had in mind the general structure of the spectrum of the
Schrödinger operator K governing the kink fluctuations: one zero mode f0(x), a discrete set of bound
state eigenfunctions fn(x), and the continuous spectrum eigenfunctions fk(x) characterized by a “wave
number” k ∈ R.

In the low temperature β → +∞ regime, only the contribution of the eigenfunction in the algebraic
kernel of K survives, whereas the completeness of the eigenfunction expansion fixes the K-heat kernel at
high-temperature β → 0:

lim
β→+∞

KK(x, y;β) = f∗0 (y)f0(x) , lim
β→0

KK(x, y;β) = δ(x− y) . (18)

The standard GDW strategy (and many others) to find the solution of the parabolic equation[
∂

∂β
− ∂2

∂x2
+ v2 + V (x)

]
KK(x, y;β) = 0 (19)

with a δ-source on the diagonal of R2 at infinite temperature KK(x, y; 0) = δ(x− y) is to start from the
well known K0-heat kernel

KK0(x, y;β) =
1√

4πβ
e−βv

2
e
− (x−y)2

4 β , f0
k (x) =

1√
2π
eikx , ω2

0(k) = k2 + v2 , k ∈ R

and search for a K-heat kernel in the factorized form:

KK(x, y;β) = KK0(x, y;β)A(x, y;β) , A(x, y; 0) = 1 . (20)

The GDW heat kernel expansion

KK(x, y;β) =
1√
4πβ

e−βv
2
e
− (x−y)2

4 β

∞∑
n=0

an(x, y)βn (21)

trades the PDE (19) by a recurrence relation between the Seeley densities an(x, y). Setting a0(x, y) = 1,
one can prove, see e.g. [10], that the GDW heat-kernel expansion (21) is an asymptotic solution to the
PDE equation (19), i.e., denoting the partial sums in the formKNt

K (x, x;β) = KK0(x, x;β)
∑Nt

n=0 an(x, x)βn,
we have:[

∂

∂β
− ∂2

∂x2
+ v2 + V (x)

]
KNt
K (x, x;β) =

1√
4πβ

RNt(x, x;β)βNt , KNt
K (x, x; 0) = “δ(0)” , (22)

where the remainder RNt(x, x;β) is a C∞ function of x.

Because
lim

β→+∞
KK0(x, y;β) = 0 , lim

β→0
KK0(x, y;β) = δ(x− y) (23)

it is clear that although the asymptotic of KK(x, y;β) read from (20) and (23) fits with (18) at high-
temperature, it fails at low temperature due to the zero mode. This discrepancy forces us to limit the
integration range in the Mellin transform to a finite one if we use the standard factorization. In other
fields, e.g. heat kernel proofs of the index theorem, computation of anomalies in QFT, this is not a
difficulty because these effects are related to residua at the poles of the spectral zeta function and the
entire parts can be neglected. However, here we are in trouble. The main reason is that there is a value
of β between low and high temperatures where the heat trace starts to depart from the exact one due
to the zero mode. This causes many computational inaccuracies. A considerable amount of ingenuity is
needed to obtain good estimations of the one-loop kink mass shift from the kink zeta function via the
Mellin transform of the kink heat kernel expansion.
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As a loophole, we propose the improved factorization

KK(x, y;β) = KK0(x, y;β)C(x, y;β) + g(β)e
− (x−y)2

4β f∗0 (y)f0(x) , (24)

matching the asymptotic behaviour of the K-heat equation kernel at both low and high temperature,
(18) and (23), provided that the β →∞ and β → 0 limit of C(x, y;β and g(β) will be such that:

lim
β→0

C(x, y; 0) = 1 , lim
β→∞

g(β) = 1 , lim
β→0

g(β) = 0 (25)

Having modified the standard factorization to adapt the formalism to the existence of zero modes, we
follow the GDW route. Plugging the ansatz (24) into the K-heat equation (19) the following “transfer”
equation for C(x, y;β) arises:(

∂

∂β
+
x− y
β

∂

∂x
− ∂2

∂x2
+ V (x)

)
C(x, y;β) +

+
√

4πβ eβv
2
f∗0 (y)

[
dg(β)

dβ
f0(x) +

g(β)

2β
f0(x) +

g(β)

β
(x− y)

df0(x)

dx

]
= 0 . (26)

3.2 The modified asymptotic expansion of the kink heat function

This PDE equation is traditionally solved by means of a power series expansion:

C(x, y;β) =

∞∑
n=0

cn(x, y)βn , c0(x, y) = 1 . (27)

Note that c0(x, y) = 1 is obligatory to comply with the infinite temperature value of C(x, y;β). Plugging
the power expansion in (26) this PDE is transformed into the recurrence relations:

∞∑
n=0

[
(n+ 1)cn+1(x, y)− ∂2cn(x, y)

∂x2
+ (x− y)

cn+1(x, y)

∂x
+ V (x)cn(x, y)

]
βn +

+
√

4πβeβv
2
f∗0 (y)

[
dg(β)

dβ
f0(x) +

g(β)

2β
f0(x) + (x− y)

g(β)

β

df0(x)

dx

]
= 0 . (28)

We stress that the modified factorization ansatz leads to new recurrence relations as compared with
those encountered by Gilkey and DeWitt: namely, all the terms in the second line of (28) are new. This
structure suggests the optimum choice of g(β). Setting

√
πβeβv

2 dg(β)

dβ
= v ≡ g(β) = Erf (v

√
β) (29)

we simplify maximally (28) in the sense that derivatives of g(β) do not enter. Moreover, the error function
is selected as the best option to comply simultaneously with (29) and the asymptotic conditions (25).

From the asymptotic expansion of the error function Erf z = 2√
π
e−z

2∑∞
n=0

2n

(2n+1)!!z
2n+1, the expres-

sion (28) leads to the recurrence relations:

(n+ 1) cn+1(x, y)− ∂2cn(x, y)

∂x2
+ (x− y)

∂cn+1(x, y)

∂x
+ V (x)cn(x, y) +

+2vf∗0 (y)f(x)δ0n + f∗0 (y)f(x)
2n+1v2n+1

(2n+ 1)!!
+ (x− y)f∗0 (y)

df0(x)

dx

2n+2v2n+1

(2n+ 1)!!
= 0 . (30)
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The modified heat kernel expansion takes the form:

KK(x, y;β) = KK0(x, y;β)

∞∑
n=0

cn(x, y)βn + Erf(β)e
− (x−y)2

4β f∗0 (y)f0(x) , (31)

where the cn(x, y) densities satisfy the relations (30), whereas the diagonal kernel reads:

KK(x, x, β) = lim
y→x

KK(x, y, β) =
e−βv

2

√
4πβ

∞∑
n=0

cn(x, x)βn + Erf(β)f∗0 (x)f0(x) , cn(x, x) = lim
y→x

cn(x, y)

and the heat trace is

hK(β) =

∫
Ω
dxKK(x, x, β) =

e−βv
2

√
4πβ

∞∑
n=0

cn(K)βn + Erf (v
√
β) , cn(K) =

∫
Ω
dx cn(x, x) .

Thus, to determine the K-heat function hK(β) is tantamount to identifying the Seeley coefficients cn(K).
This task is accomplished by solving recursively (30) but to do this it is necessary to deal with the following
subtlety: the operations of taking the y → x limit and the derivatives with respect to x in the formula
(30) do not commute. To cope with this problem we introduce the following notation:

(k)Cn(x) = lim
y→x

∂kcn(x, y)

∂xk
, (32)

the Seeley densities, for instance, being: cn(x, x) = (0)Cn(x). Moreover, the “initial” conditions fix the
first coefficient (k)C0(x) , ∀k to be:

(k)C0(x) = lim
y→x

∂kc0

∂xk
= δk0 . (33)

Taking the k-th derivative of the recurrence relation (30) with respect to x and later passing to the y → x
limit in the resulting recurrence relations we obtain:

(k)Cn(x) =
1

n+ k

[
(k+2)Cn−1(x)−

k∑
j=0

(
k

j

)
∂jV

∂xj
(k−j)Cn−1(x)−

−2vf0(x)
dfk0 (x)

dxk
δ0,n−1 − f0(x)

dfk0 (x)

dxk
2nv2n−1

(2n− 1)!!
(1 + 2k)

]
, (34)

which affords us the identification of (k)Cn(x) in a recursive way from the initial ones (33). Note that
the computation of the density cn(x, x) = (0)Cn(x) requires the coefficients (0)Cn−1(x), (1)Cn−1(x), . . .,
(k+2)Cn−1(x), which are in turn determined from the densities (0)Cn−2(x), (1)Cn−2(x), . . . (k+4)Cn−2(x),
etcetera, until we reach the densities (k)C0(x) = δk0.

We list the first three densities cn(x, x) derived from (34) for the kink fluctuation operator K

c0(x, x) = (0)C0(x) = 1 ,

c1(x, x) = (0)C1(x) = −V (x)− 4vf2
0 (x) , (35)

c2(x, x) = (0)C2(x) = −1

6

∂2V

∂x2
+

1

2
(V (x))2 +

4

3
v3f2

0 (x) + 4vf2
0 (x)V (x) ,

as well as the first three Seeley coefficients

c0(K) = l ,

c1(K) = −〈V (x)〉 − 4v , (36)

c2(K) = −1

6

〈
V ′′(x)

〉
+

1

2

〈
(V (x))2

〉
+

4

3
v3 + 4v

〈
V (x)f2

0 (x)
〉
,
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where l is the length of the interval Ω.

Subtraction of the K0-heat trace from the K-heat trace expansion amounts to dropping the c0(K)
coefficient, and we find:

hK(β) = hK(β)− hK0(β) =
e−βv

2

√
4π

∞∑
n=1

cn(K)βn−
1
2 + Erf (v

√
β) (37)

In practical calculations we shall truncate the hK(β) series to a finite number of terms4, which defines
the function

hK(β;Nt) =
e−βv

2

√
4π

Nt∑
n=1

cn(K)βn−
1
2 + Erf (v

√
β) (38)

3.2.1 An example: the asymptotics of the λφ4 kink

To illustrate the power of this modified procedure in the calculation of one-loop kink masses, let us
focus on the λ(φ)4

1+1 model. K is the Schrödinger operator for the second member of the hierarchy of
“transparent” Pöschl-Teller potentials, see [8, 18]. The spectral problem is completely solvable and the
K-heat trace, a function of β, is known exactly :

hK(β) = hK(β)− hK0(β) = e−3β Erf(
√
β) + Erf(2

√
β) , (39)

see [8, 18]. In Figure 1a, the exact hK(β) “renormalized” heat function has been plotted. A comparison
with the approximated heat function given by the truncated asymptotic series hK(β,Nt) is shown in
Figure 1b for several values of Nt. We emphasize that we used the modified GDW heat kernel expansion.
The Seeley coefficients needed to compute hK(β,Nt) are listed in Table 2 of Section §.4. The agreement
with the exact result is remarkable even for low orders of Nt. In Figure 1c different plots of h̃K(β;Nt),

Figure 1: The exact function hK(β) (left), partial sums hK(β,Nt) from the modified factorization method
(middle) and partial sums h̃K(β,Nt) from the standard GDW factorization method (right) for the λ(φ)4

1+1

kink.

the truncated heat functions derived from the GDW factorization (20), are shown as colored lines for
increasing values of Nt from the bottom (red) to the top (violet):

h̃K(β;Nt) =
e−βv

2

√
4π

Nt∑
n=1

an(K)βn−
1
2 . (40)

The Seeley coefficients an(K) for the λφ4 kink are taken from the References [8, 18]. The main point is
perfectly clear here:

lim
β→∞

hK(β) = 1 = lim
β→∞

hK(β,Nt) , ∀Nt , lim
β→∞

h̃K(β,Nt) = 0 .

4 After all, it is an asymptotic series such that there is an optimum truncation order approximation to the exact value.
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The exact heat trace and the asymptotic approximation through the modified GDW factorization for the
λφ4 kink tend to unity when the temperature decreases to zero: β =∞. The asymptotic approximation
from the standard GDW factorization, however, tends to zero at low temperature. It is clear that the zero
mode is not captured in this latter case and one must choose an optimum value of β as the upper limit
of the integral in the Mellin transform. There is a second point to be emphasized: hK(β,Nt) approaches
hK(β) much faster than h̃K(β,Nt). Higher Nt is necessary to fit in with the exact function in this
latter case. Because ζK(s) − ζK0(s) = 1

Γ(s)

∫∞
0 dβ βs−1hK(β), it is evident that a better approximation

to the “renormalized” kink zeta function is ζK(s) − ζK0(s) = 1
Γ(s)

∫∞
0 dβ βs−1hK(β;Nt) rather than

ζK(s)− ζK0(s) = 1
Γ(s)

∫∞
0 dβ βs−1h̃K(β,Nt).

3.3 Kink mass quantum corrections in one-component scalar field theory

The Mellin transform of the renormalized K-heat trace expansion hK(β) (37) gives us the renormalized
K-zeta function as the series (involving Euler Gamma functions)

ζK(s)− ζK0(s) =
1√
4π

∞∑
n=1

cn(K)
Γ[s+ n− 1

2 ]

Γ[s]
− 1√

π
v−2sΓ[s+ 1

2 ]

sΓ[s]
,

which in turn, recall (13), prompts the following expression for the regularized kink Casimir energy
4E1(φK)[s]:

4E1(φK)[s] =
~γ2

d

2

(
µ2

m2
d

)s+ 1
2 [
− 1√

4π

〈V (x)〉
v1+2s

Γ[s+ 1
2 ]

Γ[s]
− 2√

π v2s

Γ[s+ 1
2 ]

Γ[s]
+

+
1√
4π

∞∑
n=2

cn(K)

v2n+2s−1

Γ[s+ n− 1
2 ]

Γ[s]
− 1√

πv2s

Γ[s+ 1
2 ]

sΓ[s]

]
.

Here we have used the explicit expression of c1(K) given in (36) to write the contribution of the first
term of the series. Because the contribution of the regularized one-loop mass counter-term 4E2(φK)[s],
see (15), is

4E2(φK)[s] =
~γ2

d

2

(
µ2

m2
d

)s+ 1
2 〈V (x)〉√

4π

Γ[s+ 1
2 ]

Γ[s]

1

v2s+1

a crucial cancelation, obeying the heat kernel renormalization criterion, see e.g. [7], occurs after the
addition of these two regularized quantities and we obtain the following series for the regularized one-
loop kink mass shift 4E(φK)[s] = 4E1(φK)[s] +4E2(φK)[s]:

4E(φK)[s]

~γ2
d

=
1

2

(
µ2

m2
d

)s+ 1
2

[
1√
4π

∞∑
n=2

cn(K)

v2n+2s−1

Γ[s+ n− 1
2 ]

Γ[s]
− 2√

π v2s

Γ[s+ 1
2 ]

Γ[s]
− 1√

πv2s

Γ[s+ 1
2 ]

sΓ[s]

]

Still, the last two terms are divergent at the physical point s = −1
2 , which is a pole of Γ(s + 1

2). There
is, however, a miraculous cancelation that is observed by taking the dangerous limit carefully:

lim
s→− 1

2

[
− 2√

π v2s

Γ[s+ 1
2 ]

Γ[s]
− 1√

πv2s

Γ[s+ 1
2 ]

sΓ[s]

]
= lim

ε→0

[ v
π

(
1

ε
− [γ + 2 log v + ψ(−1

2)]

)
+O1(ε)−

− v
π

(
1

ε
− [γ + 2 log v + ψ(−1

2)] + 2

)
+O2(ε)

]
= −2v

π
.
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Thus, zero point and mass renormalization get rid of all the divergences and we end with the renormalized
one-loop mass shift formula derived from the modified asymptotic series expansion of the K-heat function:

4E(φK)

~γ2
d

= − v
π
− 1

8π

∞∑
n=2

cn(K)(v2)1−nΓ[n− 1] (41)

We have elaborated a Mathematica code, shown in the Appendix of this paper, which automatizes the
computation of the quantum correction to the kink mass in one-component scalar field theory models.
The algorithm is based on the evaluation of the Nt-th order partial sum of the series (41),

4E(φK ;Nt)

~γ2
d

= − v
π
− 1

8π

Nt∑
n=2

cn(K)(v2)1−nΓ[n− 1] (42)

as a good estimation of the quantum correction. This Mathematica program uses the recurrence relations
(34) and the definition of the Seeley coefficients to figure out the coefficients cn(K) in (42). The inputs
needed in this program only include the potential term U(φ), which characterizes in action (1) the specific
model chosen, the two vacua which are connected by the kink solution whose mass quantum correction
we are interested in, and the order of truncation Nt to be considered in our estimations (42).

4 Specific (1 + 1)-D one-component scalar field theory models

In this Section we shall apply formula (42), in the environment of the Mathematica code, to compute the
one-loop kink mass shift in several well selected (1+1)-dimensional scalar field theory models. We start
with the very well known sine-Gordon and φ4 kinks as a good test of the new procedure. We shall see
that in these paradigmatic cases the new method works extremely well whereas the analysis helps in the
conceptual understanding of the modified heat kernel expansion. We shall then move on to explore more
exotic avenues: First, we shall apply the procedure to compute the kink mass quantum correction to the
σ = N “parent” models, see [19], a very favorable arena because the second-order fluctuation operator

K = N2 − N(N+1)

cosh2x
, N ∈ N belongs to the transparent Pösch-Teller hierarchy. Second, a one-parametric

family of generalized φ6 models having kinks and “double” kinks, see [18], will be also addressed and
the one-loop kink mass shifts estimated. Here, to calibrate the quality of the results only analyse of
self-consistency are available. The K operator does not belong to any class of Schödinger operators
with known spectra. Therefore, no other procedures of computation such as the DHN or the Comtet-
Cahill-Glauber formula are applicable. Third, the kinks in the double sine-Gordon model [24] will be also
considered. Again, we shall obtain estimations of the kink mass quantum shifts that are not accessible
with other procedures.

4.1 The sine-Gordon model

The part of the energy density potential independent of the field spatial derivatives is in the sine-Gordon
model:

U(φ) = 1− cosφ .

The sine-Gordon kink φK(x) = 4 arctan ex + 2πn, n ∈ Z, is a soliton solution that connects the vacua
2πn and 2π(n+ 1). The second-order small vacuum and kink fluctuation operators are respectively:

K0 = − d2

dx2
+ 1 , K = − d2

dx2
+ 1− 2 sech2x .

Thus, v = 1 and V (x) = −2 sech2x, in agreement with the notation used in the previous Sections. The
spatial derivative of the kink solution is the (normalized) zero mode of fluctuation: f0(x) = 1√

2
sechx.
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From (34) and spatial integration of the Seeley densities we find that all the Seeley coefficients for the
sine-Gordon kink vanish. This reveals the hidden nature of the modified heat kernel expansion: the
choice g(β) = Erf

√
β means that the new expansion is with respect to the heat kernel of the sine-Gordon

kink !!, not of a constant background. Therefore, hK(β) = Erf(
√
β) is the exact sine-Gordon kink heat

trace. The numerical estimation of the sine-Gordon kink mass quantum correction through (42) thus

provides the exact result: ∆E(φK)
~γ2d

= − 1
π = −0.31831. The optimum number of terms in the asymptotic

formula is Nt = 0 !! in the always surprising sine-Gordon model.

4.2 The λ(φ)4
1+1 model

The potential term in this model is:

U(φ) =
1

2
(φ2 − 1)2 .

The kink solitary wave φ(x) = tanhx connects the two vacua φ(1) = −1 and φ(2) = 1. The vacuum and
kink Hessian operators are respectively:

K0 = − d2

dx2
+ 4 , K = − d2

dx2
+ 4− 6 sech2x ,

such that v = 2 and V (x) = −6 sech2x. The zero mode is the spatial derivative of the kink, i.e., properly

normalized, f0(x) =
√

3
2 sech2 x. The symbolic resolution of the recurrence relations (34) for the analytic

expressions of V (x) and f0(x) in the Mathematica code provides Seeley densities that, integrated over the
whole real line, become the Seeley coefficients entered into the formula (42). These coefficients are listed
in the Table 1. In this table we have also specified the values of the one-loop mass shift obtained from the
modified asymptotic series (42) for different values of the truncation order, Nt, graphically represented
by the blue line of the attached figure. For the sake of the comparison we also collect from [8, 18] the
same data obtained from the standard asymptotic series, represented by the red line.

Kink Seeley Coefficients

n cn(K)

1 4.00000
2 2.66667
3 1.06667
4 0.304762
5 0.0677249
6 0.0123136
7 0.0018944
8 0.000252587
9 0.0000297161
10 3.12801 · 10−6

Kink Mass Shift Estimation

Nt 4E(φK ;Nt)/~γ2
d

- -
2 −0.663146
3 −0.665798
4 −0.666177
5 −0.666240
6 −0.666252
7 −0.666254
8 −0.666254
9 −0.666255
10 −0.666255

Table 1: Seeley coefficients (left), kink mass shift estimation (middle) and comparison between the shifts
obtained from the modified (blue) and from the standard (red) asymptotic series (right) for several trun-
cation orders in the φ4 model.

In sum, the one-loop mass shift obtained from the modified heat trace expansion truncated at the
order Nt = 10 is:

∆E(φK , Nt = 10)

~γ2
d

= −0.666255 .
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This estimation very precisely reproduces the exact result ∆E(φK)
~γ2d

= − 1
π (3−

√
3arccos

√
3

2 ) = 1
2
√

3
− 3

π =

−0.666255 found in this model, see [8, 18].

Three points are worthy of mention:

1. The Seeley coefficients for the φ4 kink obtained through the modified heat trace expansion are
exactly the same as the Seeley coefficients for the sine-Gordon kink obtained from the standard
heat trace asymptotics.

2. It is clear from the above Figure that the convergence obtained upon using the modified approach
is much better than in the standard procedure. The optimum asymptotic value is reached at a
truncation order of three or four in the new method, whereas in the traditional approach more than
ten terms were necessary.

3. All this stresses how a better approximation to the K-heat function is obtained in the modified
approach. The distortions introduced by the zero mode are almost suppressed when the whole
effect of the kink fluctuations is calibrated with respect to the simplest kink with a zero mode !!

4.3 The σ = 3 and σ = 4 parent potential models

In reference [19], a family of (1+1)-dimensional scalar field models governed by the action (1) with the
following “parent” potentials5

U (σ)(φ) =
2Γ[1

2 + σ
2 ]2

πΓ[σ2 ]2
(
1− I−1

[
|φ|; 1

2 ,
σ
2

])σ
(43)

is fully analyzed. I−1(z; a, b) is the inverse incomplete regularized Beta function and the reason for the
denomination “parent” is that the potential is identified by an inverse procedure. It is mandatory that
the K-operator be

K = − d2

dx2
+ σ2 − σ(σ + 1)

cosh2x
,

whereas the kink profile is identified from the zero mode of K:

φ
(σ)
K (x) = sign(x) I[tanh2 x; 1

2 ,
σ
2 ] (44)

It is not completely clear from (43) and/or (44), but σ = 1 and σ = 2 respectively correspond to the
sine-Gordon and λ(φ)4

1+1 models. Here we shall study the next two cases in depth (for σ a positive
integer): σ = 3 and σ = 4.

In the first case, σ = 3, the small vacuum and kink fluctuation operators are

K0 = − d2

dx2
+ 9 , K = − d2

dx2
+ 9− 12 sech2x .

Thus, we have v = 3 and V (x) = −12 sech2x and the normalized zero mode is: f0(x) =
√

15
4 sech3 x.

The Seeley coefficients listed in the Table 2 are obtained from (34). We also specify the partial sums
hK(β,Nt) (42) for distinct values of the truncation order Nt. The values of the one-loop mass shifts
obtained from these partial sums are depicted in the attached figure by the blue line and compared with
the data obtained in [19]) using the standard procedure, which are represented by the red line.

From the data in Table 2, the one-loop kink mass quantum correction is estimated to be

∆E(φK , Nt = 10)

~γ2
d

= −1.08450

5In [19] it is explained that these models are well defined only for |φ| ≤ 1.
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Kink Seeley Coefficients

n cn(K)

1 12.0000
2 24.0000
3 35.2000
4 39.3143
5 34.7429
6 25.2306
7 16.5208
8 8.27770
9 3.89498
10 1.63998

Kink Mass Shift Estimation

Nt 4E(φK ;Nt)/~γ2
d

- -
2 −1.06103
3 −1.07832
4 −1.08262
5 −1.08388
6 −1.08429
7 −1.08443
8 −1.08448
9 −1.08449
10 −1.08450

Table 2: Seeley coefficients (left), kink mass shift estimation (middle) and comparison between the shifts
obtained from the modified (blue) and from the standard (red) asymptotic series (right) in the σ = 3
parent potential model.

In [19] the exact kink mass quantum correction in this model is written in terms of the bound state

energies and the threshold of the continuous spectrum of the K operator: ∆E(φK)
~γ2d

= − 1
π (6−

√
5arccos

√
5

3 −√
8arccos

√
8

3 ) = −1.08451. Therefore, the estimation obtained with the modified method is very precise.
In Figure 2a we plot the renormalized kink heat functions hK(β) for this model. In Figure 2b we depict
the partial sums hK(β,Nt) (38) derived from the modified asymptotic series for several values of Nt.
Finally, in Figure 2c we represent the partial sums h̃K(β,Nt) (40), calculated by means of the GDW
standard procedure.

Figure 2: The exact function hK(β) (left), partial sums hK(β,Nt) from the modified factorization (middle)
and partial sums h̃K(β,Nt) from the standard factorization (right) in the σ = 3 parent potential model.

In the second case σ = 4, the small vacuum and kink fluctuation operators are

K0 = − d2

dx2
+ 16 , K = − d2

dx2
+ 16− 20 sech2x .

Thus, we have v = 4 and V (x) = −20 sech2x and the normalized zero mode is: f0(x) =
√

35
4
√

2
sech4 x.

In Table 3 we summarize the results obtained for this model showing the Seeley coefficients and the
quantum mass shift estimations for different values of the truncation order Nt.

The one-loop kink mass quantum correction is estimated to be

∆E(φK , Nt = 14)

~γ2
d

= −1.58003

As in the previous example, we conclude that this result is very precise, recalling that the exact result
is: ∆E(φK)

~γ2d
= − 1

π (10− π√
3
−
√

15 arcsin 1
4 −
√

7 arcsin 3
4) = −1.58003, see [19].
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Kink Seeley Coefficients

n cn(K)

1 24.0000
2 96.0000
3 294.200
4 705.829
5 1367.77
6 2206.55
7 3035.81
8 3632.62
9 3841.44
10 3637.21

Kink Mass Shift Estimation

Nt 4E(φK ;Nt)/~γ2
d

- -
2 −1.51197
3 −1.55773
4 −1.57144
5 −1.57642
6 −1.57843
7 −1.57930
8 −1.57969
9 −1.57986
10 −1.57995

Table 3: Seeley coefficients (left), kink mass shift estimation (middle) and comparison between the shifts
obtained from the modified (blue) and from the standard (red) asymptotic series (right) in the σ = 4
parent potential model.

Taken together, the results shown in the Tables 2 and 3 and represented in the above Figures confirm
the pattern found in the λ(φ)4

1+1 model: (1) hK(β,Nt) matches the exact hK(β) at both small and large β.

h̃K(β,Nt), however, only behaves like the exact heat trace at high 1
β but, even though the approximation

is better with increasing Nt, there is always a finitely large value of β, such that h̃K(β,Nt) starts to tend
to 0 instead of going to 1. (2) A much faster convergence to the optimum estimation is achieved using the
modified GDW heat kernel factorization. (3) Some hierarchical structure arises: the Seeley coefficients
for the kink heat trace modified expansion in the σ parent potential model are those found in the σ − 1
model coming from the standard GDW factorization. This third point suggests that one could use any
operator

KN = − d2

dx2
+N2 − N(N + 1)

cosh2x
, N = 0, 1, 2, 3, · · ·

in the transparent Pösch-Teller hierarchy as the starting point of the heat kernel expansion for any
differential operator with a zero mode.

4.4 A family of (φ)6
1+1 models

We now consider a one-parametric family of φ6 models. The potential, depending on the coupling constant
a, is:

U(φ; a) =
1

2
(φ2 + a2)(φ2 − 1)2 ,

see Figure 3a. The vacuum orbit is M = {−1, 1} and the kinks that connect these vacuum points are:

φK(x; a) =
a(−1 + e2

√
1+a2 x)√

4e2
√

1+a2 x + a2(1 + e2
√

1+a2 x)2

. (45)

In Figure 3b some members of this kink family have been depicted together with their energy densities. In
these graphics it is clear that this model presents double kink solutions, a character accentuated when the
parameter a approaches zero. Indeed, at the a→ 0 limit the potential reduces to U(φ, 0) = 1

2φ
2(φ2−1)2,

i.e., the pure φ6 Lohe/Khare model [25]; a new vacuum point φ = 0 arises, and the vacuum orbit becomes:
M = {−1, 0, 1}. The lima→0 φK(x; a) is a configuration where the φK(a) kink solution splits into two
single kinks, one connecting the vacua φ = −1 and φ = 0 and the other connecting φ = 0 and φ = 1.
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Figure 3: Graphical representation of the potential (left), several kink profiles (middle) and kink energy densities
(right) for a = 0.001, 0.01, 0.25, 0.5, 0.75, 1, 1.25, 1.5.

The particle masses and the kink potential wells in this family of models are

v2 = 4(1 + a2) , V (x; a) =
15(4a+ 1)2[

2a cosh
(

2
√
a2 + 1x

)
+ 2a+ 1

]2 −
6
(
a2 + 3

)
(4a+ 1)

2a cosh
(

2
√
a2 + 1x

)
+ 2a+ 1

.

The Seeley coefficients of the modified asymptotic series evaluated using (34) have been implemented in
the Mathematica code available in this paper for several selected values of a. Thus, the one-loop kink
mass shifts are computed and are shown in Table 4 with a truncation of Nt terms. All these data are
represented graphically in the attached figure in Table 4.

a 4E(φK ;Nt)/~γ2d Nt

0.001 -1.95321 9

0.01 -1.65859 9

0.05 -1.44956 9

0.1 -1.35308 9

0.2 -1.24166 9

0.3 -1.17150 10

0.4 -1.11564 10

0.5 -1.07925 11

0.6 -1.05903 11

a 4E(φK ;Nt)/~γ2d Nt

0.7 -1.05493 11

0.8 -1.06099 11

0.9 -1.07728 11

1.0 -1.10137 11

1.1 -1.13185 11

1.2 -1.16744 11

1.3 -1.20727 11

1.4 -1.25054 10

1.5 -1.29667 9

Table 4: Quantum corrections to the kink masses in the φ6 family for several values of the parameter
a (left) and their graphical representation (right). The red squares represent the data obtained in the
standard GDW approach, whereas the blue dots are the new data coming from the modified factorization.

We observe in Table 4 that the quantum correction tends to infinity as a approaches zero. The reason
for this stems from the fact that the vacua that are connected by the kink in the case a = 0 give rise to
different meson masses: ∂2U

∂φ2
[1] = 4 and ∂2U

∂φ2
[0] = 1, see [8] and references therein to see a treatment of

this problem.

4.5 The double sine-Gordon model family

Finally, we shall apply the procedure to a family of models characterized by the action (1) where the
potential is:

U(φ; a) = 1− (1− a) cosφ− a cos(2φ) , 0 ≤ a ≤ 1 , a ∈ R .

These models (here we are considering a as a free parameter) are referred to as the double sine-Gordon
model in the literature, see [24]. When a varies in the [0, 1] range, U(φ; a) interpolates between the
sine-Gordon, a = 0, and the re-scaled sine-Gordon, a = 1, potentials:

U(φ; 0) = 1− cosφ = U
(2π)
sG (φ) , U(φ; 1) = 1− cos 2φ = U

(π)
sG (φ)
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If 0 ≤ a < 1, the vacuum orbit isM = {2πk}, k ∈ Z. When a becomes greater than 0 but is strictly less
than 1, new relative minima (false vacua) emerge between each consecutive pair of vacua. At a = 1, the
new minima become absolute minima, the vacuum points of the re-scaled sine-Gordon model, see Figure
4 (left), such that the vacuum orbit becomes M = {πk}, k ∈ Z. The kink solution of each member of
the family with a strictly less than 1 is:

φK(x; a) = −2 arctan

√
1 + 3a√

1− a sinh(
√

1 + 3ax)
= π + 2 arctan

√
1− a sinh(

√
1 + 3ax)√

1 + 3a
(46)

In Figure 4 we depict the kink profiles for several values of the coupling constant together with their
energy densities.

Figure 4: Graphical representation of the family of potentials for a = 0, 0.25, 0.5, 0.75, 1 (left), kink solution profiles
(middle), kink energy densities (right) for a = 0, 0.25, 0.5, 0.75, 0.99, 0.9999 in several double sine-Gordon models.

For completeness we give the particle masses and the kink quantum potential wells:

v2 = 1 + 3a , V (x) =
4(a− 1)(3a+ 1)

(
(15a+ 1) cosh

(
2
√

3a+ 1x
)
− 9a+ 1

)(
−(a− 1) cosh

(
2
√

3a+ 1x
)

+ 7a+ 1
)2

We shall compute the one-loop quantum correction to the masses of the kinks (46) for several values of
the parameter a within the modified asymptotic approach. These one-loop kink mass shifts are shown in
Table 5, where the optimized truncation order is also depicted. Note that, depending on a, the asymptotic
nature of the series fixes a lower or higher optimum number of terms to be considered in the formula
(42). All these data are represented graphically in the attached Figure.

a ∆Ẽ/~md Nt

0.0 -0.318321 20

0.1 -0.370625 3

0.2 -0.429882 5

0.3 -0.495113 5

0.4 -0.565305 6

0.5 -0.637682 7

a ∆Ẽ/~md N

0.6 -0.716205 8

0.7 -0.79149 7

0.8 -0.90928 7

0.9 -0.98757 10

0.99 -1.09687 12

0.999 -1.11267 12

Table 5: One-loop kink mass shifts in the family of double sine-Gordon models for several values of the
parameter a (left) and their graphical representation (right).

Bearing in mind that at the a→ 1 limit the kink solution (46) is formed by two solitons of the re-scaled
sine-Gordon model, it is tempting to interpret the quantum correction ∆E at this limit as the double of

the quantum correction of the sine-Gordon soliton. In particular, we recall that ∆E
(π)
sG = −0.636894~m.

We observe behavior similar to this in Table 5, although the accumulation near the point a = 1 does not
allow us to obtain the answer with complete precision.
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5 Summary and outlook

In a very brief summary and referring to outlooks we wish to stress again that we have proposed a
modification of the Gilkey-DeWitt heat kernel expansion when addressing differential operators with
non-trivial algebraic kernels. The new procedure has been implemented in several one-component scalar
field theory models with both computational and conceptual gains with respect to the application in
the same models of the standard procedure. We believe that the translation of these methods to more
complicated models such as N -component scalar field theory and/or Abelian Higss will be even more
effective.
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Appendix

In this appendix we display a Mathematica code, which automatizes the computation of the quantum
correction to the kink mass in one-component scalar field theory by applying formula (42), derived
from the modified asymptotic series approach. The algorithm is divided into three subroutines: the
identification of the density coefficients cn(x, x) = 0Cn(x) by means of (34); the computation of the
Seeley coefficients by integrating the density coefficients, finally evaluating the formula (42) to obtain an
estimation of the kink mass quantum correction.

• Calculation of the cn(x, x) densities.

The following Mathematica code

densitycoefficients[potential , vacuum1 , vacuum2 , nmax ] := Module[{var1,
var2, var3, tomax, d1, v, v0, oper, f0, f6, x7, coef, k, coa, j, co},
(var1[ph1 ] = potential /. {y -> ph1}; var2[ph1 ] = Simplify[PowerExpand[Sqrt[2

var1[ph1]]]]; var3[ph1 ] = Sign[var2[(vacuum1 + vacuum2)/2]] var2[ph1]; coef

= {}; v[x ] = Simplify[(D[var1[ph1], {ph1, 2}]) /. {ph1 -> ph1[x]}]; v0

= Sqrt[Simplify[(D[var1[ph1], {ph1, 2}]) /. {ph1 -> vacuum1}]]; f0[x ] =

(var3[ph1]/(Sqrt[Integrate[var3[ph1], {ph1, vacuum1, vacuum2}]])) /. {ph1 ->

ph1[x]}; d1[fun ] := Simplify[(D[fun, x]) /. {ph1’[x] -> var3[ph1[x]]}]; oper[fu8 ,

n1 ] := Simplify[Nest[f6, x7, n1] /. {f6 -> d1, x7 -> fu8}]; tomax = 2 nmax;

For[k = 0, k < tomax + 0.5, coa[0, k] = 0; k++]; coa[0, 0] = 1; co[n , k ] :=

Simplify[(1/(n + k)) (coa[n - 1, k + 2] - Sum[Binomial[k, r5] oper[v[x] - v0^2,

r5] coa[n - 1, k - r5], {r5, 0, k}] - 2 v0 f0[x] oper[f0[x], k] KroneckerDelta[0, n

- 1] - f0[x] oper[f0[x], k] (1 + 2 k) (2^n (v0)^(2 n - 1))/((2 n - 1)!!))]; For[j =

1, j < nmax + 0.5, tomax = tomax - 2; For[k = 0, k < tomax + 0.5, coa[j, k] = co[j,

k]; If[k == 0, coef = Append[coef, coa[j, 0]]]; k++]; j++]; Return[coef])];

defines the module densitycoefficients[potential , vacuum1 , vacuum2 , nmax ], which per-
forms the work of calculating the coefficients cn(x, x). The arguments of this computational function
are potential, the U(y) potential written by prescription as a function of the y variable, vacuum1
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and vacuum2, the two vacua connected by the kink solution in increasing order, and nmax, the
N -order truncation chosen in the computation of ∆E(φK ;N) .

• Calculation of the Seeley coefficients.

The Mathematica module seeleycoefficients[potential , vacuum1 , vacuum2 , nmax ] de-
pends on the same arguments as the previous one

seeleycoefficients[potential , vacuum1 , vacuum2 , nmax ] := Module[{coef, densi,

f, f1, f2, a = {},j}, (coef = densitycoefficients[potential, vacuum1, vacuum2,

nmax]; f1[y ] = Simplify[PowerExpand[Sqrt[2 potential]]]; f2[y ] = Sign[f1[(vacuum1

+ vacuum2)/2]] f1[y]; For[j = 1, j < nmax + 0.5, f[y ] = Simplify[(coef[[j]] /.

{ph1[x] -> y})/f2[y]]; a = Append[a, Integrate[f[y], {y, vacuum1, vacuum2}]]; j++];

Return[a])];

and provides us with the value of the Seeley coefficients. This subroutine calls the previous function
in order to accomplishes its task.

• Estimation of the quantum correction.

The subroutine quantumcorrection[potential , vacuum1 , vacuum2 , nmax ]

quantumcorrection[potential , vacuum1 , vacuum2 , nmax ] := Module[{v0, corr,

a}, (v0 = Sqrt[Simplify[(D[potential, {y, 2}]) /. {y -> vacuum1}]]; a =

Chop[seeleycoefficients[potential, vacuum1, vacuum2, nmax]]; corr = -(v0/Pi) - (1/(8.

Pi)) (Sum[(a[[n]] (v0^(-2 n + 2)) Gamma[n - 1]), {n, 2, nmax}]); Return[corr])];

completes the work by providing us with the one-loop kink mass quantum correction in the (1+1)
dimensional scalar field theory model characterized by the potential term U(y). This function calls
the two previous ones.

The KinkMassQuantumCorrection Modified.nb file containing this Mathematica code can be down-
load at the web page http://campus.usal.es/∼mpg/General/Mathematicatools, which includes examples
and demos. We recommend this option in order to avoid transcription errors in the code.
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