

Facultad de Ciencias

Departamento de Física Aplicada

Spintronic Micromagnetic Simulations Using
Parallel Computations

Doctor thesis

David Filipe Coelho de Almeida Aurélio

June 2013

 ii

D. Luis Torres Rincón profesor catedrático y D. Eduardo Martínez Vecino

profesor Contratado Doctor, ambos miembros del Área de Electromagnetismo del

Departamento de Física Aplicada de la Universidad de Salamanca,

CERTIFICAN

Que la presente Memoria, titulada “Spintronic Micromagnetic Simulations Using

Parallel Computations” ha sido realizada bajo su dirección en el Área de

Electromagnetismo del Departamento de Física Aplicada de la Universidad de

Salamanca por D. David Filipe Coelho de Almeida Aurélio, y constituye su Tesis

para optar al Grado de Doctor en Física.

En Salamanca, 20 de Junio de 2013

D. David Aurélio

D. Luis Torres Rincón D. Eduardo Martínez Vecino
Profesor Catedrático Profesor Contratado Doctor

 iii

Acknowledgments
It has finally arrived the day to defend my PhD thesis. It is an exciting time for me,

especially when considering that I was not initially planning to do a PhD when I was

about to finish my degree. However, for other reasons I found myself in the beautiful

city of Salamanca and met the professors Luis Torres and Luis Lopez-Diaz, which

offer me a one-year research project. Wanting to stay in Salamanca I accepted and it

was the beginning of the venture that happily led me to this day. The support,

guidance and friendship over that first year of both Luis Torres and Luis Lopez-Diaz,

convince me to take the endeavor of making the PhD. For that reason my first thanks

goes to them, thank you for everything. Shortly after, a new professor joined the

micromagnetic research group, Eduardo Martinez, which together with Luis Torres

became my thesis directors. I could not be more honored, because each of them taught

me a lot, and made possible the PhD work that I am to defend. Thank you, it as has

been an incredible learning experience. It is also hard not to mention everyone at the

Electrodynamics hallway, since at one time or another they have help me and showed

themselves to be wonderful people creating a really good working environment. In

fact, a special thank you to all at the Applied Physics department, because everyone in

it as contributed to the incredible work group in which I found myself. Also a special

thank you to Prof. Pilar García Estevez, for all the help with the program and

bureaucracies during the first years of the PhD.

Living away from your family and friends is not easy, however I have been lucky

enough to have met people that made me fell at home during my stay in Salamanca.

The first one was the rock climber Elzbieta, which was my work companion for most

of my PhD. Through her I met cyclist Ana, another PhD student but working in

electro stuff. Together we started a squash mini-club once a week, which was

awesome. But to be true the sport was an excuse to the wonderful weekly dinners that

started to be a tradition. It was not long for more people to join the “club”, Javier the

informatic, who I owe a great debt of gratitude has he became my CUDA teacher,

fundamental to my thesis work, Erick the lawyer from Costa Rica, Diego the political

scientist also from that beautiful country, Ana’s also cycler brother Ignácio, the crazy

Real Madrid fan José, and most recently physics-informatic Sergio and the French

man Jeff, to all of you a thank you from the bottom of my heart. It is difficult to say

how important your presence has been for me, since at one moment or another you

 iv

made me fell totally at home in Salamanca, and it is sad that due to different reasons

some of you have left this city. I will always remember you no matter where you are

or where I will be.

One of the cool things of making a PhD is that you get to travel to different places

and in particular a have to single out Messina, Italy. It was there that I made my three

months period abroad, under the tutelage of professor Giovanni Finocchio, and thus a

thank you to him for taking me into the research group, which enriched not only my

research abilities but also cultural ones, since I also got to learn some Italian. Also

many thanks for making me feel welcomed there to Vito, Anna, Alesandro,

Francesco, Ricardo and professor Azzerboni. It was a really good experience that

enriched me in many ways. I also have to thank everyone at the tennis club Circoletto

dei Laghi, which received me stupendously in friendship and support for my other

passion that is tennis, with a special hug to my little brother Francesco. And of course

a thank you also to my house companions Emanuele, Carmelo and Peppe.

Finely I would also like to thank to two different families that made me fell part of

their own families. The Criado family that shares my affection for tennis, and the

Blanco family, thank you for everything and continue to be the lovely people that you

are. I also want to thank my family for all the support that they have given me

throughout the years, especially during this period, because it is not easy being away,

a huge hug to my parents and to my brother. Lastly to you Elena thank you, I have no

words to describe everything that you mean to me.

David Aurélio

Salamanca, 2013

 v

Abstract

The work described in this thesis discusses both the implementation of a

simulation micromagnetic code that harnesses the power of parallel computing and

the study of different phenomena in micromagnetic devices via simulations.

 The implementation of the simulation code is performed by first studying the

theoretical formalism of Micromagnetism and the numeric techniques that allow for

the simulation of different devices, under that formalism. An existing sequential

Fortran code is used as a basis to develop the parallel code, which is written in a

recently developed language by NVIDIA named CUDA. This uses graphic processing

units (GPUs) to perform highly parallel computations instead of the usual central

processing units (CPUs), which allowed for speed-ups of up two orders of magnitude

at a tenth of the cost of an equivalent super-computer CPU cluster. The developed

parallel-GPU code includes the usual micromagnetic field contributions (exchange,

anisotropy, magnetostatic, Zeeman, Oersted) as well as the thermal field and the spin-

torque interaction on both, current perpendicular to plane (CPP) and current in-plane

(CIP) devices. In particular for CPP devices the magnetization dynamics of both the

usually pinned and free layers of a spin-vale or tunnel junction (MTJ) is considered,

accounting for the spin-torque of both layers on each other (back-torque).

Different micromagnetic studies are presented, which involve the study of the

magnetization switching in magnetic tunnel junctions, with and without the effect of

temperature, which also show some of the limitations of sequential programming that

lead to the will of developing a faster and more efficient parallel micromagnetic code.

The developed parallel code, being able to tackle large temporal and/or large spatial

simulations is used to rigorously study vortex oscillation frequencies in spin-valves

(simulation times of 10-5 s), and to study the domain wall dynamics in long

ferromagnetic stripes (in the order of 106 computational cells).

KEYWORDS – Micromagnetics, spin-torque, MTJ, spin-valve, domain wall, parallel programming,

GPU.

 vi

Resumen
En el trabajo descrito por esta tesis se incluye tanto la implementación de un

código de simulación micromagnética que aprovecha la potencia de la computación

en paralelo, como el estudio de diferentes fenómenos en dispositivos

micromagnéticos.

La implementación del código de simulación se inició mediante el estudio del

formalismo teórico del Micromagnetismo y de las técnicas numéricas que permiten la

simulación de diferentes dispositivos. Un código secuencial de Fortran se utiliza como

base para el desarrollo del código paralelo, escrito en un lenguaje recientemente

desarrollado por NVIDIA (CUDA). Este sistema utiliza unidades de procesamiento

gráfico (GPU) para realizar los cálculos en paralelo, en lugar de las habituales

unidades centrales de procesamiento (CPU), permitiendo un incremento de la

velocidad de simulación de hasta dos órdenes de magnitud, a una décima parte del

costo de un sistema de supercomputación equivalente (cluster de CPUs). El código

paralelo-GPU desarrollado incluye las contribuciones habituales micromagnéticas

(intercambio, anisotropía, magnetostática, Zeeman, Oersted), así como el campo

térmico y la interacción de par de espín, tanto para dispositivos con corrientes

perpendiculares al plano (CPP) o corrientes en el plano (CIP). En particular para los

dispositivos CPP se considera la dinámica de la magnetización de las capas fija y libre

de una válvula de espín o unión de efecto túnel (MTJ). Se tiene en cuenta el par de

espín de ambas capas (back-torque).

Se presentan diferentes estudios micromagnéticos, que implican el estudio de la

inversión de la magnetización en uniones de efecto túnel, sin y con el efecto de la

temperatura. Estos estudios muestran algunas de las limitaciones de la programación

secuencial que llevaron a la idea de desarrollar un código micromagnético paralelo

más eficiente. El código paralelo desarrollado, capaz de realizar simulaciones que

implican grandes ventanas temporales y/o grandes dimensiones espaciales se utiliza

para estudiar rigurosamente las frecuencias de oscilación de vórtices en válvulas de

espín (tiempos de simulación del 10-5 s), y para estudiar la dinámica de paredes de

dominio en largas tiras ferromagnéticos (del orden de 106 células computacionales).

	

PALAVRAS CLAVE – Micromagnetismo, par de espín, MTJ, válvulas de espín, paredes de dominio,

programación paralela, GPU.

 vii

Contents

1	
 Introduction... 18	

2	
 The	
 basics	
 of	
 Micromagnetism.. 24	

2.1	
 Introduction.. 24	

2.2	
 The	
 equilibrium	
 and	
 dynamic	
 equations.. 25	

2.3	
 Energy	
 contributions	
 and	
 the	
 effective	
 field ... 29	

2.3.1	
 Exchange	
 energy ..30	

2.3.2	
 Anisotropy	
 energy ...31	

2.3.3	
 Magnetostatic	
 energy...32	

2.3.4	
 Zeeman	
 energy..35	

2.3.5	
 The	
 Oersted	
 field..35	

2.3.6	
 The	
 Thermal	
 field...35	

2.3.7	
 The	
 spin-­‐transfer-­‐torque..37	

2.4	
 Recapitulation.. 43	

3	
 Micromagnetism	
 numeric	
 modelling.. 44	

3.1	
 Introduction.. 44	

3.2	
 Spatial	
 discretization... 44	

3.3	
 Discretization	
 of	
 the	
 micromagnetic	
 equations ... 46	

3.3.1	
 Exchange	
 interaction	
 discretization ..46	

3.3.2	
 Anisotropy	
 interaction	
 discretization...49	

3.3.3	
 Magnetostatic	
 interaction	
 discretization...49	

3.3.4	
 Zeeman	
 interaction	
 discretization ...52	

3.3.5	
 Oersted	
 interaction	
 discretization ...52	

3.3.6	
 Thermal	
 interaction	
 discretization	
 and	
 inherent	
 issues.......................................53	

3.4	
 Numerically	
 solving	
 the	
 dynamic	
 LLG	
 equation ... 54	

3.4.1	
 Predictor-­‐Corrector	
 algorithm...54	

3.4.2	
 Runge-­‐Kutta	
 algorithm..55	

3.5	
 A	
 look	
 into	
 sequential	
 programming ... 56	

3.5.1	
 Stages	
 of	
 the	
 sequential	
 micromagnetic	
 code ...57	

3.5.2	
 Advantages	
 and	
 limitations	
 of	
 sequential	
 programming59	

3.6	
 Mircromagnetics	
 using	
 Parallel	
 programming	
 in	
 GPUs 60	

3.6.1	
 Why	
 parallel	
 computing	
 in	
 GPU’s	
 and	
 not	
 PC	
 clusters? ..60	

3.6.2	
 Some	
 considerations	
 prior	
 to	
 CUDA	
 parallel	
 programming62	

3.6.3	
 GPU	
 hardware ...63	

3.6.4	
 CUDA	
 programming	
 model..64	

3.6.5	
 Some	
 examples	
 of	
 CUDA	
 programming ...69	

3.6.6	
 Making	
 the	
 parallel	
 micromagnetic	
 code ..81	

3.7	
 Parallel	
 GPU	
 micromagnetic	
 code	
 validation	
 and	
 performance................... 86	

3.7.1	
 Standard	
 problem	
 #4 ...86	

3.7.2	
 Performance	
 test..88	

4	
 Different	
 investigations	
 using	
 both	
 sequential-­CPU	
 and	
 parallel-­GPU	

micromagnetic	
 codes... 90	

4.1	
 Studies	
 made	
 using	
 the	
 sequential-­CPU	
 micromagnetic	
 code....................... 90	

4.1.1	
 Magnetization	
 switching	
 driven	
 by	
 spin-­‐transfer-­‐torque	
 in	
 high-­‐TMR	

magnetic	
 tunnel	
 junctions ...90	

4.1.2	
 Thermal	
 effects	
 on	
 spin-­‐transfer-­‐driven	
 switching	
 in	
 high-­‐tunneling-­‐
magnetoresistance	
 magnetic	
 tunnel	
 junctions.. 105	

4.2	
 Studies	
 made	
 using	
 the	
 CUDA	
 parallel-­GPU	
 micromagnetic	
 code..............112	

4.2.1	
 Intrinsic	
 and	
 thermal	
 linewidths	
 of	
 spin-­‐transfer-­‐driven	
 vortex	
 self-­‐
oscillations .. 112	

 viii

4.2.2	
 The	
 role	
 of	
 the	
 Oersted	
 field	
 on	
 the	
 current-­‐driven	
 domain	
 wall	
 dynamics	

along	
 wires	
 with	
 square	
 cross	
 section .. 120	

5	
 Conclusions ..128	

6	
 Appendix	
 A ...131	

7	
 Appendix	
 B ...134	

8	
 Bibliography ..138	

 ix

List of abbreviations
DW – Domain wall

GPU – Graphic processing unit

CPU – Central processing unit

SI units – International system of units

LLG – Landau-Lifshitz-Gilbert equation

STT – Spin transfer torque

STO – Spin torque oscillators

CUDA – Compute Unified Device Architecture

RAM – Random access memory

FD – Finite difference

FE – Finite element

GMR – Giant magneto-Resistance

AMR – Anisotropic magneto-resistance

TMR –Tunnelling magneto-resistance.

MTJ – Magnetic tunnel junction

MRAM – Magneto-resistive random access memory

DW – Domain wall

STNO – Spin-torque nano-oscillator

CPP – Current perpendicular to plane

CIP – Current in-plane

FFT – Fast Fourier transform

ALU – Arithmetic logic unit

ID – Identification

CUFFT – CUDA Fast Fourier Transform library

CUDPP – CUDA Data Parallel Primitives library

µMAG – Micromagnetic Modeling Activity Group

Py – Permalloy

BC – Boundary conditions

NUCD – Non-uniform current distribution

UCD – Uniform current distribution

P – parallel

AP – anti-parallel

 x

PL – pinned layer

FL – free layer

MSMT – Micromagnetic Spectral Mapping Technique

SR – sweep rate

PSTT – perpendicular spin-torque term

TW – transverse wall

BPW – Bloch-point wall

FWHM – Full width at half maximum

 xi

List of symbols
µB – Bohr’s magneton

g – Landé factor

j – current density

η – spin-polarization factor

P – polarization function

MS – magnetization of saturation

d – layer thickness

e – electron’s charge

ΓSTT – spin transfer torque

γ0 – gyromagnetic ratio

α – Gilbert damping parameter

β – non-adiabatic parameter

µ0 – vacuum magnetic permeability

kB – Boltzmann constant

T – temperature

A – exchange constant

K – anisotropy constant

fN – number of first neighbors

N – total number of cells

a – lattice constant

MS – saturation magnetization

MPS – saturation magnetization of the assumed polarizing pinned layer

RP – parallel state resistance

RAP – anti-parallel state resistance

f – frequency

T – temperature

Tbath – bath temperature

vsp-drift – spin-drift velocity (maximum theoretical domain wall velocity)

Δt – time window

δt – time step

 xii

List of figures
Fig. 1 – Spin-valve read head representation. When the fixed and free layer have their averaged

magnetization in the anti-parallel configuration, as in the picture, the sensing current reads a high
resistance state, whereas if they are in parallel it would read a low resistance state. This is the
principle used in order to distinguish between the 0 and 1 bit logic values recorded in the memory
track. .. 19	

Fig. 2 – Magnetic tunnel junction MRAM working principle, [5] ... 20	

Fig. 3 – Racetrack memory working principle [6]. ... 21	

Fig. 4 – Scale in micromagnetism. a) Atomic scale representation of individual magnetic moments µ i,

where a is the lattice constant. b) Micromagnetic scale, representing the magnetization vector M
as the sum of all magnetic moments µ i inside the volume dV, c) Micromagnetism is in an
intermediate scale larger than the atomic one, but small enough to “see” the transition region
between magnetic domains.. 25	

Fig. 5 – Magnetization M dynamics in the presence of a magnetic field Heff. a) Without dissipation
α=0, the magnetization rotates around the field with frequency –γ0Heff. With damping α>0, after
a certain amount of time the magnetization will precess until it aligns itself with the field, due to
the dissipative term M×dM/dt. .. 28	

Fig. 6 – Exchange interaction representation between first neighbors. In the atomic Heisenberg model
representation, a is the lattice constant and rij the position vector between the spins i and j. In the
micromagnetic model, each magnetization M volume element is at a Δx distance from the first
neighbors where rij is the position vector connecting them... 30	

Fig. 7 – Representation of the magnetostatic field Hdmg, in a rectangular prism. a) Magnetization M of
the sample as if there were “magnetic charges”. b) The magnetization M is responsible for the
creation of a magnetostatic field Hdmg inside the sample and it also induces a magnetostatic field
Bdmg in the regions outside the sample c). Outside the sample M=0 and thus Bdmg=µ0Hdmg. 34	

Fig. 8 – Representation of a single spin of angular momentum sin, that suffers a torque exerted by the
magnetization M of the magnetic thin film, which in turn gets reoriented by the direction of M
and is transmitted through the thin film with angular momentum str. The amount of spin that gets
transmitted depends on the material properties and many are reflected with moment sref., which
are mainly constituted by the spins of opposite polarization in regard to the transmitted ones. ... 38	

Fig. 9 – Representation of the STT acting on a spin-valve device. a) When the magnetizations of both
layers are anti-parallel, the STT that acts on the free layer m, comes from the transmitted
electrons that have been polarized by the pinned layer p. b) When magnetizations of both layers
are parallel, the STT that acts on the free layer comes from the reflecting electrons that flow
through it. c) Direction of all the torques being applied to the magnetization p in the presence of
both the Heff and spin polarized current. .. 40	

Fig. 10 – Schematic representation of the electron’s spin polarization when using CIP in a long stripe
with the presence of a domain wall. .. 41	

Fig. 11 – Two possible effects when a electric current encounters a domain wall due to the exchange
interaction between the conduction electrons and the local magnetization. a) A reflected electron
has transferred linear momentum to the domain wall. b) An adiabatically transmitted electron has
transferred spin angular momentum to the domain wall. .. 41	

Fig. 12 – Representation of the discretization of the magnetic sample into a mesh of individual cells of
volume ΔV=ΔxΔyΔz. Each cell is assumed to be uniformly magnetized with its magnetization
equal to M(i,j,k) = MSm(i,j,k), where i=1,…,Nx, j=1,…,Ny, and k=1,…,Nz with Nx, Ny, and Nz
representing the total number of cells in each Cartesian direction. Note that the total number of
cells includes non-magnetic cells while discretizing the sample (empty cubes). These
nonmagnetic cells are used in order to “draw” more complex structures like curvatures (in
figure), notches, bumps, etc, when using the finite difference method. The dimensions of the
sample are given by Ln=NnΔn (where n≡x,y,z). ... 46	

Fig. 13 – Comparing the number of operations needed in a small 50 cell mesh sample between: directly
evaluating (78) to calculate Hdmg, N2 operations; using the FFT to calculate Hdmg (81) Nlog2N; and
local terms of the Heff, N. ... 51	

Fig. 14 – Representation of the physical space of size N=NxNyNz where the magnetization is solved in
contrast with the augmented Fourier space where the demagnetization field Hdmg is calculated
using the zero-padding technique. The magnetization is zero in the augmented region............... 52	

Fig. 15 – Flux diagram for a typical micromagnetic sequential code. .. 58	

Fig. 16 – Floating-point operations per second evolution for the CPU and GPU over the last decade

[61]... 62	

 xiii

Fig. 17 – Schematic representation of a CPU and a GPU. The GPU devotes more transistors to data
processing than the CPU, (ALU stands for Arithmetic Logic Unit) [61]...................................... 63	

Fig. 18 – Schematic representation of the indexation of the thread blocks inside a grid. Note that each
block can be three-dimensional and thus indexed by the three-component vector threadIdx.x, .y,
.z. In this case the grid is two-dimensional and thread blocks within it are addressed by the two-
component vector, blockIdx.x, .y. .. 65	

Fig. 19 – Schematic representation of the CUDA programming model, serial code executes on the host
while parallel code executes on the device. The host issues a succession of kernel invocations to
the device. Each kernel is executed as a batch of threads organized as a grid of thread blocks. In
this case, both the blocks and grids are two-dimensional [61]. ... 67	

Fig. 20 – CUDA memory model. A thread has access to the device’s DRAM and on-chip memory
through a set of memory spaces of various scopes [61]. ... 68	

Fig. 21 – Creation of variables needed to perform an add operation between the element of two arrays
of 5 elements a[] and b[], in both C language and CUDA. In CUDA more variables are required
since the same variables need to be created inside the device memory in order to perform the
calculation in parallel... 70	

Fig. 22 – In the C part, it is shown how to make the simple add operation between the arrays a[] and b[]
within the same cycle for in which they are defined, followed by the print on screen instruction in
order to verify the results. In the CUDA part, it is shown that first it is required to initialize the
arrays with the desired values (host memory), and then they are copied to the device variables.
Then the kernel function call can be made to perform the add operation using the device
variables. When the kernel finishes it is necessary to bring the result from the device variable
dev_c back to the host one h_c, and then perform the print on screen instruction so as to
validate the result... 71	

Fig. 23 – Kernel function with the __global__ qualifier that is executed on the device, which is
callable from the host, and showing the declaration of the thread variable and the add operation
between each coordinate of the arrays a[] and b[]. Also shown is the __syncthreads()
instruction, which is used to coordinate communication between the threads of a same block that
help in avoiding read-after-write, write-after-read, or write-after-write hazards, when some of the
threads within a block access the same addresses in a shared or global memory. 72	

Fig. 24 – Freeing the allocated memory. In CUDA you should not only free the memory of the host
variables but also the ones on the device... 73	

Fig. 25 – Typical steps when using the CUFFT library in order to perform a batch of one-dimensional
transforms. ... 75	

Fig. 26 – Reusing example 1 with the idea of performing the CUFFT on array dev_c[], which contains
the result of the add operation of arrays h_a[] and h_b[]. Note that since the transform to
perform is of complex-to-complex dev_c[], is declared as a float complex and inside the kernel
the add operation in realized inside the real part of the
make_cuFloatComplex(real,imaginary) instruction, so as to adapt the complex dev_c[],
using the floats h_a[] and h_b[]. Also note that the first if runs 8 times more than the total
dimension of the problem nx*ny*nz. This is done in order to zero-pad the dev_c[] array as it is
described in the figure. .. 76	

Fig. 27 – Steps needed to perform a three-dimensional FFT using the CUFFT library. The cuFFT3DF()
function prototype shown defines the order in which each Cartesian variable should be placed as
well as the in and out arrays. When the function is called the three-dimensional FFT is performed
accordingly to the defined plan, which in this case is a complex-to-complex forward transform.77	

Fig. 28 – Defining a function that sums all of the elements of inArray and returns that value. The
summation is done between two elements in a prefix-sum or cumulative sum as y0=x0, y1=x0+x1,
y2=x0+x1+x2,… and each yn saved in a outArray in such a way that the first element of the array
as the summation of all elements of inArray. .. 79	

Fig. 29 – Setting up the configuration in order to find the maximum element of an array, using the
CUDPP library... 81	

Fig. 30 – Flux diagram for the parallel CUDA code (dynamic simulation case), illustrating that all of
the operations that are done for each cell of the sample are calculated in parallel within the
device, and followed by the host, as it is suggested in Fig. 19. ... 82	

Fig. 31 – Steps needed to calculate the Hdmg in parallel within the GPU. First the sizes of the block and
grid are defined. Note that here the data is zero-padded as described in 3.3.3. Then the kernel
kernel_M_Calc<<<…>>> is called to convert the magnetization from a float to a complex value.
Once that is done the forward transform is performed by use a function created by the
programmer that sends all of the information needed to perform the FFT as described in example

 xiv

2 of section 3.6.5. This is followed by the kernel, kernel_H_Calc<<<…>>>, where the
magnetization and demagnetizing tensor in Fourier space are multiplied component by
component in parallel to give Hdmg in Fourier space. The last part is to perform the inverse
transform of the calculated value followed by a kernel that extracts only the real part of Hdmg. .. 84	

Fig. 32 – Standard problem #4 computed using the developed GPU parallel micromagnetic code: a)
Comparing the time evolution of the averaged magnetization along the y-axis under the influence
of field 1 (25mT, 170º counter-clockwise of +x-axis) between Oommf, Fortran and CUDA. b)
time evolution of the averaged magnetization along the y-axis under the influence of field 1 for
four different discretizations. c) Comparing the time evolution of the averaged magnetization
along the y-axis under the influence of field 2 (36mT, 190º counter-clockwise of +x-axis)
between Oommf, Fortran and CUDA. d) time evolution of the average magnetization along the y-
axis under the influence of field 2 for four different discretizations. .. 87	

Fig. 33 – Time required performing one time step using the 2nd order predictor-corrector solver
algorithm for a two-dimensional problem of N×N cells. The time it takes for the sequential
Fortran code to perform each time step becomes significantly larger than the CUDA GPU
parallel code, as the number of cells increases. The difference between CUDA-2 and CUDA-1
comes, respectively, from using or not a zero-padding technique to round up to the optimal
dimensions in Fourier space, as discussed in example 2 of section 3.6.5. 89	

Fig. 34 – Sketch of the simulated MTJ showing the parallel channel resistance model, as well as the
conductivity symbols for each layer. ... 92	

Fig. 35 – Results of the current density j computed using MagNet to check which percentage of j flows
perpendicularly to the sample plane within the FL, (color gradient: j in Am-2). a) Spatial
distribution of the normal component of j. b) Spatial distribution of the tangential component of j.
c) Horizontal cross-section of the FL in which the arrows represent the vector j with zoom in. In
the worst case the normal component of j accounts for 95% of the total current density. 94	

Fig. 36 – AP to P transition. a) Normalized ‘x’ component of the magnetization vs. time for the UCD
(gray) and NUCD model (red). The height of the current density pulse applied was of 4.5×106
Acm-2, in a 14 ns pulse duration with rising and descending times of 100 ps. b) Frequency
spectrum for the UCD (gray thin line) and NUCD model (red thick line) of the pre-switching
oscillations from 0 to 12.8 ns. Insets: 2D power density plots produced by each computational
cell at the FL with the corresponding frequency mode indicated for each model, (darker means
larger power).. 95	

Fig. 37 – P to AP transition: a) Normalized ‘x’ component of the magnetization vs. time for the UCD
(gray) and NUCD model (red). The height of the current density pulse applied was of !1.05×107
Acm-2, in a 14 ns pulse duration with rising and descending times of 100 ps. b) Frequency
spectrum for the UCD (gray thin line) and NUCD model (red thick line) of the pre-switching
oscillations from 0 to 12.0 ns. Insets: 2D power density plots produced by each computational
cell at the FL with the corresponding frequency mode indicated for each model, (darker means
larger power).. 96	

Fig. 38 – Phase diagrams of the current density pulsed excitation switching for both the AP-P (top) and
P-AP (bottom) transitions. From left to right, NUCD and UCD model with a 50 mT external field
applied along the easy axis, with the last NUCD diagram where the external field applied has a 3º
misalignment in respect to the easy axis. Color area means that the system has switched and
black the opposite. ... 98	

Fig. 39 – Magnetization vs. critical current density hysteresis loops. In red the results using the NUCD
and in black using UCD for a sweep rate 1013 A/(cm2s). Insets (i) and (iv) represent the spatial
distribution of the current density (see the coordinate in the graph). Insets (ii) and (v) show a
magnetization snapshot at the beginning of the magnetization switching, whereas (iii) and (vi)
show the magnetization snapshot just before the switching is achieved....................................... 99	

Fig. 40 – Both AP to P, a), and P to AP, b), reversals comparing the critical current density between the
NUCD (red line) and the UCD (black line) models in function of the sweep rate. On the right
scale of each graph, it is represented the main pre-switching oscillation frequency mode for both
models and transitions at each sweep rate tested, (doted line). ... 100	

Fig. 41 – Frequency spectrum for both models and transitions in respect to the lowest and highest
sweep rates (SR) of Fig. 40: a) and b) pre-switching oscillation modes of both AP to P
transitions, show that the modes generated are equal between models and that for lower sweep
rates (lower than the one of minimum critical current density of Fig. 40 (a)) the main mode turns
into a central one (see .. 101	

 xv

Fig. 42 – Stochastic simulations at TS=411 K. Switching time distribution for a set of 1200 simulations
using a current pulse of: tpulse=14 ns and J=4.5×106 Acm-2 for the AP to P transition (a) and of
tpulse=14 ns and J=-1.05×107 Acm-2 for the P to AP transition (b). ... 107	

Fig. 43 – Average magnetization of the x-component at 411 K, showing the difference between
averaging close events in the time frame, (a) and (b), and averaging all events via numerically
transposing each simulation to the same switching point, (c) and (d). Average of 24 events for the
AP to P transition with switching times of 6.725 ns ± 25 ps, with a single shot transition inset;
tpulse=14 ns and J=4.5×106 Acm-2 (a). Average of 23 events for the P→AP transition with
switching time of 5.825 ns ± 25 ps, with a single shot transition inset; tpulse=14 ns and
J=−1.05×107 Acm-2 (b). Average magnetization extracted from 1100 simulations of equal
switching time, whereby numerically translating the points of each simulation to the same
switching point, (c) and (d).. 108	

Fig. 44 – Frequency analysis of the pre-switching oscillations (from Fig. 43) exhibiting both central
and edge modes as seen in the insets. It suggests that either the thermal fluctuations excite similar
modes for both transitions or the current density is still too high so that the STT effect is
dominant. Oscillation modes present in the transition of Fig. 43 (a) a); Fig. 43 (b) b); Fig. 43 (c)
c); Fig. 43 (d) d)... 109	

Fig. 45 – Reversal study at 411 K with current densities below the critical one at T=0K
(JcAP→P=3.0×106 Acm-2; JcP→AP=-6.1×106 Acm-2). Transpose average of 100 simulations for the
AP to P transition (J=2.9×106 Acm-2) (a), and P to AP transition (J =-6.0×106 Acm-2) (c).
Frequency analysis of (a) and (c), show the dominant central mode at roughly 4.3 GHz, (b) and
(d), respectively. .. 110	

Fig. 46 – Influence of the PSTT on the thermal oscillations observed in Fig. 45 (a). Averaged
magnetization for the AP→P transition with a PSTT of 20% of the total STT term a) and a PSTT
of 30% of the total STT term c). Frequency analysis of a) and c) both showing the dominant
modes as central ones between 4.0 and 4.5 GHz, b) and d), respectively................................... 111	

Fig. 47 – Sketch of the spin-valve and linewidth (solid line) for J=10×107 Acm-2 together with
lorentzian fitting (dotted line) at (a) T=0 K and (b) T=300 K. Representation of the initial
magnetizations in the thin Py layer (i) and in the top (ii) and bottom (iii) slices of the thick Py
layer showing the vortices. .. 114	

Fig. 48 – Average magnetization trajectories in each layer: <mx> versus <my> trajectories for the thick
(a, c, e) and thin (b, d, f) Py layers. Current density is J=10×107 Acm-2 in (a-d), T= 0 K in (a-b)
and T= 300 K in (c-d). Current density is J=16×107 Acm-2 and T= 300 K in (e-f). 115	

Fig. 49 – Linewidth and frequency dependence on temperature and current density. Linewidth (a) and
frequency (b) for J ranging from 10×107 Acm-2 up to 20×107 Acm-2 at T=0 K and T=300 K.
Linewidth (c) and frequency (d) for J=10×107 Acm-2 for a temperature range from T =0 K up to T
=300 K. .. 116	

Fig. 50 – Ratio between the linewidth of second and third harmonic at T = 300 K for a J ranging from
10×107 Acm-2 to 20×107 Acm-2. .. 118	

Fig. 51 – (a) Representation of the nano-wire showing the head to head configuration used in this work.
(b) Transverse wall at L/2 from the z-axis viewpoint, the dotted lines represent the slice of the
nano-wire depicturing in (d) its transversal view. (c) Bloch-point wall at L/2 from the z-axis
viewpoint, the dotted lines represent the slice of the nano-wire depicturing in (e) its transversal
view. .. 121	

Fig. 52 – Transverse wall velocity versus DC current densities for a nano-wire of L=16 nm. The DW
velocity increases linearly with the current and it is practically unaffected by the presence of the
Oersted field or the variation of the non-adiabatic parameter β, inset: zoom of the last part of the
graph. The dashed line represents the analytical value of the maximum DW velocity vsp-drift (see
2.3.7) .. 122	

Fig. 53 – Comparing the torques magnitude between the effective field (with Oersted field)
(scattered/dashed points) and the spin-torque (solid lines), in the perfect adiabatic case β=0, along
x-component of the wire and in different points of the cross-section (see inset). The spin-torque is
several times larger than the effective field torque in the DW area. The inset shows a slice of the
wire in the z0y plane and from which cells along the x-axis the plotted data was taken (J=1013
Am-1).. 123	

Fig. 54 – Average magnetization during the transverse wall displacement. Here it is seen that for values
of the non-adiabatic parameter, β, smaller than the damping parameter, α, the DW rotates
clockwise (a), whereas for values of β larger than α the wall rotates counter-clockwise (b). Not
shown is when β equals α for which the wall moves rigidly without precessing........................ 124	

 xvi

Fig. 55 – Bloch-point wall velocity versus current density for a nano-wire of L=48 nm. No Oersted
field applied. It can seen that there is a threshold current in order to move the DW. For this type
of DW the velocity varies non-linearly showing fast increases or plateaus for certain values of the
current density. The inset shows how the movement of the DW strongly depends on the value of
the non-adiabatic parameter β, for an applied current density of 1013 Am-2. 125	

Fig. 56 – Bloch-point wall velocity versus current density for a nano-wire of L=48 nm for the same
value of the non-adiabatic parameter, β, with and without Oersted field. The DW velocity varies
non-linearly and in the absence of the Oersted field the DW dynamics is practically unaffected by
the difference in the direction of the magnetization. In the presence of the Oersted field the
counter clockwise magnetization (as viewed from +x) of the BPW favors the wall’s movement.
In the inset it is shown the DW position in function of the elapsed time, for an applied current
density of 5.5×1012 Am-2

.. 126	

 xvii

List of tables
Table 1 – Fast Fourier transform types within the CUFFT library ... 74	

1 Introduction

 18

1 Introduction
The ongoing development in all fields of science, driven by Humanity’s

unquenchable thirst for knowledge, has brought incredible technological

advancements that make not only Man’s life easier and healthier but also opens the

door to new and exciting branches of science. The work presented by this thesis tries

to humbly leave its footstep in the never-ending marathon, which is Humanity’s

understanding of the wonderful universe it inhabits.

Micromagnetism is the particular branch of solid-state physics in which this work

focuses on. It is usually defined as a mesoscopic formalism, since it uses numeric-

physical models to describe the magnetization dynamics of ferromagnetic materials at

the micro and nano-scale. In other words, it works at a scale larger than the atomic

one, in which quantum considerations would be needed, but low enough that one can

see the dynamics of domains formed by thousands, if not millions, magnetic spins. As

a result, through this medium it is possible to gain a great insight into new

fundamental physical effects, like the spin transfer torque (STT) and its applications

into possible new devices like spin torque oscillators, and also into the most recent

interest into the spin-Hall and spin-Seebeck effects. Actually, the previously

mentioned phenomena gave birth to a new branch of research, which is known as

spintronics (neologism for devices based on spin transport electronics).

The great driving force of this field of study is not only the insight it gives into

fundamental physics, but also the fact that the study of those phenomena allows for

the creation of new, more efficient and faster devices. One example of such

applications comes directly from a strong consumer product, which is the magnetic

hard drive. This device saw an incredible development due to the magneto-resistance

study of magnetic materials, which allowed a memory density increase from 2,4Gb

per sq-inch in 1997 up to 70Gb per sq-inch in 2007. Such development was driven by

both the evolution of the miniaturization techniques and the understanding of the

magneto-resistance phenomenon. This phenomenon is seen in thin film structures,

such as spin-valves (Fig. 1), which are composed of alternating layers of

ferromagnetic and non-magnetic conductor materials that “see” its electrical

resistance change significantly under the application of an external magnetic field.

The discovery of this phenomenon was recognized in 2007 through the Nobel Prize in

1 Introduction

 19

physics given to Albert Fert and Peter Grünberg for the Giant Magneto-Resistance

(GMR) discovery in 1988, [1],[2]. Around the year 2006 the spin-valve read heads of

hard drives that used the GMR effect, started to be replaced by magnetic tunnel

junctions (MTJs) due to its tunnelling magneto-resistance (TMR) effect. Unlike spin-

valves, in a MTJ a thin insulator rather than a conductor separates the ferromagnetic

materials. This allows for a smaller and more sensitive device to the magnetic changes

present in hard drives, and thus lead to a further increase of the memory density.

Fig. 1 – Spin-valve read head representation. When the fixed and free layer have their averaged
magnetization in the anti-parallel configuration, as in the picture, the sensing current reads a high
resistance state, whereas if they are in parallel it would read a low resistance state. This is the principle
used in order to distinguish between the 0 and 1 bit logic values recorded in the memory track.

Another interesting finding that came from the study of fundamental

micromagnetism was the concept of spin-transfer, as a result of the works of John

Slonczewski and Luc Berger in 1996 [3],[4]. This phenomenon states that if a current

passes through a thick enough magnetic material, its electrons become spin-polarized

along the direction of the magnetization of that material. Such a current then exerts a

torque onto a subsequent magnetic thin film by the transfer of spin angular

momentum, which in turn influences its magnetic structure. This spin transfer torque

effect immediately lead scientists to new ideas for future devices, due to the ability of

manipulating the magnetization directly by using currents. Up to this point, in order to

invert the magnetization, of for example the free layer of a spin-valve, large magnetic

fields had to be generated in its vicinity. However with the STT effect one can invert

the magnetization by applying the current directly through the device, which brought

1 Introduction

 20

up the idea of current controlled magneto-resistive random access memory (ST-

MRAM) (Fig. 2). This solution would not only decrease the power needed for its

operation but also reduce the read and write times, which would make it a viable non-

volatile memory that does not wear out. In fact in November of 2012, the company

Everspin launched the first commercial ST-MRAM chips [5], bringing forth what will

most probable be a booming new era of spin-torque memories.

Fig. 2 – Magnetic tunnel junction MRAM working principle, [5]

More devices were thought up due to the STT, which are based on the propagation

of spin currents by either conducting electrons or spin-waves. One of which was again

in the area of magnetic storage, in the form of the racetrack memory (Fig. 3) proposed

by Parkin [6] that again promises to be a more efficient and fast type of memory. This

type of memory is based on moving domain walls (DWs), which is a region where the

magnetization gradually changes from one given direction to another, in long

magnetic strips [6]-[9]. Spin-torque nano-oscillators (STNOs) are also another

interesting prospect of a device, since multiple devices that depend on oscillator

principles could be further miniaturized. The idea for such a device came from the

now well-established knowledge that a spin-polarized electric current injected into a

ferromagnetic layer through a nano-contact exerts a torque on the magnetization,

which eventually leads to microwave frequency precessions detectable through the

magneto-resistance effect [10]-[12]. Since the amplitude of such spin-waves is small,

researchers are trying to phase-lock a number of nano-contacts in order to get a higher

signal. Until now this is proving to be a difficult task, in part due to finding the right

combination of ferromagnetic materials that will allow for high amplitude microwave

oscillations using a DC current.

1 Introduction

 21

Fig. 3 – Racetrack memory working principle [6].

More recent phenomena have caught the eye of researches, like the spin-Hall and

spin-Seebeck effects. It has been realized that spin-currents can be achieved through a

magnetic insulator, like in the work reported by Kajiwara et al. [13], in which the

spin-Hall effect is used to generate and detect spin-waves through an insulator. Also

the temperature difference between two points in a ferromagnet, and even in non-

magnetic materials, has shown a spin-current between them, which was denominated

as the spin-Seebeck effect, [14],[15]. Both these new ways of approaching spin-

currents may open the door to new devices besides a new look into fundamental

physics.

In order to study the previously mentioned phenomena, from either the

fundamental or experimental points of view, a bridge is needed in order to link the

theoretical mathematical-physical models with the experimental devices. That link is

achieved through the use of numeric simulations. This last type of investigation has

been gaining more and more relevance in the last decades, as the research into

different physical properties gets ever more complex. In order to justify the

investment into expensive laboratory equipment that allows the scientific community

to make the experimental research essential to the advancements in physics and other

sciences, simulations are used in order to predict, discover and solve physical

phenomena before an experiment is attempted. Simulations provide a unique link

1 Introduction

 22

between the theoretical research and the experimental one, allowing both parties to

see where they coincide and where the theories fail and need to be improved in order

to better understand the experimental results. In the same way, micromagnetic

simulations have gained an important role within its field because they have proved to

be an efficient tool in the verification of the theoretical formalism [16]-[20], and

subsequently in the interpretation and design of devices.

Prior to the beginning of the work described by this thesis, micromagnetic

simulations based on the Landau-Lifshitz-Gilbert dynamic equation (17), were of a

sequential type, written in computer languages like Fortran and C. Although several

different advancements have been made using the traditional sequential programming

it poses both temporal and spatial limitations, due to the continuum nature and

characteristic scale of the micromagnetic mesoscopic formalism. The spatial

limitation comes in evidence when trying to simulate either multilayer and/or

geometrically large devices (typically in the micrometer range in either Cartesian

direction). In order to perform the numeric simulations the atomic spins are grouped

into nanometer cells, however these cells cannot be larger than the characteristic

length, like the exchange length (defined later in (62)), which is typically of 5 nm or

less for a ferromagnet. The spatial issue is then a memory problem, because when

wishing to simulate the dynamics of a device like a spin-valve or a MTJ, which is

composed of several layers, the number of computational cells can reach the hundreds

of thousand or more. The number of cells also brings with it the temporal problem,

since if many cells are to be calculated one by one, as they are in a sequential code,

more cells means that more time is required to solve the problem under study. Also

some complex magnetization structures like the one’s in vortex dynamics and Bloch-

Point domain walls, require the use of smaller cell sizes in order to avoid numerical

errors, which also leads to the use of smaller time steps per iteration due to the

stability criteria [21]. Another time issue comes in relevance when trying to

accurately calculate the inherent oscillating frequencies of a given device, since the

time step sets the maximum frequency one can detect and the duration of the

simulation sets the frequency resolution. All of these spatial and time limitations

present in micromagnetic simulations were asking for a better solution than the one

provided by the sequential programming.

1 Introduction

 23

Objectives of this work

In order to try and overcome the previously mentioned limitations of the sequential

programming, this work has focused on the development of the micromagnetic

simulation computer tool. In particular it explores the advantages of parallel

computation by using graphic processing units, GPUs, to solve the dynamic equation

that governs the magnetization, by means of the finite difference method.

Once the parallel micromagnetic code is fully functional it is intended to use it

towards tackling physical problems that involve large spatial and temporal

simulations. These will account for the study of spin-valve dynamics that require

large temporal simulations in order to precisely determine the magnetization

oscillation frequency and other phenomena. And spatially challenging simulations,

like the ones needed to study the dynamics of domain walls in long nano-strips, will

also be performed using the new parallel micromagnetic code.

Thesis outline

Chapter 2 – In this section the theoretical fundamentals inherent to the

micromagnetism formalism are given. Subjects like the magnetization as the variable

of state of the system, the characteristic scale of micromagnetism, the dynamic

equation and its different energy contributions, are covered in this chapter.

Chapter 3 – This is the most lengthy chapter, as it describes the computational

micromagnetic basics and beyond. It starts by describing the finite difference method

within the sequential code framework and how each energy contribution is managed

numerically. This will show the limitations of the sequential type of programming,

which will serve as a bridge to the second part of the chapter in which micromagnetic

computations are approached through the use of GPU parallel computing. This section

ends by comparing the results and efficiency between both methods of computation

and the verification of the developed parallel code.

Chapter 4 - In this section results are shown of physical micromagnetic studies

performed on different devices using both the sequential CPU and the newly

developed parallel GPU computing methods.

Finally the thesis ends with the conclusions where the main achievements of this

work are described.

2 The basics of Micromagnetism

 24

2 The basics of Micromagnetism
2.1 Introduction

The magnetic properties of materials are of quantum nature [16]-[20]. However, in

order to describe the magnetic properties starting from a quantum point of view, it is

required to work from the atomic scale by considering a discrete system of spins.

Although such formalism would be satisfactory, it is unviable due to large number of

spins involved. Since the ferromagnetic materials that will be studied throughout this

work are ranging from the tens of nanometers, up to the micrometer scale, a more

practical formalism is needed. Such formalism is known as micromagnetism, and it

has been proving to be a very useful tool in the description of the magnetization

dynamics of ferromagnetic materials.

Micromagnetism is the theoretical formalism [16]-[20] that allows for the

magnetization study at a scale larger than the atomic one, but still small enough to

allow the visualization of the internal structure dynamics between magnetic domains

(Fig. 4). This formalism is based on the assumption that the magnetization M(r), is a

continuous vectorial function of the position within the material, and its modulus,

called spontaneous magnetization MS, remains constant. As a result, a ferromagnetic

material can be idealized as a group of elements of volume dV with a constant

magnetization per unit of volume MS (Fig. 4). The direction of said magnetization is

given by the unit vector m(r)=M(r)/MS, which varies smoothly between each element

of volume. Each element of volume has to be big enough so as to contain a large

number of atoms that are responsible for the magnetic moment, i.e. much larger than

the lattice constant a (Fig. 4). Nonetheless each element of volume has to be small in

order to avoid the abrupt variation of the magnetization between each element of

volume, in accordance to the continuous nature of the magnetization vectorial

function.

Since the type of system that is intended to study is a discrete one, the continuous

approximation requires a justification. This is based on the fact that the exchange

interaction is the dominant one at short distances, forcing the magnetic dipoles (or the

elements of volume dV in the micromagnetic description) to be parallel between each

other. With this in mind, all other forces can be seen as a small perturbation to the

parallel orientation between first neighbors. Therefore it is reasonable to say that M(r)

2 The basics of Micromagnetism

 25

is a continuous function of the position, since the magnetization varies slightly

between each surrounding element.

Fig. 4 – Scale in micromagnetism. a) Atomic scale representation of individual magnetic moments µ i,
where a is the lattice constant. b) Micromagnetic scale, representing the magnetization vector M as the
sum of all magnetic moments µ i inside the volume dV, c) Micromagnetism is in an intermediate scale
larger than the atomic one, but small enough to “see” the transition region between magnetic domains.

Although the exchange interaction is the main one in ferromagnetic materials,

others are needed in order to fully describe the behavior of such materials, as the ones

derived from Maxwell equations of electromagnetism. In the following sections the

equation of motion and the different energy contributions relevant to this work, will

be discussed.

2.2 The equilibrium and dynamic equations
In order to determine the equilibrium equation, all the energy contributions that act

on the magnetization have to be considered. Such expression may be obtained using

Hamilton’s variational principle [22], so as to solve the time evolution of the system,

€

L
t1

t2

∫ dt = lV dV +
V
∫ uS dS

S
∫

⎛

⎝
⎜

⎞

⎠
⎟

t1

t2

∫ dt

(1)

where, L is the Lagrangian functional to the continuous vectorial field in a

tridimensional space m(r,t), and lV=kV+uv is the Lagrangian density per unit of

2 The basics of Micromagnetism

 26

volume with kV and uv being the kinetic and potential energy densities per unit of

volume respectively. In the second part of (1) uS represent the potential energy density

per unit of surface. After some algebra and considering the static equilibrium state, it

is possible to reach the following equilibrium equations for both volume (2) and

surface (3) points respectively,

€

δuV
δm(r,t)

= 0

(2)

€

δuS
δm(r,t)

+
δuV

δ ∇m(r,t)()
⋅ n

⎡

⎣
⎢

⎤

⎦
⎥ = 0

(3)

Working in S.I. units it is possible to define a vector with the dimensions of a

magnetic field from the functional derivative of the energy density per unit of volume

given by (2) as,

€

Heff = −
1

µ0MS

δuV
δm

(4)

where the functional derivative is given by,

€

δ
δm

≡
∂
∂m

−∇. ∂
∂ ∇m()

 (5)

The quantity Heff is called the effective field, whose different energy contributions

will be determined in the next section. Thus by multiplying (2) by m×1 one can

express the volume equilibrium condition in terms of Heff, as,

€

m ×
δuV
δm

= 0→m × Heff = 0

(6)

The last expression represents the state when the torque between the magnetization

M and the Heff is zero in each element of volume of the material. Equations (3) and

(6) are known as Brown’s equations [23]. From (3) it is also possible to write a torque

of the magnetization with a surface effective field Heff,S, however this contribution

will not be taken into account and thus will not be discussed further.

Suppose now a ferromagnetic sample with a magnetization M per unit of volume

under the influence of a magnetic field Heff, in S.I. units the induction field Beff, can be

expressed by Beff=µ0(M+Heff). Under such field each element of volume of the system

experiments a torque τ given by,

1 Note that throughout the micromagnetic framework described here m≡m(r,t) or M≡M(r,t), m or M is written for
the sake of simplicity.

2 The basics of Micromagnetism

 27

€

τ = M × Beff = µ0M × Heff (7)

where µ0 is the vacuum magnetic permeability. From (7) it can be deduced that the

torque τ tends to rotate each magnetization element of volume in a given direction, set

by the local Heff.

The expression for the magnetization dynamics can be obtained from the magnetic

dipole µ equation of motion under the influence of a field Beff, by using Newton’s

second law of motion. The torque that acts upon the magnetic dipole is equal to the

variation of angular momentum J, of the magnetic dipole,

€

dJ
dt

= τ = µ0µ × Heff
 (8)

In most ferromagnetic materials the angular momentum J, is mainly due to the

electron’s spin and thus J=L+S≈S, [24]-[26]. The spin S and the magnetic dipole µ

are related through the gyromagnetic ratio γ by,

€

µ = γ S (9)

where γ is given by,

€

γ =
gqe
2me

=
gµB


< 0

(10)

where, g is the so-called Landé factor, which for a free electron is approximately

equal to 2. The other factors are the electron’s charge qe and mass me, the Bohr

magneton µB, and the reduced Planck’s constant ħ. The magnetic dipole dynamic

equation can then be written as,

€

dµ
dt

= γµ0µ × Heff
(11)

Since in the micromagnetic formalism, as was seen in the previous section, instead

of individual magnetic dipoles a large group of them is considered in each element of

volume dV (Fig. 4), the dynamic equation of the magnetization can be described as,

€

dM
dt

= −γ0M × Heff
(12)

where γ0 is defined as,

€

γ0 = µ0
gµB


= −µ0γ

(13)

The dynamics expressed by (12) describes that in the presence of a constant

magnetic field the magnetization M would rotate indefinitely, never achieving the

2 The basics of Micromagnetism

 28

equilibrium state2. However, from experience after a given amount of time the

magnetization will align itself with the field, meaning that the system will tend to an

equilibrium state through some mechanism of dissipative nature. There are several

processes that may contribute to the dissipation of energy, like lattice interactions,

scattering, eddy currents, etc. All of which are really difficult to describe, thus in

micromagnetism all of these dissipative processes are included in a phenomenological

way, by adding a dissipative term into the dynamic equation (12).

The simplest way to add dissipation to the dynamic equation is to modify the

effective field Heff in order to include an Ohmic type of dissipation [16], (Fig. 5 (b)),

€

Heff →Heff −
α

γ 0MS

dM
dt

(14)

where α is the dimensionless phenomenological damping parameter. Using the

modified effective field from (14) in equation (12), the Gilbert equation is obtained,

€

dM
dt

= −γ0M × Heff +
α
MS

M ×
dM
dt

(15)

From the previous equation it can be seen that the system will continuously lose

energy until it reaches the equilibrium state, where the magnetization M is parallel to

the effective field Heff. Also, if dM/dt=0 the stationary state of the dynamic equation

(15), is reduced to the equilibrium equation (6).

Fig. 5 – Magnetization M dynamics in the presence of a magnetic field Heff. a) Without dissipation
α=0, the magnetization rotates around the field with frequency –γ0Heff. With damping α>0, after a
certain amount of time the magnetization will precess until it aligns itself with the field, due to the
dissipative term M×dM/dt.

Working with the Gilbert equation is not a simple task, since the time derivative of

the magnetization is present in both sides of equation (15). However, a different way

2 In truth the rotation of M around Heff would in fact radiate energy, however this dissipative contribution is
depreciable in this context.

2 The basics of Micromagnetism

 29

of introducing the phenomenological dissipation term in (12) was proposed by

Landau-Lifshitz. In this proposal the dissipative term is added in such a way that it is

perpendicular to both the magnetization vector M and the precession of M×Heff,

€

dM
dt

= −γ0M × Heff −
γ0α
MS

M × M × Heff()

(16)

Unlike the Gilbert equation (15), in (16) the dissipation and precession terms are

uncoupled and thus can be easily solved numerically. It is possible to obtain an

equation which is formally equal to the one described by Landau-Lifshitz (16), and

that expresses the same dynamics of Gilbert’s equation (15). Multiplying both sides of

(15) by M× and using the property a×(b×c)=(a.c)b–(a.b)c, and M.M= MS
2, one

reaches the following expression,

€

dM
dt

= −
γ0

1+α 2
M × Heff −

γ0
1+α 2

α
MS

M × M × Heff()

(17)

The previous equation is formally known as the Landau-Lifshitz-Gilbert (LLG)

equation and it describes the same physical properties as (15). Equation (17)

represents the dynamic equation used to solve the dynamics of the magnetization

throughout this work. However it should be kept in mind that in order to take into

account the effect of spin transfer torque, some terms need to be added to (17). These

terms will be discussed further along this chapter. Sometimes it is also useful to

express the previous expression in the form,

€

(1+α 2) dm
dt

= −γ 0 m × Heff −αm × m × Heff()[]

(18)

with,

€

m =
M
MS

2.3 Energy contributions and the effective field
In the following sub-sections all of the energy contributions to the effective field

(4) are discussed, so as to use them to calculate the LLG dynamic equation (17).

These contributions are of both quantum nature like the exchange and anisotropy

interactions, and of classical nature like the magnetostatic, Oersted and Zeeman

interactions. The effects of a thermal field added to the Heff are also discussed so as to

account for the effect of temperature.

2 The basics of Micromagnetism

 30

2.3.1 Exchange energy

As it was said before, the exchange energy is the dominant interaction at short

distances and thus it is responsible for the parallel alignment between neighboring

spins. Its origin is of quantum mechanical nature and it is due to Pauli’s exclusion

principle. The Heisenberg Hamiltonian that describes the exchange interaction is

usually written as [23],

€

H exch = − 2Jij ˆ S i . ˆ S j
i, j

fN

∑

(19)

The sum is among first neighbors fN, Ŝij represent the spin operators and Jij is the

exchange integral, whose value decreases rapidly with the distance between spins and

thus is only noticeable among first neighbors. This means that one can simply write J

instead of Jij.

In order to adapt the Heisenberg Hamiltonian to the continuous description used

here, the spin operators are replaced by the vectors Si,j=Si,jsi,j, (with Si=Sj=S), and the

dot product in (19) is rewritten so as to obtain the following exchange energy

expression,

€

Uexch = −JS2 cosθ ij
i, j
∑

(20)

where θij is the angle between spins si and sj and j represents the first neighboring

spins of i (Fig. 6).

Fig. 6 – Exchange interaction representation between first neighbors. In the atomic Heisenberg model
representation, a is the lattice constant and rij the position vector between the spins i and j. In the
micromagnetic model, each magnetization M volume element is at a Δx distance from the first
neighbors where rij is the position vector connecting them.

Assuming that the angle between the spins θij is very small it is possible to use the

mathematical property cosθij ≈1–θ2
ij/2 in (20), plus considering that the sum is for

each pair of first neighbors then,

2 The basics of Micromagnetism

 31

€

Uexch = JS2 θ ij
2

j
∑

i
∑

(21)

In the micromagnetic description the unit vector in the direction of the spin si of

each dipole µ i present in the lattice is replaced by the unit vector mi=Mi/MS, along the

direction of the magnetization in each element of volume Mi=Σi µi /dV, (Fig. 6). Using

the dimensionless and continuous variable of the magnetization m, it is possible to

write for small angles that,

€

θ ij ≈ mi −m j ≈ rij .∇()m
(22)

where, rij is the position vector between i and j (Fig. 6). Thus the exchange energy can

now be written as,

€

Uexch = JS2 rij .∇()m[]
2

rij

∑
i
∑

(23)

In the continuous representation the sum in i is replaced by an integral over the

volume V of the ferromagnetic sample under study. Thus the exchange energy takes

the form of,

€

Uexch = uexdV =
V
∫ A ∇m()2dV

V
∫

(24)

where A is the exchange constant in J/m, which is given by,

€

A =
JS2z
a

(25)

where a is distance between first neighbors and z is equal to 1, 2 or 4 depending if the

lattice is simple cubic, face-centered cubic or body-centered cubic, respectively. The

exchange energy described by (24) can also be shown as valid for other types of

lattice like the hexagonal one, [23]. Equation (24) is considered to be valid at any

temperature T, and that A varies with T.

Finally by using (4) and (24) the expression for the exchange field Hexch at each

element of volume can be written as,

€

Hexch (r) =
2A

µ0MS
∇2m(r)()

(26)

2.3.2 Anisotropy energy

From different experiments it is well know that magnetic materials are in general

not isotropic and thus have preferred directions. Such directions are called easy

directions, they are easier to magnetize and are related to the symmetric directions of

the crystal. The anisotropy energy is then defined as the excess energy needed to

2 The basics of Micromagnetism

 32

magnetize a material in a certain direction in respect to an easy direction. Its origin

comes from spin-orbit interactions at the atomic level. As a result, it is very

complicated to obtain an expression for it starting from a microscopic model and thus

a phenomenological approach is used [16].

Since throughout this work the focus was on materials with uniaxial anisotropy,

this will be the only one described. Taking the first term of the Taylor development,

the uniaxial magneto-crystalline energy is equal to,

€

Uan.u = uan,udV =
V
∫ K 1− (m.uK)

2()dV
V
∫

(27)

where K (J/m3) is the anisotropy constant and uK the unit vector along the anisotropy

direction. If K>0 the direction of uK is an easy direction, on the contrary if it K<0 it is

a hard direction. In the first case, the uniaxial magneto-crystalline anisotropy energy

is at a minimum when the magnetization is parallel to easy axis uK. On the other hand,

when K<0, the anisotropy energy is at a maximum when the magnetization is parallel

to the hard axis uK. As a result, in this case the plane perpendicular to the hard axis uK

is called easy plane, since all the directions parallel to that plane are easy directions

being energy minimums of the uniaxial magneto-crystalline energy.

From the energy equation (27) and using (4), one determines the uniaxial

anisotropy effective field Han,u for each element of volume as,

€

Han,u (r) =
2K

µ0MS
(m.uK)uK

(28)

2.3.3 Magnetostatic energy

The magnetostatic energy is the energy associated to the magneto-static interaction

between the lattice magnetic dipoles. The field created by the dipoles is called

magnetostatic or sometimes demagnetizing field, since when looking from inside the

material this field tends to demagnetize the sample, both names are used throughout.

This is one of the classical fields derived from Maxwell equations (29)-(32), whose

contribution is essential to the micromagnetic formalism, and it is also the most

challenging field to compute, as it will be shown in chapter 3.

2 The basics of Micromagnetism

 33

€

∇.D(r,t) = ρ(r,t) (29)

€

∇.B(r,t) = 0 (30)

€

∇ × E(r,t) = −
∂B(r,t)
∂t

(31)

€

∇ × H(r,t) = j(r,t) − ∂D(r,t)
∂t

(32)

where, D(r,t) is the electrical displacement vector field, ρ(r,t) is the charge density per

unit of volume, B(r,t) is the magnetic induction field, E(r,t) is the electrical field,

H(r,t) is the magnetic field, and j(r,t) is the current density per unit of volume.

It is well know that a uniformly magnetized ellipsoid along one of his axis

experiences a magnetic field that opposes the magnetization per unit of volume, hence

the name demagnetizing field, Hdmg
3. Naturally the same effect is seen in all

geometries of different magnetic materials with magnetizations pointing in different

directions.

Considering the case in which the magnetostatic field is the only field present, i.e.

in the absence of electrical fields, electrical currents, or any other magnetic field, the

aforementioned Maxwell equations are reduced to,

€

∇.B(r) = 0 (33)

€

∇ × H(r) = 0 (34)

Knowing that B=µ0(M+H) where now the magnetic field H represents the

magnetostatic field Hdmg, the previous equations can be written as,

€

∇.µ0 M (r) + Hdmg(r)() = 0 ⇔ ∇.Hdmg(r) =∇.M (r) (35)

€

∇ × Hdmg(r) = 0 (36)

Calculating the magnetostatic field Hdmg(r) is analogous to calculating the

electrical field E(r) created by a distribution of electrical charges ρ(r) inside a volume

V surrounded by a surface S (Fig. 7). Therefore from equations (35) and (36), and

keeping in mind the surface boundary conditions that Hdmg(r) must obey, it is possible

to define fictitious volume and surface magnetic charge densities, respectively as

ρm(r) and σm(r). Naturally magnetic charges do not exist, the previous quantities are

thus defined in order to aid in the calculation of the field Hdmg(r), in the same way as

the electrical field is calculated.

3 Note that although it is named as Hdmg, this field represents the magnetostatic field generated by the sample in all
points inside and outside the sample. The subscript dmg is used throughout to refer to the magnetostatic field.

2 The basics of Micromagnetism

 34

€

ρm (r) = −∇.M (r) (37)

€

σm (r) = M (r).n (38)

Where n is the unit vector perpendicular to the surface S. From the previous equations

it is possible to deduce the following expression for the magnetostatic field Hdmg(r) at

each point r, of the sample,

€

Hdmg(r) =
1
4π

r − r '()ρm
r − r ' 3

dV '
V '
∫ +

r − r '()σm

r − r ' 3
dS'

S '
∫

⎡

⎣
⎢

⎤

⎦
⎥

(39)

where |r-r’| is the distance between the point of the field being calculated (r) and all

other field creating magnetic moments (at r’). The magnetostatic energy can now be

written as,

€

Udmg = udmgdV = −
1
2

µ0 Hdmg(r).
V
∫

V
∫ M (r)dV

(40)

where the factor ½ is added because the source of the magnetostatic field Hdmg(r) is

the volume magnetization distribution M(r) of the sample.

Fig. 7 – Representation of the magnetostatic field Hdmg, in a rectangular prism. a) Magnetization M of
the sample as if there were “magnetic charges”. b) The magnetization M is responsible for the creation
of a magnetostatic field Hdmg inside the sample and it also induces a magnetostatic field Bdmg in the
regions outside the sample c). Outside the sample M=0 and thus Bdmg=µ0Hdmg.

2 The basics of Micromagnetism

 35

2.3.4 Zeeman energy

The Zeeman field is referred in micromagnetism as the externally applied field,

which might be used to magnetize the sample in any given direction. This field, for

example, is commonly used to see the typical hysteresis curve of a given material,

among other different applications. Within the micromagnetic formalism this field is

usually uniform throughout the sample under study, (however it can be made to vary

in both space and time). This is in general a good approximation since in principle, as

in typical experiments, the micro-sized sample is immersed in an external field

Hext(r), which is considered uniform.

Because the Zeeman field Hext(r) is considered an external variable to the system,

and in this formalism represents a vectorial field whose module and direction are

known beforehand, the Zeeman energy [23] density can be written as,

€

UZee = uZeedV = −µ0 Hext(r).
V
∫

V
∫ M (r)dV

(41)

2.3.5 The Oersted field

The Oersted field can also be regarded as an external field since its source is the

external current density j(r) that flows through each element of volume dV. Thus the

energy density can be described as,

€

UOe = uOedV = −µ0 HOe(r).
V
∫

V
∫ M (r)dV

(42)

and the field HOe(r)4 is determined from Maxwell equations (29)–(32) as,

€

HOe(r) =
1
4π

j
V '
∫ (r ') × r − r '

r − r ' 3
dV '

⎡

⎣
⎢

⎤

⎦
⎥

(43)

2.3.6 The Thermal field

Since it would be a very difficult task to construct a thermal theory starting from

the particle level up to the mesoscopic scale of micromagnetism, the temperature

effect is usually included by adding a random noise thermal field Hth, to the

deterministic dynamic equation (17). The dynamic equation is thus converted into a

stochastic one, which is usually referred to as the Langevin equation [27]. In 1963

Brown applied this procedure to single domain particles, where he showed what the

statistical properties [27],[29] had to be in order to correctly reproduce the

equilibrium thermodynamics [28]. It is quite difficult to apply that methodology to the

4 The current density may also vary in time, j(r,t), hence so will the Oersted field HOe(r,t).

2 The basics of Micromagnetism

 36

continuous formalism of micromagnetism, however once it is discretized5 the problem

is formally equivalent to an ensemble of single domain particles. Since once

discretization is achieved each cell corresponds to a single magnetic particle, thus the

same procedure can be used in order to include thermal fluctuations to the

micromagnetic simulations. As a result the thermal random field Hth can be added to

the effective field Heff (4) acting on the magnetization of each cell.

€

Heff →Heff + Hth (44)

The Cartesian components of Hth are independent Gaussian distributed random

numbers with the following statistical properties,

€

Hth,α ,i(t) = 0 (45)

€

Hth,α ,i(t)Hth,β , j (t') = 2Dδ ijδαβδ t − t'() (46)

where i and j are the cell counters, α, β = x,y,z refer to the Cartesian components of

the field and the brackets represent the statistical average. Each Kronecker delta has a

different meaning; the first, δij, implies that the fluctuating term of different cells are

independent from each other; the second one, δαβ, means that the three Cartesian

terms are independent from each other; the Dirac delta, δ(t–t’), indicates that the noise

is uncorrelated in time, i.e. it is a white noise. The coefficient D is obtained so as to

satisfy Maxwell-Boltzmann statistics when thermodynamic equilibrium is reached.

This is achieved through the stationary solution of the Fokker-Planck equation

[27],[29], which is constructed from Langevin’s equation and governs the probability

distribution dynamics of the magnetization, leading to,

€

D =
αkBT

1+α 2()γ 0µ0MSV
(47)

where kB is the Boltzmann constant, T the temperature and V is the volume of each

individual cell. Therefore, the fluctuating thermal field that will be added to the

effective field Heff (4), at each cell, within the micromagnetic formalism is given by,

5 The discretization of the micromagnetism theory is executed in chapter 3, where the numerical integration that
will allow for the simulation of the magnetization dynamics of different magnetic materials is described.

2 The basics of Micromagnetism

 37

€

Hth,i(t) =ηi (t)
2αkBT

1+α 2()γ 0µ0MSVΔt
(48)

where η i(t) is a stochastic vector whose components are zero-mean, standard normal-

distributed random numbers and Δt is the time step used in the micromagnetic

simulations.

2.3.7 The spin-transfer-torque

As it was previously mentioned, the phenomenon of spin transfer torque (STT)

opens the possibility to manipulate the magnetization of a material by using currents

instead of fields. Therefore, it opens the possibility to design different new devices,

which are not only potentially much faster but also more energy efficient.

The STT effect arises whenever the flow of spin-angular momentum through a

sample is not constant, but has sources or sinks. This torque transfer is “seen”, for

example, whenever a spin-current flowing through a magnetic material whose

magnetic moment is not collinear with that of the spin-current (Fig. 8). Changes to the

spin-angular momentum flow also occur when spin-polarized currents pass through a

magnetic domain wall or any other non-uniform magnetization pattern such as

vortexes, etc. In this process, the spin conducting electrons have their spins rotate in

the direction of the local magnetization, and thus the angular momentum spin vector

flow changes as a function of the position. Therefore, the magnetization m of a

ferromagnet influences the flow of spin-angular momentum of the conducting

electrons due to the exchange interaction between them, by exerting a torque on the

incoming spins reorienting them in the process. Due to Newton’s third law of motion,

the flowing electrons also must exert an equal and opposite torque onto the local

magnetization of the ferromagnet. This exerted torque by the non-equilibrium

conduction electrons onto the ferromagnet is what is commonly known as the STT.

2 The basics of Micromagnetism

 38

Fig. 8 – Representation of a single spin of angular momentum sin, that suffers a torque exerted by the
magnetization M of the magnetic thin film, which in turn gets reoriented by the direction of M and is
transmitted through the thin film with angular momentum str. The amount of spin that gets transmitted
depends on the material properties and many are reflected with moment sref., which are mainly
constituted by the spins of opposite polarization in regard to the transmitted ones.

During the development of this work two types of STT were used, one for devices

in which the Current flow is Perpendicular to Plane (CPP), like in spin-valves (Fig. 9)

or MTJs, and the other when the Current is In-Plane (CIP), as is the case in domain

wall (DW) dynamics along ferromagnetic strips.

The STT contribution enters the equation describing the magnetization dynamics

by including additional torques to the LLG dynamic equation (18). This will be shown

for each type of torque below.

Current Perpendicular to Plane (CPP).

In the case where two magnetic layers are separated by a non-magnetic metal

spacer, as in a spin-valve (Fig. 9), the STT that the thin magnetic layer experiences

was given by Slonczewski [3] and it reads,

€

ΓST−CPP =
dm
dt

= −
gµB jP (m.p)
2MSd qe

m × m × p()

(49)

The previous equation is written in its dimensionless form, where p=MP/MPS is the

unit vector magnetization of the assumed thick polarizing layer with saturation

magnetization MPS, and m=M/MS is the unit vector magnetization of the assumed thin

free layer, j is the current density, d the thickness of the layer undergoing the STT

effect, qe the electron’s charge, and P(m.p) is a polarization function, which depends

on the relative orientation between the assumed thin free layer m, and the thick pinned

layer p, magnetizations [3],

2 The basics of Micromagnetism

 39

€

P (m.p) =
1

−4 + 1+η()3
3+ (m.p)()
4η3 2

(50)

where η is the spin polarization factor of the magnetic material under study. Other

polarization functions can also be used for spin-valves, which also take into account

the giant-magneto resistance asymmetry χ, besides the polarization factor and it is

given by [30],

€

P (m.p) =
0.5η(χ +1)

2 + χ 1− (m.p)() (51)

The previous expressions are valid for spin-valve devices, however if considering a

MTJ in which an insulator spacer is used instead of a non-magnetic metal, the

polarization function reads [31],

€

P (m.p) =
1
2
η

1
1+η2(m.p)

(52)

Adding the spin torque term (49) to the dynamic equation (18), allows for the

writing of the LLG equation with the STT effect for CPP devices as,

€

1+α 2() dm
dt

= −γ 0 m × Heff +αm × m × Heff()[]
−
gµB jP (m.p)
2MSd qe

m × m × p() −α m × p()[]

(53)

Usually it is considered that the pinned layer magnetization p, does not suffer the

effects of the spin-torque interaction since it is considered to be a pinned or fixed

layer. Although this is a good approximation for many experiments it is not generally

true, and in some cases the dynamics of the called pinned layer is relevant, as is the

case of coupled device modes involving vortex oscillations in both layers (section

4.2.1 and [32]). In such cases, both layers m and p in Fig. 9 are considered free to

move and both polarize the conducting electrons depending on the direction of the

current. Thus when developing a micromagnetic simulation code in which both layer

magnetizations are considered dynamic, the names pinned and free are usually

changed to thick and thin. (Nonetheless in Fig. 9 the usual names pinned and free

layer were kept).

2 The basics of Micromagnetism

 40

Fig. 9 – Representation of the STT acting on a spin-valve device. a) When the magnetizations of both
layers are anti-parallel, the STT that acts on the free layer m, comes from the transmitted electrons that
have been polarized by the pinned layer p. b) When magnetizations of both layers are parallel, the STT
that acts on the free layer comes from the reflecting electrons that flow through it. c) Direction of all
the torques being applied to the magnetization p in the presence of both the Heff and spin polarized
current.

When considering that both layers are dynamic the dynamic equation used (53) is

the same but now as to be evaluated twice, once for each layer, taking the care that the

thin layer is acting in one of the expressions as the polarizing layer and on the other as

the one suffering the effects of the spin-torque, and vice-versa for the thick layer.

Meaning that when evaluating, at each time step, the dynamics of the thin layer it is

used the equation as in (53), whereas for the thick layer it would read,

€

1+α 2() dp
dt

= −γ 0 p × Heff +α p × p × Heff()[]
−
gµB jP (p.m)
2MSd qe

p × p × m() −α p × m()[]

(54)

This gives rise to what is usually called back-torque due the fact that at each time

step the STT effect of one layer over the other is evaluated.

Current In-Plane (CIP).

Although the nature of STT is the same in either CPP or CIP, that is due to

exchange interaction between the non-collinear spin carrying electrons with the local

magnetization, the torque description is different. In order to study the magnetization

2 The basics of Micromagnetism

 41

dynamics involving in-plane currents, like in the study of DWs, two sources of torque

are required to describe the dynamics, one adiabatic and the other non-adiabatic.

Fig. 10 – Schematic representation of the electron’s spin polarization when using CIP in a long stripe
with the presence of a domain wall.

A current flowing through a metallic ferromagnet is naturally polarized by it (Fig.

10), and when said current encounters a DW the relevant microscopic interaction is

again the exchange interaction between the local magnetization m and the spin

carrying electrons. This interaction affects the DW in two different ways. One is the

momentum transfer, or force, and the other the spin transfer, or torque.

Fig. 11 – Two possible effects when a electric current encounters a domain wall due to the exchange
interaction between the conduction electrons and the local magnetization. a) A reflected electron has
transferred linear momentum to the domain wall. b) An adiabatically transmitted electron has
transferred spin angular momentum to the domain wall.

Consider a metallic ferromagnet containing a single DW, and suppose there is an

electron flowing from left to right (Fig. 11), if the electron is reflected by the DW its

momentum is changed. This process acts as a force on the DW by transferring linear

momentum from the electron to the DW (Fig. 11 (a)). On the other hand, if the

electron is transmitted through the DW adiabatically, namely, by keeping its spin

direction closely parallel to the local magnetization, the spin angular momentum of

the electron is changed (Fig. 11 (b)). This process acts as a torque on the domain wall

by transferring the spin angular momentum from the electron to the DW. In other

2 The basics of Micromagnetism

 42

words, this change of the electron spin should be absorbed by the magnetization,

which might lead to the translational motion of the DW. In thick DWs the reflection

probability is very small and thus the spin-transfer effect will be the dominant driving

mechanism. This leads to what is denominated as the adiabatic torque τadi, which is

given by [4],

€

τadi =
dm
dt

= −
gµBη
2MS qe

(j.∇)m

(55)

where in this case η is a spin polarization factor, which basically represents which

percentage of the electrons is spin polarized along the direction of the local

magnetization. The quantity vsp-drift=jgµBη/2MS|qe| is generally called the spin-drift

velocity and is actually the maximum velocity that the DW can reach in the adiabatic

limit.

However since the theories developed to describe the STT in the adiabatic limit

were not able to reproduce some experimental results (namely for thin DW), it was

suggested that the spin transfer was more complicated and that some non-adiabatic

contributions must be present. This non-adiabatic torque was first introduced by

Zhang et al. [33] and Thiaville et al. [34] and it is given by,

€

τnon−adi =
dm
dt

= −βm ×
gµBη
2MS qe

(j.∇)m
⎡

⎣
⎢

⎤

⎦
⎥

(56)

where β is the dimensionless non-adiabatic parameter [35],[36].

With the two previous torque contributions, adiabatic and non-adiabatic, it is

possible to write the total spin-torque when applying CIP through a ferromagnetic

material as,

€

ΓST−CIP =
dm
dt

=
gµBη
2MS qe

−(j.∇)m + βm × (j.∇)m[]

(57)

Adding the spin torque term (57) to the dynamic equation (18), allows for the

writing of the LLG equation that takes into account both adiabatic and non-adiabatic

spin-torque terms for CIP,

2 The basics of Micromagnetism

 43

€

1+α 2() dm
dt

= −γ 0 m × Heff +αm × m × Heff()[]
−

gµBη
2MS qe

(1+ βα)(j.∇)m − (β−α)m × (j.∇)m[]

(58)

2.4 Recapitulation
During this chapter all of the relevant contributions to the magnetization dynamics

that will be treated throughout this work, were discussed. Before continuing to the

description on how each contribution is discretized, a small recapitulation is presented

in order to recall all of the effective field Heff components and the dynamic equation

that is to be solved numerically.

Effective field

€

Heff = Hexch + Han,u + Hdmg + HExt + HOe + Hth (59)

were each component of the field is given by the previously seen equations.

Since when actually performing the numeric computations it is usually more

practical to use the dimensionless form of the LLG dynamic equation they are written

below for both CPP and CIP devices.

Dynamic equation for CPP devices

€

1+α 2() dm
dτ

= − m × heff +αm × m × heff()[]
−

1
γ 0MS

gµB jP (m.p)
2MSd qe

m × m × p() −α m × p()[]

(60)

Note that if the simulating both the assumed magnetic free thin layer m and thick

polarizing layer p, care as to be taken while writing the dimensionless equation (60)

since the saturation magnetization of each material MS might be different.

Dynamic equation for CIP devices

€

1+α 2() dm
dτ

= −γ 0 m × heff +αm × m × heff()[]
−

1
γ 0MS

gµBη
2MS qe

(1+ βα)(j.∇)m − (β−α)m × (j.∇)m[]

(61)

where in both previous equations it was considered that,

€

τ = γ 0MSt m =
M
MS

heff =
Heff

MS
p =

MP

MPS

3 Micromagnetism numeric modelling

 44

3 Micromagnetism numeric modelling
3.1 Introduction

This section is dedicated to the description on how the micromagnetism numeric

modeling is performed, in order to study different interesting phenomena of the

magnetization dynamics, from either the point of view of fundamental physics or

from experimental devices.

As it has been seen thus far, micromagnetism is a semi-classical formalism, which

allows for the study of the behavior of magnetic materials at the nano-scale. That

behavior is described through the use of non-lineal partial differential equations,

which are significantly complicated to solve and in general do not have analytical

solutions. There are some analytical solutions but these are only for very simple

geometries at low dimensions. That said, in micromagnetism there are two

approximations, which can be seen as having opposite nature. On one hand, the

discrete atomic system of magnetic moments is approximated by a continuous system

as it was described in chapter 2. On the other hand, one has to discretize the

previously obtained continuous expressions in order to solve the problem numerically.

The first part of this chapter is dedicated to the discretization of the geometry and

of the dynamic equation, as well as all the different effective field contributions, using

the finite difference method. In the second part, the numerical issues pertaining to the

sequential type of programming are discussed, and its limitations will serve as a

bridge to the last part of the chapter, where the spatial and temporal limitations are

overcome by developing a parallel micromagnetic code using graphic processing units

(GPUs). The chapter finishes by presenting comparative results that show the

accuracy and efficiency of the developed parallel code.

3.2 Spatial discretization
As it was previously described, micromagnetism requires solving a set of non-

lineal integral differential equations, which involve long-range (magnetostatic,

Oersted), short-range (exchange, spin-torque) and local (anisotropy, external fields)

interactions. These do not have analytical solutions except for very idealized cases

[23],[37] and thus have to be solved numerically. In order to do that, one first has to

spatially discretize the sample of the magnetic material. By doing so, the framework

goes from a continuous system where the variable is the vectorial field M(r)=MS m(r),

3 Micromagnetism numeric modelling

 45

to a discrete system where now the variables are the values of the magnetization at

each cell of the computational mesh, M(i,j,k)=MS m(i,j,k). There are two discretization

approaches usually used in micromagnetics; the finite elements (FE) and finite

difference (FD) methods. The FE approach [38] is based on interpolating the

magnetization using linear basis functions on a non-uniform typically tetrahedral

mesh. The FD, on the other hand, uses a uniform rectangular mesh, as it is shown in

Fig. 12. The main disadvantage of the FD approach is that sampling curved

boundaries with a rectangular mesh results in a staircase type approximation to the

geometry, which introduces spurious effects. However in most simulations these

effects are small enough to be ignored, and in the ones in which they are relevant

some ad hoc techniques have been developed to hinder them [39]-[41]. The FD

method is in general easier to implement, in particular when regarding the meshing of

the sample, and it was the one adopted in this work.

Once the spatial discretization is achieved some considerations have to be taken

into account about the size of each cell of volume ΔV (Fig. 12). Essentially, it has to

be larger than the atomic scale, but not too large, so as to comply with the mesoscopic

formalism of micromagnetics. In other words, it has to contain a sufficient number of

magnetic spins in order to consider that the module of the magnetization MS is

constant in each cell, but small enough so that the magnetization can be considered as

continuous function of the position inside the material. This leads to what is called the

characteristic length, which in micromagnetism is the scale at which the

magnetization varies significantly. Therefore, when numerically solving a problem it

has to be ensured that the size of each computational cell is small enough when

compared to the characteristic length. There are at least two characteristic scale

lengths that are usually used in micromagnetics, and although an adequate cell size

has to be chosen depending on the problem to solve these two serve as guide. They

are the exchange length lex and the wall width lw, and are given respectively by,

€

lex =
2A

µ0MS
2

(62)

and,

€

lw =
A
K

(63)

where A is the exchange constant and K is the magneto-crystalline anisotropy

constant. Roughly speaking the exchange length lex is the relevant scale when

3 Micromagnetism numeric modelling

 46

magneto-static dipolar interaction dominants over the magneto-crystalline anisotropy,

as is the case when working with soft magnetic materials, whereas when considering

materials with large anisotropy, the wall width lw becomes the relevant scale.

Fig. 12 – Representation of the discretization of the magnetic sample into a mesh of individual cells

of volume ΔV=ΔxΔyΔz. Each cell is assumed to be uniformly magnetized with its magnetization equal
to M(i,j,k) = MSm(i,j,k), where i=1,…,Nx, j=1,…,Ny, and k=1,…,Nz with Nx, Ny, and Nz representing the
total number of cells in each Cartesian direction. Note that the total number of cells includes non-
magnetic cells while discretizing the sample (empty cubes). These nonmagnetic cells are used in order
to “draw” more complex structures like curvatures (in figure), notches, bumps, etc, when using the
finite difference method. The dimensions of the sample are given by Ln=NnΔn (where n≡x,y,z).

In the most frequently used ferromagnetic materials the scales of both lex and lw

usually range between 4 nm and 8 nm, which sets some bounds to the cell size that is

to be used in the simulations. Nonetheless this may vary depending on the type of

problem to solve, since in more complex magnetic structures like Bloch-point walls

([42] and section 4.2.2) and others, the numeric precision can force the use of smaller

cell sizes, which in turn leads to longer simulation times.

3.3 Discretization of the micromagnetic equations
Once the spatial discretization is achieved, the equilibrium (6) and dynamic (18)

equations with and without the influence of the STT ((53) or (58)), have to be

discretized as well in order to solve them numerically. Hence, this section is dedicated

to finding the discrete counterparts to the continuous functions that describe all the

contributions to the local effective field Heff, in each computational cell.

3.3.1 Exchange interaction discretization

From the continuous exchange energy density function (24) it is possible to

express it for each computational cell of the mesh (i,j,k) as,

3 Micromagnetism numeric modelling

 47

€

uexch (i, j,k) = A ∇mx (i, j,k)()2 + ∇my (i, j,k)()2 + ∇mz (i, j,k)()2⎡
⎣ ⎢

⎤
⎦ ⎥

(64)

where,

€

∇mn()2 =
∂mn

∂x
⎛

⎝
⎜

⎞

⎠
⎟
2

+
∂mn

∂y
⎛

⎝
⎜

⎞

⎠
⎟

2

+
∂mn

∂z
⎛

⎝
⎜

⎞

⎠
⎟
2

(65)

with n=x,y,z.

In the FD approximation the derivatives are replaced by ratios at the center of each

cell of the mesh, thus the previous expression can be written as,

€

∇mn()2 ≡ Δxmn

Δx
⎛

⎝
⎜

⎞

⎠
⎟
2

+
Δymn

Δy
⎛

⎝
⎜

⎞

⎠
⎟

2

+
Δzmn

Δz
⎛

⎝
⎜

⎞

⎠
⎟
2

(66)

where Δx, Δy and Δz are the spatial distances in the three dimensions between each

cell of the mesh, whereas Δx, Δy and Δz are the FD operators in each respective spatial

direction. Considering now the unit magnetization vector m(i,j,k) at the point (i,j,k)

and the first neighbor in the +x direction, (i+1,j,k) with magnetization m(i+1,j,k), the

first term of (66) can be written as,

€

Δxmx

Δx
⎛

⎝
⎜

⎞

⎠
⎟
2

=
mx (i +1, j,k) −mx (i, j,k)

Δx
⎛

⎝
⎜

⎞

⎠
⎟
2

=

=
mx
2(i +1, j,k) − 2mx (i +1, j,k)mx (i, j,k) +mx

2(i, j,k)
Δx

(67)

The second and third terms of (66) can be obtained in a similar manner. Taking into

account that |m(i,j,k)|=1 for all cells, equation (67) becomes,

€

Δxmx

Δx
⎛

⎝
⎜

⎞

⎠
⎟
2

=
1
Δx2

2 − 2mx (i +1, j,k)mx (i, j,k)[]

(68)

An analogous process can be made in order to obtain from (66) the first neighbor

components for the positive y and z directions.

Naturally, the first neighbors in the negative directions of each Cartesian

component have also to be considered, and thus from (66) (with n=x),

€

∇mx()2 =
1
Δx2

2 − 2mx (i +1, j,k)mx (i, j,k)() + 2 − 2mx (i −1, j,k)mx (i, j,k)()[] +

+
1
Δy2

2 − 2mx (i, j +1,k)mx (i, j,k)() + 2 − 2mx (i, j −1,k)mx (i, j,k)()[] +

+
1
Δz2

2 − 2mx (i, j,k +1)mx (i, j,k)() + 2 − 2mx (i, j,k −1)mx (i, j,k)()[] +

(69)

and similarly for (∇my)2 and (∇mz)2. From the equation (69) the exchange energy

density at each point of the mesh (64) can be written as,

3 Micromagnetism numeric modelling

 48

€

uexch (i, j,k) =
2A
Δx2

1−m(i, j,k).m(i', j',k ')[]
i' j 'k '

fN

∑ +

+
2A
Δy2

1−m(i, j,k).m(i', j',k ')[]
i' j 'k '

fN

∑ +

+
2A
Δz2

1−m(i, j,k).m(i', j',k ')[]
i' j 'k '

fN

∑

(70)

where fN is the number of first neighbors in each Cartesian direction.

The total exchange energy (24) can now be approximated by,

€

Uexch = uexchdV
V
∫ ≈ uexch (i, j,k)ΔV

i, j ,k

N

∑

(71)

where N=NxNyNz is the total number of cells within the discretized sample.

In the discrete representation the functional derivative (δ/δm≡∂/∂m-∇.∂/∂(∇m)) is

converted into the ordinary derivative (∂/∂m), which is valid when considering that

the angles between the magnetization of a particular cell and its neighbors are small.

Therefore the effective field contribution due to the exchange interaction can be

calculated from,

€

Hexch (i, j,k) = −
1

µ0MS

∂uex (i, j,k)
∂m(i, j,k)

(72)

to give,

€

Hexch (i, j,k) =
2A

µ0MS

m(i +1, j,k) + m(i −1, j,k)
Δx2

⎡

⎣ ⎢
+

m(i, j +1,k) + m(i, j −1,k)
Δy2

+
m(i, j,k +1) + m(i, j,k −1)

Δz2
⎤

⎦ ⎥

(73)

Another important aspect arises from the variation of the exchange energy besides

the abovementioned effective field contribution, which are the boundary conditions

(BC) at the surface of the sample. The BC arising from the discontinuity of the

exchange interaction at the surface is referred to as “free” BC, and it can be written as

mentioned in the different references [23],[43],[44]. However, since throughout this

work the surface anisotropy and interlayer exchange are not considered, the BC used

are simply reduced to,

3 Micromagnetism numeric modelling

 49

€

∂m
∂n

= 0 (74)

3.3.2 Anisotropy interaction discretization

The local interaction term of the anisotropy is trivially discretized from the

uniaxial anisotropy energy density function (27) as,

€

uan,u (i, j,k) = K 1− m(i, j,k).uk()2[]
(75)

where uk is the unit vector in the direction of the anisotropy, and thus the total

anisotropy energy is given by,

€

Uan,u = uan,udV
V
∫ ≈ uan,u (i, j,k)ΔV

i, j ,k

N

∑

(76)

As before, the effective field contribution of the anisotropy can be determined from

the functional derivative of the uniaxial anisotropy energy density (75),

€

Han,u (i, j,k) = −
1

µ0MS

∂uan,u (i, j,k)
∂m(i, j,k)

=
2K

µ0MS
m(i, j,k).uk()uk

(77)

3.3.3 Magnetostatic interaction discretization

As a non-local term, in order to make the discretization of the magnetostatic field

Hdmg(r), it is necessary to take into account that this field at the point r(i,j,k) depends

on the magnetization m(r’) of all other points r’(i',j’,k’) within the sample’s volume.

Assuming that the magnetization m(i,j,k) at each cell (i,j,k) of the mesh is uniform, the

averaged magnetostatic field at each cell can be shown to be equal to [45],[46],

€

Hdmg(i, j,k) = −MS N αβ i − i', j − j ',k − k'().mβ (i', j',k ')
i' j 'k '

N

∑
β

(x,y,z)

∑

(78)

where the sum is over the total number of cells N, and N αβ (r–r’) is a 3×3 symmetric

tensor usually called the demagnetizing tensor and it is given by,

€

N αβ r − r '() =
1
4π

dSrdSr'

r − r 'Sr'

∫
Sr

∫

(79)

where Sr and Sr’ are the surfaces of the cells at the positions r and r’, whereas Sr and

Sr’ are the corresponding surface vectors Sr =Sr n and Sr’=Sr’ n, with n being the

normal unit vector. As it is stated by (78) the evaluation of the magnetostatic field

Hdmg, requires the summation of all cells within the sample, which means that it

involves a total of N2 operations (note that this number of operations will be

multiplied by three since each Cartesian component of the field is evaluated

3 Micromagnetism numeric modelling

 50

separately). All the other terms that contribute to the dynamic equation require only N

operations, since they are local interactions or at the most short range as is the case of

the exchange interaction. As a result, the simulations of samples composed by a large

number of cells become prohibitive if trying to evaluate (78) directly. However, since

the demagnetizing tensor N αβ only depends on the relative position between the

cells, (r–r’), and on the geometry of the sample, (78) can be recognized as a discrete

convolution of Nαβ with m. On one hand this means that N αβ only needs to be

calculated once at the beginning of the simulation, and on the other hand, the

magnetostatic field can be computed more efficiently using Fast Fourier Transform

(FFT) techniques [47],[48]. The reason why it is more efficient to use FFTs is that the

convolution is converted into a simple product in the Fourier space, which will be

briefly discussed below.

Each Cartesian coordinate of the magnetostatic field (78) Hdmg,n (n≡x,y,z), has the

form of a tridimensional discrete convolution in the coordinate space, which

accordingly to the convolution theorem allows for the following product in the

Fourier space,

€

F Hdmg,x (i, j,k)[] ≡ ˜ H dmg,x (kx,ky ,kz) = F N β (i, j,k)[]F mβ (i, j,k)[] =

= ˜ N αβ (kx,ky,kz) ˜ m β (kx ,ky,kz)
(80)

where (kx,ky,kz) are the coordinates in the Fourier space. The components Hdmg,y and

Hdmg,z are calculated in a similar manner. Therefore, in order to calculate the

magnetostatic field Hdmg, it is first necessary to determine the demagnetizing tensor

N αβ, perform its FFT and store it in memory. Once the magnetization at each point

of the mesh is known, the FFT is also performed for it, followed by the product in

Fourier space as described in (80). To retrieve the value of the magnetostatic field

back into the “real” space one simply has to perform the inverse FFT of (80),

€

Hdmg,x (i, j,k) ≡ F −1 ˜ H dmg,x (kx,ky ,kz)[] (81)

All of the previous operations amount to a total of six FFT (three direct for each

Cartesian component of m to the Fourier space, and three inverse for each of them to

bring the result of Hdmg back to the “real” space), plus three products for each

component of Hdmg (80). This means that by using the FFT method the number of

operations needed to calculate Hdmg is about Nlog2N for each FFT, which is a

considerable improvement when compared to the N2 operations that result when

3 Micromagnetism numeric modelling

 51

directly evaluating (78) (Fig. 13). Nonetheless some care has to be taken when using

this technique, because the convolution carried by the FFT method assumes that the

magnetization data present in the computational region repeats itself periodically in an

infinite space. In order to avoid the artifacts derived from this, the zero-padding

technique [50] is applied to the physical region where the magnetization data resides

in the Fourier space. This technique consists in adding computational cells that

surround the physical region with zero magnetization, in such a way that the total

number of cells is at least the double of that in the physical region in each direction,

i.e. Kx≥2Nx, Ky≥2Ny and Kz≥2Nz within the Fourier space (Fig. 14). By doing this, it is

ensured that the periodicity of the augmented region does not affect the physical one

when evaluating the FFTs.

Fig. 13 – Comparing the number of operations needed in a small 50 cell mesh sample between: directly
evaluating (78) to calculate Hdmg, N2 operations; using the FFT to calculate Hdmg (81) Nlog2N; and local
terms of the Heff, N.

The magnetostatic energy can be calculated numerically from (40) knowing that at

each cell the energy density is,

€

udmg(i, j,k) = −
1
2

µ0MS Hdmg(i, jk).m(i.j.k)[]

(82)

and thus the magnetostatic energy of the entire system is given by,

€

Udmg = udmg(r)
V
∫ dV ≈ udmg(i, j,k)

i, j ,k

N

∑ ΔV

(83)

3 Micromagnetism numeric modelling

 52

Fig. 14 – Representation of the physical space of size N=NxNyNz where the magnetization is solved in
contrast with the augmented Fourier space where the demagnetization field Hdmg is calculated using the
zero-padding technique. The magnetization is zero in the augmented region.

3.3.4 Zeeman interaction discretization

As the anisotropy interaction, the Zeeman one due to an external magnetic field is

local, and thus the discretization of both its energy density and effective field

contribution are trivially obtained. Therefore the Zeeman energy density of the system

can be calculated numerically from (41) as,

€

UZee = uZee(r)
V
∫ dV ≈ −µ0MS HExt (i, j,k).m(i, j,k)

i, j ,k

N

∑

(84)

where the modulus of the field HExt is chosen by the user and given as an initial

parameter.

3.3.5 Oersted interaction discretization

Like the magnetostatic field, the Oersted field HOe generated by a certain flowing

current density j, is also dependent of all cells and on the geometry of the magnetic

sample. However, unlike the magnetostatic field it does not depend on the

magnetization m, just on the value of the current density j(r,t) that runs through each

individual cell. Therefore the expression for the Oersted field (43), can be discretized

in a similar manner as it was done for the magnetostatic field in 3.3.3 to give,

€

HOe(i, j,k) = −MS
β

(x,y,z)

∑ Mαβ (i − i', j − j',k − k ') × jβ (i', j ',k')
i, j ,k

N

∑

(85)

3 Micromagnetism numeric modelling

 53

In this case Mαβ is an anti-symmetrical tensor that depends on the relative position

between, the center of the cell in which the field is being calculated and the source

cell generating the field [49]. Since equation (85) is a discrete convolution it can be

more efficiently evaluated by using the FFT method in order to determine the value of

HOe at each cell, in the same manner as it was discussed in section 3.3.3 for the

magnetostatic field.

Similarly the energy density of this field can be calculated from (42) for each cell

as,

€

uOe(r) = −
1
2

µ0MS HOe(i, j,k).m(i, j,k)
i, j ,k

N

∑

(86)

and the total energy,

€

UOe = uOe(r)
V
∫ dV ≈ uOe(i, j,k)

i, j ,k

N

∑ ΔV

(87)

3.3.6 Thermal interaction discretization and inherent issues

The discretization of the thermal field described by equation (48) is pretty

straightforward, since it already represents the thermal fluctuation for an individual

cell, as it was proposed by Brown [28]. Therefore when performing stochastic

simulations one simply has to calculate the value of (48) for each cell, since the

dynamic equation (53) or (58), usually referred to as the Langevin equation, already

includes in the effective field the Hth contribution. Nonetheless, something has to be

said about the validity of the Langevin formalism when applied to micromagnetism,

since there might be some debate to if expanding the single domain result obtained by

Brown to the micromagnetic formalism is adequate.

From the theoretical point of view it bears the question of whether the correlation

properties of the noise derived by Brown for a single magnetic moment [28], are

applicable to a system in which the magnetic moments strongly interact with each

other. In particular, there is the question of whether the noise should remain

uncorrelated in space and time between the cells, and if not, how should both space

and time correlations, as well as the strength of the noise, be determined [51],[52]. It

has also been pointed out that the model produces errors at high temperatures, in

particular it fails in reproducing the Curie temperature of a magnetic sample [53],[54].

Another shortcoming is that when thermal fluctuations are included the results

strongly depend on the discretization of the sample, even for sizes smaller than the

3 Micromagnetism numeric modelling

 54

exchange length lex (62), or the wall width lw (63) [54],[55]. All of the mentioned

issues are not independent form each other and a model that solves all of them has yet

to be achieved.

However despite the shortcomings of the model it does reproduce many results

rigorously. The fundamental issue is that as long as it reproduces Maxwell-Boltzmann

statistics in thermodynamic equilibrium, which is the condition imposed to determine

the strength of the thermal field (47), it is considered satisfactory. The verification of

such properties is described in the published work [56].

3.4 Numerically solving the dynamic LLG equation
In order to numerically solve the LLG equation including the spin-torque effect

and all effective field components, (53) or (58), different ordinary differential solver

algorithms can be implemented [50]. This section is thus dedicated to the discussion

of some algorithms that show how to update the dynamics of the magnetization based

on the discrete LLG equation, from the time t to t+δt.

3.4.1 Predictor-Corrector algorithm

The second order Predictor-Corrector uses as a basis the Euler method [50],

€

yn+1 = yn + h f (xn,yn)

€

⇒ m(t +δt) = m(t) +δt f (t,m(t)) (88)

where f(t,m(t))6, is equal to,

€

f t,m(t)() =
dm(t)
dt

= −
γ0

1+α 2()
m(t) × Heff (t) +αm(t) × m(t) × Heff (t)()[]

−
gµB j(t)P (m(t).p(t))
1+α 2()2MSd e

m(t) × m(t) × p(t)() −α m(t) × p(t)()[]

(89)

Equation (88) is used to predict the value of the magnetization m at the instant

(t+δt), thus for the first step the Predictor is defined as,

€

fPre t,m(t)() = −
γ0

1+α 2()
m(t) × Heff (t)[+αm(t) × m(t) × Heff (t)()]

−
gµB j(t)P (m(t).p(t))
1+α 2()2MSd e

m(t) × m(t) × p(t)() −α m(t) × p(t)()[]

(90)

The Predictor fPre(t,m(t)) is used to predict magnetization at the instant m(t+δt) as

described in (88). Said value of the magnetization has to be normalized before the

6 Note that the mention expression is for the CPP spin-torque term and thus should be changed to the
CIP spin-torque (57) accordingly to what one wishes to calculate.

3 Micromagnetism numeric modelling

 55

next step, since the module is not conserved in the operation, and afterwards it is used

to calculate the effective field Heff(t+δt). Recall that the Heff is a function of the

magnetization and thus has to be evaluated every time the magnetization changes. The

Corrector fCor(t+δt,m(t+δt)) is then evaluated from m(t+δt), which was calculated

from the Predictor step and Heff (t+δt) as,

€

fCor t +δt,m(t +δt)() = −
γ 0

1+α 2()
m(t +δt) × Heff (t +δt)[

+αm(t +δt) × m(t +δt) × Heff (t +δt)()]
−
gµB j(t +δt)P (m(t +δt).p(t +δt))

1+α 2()2MSd e
m(t +δt) × m(t +δt) × p(t +δt)()[

−α m(t +δt) × p(t +δt)()]

(91)

Once both Predictor and Corrector terms have been calculated, the final value of

the magnetization at m(t+δt) is given by,

€

m(t +δt) = m(t) +
δt
2

fPre(t,m(t)) + fCor (t +δt,m(t +δt))()

(92)

which again has to be renormalized since the method does not preserve the modulus

of the magnetization.

3.4.2 Runge-Kutta algorithm

One of the most used algorithms to solve differential equations is the forth order

Runge-Kutta method, which basically states that at each step the derivative is

evaluated four times, and has the following general form [50],

€

k1 = h f (xn ,yn)

k2 = h f xn +
h
2
,yn +

k1
2

⎛

⎝
⎜

⎞

⎠
⎟

k3 = h f xn +
h
2
,yn +

k2
2

⎛

⎝
⎜

⎞

⎠
⎟

k4 = h f (xn + h,yn + k3)

€

yn+1 = yn +
k1
6

+
k2
3

+
k3
3

+
k4
6

+O(h5)

(93)

where f(xn,yn) is the differential equation to solve, in this case (53) or (58), h is the

size of the step that takes the function from yn to yn+1, and O(h5) is the error term.

Therefore, and using (53) as an example for the differential equation f(xn,yn), the

numerical algorithm (93) can be written accordingly to the micromagnetic formalism

as,

3 Micromagnetism numeric modelling

 56

€

k1 = δt f t,m(t)()

k2 = δt f t +
δt
2
,m(t) +

k1
2

⎛

⎝
⎜

⎞

⎠
⎟

k3 = δt f t +
δt
2
,m(t) +

k2
2

⎛

⎝
⎜

⎞

⎠
⎟

k4 = δt f t +δt,m(t) + k3()

€

m(t +δt) = m(t) +
k1
6

+
k2
3

+
k3
3

+
k4
6

+O(h5)

(94)

where f(t,m(t)) is the same as in (89).

Notice that the effective field Heff(t), is also a function of m(t), due to the

exchange, anisotropy and magnetostatic field interactions, which means that at each

step kn the Heff as to be calculated before evaluating f(t,m(t)) (89). Also it has to be

taken into account the fact that the Runge-Kutta method does not conserve the

modulus of the magnetization, and thus the magnetization has to be renormalized at

each step kn. Solving equation (94) for every cell of the discretized sample will give

the numeric solution to the dynamic equation (53) or (58) at each time step δt.

Higher order Runge-Kutta methods can also be implemented through the general

expression [57],

€

k1 = h f (xn ,yn)

ki = h f (xn + cih, yn+ h aij k j
j=1

i−1

∑) i = 2, ... , s

€

yn+1 = yn + biki
i=1

s

∑ (95)

where the term s is the order or stage number of the method, and the parameters ci, bi

and aij, are determined according to a set of constraints [57] that depend on the order

of the method. The sixth order method was also implemented using the general

expression in (95) [57], and applying it to the micromagnetic formalism the same way

as described above for the forth order method.

3.5 A look into sequential programming
For mainly historic reasons, the sequential language mostly used within the

scientific media has been Fortran. IBM first developed it in the 1950s and it rapidly

became the dominant programming language not only within the scientific

community, but also in the engineering one. The main reason for its continued success

3 Micromagnetism numeric modelling

 57

within those communities is in particular attributed to its great efficiency in array

programming, as well as other features involving its original goal of being a Formula

Translating system. Such properties kept this language very much alive until recent

times, even when languages such as C, which appeared in the early 1970s, came

offering a more efficient mapping of typical machine instructions, and a more

general-purpose programming. Nonetheless, Fortran stayed strong due to its facility

and efficiency when solving arrays involving different numeric equations. For those

reasons the sequential micromagnetic code, from which this work was based on, was

written in Fortran.

This section is dedicated to briefly exposing how the sequential code is set in order

to solve the magnetization dynamics ((53) or (58)), followed by the limitations

inherent to it, which led to the will of developing a faster and more efficient parallel

code.

3.5.1 Stages of the sequential micromagnetic code

As the name suggests, in a sequential micromagnetic code each of the discretized

cells, which form the magnetic sample under study, are solved one by one

sequentially. Therefore the dynamic equation ((53) or (58)) has to be solved at each

time step δt once for each cell of the sample. As an example, if trying to solve the

dynamics in a Permalloy parallelepiped with dimensions Lx=200 nm, Ly=60 nm and

Lz=8 nm discretized in 4×4×4 nm3 cells, the dynamic equation has to be solved 1500

times for each time step δt. The total number of evaluations of the dynamic equation

is much larger than that since the dynamic equation is solved once for each Cartesian

component of the magnetization m, and either solver method presented in 3.4 implies

a much larger number of evaluations per time step.

The working principle of the sequential programming is pretty straightforward and

its basic running process can be seen in the simplified flow diagram of Fig. 15. It is

clear from the diagram that once all the simulation parameters are defined it should be

decided whether if the simulation to perform is static or dynamic.

The static simulation is usually used to determine the equilibrium state, and it is

governed by a final equilibrium criterion. The criterion is that the cross product

(m×Heff)≤Er, where Er is the maximum value of misalignment between m and Heff

allowed, so as to say that the system is in equilibrium. In this case the simulation will

run as many iterations as it needs in order to reach that equilibrium condition or until

3 Micromagnetism numeric modelling

 58

it reaches the maximum number of iterations allowed by the user. On the other hand,

the dynamic simulation will run until the allotted time window Δt, for it is reached by

sequentially increasing the time step δt, at the end of each solver algorithm

evaluation.

Fig. 15 – Flux diagram for a typical micromagnetic sequential code.

3 Micromagnetism numeric modelling

 59

Now a more detailed look at the stages that the sequential code runs through in an

example of a dynamic simulation is given:

1. Define all material parameters, sample dimensions, cell size, shape of the

sample, initial magnetization, solver time step δt parameter and final time

 Δt, and data output writing parameters.

2. Start the micromagnetic simulation, by reading all of the defined

parameters into proper simulation variables.

3. Calculate the demagnetizing tensor Nαβ (and anti-symmetrical tensor Mαβ

if the Oersted field is to be consider).

4. Call the desired algorithm to solve the dynamic equation.

5. Within the solver calculate the effective field components before each step

of the algorithm. This has to be done because the effective field is a

function of the magnetization due to the magnetostatic, anisotropy and

exchange interactions.

6. Write the output data as frequently as defined by the user in the inputs.

7. Exit the simulation once the pre-defined time window is reached.

Notice, for example, that in a sequential code step 5 is done for each cell of the

discretized magnetic sample through the use of a cycle, which for a sample composed

of many cells takes a considerable amount of time to calculate.

3.5.2 Advantages and limitations of sequential programming

The code from the research group where this work was developed was in

sequential Fortran, and while it is debatable to say if it is more efficient than other

sequential languages such as C one thing is for sure, programming sequentially is

much simpler than in parallel. However it does bring important limitations when

compared to the parallel one.

The great limitation nowadays has to do with the ever-rising demand for computer

power in order to solve not only a numerical problem faster but also with larger

geometry. Even though the rise in computational power continues as it is suggested by

Fig. 16, a technological foreseen limitation for central processing units (CPUs)

became evident in the first decade of the 21st century. Until then the computational

power of any given machine, was basically measured by the clock speed of the

processor. This was continuously increased up to sensitively ≈4.5 GHz (larger clock

3 Micromagnetism numeric modelling

 60

speeds can be achieved but using non-conventional cooling systems like water cooled

or liquid nitrogen), by increasing the number of transistors per unit of area, driven by

the technological advancements in the miniaturization of such crucial components,

down to the nano-scale. Of course the problem here is the amount of heat generated

by such densely packed transistors, which when trying to reach higher clock speeds

basically melted the device. The way to continue, not only the computational power

demand but also power efficiency, was to start producing multi-core processors.

However, like PC clusters that were already being used in super-computation, native

programming languages like Fortran or C do not naturally run in multi-cores, they

have to be programmed that way. Thus nowadays multi-core processors as power

efficient and computationally evolved as they are, they are more oriented for multi-

tasking not high performance computing. Also, the generation of multi-core

processors demanded new operating systems that could take advantage of the multi-

core capabilities, which imply new compatible language compilers. Therefore in order

to try and have higher performances in numeric computations a different approach

should be considered.

3.6 Mircromagnetics using Parallel programming in GPUs

3.6.1 Why parallel computing in GPU’s and not PC clusters?

Computer clusters have existed for some time now and they basically consist of the

desired number of individual computer units connected by fast local networks,

forming nodes that can be seen as a single system.

This actually was the first idea proposed by the research group in which this work

was developed, in order to reduce the time spent on each micromagnetic simulation.

Although this system would have, in principle, the advantage of not having to

significantly change the original micromagnetic code developed by the group, it had

other important inconveniences. First and most importantly the cost, at the beginning

of the work in 2009 the price of a computer cluster with the same computational

power of a top of the line NVIDIA GPU [58] was more or less 10 times higher. And

then there were the running costs and physical space issues needed to accommodate a

computer cluster. Not to mention that although it would be theoretically possible to

continue program in Fortran, this language is not natively prepared to run in

concurrent nodes and thus accelerate each simulation in a true parallel way. To do that

3 Micromagnetism numeric modelling

 61

it is necessary to write the code in a true parallel fashion between the cluster CPUs,

which is something that none of the members of the research group was familiar with.

The group thus turned its attention to NVIDIA’s GPU Compute Unified Device

Architecture (CUDA) [59], which is a parallel computing platform and programming

model that enables impressive increases in computing performance by harnessing the

power of said GPUs (Fig. 16). One of the main advantages of using CUDA is of

course the price per gigaflop of computational power and the fact that it is natively a

general purpose parallel language, being a mere extension of the C/C++ language

with special functions called kernels. These instruct the computer to execute the

desired algorithms within the GPU instead of the CPU. Details on how this actually

works will be given in the next section. Another advantage is regarding the compiler,

since more recent versions of compilers are usually not free, but in the case of the

CUDA language it is freely distributed by NVIDIA.

The programming language CUDA is not without its drawbacks, among them it

can be pointed out the fact that it is restricted to NVIDIA’s graphic cards and the

problem to solve has to fit inside the memory of the graphic card (if needed this can

be overcome by programming an hybrid system, although it is considerably more

complicated for newcomers, since it implies the need to balance the CPU

computational power with the GPU, concurrently). Nonetheless, the advantages far

compensate the limitations in the case of micromagnetic simulations (as well as in

many other research fields [60]), since it allowed for speed-ups roughly two orders of

magnitude higher than a CPU-based code, as it will be shown further.

3 Micromagnetism numeric modelling

 62

Fig. 16 – Floating-point operations per second evolution for the CPU and GPU over the last decade
[61].

3.6.2 Some considerations prior to CUDA parallel programming

Before going into the challenges of implementing a parallel micromagnetic code in

CUDA, some considerations should be made about what is needed in order to develop

it. As a first consideration, it is recommended to be familiar with the C/C++

programming language, since CUDA is built from it and thus will facilitate the

transition to this new language.

The next consideration is an essential one, which is to get a CUDA capable graphic

card, since it is an exclusive NVIDIA technology. However, NVIDIA is mainly a chip

manufacture and thus many other companies assemble CUDA capable graphic cards,

especially in the GeForce line of cards. This line of cards is mostly known due to the

original goal of this product, highly parallel computations for graphic rendering in

video games and other applications. Although for a few years now all NVIDIA’s

graphic cards are CUDA capable, the Tesla line is the recommended one for

numerical computations. The reason for it is that unlike the GeForce and Quadro

lines, which are respectively designed for consumer graphics and professional

visualization, the Tesla line was especially designed for parallel computing and

programming, and thus offers exclusive high performance computing features.

Nonetheless these cards are more expensive than the GeForce line, and thus it is up to

the user/programmer to decide if his work requires the advantages of one line over the

other, since high performance can also be achieved using the other lines of cards.

3 Micromagnetism numeric modelling

 63

3.6.3 GPU hardware

The main reason for the recent application of GPU computing outside graphic

applications, is that it has proven a powerful computation platform in many different

areas such as, general signal processing, physics simulations, finance, computer

biology, medicine, etc [60]. The reason for this tendency is that GPUs are specialized

for compute-intensive, highly parallel computations and therefore when compared to

a CPU, more transistors are devoted to data processing rather than caching and flow

control, (Fig. 17). In contrast, GPU’s typically have hundreds of floating-point

execution units and large context switch information storage space, resulting in a

small area remaining for cache. The cache is a small, very fast memory that stores

copies of the most frequently used data from the main memory locations.

Fig. 17 – Schematic representation of a CPU and a GPU. The GPU devotes more transistors to data
processing than the CPU, (ALU stands for Arithmetic Logic Unit) [61].

State-of the-art CPUs (at the writing of this thesis), such as the Intel i7-3970X, can

only run 12 threads per core (double that if using HyperThreading), whereas one of

the NVIDIA’s cards that was used, the Tesla C2070 GPU has 448 cores to run the

threads (the most recent Kepler GPU family has up to 2688 cores). Moreover,

execution of concurrent threads in a CPU is generally time consuming and

complicated to perform, since the operating system must swap threads on and off host

execution channels in order to provide multithreading capability. Context switches

(when two threads are swapped) are therefore slow and expensive. In contrast, threads

on a GPU are extremely lightweight. In a typical system, thousands of threads are

queued up for work (in 32 thread wraps), and if the device must wait on one wrap of

threads, it simply begins executing work on another. Because separate registers are

allocated to all active threads, no swapping of registers or state need occur between

device threads. Resources stay allocated to each thread until execution is completed.

3 Micromagnetism numeric modelling

 64

Since going into deeper understanding of the working hardware properties of

GPUs and CPUs starts going outside the goals of the thesis, which is focused on

programming a parallel solution for the micromagnetic formalism, it is recommended

to consult the manufacture references [58] for more details. Nonetheless, the main

idea is that each instruction or thread is handled by the GPU faster that in a CPU,

since many more cores are available in a GPU to perform said instructions

simultaneously.

3.6.4 CUDA programming model

As it was said before, CUDA is NVIDIA’s parallel computing architecture that

manages computation on its GPUs, and it does it by providing a simple interface for

the programmer, based on the industry standard C/C++ with a few extensions. When

programming in CUDA, the GPU is viewed as a device capable of executing a very

large number of threads in parallel, and it operates as a coprocessor to the main CPU,

which in turn is designated as the host. The host CPU manages the flow of the

program by selecting the compute-intensive portions of applications that are to be

performed in parallel, and it off-loads them from the host to the device memory. In

other words the portion of an application that is executed many times (typically

performed in a loop cycle in a sequential code), but is independent on different data,

can be isolated into a function that is executed simultaneously on the device (GPU) in

many different threads. To that effect, such a function is compiled accordingly to the

instruction set of the device, and the resulting function, called a kernel in CUDA, is

downloaded to the device.

3 Micromagnetism numeric modelling

 65

Fig. 18 – Schematic representation of the indexation of the thread blocks inside a grid. Note that each
block can be three-dimensional and thus indexed by the three-component vector threadIdx.x, .y, .z. In
this case the grid is two-dimensional and thread blocks within it are addressed by the two-component
vector, blockIdx.x, .y.

When a kernel is called, the function is executed N times in parallel by N CUDA

threads, which is different from a regular C function (or Fortran or any other

sequential language) that is executed only once at a time. A kernel is defined using the

__global__ declaration specifier (there are also others but this is the general one [61]).

Code that is written to be executed in both the host and the device can be contained in

a single source file with a “.cu” extension. The code compilation is executed using the

nvcc CUDA C-compiler, in which the resulting executable file coordinates the

execution of the host and device components accordingly to the C runtime for CUDA

[62].

As shown in Fig. 18 when a kernel is called, the threads within it are organized

into blocks, who in turn are organized into grids, whose dimensions are specified

3 Micromagnetism numeric modelling

 66

when using <<<…>>>, a CUDA execution configuration syntax (see section 3.6.5 for

more details). Each thread has a unique identification (ID), which is only accessible

within a kernel through the threadIdx variable, which is a three-component vector

(Fig. 18). Therefore, threads can be identified using either one-dimensional, two-

dimensional, or three-dimensional thread indexes, which in turn may form one-

dimensional, two-dimensional or three-dimensional thread blocks (Fig. 18). There is a

limit to the number of threads per block, since all threads within one block are

executed in the same processor core and must share the limited memory resources.

This limit depends on the GPU architecture being used [61].

Blocks are organized into a grid of thread blocks, (Fig. 18, Fig.19). This grid may

also be one-dimensional, two-dimensional or three-dimensional. The number of

thread blocks within a grid is usually indicated by the size of the data being processed

or by the number of processors in the system (if there is a lot of data to be processed

there would be one block per processor core). Each block within the grid can also be

identified by a one-dimensional, two-dimensional or three-dimensional index

accessible within the kernel through the blockIdx variable. The dimensions of the

thread block are accessible within the kernel through the blockDim variable [61].

3 Micromagnetism numeric modelling

 67

Fig. 19 – Schematic representation of the CUDA programming model, serial code executes on the host
while parallel code executes on the device. The host issues a succession of kernel invocations to the
device. Each kernel is executed as a batch of threads organized as a grid of thread blocks. In this case,
both the blocks and grids are two-dimensional [61].

The CUDA memory hierarchy is depicted in Fig. 20. Unlike in the host, where the

random access memory (RAM) is generally equally accessible to all code (within the

limitations enforced by the operating system), on the device RAM is divided virtually

and physically into different types, each of which has a special purpose. These

memory spaces include global, local, shared, constant, texture and registers [61].

Among these memory spaces, the global and texture memories are the most abundant.

Global, local and texture memory have the greatest latency, followed by constant

memory, registers and shared memory. Because it is on-chip, shared memory is much

faster than the local and global memories, so it is often used as a scratch pad to store

3 Micromagnetism numeric modelling

 68

intermediate results of computations, buffering reads and writes in order to achieve

optimal memory access patterns and to provide inter-thread communication within a

block. Local memory is so named because its scope is local to the thread, not because

of its physical location. In fact, local memory is off-chip and access to it is as

expensive as the global memory [63].

Fig. 20 – CUDA memory model. A thread has access to the device’s DRAM and on-chip memory
through a set of memory spaces of various scopes [61].

As in any other programming language, memory optimization is a very important

aspect for performance increase, and particularly in CUDA a lot of care has to be

given to the essential memory transfers between host and device. The maximum off-

chip memory bandwidth (depends on the graphic card; 144 GB/s for the C2070 GPU

[58]) inside the graphic card is much higher than the maximum bandwidth between

the host memory and the device memory (8 GB/s on PCIe x16 Gen2 [63]).

Consequently in order to achieve the best overall application performance, it is critical

to minimize data transfer between the host and the device, even if that means running

kernels on the device that do not demonstrate any speed-up compared with running

them on the host [63]. These data transfers depend on the nature of the code to

parallelize, or in other words on the granularity of the problem. In parallel computing,

granularity is a qualitative measure of the ratio between the computation and

3 Micromagnetism numeric modelling

 69

communication. For a coarse (fine) granularity problem, relatively large (small)

amounts of computational work are performed between communication events.

3.6.5 Some examples of CUDA programming

After the previous section it is possible that the reader, even if being familiar with

typical programming architectures, to be a little confused on how exactly the CUDA

language works when actually trying to parallelize a code. Therefore, this section is

dedicated to explaining a few examples involving typical operations between arrays,

emphasizing as much as possible the differences between typical sequential C

language and parallel CUDA.

⇒ Example 1: Adding two arrays and saving the result into a different array

This example shows how different are the steps to take between the C and CUDA

languages, in order to make a simple add operation between the corresponding

elements of two arrays a[n] and b[n], where in this example the number of elements is

n=5. The example will be divided in distinctive sections so as to better show the

differences between the two languages (Check Appendix A for full code).

The first part of any code is usually the declaration of variables and, if necessary,

their memory reservation and initialization. As can be seen in Fig. 21 in C it is only

needed to declare the variables to use once, whereas in CUDA besides the variables

one would create in C, the host variables defined has h_a, h_b, etc, it is also needed to

create those same variables within the memory of graphic card, that is the device

variables dev_a, dev_b, etc. In the CUDA case, the host variables are usually where

the variables are initialized, and then they are uploaded to the device memory, to be

changed accordingly to a certain function that is to be performed in parallel. A good

example for a host variable within the micromagnetic formalism is the initial

magnetization of the sample, which after it is read or initialized is sent to the

corresponding variable that was created within the device memory. Once the

magnetization information is in a device variable it is possible to solve the dynamics

of the individual magnetic spins of the sample in parallel, using the discretized LLG

equation, which is also solved within the device memory.

3 Micromagnetism numeric modelling

 70

{	

...	

//Creating	
 all	
 the	
 needed	
 host	
 variables	
 and	
 initializing	
 them	

int	
 ndim=5;	

float	
 *a;	
 //	

float	
 *b;	
 //Creating	
 the	
 arrays	

float	
 *c;	
 //	

a	
 =	
 new	
 float[ndim];	
 	
 	
 	
 	
 //Defining	
 the	
 dimensions	
 of	
 the	
 array	

memset(a,0,sizeof(float)*ndim);	
 //Initializing	
 the	
 array	
 at	
 0	

b	
 =	
 new	
 float[ndim];	
 	
 	
 	
 	
 //	

memset(b,0,sizeof(float)*ndim);	
 //	

c	
 =	
 new	
 float[ndim];	
 	
 	
 	
 //	

memset(c,0,sizeof(float)*ndim);	
 //

...	

}	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 IN C
{	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 IN CUDA	

...	

/*Creating	
 the	
 variables	
 on	
 the	
 host*/

int	
 ndim=5;	

float	
 *h_a;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

float	
 *h_b;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

float	
 *h_c;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

h_a	
 =	
 new	
 float[ndim];	
 	
 	
 	
 	
 	
 	
 //Defining	
 the	
 dimensions	
 of	
 the	
 array	

memset(h_a,0,sizeof(float)*ndim);	
 //Setting	
 the	
 array’s	
 memory	
 at	
 0	
 	

h_b	
 =	
 new	
 float[ndim];	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

memset(h_b,0,sizeof(float)*ndim);	
 	
 	
 	

h_c	
 =	
 new	
 float[ndim];	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

memset(h_c,0,sizeof(float)*ndim);	
 	
 	

	

/*Creating	
 the	
 variables	
 on	
 the	
 device*/	

float	
 *dev_a;	

float	
 *dev_b;	

float	
 *dev_c;	
 	
 	
 	
 	

//Reserving	
 the	
 array’s	
 memory	
 within	
 the	
 device	

cudaMalloc((void**)&dev_a,sizeof(float)*ndim);	
 	

//Setting	
 the	
 array’s	
 memory	
 within	
 the	
 device	
 at	
 0	

cudaMemset(dev_a,0,sizeof(float)*ndim);	

	

cudaMalloc((void**)&dev_b,sizeof(float)*ndim);	

cudaMemset(dev_b,0,sizeof(float)*ndim);	

cudaMalloc((void**)&dev_c,sizeof(float)*ndim);	

cudaMemset(dev_c,0,sizeof(float)*ndim);	

	

/*Defining	
 the	
 size	
 of	
 the	
 block	
 and	
 grid*/	

dim3	
 dimBlock(5);	
 	
 	
 	
 //Number	
 of	
 threads	
 per	
 block	

dim3	
 dimGrid(ndim/dimBlock.x);	
 //Number	
 of	
 blocks	
 within	
 the	
 grid	

...	

}	

Fig. 21 – Creation of variables needed to perform an add operation between the element of two arrays
of 5 elements a[] and b[], in both C language and CUDA. In CUDA more variables are required since
the same variables need to be created inside the device memory in order to perform the calculation in
parallel.

Also shown in Fig. 21, is the initialization of the variables that define the number

of threads in each block, dimBlock in this example, and how many blocks are inside

the grid, dimGrid. These two variables can also be defined at the moment of the kernel

call the following way <<<dimGrid,dimBlock>>>. However, it is a good practice to

define it before, keeping in mind that these are dim3 type variables, i.e. they have x, y

3 Micromagnetism numeric modelling

 71

and z integer dimensions. If only one of those dimensions is defined, as it is shown in

Fig. 21, all the others are initialized at 1 by default [61].
{	

...	

//Loop	
 to	
 set	
 the	
 values	
 within	
 each	
 array	
 and	
 to	
 perform	
 the	
 add	
 operation	

	
 for(int	
 i=0	
 ;i<ndim;	
 i++){	

	
 	
 	
 	
 	
 	
 	
 	
 a[i]=1+i;	

	
 	
 	
 	
 	
 	
 	
 	
 b[i]=3;	

	
 	
 	
 	
 	
 	
 	
 	
 c[i]=a[i]+b[i];	

	
 }	

//Loop	
 to	
 print	
 the	
 results	
 on	
 the	
 screen	

	
 for(int	
 i=0	
 ;i<ndim;	
 i++){	

	
 	
 	
 	
 	
 	
 	
 	
 printf("a[%d]=%1.1f	
 	
 	
 b[%d]=%1.1f	
 	
 	
 	
 c[%d]=%1.1f\n",	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 i,a[i],i,b[i],i,c[i]);	

	
 }	

...	

}	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 IN C	

{	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 IN CUDA	

...	

/*Loop	
 to	
 set	
 the	
 values	
 of	
 each	
 array	
 within	
 the	
 host	
 memory*/	

	
 	
 	
 	
 for(int	
 i=0	
 ;i<ndim;	
 i++){	

	
 	
 	
 	
 	
 	
 	
 	
 h_a[i]=1+i;	

	
 	
 	
 	
 	
 	
 	
 	
 h_b[i]=3;	

	
 	
 	
 	
 }	

/*Copying	
 both	
 arrays	
 to	
 the	
 GPU	
 device	
 variables	
 dev_a	
 and	
 dev_b*/	

	
 	
 	
 	
 cudaMemcpy(dev_a,	
 h_a,	
 sizeof(float)*ndim,	
 cudaMemcpyHostToDevice);	

	
 	
 	
 	
 cudaMemcpy(dev_b,	
 h_b,	
 sizeof(float)*ndim,	
 cudaMemcpyHostToDevice);	

	
 	
 	
 	
 	
 	
 	
 	

/*	
 Kernel	
 call	
 –	
 this	
 function	
 is	
 performed	
 within	
 the	
 device*/	

	
 	
 	
 	
 KernelName<<<dimGrid,dimBlock>>>(dev_a,dev_b,dev_c,ndim);	

	
 	
 	
 	
 	

/*Returning	
 the	
 result	
 of	
 the	
 kernel	
 operation	
 back	
 to	
 a	
 host	
 variable*/	

	
 	
 	
 	
 cudaMemcpy(h_c,	
 dev_c,	
 sizeof(float)*ndim,	
 cudaMemcpyDeviceToHost);	

	

//Loop	
 to	
 print	
 the	
 results	
 on	
 the	
 screen	

	
 	
 	
 	
 for(int	
 i=0	
 ;i<ndim;	
 i++){	

	
 	
 	
 	
 	
 	
 	
 	
 printf("a[%d]=%1.1f	
 	
 	
 b[%d]=%1.1f	
 	
 	
 c[%d]=%1.1f\n",	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 i,h_a[i],i,h_b[i],i,h_c[i]);	

	
 	
 	
 	
 }	

...	

}	

Fig. 22 – In the C part, it is shown how to make the simple add operation between the arrays a[] and b[]
within the same cycle for in which they are defined, followed by the print on screen instruction in order
to verify the results. In the CUDA part, it is shown that first it is required to initialize the arrays with
the desired values (host memory), and then they are copied to the device variables. Then the kernel
function call can be made to perform the add operation using the device variables. When the kernel
finishes it is necessary to bring the result from the device variable dev_c back to the host one h_c, and
then perform the print on screen instruction so as to validate the result.

In C, after the declaration of variables it is possible to immediately perform the add

operation using a for cycle. In this example, as it is shown in Fig. 22, it was chosen a

cycle from 0 to 4 accounting for the 5 elements of the array, and the add operation

saved into array c[] within the same for cycle in which the values of a[] and b[] are

defined, for the sake of brevity. After the add operation in C the results can simply be

printed on screen with the corresponding instruction in order to verify them. However,

3 Micromagnetism numeric modelling

 72

in CUDA more steps are required (Fig. 22), first as in C the host arrays are set with

the desired values, afterwards those values have to be copied from the host to device

memory, in order to perform the add operation in parallel. This is done by using the

cudaMemcpy(...,cudaMemcpyHostToDevice); instruction shown in Fig. 22. To perform

the device calculation the CUDA kernel function can now be called through the

instruction KernelName<<<...>>>(...);	
 (Fig. 22), which indicates the host to make

the device function call described in Fig. 23, and also assigns the needed variables to

perform such operation. The add operation is then calculated in parallel by assigning

to each thread of the block an index (Fig. 23), which in the case of this example

corresponds exactly to each coordinate of the array. The if() instruction in Fig. 23, is

not actually necessary for this example, it is put there in order to not calculate more

threads per block than the necessary ones, and to show that all the typical C language

operators are valid inside a kernel.
/*Kernel	
 function	
 of	
 type	
 global	
 with	
 the	
 corresponding	
 variables	
 declaration*/	

__global__	
 void	
 KernelName(float	
 *dev_a,float	
 *dev_b,float	
 *dev_c,	
 int	
 ndim){	

	

//Thread	
 index	
 variable	
 used	
 to	
 address	
 each	
 element	
 of	
 the	
 array	
 to	
 a	
 thread	

	
 	
 	
 	
 int	
 index	
 =	
 blockIdx.x	
 *	
 blockDim.x	
 +	
 threadIdx.x;	

//Performing	
 the	
 add	
 operation	
 in	
 parallel	

	
 	
 	
 	
 if(index	
 <	
 ndim){	

	
 	
 	
 	
 	
 	
 	
 	
 dev_c[index]	
 =	
 dev_a[index]	
 +	
 dev_b[index];	

	
 	
 	
 	
 }	

//Instruction	
 to	
 guarantee	
 the	
 synchronization	
 of	
 threads	
 within	
 a	
 block	

	
 __syncthreads();	

}	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 IN CUDA	

Fig. 23 – Kernel function with the __global__ qualifier that is executed on the device, which is
callable from the host, and showing the declaration of the thread variable and the add operation
between each coordinate of the arrays a[] and b[]. Also shown is the __syncthreads() instruction,
which is used to coordinate communication between the threads of a same block that help in avoiding
read-after-write, write-after-read, or write-after-write hazards, when some of the threads within a block
access the same addresses in a shared or global memory.

Once the kernel finishes, in order to print the results of the performed operation it

is needed to first transfer the results from the device back to the host memory as it is

shown in Fig. 22 with the cudaMemcpy(...,cudaMemcpyDeviceToHost); instruction.

Since it is a good practice to free the allocated memory of the variables that are no

longer being used in Fig. 24 it is shown how to do it in both the C and CUDA

examples.

From the previous example one can already have an idea on how the

implementation of the dynamic equation ((53) or (58)) can be achieved in order to

take advantage of the parallel computation capabilities of the NVIDIA’s GPUs.

Basically every time a parallelizable part of the micromagnetic code is identified

3 Micromagnetism numeric modelling

 73

(calculation of Heff components, spin-torque, LLG equation, etc.), adequate host and

device variables are created. Then a kernel function is associated to each calculation

that is to be performed in parallel in the same way as it was shown in the example

above (or see Appendix A for full code).

Other explicit examples could be given with more complex calculations between

arrays, however this one already focuses the essential part on how to work with the

parallel scheme of a kernel function in CUDA. Therefore, for more details on the

programming techniques and syntax, it is recommended to consult the CUDA

programming guide [61] and best practices guide [63], as well as a C/C++ guide.

{	

...	

	
 	
 	
 	
 delete	
 a;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	

	
 	
 	
 	
 delete	
 b;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 freeing	
 the	
 allocated	
 memory	
 of	
 the	
 arrays	

	
 	
 	
 	
 delete	
 c;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	

...	

}	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 IN C	

{	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 IN CUDA	

...	

/*Freeing	
 the	
 allocated	
 host	
 memory	
 of	
 the	
 arrays*/	

	
 	
 	
 	
 delete	
 h_a;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 delete	
 h_b;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 delete	
 h_c;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

/*Freeing	
 the	
 allocated	
 device	
 memory	
 of	
 the	
 arrays*/	

	
 	
 	
 	
 cudaFree(dev_a);	

	
 	
 	
 	
 cudaFree(dev_b);	

	
 	
 	
 	
 cudaFree(dev_c);	

...	

}	

Fig. 24 – Freeing the allocated memory. In CUDA you should not only free the memory of the host
variables but also the ones on the device.

⇒ Example 2: Using the CUDA Fast Fourier Transform library CUFFT

The parallel programming language CUDA offers a FFT library called CUFFT,

which is modeled after one of the most popular and efficient CPU-based FFT libraries

the FFTW [64]. The CUFFT provides a configuration mechanism called a plan, which

pre-configures internal building blocks such that the execution time of the transform

is as low as possible for the given configuration and particular GPU hardware

selected. Therefore, when the execution function is called the actual transform takes

place following the plan of execution. Accordingly to NVIDIA, this approach brings

the advantage that once the user creates a plan the library retains whatever state is

needed to execute it multiple times without recalculating the configuration. There are

three types of FFTs supported by the CUFFT library in either single or double

3 Micromagnetism numeric modelling

 74

precision and they are: complex-to-complex, real-to-complex and complex to real

[64].

From the results obtained during the development of the parallel code it was

verified that the CUFFT is very effective, especially if compared to the sequential

Fortran-based code, as can be asserted in section 3.7. However, in order to get the

most out of it the developer should try to restrict the size along all dimensions, while

performing the FFT, so that size can be factored as 2a
 *3b*5c*7d, (where a,b,c,d=

0,1,2,3,…) [64], since accordingly to the Cooley-Tukey algorithm used by the CUFFT

library those are the sizes for which the transform is highly optimized, (this can be

verified in Fig. 33). Ideally the size along any dimension should be a multiple of 2, 3,

5 or 7, since for example a transform of size 3n will likely be faster than one of size

2a
 *3b, even if the latter is slightly smaller [64].

The following description details how to perform a FFT using the CUFFT parallel

library, in either the forward or inverse direction of a given array.

The simplest example is in computing a certain number (batch) of one-dimensional

discrete transforms of size nSize, which using the CUFFT typically looks like the

description in Fig. 25. There, it is shown that the first step needed is the creation of a

plan variable using the cufftHandle declaration, which is followed by the definition

of the plan using the cufftPlan1d() instruction that has the following configuration:
cufftPlan1d(cufftHandle	
 *plan,	
 int	
 nSize,	
 cufftType	
 type,	
 int	
 batch);

where:

⇒ plan is a pointer to the cufftHandle object
⇒ nSize	
 is the transform size, i.e. number of elements of the array to

 transform
⇒ type	
 is the transform data type, which is described in Table 1.
⇒ batch	
 is the number of transforms of size nSize.

Table 1 – Fast Fourier transform types within the CUFFT library

Types of FFTs, cufftType Description of the type of transform
CUFFT_R2C Real to complex
CUFFT_C2R Complex to real
CUFFT_C2C Complex to complex
CUFFT_D2Z Double to double-complex
CUFFT_Z2D Double-complex to real
CUFFT_Z2Z Double-complex to double-complex

	

	

3 Micromagnetism numeric modelling

 75

{	

...	

//	
 Define	
 the	
 handle	
 variable	
 that	
 allows	
 access	
 to	
 CUFFT	
 plans.	

	
 	
 	
 	
 cufftHandle	
 plan;	

	

//	
 Create	
 a	
 1-­‐dimensional	
 CUFFT	
 plan	
 of	
 a	
 float	
 Complex	
 to	
 float	
 Complex.	
 	

	
 	
 	
 	
 cufftPlan1d(&plan,	
 nSize,	
 CUFFT_C2C,batch);	
 	

	
 	
 	
 	
 	
 	
 	
 	

//	
 Transform	
 the	
 data	
 to	
 the	
 inArray	
 to	
 the	
 outArray	
 in	
 the	
 forward	
 	

//	
 direction	
 by	
 execution	
 the	
 previously	
 defined	
 plan.	

	
 	
 	
 	
 cufftExecC2C(plan,	
 inArray,	
 outArray,	
 CUFFT_FORWARD);	

	

//	
 Destroy	
 the	
 CUFFT	
 plan.	

	
 	
 	
 	
 cufftDestroy(plan);	

...	

}	

Fig. 25 – Typical steps when using the CUFFT library in order to perform a batch of one-dimensional
transforms.

Once the plan is set, it can be executed to perform the desired transform using the

cufftExecC2C() instruction (note that this instruction depends on the type of

transform [64]), which has the following configuration:
cufftExecC2C(cufftHandle	
 *plan,	
 cufftComplex	
 *indata,	
 cufftComplex	

*outdata,	
 int	
 direction);

where:

⇒ plan is the cufftHandle object for the plan to update
⇒ indata	
 is the pointer to the single-precision complex input data, in the

 GPU memory, to transform
⇒ outdata	
 is the pointer to the single-precision complex output data, in the

 GPU memory, to transform
⇒ direction	
 is the transform direction: CUFFT_FORWARD or CUFFT_INVERSE.

The last step of the transform execution should be to destroy the plan, so as to

release the allocated resources of the plan using the cufftDestroy() instruction.

Different return values can be used in order to check if each command was

successfully performed. However, since these are more advanced options of CUDA

and although some of them were used in the developed code, for the sake of

simplicity these were left out and the reader should consult the CUDA references

[61]-[65] for more information and examples.

Since all the arrays that are used to compute the previously mentioned

contributions to the dynamic equation ((53) or (58)), which are more efficiently

calculated using FFTs, are three-dimensional arrays a more practical example is given

next. (The full code of the example is shown in Appendix B).

3 Micromagnetism numeric modelling

 76

{	

...	

/*Initializing	
 the	
 arrays*/	

	
 for(int	
 i=0	
 ;i<ndim;	
 i++){	

	
 	
 	
 	
 	
 	
 	
 	
 h_a[i]=	
 1+i;	

	
 	
 	
 	
 	
 	
 	
 	
 h_b[i]=	
 3;	
 	
 	

	
 	
 	
 }	

/*Copying	
 the	
 values	
 of	
 h_a	
 and	
 h_b	
 to	
 the	
 GPU	
 device	
 variables	
 dev_a	
 and	
 dev_b*/	

	
 	
 	
 	
 cudaMemcpy(dev_a,	
 h_a,	
 sizeof(float)*ndim,	
 cudaMemcpyHostToDevice);	

	
 	
 	
 	
 cudaMemcpy(dev_b,	
 h_b,	
 (sizeof(float)*ndim),	
 cudaMemcpyHostToDevice);	

/*Kernel	
 call*/	

	
 	
 	
 	
 KernelName<<<dimGrid,dimBlock>>>(dev_a,dev_b,dev_c,nx,ny,nz);	

...	

}	

...	

{	

...	

__global__	
 void	
 KernelName(float	
 *dev_a,	
 float	
 *dev_b,	
 cuFloatComplex	
 *dev_c,	

	
 	
 	
 	
 	
 int	
 nx,	
 int	
 ny,	
 int	
 nz){	

	
 	
 	
 	
 int	
 index	
 =	
 blockIdx.x	
 *	
 blockDim.x	
 +	
 threadIdx.x;	

	

	
 	
 	
 	
 	
 if(index	
 <	
 (2*nx*2*ny*2*nz)){	

	
 	
 	
 	
 	
 	
 	
 if(index	
 <	
 (nx*ny*nz)){	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 dev_c[index]	
 =	
 make_cuFloatComplex(dev_a[index]	
 +	
 dev_b[index],	
 0.0e0);	

	
 	
 	
 	
 	
 	
 	
 }else{	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 dev_c[index]	
 =	
 make_cuFloatComplex(0.0e0,	
 0.0e0);	
 	
 	

	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 }	
 __syncthreads();	

...	

}	

Fig. 26 – Reusing example 1 with the idea of performing the CUFFT on array dev_c[], which contains
the result of the add operation of arrays h_a[] and h_b[]. Note that since the transform to perform is of
complex-to-complex dev_c[], is declared as a float complex and inside the kernel the add operation in
realized inside the real part of the make_cuFloatComplex(real,imaginary) instruction, so as to adapt
the complex dev_c[], using the floats h_a[] and h_b[]. Also note that the first if runs 8 times more
than the total dimension of the problem nx*ny*nz. This is done in order to zero-pad the dev_c[] array
as it is described in the figure.

As in example 1, in this example a simple add operation is also done between each

coordinate of the arrays h_a[] and h_b[]. However in this case the array in which the

operation is saved, array dev_c[], is of float complex type (see Appendix B) in order

to subsequently perform the Fourier transform. Therefore and since arrays h_a[] and

h_b[] are of type float, inside the kernel besides the add operation, the adaptation to

the complex type variable of array dev_c[] is also performed, as described in Fig. 26.

Also note that inside the kernel shown in Fig. 26 the array dev_c[] is also being zero-

padded in the regions outside the problem’s data as described in section 3.3.3, in order

to avoid the numeric artifacts of using FFTs. Once the array that is to be transformed

using the CUFFT library is set with the wished values, it is possible to start creating

the aforementioned plan of the transform. To do that it is useful to create a function

that when called from the host code simply takes the dimensions, of the in-array to

3 Micromagnetism numeric modelling

 77

transform and of the out-array where the results of the transform are saved, as is

described in Fig. 27.

As suggested by Fig. 27 the function prototype created, cuFFT3DF(), can be called

multiple times to make the transform without having to create a new handle plan.

This is very useful since several FFT calls are made during a micromagnetic

simulation. When the function cuFFT3DF() is called, a plan is created for the three-

dimensional complex-to-complex transform through the instruction cufftPlan3d(),

followed by its execution with the cufftExecC2C()	
 instruction in the forward

direction (Fig. 27). Once that is done the cufftDestroy(plan) is executed in order to

release the allocated resources. When finally exiting the cuFFT3DF()	
 function, the

desired values in Fourier space within the outArray (fftdev_c	
 array in Appendix B)

are ready to be used in further calculations within the GPU memory.
//	
 Function	
 prototype	
 for	
 the	
 3-­‐dimensional	
 FFT	

void	
 cuFFT3DF	
 (int	
 xSize,	
 int	
 ySize,	
 int	
 zSize,	
 cuFloatComplex	
 *inArray,	

	
 	
 	
 	
 	
 	
 	
 	
 cuFloatComplex	
 *outArray);	

{	

...	

//	
 Calling	
 the	
 function	
 to	
 perform	
 the	
 FFT	
 on	
 array	
 dev_c	
 and	
 	

//save	
 it	
 to	
 array	
 fftdev_c	

	
 cuFFT3DF	
 (2*nx,2*ny,2*nz,	
 dev_c,	
 fftdev_c);	

...	

}	

...	

void	
 cuFFT3DF	
 (int	
 xSize,	
 int	
 ySize,	
 int	
 zSize,	
 cuFloatComplex	
 *inArray,	

	
 	
 	
 	
 	
 	
 	
 	
 cuFloatComplex	
 *outArray){	

//	
 Define	
 the	
 handle	
 variable	
 that	
 allows	
 access	
 to	
 CUFFT	
 plans	

	
 	
 	
 	
 cufftHandle	
 plan;	

//	
 Create	
 a	
 3-­‐dimensional	
 CUFFT	
 plan	
 of	
 a	
 float	
 Complex	
 to	
 float	
 Complex	
 array	

	
 	
 	
 	
 cufftPlan3d(&plan,	
 xSize,	
 ySize,	
 zSize,	
 CUFFT_C2C);	
 	
 	
 	
 	
 	
 	

//	
 Transform	
 the	
 data	
 in	
 the	
 inArray	
 to	
 the	
 outArray	
 in	
 the	
 forward	
 direction	

	
 	
 	
 	
 cufftExecC2C(plan,	
 inArray,	
 outArray,	
 CUFFT_FORWARD);	

//	
 Destroy	
 the	
 CUFFT	
 plan	

	
 	
 	
 	
 cufftDestroy(plan);	

}	

Fig. 27 – Steps needed to perform a three-dimensional FFT using the CUFFT library. The cuFFT3DF()
function prototype shown defines the order in which each Cartesian variable should be placed as well
as the in and out arrays. When the function is called the three-dimensional FFT is performed
accordingly to the defined plan, which in this case is a complex-to-complex forward transform.

⇒ Example 3: Using the independently developed CUDA library CUDPP

As it was said before in order to parallelize a certain part of a code, said part

cannot depend on other data. So how can an operation like a summation between each

element of an array, be made without having to resource to a cycle? This would

effectively mean one operation per element of the array and thus be in a sequential

way. Operations like the mentioned summation are possible to perform in a more

3 Micromagnetism numeric modelling

 78

parallel, or in other words less sequential way, by the use of an independently

developed library.

The CUDA Data Parallel Primitives Library (CUDPP) [65] is defined as a library

of data-parallel algorithm primitives such as parallel prefix-sum (“scan”), parallel sort

and parallel reduction. Primitives such as these are important building blocks for a

wide variety of data-parallel algorithms, including sorting, stream compacting, and

building data structures such as trees and summed-area tables. Although this library

was independently developed by different contributors [66], and was initially

developed to test the algorithms developed in C for CUDA, it is now freely available

to anyone who whishes to use it with the CUDA runtime application interface. In

order to use it however, care has to be taken between the versions of the CUDDP

library and the CUDA version, since they may not be compatible.

The CUDPP library was used on one hand, to determine the average between the

elements of an array, and on the other hand to determine the element of an array

whose value is maximum.

In order to determine the summation of the elements within an array it is useful to

create a function that will return the value of the sum by simply taking the array

whose elements one wishes to sum and its dimensions. Since the magnetization

variable to which this was applied is of type float, the function type created was of the

same type, as it is shown in Fig. 28.

The first steps to take when using the CUDPP library is to set the configuration of

the task to perform using the structure reference CUDPPConfiguration and giving it a

name (config in Fig. 28). This structure is used to specify the algorithm, data type,

operator and options of the task. Obviously depending on the configuration chosen it

is possible to perform other operations with this library. Each component of the

configuration is as follows [66];

⇒ CUDPPAlgorithm	
 algorithm; is the algorithm to be used.

⇒ CUDPPOperator	
 op;	
 	
 is the numerical operator to be applied.

⇒ CUDPPDatatype	
 datatype;	
 is the data type of the input arrays.

⇒ Unsigned	
 int	
 options;	
 are the options to configure the algorithm.

3 Micromagnetism numeric modelling

 79

//	
 Function	
 that	
 returns	
 the	
 sum	
 value	
 of	
 all	
 the	
 float	
 elements	

//within	
 the	
 array	
 inArray	

float	
 Sum(float	
 *inArray,	
 size_t	
 xSize,	
 size_t	
 ySize,	
 size_t	
 zSize){	

	

//	
 Setting	
 up	
 the	
 configuration	
 of	
 the	
 task	
 to	
 perform	
 using	
 the	
 CUDPP	
 library	

	
 	
 	
 	
 CUDPPConfiguration	
 config;	
 	

	
 	
 	
 	
 config.algorithm	
 =	
 CUDPP_SCAN;	
 	
 	
 	

	
 	
 	
 	
 config.op	
 =	
 CUDPP_ADD;	

	
 	
 	
 	
 config.datatype	
 =	
 CUDPP_FLOAT;	

	
 	
 	
 	
 config.options	
 =	
 CUDPP_OPTION_BACKWARD	
 |	
 CUDPP_OPTION_INCLUSIVE;	

//	
 Since	
 the	
 successive	
 summations	
 have	
 to	
 be	
 saved	
 in	
 a	
 different	
 array,	
 a	
 new	

//array	
 has	
 to	
 be	
 created	
 within	
 the	
 device	
 memory	

	
 	
 	
 	
 static	
 float	
 *outArray;	

	
 	
 	
 	
 cudaMalloc((void**)&outArray,sizeof(float)*xSize*ySize*zSize);	

	
 	
 	
 	
 cudaMemset(outArray,0,sizeof(float)*xSize*ySize*zSize);	

//	
 Creating	
 the	
 handle	
 variables	
 needed	
 to	
 set	
 up	
 the	
 plan	

	
 	
 	
 	
 CUDPPHandle	
 cudppLibrary;	

	
 	
 	
 	
 cudppCreate(&cudppLibrary);	

	
 	
 	
 	
 CUDPPHandle	
 scanPlan;	

//	
 Defining	
 and	
 executing	
 the	
 plan	
 accordingly	
 to	
 the	
 configuration	
 set	

	
 	
 	
 	
 cudppPlan(cudppLibrary,&scanPlan,config,xSize*ySize*zSize,1,0);	

	
 	
 	
 	
 cudppScan(scanPlan,outArray,inArray,xSize*ySize*zSize);	

//	
 Destroy	
 the	
 plan	
 of	
 the	
 handle	
 variable	
 scanPlan	
 and	
 all	
 associated	
 internal	

//storage	

	
 	
 	
 	
 cudppDestroyPlan(scanPlan);	

//	
 Destroys	
 the	
 CUDPP	
 library	
 instance	
 releasing	
 allocated	
 memory	

	
 	
 	
 	
 cudppDestroy(cudppLibrary);	
 	

	

	
 	
 	
 	
 float	
 sum;	

//	
 Copy	
 the	
 value	
 of	
 the	
 summation	
 stored	
 in	
 the	
 first	
 element	
 of	
 outArray	
 to	
 the	

//host	
 variable	
 sum	

	
 	
 	
 	
 cudaMemcpy(&sum,&outArry[0],sizeof(float),cudaMemcpyDeviceToHost);	

	
 	
 	
 	
 cudaFree(outArray);	
 //	
 Freeing	
 the	
 device	
 memory	
 allocated	
 to	
 outArray	

//	
 Return	
 the	
 value	
 of	
 the	
 float	
 function	
 value	
 sum	
 	
 	
 	
 	
 	

	
 	
 	
 	
 return	
 sum;	

}	

Fig. 28 – Defining a function that sums all of the elements of inArray and returns that value. The
summation is done between two elements in a prefix-sum or cumulative sum as y0=x0, y1=x0+x1,
y2=x0+x1+x2,… and each yn saved in a outArray in such a way that the first element of the array as the
summation of all elements of inArray.

Following the description in Fig. 28, the algorithm chosen was the CUDPP_SCAN,

which allows the scan of the elements of the array or to make a cumulative-sum as

y0=x0, y1=x0+x1, y2=x0+x1+x2, etc. The operator chosen was the CUDPP_ADD, which adds

two operands and the data type CUDPP_FLOAT, since the array is of type float in this

example. Finally the chosen options of the algorithm were, CUDPP_OPTION_BACKWARD

that instructs the algorithm to operate backwards from the end to the start of the array,

and CUDPP_OPTION_INCLUSIVE, which makes the scan include all the elements up to

and including the current element. The option backwards was chosen so as to save the

cumulative sum of the inArray components onto the first element of the outArray.

Since an out array is needed to save the result of the operation defined in the

configuration, the outArray is created within the memory of the device, as indicated

in Fig. 28 after the configuration. Then two CUDPPHandle variables have to be created,

3 Micromagnetism numeric modelling

 80

the first one defined is followed by the cudppCreate() instruction, in order to create

an instance of the CUDPP library which in turn returns a handle type, and this must

be called before any other CUDPP function [65]. The second CUDPPHandle variable is

used to set up the plan of the operation to perform. Once that is done, the plan can be

defined in order to perform the sum, as it was set in the configuration, by using the

cudppPlan() instruction, which has the following configuration [65]:
cudppPlan(const	
 CUDPPHandle	
 cudppHandle,	
 CUDPPHandle	
 *planHandle,	

CUDPPConfiguration	
 config,	
 size_t	
 numElements,	
 size_t	
 numRows,	
 size_t	

rowPitch);	

where,

⇒ cudppHandle	
 is a handle to an instance of the CUDPP library used for
 resource management.

⇒ planHandle	
 is a pointer to an opaque handle to the internal plan.
⇒ config	
 	
 is the configuration structure specifying the algorithm and

 options.
⇒ numElements	
 is the maximum number of elements to be processed.
⇒ numRows	
 	
 is the number of rows (2D operations) to be processed
⇒ rowPitch	
 is the pitch of the rows of input data, in elements

After this scan plan is defined it can be executed by using the cudppScan()

instruction with the configuration [65]:
cudppScan(const	
 CUDPPHandle	
 planHandle,	
 void*	
 outArray,	
 void*	
 inArray,	

size_t	
 numElements);	

where,

⇒ planHandle	
 is a handle to plan for this scan.
⇒ outArray	
 is where the output scan is saved in GPU memory.
⇒ inArray	
 is the input to scan in GPU memory.
⇒ numElements	
 is the number of elements to scan.

Once the cudppScan() is completed both CUDPPHandle variables should be

destroyed in order to properly release the resources allocated for each of them, as

indicated in Fig. 28. The final part of the function is devoted to retrieving the desired

sum of all the elements within inArray, which was saved to the first element of the

outArray as defined in the configuration set up. This retrieval is described in the last

part of Fig. 28 followed by the release of the no longer used memory, and then ending

with the return of the value sum back to where the function was originally called.

The CUDPP library was also used to determine the element of an array whose

value is maximum. This is useful, for example, to compare the cell within a sample

3 Micromagnetism numeric modelling

 81

with the maximum m×Heff with the error parameter Er, in equilibrium simulations, as

mention in section 3.5.1.

The process to determine the maximum element of an array using the parallel

CUDPP library is practically the same as the sum operation seen previously in Fig.

28. The only difference is in the configuration setup in which instead of defining an

add operation (config.op=CUDPP_ADD) a search for the maximum between two

operands (config.op=CUDPP_MAX) is defined, as shown in Fig. 29.
{	

...	

//	
 Setting	
 up	
 the	
 configuration	
 of	
 scan	
 for	
 maximum	
 using	
 the	
 CUDPP	
 library	

	
 	
 	
 	
 CUDPPConfiguration	
 config;	
 	

	
 	
 	
 	
 config.algorithm	
 =	
 CUDPP_SCAN;	
 	
 	
 	

	
 	
 	
 	
 config.op	
 =	
 CUDPP_MAX;	

	
 	
 	
 	
 config.datatype	
 =	
 CUDPP_FLOAT;	

	
 	
 	
 	
 config.options	
 =	
 CUDPP_OPTION_BACKWARD	
 |	
 CUDPP_OPTION_INCLUSIVE;	

...	

}	

Fig. 29 – Setting up the configuration in order to find the maximum element of an array, using the
CUDPP library.

The next section is dedicated to the description of the micromagnetic parallel code

implementation using the seen CUDA GPU programming language. Since the

fundamentals of the language were already mentioned in this section there will be

several references to these examples in the following section.

3.6.6 Making the parallel micromagnetic code

Here it is given a detailed explanation on how each part of the micromagnetic code

is achieved when writing it in the CUDA parallel language, which was briefly

introduced in the previous section. The description includes the difference between

both spin-torques, meaning for when the excitation is with either CPP or CIP. The

main differences between the torques are in the calculation of the spin-torque

components, where the calculation of the CIP is pretty straightforward using (57)

since just one material is involved. However, in the case of CPP devices more care

has to be taken, since it has to be considered the dynamics of possibly two different

magnetic materials, plus the back-torque interaction (section 2.3.7) between them.

The first thing to do when making a parallel code is to identify which parts of it

can be done in parallel. In the case of the micromagnetic code developed this can be

asserted by looking at the flux diagram in Fig. 30. There it can be seen that the

sequential part controlled by the CPU, usually designated as the host in CUDA,

manages the flow of the program by reading the input data and exporting it to the

3 Micromagnetism numeric modelling

 82

device accordingly to the parts of the code that are to be performed in parallel, as

suggested in Fig. 19. (Note: Once the data is loaded into the device memory it stays

there until freed). In micromagnetics the parts that naturally come to mind to

parallelize are all of the calculations performed for each cell of the discretized

magnetic sample. In other words all of the discretized expressions seen in 3.3 (in short

all of the components of the Heff) and the dynamic equation using either of the

algorithms seen in 3.4 with or without the spin-torque effect (2.3.7).

Fig. 30 – Flux diagram for the parallel CUDA code (dynamic simulation case), illustrating that all of
the operations that are done for each cell of the sample are calculated in parallel within the device, and
followed by the host, as it is suggested in Fig. 19.

3 Micromagnetism numeric modelling

 83

Following the flow of the code described in Fig. 30, after the host reads all of the

input data, without forgetting to properly allocate the host and device variables, the

first calculations performed are the calculations of the components of the

demagnetizing tensor (79) and/or the anti-symmetric tensor needed for the HOe (85).

As it was previously mentioned, these tensors only depend on the relative position

between the cells ri-rj and thus need only to be calculated once at the beginning of the

simulation. Once the tensors are calculated they are saved in the Fourier space by

using the parallel CUFFT library, as described in example 2 of section 3.6.5, and thus

stored within the device memory for further calculations. The next step will be to

“tell” the host to instruct the device to start running the chosen solver algorithm,

where the first part of it is the determination of all the contributions to the effective

field Heff. Each field contributing to the Heff is calculated through the use of a kernel,

as the one described in example 1 of section 3.6.5, in order to calculate in parallel the

value of the field in each computational cell by using the corresponding discrete field

equation seen in 3.3. Once each individual field is calculated, the total Heff is

determined by the use of another kernel that calculates the total field sum in each cell

in parallel.

Since the calculation of the magnetostatic field Hdmg is the most time consuming

aspect of micromagnetic simulations a more detailed look will be given to this

particular field. As it was seen in 3.3.3 the calculation of this field is a simple

multiplication between the demagnetizing tensor and the magnetization in the Fourier

space, given by (80). Since the demagnetizing tensor in Fourier space has already

been previously saved within the device memory, the magnetization m also has to be

transferred to Fourier space in a similar manner as in example 2 of section 3.6.5. First

the kernel call kernel_M_Calc<<<…>>> is done so as to transform the float variable m

into complex-float type, followed by the CUFFT3F() function calls that transform the

data to the Fourier space (Fig. 31). Now that both the tensor and magnetization are in

Fourier space, equation (80) can be solved in parallel by using the kernel call

kernel_H_Calc<<<…>>>, where each corresponding cell of the tensor array

demagTensor.cuSDnn (where nn=xx, yy, zz, xy, xz or yz) is multiplied with each

corresponding cell of the array hdmg.cuMn	
 (where n=x, y or z) and saved to array

hdmg.cuHn	
 (where n=x, y or z).

3 Micromagnetism numeric modelling

 84

{	

...	

//	
 Defining	
 the	
 block	
 and	
 grid	
 sizes	
 	
 	

	
 	
 	
 	
 dim3	
 dimBlock(BLOCK_SIZE);	

	
 	
 	
 	
 dim3	
 dimGrid((Dim.Kx*Dim.Ky*Dim.Kz)/dimBlock.x	
 +	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ((Dim.Kx*Dim.Ky*Dim.Kz)%dimBlock.x	
 ==	
 0?0:1));	

	

//	
 Kernel	
 used	
 to	
 convert	
 the	
 magnetization	
 from	
 float	
 to	
 Complex	
 float	

	
 	
 	
 	
 Kernel_M_Calc<<<dimGrid,dimBlock>>>(hdmg.cuMx,hdmg.cuMy,hdmg.cuMz,Dim.Kx,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Dim.Ky,Dim.Kz,m.cuma,m.cumb,m.cumc,m.sizeX,m.sizeY,m.sizeZ);	

	

//	
 Functions	
 that	
 send	
 the	
 zero-­‐padded	
 dimensions	
 and	
 arrays	
 to	
 perform	
 the	
 forward	

//CUFFT	
 of	
 the	
 magnetization	
 for	
 each	
 Cartesian	
 component	

	
 	
 	
 	
 cuDFFT3F	
 (Dim.Kx,	
 Dim.Ky,	
 Dim.Kz,	
 hdmg.cuMx);	

	
 	
 	
 	
 cuDFFT3F	
 (Dim.Kx,	
 Dim.Ky,	
 Dim.Kz,	
 hdmg.cuMy);	

	
 	
 	
 	
 cuDFFT3F	
 (Dim.Kx,	
 Dim.Ky,	
 Dim.Kz,	
 hdmg.cuMz);	

	

//	
 Kernel	
 where	
 the	
 magnetostatic	
 field	
 Hdmg	
 is	
 calculated	
 in	
 the	
 Fourier	
 space	

	
 	
 	
 	
 Kernel_H_Calc<<<dimGrid,dimBlock>>>(hdmg.cuHx,hdmg.cuHy,hdmg.cuHz,hdmg.cuMx,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 hdmg.cuMy,hdmg.cuMz,Dim.Kx,Dim.Ky,Dim.Kz,demagTensor.cuSDxx,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 demagTensor.cuSDyy,demagTensor.cuSDzz,demagTensor.cuSDxy,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 demagTensor.cuSDxz,demagTensor.cuSDyz);	

	

//Functions	
 that	
 send	
 the	
 zero-­‐padded	
 dimensions	
 and	
 arrays	
 to	
 perform	
 the	
 inverse	

CUFFT	
 of	
 the	
 magnetostatic	
 field	
 for	
 each	
 Cartesian	
 component	

	
 	
 	
 	
 cuDFFT3B	
 (Dim.Kx,	
 Dim.Ky,	
 Dim.Kz,	
 hdmg.cuHx);	

	
 	
 	
 	
 cuDFFT3B	
 (Dim.Kx,	
 Dim.Ky,	
 Dim.Kz,	
 hdmg.cuHy);	

	
 	
 	
 	
 cuDFFT3B	
 (Dim.Kx,	
 Dim.Ky,	
 Dim.Kz,	
 hdmg.cuHz);	

	

//Kernel	
 where	
 the	
 real	
 part	
 of	
 the	
 field	
 is	
 obtained	

	
 	
 	
 	
 Kernel_hdmg_Calc<<<dimGrid,dimBlock>>>(hdmg.cuhdmga,hdmg.cuhdmgb,hdmg.cuhdmgc,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 hdmg.sizeX,hdmg.sizeY,hdmg.sizeZ,hdmg.cuHx,hdmg.cuHy,hdmg.cuHz,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Dim.Kx,Dim.Ky,Dim.Kz,inv.Kxyz);	

...	

}	

Fig. 31 – Steps needed to calculate the Hdmg in parallel within the GPU. First the sizes of the block and
grid are defined. Note that here the data is zero-padded as described in 3.3.3. Then the kernel
kernel_M_Calc<<<…>>> is called to convert the magnetization from a float to a complex value. Once that
is done the forward transform is performed by use a function created by the programmer that sends all
of the information needed to perform the FFT as described in example 2 of section 3.6.5. This is
followed by the kernel, kernel_H_Calc<<<…>>>, where the magnetization and demagnetizing tensor in
Fourier space are multiplied component by component in parallel to give Hdmg in Fourier space. The
last part is to perform the inverse transform of the calculated value followed by a kernel that extracts
only the real part of Hdmg.

Once the value of the magnetostatic field Hdmg is calculated in Fourier space the

inverse transform of each component is performed by again using the CUFFT library

(as described in example 2 in section 3.6.5). This is followed by the kernel call

kernel_hdmg_Calc<<<…>>> function in which the field is converted from complex to

float, and back to the real dimensions of the sample. The calculation of the

coefficients of the demagnetizing tensor is performed in double precision and then the

result of the field Hdmg truncated to single-precision. This is done on one hand to

avoid the loss of precision due to the numerical behavior of the analytical formulas

used to calculate said coefficients [67], and on the other hand to keep using, for the

most part, single-precision variables since the CUDA code runs significantly faster

3 Micromagnetism numeric modelling

 85

with them, as suggested in Fig. 16. In terms of numerical “correctness” it was found

sufficient enough to only calculate the demagnetizing tensor coefficients in double

precision when performing the micromagnetic simulations. This can be asserted in the

code validation section 3.7 where the developed CUDA parallel code is compared to

the full double-precision sequential Fortran-based code.

When developing the code for CPP devices in which the dynamics of two different

ferromagnetic materials has to be solved, (one viewed as the thick and the other as the

thin layer of the device), the steps taken to calculate the Hdmg are the same. The

difference here is that care has to be taken about the kernel’s index reference, in order

to properly normalize the magnetization m being used in the calculation of the field in

each layer, since the saturation magnetization MS of each material might be different.

Naturally the magnetostatic field interaction of one layer over the other is also being

taken into account here, when calculating the magnetostatic field in each layer at each

time step.

Continuing with the description of the flow diagram present in Fig. 30, if applying

a certain current density through the sample the next step is to calculate the spin-

torque effect. In either case of spin-torque, CPP or CIP, a kernel function is created in

order to first calculate the spin-torque dependent parts of the dynamics equations (53)

or (58). In the case of CPP device geometry some care has again to be taken with the

kernel’s index reference, in order to multiply each ferromagnetic layer by the

appropriate material parameters, and most importantly to avoid non-coalesced access

to the device global memory when addressing the indexes to each layer of different

material. One of the most single important performance considerations in CUDA

architecture is to ensure that global memory accesses are coalesced whenever possible

[61],[63]. Another important aspect to take into account regards to the range of the

STT interaction, which is considered to be limited only to the adjacent layers of the

ferromagnets with the spacer. Therefore more care is needed with the addressing of

the indexes, since only the spacer adjacent layer of each ferromagnet is under the STT

effect. (As an example if the thick layer is of 16 nm and the cell discretization is 4 nm

in the z-axis direction, then the thick layer has 4 layers. The STT contribution is only

considered for the layer adjacent to the spacer and not the other 3). Two kernels are

used for the CPP device, one to calculate the STT on the thick ferromagnet and

another for the thin ferromagnet. This allows for more configuration options when

3 Micromagnetism numeric modelling

 86

running a simulation since it is possible to have only the thick or the thin

ferromagnets being solved dynamically as well as both of them.

In the case of the CIP device geometry, since there is only one ferromagnetic

material whose dynamics has to be solved, the spin-torque contribution is simply

calculated within the designated kernel by solving (57).

Once the spin-torque is calculated for each cell the dynamic equation (53) or (58)

can be evaluated. Naturally this is done accordingly to either of the numeric

algorithms described in section 3.4, where each stage of the algorithm progression is

handled by a corresponding kernel function so as to perform it in parallel.

The full process is repeated until the total time window designated for the

simulation is reached, writing the desired output data like the averaged magnetization

m, as often as decided by the user. Note that writing the output data involves

retrieving data from the device memory back to the host memory, which as was

mentioned previously is the most time consuming aspect of the CUDA parallel

programming language. Therefore this process should only be done at these desired

points of the simulation, avoiding as much as possible unnecessary memory transfers.

In the next section the validation of the developed parallel micromagnetic code

using NVIDIA’s CUDA is presented, in order to test its accuracy and efficiency by

comparing it to CPU-based sequential solvers like OOMMF [68] and the Fortran code

from which it was based on.

3.7 Parallel GPU micromagnetic code validation and performance
With the aim of testing the accuracy and efficiency of the developed GPU parallel

code the Micromagnetic Modeling Activity Group (µMAG) [69] standard problem #4

will be presented, as well as a general performance test.

3.7.1 Standard problem #4

This standard problem focuses on the dynamic aspects of micromagnetic

simulations. Accordingly to the information posted in µMAG website, about the

standard problem #4, a rectangular elongated ferromagnetic sample of length

L=500nm, width w=125nm and thickness t=3nm of typical Permalloy material

parameters (A=1.3×10-11 Jm-1, MS=8.0×105 Am-1, K=0 Jm-3) is considered. The initial

magnetization used is an s-state obtained by saturating the sample along the [1, 1, 1]

direction and then slowly removing the field. The interactions involved in this

3 Micromagnetism numeric modelling

 87

simulation are the magnetostatic, exchange and external fields, where a damping

parameter of α=0.02 is considered. Two different external fields are applied, a field 1

of 25 mT oriented 170º counter-clockwise from the positive x-axis, and a field 2 of 36

mT directed 190º also counter-clockwise from the positive x-axis. The results are

shown in Fig. 32 for the developed GPU parallel micromagnetic code. When

comparing the solutions reported by the different groups [69], (one of which is from

the research group in which this work was developed), with the results obtained using

the developed parallel GPU code, the verdict is that it is completely satisfactory.

Fig. 32 – Standard problem #4 computed using the developed GPU parallel micromagnetic code: a)
Comparing the time evolution of the averaged magnetization along the y-axis under the influence of
field 1 (25mT, 170º counter-clockwise of +x-axis) between Oommf, Fortran and CUDA. b) time
evolution of the averaged magnetization along the y-axis under the influence of field 1 for four
different discretizations. c) Comparing the time evolution of the averaged magnetization along the y-
axis under the influence of field 2 (36mT, 190º counter-clockwise of +x-axis) between Oommf, Fortran
and CUDA. d) time evolution of the average magnetization along the y-axis under the influence of field
2 for four different discretizations.

Although the solutions reported by the different groups were all obtained using cell

sizes smaller than the exchange length (lex=5.69 nm), the presented results in Fig. 32

show an even smaller discretization in order to also check the robustness of the

solution as the cell size goes down. For each field, four discretizations in the xy plane

Δx=Δy= 5.0, 2.5, 1.25 and 1 nm were considered, all of them computed using the same

3 Micromagnetism numeric modelling

 88

time step of δt = 50 fs (in the z direction, Δz=3 nm was used in all). As can be seen in

Fig. 32, for the case of field 1 the solution is virtually independent of the

discretization whereas in field 2 some discrepancies appear roughly after 0.35 ns. This

divergence of results is expected due to the physical nature of the problem under field

2 and is also seen for other simulations, as reported in the µMAG website [69].

However the solutions clearly converge as the cell size decreases.

Besides concluding that the developed GPU parallel code accurately reproduces

the expected results of standard problem #4, of note is the fact that more general

simulations with a mesh size of Δx=Δy=1.0 nm are hardly feasible with a standard

CPU sequential code, in particular of longer time windows, whereas with the GPU

parallel solver such problems are easily tackled. Since the validity has been checked,

the next section is dedicated to the performance of the developed GPU parallel code.

3.7.2 Performance test

Now that the accuracy of the developed parallel code has been verified in the

previous section, a performance test is shown by comparing it to the Fortran

sequential code in which it was based on. The hardware used for the test was; for the

Fortran CPU simulation an Intel Core 2 Quad Q9300 processor (2.5 GHz and 6 MB of

L2 cache memory), whereas for the developed GPU parallel code a NVIDIA Tesla

2070 GPU (1.15 GHz and 6GB of RAM memory).

The comparison is made in terms of the time required to perform a single time step

when using a second order predictor-corrector method, which at least involves the

calculation of all the components of the effective field twice, as was previously

discussed in 3.4.1. The results are shown in Fig. 33 for a two-dimensional problem of

N×N cells, where N was systematically increased up to 2000×2000 cells. (Note: in

Fortran it was not possible to go much over 500×500 cells, without crashing). From

those results it can be asserted that the developed code is considerably faster than the

sequential Fortran code from which it was based on, being of up two orders of

magnitude faster for meshes with a larger number of cells. Also shown in Fig. 33 is

the difference of using or not the optimal size of the sample in the Fourier space when

performing the FFT using the CUFFT library, as it was discussed in example 2 of

section 3.6.5. By carefully zero-padding the sample in Fourier space it is possible to

reduce the simulation time of less favorable geometries, as it is shown in Fig. 33 from

the CUDA-1 to the CUDA-2 case.

3 Micromagnetism numeric modelling

 89

Fig. 33 – Time required performing one time step using the 2nd order predictor-corrector solver
algorithm for a two-dimensional problem of N×N cells. The time it takes for the sequential Fortran
code to perform each time step becomes significantly larger than the CUDA GPU parallel code, as the
number of cells increases. The difference between CUDA-2 and CUDA-1 comes, respectively, from
using or not a zero-padding technique to round up to the optimal dimensions in Fourier space, as
discussed in example 2 of section 3.6.5.

The results discussed in section 3.7, among others, were published in the paper

titled “Micromagnetic simulations using Graphic Processing Units” [56], in which

the version of the developed code used was the commercial tailored one developed in

conjunction with GoParallel S. L. [70].

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 90

4 Different investigations using both sequential-
CPU and parallel-GPU micromagnetic codes

This section presents the published works that resulted from the PhD period that

this thesis describes. These investigations involve the study of different phenomena

on distinct devices such as MTJs, spin-valves and long ferromagnetic stripes, using

both sequential-CPU and parallel-GPU codes that were used and developed during the

period of this work.

The first part is dedicated to the investigations done using the Fortran sequential

code. These were the very first studies done by the author during the initial period of

learning and experience gaining on micromagnetics, from both the theoretical and

computational points of view. These works put in evidence some of the already

discussed limitations (3.5.2) of sequential simulations, which lead to the development

of the parallel code. The second part of this chapter is then dedicated to the studies

done using the CUDA parallel code, which allowed for a more efficient study of large

temporal simulations, as vortex oscillations, and large spatial simulations involving

long ferromagnetic strips.

4.1 Studies made using the sequential-CPU micromagnetic code
Both studies shown here are focused on the magnetization dynamics in MTJs. The

first investigates the STT induced magnetization switching [71] when using a non-

uniform current density distribution (NUCD) based on the fact that the resistance

throughout the MTJ is not the same, and compare it to the usual uniform current

distribution (UCD) model. The second one studies the influence of thermal activation

on STT induced magnetization switching [72].

4.1.1 Magnetization switching driven by spin-transfer-torque in high-TMR
magnetic tunnel junctions

Introduction
As it was said in the introduction of this thesis the study of STT devices opens the

possibility of different and new device designs, in particular the use of MTJs as ST-

MRAMs. With that in mind a micromagnetic study of the magnetization switching in

high-TMR (Tunnelling magneto-resistance) MTJs that takes into account the non-

uniform current density (NUCD) distribution was performed. This NUCD is

implemented by employing a parallel resistance channel model, under the hypothesis

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 91

that the current flows perpendicularly to the sample plane. In standard studies the

current distribution is considered uniform throughout the device. However, this is not

a realistic approximation, in particular in high-TMR MTJs. This can be visualized by

considering a spatial magnetization configuration that possesses domains in which the

magnetization orientation differs by 180º. In the region where the magnetization is

parallel (P) to the reference magnetization of the pinned layer, the resistance (current

density) is smaller (larger) when compared to that of the anti-parallel (AP) region.

The voltage dependence of the TMR was not considered in these simulations,

which in principle overestimates the NUCD effect. However, comparing the results

with numeric computations using the uniform current density (UCD) distribution,

gives the possibility to fix a working limit to the model application.

The studied device was a CoFe(8nm)/MgO(0.8nm)/Py(4nm) nanopillar of elliptical

90 nm × 35 nm cross-section. The CoFe is exchange biased and acts as the pinned

layer (PL), whereas the Permalloy, represents the free-layer (FL).

Simulation details
Here the particularity of the previously non-discussed variable current density is

described and shown how it is taken into account in the dynamic equation (53).

The magnetoresistance R of the MTJ depends on the relative orientation of the

normalized magnetization vector of both the FL (m) and the PL (p) and can be

approximated within the macro-spin approach [20] by,

€

R = RP +
ΔR
2
1−m.p[] (96)

where ΔR=RAP–RP, with RAP and RP representing resistances of the AP and P state

respectively (note, it is considered throughout this study that the magnetization of the

PL p, is fixed and points along the +x direction). Assuming that the current flows

perpendicular to the sample plane j=jz(x,y)uz and since it depends on the value of R

(96) when making the 2D numerical discretization, the jz(x,y) is computed for each

cell becoming a state-dependent function jz(x,y,m). In other words it is a nonlocal

term, since it depends on the spatial configuration of the FL magnetization. The FL is

discretized in 2.5×2.5×4 nm3 cells (area ΔS =6.25 nm2). Let N be the total number of

cells, the total current I0 is then given by,

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 92

€

I0 = ΔS jz (i, j,m)
i, j

N

∑ = S jz (i, j,m)
i, j

N

∑ (97)

where S is the total area of the FL, and the indexes (i, j) are the cell coordinates of the

2D discretization of the FL. Considering N parallel channels (Fig. 34), one for each

cell, and the macro-spin approximation (96), it is possible to say that the resistance of

each channel is then given by r(i,j)=RP+(ΔR/2)[1-m(i,j).p(i,j)], plus considering that

J0=I0/S, the current density distribution for each channel can be computed using

simple circuit theory considerations as,

€

jz (i, j,m) =
J0

r(i, j) 1
r(i, j)i, j

N

∑
 (98)

Fig. 34 – Sketch of the simulated MTJ showing the parallel channel resistance model, as well as the
conductivity symbols for each layer.

With expression (98) it is now possible to represent the time dependent NUCD

method implemented in the micromagnetic framework, which is no more than

replacing j in the dynamic equation (53) by the one expressed in (98).

In the effective field Heff, it was taken into account the standard micromagnetic

contributions (external, anisotropy, magnetostatic and exchange fields), the

magnetostatic coupling between the PL and FL and the Oersted field, which

differently from previous studies [73],[75], depends on the magnetization state since

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 93

HOe[jz(m)]. In the performed simulations the polarization function considered was the

one described by (52), and the other parameters used were the following: external

field µ0H=50 mT (applied along the positive easy axis direction so as to compensate

the magnetostatic coupling with the PL), MS=6.44×105 Am-1; MPS= 1.15×106 Am-1;

 α=0.01; η=0.7 [76], A=1.3×1011Jm-1, RP=100 Ω; RAP=200 Ω, which are typical

experimental parameters [77],[79]. The time step used was of 28 fs.

In order to check the validity of the hypothesis (current perpendicular to the sample

plane), a finite element commercial software (MagNet [80]) was used to calculate the

spatial current density distribution. This software uses a 3D worksheet that allows for

the drawing of the desired three-dimensional MTJ geometry, from which the software

automatically generates the finite element mesh. The following conductivities of each

layer were introduced in order to perform the computation, (Fig. 34 and Fig. 35;

σCu=5.77×107 Sm-1; σAF=σPL=σMgObarrier=1.111×103 Sm-1; σCoFe(-16%)=1.029×103 Sm-1;

σCoFe(+8%)=1.322×103 Sm-1). The variation to the conductivity of the FL is introduced

so as to view the current density behavior, and assert if the tangential component of

the current density is of significance, especially in the zone where conductivity

changes. The conductivity in the central area was decreased by 16% and increased in

the outer regions by 8% of the nominal value. This is done so as to resemble a

magnetic domain with higher magneto-resistance in the central region and lower on

the outer regions. The spatial distribution of the conductivity can be visualized in Fig.

35, in which the lighter central area represents where the conductivity was decreased

by 16%, and the darker lateral regions increased by 8%. After performing the

computation, the spatial distribution of the current density was evaluated.

Analyzing the results of the MagNet simulation (Fig. 35), it was observed that the

current density j mainly lays in the normal direction (z), representing in the worst case

95% of the total j. Looking at the variation of the normal component of j (Fig. 35 (a)),

there are two distinct zones in the FL, each corresponding to the different values of

the conductivity, where the most significant variations of j normal are observed at the

border of these two regions. It is possible to crosscheck this result with the tangential

component of j shown in Fig. 35 (b), which yields a gradient of current density

towards the border of the conductivity variation (equivalent to a domain wall). The

tangential component of j is always less than 2% of J normal, which confirms the

hypothesis made for the micromangetic simulations using the parallel resistance

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 94

model (Fig. 34) that j is mainly perpendicular to the sample plane, as can also be seen

in Fig. 35 (c).

Fig. 35 – Results of the current density j computed using MagNet to check which percentage of j flows
perpendicularly to the sample plane within the FL, (color gradient: j in Am-2). a) Spatial distribution of
the normal component of j. b) Spatial distribution of the tangential component of j. c) Horizontal cross-
section of the FL in which the arrows represent the vector j with zoom in. In the worst case the normal
component of j accounts for 95% of the total current density.

Results and discussion

Earlier micromagnetic studies of some aspects of the magnetization switching [81]

and persistent dynamics [79],[82] in MTJs have been performed using an UCD

distribution model. Here the NUCD model is introduced and its results compared to

the previous one. Considering the resistance in each state as RAP=200 Ω and RP=100

Ω for the NUCD model (simulations performed considering RAP =250 Ω gave

qualitatively the same results), the switching dynamics were studied in two different

regimes for both transitions (P-AP and AP-P). The first performed by applying

current pulses through the sample, whereas the second was done with an increasing

ramp-like current.

 i) Magnetization switching with a current pulse: modal analysis and phase diagrams

This section presents a detailed study of the magnetization switching when

applying current pulses in MTJs for both current distribution models. This kind of

study is important from both technological (writing mechanism in MRAM) and

fundamental points of view, since it provides information about the stability of

intermediate states and the way in which energy is pumped into the system.

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 95

Fig. 36 – AP to P transition. a) Normalized ‘x’ component of the magnetization vs. time for the UCD
(gray) and NUCD model (red). The height of the current density pulse applied was of 4.5×106 Acm-2, in
a 14 ns pulse duration with rising and descending times of 100 ps. b) Frequency spectrum for the UCD
(gray thin line) and NUCD model (red thick line) of the pre-switching oscillations from 0 to 12.8 ns.
Insets: 2D power density plots produced by each computational cell at the FL with the corresponding
frequency mode indicated for each model, (darker means larger power).

An example of a magnetization switch is shown in Fig. 36 (a), where the x-

component of the normalized averaged magnetization (<mx>) is displayed. A pulse of

amplitude J0=4.5×106 Acm-2 is applied during 14 ns with rising and descending times

of 100 ps. Comparing the results of both models, it is observed that the NUCD

promotes the AP-P transition and the switching process begins by means of

preliminary oscillations, on both models. In order to study how these pre-switching

oscillations might influence the magnetization spatial distribution, a detailed analysis

within the frequency domain was performed by applying a micromagnetic spectral

mapping technique (MSMT) [83],[85]. The technique consists on first individually

calculating the Fourier transform for each cell within the computational mesh and

then extracting the corresponding frequency. This assures that the off-phase

oscillations in different parts of the sample do not cancel, which would be the case

when calculating the transform only for the average magnetization.

 Using the MSMT technique, applied from the initial instant up to 12.8 ns, allows

for the computation of the excited pre-switching oscillation modes. Looking at the

frequency domain spectra shown in Fig. 36 (b), the main mode present (f = 6.5 GHz)

is basically the same for both the UCD and NUCD models. However, there are

differences in the lower frequency modes, i.e. more modes and with larger power are

exhibited in the NUCD case. To gain a better understanding of these modes, 2D

density plots (spatial distribution) were also computed that show the power intensity

of the excited modes [83],[84] (insets of Fig. 36 (b) and Fig. 37 (b)). This determines

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 96

which parts of the sample oscillate for a given mode. Fig. 36 (b) shows two types of

pre-switching oscillation modes during the AP-P transition. The main mode is

localized at the lateral sides of the sample, which was defined as an ‘‘edge’’ mode,

while the low power modes in the central area of the sample, were defined as

‘‘central’’ modes. Comparing the spatial distribution of the oscillation modes (insets

of Fig. 36 (b)), one concludes that both models describe the switching similarly, with

the difference that the NUCD model presents one more central mode. The faster

transition in the NUCD model might emerge due to both the presence of this extra

central mode and the fact that these secondary modes are in general more intense. In

this case the increase in power of the central modes could be explained as follows:

when the magnetization in the central region begins to oscillate, the resistance starts to

decrease leading to a current density increase in that area, which augments the spin-

torque and promotes the oscillations. On the other hand, the oscillations begin at the

edges (see main mode at 6.5GHz in Fig. 36 (b), and inset (v) of Fig. 39), but before

the switching takes place the symmetry has to be broken, implying that the central

region has to be destabilized from its static configuration (along the easy axis). In the

NUCD case this process happens faster (for this AP to P transition) because the

current is initially localized at the edges of the FL, thus promoting the oscillations.

Fig. 37 – P to AP transition: a) Normalized ‘x’ component of the magnetization vs. time for the UCD
(gray) and NUCD model (red). The height of the current density pulse applied was of !1.05×107 Acm-2,
in a 14 ns pulse duration with rising and descending times of 100 ps. b) Frequency spectrum for the
UCD (gray thin line) and NUCD model (red thick line) of the pre-switching oscillations from 0 to 12.0
ns. Insets: 2D power density plots produced by each computational cell at the FL with the
corresponding frequency mode indicated for each model, (darker means larger power).

The P to AP switching was also analyzed with the MSMT (Fig. 37 with

J0=1.05×107 Acm-1), whose results show a main pre-switching mode (6.5GHz) equal

to the AP to P transition and different edge modes around 5.5 and 5.8 GHz (NUCD).

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 97

Comparing the models with respect to this transition, the switching process was found

to be practically the same, having both similar pre-switching oscillation modes.

However now it is the UCD distribution that presents an extra oscillation mode and

switches faster. This effect is due to the distribution of the current density in the

NUCD model that for this transition gives rise to less oscillation modes. As in the

previous transition the oscillations start at the edges but in this case it makes the

resistance higher in those regions, thus initially localizing the current in the center of

the FL where the oscillations are more strongly damped, retarding the switching.

In general, it seems that the switching is triggered earlier when more low

frequency oscillation modes are excited (since the main high frequency mode remains

the same for both models). The number of modes appearing in the NUCD model can

be directly linked to the way in which the current is distributed throughout the FL.

To extend the analysis of pulsed current assisted switching, a systematic study was

performed in order to compile comparative phase diagrams (Fig. 38) as function of

the height (amplitude of j) and duration (time interval) of the current density pulse.

The current density was increased linearly from zero up to its maximum value in 100

ps, and resolution of 3×105 Acm-2 was considered for the current density between

different simulation points in all phase diagrams (Fig. 38).

As a general trend it is observed (Fig. 38): for the NUCD model the boundary

between switched and non-switched states is smoother, without much of the ‘‘teeth’’

behavior seen in the UCD model. However, a fully smooth frontier was not obtained.

For example in the P to AP transition with the external field perfectly aligned along

the easy axis and for current density pulses of 1.14×107 Acm-2, a ‘‘teeth’’ region is

present. A detailed analysis of the switching in that region shows that the intermediate

states of the switching are constantly changing, including cases of vortex and anti-

vortex configurations [86]. It is due to these configurations (influenced by

intrinsically non-uniform effective fields like the Oersted field) that the system does

not switch for certain current pulses, even though it is achieved for smaller current

densities (black ‘‘teeth’’ in Fig. 38).

Comparing both models according to Fig.38, it is possible to say that the NUCD

distribution gives rise to less ‘‘teeth’’ structures. As in the particular cases of Fig. 36

and Fig. 37, these diagrams also show that the NUCD favors the AP to P and hinders

the P to AP transitions. In particular for the P to AP transition the current density

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 98

needed for switching in the NUCD model is significantly larger than in the UCD

model. Therefore the NUCD model is more asymmetric and its current distribution

contributes to the intrinsic asymmetry of the switching observed in real devices.

Former works in this kind of nanostructures, both experimental [87],[88] and

theoretical [81], demonstrated that a small misalignment of the external field in

respect to the easy axis, gives rise to more uniform magnetization dynamics and lower

critical currents. To evaluate this phase diagrams where the external field was tilted

by 3º were also computed. As expected, Fig. 38 shows how the critical current

densities decrease and the frontiers become smoother as the result of a more uniform

behavior of the magnetization dynamics. This is due to the hard axis component of the

external field whose torque helps in pulling the average magnetization away from the

easy axis equilibrium position.

Fig. 38 – Phase diagrams of the current density pulsed excitation switching for both the AP-P (top) and
P-AP (bottom) transitions. From left to right, NUCD and UCD model with a 50 mT external field
applied along the easy axis, with the last NUCD diagram where the external field applied has a 3º
misalignment in respect to the easy axis. Color area means that the system has switched and black the
opposite.

Performing these phase diagrams is an extremely laborious task since it involves

simulating a large number of different case parameters. This is an aspect, which is

greatly improved using the developed parallel code when performing similar diagram

analysis, due to the significant simulation speed increase discussed in the previous

chapter.

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 99

ii) Ramped current hysteresis loops

This section describes the effects of applying a linearly increasing current through

the nano-pillar until the switching critical value.

Depicted in Fig. 39 are the ramped current density magneto-resistance hysteresis

loops computed using both models. Looking at the hysteresis loops, one sees that the

NUCD model favors the switching going from the AP to P state, and on the other

hand it hinders the reverse transition P to AP, in respect to the UCD model. These

results are in agreement with the discussion of the previous section, but here presented

as a function of the critical current density.

Analyzing both switching processes (for a sweep rate (SR) of 1013 A/(cm2s)), again

it is seen that they are preceded by initial oscillations of the FL magnetization. In

insets (ii) for the P-AP transition and (v) for the AP-P case, it is shown that the non-

uniform oscillations start at the lateral regions (Fig. 39). As the amplitude of these

oscillations increase, they break the magnetization symmetry and lead to several

complex states (insets (iii) and (vi)) before the switching is achieved.

Fig. 39 – Magnetization vs. critical current density hysteresis loops. In red the results using the NUCD
and in black using UCD for a sweep rate 1013 A/(cm2s). Insets (i) and (iv) represent the spatial
distribution of the current density (see the coordinate in the graph). Insets (ii) and (v) show a
magnetization snapshot at the beginning of the magnetization switching, whereas (iii) and (vi) show the
magnetization snapshot just before the switching is achieved.

Focusing now on the introduction of the NUCD model, it is again analyzed how it

leads to opposite effects depending on the examined transition. In the AP to P

transition, the oscillations at the lateral regions produce a decrease of the resistance in

those regions, thus the application of the NUCD model results in a higher current

injection in said lateral areas (inset (iv) of Fig. 39), promoting larger oscillations and

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 100

triggering the switching. On the other hand, for the P-AP reversal the oscillations in

the outer regions imply an increase of the resistance and thus less current is injected in

those regions (inset (i) Fig. 39). The oscillations are damped and in order to achieve

the switching more current is needed. Of course this is just a simplified description of

the process and indeed the magnetization dynamics is rather non-linear. Plotting the

critical current densities as a function of the SR (Fig. 40), it is seen that these curves

are non-monotonic and as reported in other numerical studies [73],[75], the trend is

related to a trade-off between the effective field contributions (in particular the

Oersted field) and the STT. Although the observed behavior is not linear, the general

trends of applying the NUCD model follow the aforementioned discussion (Fig. 39).

Fig. 40 – Both AP to P, a), and P to AP, b), reversals comparing the critical current density between the
NUCD (red line) and the UCD (black line) models in function of the sweep rate. On the right scale of
each graph, it is represented the main pre-switching oscillation frequency mode for both models and
transitions at each sweep rate tested, (doted line).

Looking at Fig. 40 it also shows the frequency of the main (larger power) pre-

switching oscillation mode as a function of the SR, for each transition and model.

Again depending on the transition analyzed, different results are observed between the

models. In the AP to P transition (Fig. 40 (a)), the critical current density and

frequency of the main mode as a function of the SR are more or less independent of

the spatial current density distribution. On the other hand, the critical current density

and frequency of the main mode in the P to AP transition are clearly affected by the

NUCD model. In order to better understand the physical mechanisms that give rise to

this behavior, the MSMT (Fig. 41) was performed, similarly to the ones shown in Fig.

36 and Fig. 37. Nevertheless, it has to be stressed that a direct comparison with the

pulsed current case is not possible due to the different type of excitation. The current

is applied linearly (with a slope equal to SR) implying that when the switching is

achieved the spin-torque has been acting and pumping energy for a much longer time.

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 101

For example, in the AP to P case for the slowest SR (Fig. 41 (a), SR=5×1012 A/cm2s)

when the switching is achieved the current has been pumping energy for 610 ns. For

the same transition in the current pulsed case analyzed in Fig. 36, the current was

applied only for 13 ns. Again this gives an idea on how long the sequential

simulations might take in real time and how the developed parallel code benefited this

aspect, since simulations of hundreds of nanoseconds take weeks to solve, even in a

relatively small sample like the one studied here. In the following paragraphs the

discussion focuses on the modes excited in both transitions.

As it was previously stated, in the AP to P transition (Fig. 40 (a)) the critical

current density and frequency of the main mode in function of the SR are practically

independent of the current density spatial distribution. This occurs because the excited

modes are the same for both the UCD and NUCD models, giving rise to practically

identical nucleation processes of the switching (Fig. 41 (a) and (b)).

Fig. 41 – Frequency spectrum for both models and transitions in respect to the lowest and highest
sweep rates (SR) of Fig. 40: a) and b) pre-switching oscillation modes of both AP to P transitions,
show that the modes generated are equal between models and that for lower sweep rates (lower than the
one of minimum critical current density of Fig. 40 (a)) the main mode turns into a central one (see

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 102

insets). In c) and d) pre-switching oscillation modes of both P to AP transitions, show that for the UCD
model more oscillation modes are generated being the main one central, while for the NUCD the main
mode is an edge one, (cause of the difference in frequency seen in Fig. 40 (b)).

For the slowest SR analyzed (Fig. 41 (a) SR=5×1012 A/cm2 s) the main mode is a

central lower frequency one, in accord with the slower pumping of energy. On the

other hand, for the fastest SR analyzed (Fig. 41 (b) SR=1014 A/cm2 s) the edge mode

is the principal one, corresponding to the faster way of pumping energy. In other

words, the difference in the excitation velocity (slope of the current density ramp, i.e.

SR) leads to a different formation of oscillation modes within the sample. Between

the minimum and maximum SR an intermediate behavior is found, with a minimum

in the critical current density where both edge and central modes have similar

importance. The jump in frequency seen in Fig. 40 (a) after the minimum in critical

current density Jmin (SR=1.67×1013A/cm2s) reveals a transition from the edge

predominant to the central predominant mode dynamics. Also observed is that this

mechanism is related to a trade-off between the Oersted field and the spin-torque,

given that when the Oersted field effect is removed from the simulations the

minimum is not present. This happens because in the absence of Oersted field the

predominant mode is always a central one around 4 GHz (similar to the one of Fig. 41

(a)). This is understandable since the non-uniform Oersted field, more intense near the
boundaries of the sample, clearly promotes the edge modes.

Finally it is worth to comment that for the studied AP to P transitions, even though

the NUCD model slightly diminishes both the switching time (seen in the pulsed

cases of Fig. 36 and Fig. 37) and critical current density (seen in the ramped current

loops of Fig. 39 to Fig. 41), the effect is in both cases very weak. Consequently it can

be concluded that the NUCD model weakly affects the AP to P transition.

Analyzing now the P to AP reversal (Fig. 40 (b)), it can be seen that the frequency

of the main mode arising from both the UCD and NUCD models is clearly different,

but pratically independent of the SR. This can be understood by looking at the modal

analysis of Fig. 41 (c) and (d), where for the UCD model the predominant mode is a

central one for all the SRs, whereas for the NUCD model the predominant mode in

the dynamics is an edge one. Again, as expected due to the way in which the energy is

pumped into the system, the central modes are more intense for slower SRs, while the

edge modes gain intensity for faster SRs. Nevertheless, the predominance of one or

the other does not change in the simulated SR range. It was also observed that in this

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 103

case the dynamics is not affected at all by the suppression of the Oersted field,

pointing to a more spin-torque dependent excitation of modes.

Comparing both models in terms of critical current densities for these transitions (P

to AP), it is seen that a higher current density is needed to switch the system in the

NUCD model, which is in agreement with discussions of the previous section of

results and Fig. 39.

Summing up the results of both models and transitions, it was seen that the P to AP

transition is more affected by the use of the NUCD model. Regarding the NUCD

model, bringing together the simple discussion of Fig. 39 and all the modal analysis

performed, it is concluded that after the initial oscillations in the edges (due mainly to

the magnetostatic coupling with the fixed layer) the concentration of the current in the

central area does not significantly promote the central modes (P to AP case). Its main

effect seems to be a frequency reduction of the edge mode with respect to the AP to P

transition (compare Fig. 36 with Fig. 37 or Fig. 41 (a) and (b) with Fig. 41 (c) and

(d)).

Since the effect of the NUCD model is clearly different for AP to P and P to AP

transitions, in real devices the effect of the NUCD distribution could therefore be

taken as an additional source for the intrinsic asymmetry in the switching process.

Conclusion

In summary, it was performed a micromagnetic study of the magnetization

switching driven by spin-polarized current in a high-TMR MTJs, studying the effects

of uniform and non-uniform current density distributions by using current pulse

excitations and an increasing ramp-like current density up to the transition point. The

results show that the NUCD distribution is a source of asymmetry between both

transitions in terms of critical current density, verified in both pulsed and ramped

excitations. This asymmetry is highlighted in the numerical experiments using an

increasing current density ramped excitation, which showed that the AP to P

switching is only marginally affected by the current density distribution while its

effect on the P to AP transition is more significant in terms of critical current density

and generated oscillation modes.

In the analysis within the frequency domain for current density pulsed excitations,

it was seen that the pre-switching oscillations are characterized by ‘‘edge’’ and

‘‘central’’ modes, coming the transition faster when more oscillation modes are

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 104

generated. For ramped current hysteresis loops, the modal analysis also shows effects

on the critical current density that can be explained based on the predominance of

these central or edge modes within the dynamics. In this respect less current is needed

when the predominant mode is a central one. These types of modes have been

experimentally detected [89].

Making an extensive study using both models in the pulsed excitation regime, the

NUCD distribution presents smoother transitions in a current density vs. pulse

duration diagram (Fig. 38), showing as well the aforementioned higher asymmetry

between transitions and that a small misalignment of the external field with respect to

the easy axis reduces the critical current density. From that phase diagrams (Fig. 38)

and the slow SR ramped current density simulations a limitation of the sequential

micromagnetic code becomes evident, since such graphs and simulations take a

considerable amount of time to complete. These types of lengthily studies are greatly

beneficiated by the use of the developed parallel GPU micromagnetic code.

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 105

4.1.2 Thermal effects on spin-transfer-driven switching in high-tunneling-
magnetoresistance magnetic tunnel junctions

Introduction

As the work described in 4.1.1, here it is also discussed the STT dynamics in MTJ

devices, however in this case the role of the thermal field to the switching process is

investigated. A particular point of the switching process is also investigated and it

refers to the single shot time domain measurements [77],[90],[91] in MTJs of either

rectangular [77] 300×100 nm2 or elliptical [90] cross-section 170×60 nm2, which

show the presence of an “incubation delay” or a “nonreactive time” during the

reversal process of the free layer. It has been demonstrated theoretically that this

incubation delay arises from the presence of the field-like STT term [92]. Moreover,

highly sensitive measurements of a CoFe(0.5 nm)/CoFeB(3.4 nm) [91] free layer MTJ

device of elliptical cross-section 130×65 nm2, indicate the existence of a temporal

coherence of pre-switching oscillations.

In order to add some insight into the mechanisms governing the switching

processes, the thermal field influence on the magnetization switching dynamics in

high-TMR MTJs was investigated by means of micromagnetic simulations.

Simulation details
The simulated MTJ is of 90×35 nm2 elliptical cross-section with the following

structure, CoFe(8 nm)/MgO(0.8 nm)/Py(4 nm). The CoFe is the exchange biased

pinned layer and the Py corresponds to the free layer. A Cartesian coordinate system

was chosen with the x direction along the easy axis. The micromagnetic dynamic

equation (53) was considered with j as a function of the magnetization as described in

the previous study 4.1.1 (NUCD model). Another modification to equation (53) was

considered by adding the dimensionless parameter ξ, so as to study the influence of

the magnitude of the perpendicular spin-torque term (PSTT), which according to the

works [76],[95] and [96], is larger than the one that naturally arises from (53). Thus

the dynamic equation (53) is written as,

€

1+α 2() dm
dt

= −γ 0 m × Heff +αm × m × Heff()[]
−
gµB jP (m.p)
2MSd qe

m × m × p() − ξα m × p()[]
 (99)

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 106

The effective field accounts for all standard micromagnetic contributions: external,

anisotropy, magnetostatic, exchange, and Oersted fields. Additionally, thermal

fluctuations are incorporated as a stochastic field with Gaussian distribution and zero-

mean statistical properties, as discussed in section 2.3.6. The polarization p is fixed

along the +x direction and the other simulation parameters read as follows: µ0H=50

mT applied along the easy axis direction so as to compensate for the magnetostatic

coupling with the pinned layer; MS=6.44×105 Am-1; MSP=1.15×106 Am-1 pinned layer

saturation magnetization; α=0,01 damping parameter; η=0.7 polarization factor;

A=1.3×10−11
 Jm-1 exchange constant. The resistance in the parallel P state is

considered to be of 100 Ω and of 200 Ω for the anti-parallel AP state. Only the

dynamics of the free layer, discretized into a 2.5×2.5×4 nm3 mesh, is resolved using in

the simulations a time step of 28 fs. Critical current densities at T=0 K were found to

be of Jc=3.0×106 Acm-2 and Jc=-6.1×106 Acm-2, for the AP to P and P to AP

transitions, respectively. The sample temperature T, was calculated using the

following expression [93],

€

T = Tbath
2 +ε I2 (100)

where Tbath is the bath temperature in which the sample is immersed, I the applied

current, and ε is a parameter that depends on specific material factors and sample

geometry. It includes the Joule heating generated by the current.

Results and discussion

With the goal of studying the effects triggered by the thermal fluctuations, the

switching process was first characterized in the spin-torque switching regime, [94]

with the stochastic study of 1200 simulations for each transition (Fig. 42). Again this

type of study shows the limitation of sequential simulations, since in order to perform

such quantity of simulations a few months were needed using several CPUs, even

though the discretized sample was small (504 cells).

In Fig. 42 it is shown the switching time distribution for the AP to P and P to AP

transitions when respectively applying a current density of J=4.5×106 Acm-2 and

J=−1.05×107 Acm-2. Although the same sample temperature would be larger for the P

to AP transition due to the larger applied current, the same temperature T=411 K was

considered for both transitions so as to have the same thermal field interaction in both

transitions.

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 107

Fig. 42 – Stochastic simulations at TS=411 K. Switching time distribution for a set of 1200 simulations
using a current pulse of: tpulse=14 ns and J=4.5×106 Acm-2 for the AP to P transition (a) and of tpulse=14
ns and J=-1.05×107 Acm-2 for the P to AP transition (b).

The Gaussian-like distribution of switching times shown in Fig. 42, indicate that

the most probable switching time is roughly 50% lower than at T= 0 K (deterministic

12.3 ns and 12.5 ns for the AP to P and P to AP, respectively). The observation that

thermal fluctuations assist the switching process is a well-known phenomenon,

however, the exact mechanisms governing it are still not clear. Therefore, in order to

gain some insight into the switching dynamics, it was first calculated the

magnetization average of the x-component displayed in Fig. 43 (a) and Fig. 43 (b), for

the AP to P and P to AP transitions, respectively. This averaging procedure only

accounts for the results of the simulations with the most probable switching time

shown in Fig. 42, with the maximal error between switching times of 25 ps. For these

averages, due to the difference in oscillation phase, the pre- and post-switching

dynamics are practically absent. Hence, it seems that the thermal field does not

introduce any relevant dynamics and the main driving torque is due to the STT.

However, coherent pre- and post-switching oscillations Fig. 43 (c) and Fig. 43 (d)

do appear when each simulation is first shifted to the same switching point and then

averaged. The resulting averages were obtained from 1100 simulations for each

transition. These results, resembling the experimental ones reported in [77] and [91],

indicates that a small difference in the pre- and post-switching oscillation phase

during the average procedure can hinder the oscillation dynamics. As it will be

discussed later, these results are quantitatively independent of the perpendicular

torque.

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 108

Fig. 43 – Average magnetization of the x-component at 411 K, showing the difference between
averaging close events in the time frame, (a) and (b), and averaging all events via numerically
transposing each simulation to the same switching point, (c) and (d). Average of 24 events for the AP
to P transition with switching times of 6.725 ns ± 25 ps, with a single shot transition inset; tpulse=14 ns
and J=4.5×106 Acm-2 (a). Average of 23 events for the P→AP transition with switching time of 5.825
ns ± 25 ps, with a single shot transition inset; tpulse=14 ns and J=−1.05×107 Acm-2 (b). Average
magnetization extracted from 1100 simulations of equal switching time, whereby numerically
translating the points of each simulation to the same switching point, (c) and (d).

Unlike the macrospin simulations performed in [92], micromagnetically no

incubation delay (absence of pre-switching oscillations, see Fig. 43 (a) and Fig. 43

(b)) is observed, since the pre- and post-switching oscillations originate from the

excitation of non-uniform modes, which are beyond the macrospin approximation and

are discussed in detail below.

The analysis of the oscillations (Fig. 43) in the frequency domain is carried out by

the previously mentioned MSMT. [83],[85]. This spectral analysis reveals the

existence of central and edge [71],[89] oscillation modes of similar power intensity

Fig. 44. The interpretation can be twofold; either the thermal field promotes both

modes in the same manner and the qualitative difference arises from the STT

contribution, or the current density is still too high and dominates over the thermal

effect. To determine the real origin of these modes, simulations using current densities

below the critical current density obtained at T=0K for both transitions, were

performed (JcAP→P=3.0×106 Acm-2 and JcP→AP=-6.1×106 Acm-2). This way the

switching is expected to be more temperature rather than STT dependent, and

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 109

therefore, a division between thermally activated (|J|<|Jc|) and STT-driven switching

(|J|>|Jc|) can be set clearly for the simulated device.

Fig. 44 – Frequency analysis of the pre-switching oscillations (from Fig. 43) exhibiting both central
and edge modes as seen in the insets. It suggests that either the thermal fluctuations excite similar
modes for both transitions or the current density is still too high so that the STT effect is dominant.
Oscillation modes present in the transition of Fig. 43 (a) a); Fig. 43 (b) b); Fig. 43 (c) c); Fig. 43 (d) d).

The results of the reversal study using current densities below the 0 K critical ones,

are plotted in Fig. 45. A transpose average of 100 distinct simulations showing pre-

and post-switching oscillations is presented for each transition. The results of using

the MSMT for these average time traces identify a central mode with a frequency of

roughly 4.3 GHz to be the dominant one for both transitions. This leads to the

conclusion that the thermal fluctuations assist the switching processes mainly by

promoting oscillations at the center of the sample. Since the magnetization starts

oscillating at the edges, [71] and then the oscillations slowly propagate to the entire

sample until the switching is achieved, the role of the thermal fluctuations is to

accelerate this propagation by destabilizing the magnetization in the central area

sooner.

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 110

Fig. 45 – Reversal study at 411 K with current densities below the critical one at T=0K
(JcAP→P=3.0×106 Acm-2; JcP→AP=-6.1×106 Acm-2). Transpose average of 100 simulations for the AP to P
transition (J=2.9×106 Acm-2) (a), and P to AP transition (J =-6.0×106 Acm-2) (c). Frequency analysis of
(a) and (c), show the dominant central mode at roughly 4.3 GHz, (b) and (d), respectively.

The influence of the PSTT to the thermal oscillations observed in Fig. 45 (a) and

(b) was also studied by increasing its magnitude up to 20% (Fig. 46 (a) and Fig. 46

(b)) and 30% (Fig. 46 (c) and Fig. 46 (d)), of the total STT term by attributing the

adequate value to ξ in equation (99), as proposed in [76],[95],[96]. Considering the

switching processes and respective frequency analysis, as presented in Fig. 46, it is

concluded that there is little change to the pre- and post-switching oscillations shown

in Fig. 45 (a), since the main modes are still central ones of roughly the same

frequency.

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 111

Fig. 46 – Influence of the PSTT on the thermal oscillations observed in Fig. 45 (a). Averaged
magnetization for the AP→P transition with a PSTT of 20% of the total STT term a) and a PSTT of
30% of the total STT term c). Frequency analysis of a) and c) both showing the dominant modes as
central ones between 4.0 and 4.5 GHz, b) and d), respectively.

Conclusion

In summary, a micromagnetic study of the reversal process in MTJs in the

presence of thermal fluctuations has been performed. Unlike previously reported

works [77],[92] no incubation delay is observed. Moreover, the pre- and post-

switching dynamics of non-uniform modes (edge and central modes [71],[89]) was

found to be similar to the one reported experimentally and theoretically [91]. It was

also found that if even a very small phase misalignment is present during the

averaging procedure, it could result in the disappearance of these dynamics.

Furthermore, two different switching regimes are identified for currents above

(|J|>|Jc|) and below (|J|<|Jc|) the critical current at 0 K. In the thermally assisted

switching regime (|J|>|Jc|), the main effect of the thermal field is the reduction of the

switching time, with the STT being the main driving force for the reversal process. In

the thermally induced switching regime (|J|<|Jc|) however, the thermal field becomes

the main driving force for the switching through the promotion of central modes.

Also from this study it is patent the necessity of having a faster simulation code,

like the parallel GPU one that was developed during the work discussed in this thesis,

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 112

since the months long stochastic simulations although feasible for this study of a

small sample (504 cells), becomes prohibitive for large samples or longer simulation

times.

4.2 Studies made using the CUDA parallel-GPU micromagnetic code

This part is dedicated to the description of two studies made by using the

developed parallel GPU micromagnetic code. The first study is on vortex self-

oscillations in spin-valves, where both pinned and free layer are simulated

dynamically in the presence of STT from one layer over the other simultaneously

(back-torque). This simulation study would be extremely difficult to perform in a

sequential CPU-based code, not only because there are more layers that have to be

computed dynamically, but also because it is very expensive in terms of the

computational times that are needed to obtain high resolution in the frequency

spectrum (10 microseconds).

The second study focuses on different types of domain wall current-driven

dynamics in long ferromagnetic wires with squared cross-section in the presence of

Oersted field. The main advantage to this study, besides the very good simulation

time performance of the developed parallel code, refers to large number of cells

involved in these dynamic computations (in the order of 106 cells), which are

practically impossible to perform with a sequential code. (In particular the Fortran

code, from which the parallel developed one was based on, could not handle more

than half a million cells without crashing).

Both the aforementioned works are on final publishing procedures in the IEEE

Transactions on Magnetics journal [113], at the writing of this thesis.

4.2.1 Intrinsic and thermal linewidths of spin-transfer-driven vortex self-
oscillations

Introduction

In a previous work of the research group, in which this thesis was developed, [97]

it was described by means of micromagnetic simulations the spin-transfer-driven

vortex self-oscillations experimentally found in Py/Cu/Py elliptical spin valves [98].

The experimental linewidths range from 0.3 MHz to 60 MHz thus, as it was stated in

[97], “the linewidth computed numerically cannot be compared to the experimental

data because the 5×10-8 seconds simulation time limits the resolution to 20 MHz”.

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 113

In this work the developed parallel GPU micromagnetic code was used to perform

very long micromagnetic simulations up to 10-5 seconds, which allows a spectral

resolution of 100 kHz. The longest simulation is carried out in a standard GPU in

more or less 60 hours. Therefore, a systematic analysis can be carried out using a

server with several GPUs.

Spin-Transfer Nano-Oscillators (STNOs) based on magnetic vortex self-

oscillations have demonstrated stable dynamics in the gigahertz and sub-gigahertz

frequency range at room temperature experiments [98], and are thus promising

candidates for viable STNOs. This detailed micromagnetic study will help gain an

insight into the intrinsic and thermal linewidths that characterize the oscillation

modes.

The analysis of the spectrum of non-linear STNOs needs to be confronted with the

introduction of thermal noise, taking into account all the difficulties inherent to the

fitting of noisy linewidths [99]. The linewidth strongly depends on the temperature,

going through different regimes due to the effect of the phase fluctuations and spatial

inhomogeneities [99]-[107]. In detail, the long simulations performed at T=0 K show

the intrinsic linewidth of the oscillation modes as function of the bias current. On the

other hand, the computations for 0 K < T < 300 K show the influence of the thermal

noise to such modes.

Simulation details
The studied device was the one experimentally measured in reference [98]:

Py(5nm)/Cu(40nm)/Py(60nm) with elliptical cross sectional area (160 nm × 75nm,

with cell discretization of 5×5×5 nm3) as shown in Fig. 47. The dynamic equation

used is the one described by (53) with the polarization function given by (51), which

in this study is calculated once for each layer (thick and thin), so as to reproduce,

qualitatively, the experimental behavior of the torque induced by both layers on their

counterparts (back torque; section 2.3.7 and 3.6.6).

The magnetostatic field has been calculated by solving the magnetostatic problem

for the entire spin-valve. A Cartesian coordinate system is considered such that the x-

axis is the easy axis of the ellipse whereas the y-axis is the hard in-plane axis. Positive

current polarity (+z-axis) corresponds to an electron flow from the thinner to the

thicker layer of the spin valve (Fig. 47).

The parameters used in simulations were the same as in [96]: MS=MSP=6.5×105 Am-1;

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 114

 χ=1.5 and η=0.38; A=1.3×10-11 Jm-1; α=0.01. A perpendicular field (along the z-

axis) of 160 mT is applied throughout all the presented simulations. The time window

is extended to 10-6 seconds for most simulations and 10-5 seconds in the cases where

more resolution is needed, and using a time step of 500 fs with the 6th order Runge-

Kutta algorithm. Note that such temporal windows cannot be studied using the

sequential micromagnetic code in a reasonable amount of time. Magnetoresistance is

computed over all ballistic channels and using a cosine angular dependence [97]. The

thermal activation is introduced as it was previously discussed in section 2.3.6.

Fig. 47 – Sketch of the spin-valve and linewidth (solid line) for J=10×107 Acm-2 together with
lorentzian fitting (dotted line) at (a) T=0 K and (b) T=300 K. Representation of the initial
magnetizations in the thin Py layer (i) and in the top (ii) and bottom (iii) slices of the thick Py layer
showing the vortices.

Results and discussion

i) Intrinsic and thermal linewidths

In Fig. 47 (a) the frequency spectrum around the main peak, for an applied current

density of 10×107 Acm-2 at T=0 K, is displayed. The extremely narrow and clean peak

is fitted by a lorentzian function resulting in a linewidth of about 1.1 MHz. This low

linewidth is produced by coherent rotations of the vortex formed in the thick layer of

the spin valve, as can be observed in the Mx versus My trajectory shown in Fig. 48 (a).

The STT excites the vortex rotation, which from its initial state reaches a clearly

defined stationary orbit. The thin layer presents non-uniform configurations but still

following quasi-periodical trajectories like the one shown in Fig. 48 (b).

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 115

Fig. 48 – Average magnetization trajectories in each layer: <mx> versus <my> trajectories for the thick
(a, c, e) and thin (b, d, f) Py layers. Current density is J=10×107 Acm-2 in (a-d), T= 0 K in (a-b) and T=
300 K in (c-d). Current density is J=16×107 Acm-2 and T= 300 K in (e-f).

In Fig. 47 (b) the spectrum computed for J=10×107 Acm-2 at T=300 K is shown. As

expected for a non-linear STNO, the thermal noise generates a linewidth increase as

well as a small frequency shift. Comparing Fig. 48 (a) and Fig. 48 (c), it can be

observed that the orbits of the average magnetization are preserved in spite of the

thermal activation so that the linewidth remains below 1.5 MHz as observed in

experiments [98]. The vortex oscillator within the spin-valve shows itself as a robust

oscillator against thermal noise for a certain range of current. The magnetization

trajectory within the thin layer at T=300 K (Fig. 48 (d)) differs significantly with

respect to the T=0 K case (Fig. 48 (b)). In particular, the averaged <mx> component

for T=300 K expands towards positive (less negative) <mx> values due to the thermal

activation. This aspect seems to indicate the possibility of more a complicated

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 116

behavior of the device, as it will be addressed later when explaining the general

dependence on current and temperature.

The linewidth and peak frequency dependences on the applied current and

temperature are presented in Fig. 49. In Fig. 49 (a), when increasing the current a

slight increase in the linewidth is observed up to currents around 16×107 Acm-2. This

increase is due to the modification of the dynamics in a similar way to what was

commented in regard to Fig. 48 (a-d). Hence the general characteristics of the

dynamics are preserved, although the orbits are noisier.

For larger currents (J ≥16×107 Acm-2), a more noticeable increase in the linewidth

is detected (Fig. 49 (a)). Having a look at the dynamics within this range (see Fig. 48

(e-f)) a change in their general features is detected. The vortex within the thick layer

(Fig. 48 (e)) rotates now in a larger and noisier orbit, changing also the sense of

rotation of the vortex. This orbit jump is motivated by a change in the thin layer

configuration which goes from its originally “–mx” state to a “+mx” magnetization

state (Fig. 48 (f)). This change in orientation of the magnetization within the thin layer

implies a change to the sense of rotation of the vortex in the thick layer, since the

torque experienced by the vortex in the different regions (+mx, –mx) changes sign.

The polarity of the vortex remains always positive since a perpendicular applied field

of +160 uz mT is always present.

Fig. 49 – Linewidth and frequency dependence on temperature and current density. Linewidth (a) and
frequency (b) for J ranging from 10×107 Acm-2 up to 20×107 Acm-2 at T=0 K and T=300 K. Linewidth
(c) and frequency (d) for J=10×107 Acm-2 for a temperature range from T =0 K up to T =300 K.

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 117

Therefore, there are two oscillation modes present, which appear as a result of the

complete analysis of the whole device and the use of the back-torque. They are not

thick-layer or thin-layer isolated modes but “coupled device modes” [32]. The jump

to the second mode depends on the thermal noise (different computational realizations

can give rise or not to the jump) and also on the used computational time window.

The jump time scale is the same as the one measured by Pribiag et al. [108], in

devices at zero bias field. The temporal window used in the computations was of 10-6

seconds for the fitting, always choosing realizations where the two modes were

present. In a real experiment the temporal window is very large, which is why one can

reason that both modes are always present. In any case, for J>15×107 Acm-2, an

analysis of the thermal noise contribution to linewidth generation cannot be carried

out in terms of analytical theories [99]-[107].

The frequency of the vortex oscillation is shown in Fig. 49 (b). Always the same

mode was followed and the frequency exhibits a blue-shift (increase in frequency),

which is in agreement with experimental observations [98]. The difference between

the temperatures T=0 K and T=300 K diminishes with the increase in current, since

the magnitude of the thermal noise becomes less important regarding the larger

intensity of the STT.

The temperature dependence on the linewidth and frequency for J=10×107 Acm-2

is shown in Fig. 49 (c-d), with no change in mode observed for any of the

temperatures considered.

In a previous work performed by the research group [99] it was found that

micromagnetic simulations gave a qualitative agreement with the theoretical work of

Tiberkevich et al. [103] regarding STNOs. In this theoretical work, two different

regimes can be observed depending on the temperature. The low temperature regime

is characterized by a linear dependence of the linewidth with T, whereas the high

temperature regime presents T1/2 dependence [103]. In the mentioned work [99],

micromagnetic simulations on a different spin-valve system certainly found this type

of behavior and it was ascribed to small temporal and spatial inhomogeneities of the

uniform magnetization model [99]. Since in those spin-valves just small deviations

from the uniform magnetization states were present, the theoretical analysis of [103]

was proved to be adequate.

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 118

In the present work, however, highly non-uniform vortex configurations are being

dealt with, so that analytical theories are not even valid to describe single mode

dynamics, like in the case of Fig. 49 (a-b). Nevertheless, linear behavior seems to be

present in Fig. 49 (a) for T<140 K and also a lowering in frequency with temperature

is detected as in other linewidth temperature studies [99]-[107].

ii) Higher harmonics analysis

Finally, the second and third harmonics of the frequency spectra of the vortex

STNO was analyzed in order to check the recent study of Quinsat et al. [109]. In a

non-linear resonator, there is a relation between the corresponding linewidth of the nth

harmonic and the linewidth of the main mode. In particular, in a non-isochronous

oscillator the relation for the linewidths of higher harmonics are smaller than

predicted in isochronous oscillators. In fact, non-isochronous auto-oscillators like

STNOs are expected to show an increase in the linewidth with the harmonic order

[109]. This increase for the nth harmonic (Δfn) for a non-isochronous STNO is shown

to be in the range of nΔf1 < Δf < n2Δf1, [109].

Fig. 50 – Ratio between the linewidth of second and third harmonic at T = 300 K for a J ranging from
10×107 Acm-2 to 20×107 Acm-2.

The obtained results of the vortex STNO for the second and third harmonic are

shown in Fig. 50. At lower currents (J<14×107 Acm-2) it was observed an agreement

with the theory, 2Δf1<Δf2<4Δf1 and 3Δf1<Δf3<9Δf1. At larger currents, again, not

even a qualitative agreement is found. This fact confirms that the presence of other

possible coupled oscillation modes inhibits a simple linewidth dependence that could

be described by analytical theories.

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 119

Conclusion

In summary, a detailed analysis of spin-valve vortex STNOs was carried out,

showing that several device coupled modes can be present depending on the

temperature and applied current [107]. When just one mode is excited, the STNO

shows linear linewidth dependence at low temperatures. In these cases, the second and

third harmonics show a linewidth compatible with recent non-isochronous auto-

oscillator theories [109].

The use of the developed parallel GPU micromagnetic code was fundamental in

this study, since it allowed for large temporal window simulations that in turn give

high resolution when analyzing the oscillations in the frequency spectrum. The used

time window of 10-6 seconds is completely unpractical when using sequential codes,

since a single simulation would take many months.

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 120

4.2.2 The role of the Oersted field on the current-driven domain wall dynamics
along wires with square cross section

Introduction

As mentioned in chapter 1, a very interesting finding in recent years has been the

behavior of domain wall dynamics in magnetic strips at the nano-scale. In these long

structures the magnetization gradually changes from one domain to another through a

DW structure like for example, a typical head to head or tail to tail transverse wall

(TW) configuration, or even more complex types of DW like the Bloch-point wall

(BPW) [7]. Domain wall dynamics in nano-wires or nano-strips, can be induced by

either external magnetic fields or by injecting spin-polarized electrical currents

[3],[4],[8],[110]. This discovery could have significant consequences on the

development of new magnetic storage devices in which data is moved electronically

rather than mechanically as it is done in today’s computer hard disk drives. A new

type of memory based on current-driven DW dynamics, the racetrack memory, has

been proposed by Parkin [6].

In this work, it was first studied the dependence of the type of DW nucleated in

respect to the squared section size of the strip. Then, the dynamics was investigated

for each type of wall TW and BPW (Fig. 51), under different values of in-plane spin-

polarized currents and observed if the DWs experience the Walker breakdown [7],

with and without the influence of the Oersted field. The developed parallel GPU

micromagnetic code was used so as to manage the large structure of the ferromagnetic

strip, which ascends to the order of 106 cells, in a reasonable amount of time.

Simulation details
Since the applied current density is in-plane with the ferromagnetic strip, the

dynamic equation used in this study was the one described by (58), thus including the

effect of both the adiabatic and non-adiabatic spin-torques. All the usual magnetic

fields are considered for the effective field Heff (magnetostatic, exchange), including

also the Oersted field (2.3.5 and 3.3.5), generated by the in-plane current that runs

along the length of the wire. No external field is applied, hence the DW dynamics is

driven only by the in-plane spin-polarized current density j=jux. The convention used

for the current density is that for positive values, the electrons flow along the positive

direction of the wire x-axis (Fig. 51 (a)). The current was also considered to be DC,

applied from the beginning to the end of the simulation and uniformly distributed

along the nano-strip. Typical Permalloy parameters were considered: MS=8.6×105

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 121

Am-1; exchange constant A= 1.3×10-11 Jm-1; damping parameter α=0.02; and

polarization factor η=0.4.

Regarding the geometry of the simulated wire, it was considered an 800 nm long

strip, in which the squared section lateral size L was varied from 10 nm up to 100 nm

in order to assert which type of DW is the most stable for different values of L. Also,

in order to avoid the demagnetizing field effect of the borders upon the DW, the wire

was made “infinite” by computational manipulation [114]. This was achieved by first

calculating the demagnetizing field generated by the artificially imposed “magnetic

charges”, of the first and last cells of the 800 nm long computational area, and then

subtracting this demagnetizing field to the demagnetizing field of the entire sample. In

all simulations the initial magnetization configuration was head-to-head, for both

types of DW, as show in Fig. 51. The numerical solver used was the forth order

Runge-Kutta (3.4.2), with a time step of 63 fs, and the mesh composed of 2×2×2 nm3

cells.

Fig. 51 – (a) Representation of the nano-wire showing the head to head configuration used in this work.
(b) Transverse wall at L/2 from the z-axis viewpoint, the dotted lines represent the slice of the nano-
wire depicturing in (d) its transversal view. (c) Bloch-point wall at L/2 from the z-axis viewpoint, the
dotted lines represent the slice of the nano-wire depicturing in (e) its transversal view.

Results and discussion

i) Equilibrium DW configurations

The first part of this study was focused on investigating which DW configurations,

either the TW or the BPW, are the most stable for different values of L. This was

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 122

achieved by varying L from 10 nm to 100 nm, starting from a magnetic configuration

that favored either the TW or the BPW and then letting the system reach its

equilibrium state. The results showed that for lateral sizes L<30 nm of the wire the

most stable DW configuration is the TW, whereas for values of L>40 nm the BPW is

the most energetically favored state. For values of L between the previously

mentioned ones, the equilibrium configuration is a complex one, appearing to be a

mixture of the two types of DW. (When current was applied to these complex DW

structures, the wall continuously transformed into several different wall structures).

These results are in good agreement with the ones reported in [7]. Due to the

physical nature of each DW type and its dependence on the lateral size L, it was

chosen to focus the study on two specific values of the squared cross-section. The

chosen sizes for the detailed study of the dynamics were, L=16 nm for the TW and

L=48 nm for the BPW.

Fig. 52 – Transverse wall velocity versus DC current densities for a nano-wire of L=16 nm. The DW
velocity increases linearly with the current and it is practically unaffected by the presence of the
Oersted field or the variation of the non-adiabatic parameter β, inset: zoom of the last part of the graph.
The dashed line represents the analytical value of the maximum DW velocity vsp-drift (see 2.3.7)

ii) Transverse DW dynamics

Analyzing the results of the TW dynamics in Fig. 52, it shows that the velocity of

the DW displacement rises linearly with the different applied DC current densities.

Also seen in the inset of Fig. 52 is the fact that the DW motion is practically

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 123

unaffected by the non-adiabatic parameter β or the presence of the Oersted field,

which points to in this case, that the DW dynamics is dominated by the adiabatic spin-

torque term. The effect of the torques applied on the DW generated by the effective

field including the Oersted field versus the spin torque is shown in Fig. 53. There, it is

seen that for each cell along the x direction the torque caused by the effective field

(scattered points) is in module several times smaller than the spin-torque effect (solid

lines). This difference in torque represents why the presence of the Oersted field has

so little effect to the TW dynamics.

Fig. 53 – Comparing the torques magnitude between the effective field (with Oersted field)
(scattered/dashed points) and the spin-torque (solid lines), in the perfect adiabatic case β=0, along x-
component of the wire and in different points of the cross-section (see inset). The spin-torque is several
times larger than the effective field torque in the DW area. The inset shows a slice of the wire in the
z0y plane and from which cells along the x-axis the plotted data was taken (J=1013 Am-1).

Another result is displayed in Fig. 54, where it is shown that while the DW is

moving along the strip it rotates clockwise for β<α (Fig. 54 (a)) and counter-

clockwise if β>α (Fig. 54 (b)). Not shown is the case when β=α in which the DW

moves without rotating. These results are in accordance with the results obtained by

M.Yan et.al. [9] for cylindrical wires. In that work, they adopted an analytical model

that allowed them to understand that the linear velocity is independent of β and that

the angular velocity responsible for the rotation of the DW depends on (β–α). This

description of the DW dynamics, associated with the symmetry of the cylindrical wire

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 124

permitted them to describe that the DW beats the Walker breakdown and its intrinsic

pinning, by being massless. Döring introduced the concept of DW mass in 1948

[111]. He discovered that the structure of a Bloch wall moving with velocity v differs

from that of a static one, and that its energy increase is porpotinal v2. This allows for

the definition of a kinetic energy and a mass. However, the DW does not have real

mass, since there is no actual material displacement, what happens is that the

translation of the DW profile contains some inertia because, in a first step the spins

need to be rotated to the wall plane, which costs energy [18]. Moving DWs in thin

magnetic strips have displayed particle-like behavior such as momentum and inertia

[112]. The connection between DW mass and the Walker limit is given by the

dynamic modification of the DW structure during its montion and the resulting energy

density increase. This increase in energy continues until it reaches a limit where the

micromagnetic structure collapses. Therefore the speed limit of the DWs is related to

the kinetic energy and is inevitable for massive walls. However, if like in the results

observed here the DW does not change its structure during the motion, thus moving

rigidly, such DW is massless and with zero kinetic energy, which results in the

absence of a Walker-type speed limit. The results of the simulated squared-section

wires showed all of these same properties, like in [9], and thus it can be said that for

DWs in wires with squared-section L<30 nm, the wall's dynamics is practically the

same as to the ones seen for cylindrical wires where the shape anisotropy is zero.

Fig. 54 – Average magnetization during the transverse wall displacement. Here it is seen that for values
of the non-adiabatic parameter, β, smaller than the damping parameter, α, the DW rotates clockwise
(a), whereas for values of β larger than α the wall rotates counter-clockwise (b). Not shown is when β
equals α for which the wall moves rigidly without precessing.

iii) Bloch-point DW dynamics

The dynamics found for BPW in squared-section wires was substantially different.

From Fig. 55 it can be seen that there is a threshold current that has to be overcome in

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 125

order to move the DW, and that it depends on the value of β. This might open the

possibility to roughly determine the value of β in real experiments with strips where

BPW are present. Also independently of β, the BPW always moves rigidly, unlike the

previously seen TW, which would rotate clockwise or counter-clockwise depending

on the value of β. Analyzing the dependence on β, it is seen that this is a main feature

in order to get the BPW moving, since for the perfect adiabatic case β=0 there is no

DW displacement for any value of current, and that as the value of β increases so does

the velocity (Fig. 55). For current densities above 1013 Am-2, the DW transforms into

complex structures that are continuously changing in a disordered way. Also seen in

Fig. 55, for β=0.02 and β=0.04, is the existence of steps/plateaus, in which the DW

moves for different applied current densities at practically the same velocity without

significantly changing its structure. Further study is needed to better understand these

different phenomena.

Fig. 55 – Bloch-point wall velocity versus current density for a nano-wire of L=48 nm. No Oersted
field applied. It can seen that there is a threshold current in order to move the DW. For this type of DW
the velocity varies non-linearly showing fast increases or plateaus for certain values of the current
density. The inset shows how the movement of the DW strongly depends on the value of the non-
adiabatic parameter β, for an applied current density of 1013 Am-2.

The influence of the Oersted field on this type of wall differs from the one seen in

TWs. Its presence contributes, in general, with an increase of the DW velocity (Fig.

56). However, this phenomena was only seen in the β=0.04 case, since when

including the Oersted field for β=0.02, no DW movement is seen. In Fig. 56 it is also

shown that the DW movement is independent of the chirality of the BPW in the

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 126

absence of the Oersted field. (The chirality in this case refers to direction of the

magnetization in the DW area, clockwise or counter-clockwise, as seen from +x).

However, when applying the Oersted field the counter-clockwise chirality is favored.

It is not totally clear why one chirality favours the DW dynamics more than the other

in the presence of the Oersted field.

The BPW case requires further study since there are some phenomena that are still

not well understood. Apart from the previously mentioned existence of steps and

chirality dependence in the presence of the Oersted field, there is also the fact that the

DW for some positive values of the current density moves from left to right and for

other values of J from right to left. And why is it that when applying the Oersted field

it hinders the movement of the DW for β=0.02 and below.

Fig. 56 – Bloch-point wall velocity versus current density for a nano-wire of L=48 nm for the same
value of the non-adiabatic parameter, β, with and without Oersted field. The DW velocity varies non-
linearly and in the absence of the Oersted field the DW dynamics is practically unaffected by the
difference in the direction of the magnetization. In the presence of the Oersted field the counter
clockwise magnetization (as viewed from +x) of the BPW favors the wall’s movement. In the inset it is
shown the DW position in function of the elapsed time, for an applied current density of 5.5×1012 Am-2

.

Conclusion

In summary, it was studied the dynamics of DWs in long squared cross-section

Permalloy strips. It was found that the type of stable DW depends on the size of the

cross-section L, in which for L<30 nm the stable wall is a TW, whereas for L>40 nm

the BPW is the most stable. For TW configurations the DW velocity increases linearly

from zero and it is practically independent of the value of β and the presence of the

4 Different investigations using both sequential-CPU and parallel-GPU
micromagnetic codes

 127

Oersted field, which points to more spin-torque dependent dynamics. The TW

dynamics are also the same as the ones seen in cylindrical wires and there is no

Walker breakdown. In the BPW case, there is a threshold current in order to displace

the DW. There is a range of current density values in which the wall moves rigidly

without being destroyed, however the rise in velocity with the current is not linear.

The effect of the Oersted field on the BPW requires further study but in general and

for some values of β, it appears to increase the DW velocity and there is also a

dependence to the DW dynamics between the Oersted field and the BPW chirality.

The simulations of large structures as the wires studied here benefit greatly from

the developed parallel GPU micromagnetic code, since the number of cells involved

(in the order 106 cells), are very difficultly handled by a CPU sequential code,

requiring months to solve a single simulation.

5 Conclusion

 128

5 Conclusions
The main goal of the work described by this thesis, was on the development of a

new parallel GPU micromagnetic simulation code so as to overcome the temporal and

spatial limitations of a sequential CPU-based code. These types of limitations arise

when trying to make rigorous studies of: stochastic simulations, frequency oscillators,

dynamic multilayer analysis, domain wall dynamics in long ferromagnetic wires, etc.

Such limitations are resumed to the fact that they become impractical to perform in

real time due to amount of computational cells that are needed to solve or the nature

of the problem under study, which might lead to months of simulation time for a

single run.

The developed parallel GPU micromagnetic code programmed in the NVIDIA’s

C-based CUDA language, was successfully implemented allowing for a performance

speed up of roughly two orders of magnitude when compared to the sequential CPU

Fortran code from which it was based on. Writing in the CUDA parallel language is

challenging and it does have a couple of limitations, as the fact that it is restricted to

NVIDIA chip-based graphic cards and the size of the problem to solve has to be

limited to the card’s RAM memory. Nonetheless, even for the large memory

demanding simulations performed in micromagnetics, memory issues are seldom a

problem, and the price per Gflop of performance obtain far compensate the effort of

implementation.

Different interactions were implemented in the developed code, which include the

magnetostatic, exchange, anisotropy, Zeeman, Oersted and thermal field contributions

to the effective field, as well as the spin-torque effect for both current perpendicular to

plane and in-plane devices. These were successfully tested against the well-

established Oommf and the Fortran micromagnetic code developed by the research

group posted on the Micromagnetic Modeling Activity Group webpage.

In order to study the dynamics of two different types of device, the developed

parallel GPU code focused on two parts. On one hand, a two layer dynamic part was

developed, so as to simulate the dynamic properties of both the assumed “pinned”

layer and “free” layers. Of course in this case there is no real pinned layer since at

each time step all the effective field contributions are calculated in both layers as well

as the spin-torque effect of one over the other and vice-versa (back-torque). This code

5 Conclusion

 129

was used to rigorously study the vortex oscillation frequencies in spin-valves. On the

other hand, a different part of the code focused on the study of domain wall dynamics

in long ferromagnetic strips was also developed, which also allowed for the rigorous

study of large ferromagnetic samples composed of a great number of computational

cells (order of 106 cells).

Developing such a micromagnetic parallel code required not only the learning of

the demanding CUDA parallel language, but also a profound understanding of the

physics involved in the micromagnetic formalism. The resulting programming work

served as a basis to a commercial parallel micromagnetic code by the name of

GPMagnet, which was further developed in conjunction with GoParallel S.L. This is a

spin-off company from which the author of this work is co-founder along with the

other members of the research group.

This new micromagnetic simulation tool can now be used to continue to perform

systematic and massive micromagnetic simulations, like the ones studied in this work

involving dual-layer vortex oscillations and DW dynamics in long ferromagnetic

strips. This because it has proven to be a very efficient tool in the study of several

physical processes related to the understanding and control of the magnetization

dynamics at the nano-scale.

5 Conclusion

 130

Published works during the development of the PhD thesis

D. Aurelio, L. Torres and G. Finocchio, “Magnetization switching by spin-transfer-

torque in high-TMR magnetic tunnel junctions” J. Magn. Mag. Mater. 321, 3913–

3920, (2009)

D. Aurélio, L. Torres and G. Finocchio, “Thermal effects on spin-torque-driven

switching in high-tunneling-magnetoresistance magnetic tunnel junctions”, J. Appl.

Phys., 108, 083911, (2010)

L. Lopez-Diaz, D. Aurelio, L. Torres, E. Martinez, M. A. Hernandez-Lopez, J.

Gomez, O. Alejos, M. Carpentieri, G. Finocchio. and G. Consolo, “Micromagnetic

Simulations using Graphic Processing Units”, J. Phys. D: Appl. Phys., 45, 323001

(17pp), (2012).

Works accepted for publishing and on final production stages

L. Torres, M. Carpentieri, E. Martinez, L. Lopez-Diaz, A. Hernandez-Lopez, D.

Aurelio and G. Finocchio, “Intrinsic and Thermal Linewidths of Spin-Transfer-Driven

Vortex Self-oscillations”, IEEE Trans. Magn.

D. Aurelio, A. Giordano, L. Torres, G. Finocchio, E. Martinez, “The role of the

Oersted field on the current-driven domain wall dynamics along wires with square

cross section”, IEEE Trans. Magn.

 131

6 Appendix A
In this appendix the code transcripts of the add operation between the elements of

two different arrays used in example 1 of section 3.6.5 is presented. The first is the

one using the sequential C code, and the second the CUDA parallel one.
	

/*	

	
 *	
 File:	
 	
 main.cpp	

	
 *	
 Example	
 of	
 adding	
 the	
 elements	
 of	
 two	
 arrays	
 and	
 saves	
 the	
 result	

	
 *	
 to	
 a	
 third	
 array,	
 in	
 normal	
 C	

	
 */	

	

#include	
 <iostream>	

#include	
 <fstream>	

#include	
 <stdlib.h>	

#include	
 <math.h>	

	

using	
 namespace	
 std;	

	

int	
 main(int	
 argc,	
 char**	
 argv)	
 {	

	

//	
 Declaring	
 the	
 variables	

	
 	
 	
 	
 int	
 ndim=5;	

	
 	
 	
 	
 float	
 *a;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 float	
 *b;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 float	
 *c;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 a	
 =	
 new	
 float[ndim];	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 memset(a,0,sizeof(float)*ndim);	
 	
 	

	
 	
 	
 	
 b	
 =	
 new	
 float[ndim];	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 memset(b,0,sizeof(float)*ndim);	
 	
 	
 	

	
 	
 	
 	
 c	
 =	
 new	
 float[ndim];	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 memset(c,0,sizeof(float)*ndim);	
 	

	

//	
 Loop	
 that	
 sets	
 the	
 array	
 values	
 and	
 performs	
 the	
 add	
 operation	

	
 	
 	
 	
 for(int	
 i=0	
 ;i<ndim;	
 i++){	

	
 	
 	
 	
 	
 	
 	
 	
 a[i]=1+i;	

	
 	
 	
 	
 	
 	
 	
 	
 b[i]=3;	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 c[i]=a[i]+b[i];	

	
 	
 	
 	
 }	

//	
 Loop	
 that	
 prints	
 the	
 results	
 on	
 screen	

	
 	
 	
 	
 for(int	
 i=0	
 ;i<ndim;	
 i++){	

	
 	
 	
 	
 	
 	
 	
 	
 printf("a[%d]=%1.1f	
 	
 	
 b[%d]=%1.1f	
 	
 	
 	
 c[%d]=%1.1f\n",	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 i,a[i],i,b[i],i,c[i]);	

	
 	
 	
 	
 }	

	

	
 	
 	
 	
 delete	
 a;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	

	
 	
 	
 	
 delete	
 b;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 freeing	
 the	
 memory	

	
 	
 	
 	
 delete	
 c;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	

	
 	
 	
 	
 	

	
 	
 	
 	
 return	
 (EXIT_SUCCESS);	

}	

	

	

 132

/*	
 	

	
 *	
 File:	
 	
 	
 newmain.cu	

	
 *	
 Example	
 of	
 adding	
 the	
 elements	
 of	
 two	
 arrays	
 and	
 saves	
 the	
 result	

	
 *	
 to	
 a	
 third	
 array,	
 in	
 parallel	
 CUDA	

	
 */	

	

#include	
 <iostream>	

	

using	
 namespace	
 std;	

	

/*	
 Kernel	
 prototype*/	

__global__	
 void	
 KernelName(float	
 *dev_a,float	
 *dev_b,float	
 *dev_c,	
 int	

ndim);	

	

int	
 main(int	
 argc,	
 char**	
 argv)	
 {	

	
 	

/*Creating	
 the	
 variables	
 on	
 the	
 host*/	

	
 	
 	
 	
 int	
 ndim=5;	

	
 	
 	
 	
 float	
 *h_a;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 float	
 *h_b;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 float	
 *h_c;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 h_a	
 =	
 new	
 float[ndim];	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 memset(h_a,0,sizeof(float)*ndim);	
 	
 	
 	

	
 	
 	
 	
 h_b	
 =	
 new	
 float[ndim];	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 memset(h_b,0,sizeof(float)*ndim);	
 	
 	
 	

	
 	
 	
 	
 h_c	
 =	
 new	
 float[ndim];	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 memset(h_c,0,sizeof(float)*ndim);	
 	
 	

	

/*Creating	
 the	
 variables	
 on	
 the	
 device*/	

	
 	
 	
 	
 float	
 *dev_a;	

	
 	
 	
 	
 float	
 *dev_b;	

	
 	
 	
 	
 float	
 *dev_c;	
 	
 	
 	
 	

	
 	
 	
 	
 cudaMalloc((void**)&dev_a,sizeof(float)*ndim);	

	
 	
 	
 	
 cudaMemset(dev_a,0,sizeof(float)*ndim);	

	
 	
 	
 	
 cudaMalloc((void**)&dev_b,sizeof(float)*ndim);	

	
 	
 	
 	
 cudaMemset(dev_b,0,sizeof(float)*ndim);	

	
 	
 	
 	
 cudaMalloc((void**)&dev_c,sizeof(float)*ndim);	

	
 	
 	
 	
 cudaMemset(dev_c,0,sizeof(float)*ndim);	

	
 	
 	
 	
 	

/*Defining	
 the	
 size	
 of	
 the	
 block	
 and	
 grid*/	

	
 	
 	
 	
 dim3	
 dimBlock(5);	

	
 	
 	
 	
 dim3	
 dimGrid(ndim/dimBlock.x);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 printf("block	
 %d	
 	
 	
 grid	
 %d	
 \n",dimBlock.x,dimGrid.x);	

	
 	
 	
 	
 	

/*Initializing	
 the	
 vectors*/	

	
 	
 	
 	
 for(int	
 i=0	
 ;i<ndim;	
 i++){	

	
 	
 	
 	
 	
 	
 	
 	
 h_a[i]=1+i;	

	
 	
 	
 	
 	
 	
 	
 	
 h_b[i]=3;	

	
 	
 	
 	
 }	

/*Printing	
 the	
 initial	
 values	
 before	
 the	
 add	
 operation*/	

	
 	
 	
 	
 	
 for(int	
 i=0	
 ;i<ndim;	
 i++){	

	
 	
 	
 	
 	
 	
 	
 	
 printf("a[%d]=%1.1f	
 	
 	
 b[%d]=%1.1f	
 	
 	
 c[%d]=%1.1f\n",	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 i,h_a[i],i,h_b[i],i,h_c[i]);	

	
 	
 	
 	
 }printf("\n");	
 	
 	

	
 	
 	
 	
 	

	

	

	

 133

/*Copying	
 the	
 values	
 of	
 a	
 and	
 b	
 to	
 the	
 GPU	
 device	
 variables	
 dev_a	
 and	

dev_b*/	

	
 	
 	
 	
 cudaMemcpy(dev_a,	
 h_a,	
 sizeof(float)*ndim,	
 cudaMemcpyHostToDevice);	

	
 	
 	
 	
 cudaMemcpy(dev_b,	
 h_b,	
 (sizeof(float)*ndim),	
 cudaMemcpyHostToDevice);	

	
 	
 	
 	
 	
 	
 	
 	

/*	
 Kernel	
 call*/	

	
 	
 	
 	
 KernelName<<<dimGrid,dimBlock>>>(dev_a,dev_b,dev_c,ndim);	

	
 	
 	
 	
 	

/*Returning	
 the	
 result	
 of	
 the	
 kernel	
 operation	
 to	
 the	
 host*/	

	
 	
 	
 	
 cudaMemcpy(h_c,dev_c,sizeof(float)*ndim,cudaMemcpyDeviceToHost);	

	
 	

	
 	
 	
 	
 for(int	
 i=0	
 ;i<ndim;	
 i++){	

	
 	
 	
 	
 	
 	
 	
 	
 printf("a[%d]=%1.1f	
 	
 	
 b[%d]=%1.1f	
 	
 	
 c[%d]=%1.1f\n",	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 i,h_a[i],i,h_b[i],i,h_c[i]);	

	
 	
 	
 	
 }	

	

/*Freeing	
 memory*/	

	
 	
 	
 	
 delete	
 h_a;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 delete	
 h_b;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 delete	
 h_c;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 cudaFree(dev_a);	

	
 	
 	
 	
 cudaFree(dev_b);	

	
 	
 	
 	
 cudaFree(dev_c);	

	
 	
 	

return	
 (EXIT_SUCCESS);	

}	

	

/*Kernel*/	

__global__	
 void	
 KernelName(float	
 *dev_a,float	
 *dev_b,float	
 *dev_c,	
 int	

ndim){	

	

	
 	
 	
 	
 int	
 index	
 =	
 blockIdx.x	
 *	
 blockDim.x	
 +	
 threadIdx.x;	

	
 	
 	
 	
 	

	
 	
 	
 	
 if(index	
 <	
 ndim){	

	
 	
 	
 	
 	
 	
 	
 	
 dev_c[index]	
 =	
 dev_a[index]	
 +	
 dev_b[index];	

	
 	
 	
 	
 }	

	
 	
 	
 	
 	

	
 __syncthreads();	

}	

	

	

 134

7 Appendix B
In this appendix it is shown the code transcript of the CUFFT library usage

described in example 2 of section 3.6.5.
/*	
 	

	
 *	
 File:	
 	
 	
 newmain.cu	

	
 *	
 Example	
 of	
 using	
 the	
 CUFFT	
 library	

	
 */	

	

#include	
 <iostream>	

#include	
 "exFFT.h"	

	

using	
 namespace	
 std;	

	

/*	
 Kernel	
 prototype*/	

__global__	
 void	
 KernelName(float	
 *dev_a,float	
 *dev_b,cuFloatComplex	
 *dev_c,	

	
 	
 	
 	
 	
 	
 	
 	
 int	
 nx,	
 int	
 ny,	
 int	
 nz);	

	

int	
 main(int	
 argc,	
 char**	
 argv)	
 {	

	
 	

/*Creating	
 the	
 variables	
 on	
 the	
 host*/	

	
 	
 	
 	

	
 	
 	
 	
 int	
 nx=400;	

	
 	
 	
 	
 int	
 ny=30;	

	
 	
 	
 	
 int	
 nz=2;	

	
 	
 	
 	
 int	
 ndim=nx*ny*nz;	

	
 	
 	
 	
 float	
 *h_a;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 float	
 *h_b;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 cuFloatComplex	
 *h_c;	
 	
 	

	
 	
 	
 	
 cuFloatComplex	
 *ffth_c;	

	
 	
 	
 	
 cuFloatComplex	
 *Iffth_c;	

	
 	
 	
 	
 h_a	
 =	
 new	
 float[ndim];	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 memset(h_a,0,sizeof(float)*ndim);	
 	
 	
 	

	
 	
 	
 	
 h_b	
 =	
 new	
 float[ndim];	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 memset(h_b,0,sizeof(float)*ndim);	
 	
 	
 	

	
 	
 	
 	
 h_c	
 =	
 new	
 cuFloatComplex[2*nx*2*ny*2*nz];	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 memset(h_c,0,sizeof(cuFloatComplex)*2*nx*2*ny*2*nz);	

	
 	
 	
 	
 ffth_c	
 =	
 new	
 cuFloatComplex[2*nx*2*ny*2*nz];	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 memset(ffth_c,0,sizeof(cuFloatComplex)*2*nx*2*ny*2*nz);	
 	

	
 	
 	
 	
 Iffth_c	
 =	
 new	
 cuFloatComplex[2*nx*2*ny*2*nz];	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 memset(Iffth_c,0,sizeof(cuFloatComplex)*2*nx*2*ny*2*nz);	

	

/*Creating	
 the	
 variables	
 on	
 the	
 device*/	

	
 	
 	
 	
 float	
 *dev_a;	

	
 	
 	
 	
 float	
 *dev_b;	

	
 	
 	
 	
 cuFloatComplex	
 *dev_c;	
 	

	
 	
 	
 	
 cuFloatComplex	
 *fftdev_c;	

	
 	
 	
 	
 cuFloatComplex	
 *Ifftdev_c;	

	
 	
 	
 	
 cudaMalloc((void**)&dev_a,sizeof(float)*ndim);	

	
 	
 	
 	
 cudaMemset(dev_a,0,sizeof(float)*ndim);	

	
 	
 	
 	
 cudaMalloc((void**)&dev_b,sizeof(float)*ndim);	

	
 	
 	
 	
 cudaMemset(dev_b,0,sizeof(float)*ndim);	

	
 	
 	
 	
 cudaMalloc((void**)&dev_c,sizeof(cuFloatComplex)*2*nx*2*ny*2*nz);	

	
 	
 	
 	
 cudaMemset(dev_c,0,sizeof(cuFloatComplex)*2*nx*2*ny*2*nz);	

	
 	
 	
 	
 cudaMalloc((void**)&fftdev_c,sizeof(cuFloatComplex)*2*2*nx*2*ny*2*nz);	

	
 	
 	
 	
 cudaMemset(fftdev_c,0,sizeof(cuFloatComplex)*2*2*nx*2*ny*2*nz);	

 135

	
 	
 	
 	
 cudaMalloc((void**)&Ifftdev_c,sizeof(cuFloatComplex)*2*2*nx*2*ny*2*nz);	

	
 	
 	
 	
 cudaMemset(Ifftdev_c,0,sizeof(cuFloatComplex)*2*2*nx*2*ny*2*nz);	

	

/*Defining	
 the	
 size	
 of	
 the	
 block	
 and	
 grid*/	

	
 	
 	
 	
 dim3	
 dimBlock(512);	

	
 	
 	
 	
 dim3	
 dimGrid(ndim/dimBlock.x	
 +	
 (ndim%dimBlock.x==0?0:1));	

	
 	

	
 	
 	
 	
 printf("block	
 %d	
 	
 	
 Blocks	
 in	
 grid	
 %d	
 \n",dimBlock.x,dimGrid.x);	

	
 	
 	
 	
 	

/*Initializing	
 the	
 vectors*/	

	
 	
 	
 	
 for(int	
 i=0	
 ;i<ndim;	
 i++){	

	
 	
 	
 	
 	
 	
 	
 	
 h_a[i]=	
 1+i;	

	
 	
 	
 	
 	
 	
 	
 	
 h_b[i]=	
 3;	

	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 /*Copying	
 the	
 values	
 of	
 a	
 and	
 b	
 to	
 the	
 GPU	
 device	
 variables	
 dev_a	
 and	

dev_b*/	

	
 	
 	
 	
 cudaMemcpy(dev_a,	
 h_a,	
 sizeof(float)*ndim,	
 cudaMemcpyHostToDevice);	

	
 	
 	
 	
 cudaMemcpy(dev_b,	
 h_b,	
 (sizeof(float)*ndim),	
 cudaMemcpyHostToDevice);	

	
 	
 	
 	
 	
 	
 	
 	

/*	
 Kernel	
 call*/	

	
 	
 	
 	
 KernelName<<<dimGrid,dimBlock>>>(dev_a,dev_b,dev_c,nx,ny,nz);	

	

	
 	
 	
 	
 cuFFT3DF	
 (2*nx,2*ny,2*nz,	
 dev_c,	
 fftdev_c);	

	
 	
 	
 	
 cuFFT3DI	
 (2*nx,2*ny,2*nz,	
 fftdev_c,	
 Ifftdev_c);	

	
 	
 	
 	
 	

/*Returning	
 the	
 result	
 of	
 the	
 kernel	
 operation	
 to	
 the	
 host*/	

cudaMemcpy(h_c,dev_c,sizeof(cuFloatComplex)*2*nx*2*ny*2*nz,	

cudaMemcpyDeviceToHost);	

cudaMemcpy(ffth_c,fftdev_c,sizeof(cuFloatComplex)*2*nx*2*ny*2*nz,	

cudaMemcpyDeviceToHost);	

cudaMemcpy(Iffth_c,Ifftdev_c,sizeof(cuFloatComplex)*2*nx*2*ny*2*nz,	

cudaMemcpyDeviceToHost);	

	
 	

/*Freeing	
 memory*/	

	
 	
 	
 	
 delete	
 h_a;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 delete	
 h_b;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 delete	
 h_c;	
 	

	
 	
 	
 	
 delete	
 ffth_c;	

	
 	
 	
 	
 delete	
 Iffth_c;	

	
 	
 	
 	
 cudaFree(dev_a);	

	
 	
 	
 	
 cudaFree(dev_b);	

	
 	
 	
 	
 cudaFree(dev_c);	

	
 	
 	
 	
 cudaFree(fftdev_c);	

	
 	
 	
 	
 cudaFree(Ifftdev_c);	

	
 	
 	
 	
 	

return	
 (EXIT_SUCCESS);	

}	

	

/*Kernel*/	

__global__	
 void	
 KernelName(float	
 *dev_a,	
 float	
 *dev_b,cuFloatComplex	

*dev_c,	
 int	
 nx,	
 int	
 ny,	
 int	
 nz){	

	

	
 	
 	
 	
 int	
 index	
 =	
 blockIdx.x	
 *	
 blockDim.x	
 +	
 threadIdx.x;	

	
 	
 	
 	
 	

	
 	
 	
 	
 if(index	
 <	
 (2*nx*2*ny*2*nz)){	

	
 	
 	
 	
 	
 	
 	
 	
 if(index	
 <	
 (nx*ny*nz)){	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 dev_c[index]	
 =	
 make_cuFloatComplex(dev_a[index]	
 +	
 dev_b[index],	

0.0e0);	

 136

	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 }else{	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 dev_c[index]	
 =	
 make_cuFloatComplex(0.0e0,	
 0.0e0);	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 }	

	
 __syncthreads();	

}	

/*	
 	

	
 *	
 File:	
 exFFT.cu	

	
 *	
 Example	
 of	
 using	
 the	
 CUFFT	
 library	

	
 *	
 File	
 containing	
 the	
 CUFFT	
 functions	
 plan	

	
 *	
 	

	
 */	

	

#include	
 "exFFT.h"	

	

void	
 cuFFT3DF	
 (int	
 xSize,	
 int	
 ySize,	
 int	
 zSize,	
 cuFloatComplex	
 *inArray,	

	
 	
 	
 	
 	
 	
 	
 	
 cuFloatComplex	
 *outArray){	

//	
 Define	
 the	
 handle	
 variable	
 that	
 allows	
 access	
 to	
 CUFFT	
 plans	

	
 	
 	
 	
 cufftHandle	
 plan;	

	

//	
 Create	
 a	
 1-­‐dimensional	
 CUFFT	
 plan	
 of	
 a	
 float	
 Complex	
 to	
 float	
 Complex	

//variables	

	
 	
 	
 	
 cufftPlan3d(&plan,	
 xSize,	
 ySize,	
 zSize,	
 CUFFT_C2C);	
 	

	
 	
 	
 	
 	
 	
 	
 	

//	
 Transform	
 the	
 data	
 to	
 the	
 same	
 array	
 in	
 the	
 forward	
 direction	

	
 	
 	
 	
 cufftExecC2C(plan,	
 inArray,	
 outArray,	
 CUFFT_FORWARD);	

	

//	
 Destroy	
 the	
 CUFFT	
 plan	

	
 	
 	
 	
 cufftDestroy(plan);	

}	

	

void	
 cuFFT3DI	
 (int	
 xSize,	
 int	
 ySize,	
 int	
 zSize,	
 cuFloatComplex	
 *inArray,	

	
 	
 	
 	
 	
 	
 	
 	
 cuFloatComplex	
 *outArray){	

//	
 Define	
 the	
 handle	
 variable	
 that	
 allows	
 access	
 to	
 CUFFT	
 plans	

	
 	
 	
 	
 cufftHandle	
 plan;	

	

//	
 Create	
 a	
 1-­‐dimensional	
 CUFFT	
 plan	
 of	
 a	
 float	
 Complex	
 to	
 float	
 Complex	

//variables	

	
 	
 	
 	
 cufftPlan3d(&plan,	
 xSize,	
 ySize,	
 zSize,	
 CUFFT_C2C);	
 	

	
 	
 	
 	
 	
 	
 	
 	

//	
 Transform	
 the	
 data	
 to	
 the	
 same	
 array	
 in	
 the	
 forward	
 direction	

	
 	
 	
 	
 cufftExecC2C(plan,	
 inArray,	
 outArray,	
 CUFFT_INVERSE);	

	

//	
 Destroy	
 the	
 CUFFT	
 plan	

	
 	
 	
 	
 cufftDestroy(plan);	

}	

/*	
 	

	
 *	
 File:	
 	
 	
 exFFT.h	

	
 *	
 Example	
 of	
 using	
 the	
 CUFFT	
 library	

	
 *	
 Header	
 file	
 containing	
 the	
 CUFFT	
 function	
 prototypes	

	
 */	

	

#ifndef	
 EXFFT_H	

 137

#define	
 EXFFT_H	

	

#include	
 <cufft.h>	
 	
 	
 	
 	
 	
 //	
 CUDA	
 library	
 to	
 calculate	
 FFT	

	

void	
 cuFFT3DF	
 (int	
 xSize,	
 int	
 ySize,	
 int	
 zSize,	
 cuFloatComplex	
 *inArray,	

	
 	
 	
 	
 	
 	
 	
 	
 cuFloatComplex	
 *outArray);	

	

void	
 cuFFT3DI	
 (int	
 xSize,	
 int	
 ySize,	
 int	
 zSize,	
 cuFloatComplex	
 *inArray,	

	
 	
 	
 	
 	
 	
 	
 	
 cuFloatComplex	
 *outArray);	

	

#endif	
 /*	
 EXFFT_H	
 */	

 138

8 Bibliography
[1] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen-Van-Dan, F. Petroff, P. Etienne,

G. Creuzet, A. Friedrich and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

[2] G. Binasch, P. Grünberg, F. Saurenbach and W. Zinn, Phys. Rev. B 39, 4828
(1989).

[3] J. Slonczewski, J. Magn. Magn. Mater., 159, L1-L7, (1996).
[4] L. Berger, Phys. Rev. B, 54, no. 13, pp. 9353-9358, (1996).

[5] www.everspin.com; ST-MRAM_Technical_Brief
[6] S.S.P. Parkin, M. Hayashi and L. Thomas, Science 320, 190, (2008)

[7] A. Thiaville and Y. Nakatani, 2006, “Domain-Wall Dynamics in Nanowires and
Nanostrips, “Spin dynamics in Confined Magnetic Structures III”, ed. B. Hillebrands
and A Thiaville (Berlin:Springer).
[8] A. Thiaville, J.M. Garcia and J. Miltat, “Domain wall dynamics in nanowires”, J.
Magn. Magn. Mater, Vol. 242–245, 1061–1063, Apr. 2002.
[9] M. Yan, A. Kákay, S. Gliga and R. Hertel, “Beating the Walker Limit with
Massless Domain Walls in Cylindrical Nanowires”, Phys. Rev. Lett., 104, 057201,
Feb. 2010.

[10] V.E. Demidov, S. Urazhdin, S. Demokritov, Nat. Mat, Vol. 9, 984-988, (2010).
[11] S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J. Schoelkopf, R.
A. Buhrman, and D. C. Ralph, Nature, 425, 380-383, (2003).
[12] W. H. Rippard, M. R. Pufall, S. Kaka, S. E. Russek, and T. J. Silva, Phys. Rev.
Lett., 92, 146803, (2004).
[13] Kajiwara Y., Harii K., Takahashi S., Ohe J., Uchida K., Mizuguchi M.,
Umezawa H., Kawai H., Ando K., Takanashi K., Maekawa S., Saitoh E., Nat. Let.
464, 262-266 (2010).

[14] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa,

and E. Saitoh, Nature 455, 778-781 (2008).

[15] C.M. Jaworski, R.C. Myers, E. Johnston-Haperin and J.P. Heremans, Nature,
487, 210–213, (2012).

[16] G. Bertotti, "Hysteresis in Magnetism - For Physicists, Materials Scientists and
Engineers", Academic Press 1998.

[17] B. Hillebrands, A. Thiaville (Eds.), "Spin Dynamics in Confined Magnetic
Structures III", 101, Topics in Applied Physics, Springer:Berlin 2006

[18] B. Hillebrands, K. Ounadjela (Eds.), "Spin Dynamics in Confined Magnetic
Structures I", 83m Topics in Applied Physics, Springer:Berlin 2002
[19] D. Stancil, A. Prabhakar, "Spin Waves - Theory and Applications", Springer
2009.
[20] Teruya Shinjo (edited), “Nanomagnetism and Spintronics”, Elsevier B.V., 2009.

[21] E. Martinez, l. Lopez-Diaz, L. Torres and C.J. Garcia-Cervera, J. Phys. D: Appl.
Phys, 40, 942-948, (2007).

 139

[22] H. Goldstein, “Mecánica Clásica”, Ed. Reverté (1990).
[23] W.F. Brown Jr., “Micromagnetics”. Ed. John Wiley and Sons (1978).

[24] B.D. Cullity, “Introduction to Magnetic Materials”, Ed. Addison-Wesley (1972).
[25] H.M. Rosenberg, “El estado Sólido”, Ed. Alianza Editorial (1991).

[26] Kittel, “Introducción a la Física del Estado Sólido”, Ed. Reverte (1993).
[27] Coffey W T, Kalmykov Y P and Waldrom J T, “The Langevin Equation, with
applications to stochastic problems in Physics, Chemistry and Electrical
Engineering”, Singapore: World Scientific, (1996).

[28] W.F. Brown Jr., Phys. Rev. B, 130, 1677–86, (1963).
[29] N.G. Van Kampen, “Stochastic Processes in Physics and Chemistry”,
Amsterdam: North-Holland, (1981).
[30] J. Slonczewski, J. Magn. Magn. Mater. 247, 324, (2002).

[31] J. Slonczewski, Phys. Rev B, 71, 024411, (2005).
[32] A. A. Awad, A. Lara, V. Metlushko, K. Y. Guslienko, and F. G. Aliev
“Broadband probing magnetization dynamics of the coupled vortex state permalloy
layers in nanopillars” Appl. Phys. Lett. vol. 100, 26240, (2012)

[33] S. Zhang and Z. Li, Phys. Rev. Lett. 93, 127204, (2004)
[34] A . Thiaville, Y. Nakatani, J. Miltat and Y. Suzuki, Europhys. Lett. 69, 990–6,
(2005)
[35] Martinez E., Lopez-Diaz L., Alejos O. and Torres L., Phys. Rev. B, 77 144417,
(2008).
[36] O. Boulle, G. Malinowski, M Klaui, Mater. Sci. Eng. R, (2011),
doi:10.1016/j.mser.2011.04.001
[37] A. Aharoni, “Introduction to the theory of ferromagnetism”, Claredon Press:
Oxford, (1996).
[38] C. Johnson, “Numerical Solution of Partial Differential Equations by the Finite
Element Method”, New York: Cambridge University Press, (1990).
[39] C.J. García-Cervera and E. Weinan, IEEE Trans. Magn., 39, 1766–70, (2003).

[40] C.J. Parker, C. Cerjan and D.W. Hewett, J. Magn. Magn. Mater., 214, 130–8,
(2000).

[41] M.J. Donahue and R.D. McMichael, IEEE Trans. Magn. 43, 2878–80, (2007).
[42] A. Thiaville and Y. Nakatani, 2006, “Domain-Wall Dynamics in Nanowires and
Nanostrips, (Spin dynamics in Confined Magnetic Structures III)”, ed. B. Hillebrands
and A Thiaville (Berlin:Springer).

[43] J. Miltat and M. Donahue, “Numerical Micromagnetics: Finite Difference
Methods (Handbook of Magnetism and Advanced Magnetic Materials)”, vol 2 ed. H.
Kronmuller and S. Parkin, Chichester: Wiley-Interscience, (2007).
[44] M. Labrune and J. Miltat, J. Magn. Magn. Mater., 151, 231–45, (1995).

[45] A.J. Newell, W. Williams and D.J. Dunlop, J. Geophys. Res., 98, 9551–5,
(1993).

 140

[46] J. Miltat, M. Donahue, "Numerical Micromagnetics: Finite Difference Methods",
Handbook of Magnetism and Advanced Magnetic Materials, edited by H. Kronmüller
and S. Parkin, Wiley-Interscience, Chichester, Vol2, pp 742-764, (Sep 2007).
[47] D.J. Stockhan, Joint. Comput. Conf. Proc., 28, 229–33, (1966).

[48] M. Mansuripur and R. Giles, IEEE Trans. Magn., 24, 2326–8, (1998).
[49] E. Martinez, L. Torres, Member, IEEE, and L. Lopez-Diaz, IEEE Trans. Magn.,
40, 5, (2004)
[50] Press W. H., Teukolky S. A., Watterling W. T. and Flannery B. P. “Numerical
Recipes in Fortran: The Art of Scientific Computing”, New York: Cambridge
University Press, (1996).

[51] Berkov D. V. and Gorn N. L., J. Magn. Magn. Mater., 290, 442–8, (2005).
[52] Berkov D. V., “Magnetization Dynamics Including Thermal Fluctuations: Basic
Phenomenology, Fast Remagnetization Processes and Transitions Over High-energy
Barriers (Handbook of Magnetism and Advanced Magnetic Materials)”, vol 2, ed H.
Kronmuller and S. Parkin, Chichester: Wiley-Interscience, (2007).
[53] Grinstein G. and Koch R .H., Phys. Rev. Lett., 90, 207201, (2003).

[54] Martinez E., Lopez-Diaz L. and Torres L., IEEE Trans. Magn., 39, 2522–4,
(2003).

[55] Tsiantos V., Scholz W., Suess D., Schrefl T. and Fidler J., J. Magn. Magn.
Mater., 242–245 999–1001, 2002

[56] L. Lopez-Diaz, D. Aurelio, L. Torres, E. Martinez, M. A. Hernandez-Lopez, J.
Gomez, O. Alejos, M. Carpentieri, G. Finocchio. and G. Consolo, J. Phys. D: Appl.
Phys., 45, 323001 (17pp), (2012).
[57] D.W. Zingg, T.T. Chisholm, Applied Numerical Mathematics, 31, 227–238,
(1999)
[58] NVIDIA Corporation http://www.nvidia.com

[59] What is CUDA?, http://www.nvidia.co.uk/object/what_is_cuda_new_uk.html
[60] CUDA in action, http://www.nvidia.co.uk/object/cuda_in_action_uk.html

[61] CUDA C Programming Guide, http://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html

[62] NVIDIA CUDA runtime API, http://docs.nvidia.com/cuda/cuda-runtime-
api/index.html

[63] CUDA C Best Practices Guide http://docs.nvidia.com/cuda/cuda-c-best-
practices-guide/index.html

[64] CUFFT library http://docs.nvidia.com/cuda/cufft/index.html
[65] CUDPP library http://code.google.com/p/cudpp/

[66] http://gpgpu.org/developer/cudpp#high_1
[67] Donahue M. J. 2007, 6th International Symposium on Hysteresis Modeling and
Micromagnetics, HMM-2007 (presentation available at
http://math.nist.gov/MDonahue/talks.html).

[68] http://math.nist.gov/oommf/

 141

[69] http://www.ctcms.nist.gov/~rdm/mumag.org.html
[70] http://www.goparallel.net/

[71] D. Aurelio, L. Torres and G. Finocchio, J. Magn. Mag. Mater. 321, 3913–3920,
(2009)

[72] D. Aurélio, L. Torres and G. Finocchio, J. Appl. Phys., 108, 083911, (2010)
[73] G. Finocchio, M. Carpentieri, B. Azzerboni, L. Torres, E. Martinez, L. Lopez-
Diaz, J. Appl. Phys. 99, 08G522, (2006)
[74] G. Finocchio, M. Carpentieri, B. Azzerboni, L. Torres, L. Lopez-Diaz, E.
Martinez, Physica B 372, 294, (2006)
[75] D. Apalkov, M. Pakala, Y. Huai, J. Appl. Phys. 99, 08B907, (2006)

[76] J.C. Sankey, Y. -Tao Cui, J.Z. Sun, J.C. Slonczewski, R.A. Buhrman, D.C.
Ralph, Nat. Phys. 4, 67, (2008)

[77] T. Devolder, J. Hayakawa, K. Ito, H. Takahashi, S. Ikeda, P. Crozat, N.
Zerounian, Joo-Von Kim, C. Chappert, H. Ohno, Phys. Rev. Lett. 100, 057206, (2008)

[78] T. Devolder, J. Hayakawa, K. Ito, H. Takahashi, S. Ikeda, J.A. Katine, M.J.
Carey, P. Crozat, J.V. Kim, C. Chappert, H. Ohno, J. Appl. Phys. 103, 07A723,
(2008)
[79] M. Iwayama, T. Kai, M. Nakayama, H. Aikawa, Y. Asao, T. Kajiyama, S.
Ikegawa, H. Yoda, A. Nitayama, J. Appl. Phys. 103, 07A720, (2008)
[80] http://www.infolytica.com/en/products/magnet/

[81] G. Finocchio, B. Azzerboni, G.D. Fuchs, R.A. Buhrman, L. Torres, J. Appl.
Phys. 101, 063914, (2007)

[82] G. Finocchio, G. Consolo, M. Carpentieri, A. Romeo, B. Azzerboni, L. Torres, J.
Appl. Phys., 101, 09A508, (2007)

[83] R.D. McMichael, M.D. Stiles, J. Appl. Phys. 97, 10J901, (2005)
[84] G. Finocchio, I. Krivorotov, M. Carpentieri, G. Consolo, B. Azzerboni, L.
Torres, E. Martinez, L. Lopez-Diaz, J. Appl. Phys. 99, 08G507, (2006)
[85] L. Torres, L. Lopez-Diaz, E. Martinez, G. Finocchio, M. Carpentieri, B.
Azzerboni, J. Appl. Phys. 101, 053914, (2007)
[86] Y. Acremann, J.P. Strachan, V. Chembrolu, S.D. Andrews, T. Tyliszczak, J.A.
Katine, M.J. Carey, B.M. Clemens, H.C. Siegmann, J. Stohr, Phys. Rev. Lett. 96,
217202, (2006)

[87] K. Ito, T. Devolder, C. Chappert, M.J. Carey, J.A. Katine, J. Phys. D: Appl.
Phys. 40, 1261–1267, (2007)

[88] Y. Saito, T. Inokuchi, H. Sugiyama, K. Inomata, Eur. Phys. J. B 59, 463–469,
(2007)

[89] A.M. Deac, A. Fukushima, H. Kubota, H. Maehara, Y. Suzuki, S. Yuasa, Y.
Nagamine, K. Tsunekawa, D.D. Djayaprawira, N. Watanabe, Nat. Phys. 4, 803,
(2008)

 142

[90] H. Tomita, K. Konishi, T. Nozaki, H. Kubota, A. Fukushima, K. Yakushiji, S.
Yuasa, Y. Nakatani, T. Shinjo, M. Shiraishi, and Y. Suzuki, Appl. Phys. Express 1,
061303, (2008).
[91] Y. Cui, G. Finocchio, C. Wang, J. A. Katine, R. A. Buhrman, and D. C. Ralph,
Phys. Rev. Lett. 104, 097201, (2010).
[92] S. Garzon, Y. Bazaliy, R. A. Webb, M. Covington, S. Kaka, and T. M. Crawford,
Phys. Rev. B 79, 100402, (2009).
[93] G. D. Fuchs, I. N. Krivorotov, P. M. Braganca, N. C. Emley, A. G. F. Garcia, D.
C. Ralph, and R. A. Buhrman, Appl. Phys. Lett. 86, 152509, (2005).
[94] N. C. Emley, I. N. Krivorotov, O. Ozatay, A. G. F. Garcia, J. C. Sankey, D. C.
Ralph, and R. A. Buhrman, Phys. Rev. Lett. 96, 247204, (2006).
[95] C. Wang, Y.T. Cui, J. Z. Sun, J. A. Katine, R. A. Buhrman, and D. C. Ralph,
Phys. Rev. B 79, 224416, (2009).
[96] M. H. Jung, S. Park, C.Y. You, and S. Yuasa, Phys. Rev. B 81, 134419, (2010).

[97] G. Finocchio, V.S. Pribiag, L. Torres, R. A. Buhrman and B. Azzerboni. “Spin-
torque driven magnetic vortex self-oscillations in perpendicular magnetic fields”
Appl. Phys. Lett. vol. 96, 102508, (2010).
[98] V. S. Pribiag, I. N. Krivorotov, G. D. Fuchs, P.M. Braganza, O. Ozatay, J. C.
Sankey, D. C. Ralph and R. A. Buhrman. “Magnetic vortex oscillator driven by d.c.
spin-polarized current” Nat. Phys. vol. 3, pp. 498-503, (2007)

[99] M. Carpentieri, L. Torres and E. Martinez. “Temperature Dependence of
Microwave Nano-Oscillator Linewidths Driven by Spin-Polarized Currents: A
Micromagnetic Analysis”. IEEE Trans. Mag. vol 45 (10), pp. 3426-3429, (2009)
[100] J. C. Sankey, I. N. Krivorotov, S. I. Kiselev, P. M. Braganca, N. C. Emley, R.
A. Buhrman, and D. C. Ralph, “Mechanisms limiting the coherence time of
spontaneous magnetic oscillations driven by dc spin- polarized currents,” Phys. Rev.
B, Condens. Matter, vol. 72, 224427, (2005)
[101] J. Kim, Q. Mistral, C. Chappert, V. S. Tiberkevich, and A. N. Slavin,
“Lineshape distortion in a nonlinear auto-oscillator near generation threshold:
Application to spin-torque nano-oscillators,” Phys. Rev. Lett., vol. 100, 167201,
(2008)

[102] J. Kim, V. S. Tiberkevich, and A. N. Slavin, “Generation linewidth of an auto-
oscillator with a nonlinear frequency shift: Spin-torque nanooscillators,” Phys. Rev.
Lett., vol. 100, 017207, (2008)

[103] V. S. Tiberkevich, A. N. Slavin, and J. Kim, “Temperature dependence of
nonlinear auto-oscillator linewidths: Application to spin-torque nano- oscillators,”
Phys. Rev. B, Condens. Matter, vol. 78, 092401, (2008)

[104] C. Boone, J. A. Katine, J. R. Childress, J. Zhu, X. Cheng, and I. N. Krivorotov,
“Experimental test of an analytic theory of spin-torque oscillator dynamics” Phys.
Rev. B, Condens. Matter, vol. 97, 140404(R), (2009)

[105] M. L. Schneider, W. H. Rippard, M. R. Pufall, T. Cecil, T. J. Silva, and S. E.
Russek “Temperature dependence of spin-torque-driven self- oscillations” Phys. Rev.
B, Condens. Matter, vol. 80, 144412, (2009)

 143

[106] P. Bortolotti, A. Dussaux, J. Grollier, V. Cros, A. Fukushima, H. Kubota, K.
Yakushiji, S. Yuasa, K. Ando, and A. Fert “Temperature dependence of microwave
voltage emission associated to spin-transfer induced vortex oscillation in magnetic
tunnel junction” Appl. Phys. Lett. vol. 100, 042408, (2012)

[107] P. K. Muduli, O. G. Heinonen, and Johan A° kerman “Temperature dependence
of linewidth in nanocontact based spin torque oscillators: Effect of multiple
oscillatory modes” Phys. Rev. B, Condens. Matter vol. 86, 174408, (2012)
[108] V. S. Pribiag, G. Finocchio, B. J. Williams, D. C. Ralph, R. A. Buhrman, “Long
timescale fluctuations in zero-field magnetic vortex oscillations driven by dc spin-
polarized current”, Phys. Rev. B, Condens. Matter vol. 80, 180411(R), (2009)

[109] M. Quinsat, V. Tiberkevich, D. Gusakova, A. Slavin, J. F. Sierra, U. Ebels, L.
D. Buda-Prejbeanu, B. Dieny, M.-C. Cyrille, A. Zelster, and J. A. Katine. “Linewidth
of higher harmonics in a nonisochronous auto- oscillator: Application to spin-torque
nano-oscillators” Phys. Rev. B, Condens. Matter, vol. 86, 104418, (2012)

[110] J.H. Ai, B.F. Miao, L. Sun, B. You, An Hu, and H.F. Ding, “Current-induced
domain wall motion in permalloy nanowires witha rectangular cross-section”, J. Appl.
Phys. Vol. 110, 093913, (Nov. 2011).
[111] W. Döring, Z. Naturforsh, 3a, 373, (1948)

[112] M. Kläui, J. Phys: Condens. Matt., 20, 313001, (2008)
[113] IEEE Transactions on Magnetics journal webpage:
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=20
[114] E. Martinez, L. Lopez-Diaz, L. Torres, C. Tristan and O. Alejos, Phys. Rev. B
75, 174409 (2007)

