

i

UNIVERSIDAD DE SALAMANCA

DEPARTAMENTO DE INFORMÁTICA Y AUTOMÁTICA

FACULTAD DE CIENCIAS

Intelligent business Processes Composition

based on mAs, Semantic and Cloud

Integration

(IPCASCI)

Author:

José Alberto García Coria

Director:

Juan Manuel Corchado Rodríguez

September 2013

ii

iii

The research memory “Intelligent business Processes Composition based on mAs,

Semantic and Cloud Integration: IPCASCI” presented by D. Jose Alberto García Coria

to obtain a Ph.D. Degree by the Universidad de Salamanca has been carried out under

the supervision of Dr. D. Juan Manuel Corchado Rodríguez, Full Professor –

(Catedrático de Universidad) of the Departamento de Informática y Automática of the

Universidad de Salamanca,

Salamanca, September 2013

The Director The Graduate:

Fdo: Dr. D. Juan M. Corchado Rodríguez Fdo. D. José Alberto García Coria

Catedrático de Universidad

Departamento de Informática y Automática

Universidad de Salamanca

iv

José Alberto García Coria: Intelligent business Processes

Composition based on mAs, Semantic and Cloud

Integration: IPCASCI, Ph.D. in Computer Science, © September 2013

Supervisor:

Dr. D. Juan Manuel Corchado Rodríguez

Location:

Salamanca

Spain

v

ACKNOWLEDGEMENT

To Juan Manuel Corchado, for his guidance, advices, expertise, vision and inmense

knowledge.

To Sonia, Laura and David, for their constant support and motivation.

In memory of Gabriela …

vi

vii

ABSTRACT

Component reuse is one of the techniques that most clearly contributes to the

evolution of the software industry by providing efficient mechanisms to create quality

software. Reuse increases both software reliability, due to the fact that it uses

previously tested software components, and development productivity, and leads to a

clear reduction in cost.

Web services have become are an standard for application development on cloud

computing environments and are essential in business process development. These

services facilitate a software construction that is relatively fast and efficient, two

aspects which can be improved by defining suitable models of reuse. This research

work is intended to define a model which contains the construction requirements of

new services from service composition. To this end, the composition is based on

tested Web services and artificial intelligent tools at our disposal.

It is believed that a multi-agent architecture based on virtual organizations is a

suitable tool to facilitate the construction of cloud computing environments for

business processes from other existing environments, and with help from ontological

models as well as tools providing the standard BPEL (Business Process Execution

Language). In the context of this proposal, we must generate a new business process

from the available services in the platform, starting with the requirement

specifications that the process should meet. These specifications will be composed of a

semi-free description of requirements to describe the new service.

 The virtual organizations based on a multi-agent system will manage the tasks

requiring intelligent behaviour. This system will analyse the input (textual description

of the proposal) in order to deconstruct it into computable functionalities, which will

be subsequently treated. Web services (or business processes) stored to be reused

have been created from the perspective of SOA architectures and associated with an

ontological component, which allows the multi-agent system (based on virtual

organizations) to identify the services to complete the reuse process.

The proposed model develops a service composition by applying a standard BPEL

once the services that will compose the solution business process have been

identified. This standard allows us to compose Web services in an easy way and

provides the advantage of a direct mapping from Business Process Management

Notation diagrams.

viii

ix

RESUMEN

La reutilización de componentes es sin duda uno de los actores que de forma más

clara pueden contribuir en el desarrollo de la industria de la informática, facilitando

mecanismos eficientes para crear software de calidad. La reutilización aumenta la

fiabilidad de las aplicaciones, ya que se utilizan módulos que han sido probados,

mejora la productividad en el desarrollo e implica una clara reducción de costes.

Los servicios Web son un estándar en la industria de la informática en la actualidad

y forman parte de muchas de las aplicaciones que utilizamos todos nosotros hoy en

día. También es un estándar en el desarrollo de aplicaciones para entornos Cloud o en

nube. Los servicios Web son también elementos esenciales en el desarrollo de

procesos de negocio. Estos servicios facilitan la construcción de software

relativamente rápido y de forma eficiente. Estos dos aspectos pueden mejorarse

definiendo modelos adecuados de reutilización. Con este trabajo se pretende definir

un modelo que satisfaga los requisitos de creación de nuevos servicios a partir de la

composición de servicios ya probados de forma eficiente y utilizando herramientas

que la inteligencia artificial pone a nuestra disposición.

Se presenta una arquitectura multi-agente basada en organizaciones virtuales que

facilita la construcción en entornos Cloud de procesos de negocio a partir de otros ya

existentes, con la ayuda de un modelo ontológico y las herramientas que proporciona

el estándar BPEL (Business Process Execution Language).

En el contexto de este propuesta, para generar un proceso de negocio nuevo a

partir de los servicios de los que se dispone se parte de la especificación de los

requisitos que debe cumplir el proceso. Esta especificación está formada por una

descripción semi-libre de los requisitos que describen el servicio.

Una organización virtual, basada en un sistema multi-agente gestiona las tareas que

requieren de un comportamiento inteligente. Este sistema analizará la entrada

(descripción textual de la propuesta) para descomponerla en funcionalidad

computable para su posterior tratamiento. Además, el sistema multi-agente sirve

como soporte para el descubrimiento y agrupación de los servicios Web presentes en

la definición del nuevo proceso de negocio.

Los servicios Web o procesos de negocio almacenados que podrán ser reutilizados

se habrán concebido desde el punto de vista de las arquitecturas SOA, y tendrán

asociado un componente ontológico que permitirá que el sistema multi-agente basado

en organizaciones virtuales sea capaz de identificarlos para su reutilización.

El modelo propuesto implica que una vez se hayan identificado los servicios que

compondrán el proceso de negocio solución se lleve a cabo su composición usando el

estándar BPEL. Este estándar permite componer servicios Web de forma sencilla con

la ventaja de tener un mapeo directo desde diagramas “Business Process Management

Notation”.

x

xi

INDEX

Page
1. INTRODUCTION 1

1.1. HYPOTHESIS AND GOALS 2

1.2. THESIS STRUCTURE 3

2. CLOUD COMPUTING 5

2.1. INTRODUCTION 5

2.2. MAIN ASPECTS 6

2.2.1. STRUCTURE AND TAXONOMY 7

2.3. CLOUD ENVIRONMENTS 9

2.3.1. AMAZON 9

2.3.2. GOOGLE APP ENGINE 10

2.3.3. WINDOWS AZURE 11

2.4. CLOUD ENVIRONMENT 12

2.4.1. VIRTUALIZATION 13

2.4.2. INFORMATION STORAGE IN CLOUD SYSTEMS. 14

2.4.3. FILESYSTEMS 15

2.4.4. LOAD BALANCE 16

2.5. RE-USE 16

2.5.1. REUSE POTENTIAL 18

2.6. CONCLUSION 20

3. MAS AND ONTOLOGIES 23

3.1. INTRODUCTION 23

3.2. BASIC CONCEPTS 25

3.2.1. AGENTS 25

3.2.2. TAXONOMY 28

3.2.3. AGENT ARCHITECTURES 30

3.3. MULTI-AGENT SYSTEMS (MAS) 31

3.3.1. BASIC CONCEPTS 31

3.3.2. AGENT INTERACTION 32

3.4. AGENT ORGANIZATIONS 34

3.4.1. ORGANIZATIONAL CONCEPTS 35

3.4.2. ARCHITECTURES 38

3.4.3. THOMAS 39

3.4.4. COORDINATION 42

3.4.5. ADAPTATION 43

3.5. ONTOLOGIES 44

3.5.1. BASIC ASPECTS 45

3.5.2. DESCRIPTIVE LOGIC-BASED REPRESENTATION PARADIGM 47

3.5.3. DEFINING ONTOLOGIES 47

3.5.4. LANGUAGES FOR BUILDING ONTOLOGIES 48

3.6. CONCLUSIONS 50

4. BUSINESS PROCESSES 53

4.1. INTRODUCTION 53

4.2. WEB SERVICES 53

4.2.1. BASIC CONCEPTS 54

xii

4.2.2. WEB REST SERVICES 60

4.2.3. SOA (SERVICE ORIENTED ARCHITECTURE) 61

4.3. SEMANTIC WEB SERVICES 63

4.3.1. OWL-S 63

4.3.2. WSMO (WEB SERVICES MODELING ONTOLOGY) 68

4.3.3. SWSF (SEMANTIC WEB SERVICES FRAMEWORK) 69

4.3.4. WSDL-S (WEB SERVICE SEMANTICS) 70

4.3.5. SAWSDL (SEMANTIC ANNOTATIONS FOR WEB SERVICES DESCRIPTION
LANGUAGE)

71

4.4. BPM Y BPEL 71

4.4.1. BPM (BUSINESS PROCESS MANAGEMENT) 72

4.4.2. BPEL (BUSINESS PROCESS EXECUTION LANGUAGE) 76

4.5. CONCLUSIONS 81

5. IPCASCI 83

5.1. INTRODUCTION 83

5.2. CLOUD SYSTEM 86
5.2.1. CLOUD SERVICES 87

5.3. WEB SERVICES 94

5.3.1. SEMANTICS FOR WEB SERVICES 95

5.3.2. REGISTER SYSTEM 99

5.4. MULTI-AGENT SYSTEM (MAS) 102

5.4.1. ANALYSIS SYSTEM 103

5.4.2. SEARCH SYSTEM 109

5.4.3. COMPOSITION SYSTEM 114

5.5. INSERTION OF NEW SERVICES INTO THE PLATFORM 117

5.6. CONCLUSIONS 118

6. RESULTS AND CONCLUSIONS 119

6.1. CASE STUDY 119

6.1.1. SPECIFICATIONS OF THE USERS 120

6.1.2. THE PROCESS OF ANALYSIS 122

6.1.3. DISCOVERY PROCESS 123

6.1.4. VALIDATION OF THE SOLUTION 125

6.1.5. COMPOSITION OF THE SOLUTION WEB SERVICE 127

6.2. ASSESSMENT OF THE CASE STUDY 128

6.2.1. BASIS PATH TESTING OF THE SERVICES COMPOSITION (WHITE BOX TESTING) 129

6.2.2. TOOL FUNCTIONALITY TEST (BLACK BOX TESTING) 132

6.3. ANALYSIS OF THE CASE STUDY 134

6.4. GENERAL CONCLUSIONS 135

7. REFERENCES 139

1

1 INTRODUCTION

The software development industry is constantly evolving and looking for new

technologies, languages and tools that are more powerful, efficient and safe. In this

process it is essential to build models, architectures and agile technologies capable of

introducing new tools as simply and economically as possible. Component reuse is one

of the techniques that most clearly contributes to such a development by providing

efficient mechanisms to create quality software (Schmid, 2011a) (Poulin 2006)

(Poulin, 1997) (Lemley and O'Brien, 1997) (Shang et al., 2012) (Rehesaar, 2011).

Reuse increases both software reliability (due to the fact that it uses previously tested

software components) and development productivity, leading to a clear reduction in

cost (Schmid, 2011b) (Xu et al., 2011) (Rehesaar, 2011) (Garcia et al., 2007). Due to

the recent increases in software product volume and complexity, reuse is becoming a

highly regarded field, serving as a fundamental stage for design and quality models

such as CMMI (Capability Maturity Model Integration) (Osiecki et al., 2011).

In this context, Web service reuse is emerging as an interesting alternative with

respect to classical code reuse. A Web service is a software component representing a

service deployed on a Web platform and supporting automatic interactions between

machines in the network (Walsh, 2002). SOA (Service-oriented Architecture) has

emerged from this framework as a new architecture leading to conventional software

development (Erl, 2009) (Ralyté, et al., 2011) (Alizadeh, et al., 2012). SOA introduces a

new method of creating distributed applications where their basic services can be

published, discovered and linked in order to achieve more complex services.

Applications interact through existing services from entry points in interfaces rather

than at a level of implementation (Papazouglu, 2008).

Software development can be analyzed from different perspectives offering a wide

variety of alternatives to a methodological, functional and instrumental level, among

others. One of the paradigms revolutionizing this industry in recent years has been

Cloud Computing (Antonopoulos et al., 2012) (Stage and Setzer, 2009) (Duy et al.,

2011) (Cloud Computing, 2011) (EuroCloud et al., 2011). The cloud represents a novel

concept of service and information distribution, providing many possibilities of

scaling solutions, facilitating the use of relatively simple and economic terminals

(interesting models of pay per use, and multi-platform accessibility, etc). However,

this model has certain drawbacks related to maintenance complexity and application

development (Jaeger et al., 2009) (Dölitzscher et al., 2010). The number of engineers

experienced in this field is relatively low and the development time is significantly

high (Massonet et al., 2011) (Schaaf et al., 2010) (Sulistio et al., 2009).

Focusing on this specific area, this research proposes a methodology that facilitates

the business process construction on cloud computing environments in an agile and

efficient way from developed components. The research aims to present a proposal

that will facilitate the creation of such processes in the form of Web services from

other semi-automatic functional services; and will do so within the framework of a

process guided by relatively inexpert programmers. The process is guided by a multi-

agent architecture based on virtual organizations (Rodríguez et al., 2011) (Dignum et

al., 2005) (Escriva et al., 2006) able to implement the intelligent behavior needed for

2

process management by using an ontology (Maedche and Staab, 2001)

(Chandrasekaran, 1999) (Noy and McGuiness, 2001) (Guarino, 1998) (López, 1999).

The goal of this research work is to provide a model, which allows us the construction

of a business process from specifications in text format (with some constraints) of the

process concerning us. The multi-agent system based on virtual organizations will

facilitate the process by using standard BPEL (Business Process Execution Language).

This standard makes it possible an easy composition of Web services, with the

additional advantage of a direct projection to diagrams BPMN (Business Process

Management Notation) (Pedrinaci et al., 2008).

1.1 Hypothesis and goals

Web services have become a standard for the informatics industry, being part of

many of the applications currently used (Erl, 2009). Furthermore, they are also a

standard for application development on cloud computing environments (Massonet

et al., 2011) (Schaaf et al., 2010) (Sulistio et al., 2009). Web services are essential in

business process development. These services facilitate a software construction that

is relatively fast and efficient, two aspects which can be improved by defining suitable

models of reuse. This research work is intended to define a model which contains the

construction requirements of new Web services from service composition. To this

end, the composition is based on tested Web services and artificial intelligent tools at

our disposal. Taking this into account, the hypothesis of this research can be defined

as follows:

“A multi-agent architecture based on virtual organizations is a suitable

tool to facilitate the construction of cloud computing environments for

business processes from other existing environments, and with help from

ontological models as well as tools providing the standard for Business

Process Execution”

In the context of this proposal, we must generate a new business process from the

available services in the platform, starting from the requirement specifications that

the process must meet. These specifications will be composed of a semi-free

description of requirements to describe the new service. The virtual organizations

based on a multi-agent system will manage the tasks requiring intelligent behavior.

This system will analyze the input (textual description of the proposal) in order to

convert it into computable functionalities, which will be subsequently treated. Web

services (or business processes) stored to be reused have been created from the

perspective of SOA architectures and associated with an ontological component,

which allows the multi-agent system (based on virtual organizations) to indentify the

services to complete the reuse process. The proposed model develops a service

composition by applying a standard BPEL once the services that will compose the

solution business process have been identified. This standard allows us to compose

Web services in an easy way and provides the advantage of a direct mapping from

BPMN diagrams. The goals we intend to achieve in this research work are:

3

• Developing a model that allows us to build business processes on cloud

computing environments in an efficient, agile and economically profitable

way, while also facilitating the reuse of components and enabling the

development of custom computer systems by inexperienced personnel.

• The model should be capable of semantically analyzing the textual definition

of the business process to be implemented. The textual definition will be

semi-free in such a way that the vocabulary defined on the ontology for each

case can be used. This definition will be analyzed before carrying out a Web

service search.

• A multi-agent system based on virtual organizations will also be included in

our model to carry out a Web service search. Therefore, it deconstructs the

description of the business process into modules, determines the connections

between such modules, and performs a search for the Web services by

implementing the required functionality. To this end, every Web service

stored in the platform along with its specification WSDL (Web Service

Description Language) couples an ontological content in order to recognize

the functionality that it offers.

• The model will build a BPD (Business Process Diagram) adapted to the

requirements of the problem (Owen and Raj, 2003) by: Using the analyzed

input and the services that have been found, the design process of a BPD

diagram (BPMN standard) is automated, enabling the projection of its content

to a BPEL file. Each activity in the diagram is associated with one of the Web

services. This diagram can be modified or adapted by the programmer to fit

the need of the required software. By using a diagram that reflects the needs

of the project, the proposed model creates a BPEL archive, which carries out a

faithful and complete mapping of the diagram, taking into account the

services performed by each activity.

1.2 Thesis structure

This Thesis has been divided into the following 6 chapters: In the introductory

chapter (that is, this chapter) presents the motivation, the starting hypothesis and the

goals of this research work. It also provides a brief summary of the items included in

the proposed model.

The second chapter reviews the state of the art of cloud computing systems. This

chapter also describes the fundamental components and concepts that make up a

cloud system as well as the advantages supported by a global technologic

environment. Moreover, it provides a description of the main cloud suppliers

(Windows Azure, Amazon y Google App Engine) and a technological study on which the

cloud computing systems are based. Finally, the reuse advantages of this type of

environment are analyzed.

The third chapter presents BPM (Business Process Management) diagram and all

concepts related to such models. Web services and their semantics are also presented.

BPM is composed of a set of software systems, tools and methodologies focused on the

way that the enterprises identify, model, develop, distribute and manage their

4

business processes. Within BPM, we can underscore BPNM (Business Process

Management Notation), a graphic standard supported by BPM which allows us to

define Web services from composition of existing Web services. Web services

essentially become a technology that performs a software deployment via Web while

offering on-line services. The two most relevant types of Web services (SOAP y REST)

are presented along with their respective characteristics. The last section of this

chapter presents the SOA architecture, an architecture where the basic services can be

published, discovered and linked in order to build more complex services. At the end

of the chapter, the state of the art of semantic Web services is presented focusing on

OWL-S, being the most developed proposal to date.

The fourth chapter presents the state of the art on multi-agent systems and

ontologies. Agent technology has grown extensively by passing from an academic

study to real and successful implementations in various areas. Different agent

concepts and classifications as well as several architectures oriented to building

agents are also explained. Additionally, multi-agent systems are explained as systems

that incorporate different agents to obtain a common goal. The virtual agent

organizations and their advantages are analyzed. At the end of this chapter has been

presented a section on ontologies, their meaning, guides for their development and

languages for their construction.

The fifth chapter introduces our proposal, the service composition model called

IPCASCI (Intelligent business Processes Composition based on mAs, Semantic and Cloud

Integration) which facilities the business process composition on a cloud computing

environment in an intelligent way, and provides support from a multi-agent system

based on virtual organizations (described by an ontology). The model is presented

and analyzed according to the processes it includes. The model is introduced as an

alternative with respect to OWL-S models, which are oriented to the definition of

semantic Web services, including search processes, composition and automatic

invocation. To conclude, the sixth and final chapter of this research work presents the

results and evaluation of our proposal on a real case study, conclusions and future

work. The bibliography used in this research has been provided at the end of this

document.

5

2 CLOUD COMPUTING

2.1 Introduction

Cloud computing facilitates the development of distributed computer systems, data

management and computing resources through a scalable network node, data process

centers and Web services (Massonet et al., 2011) (Schaaf et al., 2010) (Sulistio et al.,

2009). The definition of computing in the ninth proposal by the United States National

Institute of Standards and Technology (NIST) specifies five "essential" characteristics

for cloud computing: free-for-all; desktop access; laptop and mobile phone; resources

shared by various users and applications; flexible resources that can be re-distributed

fast according to need; and measured services. These characteristics are combined to

turn cloud computing into a kind of infrastructure or public service. The main idea

behind cloud computing is not new. In the 60´s, John McCarthy had already foreseen

that computer facilities would be offered to the general public for their shared use

(Padala et al., 2009). Since then, cloud computing has emerged as a paradigm to offer

support and service delivery through the Internet. From a technological point of view,

it constitutes a new way of creating Internet oriented applications, which also focus

on a large number of users. The technological approach of cloud computing is to

create services (whether applications, hosting or storage services) which can be

offered to a large number of users using a minimal amount of hardware resources,

and to easily deliver increased service capacity by increasing available resources. This

characteristic is called service scalability (INSA, 2012).

With respect to the marketing model, cloud computing introduces a change in the

way of exploiting and marketing a company´s products (Chang et al., 2010). The

Hardware or software goods acquisition model becomes a subscription model (Nesse

et al., 2011) (Jaeger et al., 2009) or a service consumption model. This means that in

lieu of acquiring the relevant computer resources, providers are hired instead. It is an

attractive approach for companies as it eliminates requirements for future planning

for resources and allows them to start out small and gradually increase resources as

needed (Dölitzscher et al., 2010) (Zhang et al., 2003). The potential of the cloud

computing technology reside in the following characteristics: (i) Resources in a cloud

environment can be allocated and unallocated according to the needs at any given

time, (ii) Resources can be shared or/and allocated to each customer depending on

their needs, (iii) Services stored in the cloud are generally based on Web technology,

which makes them accessible to a broad range of devices with Internet connection,

(iv) Once cloud service infrastructure is outsourced, the service provider transfers its

business risks (for example, hardware failures) to the infrastructure providers that

are usually more experienced and better equipped to handle such risks.

 The novelty if this technology and its options are enormous; its development has

expanded exponentially in recent years. One of the biggest problems of its

development is related to the definition of the pay-as-you-go model; another problem

6

has to do with the flexible and efficient building of applications for this infrastructure

(Cloud Computing, 2011) (EuroCloud et al., 2011). One option when developing

efficient software in this context is the use of methodologies which facilitate the

design and programming of guided business processes. If this methodology or

management model could facilitate the reuse of Web services/ business processes in a

simple way, it would overcome one of the greatest challenges of cloud computing. In

this chapter we present such a technology, its main concepts, service providers, its

tools, limitations, its taxonomy and its structure at the layer level. Finally, we analyze

its potential and establish the benefits of building business processes through reuse.

2.2 Main aspects

The term cloud computing has been used in different contexts to represent

different ideas (Massonet et al., 2011) (Schaaf et al., 2010) (Sulistio et al., 2009).

Undoubtedly, the absence of a standard definition for cloud computing has not only

generated uncertainty, but also skepticism and confusion (Zhang et al., 2010). There

are works which already intend to deal with this lack of a standard definition, such as

the one provided by (Vaquero et al., 2009) which compares more than 20 definitions

in an attempt to offer a standard definition of this concept. There are also proposals

by NIST (National Institute of Standards and Technology), which, in September 2011,

published a document of definitions for the fundamental concepts of cloud computing

(INSA et al., 2012).

Next, we present various alternatives to define cloud computing:

“Cloud computing is a model for enabling convenient and a la carte access

through the Internet, to a group of configurable computing resources (networks

servers, storage applications and services), which can easily be used and

published with minimum management effort, as well as minimum interaction

with the service provider (Mell and Grance, 2011)”.

Other definitions of cloud computing which are generally accepted in the academic

and professional field are those given in (Buyya et al., 2008) (Foster, 2008) (Armbrust

et al., 2010) (Wang and Lazewsky, 2008).

“A Cloud is a type of a parallel and distributed system consisting of a collection of

interconnected and virtualized computers. They are dynamically provisioned and

presented as one or more unified computing resources, based on agreements to a

service level and established through the negotiation between the service

provider and the consumers” (Buyya et al., 2008).

 “Cloud computing is a set of services in scalable platforms, with guaranteed

quality service, personalized and inexpensive, network enabled which can be

easily accessed (Wang and Lazewski, 2008).”

Cloud computing differs from other computing paradigms, such as grid computing

(Foster and Kesselman, 1998), global computing (Fedak et al., 2001) and Internet

computing (Milenkovic et al., 2003) in the following aspects (Wang and Lazewski,

2008). Grid computing is an innovative technology which allows the coordinated use

of all kinds of resources that are not subject to centralized control. On the other hand,

global computing refers to the use of a great range of heterogeneous computers that

7

are physically scattered, even in different continents and sharing resources (Babak et

al., 2006).

• User centered interfaces: There has to be access to cloud services through

simple methods. In fact, cloud computing adopts the concept of Utility

computing. In other words, users obtain and use cloud platforms as easily as

they access traditional public utilities (such as electricity, water, natural gas,

telephone network).

• Contribution of services on demand: Cloud systems provide resources and

services to users on demand. Users can later personalize their computing

environment, for instance, software installation or network configuration.

• Guaranteed quality of service offer: The computing environments provided by

clouds guarantee the quality of service for users. For example, hardware

performance such as processing speed, input/output bandwidth, and memory

size.

• Autonomous system: Clouds are autonomous systems and are transparently

controlled by users. Cloud hardware, software and data can be reconfigured

automatically to present a unique platform image.

• Scalability and flexibility: Scalability and flexibility are the most important

capacities which cause the increase of cloud computing systems. Cloud

services and computing platforms offered by clouds, can be escalated through

various points, such as geographic location, hardware performance, software

configuration etc. Computing platforms have to be flexible to adapt to

different requirements and a potentially large number of users.

2.2.1 Structure and taxonomy

Cloud offers Services that are commonly summarized in three categories: Software

as a Service (Saas), Infrastructure as a Service (IaaS) and Platform as a Service (Paas)

(Zhang et al., 2010), Figure 2.1:

• Infrastructure as a Service: Also known as “Iaas”, is in charge of distributing

infrastructure resources on demand, generally in terms of virtual machines.

The owner of a cloud that offers IaaS is called the IaaS provider. Some IaaS

providers include Amazon EC2, GoGrid y Flexiscale.

• Platform as a Service: Also known as “Paas”, is in charge of providing

resources on the platform layer, including operating systems support and

frameworks (standardized concept set, practices and criteria to approach) of

software development. Examples of Paas providers: Google App Engine

Microsoft Windows Azure (Windows Azure) and Force (SalesForce).

• Sofware as a Service: Also known as “Saas”, is in charge of providing

Applications on demand on the Internet. Saas providers include Force3

(SalesForce), Racspace (Rackspace) and SAP Business ByDesign.

8

Figure 2.1: Cloud division in layers. (Obtained in Answers)

In (Wang and Lazewski, 2008) a different layer division is discussed: Hardware as a

Service (HaaS), Software as a Service (SaaS) and Data as a Service (DaaS). The PaaS

layer can be obtained from the three previous layers, as shown in Figure 2.1.

• Hardware as a Service (HaaS): As a result of the advances in hardware

virtualization, the pay-per-use service model has become a very good option

for consumers. HaaS is flexible, scalable and manageable to satisfy specific

needs. Examples can be found in Amazon EC2 (Amazon), IBM’s Blue Cloud

Project (IBM) and Nimbus.

• Software as a Service (SaaS): Applications are organized as a service and are

provided to customers via Internet. This eliminates the need to install and

execute the application in customers´ local computers.

• Data as a Service (DaaS): There is access to data in multiple formats and

sources via services. Users can, for example, manipulate remote data as if they

were operating a local disc or accessing semantically through the Internet.

Some examples can be found in Amazon Simple Storage Service (S3), Dropbox

or Elastic Drive.

We can obtain a classification of cloud systems by virtue of the deployment

infrastructure model, that is, a model where the organization provides, manages and

exploits infrastructure (Huth and Cebula, 2011):

• Public cloud: A public cloud can be accessed by any subscriber with internet

connection and access to cloud.

• Private cloud: A private cloud is established for a specific group or

organization, but with limited access.

• Community cloud: A community cloud is shared by two or three companies

with similar cloud requirements.

• Hybrid cloud: A hybrid cloud is essentially a combination of at least two

clouds, and may include a mixture of public, private or community clouds.

9

Figure 2.2- Layer division according to Wang

2.3 Cloud environments

SearchCloudCoumputing (2012) presents a list of the 10 main cloud computing

providers for 2012, among which are included: VMWare (VMWare, 2012), Microsoft

(Windows Azure, 2012), Bluelock (Bluelock, 2012), Citrix (Citrix, 2012), Joyent

(Joyent, 2012), Terremark (Terremark, 2012) y Amazon (Amazon, 2012). We will now

provide a detailed description of the services offered by three of the current main

providers of Cloud Computing: Amazon, Google y Microsoft.

2.3.1 Amazon

Together with Google, Amazon is one of the pioneers in the distribution of services

based on cloud computing. Nevertheless, unlike Google, it specializes in services of

infrastructure layers and has recently incorporated platform services to offer. Amazon

Web Services (AWS) offers a cloud computer platform which is scalable, highly

available and reliable, and provides the flexibility needed to allow its customers to

create a broad range of applications. In order to provide global security and privacy,

AWS creates services according to the recommended security methods; it offers the

appropriate security functions for such services and explains how to use these

characteristics. AWS customers have to use these characteristics and recommended

methods to design a secure application environment (Amazon Security) (Tao et al.,

2008).

Some of the services AWS has to offer are (AWS, 2010):

• Amazon Elastic Compute Cloud (Amazon EC2): Web service that provides

cloud computing capacity. It provides the consumer with complete control

over the computing resources that are at its disposal and allows their

execution in a reliable and proven environment.

• Amazon Simple Storage Service (Amazon S3): Amazon S3 provides some

simple Web service interfaces that allow storage and recovery of any amount

of data, anytime, anywhere around the Web.

10

• Amazon Virtual Private Cloud (Amazon VPC): Amazon VPC provides a safe

bridge between a company´s infrastructure and cloud AWS. It allows

companies to connect their current infrastructure to an isolated set of

computing resources through a Virtual Private Network connection(VPN).

• Amazon Cloud Front: Web Service for content delivery. It integrates with

other Amazon Web services to offer developers and companies an easy way

to distribute content to users, with low-latency and high-speed transference.

• Amazon Relational Database Service (Amazon RDS): Amazon RDS is a Web

service that allows the creation and management of a cloud database.

Amazon RDS provides access to the complete capacities of a MySQL database,

so that all tools, code and applications used MySQL work in the same way

with Amazon RDS.

• Amazon Simple Notification Service (Amazon SNS): Amazon SNS is a Web

service that facilitates the creation, management and sending of notifications

from the cloud. It gives developers the ability to publish messages from an

application so that they are immediately sent to subscribers or other

applications.

2.3.2 Google APP ENGINE

Google Inc. started specializing in high-performance, distributed computing

through their star product, the Search Engine. Along with the introduction of Gmail

and Google Docs, it became one of the first SaaS providers based on cloud computing.

In 2008, both PaaS and its Google App Engine (GAE) product, a platform for the

development of scalable applications which are deployed in the Google cloud (INSA,

2012), were launched in the market.

Currently, the only supported programming languages are Python, Java and Go.

Web frameworks that run Google App Engine include Django (Django, 2012),

CherryPy (CherryPy, 2012), Pylons (Pylons, 2012) y Web2py (Web2py, 2012), as well

as written Web application frameworks according to Google. Google manages the

deployed code in a cluster (computer sets or clusterings built through the use of

hardware), monitoring and launching application instances when necessary. Current

APIs (a set of functions and processes that a certain library offers to be used by other

software as an abstraction layer) support characteristics such as information storage

and recovery of a non-relational BigTable database (Chang et al., 2006). BigTable is a

database engine created by Google and characterized by being distributed, highly-

efficient and proprietary.

In particular, Google App Engine is designed to offer support to applications with

many simultaneous users. When an application can provide a service to a large

number of customers at the same time without degrading its performance, it is

referred to as scalable. Applications written for App Engine escalate automatically. As

more people use the application, App Engine contains more resources and controls

the use of such resources (Sanderson, 2009).

According to Google Developers (2012), the main advantages of Google AppEngine

with respect to their direct competitors are:

11

• Easy to use: In App Engine, the code of an application can be created, tried out

in local equipment and uploaded on Google just by clicking a button or

introducing a sequence on the symbol of the system. Once the application is

uploaded, Google is in charge of placing and escalating it.

• Automatic escalation: Applications can make use of the same technologies

with which Google applications such as BigTable and GFS have been created.

App Engine contains an automatic scalability function.

• Liability, performance and security of Google infrastructure: The same

security, privacy and data protection policy is applied on all App Engine

applications, and all Google applications.

• Cost-effective Hosting: Registration to App Engine is always free. More

computing resources can be obtained and only those used are paid for.

• Risk-free Trial period: An account can be created and an application can be

used immediately, free of cost and obligation. An application of a free account

provides up to 1GB of space and supports up to five million views per month.

2.3.3 Windows Azure

In February 2010, Microsoft launched its cloud platform, Windows Azure Platform

(Azure Platform, 2011) to the market. Windows Azure allows compiling,

implementing and administrating applications in a global network of data centers

administered by Microsoft. It can compile applications in any operating system,

language or tool (Windows Azure, 2012). The main object of this platform is to

provide an integrated environment of development and control, so that developers

can create, support, control and escalate Web applications as well as non-Web

applications through Microsoft data centers (Buyya et al., 2009). Windows Azure

Platform includes three main components (Azure Platform, 2011):

• Windows Azure: Provides a Microsoft Windows Server based environment

(WindowsServer, 2012) for applications and persistent storage, for both

structured and non-structured data and un-synchronized messaging.

• Windows Azure AppFabric: Provides a range of services that help with user

connection, authentication management, implementing data management

and similar characteristics.

• SQL Azure: Essentially an SQL server provided as cloud service.

Some of the services provided are:

• Computing services: Windows Azure Compute service can execute many

different types of applications. The platform aims to support applications that

have a large number of simultaneous users. Windows Azure is designed to

support applications which execute multiple copies of the same code through

various servers. In order to achieve that, Windows Azure applications can

have different instances, each one being executed in its own virtual machine

(Chapell, 2009).

• Storage services: Windows Azure, SQL Azure, and associated services, cause

situations in which it is necessary to store and control data in many different

ways. The following data management services are offered (Azure Platform,

2011):

12

� Azure Table Service: Provides a table storage system for structured data

and supports searches to manage information.

� Binary Large Object Service (BLOB): BLOBs are elements used in data

bases to store high volume data that change dynamically. It provides a

series of containers to store text and data. It provides Block BLOB

containers (BLOBs made of blocks, each one with a unique identifier.

They are used to manage large files through the network, and are able to

manage various in parallel, for data transmission and containers Page

BLOB (Collection of pages of 512 bytes. They serve to carry out random

reading and writing operations) for input/output operations.

� Queue Service: Provides a trustworthy and persistent mechanism for

messaging between instances.

� Windows Azure Drive: Provides a mechanism enabling applications to

set up a NTFS VHD volume (file system that virtually represents a hard

disc) as a Page BLOB, so that it can upload and download VHDs through

BLOB.

The storage system can be accessed by a Windows Azure application, by

an application which is executed under the premises of some

organization, or by an application being executed in a platform which

provides support (Chapell, 2009).

• Network services: Windows Azure provides different network services that

allow improving performance, implementing authentication and improving

management capacity of the applications:

� Content Delivery Network (CDN): CDN can introduce into a cache the

static data available to users for applications in proximal strategic points

(in a network delivery system).

� Virtual Network Connect: This service allows configuring roles in an

application executed in Windows Azure and network computers in a way

that makes it appear as if they were on the same network.

Virtual Network Traffic Manager: Service that allows establishing

redirections of requests and load balancing based on three different

methods. Traffic Manager is commonly used to maximize performance

when user requests are redirected to the closest data center using

Performance method. Available load balancing methods are Failover and

Round Robin.

� Access Control: Service based on identification and access control

standards that use a range of identity providers which can authenticate

users.

Service Bus: Provides secure messaging capacity and data flow for

distributed and hybrid applications, such as communication between

Windows Azure applications and internal applications and services.

2.4 Cloud environment

Cloud computing is fundamentally characterized by its scalability, that is, the ability

of the system to assist a large number of customers by increasing hardware and

13

software resources without changing its implementation; and by its flexibility, which

makes reference to the ability to dynamically escalate with service load. Consequently,

traditional paradigms of communication between applications, operating systems,

storage of files or managing database systems are not directly applicable in this new

environment. Applications have to be able to escalate to all their levels, without

having points that make it impossible to benefit from the flexibility of other layers in

its architecture. The technological pillars on which cloud computing is based are: (i)

The use of virtualization to facilitate the administration of large networks of

computers (ii) The use of distributed database. (iii) The use of distributed files

systems. (iv) The load balancing of requests to services between service providers,

providing a unified access point and the capacity to escalate a service by adding

providers.

2.4.1 Virtualization

Virtualization abstracts the physical structure of various technologies. In Computer

Science, the term virtualization refers to the creation of a virtual version of

¨something¨, such as hardware, operating systems, network resources or storage

device (Eisen, 2011). Modern virtualization systems are grouped into two categories:

systems of complete virtualization and those of paravirtualization (Crosby and Brown,

2007). Complete virtualization provides a total abstraction of the underlying physical

system and creates new virtual systems in which the guest operating system can be

executed. There is no need to carry out any modification in the operating systems (the

guest operating system does not recognize the virtualized environment and is

executed as normal) (RedHat, 2007). Paving requires the modification on behalf of the

user of the guest operating system which is executed in virtual machines (these

operating systems are aware of the fact that they are being used in a virtual machine),

and provides similar performance as if it were native (RedHat, 2007). The

paravirtualization approach introduces some restrictions: compatibility between the

guest and host system; and the need for the core of the guest operating systems to be

modifiable. Nevertheless, it turns out to be more convenient, with regard to the

general performance of the system.

Virtualization is one of the common denominators of solutions based on cloud

computing found in the market, as it allows abstracting the applications from the

software where they are located , facilitating their administration and relocation to

other physical machines (to redistribute the load or increase fault tolerance in the

hardware). Virtualization also increases security, confining each service provider to a

virtual environment, so that a compromise in the security of a service will not directly

affect the other system. Its contribution to security and the simplification of data

center management largely outweigh the expected loss of performance with respect

to the direct execution over the hardware. In the range of services based on Cloud

Computing, the contribution of virtualization is especially important in three aspects:

the simplification of server maintenance, flexibility support, and security support. A

virtualization environment will not add the majority of these characteristics on its

own, but it will facilitate its implementation (INSA, 2012). (Hawley, 2009) offers a

14

virtualization comparative in cloud systems with respect to the traditional concept of

virtualization as shown in Table 2.1.

Traditional virtualization

infrastructure

Virtualization designed for cloud systems

Storage and network: Consolidated

servers with static and inflexible

connections.

Shared storage, flexible networks to create sources

of services.

Resource management: There is no

dynamic automation of resource

management.

Automation policy to dynamically the load

between virtual machines.

Operation and administration

model: Traditional.

Automation supports self-provisioning of virtual

machines with administrators controlling the

escalation of the package of services.

Provisioning of a Virtual Machine:

Creation and manual deployment.

Virtual appliances libraries (Image of de virtual

machine designed to be executed in a virtualization

platform) for the quick and low-risk creation and

deployment of VM

Table 2.1: Comparison between a traditional virtualization infrastructure and one designed for

clouds.

2.4.2 Information storage in cloud systems.

Data storage scalability plays a key role in cloud computing. The increase of

information process capacity cannot be useful if information access speed does not

increase as well. The problem of creating faster, distributed and fault-tolerant

databases has provided research with new algorithms and communication protocols

between different nodes of a distributed database.

However, it has also revealed more profound proposals which question the

database model that is being used in Internet-oriented applications. A distributed

database (DDB: Distributed database) is a collection of multiple databases related to a

computer network. A distributed system of database management (distributed DBMS)

is the software system that allows a distributed database management to render

transparent distribution to its users (Zsu and Valduriez, 1991). There are two main

ways of using a database in the cloud: creating an image of a virtual machine, or using

the database concept as service. As far as images of virtual machines are concerned,

cloud platforms allow users to acquire instances of virtual machines for a limited

period time. A database can be executed in such virtual machines. Users can upload

their own machine images using an installed base, or use the existing ones that

include the optimized installation of a database. Some cloud platforms offer the option

of using a database as a service, without physically launching a virtual machine

instance for the database. In this configuration, application owners do not need to

install and maintain the database. Instead, the database service provider assumes the

responsibility of its installation and maintenance. Users will pay for the use they make

of them. Two types of database can be used in a cloud: (i) SQL databases: Oracle

Database, Microsoft SQL Server and MySQL, are one of the types of databases which

can be used in a cloud (as a virtual machine image or service). SQL databases are hard

to escalate, meaning that they are not natively adequate to adjust to a cloud

15

environment, even though this problem is being tackled with (Rosenberg, 2011). (ii)

NonSQL databases: Apache Cassandra, CouchDB y MongoDB, are other kinds of

databases that can be used in a cloud. NonSQL databases are built in a way that allows

them to offer services to large loads of reading/writing and be able to escalate easily

(Agrawal et al., 2008). However, most more contemporaneous applications are built

on an SQL data model, which means that working with the NonSQL model requires

the complete rewriting of the application code (North, 2011).

The document-oriented model is the most extended one among the alternatives to

the relational model. In this case, the main unit of information is the document. A

document is built from a collection of key-value pairs, in the same way in which a

software object is defined through a set of attributes (keys) and its values. Compared

to the relational model, the documents would correspond to the tuples, and the keys

to the columns of a table. Values assigned to keys would correspond to values of the

fields of the tuple. Documents are nest-able, that is, a value for a key of a document

can be another document, and they are grouped in collections. Collections are

semantic groups of documents, as in the relational model, and tuples are grouped into

tables. Nevertheless, there are no other similarities: documents of a collection do not

have to share a set of attributes, although they usually do so in real applications. A

document with an attribute which others do not have can be inserted and integrated

into a collection at any given time, without jeopardizing the performance of the

system, or adding new attributes according to those already created. Relations can be

represented by references or through nesting.

2.4.3 Filesystems

Traditional filesystems cannot fulfill the needs of large systems which containing a

great amount of data.

This kind of system requires:

• Fault tolerance and high availability: information cannot be lost if a node

failure is produced, and the service should not be interrupted if possible.

• Spatial scalability: it is necessary to be able to add new space to the file

system without jeopardizing performance, and beyond the capacity of a

unique node of computing.

• Scalability in speed: it is necessary to be able to copy information to increase

access speed to it.

To achieve these characteristics it is necessary to use a distributed filesystem. A

distributed filesystem allows access to files from multiple hosts through a network

(Silberschatz, 1994). This enables various users in different machines to share files

and storage resources. Customer nodes have no access to the underlying storage but

interact through the network through a protocol. This allows restricting access to the

filesystem according to access lists in both servers, as well as customers, depending

on the way the protocol is designed. As in the case of distributed databases, the

characteristics of distributed filesystems include scalability, fault tolerance and high

availability. These characteristics are achieved through two mechanisms: replication

and data partition. Data replication in different hardware nodes and different discs

allows faster access to information, uninterrupted service because of node failure, and

16

will not lose information in case a disc stops functioning. Data partition increases

information reading and writing speed and allows increasing system capacity through

the addition of new hardware nodes.

2.4.4 Load balance

One of the main problems in cloud systems is managing requests of a great number

of users. It is a scalability problem that arises from the continual increase in the

number of active users in the system. As data have a way of producing picks with little

or no prior notice, even the most advanced cloud environment will be little useful

without a load balance automated component (Cole, 2011). Load balancers can be

considered as a special type of proxy. Apart from modifying customer’s requests, they

can distribute requests that reach the server from a set of service providers,

additionally providing an access point unified to the server sets. This way, customers

do not have to know either the number or the location of service providers, but rather

just the name of the network of the proxy team. The load balancer proxy, who does

have this piece of information, will be in charge of redirecting the request back to one

of the real servers (INSA, 2012).

Internally, the load balancer can use different algorithms to choose which server to

forward the request to. One of the most common ones is Round-Robin algorithm, so

that requests are delivered to servers alternatively (following a circular list order).

Load balance can also be controlled so that it depends less on the exhaustive

monitoring of the domain and its associated deliberation. On the other hand, there are

methods that globally promote load balance through actions and interactions at the

component level (individual server). There are three important solutions to this

problem (Randles et al., 2010): algorithm Honeybee Foraging (Nakrani et al., 2004),

Biased Random Sampling (Abu-Rahmed, 2008), and Active Clustering (Safre et al.,

2008).

2.5 Reuse

Software reuse is currently approached as a complementary way of improving

system development processes, aiming at lightening all tasks, typical of these

processes, and increasing quality of the obtained systems. Researchers in this field

(Schmid, 2011a) (Poulin, 2006) (Poulin, 1997) coincide in assuring that a systematic,

automated and formal reuse program would achieve all these goals, even though, to

date, efforts to incorporate this kind of reuse plans have been slowed down by various

factors, among which the lack of methodologies and appropriate technological

environments could be the most significant. (Lemley and O'Brien, 1997) (Shang et al.,

2012). It is in this field where, in the recent years, different studies have emerged with

the aim of providing typical tasks of a reuse environment with technological and

technical support, and allowing it to be used systematically (Sherif and Vinze, 2003)

(IEEE1517-2009 D2, 2009) (Ravichandran, 1999). Nevertheless, to date, it has not

been possible to obtain a wide and open methodology, one that is common for all

development processes of systems in cloud computing environments. This is precisely

the direction this PhD thesis follows, providing the methodological basis which

17

facilitates reuse in the field of marketing processes executed on cloud environments

and implemented by Web services.

The distributed and adequate management of a large number of information is the

main goal of a cloud environment; and to successfully reach that goal, in an agile,

efficient and cost effective way, we suggest using a methodology that would facilitate

reusing. As made clear in the state of the art review, within the context of cloud

computing there are no methodologies and/or processes that would standardize the

reuse of Web services and/or marketing processes. In the framework of this report,

we have considered and shown that a viable alternative to development processes

traditionally used in this field is the reuse of components. It is essential that access to

information stored in this kind of environment, information related to previous

developments, is adequately accessible and listed through an ontology. Without all

this, the redundant work we are trying to minimize is turned into an equal or larger

amount when it comes to recovering necessary Web services. This is precisely the

reason why a large part of this work is dedicated to obtaining classification criteria

that allow adequate management of the library of marketing processes. After

examining the different alternatives, we have opted for making use of the

formalization which is present in the typical processes or services as a basis for

extracting an internal representation of each one, a representation that facilitates the

classification, storage and subsequent recovery of each service, thus avoiding

ambiguity problems which are typically inherent in any type of textual description.

We are still far from the day when automatic programming, starting from a set of

normally vague, barely coherent or maybe incomplete requirements, will generate the

code appropriate to customer needs is generated (if it can be reached at all one day),

especially in a field as recent as that of cloud computing. Prior to this situation, the

reuse of marketing processes and Web services was divided as a realistic and

technically feasible alternative. We can say that, among specialists in the field, it is

widely accepted to describe the reuse of software as (Krueger, 1992):

“… the process of creating computer systems starting from existing ones

rather than creating new ones”

It is precisely because of the flexibility of the definition that it does not correspond

to the type of element to be reused, its grade of abstraction or granularity, and

whether or not some kind of modification is carried out on it. Nevertheless, it is also

true that other authors nuance this description. For example, (Sametinger, 1997)

considers that it is only correct to speak of reuse when the software is applied to the

new systems without undergoing any kind of modification. Others are even more

restricting, also limiting the type of software element to be used. Thus (Stroustrup,

1996) talks about reusing when a code fragment is literally used in at least two

computer program. Within the scope of this work we welcome the definition given by

(Krueger, 1992) and we refer to both software reuse and the application of already

existing software products (code, designs, documentation, specification, etc.) for the

creation of a new system; that is, the use of “any kind of already existing information

the developer needs in order to elaborate a new software system” (Prieto, 1993).

Specifically, we reuse Web services that implement marketing processes.

18

In the following section we analyze the reasons that suggest reuse in general and

those that have historically impeded its expansion. There will also be an introduction

to existing methodologies and an analysis of what the impact of developing one in the

cloud computing context would be.

2.5.1 Reuse potential

The use of good reuse practices in any organization that aims at software

production has to be channeled to short or long-term economic benefits. These

benefits are a direct consequence of an improvement in the quality of the generated

software and the time and production cost saved. The fact that, until now reuse is not

applied systematically, automatically and formally has to be attributed to a variety of

factors, not just technological, but also cultural and economic in nature.

Software reuse directly affects the improvement of the majority of the factors that

affect quality in a system:

• Funcionality: Functionality of a software system can be defined as the set of

services it offers to users, as this is directly related to the initial

requirements. It is very common that the establishment of these initial

requirements requires user feedback , as they usually have a vague idea of the

system in the early stages of its design. Reuse offers a basis for the

establishment of fast prototypes (Sametinger, 1997) in such a way that it

allows the user to estimate the system´s functionality and correct it in the

early stages of its circle of life.

• Liability: System liability measures the capacity at which it maintains its

services, under a series of application conditions, throughout a period of time.

When software is reused, it has been verified and validated, vouched for, in

many cases, by previous uses, thus improving global system liability.

• Efficiency: Software system efficiency relates its performance to the amount

of resources it consumes during its durability, apart from the ones invested

in its creation. The creation of reusable software does not prove to be

efficient if the basis of reusable components is inadequate or does not contain

homogeneous elements: software created for a particular environment is

usually little efficient when applied to a different environment, as this

additionally requires a larger investment in time and cost in order for it to be

reusable. However, in this particular case efficiency would increase, as, in

general, cloud computing environments hold very homogeneous applications.

This research specifically focuses on creating a methodology that facilitates

the composition of marketing processes involving previously defined

ontology and semantics.

• Maintenance capacity: It is easier to maintain applications built from reusable

software. Modifications that need to be carried out may have already been

planned in many cases, documentation is much more carefully done and,

what is more, cost will be shared, as maintenance will be centralized and not

specific to each particular application.

• Portability:  The more portable a software system is, the easier its

transference is from one environment to another. As this is one of the most

19

significant characteristics when generating reusable software, portability is

increased in systems where reuse has been applied, as a quality standard ISO

9126 specifies (ISO, 1991)

From all these characteristics we can deduce that, in general, reuse has a beneficial

incidence in the increase of the quality of the generated software (Basili et al., 1996).

On the other hand, as expected, the fact that a decrease in efficiency is nothing more

than the price to pay, reasonable in the majority of cases —except in situations of

serious temporary or resource constraints—, to obtain reusable software elements.

Improving software quality has a clear economic repercussion as maintenance and

development process costs drop (Karlsson, 1996). The software ought to:

• Work faster;

• Work more efficiently in order to keep the development process under more

control (more precise estimations as for cost, improvement in the process

itself, in the assessment and system improvement, ...); and

• Work better, when it comes to avoiding work duplication, with software

created by specialists in each field, thus reducing the number of work teams

and facilitating interoperability.

• In spite of all the benefits which reuse provides to software system

development, organizations usually remain reticent towards the possibility of

applying it in the elaboration of their products. There are various reasons for

that which can be summarized as:

• Economic reasons: Implementing a reuse project requires high up-front

investment from which benefits could only be obtained in the medium to long

term. Finance is needed to: obtain reusable software, reuse the obtained

software and define and implement reuse process. That is, we must at least

invest in infrastructure, methodology and technical support. Moreover,

generated software has to meet some more constraining quality

requirements, rendering the whole process more expensive.

• Technical reasons: to date there are no tools that facilitate or automate the

typical tasks of a reuse program, such as: software element classification and

search, and adaptation or integration of such elements in the new systems.

• Organization reasons: Large scale software organization affects its whole life

cycle and requires a re-structure of the traditional organization. It could be

more useful, for instance, to create teams that are only in charge of generating

and maintaining reusable software. In this situation, global management is

crucial. Conservative attitudes on behalf of administrators towards these

changes and the “NIH syndrome” (Not Invented Here), contribute to the delay

in the application of a reuse policy in companies and software producing

organizations.

Nevertheless, in different engineering fields reuse is an inherent part of the process

of creating a system. For the design of an electronic system, for example, a group of

engineers start from a series of requirements and specifications. Usually, they will

reach a compromise between the requested requirements and the characteristics of

the available electronic components, so that ad-hoc development is only rarely carried

out. However, work dynamics in the software industry is radically different: it starts

20

from a set of specifications, but once this is fixed, it only has to satisfy and complete

them. This approach supports containing particular solutions and hampers reuse.

Thus, it seems that one of the main characteristics of the software, its adaptability and

flexibility, is also its main obstacle when it comes to generalizing in this industry an

effective and efficient reuse policy.

2.6 Conclusion

Cloud computing has great potential and is an expanding area within software

development. Reuse is not a common practice in this context for the reasons

mentioned in the previous section, which affect all types of reuse. The definition of a

methodology that would render the reuse system efficient while maintaining high

quality standards is one of the challenges of this review. For this, we need to analyze

the grade of applicability of the proposal and the perspectives this methodology can

have.

The amount of potentially reusable software depends on the level of functionality

which is common between the systems that share it (Sametinger, 1997). Defining

domain as area of application or field of system development, we understand that the

level of reuse is high and efficient between systems belonging to the same domain.

System reuse between systems of the same sphere of application is named vertical or

domain dependant reuse. Horizontal, or general, reuse is established between systems

that do not belong to the same domain, rendering it, in general, more complex and,

consequently, reducing reuse level. In this context this review is presented in vertical

reuse of marketing processes implemented as Web services and executed in a cloud

computing environment. Traditionally two methodologies have been differentiated to

focus on software reuse; the first one is based on obtaining a new system from the

composition of an already existing element; the second methodology is based in

generating a new system using a structure or model as a basis. Reuse by composition

is rather intuitive; it is about combining elements and components to build a new

system. It is where this research work is based. Although it is easy as a concept, it

requires complex technical support as well as optimized classification and selection

methods according to its components, and support for its adaptation and integration

in the new system. For this, we propose the use of a multi-agent architecture based on

virtual organizations. Reuse by generation is conceptually more complex as it is

impossible to define the components as self-contained and concrete entities. In this

case, we reuse generation processes obtained as a result of a structure codification.

There are usually three different subtypes of methodologies: application generators,

generators based on transformation language, and systems.

System generation is oriented towards the reuse of elements belonging to the first

stages of the life cycle of software such as designs, architecture or requirements,

rendering it more attractive, from a financial perspective, yet more difficult to apply.

However, reuse by composition was the first one to be used, focusing on elements

belonging to the last stages of the software process, as in the case of the code. In the

case of reuse by composition, we need to specify how we intend to integrate

components in the new system, which is why we need to talk about: component

visibility and component modification.

21

We call black boxes those components whose interface and functionality is the only

thing we know; as there is no access to its interior, it is impossible to carry out any

kind of modification, so in this case we can only talk about integral reuse. Those

components that allow access to their interior are called white boxes, in them

modifications can be carried out to adapt their functionality as required. An

intermediate type are transparent boxes (Sametinger, 1997), this type of component

allows getting to know the interior, in the case of white boxes. However, its

modification is not allowed, as in the case of white boxes. The reuse of black boxes,

though much more difficult, presents many more advantages, such as quality and

liability of the generated system increase, and the fact that components of this kind

have been verified and are usually certified (Dunn y Knight, 1993; Knight y Dunn,

1998). Nevertheless, when white boxes are reused, modifications that cause

verification tasks to be repeated are likely to be carried out, reducing its liability.

Reuse by generation can be seen as a type of reuse of black boxes, as, although it does

not contain the component itself, it does contain a generating programme which is

reused as if it were a black box. Throughout this research we will identify a more

adequate type to meet the objectives proposed.

According to the definition adopted here for software reuse, all the necessary

information to design and develop a system will be considered potentially reusable. In

the case at stake, it is even more important to have a clear ontology and well-defined

semantics. Thus, there will be code as well as documents, designs, specifications, texts,

etc. The differences between the reuse of some software from the reuse of others

mainly lies in the level of abstraction and component granularity. Both characteristics

are a source of controversy at the time of deciding what to reuse (Prieto, 1996). It is

necessary to adopt a position of compromise between the benefits the reuse of a

determined element offers, directly proportional to the level of abstraction and its

size, and how easy this is reused, inversely proportional to the same factors. In this

report, we present a methodology to render the efficient reuse of white boxes and to

superimpose them to economic, technical and organization motives which, generally,

involve carrying out software reuse. In the next chapter, we will define the

organization of agents that will be in charge of managing that process, and in the

fourth chapter we will define the field of marketing processes and related elements

used in the proposed model.

22

23

3 MAS AND ONTOLOGIES

3.1 Introduction

The agent concept has widely been studied today. However, there are small gaps

with regard to consider an agent as an entity performing within a society. This is an

especially important issue for an agent, because one of its basic characteristics is its

interaction with other agents in a cooperative environment. This chapter studies the

agent concept focused on its use in cooperative environments. It starts with a review

of the notion of intelligent agents and exposes then a description of multi-agent

systems (MAS) and the definition of agent society. The purpose is to highlight current

trends of MAS from an organizational point of view. The agent theory has been

studied from such diverse fields as Psychology, Computer Science, Sociology, Medicine

and Economy, having a different behavior on each of them. With respect to Computer

Sciences, the term agent is becoming more known and is being used in environments

as diverse as the Internet, Distributed Systems, Artificial Intelligence, or Human-

Computer Interaction (Corchado, 2000). Both the diversity and the power of this

technology are notably extensive. Although this chapter presents a generic description

of the agent theory and MAS, it also outlines the concept of organization, since in order

to develop the proposal model we have used a multi-agent virtual organization.

The agents can be described from different points of view. This is because they are

a research field where scientists from very different areas such as Psychology,

Sociology, Software Engineering and Artificial Intelligence approach the field from the

perspective of their research areas (Forner, 1993). Hence, the definition of agent or

agency is complex, due to the diversity of opinions existing in the scientific community

(Franklin and Graesser, 1996). Even in the Computer Science field, there is not a well-

determined definition of agent. The initial research in the agent field has been used in

environments as varied as: Distributed Artificial Intelligent, Robotics, Artificial Life,

Object Distributed Computing, Human-Computer Interaction, intelligent and adaptive

interfaces, information search and filtering, Knowledge Discovery, etc. Since the

proliferation of different types of agents, there has been an explosion in the use of the

term without common agreement on its meaning (Bradshaw, 1997). Within all these

definitions, there exists a formal and accepted definition in the scientific community,

which according to (Labidi and Lejouad, 1993) is:

“An agent is a physical or abstract entity that can perceive its environment through

sensors, it is able to evaluate such perceptions and make decisions by means of simple or

complex reasoning mechanisms. It is also able to communicate with other agents to

achieve information and act upon the environment in which performs by using

effectors.”

Another fairly widespread way of introducing the agent concept is based on the

characterization of the agent by a series of attributes that it should include. This has

24

resulted in the four attributed identified and defined by (Wooldridge and Jennings,

1995), to characterize an agent:

• Autonomy

• Social Skills

• Reactivity

• Pro-activity

The development of intelligent computer systems is guided by the construction of

entities simulating human behavior (Russel and Norvig, 1995). As with humans,

agents must have social skills, and be able to perform jobs or solve problems in a

distributed way (D’Inverno and Luck, 2004). In fact, an agent can be seen as an

evolution of the object concept that couples proper characteristics of human behavior.

From these characteristics, we can highlight intelligence and learning capacity. The

development of information processing and computing technology has allowed the

construction and use of artificial agents (Burgin and Dodig, 2009). The emergence of

the agent concept has made possible the convergence of diverse areas to a common

space. Composite Systems by multiple agents are initially developed in an

environment of distributed artificial intelligent (DAI) (O'hare et al., 1996). In the

beginning, DAI raised the issue of distributed problem solving where a particular

problem can be solved by a certain number of elements, which cooperate and share

knowledge of the problem and its solution. This way, such systems are parts of one of

the three basic categories in DAI, the other two being: Distributed Problem Solving

and Parallel Artificial Intelligence. As a result, the systems composed of multiple

agents inherit much of the motivations, aims, and powerful benefits of DAI (Nwana,

1995). The goal consists of building systems composed of multiple entities able to

solve problems, in such a way that these entities interact to improve their

performances (Jennings, 1993). Such systems of multiple entities are known as multi-

agent systems (MAS), and they are suitable for solving problems where there are

multiple troubleshooting methods and/or multiple entities able to work

collaboratively to solve problems (Chu-Carroll et al., 1995). MAS can be used to

approach problems that would otherwise be difficult or impossible to solve by means

of a single agent.

Intelligent agents are a very important object for multiple fields of Computer

Science and Artificial Intelligence (AI), because they represent a paradigm to develop

applications (Jennings and Wooldridge, 1998). The challenges faced today by the

computer system developers are becoming increasingly complex. Globalization and

changes in technology have caused the current market to be in a constant state of

fluctuation. Companies that do not adapt quickly to this environment will be left

behind. As a reply, many companies are building agent-based systems. These systems

use software-agents to distribute functionalities on the computer network.

Furthermore, in addition to adapting to their environment, agents also evolve by

learning from their environment, and using a variety of computational approaches

from Expert Systems, Artificial Neuronal Network, and Genetic Algorithms, among

others. Since the Internet is one of the most important areas of software development,

MAS applications are not limited to the business and academic environment. Internet

agents arose from problems of Web information searches and filtering. These agents

25

are useful because of the vast amount of information that can retrieve from the

Internet (Burghoff et al., 1996). Since time is a determining factor for people, and the

possibilities of accessing information are improving; the Internet users should

develop skills and look for tools able to access the requested data in an opportune and

acceptable way. Virtual agents are a good alternative for saving search runtime,

analyzing and handling requests. Some MAS applications are:

• Information filtering agents: Find the content a user is interested in by using

different information sources.

• Off-line delivery agents: Filter the customized information delivery without

necessarily requiring an on-line Internet connection.

• Search agents: Use robots moving in Web hyperspace to provide a service to

support the users.

Cloud computing is another field where agents and MAS are being used. Cloud

computing can offer a powerful, predictable and scalable computing infrastructure to

run MAS, and is able to implement complex agent-based applications when the model

and the simulation of complex systems should be provided. On the other hand,

software-agents can be used to implement intelligent behavior in cloud computing,

thus making it more adaptive, flexible and autonomous with regards to resource

management, service distribution and the execution of large-scale applications (Talia,

2012). One area where MAS are being used both properly and successfully is in the

world of videogames. The increasing popularity of videogames has required a more

natural and sophisticated behavior of the characters in the videogame. The more

complex the interaction between the characters in a videogame, the more difficult the

design of such characters without using tools aimed at implementing intelligent

agents (Dignum, 2011). One of the first attempts to connect agents to videogames was

carried out with the Gamebots (Adobbati, 2001). The Gamebots provide infrastructure

allowing a connection for any agent platform to videogame Unreal Tournament. The

Agents are currently used to emulate human behavior to reflect more realistic

videogames.

Another area of MAS application is Data Mining. There are two known approaches:

the agents perform the data mining process or data mining is used to improve the

intelligent characteristics of the agents (Moemeng et al., 2011).

3.2 Basic concepts

The agent concept emerged on the 90s and from here; several scientific areas have

been fused from AI to Psychology, and everything in between, including Software

Engineering, Database and Distributed Systems, Sociology, etc. (Corchado, 2000).

Since the concept of agent is in a multidisciplinary environment, there is no uniform

definition (Rodríguez, 2010).

3.2.1 Agents

26

Next, we will provide several definitions that we have chosen according to their

level of importance for the scientific area. One of the most widespread and accepted

definitions of agent was given in (Wooldridge and Jennings, 1995):

“An agent is an encapsulated computational system and located in an environment,

being able to act in an autonomous and flexible way in such an environment to reach its

design goals”.

Wooldridge also introduces a less formal and more contemporary definition with

respect to the one provided above:

“An agent is hardware-system, or more usually, software holding the following

properties (Wooldridge and Jennings, 1995)”:

• Autonomy: The agents perform without direct intervention of humans,

having a certain kind of control on their actions and internal states

(Castelfranchi, 1995).

• Social skills: The agents interact with other agents, possibly human, by

means of a language of agent communication (Genesereth and Ketchpel,

1994).

• Reactivity: The agents perceive their environment (it can be the physical

world and user via graphic interface, a collection of other agents, Internet,

or maybe a combination of them all) and respond in a certain time to

changes that occur in it.

• Pro-activity: The agents do not only respond to their environment, they are

able to take the initiative across to behaviors leading to aims.

More recently, Wooldridge redefined the concept of agent (Wooldridge 2002) as

follows:

“An agent is an encapsulated computational system located in an environment, being

able to act in an autonomous way in such an environment to reach its design goals”.

The concept of encapsulated computational system refers to the clear distinction

between the agent and its environment according to a well-defined interface for both.

The first characteristic of this definition is the autonomy of the agent; that is, the agent

is able to perform on its own without human assistance. From its internal state and

perceptions, it can make decisions on whether to carry out an action or not.

Furthermore, it is designed to hold specific goals. Note that the above definitions may

give way to a more formal and general agent definition (see Figure 3.1):

“An agent is physical or abstract entity able to perceive its environment through

sensors. It is capable of evaluating such perceptions and making decisions by

means of simple or complex reasoning mechanisms, and communicating with

other agents to achieve information in order to act in its environment through

effectors (Labidi and Lejouad, 1993).”

27

Figure 3.1: Agent model

From the most recent scientific publications on agents, we can highlight the one

given in (Rahman, 2012):

An agent can be defined as a software and/or hardware component of a system,

carrying out tasks on behalf of its user. The agents are reactive, autonomous and

cooperative in nature. They have the ability of knowledge-based reasoning.

Because of disagreement existing between different authors and the ambiguous

nature of the definition of agent, this concept is used to differentiate itself from a

series of desirable properties (starting from the properties defined in (Wooldridge,

2002)) to be considered by the agents:

• Autonomy: An agent should be act without the direct intervention of any

other entity, having control on its actions and internal state.

• Location: An agent is located within an environment that can be real or

virtual.

• Reactivity: An agent is able to detect events of its environment and can adapt

to its needs.

• Pro-activity: An agent has the ability to define aims allowing it to reach its

goals and a set of actions related to those aims.

• Social skill: An agent is able to interact with other agents, including human

beings.

• Intelligence: An agent is able to incorporate knowledge (beliefs, desires, goals

and intentions)

• Organization: The agents are able to organize themselves into societies by

following a human-like or biological structure.

• Learning: An agent is able to adapt to changes in dynamic environments by

means of machine learning techniques.

Environment

Sensors

Actuators

Agent

Actions

Input data

28

3.2.2 Taxonomy

Because of the great number of definitions and characteristics identifying the

concept of agent, the task of classifying different types of agents is not less complex

than the definition of agent (Gil, 2011). Even so, different agent classifications are

given according to their attributes or environments.

Thus, (Russel and Norvig, 1995) propose an agent classification based on the kind

of program used in the implementation of the agent functionalities by defining the

intermediate state between perceptions and actions:

• Simple reflex agent. Agents connecting their perceptions and actions through

rules of type condition-action. If the condition (evaluated by the perceptions)

has been met, then the action corresponding to such a condition is raised.

These agents have no memory.

• Reflex agent with internal state. Compared to the simple reflex agent, it adds a

memory state that stores past experiences to improve the responses given in

the future (Carrascosa et al., 2008). The state is updated with the obtained

perceptions and the actions that have been carried out.

• Goal-based agents. The agents are entities or processes aimed at reaching

goals in an organization or a system based on the implicit responsibility

assumed by them to reach certain aims (Anton, 1996).

• Utility-based agents. The aims alone are not enough to generate high quality

behaviors (Russel and Norvig, 1995). The agent must show a degree of

satisfaction when it is in a any type of state. This is made by a utility function

that associates a utility value with each state. Hence, the agent can make

relational decisions when there are several goals without having the certainty

of any of them, or when reaching a goal provides a conflict.

One of the most accepted agent classification is the one given in (Nwana, 1995), which

is based on different dimensions of agents:

• Mobility: the agents can be classified according to their ability of moving (or

not) to different nodes in the network.

� Static: it is only able to perform in the computer where it was created.

� Mobiles: The mobile agents are computer programs migrating through

different hosts in a network, at such times and places as it deems

appropriate. The state of an agent can be saved and then translated to a

new host to be retrieved, which allows the program to run from the point

where it left off (Kotz and Gray, 1999).

• Reasoning model: The agents can be classified as:

� Deliberative: They are based on the paradigm of deliberative reasoning.

The agents present an internal and symbolic reasoning model; they are

involved in scheduling and negotiation processes leading to coordination

with other agents (Nwana, 1995).

29

� Reactive: They have no a symbolic model of the environment and

perform according to the type of stimulus/response by taking into

account the current state of their environment (Ferber, 1994).

The agent classification can be carried out according to a list of three attributes: (i)-

Autonomy: ability of acting without direct intervention of another entity. (ii)-

Cooperation: when a task is too big or complex to be developed by a single agent, it can

cooperate with other agents to solve such a task. (iii)-Learning: the skill of an agent to

modify its behavior based on past experiences. From these three attributes it is

possible to achieve four categories belonging to the typology of Nwana. Note that

even though the categories have been built as an interception of two attributes, it does

not mean that they do not have anything at all from the third. This implies that all

attributes used in the classification are considered:

• Collaborative learning agents: Agents having the ability to learn by working in

a coordinate way.

• Interface agents: Autonomous agents with the ability to learn.

• Collaborative agents: Autonomous agents cooperating with other agents.

• Intelligent agents: Autonomous agents with the ability of learning and

coopering with other agents.

The agents can also be classified according to the performed roles. For example, we

have the Internet agents or the information they are looking for and processing from

wide networks such as the Internet.

• Hybrid: Combines two or more of the above philosophies in a single agent.

Another classification can be done from a different point of view of previous

ones as provided in (Franklin and Graesser, 1996). It is based on the

represented biological model by following a natural hierarchy, Figure 3.2. The

first level corresponds to the kingdom level and classifies the agents as:

Biological, Robotic or Computational (Keil, 1989). At the next level, the

computational agents are divided into: (i)-Artificial life agents: Computational

model based on the analysis of the specific individuals of an environment.

This model is aimed at studying complex systems that show a similar

behavior as natural living systems. (ii)-Software agents: Software performing

as an agent for a user or another computer program by working in a

continuous and autonomous way within an environment. The last level

corresponds to classifying the software agents into different categories

according to their purpose.

30

Figure 3.2: Agent Taxonomy (Franklin and Graesser, 1996).

3.2.3 Agent architectures

According to (Maes, 1991), an agent architecture is a particular methodology aimed

at the construction of agents. It describes the form in which the agent is decomposed

into a set of modules and the form in which such modules interact. The set of modules

and interactions must provide a response by describing the actions to carry out from

the data of sensors and the current internal state of the agent. An architecture covers

techniques and algorithms supported by the methodology. Moreover, in (Kaelbing,

1991) the concept of architecture has been defined as:

A collection of hardware or software modules, which are usually represented by boxes

and arrows, indicating the flow control between the different modules. A more

abstract vision is: A general methodology to design the modular decomposition for

specific tasks.

In general terms, an architecture describes the main components of the system by

defining the way in which they are related and interact to reach the proposed aim (Gil,

2010). Taking into consideration that an agent is a more or less complex system, its

architecture describes the internal structure, the way in which it is deconstructed into

a set of modules, and the way in which these modules interact with each other to

determine the agent architecture (Mas, 2005). There are several proposed

architectures which classify the agents defined within them (Wooldridge, 1999):

• Logic-based agent: The reasoning and decision making are carried out from

logic and deduction (Genesereth and Nilsson, 1987) (Lesperance et al., 1996)

(Fischer, 1994).

• Reactive agent: Decision making is carried out as a direct mapping from a

situation to an action (Brooks, 1986) (Maes, 1990).

31

• BDI Agents (Belief-Desire-Intention): Decision making depends on the

management of the belief, desire and intention representation by the agent

(Bratman et al., 1988), (Rao, Georgeff, 1992).

• Layer-based agents: Decision making is carried out from different software

layers, each one making reasoning on the environment for different

abstraction levels (Ferguson, 1995).

One of the basic aspects to differentiate one architecture from another is the

method of deconstructing the work into particular tasks. In this sense, it should be

noted that scheduling is an area strongly linked to the agency. This area is focused on

the study of mechanisms that make it possible to organize the running of actions,

where an agent is nothing more than a system running actions in a determined

environment (Corchado, 2000). The running of action plans is aimed at reaching the

proposed goal. This way, the scheduling systems use symbolic models of knowledge

representation and reasoning, designed for a search on a state space or plan space.

The way in which these systems act is defined by the need of holding the basic aims to

develop a plan for a complexity of space and time. The following classification

provides three types of architectures, which are differentiated according to the

reasoning model:

3.3 Multi-agent systems (MAS)

3.3.1 Basic concepts

In recent years there has been a growing interest in the decentralized approaches

solving complex real-world problems. Many of these are within the area of distributed

systems, where a number of entities work together to solve a problem in cooperative

way. The combination of distributed systems and artificial intelligent is known as

distributed artificial intelligent (DAI). DAI has been divided into two main areas: the

first is the distributed resolution of problems, and is usually associated with the

deconstruction and distribution of the resolution of a problem among multiple slave

nodes and the collective construction of a solution to the problem. The second is

multi-agent systems (MAS), which states the joint behavior of agents with a degree of

autonomy and the complications resulting from their interactions (Panait, 2005). The

main characteristic of these systems is that there is no system stated for global control

and the data are arranged in a distributed way in favor of their asynchronous

computation. This way, every agent can freely and dynamically decide which tasks it

should carry out and who allocates them (Wooldridge, 2002). So we talk about a

multi-agent system when two or more agents are able to jointly work in order to solve

a problem (Mas, 2005). An important point of this is that for an agent association be

considered a MAS, at least one of the agents should be autonomous, and at there

should be a relationship between the two agents in which one of them meets the goals

of the other.

32

A MAS extends the idea of a single agent and complements it with an infrastructure

for interaction and communication. The problem can be stated as a goal that cannot be

reached by a single subsystem, needing therefore, collaboration with other

subsystems to obtain the solution (Cammarata et al., 1988). MAS are suitable to

solving problems in which there are multiple resolution methods and/or entities able

to work together to reach a solution (Chu-Carroll et al., 1995). Ideally, a MAS has the

following characteristics (Huhns and Stephens, 1999):

• It is an open system with a non-centralized design.

• It contains autonomous, heterogeneous and distributed agents with different

personalities.

• It provides an infrastructure to specify communication and interaction

protocols.

Moreover, apart from the local goals of each agent, global goals are also stated by

identifying a way in which all or some subgroups of agents compromise to reach the

solution. Some advantages of this approach are (Abdelkader et al., 2012):

• It is a natural way of controlling the complexity of highly distributed systems.

• It allows a construction of a scalable system since the addition of agents is

simple task.

• A MAS builds a more robust and tolerant system with respect to failures than

a centralized system.

3.3.2 Agent interaction

A MAS performs tasks of communication, coordination and negotiation. For the

agents to be able to interact in a coherent way, they must share information on their

goals and tasks. Thanks to the exchange of information, the agents coordinate the

running of activities, being able to negotiate in case of conflict, and plan their actions

to meet a goal (Rodríguez, 2010). In this context, four key and related concepts

emerge by expressing different characteristics, namely: communication, coordination,

cooperation, negotiation and adaptation.

1) Communication

An act of communication is defined as the exchanging of information between a

sender and a receiver. The information is encoded into a language known by both

the sender and receiver, and it is sent through a means of communication and for a

determined context. (Finin et al., 1997) state:

The main block for an intelligent interaction is the knowledge sharing, including the

mutual understanding of such knowledge and its communication. The importance

of the communication is stated by (Genesereth and Ketchpel 1994), emphasizing

that an entity is a software-agent if and only if it is able to properly communicate by

using a communication language of agents. After all, it is difficult to represent

cyberspace with entities that only exist in isolation; this would be contrary to our

perception of an interconnected and decentralized electronic universe.

When the interaction between agents is wide and there is a need to efficiently

communicate with agents in other systems or organizations, the agents must have a

33

standard language with a set of conventions which allow them to communicate,

connect and exchange information with other agents. The communication

languages of agents, AC’s, allow the agents to communicate in a clear and non-

ambiguous way (Odell, 2010).

2) Coordination

 (Malone, 1988) and (Malone and Crowston, 1994) describe the coordination of

actions as a set of supplementary actions that can be carried out in a multi-agent

environment to reach a goal that a single agent with the same goals could not

otherwise achieve on its own.

From a practical point of view, coordination can be defined as the effort of

managing the interaction space of a multi-agent system (Wegner, 1997) (Bussi et al.,

2001). Coordination is strongly associated with planning since the plans allow

predicting the behaviour of other agents and exchanging intermediate results leading

to reach the final goal.

3) Cooperation

Cooperation is the mechanism whereby the agents working together to reach a

common goal define a strategy to achieve this end (Rodríguez, 2010). The cooperative

MAS are systems in which several agents attempt, through their interaction, to jointly

solve tasks to maximize their usefulness (Panait and Luke, 2005). Ferber (1999)

classified the cooperation methods into different categories where it is possible to use

one or several methods at the same time to reach the best performance:

• Grouping and multiplication. Grouping of distinct agents in a single entity that

performs in a coordinate way.

• Communication. In agent systems with representation of knowledge, the

communication is stated by means of an exchange of messages between them.

• Specialization. Consists of the agent’s adaptation to a very specific task.

• Collaboration for the sharing of tasks and resources. It should determine the

way in which the tasks can be distributed among the agents.

• Action coordination. A set of tasks are managed to reach a common goal.

• Resolution of conflicts by means of arbitrage and negotiation. The agents

should not be in conflict as to avoid damaging the performance of the whole

system.

4) Negotiation

The negotiation process provides a model of the coordination between agents able

to reach binding agreements. Negotiation allows reaching coordinated decisions by

means of an explicit communication (Muller, 1996). A negotiation conflict is yielded

when multiple agents attempt to reach an agreement. It is assumed that an agent has

certain preferences on the possible agreements. The agents attempt to reach an

agreement according to all parts (Vidal, 2010). Negotiation can be intended as the set

of social rules imposing a standard behavior that must be met by the agents

attempting to avoid the conflict (Castelfranchi et al., 1992).

34

Another important concept of MAS is its adaptive ability. Adaptation in MAS allows

developing systems with the ability to reorganize, adapting to the changes of the

environment and being able to evolve in runtime (Gil, 2011). MAS endow their agent-

based dynamic organizations with mechanisms of self-adaptation by enabling them to

operate in a changing environment (Weyns and Georgeff, 2010). (Rodríguez et al.,

2009) propose a topology with four types of adaptive MAS in function of the

interaction mechanisms used: mechanisms based on direct and indirect interaction,

mechanisms based on the effort or cooperation.

3.4 Agent organizations

In the previous sections, the basic concepts necessary to understand the agent

paradigm, agent interactions, their characteristics of planning and the concept of

agent society have been given. This section focuses on the social characteristics of

MAS. That is, essential concepts such as virtual organization, social model, social

structure, standards, rules, etc., which help to understand the goal of this research. As

adaptive coordination takes place within a society, it is necessary to review the

possibilities, current studies and research leading to this end. To this end, a study of

the agent-based social models was made, including how each of them carries out the

coordination and adaptation. Is there a real analogy between human communities and

agent-based organizations? While the answer to this question is being searched, the

development of this kind of systems increases. There is a large number of research

focused on the construction of virtual organizations, agent-based social simulation,

the study of the behavior, etc. (Iglesias, 2010) (Sansores and Pavón, 2005). It is clear

that we are heading towards a guild computational model. Due to this analogy, we can

define organization from two points of view, namely, from the human and agent-based

technology point of view. Human organizations can be defined as:

1. Association of persons regulated by a set of rules according to specific

purposes (Royal Academy of the Spanish language).

2. Social entity with a number of members that can be specified and an

internal differentiation of the functions performed by such members (Peiro,

1990).

Agent-based organizations, in turn, can be defined as:

3. An organization that provides a suitable framework for the activity and

interaction of agents through the definition of functions, expected behavior

and authority relationships as the control (Gasser and Ishida, 1991).

4. The organization is a collection of functions keeping certain relationships

between them, and taking place on interaction patterns with other

functions in an institutionalized and systematic way (Zambonelli et al.,

2003).

The social models defend the MAS design inspired in social concepts and theories

as rules, social conventions (or customs) or organizations. For this reason, the

organizational structure is suitable to design mechanisms of coordination for MAS

(Gasser et al., 1987) (Pattison et al., 1987). According to the computational paradigm,

35

the systems can be seen in natural way, in terms of entities (usually, agents) providing

and consuming resources (Luck et al., 2008), that have likely been designed by

different development teams, and can enter and leave an organization by different

moments and due to different reasons. Moreover, the entities can form coalitions or

organizations having the same goals. Current trends clearly lead to the paradigm of

virtual organizations (VO) (Ferber et al., 2004).

A Virtual Organization is a set of individuals and entities needing to coordinate their

resources and services within the institutional limits (Foster et al., 2001) (Boella et al.,

2005). Therefore, a VO is an open system (Spencer, 1896) that has been built by

grouping and collaboration of heterogenic entities, where there is a separation

between the way and the role defined by its behavior. MAS technology, which allows

the dynamic creation of agent-based organizations is particularly suitable for the

development of this type of systems. The model of organizations based on open MAS

not only makes the description of the structural composition of the system (for

example, functions, agents, groups, tasks, plans or services), it also creates the rules to

control the behavior of the agents, dynamic input/output of the components and

dynamic creation of agent groups.

3.4.1 Organizational concepts

Continuing with the organizational perspective, a system is described by a social

structure and a set of rules that state the interaction between agents. Such a

description indentifies the functional components of the system (agents), its liabilities

(the tasks to perform), resources (knowledge, software, hardware, tools, etc.) and the

relationship between them (communication, allocation, etc.). All these organizational

concepts are essential to understanding agent societies.

1. Social entity:

The organizations are formed by components or social entities which in turn

can be composed of a specific number of members or agents. According to

(Pattison et al., 1987), these entities:

o have liabilities; that is, a set of sub-tasks to perform since they have

been included within the goals of the organization;

o have and consume resources. The components have certain resources

on which their tasks are run. The resources required by a component

depend of the function performed in that moment, within the

organization;

o are structured according to determined patterns of communication;

o attempt to reach the overall goals of the organization;

o are regulated by rules and constraints.

2. Structure:

The entities in an organization are not independent of each other. They interact

by passing information. These interactions are expressed as relationships

between the components. In general terms, these relationships are not stated

in an individual way in an organization, rather they require a conjunction of

relationships between groups of entities. Such conjunctions define different

36

aspects to consider: functions, topology, and authority relationships, all of

which determine the structure of an organization. The structure can be defined

as the distribution, order and inter-relationship of the parts composing the

organization. In such a structure, the agents will be ordered and communicate

among themselves according to the topology defined by the structure. There

are different topologies according to the type of organization: hierarchies,

holarchies and coalitions (see Figure 3.3); groups and congregations (see Figure

3.4); federations and matrix organizations (see Figure 3.5).

• Hierarchies: The agents are ordered in a tree structure in which the

lower levels have basic functionalities and the upper ones make

decisions.

• Holarchies: They are hierarchical and nested structures of holons.

• Coalitions: They are temporal groupings to reach a concrete goal that

is used to obtain certain benefits and reduce costs. The coalitions are

removed when the goal is reached, when there is no longer a need for

grouping, or when a critical number of agents leave the organization.

• Groups: Groupings of cooperative agents working together to reach a

common goal. This way, the usefullness of the computer is maximized.

• Congregations: Agent groupings with complementary or similar

characteristics. In this case, there is no specific goal, but they facilitate

the search for suitable collaborators to reach global long term goals.

• Federations: Agent groupings with a representative. The remaining

members of the organization interact only with the representative and

give up part of their autonomy.

• Matrix organizations: In this topology an agent can be controlled by

more than one supervisor. For this reason, it is necessary to have

mechanisms of evaluation for compromising and resolving local

conflicts.

Figure 3.3: Organizational topology. From left to right, hierarchy, holarchy and coalition.

37

Figure 3.4: Organizational topology. From left to right, group and congregation.

Figure 3.5: Organizational topology. From left to right, federation and matrix organization.

3. Functionality:

The functionality in an organization is determined by its mission; that is, the

global goals describing its own existence. The mission defines the strategy, the

functional requirements (what does the organization do?) and the interaction

(how does it do it?). The goals can be classified as:

• Functional: for each group or organizational unit;

• Operative: for the agents, their plans (tasks to carry out)

4. Norms:

The norms define the consequences of the actions of the agents:

• Constraints on the organization.

• Liabilities and penalties to apply.

• External access control.

• Deconstruction: Actions to activate the norm, set of liabilities acquired

by the agent, and actions performed to remove the liabilities.

5. Environment:

The environment defines what exists around the system: resources,

applications, objects, constraint, stakeholders (supplier, clients, and

beneficiaries). By defining the environment, the relationship of the roles is

stated with respect to the elements of such an environment: access mode

(reading, interaction, and information extraction), access permission, etc.

6. Dynamicity:

38

The organization dynamics are related to the input/output of agents, with the

roles they adopt, the creation of groups and the control of their behavior. When

defining the dynamics of an organization, the following must be specified

(Esteva, 2003): how the agents enter the systems, the adoption of roles, the

dynamic creation of agents, and behavior control.

7. Social adaptation:

Adaption in a society is an ability to interact with the environment by creating

a symbiotic state. Adaption is not only an ability, it is also a need of becoming

involved in the environment to maximize the learning needs of each individual

so that the system can obtain meaningful learning.

8. Social learning:

Social learning is a process in which, as a result of a common environment

(provided by an artificial society), different entities can interact and evaluate

their experiences and information (Duong and Grefenstette, 2005). Every

member of the artificial society considers the other as a simple data source,

where the relevance of the found data is defined on the utility function or the

goal proposed by the entity that is learning. In this way, the entity has the

ability to decide what to learn (Conte and Paolucci, 2001). The two most

relevant types of learning in the society are: social facilitation (Mataric, 1997)

and imitative learning (Conte and Paolucci, 2001).

Learning is intrinsically related to adaptation. Both social facilitation and imitation

are techniques that allow us to learn from new situations to have an action plan for

the future. Ultimately, that can be considered an adaptation process to new situations.

Furthermore, there are different approaches of society adaptation and in them;

adaptation is one of the most used.

3.4.2 Architectures

Virtual organizations are considered open systems formed by the grouping and

collaboration of heterogeneous entities, where there is a clear separation between

structure and functionality (Foster et al., 2001) (Boella et al., 2005). This way, we can

find works focused on the development of new methodologies and procedures of

design on the organization aspects of MAS as Gaia (Zambonelli et al., 2003), AGR

(Ferber et al., 2004), MOISE (Hubner, 2004), OperA (Dignum, 2004) (based on

ISLANDER (Esteva, 2003) framework), Tropos (Bresciani et al., 2004), PASSI

(Cossentino, 2005), SODA (Molesini et al., 2006) MenSA (Ali et al., 2008) , O-MASE

(DeLoach, 2009), INGENIAS (Pavón et al., 2005) and VOM (Criado et al., 2009). Many

recent studies are not only focused on the use of organizational structures during the

design process, but are also interested in the regulation and adaptation of open MAS.

Although some platforms face the organizational concepts by means of design

patterns and similar techniques, most of them cannot be directly applied to the

development of open MAS where the organizational structures can emerge

39

dynamically and change at runtime. The main problem in implementing a virtual

organization is the lack of a platform giving support to these systems. The primary

function of an agent-based platform is to offer a running environment for the agents.

In recent years, there have been research approaches attempting to provide an

environment for these systems. Some examples of agent-based platforms are JADE

(JADE, 2012) , FIPA-OS (FIPA, 2012), RETSINA (Giampapa and Sycara, 2002)

Grasshopper (Baumer et al., 2000), Jack (Howden, 2001), ZEUS (Hyancinth et al.,

1999), MadKit (Gutknecht and Ferber, 1997), EIDE (Esteva, 2003), RICA-J (Serrano

and Ossowski, 2004), S-Moise+ (Hubner et al., 2006), Jack Teams (una extensión de

JACK) (Agent-Oriented-Software, 2004), SIMBA (Carrascosa et al., 2003) y SPADE

(Escriva et al., 2006). Additionally, a comparative study can be found in (Argente et al.,

2004).

The above characteristics along with an environment specially designed for

running virtual environments are presented in the THOMAS architecture MeTHods,

Techniques and Tools for Open Multi- Agent Systems (Carrascosa et al., 2009) (Giret et

al., 2009). THOMAS is the architecture used in this research and on which the adaptive

model of the proposed virtual organization was developed.

3.4.3 THOMAS

THOMAS (Thomas, 2010) emerged from the need to support the development of an

architecture with the characteristics previously exposed in order to develop open

MAS from an organizational point of view (GTI-IA, 2009). This architecture presents

the necessary infrastructure to use the concepts of agent-based technology in the

development process by applying deconstruction techniques, abstraction and

organization. THOMAS proposes a model of this research that can evaluate the

behavior of a virtual organization in such a way that the agents can dynamically adapt

and reorganize.

This architecture is basically formed by a set of modularly structured services.

THOMAS is based on FIPA (FIPA, 2012a) architecture. It expands its abilities with

respect to the organizational design and improves the ability of the services. In

THOMAS there is a service with the singular goal of managing the organizations

introduced in the architecture. The FIPA Directory Facilitator is redefined to be able to

deal with the services in a more elaborate way.

The agents take part in the infrastructure offered in THOMAS by means of a series

of services included in what is referred to as OMS (Organization Manager Service).

We can see the main components of THOMAS in Figure 3.6 (GTI-IA, 2009).

40

Figure 3.6: Representation of the THOMAS architecture.

As shown in this figure, there are three main components of THOMAS:

1. Service Facilitator (SF): This component offers both simple and complex

services for the active agents and organizations. Basically, its functionality

is summarized as the ability to provide a directory of yellow and green

pages for the available services.

2. Organization Manager Service (OMS): It is primarily responsible for the

management of organizations and entities that it includes. Therefore, it

allows the creation and management of the life cycle of an organization.

3. Platform Kernel (PK): It allows keeping the basic services in the

management of an agent-based platform. It is responsible for managing the

life cycle of the agents present in the organizations and also works as a

communication channel (by implementing mechanisms of message

transport), thus facilitating the interaction between the various entities.

The necessary PK services in the THOMAS architecture can be classified

into four groups. Registration: necessary services to add, modify, remove

the native agents in the platform; discovery: service providing the

functionality of obtaining information; management: services to control the

stage of activation of the native agents in the platform and communication:

services for the communication between agents, inside and outside of the

platform.

From a global point of view, the THOMAS architecture states a full integration

allowing agents to offer and invoke services in a transparent way towards other

agents or entities. This allows the external entities to interact with the agents in the

architecture by using the provided services. Table 3.1 shows a summary of the

services offered by THOMAS.

41

SF Services

Type SF Service Description

Registration Register Profile

RegisterProcess

ModifyProfile

ModifyProcess

DeregisterProfile

DeregisterProcess

Creates a new service description

Creates a particular implementation (process)

for a service

Modifies an existing service profile

Modifies an existing service process

Removes a service description

Removes a service process

Affordability AddProvider

RemoveProvider

Adds a new provider to an existing service process

Removes a provider from a service process

Discovery SearchService

GetProfile

GetProcess

Searches for a service that satisfies the user

requirements

Gets the description (profile) of a specific a service

Gets the implementation (process) of a specific

a service

OMS Services

Type OMS Service Description

Structural RegisterRole

RegisterNorm

RegisterUnit

DeregisterRole

DeregisterNorm

DeregisterUnit

Creates a new role within a unit

Includes a new norm within a unit

RegistrationCreates a new unit within a specific

organization

Removes a specific role description from a unit

Removes a specific norm description

Removes a unit from an organization

Information InformAgentRole

InformMembers

QuantityMembers

InformUnit

InformUnitRoles

InformRoleProfiles

Infor, RoleNorms

Indicates roles adopted by an agent

Indicates entities that are members of a specific unit

Provides the number of current members of a

specific unit

Provides unit description

Indicates which roles are the ones defined within a

specific unit

Indicates all profiles associated to a specific role

Provides all norms addressed to a specific role

Dynamic AcquireRole

LeaveRole

Expulse

Requests the adoption of a specific role within a unit

Requests to leave a role

Forces an agent to leave a specific role

Table 3.1: Summary of the services given in THOMAS.

As for the virtual organizations, all agents included in the framework should belong

to an organization. The THOMAS framework provides a virtual organization where

any entity can automatically be included, and a general function allowing an entity to

request descriptions of the services in order to meet its needs. By the service

description, the client is notified on the roles needed to request a specific service, or

the roles needed to provide a specific service to the organization.

42

3.4.4 Coordination

Every organization needs support of coordination by explicitly determining how

the organization should be structured and how its actions and tasks are carried out. In

general, in every MAS, the agents represent the subjects whose activities need to be

coordinated; the entities, where dependencies emerge, are goals, actions and plans. A

mechanism of coordination determines the way in which one or more agents carry out

a task (Ossowski, 1998).

In this research the organizations are composed by organizational units that

provide communication and visibility constraints on the agents (based on THOMAS).

These organizational units can be of three types: hierarchy, team or flat. In a hierarchy,

a supervisor-agent has the control over remaining members, coordinates tasks, and

centralizes decision making. In the teams, all members collaborate to reach a common

goal by sharing their information. The coordination emerges through plans and

coordinated decision made by the members. Finally, in the flat units no single member

has control over another. This way, the members can know the existence of the

remaining members in the structure. This last unit is mainly used to model more

complex structures. By using the concept of organizational unit, it is possible to build

more elaborate and complex organizational structures such as a as matrix, federation,

coalition or congregation structures previously presented.

From a practical perspective, it is better to consider coordination as the effort of

managing the space of interaction in a MAS (Wegner, 1997) (Busi et al., 2001). This

coordination is related to the action planning for task resolution, since these plans

allow:

• Predicting the behavior of other agents in the system.

• Exchanging intermediate results to develop the progress of the global task

resolution.

• Avoiding redundant actions, if they are not desirable.

Examples of coordination models used as sets of intentions (Cohen and Levesque,

1991), (Dunin-Keplicz and Verbrugge, 2002), shared plans (Grosz and Kraus, 1996),

and the models of independent teams of the domain (Tambe, 1997). All approaches

are based on observations of human work teams. The approach proposed by the

theory of shared plans is the most similar to the model that we propose in this

document. The formalization of the shared plans states the need of a common team

model to a high level, allowing the agents to understand all plan requirements carried

out by a system, such as the group goal. This allows the members of the team to

activate their abilities to carry out the plan and reach the global goal.

The current trend is to implement multi-centric mediated coordination (Ossowski,

1998) (Ossowski, 2001), partly centralized and partly decentralized, based on

multiple and heterogeneous intermediate agents. This way, both the efficiency

engineering needs and the restrictions imposed by increasingly open environments

can be reached. We shall use the model proposed in this PhD Thesis as an example:

• Problem-oriented coordination: In this type of coordination, the agents should

coordinate the plans to carry out the actions to prevent deadlocks, repetition

of actions and creation of inconsistencies.

43

• Cooperation-oriented coordination: The agents are not coordinated at a plan

level; rather at an action level. This means that the agents are coordinated at

the time of running the action.

Choosing the coordination model depends of the scope of the organization itself,

but there should always be an attempt to cover all performance possibilities of the

agents. To this end, the coordination model for organizations proposed in this

research covers all coordination types, since the organization globally determines the

actions of the agents (global coordination), but is able to decide how to solve their

problems (individual coordination).

This research presents an approximation to carry out a global coordination within

an organization developed by THOMAS, which is an architecture based on

organizational concepts, as previously seen. The coordination consists of the

distributed planning of tasks on the agent members of the organization. Moreover,

such coordination can adapt to changes in the plans of the organization, which

provides the property of adaptation. The description of such a property in the

organizations is provided in the next section.

3.4.5 Adaptation

There are several problems that must be taken into account when agents are

coordinated in an organization, including how to keep a global coherence of the

system without explicit global control (Huhns and Stephens, 1999). For an

organization to be able to adapt quickly to changes in its environment; the agents

should coordinate when it is necessary to carry out changes related to their goals or

assigned roles. In short, it is necessary for an organization to be able to adapt.

Therefore, a virtual organization can be seen as a cooperative system, in which

coordination is based on a planning and distribution of tasks. The coordination of

shared tasks or tasks that are combined to solve a common problem, requires a

centralized planning or a distributed planning carried out by the agents themselves in

the system. All this defines an open problem, since the classic planning systems

(McAllester and Rosenblitt, 1991) are not suitable for several reasons:

• They assume that the agents have full knowledge of their environment;

• They assume that the actions will not fail; and

• They assume that the environment will only change by running the actions of

the agents.

None of these are realistic assumptions in a MAS. Thus, it is necessary to have a

plan capable of adapting to these circumstances. The proposed model attempts to

reach an adaptive planning state within the agent organization without taking into

account the previous assumptions, and it can be applied to real environment. There

are different paradigms of planning, but the most suitable for reaching the above goal

is case-based planning, since it provides the flexibility needed to carry out a re-

planning of tasks and actions related to the goals of the organization. This flexibility

comes from the possibility of using plans (or sub-plans) based on past experiences. In

addition, if this type of planning is combined with a satisfactory plan, then it is

possible to introduce temporal and resource constraints to the problem.

Case-based planning allows the system to adapt from the dynamic planning point of

view. That is, it allows re-planning concepts to be formalized by means of techniques

44

based on the fields of Jacobi (Lee, 1997). Other important questions in the adaptation

are: what should be adapted, how should be adapted and who is responsible for the

adaptation. Such questions are determined by the goal that the organization should or

wants to fulfill, a factor widely influenced by life in a society. This way, the utility or

efficiency functions determine the decision making process that can be applied by an

individual or collective group.

The adaptation model of the organization proposed in this research uses

mechanisms based on direct interactions (Zambonelli et al. 2004): local interactions

and computations to re-organize the agents and obtain a global and coherent state of

the system. Furthermore, the use of the THOMAS platform (Carrascosa et al., 2009)

brings us new methods of adaptation based on architectures (Razavi et al., 2005) in

which it is possible to modify the structure of the organization to obtain an adaptation

to the changes.

Taking advantage of the development of MAS from an organizational point of view,

and considering the currently existing gaps regarding adaptive planning on a social

model, we propose a coordination model for the dynamic and adaptive planning in an

agent-based organization. By means of MAS technology and the planning techniques

based on operational research, we are interested in an optimum distribution of tasks

for the agents of the organization. It deals with a single model which can provide an

organization with self-adaptive abilities at runtime on high-dynamic environments.

This will allow the behavior of an agent to be determined by the goals it wants to

reach, but also takes into account the goals of the remaining agents and the changes in

the environment.

3.5 Ontologies

Communication implicitly presents a series of problems such as language

inconsistency, different contexts, ambiguities, etc. The idea, then, is to establish a

shared understanding to solve the problems of communication based on (Uschold and

Gruninger, 1996):

• interpersonal communication on different contexts and points of view;

• interoperability between systems;

• knowledge interoperability ;

• facilitating of the requirement specification process;

• allowing communication and understanding among software agents.

From this context emerges the concept of ontology, immersed in multiple disciplines

and with disparate meanings. The term ontology in philosophy refers to the study of

the things which exist (Chandrasekaran and Josephson, 1999). The ontology concept

in artificial intelligence is attributed to the specification of a conceptualization (it

includes the definition of terms and the relationships between them), which should

preferably be formal and computable (Hendler, 2001). Ontologies represent essential

technologies that enable and facilitate semantic interoperability by providing a formal

conceptualization of the information being shared and reused (d’Aquin and Noy,

2011). They provide a way of representing and sharing knowledge by using a common

45

vocabulary. Furthermore, they allow using a format of knowledge exchange and

reusing such knowledge (Cantera et al., 2007). An ontology typically provides the

vocabulary describing an application domain and the specific meaning of the terms

used by the vocabulary (Euzenat and Shvaiko, 2007).

Ontologies are successfully being used in areas as web semantics, where a suitable

design of the ontology can improve the performance of the semantic web services.

Another area in which ontologies are widely used is multi-agent systems. Since

ontologies describe a set of concepts and relationships, they can be used to build the

hierarchical architecture of business knowledge and the logic of the negotiations and

activities regulation between agents (Wang et al., 2012).

3.5.1 Basic aspects

Due to the multidisciplinary environment where the ontology concept is found

(including computer sciences), there is no agreement as to its definition. However,

different studies on ontologies (including taxonomy, conceptual maps, conceptual

models and formal ontologies given in several logical languages) have allowed

ontology to develop without a common understanding of its definition,

implementation and applications (Gruninger et al., 2007). One of the most accepted

definitions was given in (Borst, 1997):

An ontology is a formal and explicit specification of a shared conceptualization.

This definition introduces the term conceptualization, which refers to an abstract

model of a constructed phenomenon by indicating the important concepts of such a

phenomenon. Formal indicates that it is computable, which excludes natural

languages. Furthermore, the goal is to represent knowledge in such a way that it can

be used by various individuals. Other definitions of ontology are given in (Gruber,

1995) (Cantera et al., 2007) (Swartout et al., 1997) (Sowa, 2000) (Noy and

McGuinness, 2001) (Farquhar, 1997).

An ontology must include at least a concept hierarchy (see example in Figure 3.7)

organized by the semantic relationships which specify the relationship between one

concept and another. Ontologies are mainly used to carry out a search and retrieve of

conceptual/semantic information in a more efficient, adapted and intelligent way.

Indeed, an ontology allows us to work with complete concepts rather than keywords

(White, 2004).

Ontologies represent the essential technology that enables and facilitates semantic

interoperability by providing a formal conceptualization of the shared and reused

information (d’Aquin and Noy, 2011). Despite the differences existing within the

different areas covering ontologies; there is a general agreement on certain questions

(Chandrasekaran and Josephson, 1999), for example:

46

Figure 3.7: Example of knowledge hierarchy in an ontology.

There are objects in the World. The objects have properties or attributes having

certain values. Objects may have several relationships with other objects. The

relationships and properties can change over time. There are events occurring in

a specific instant of time. The World and its objects can be in different states.

Events can cause other events or states, which are known as the effects. The

objects may be composed of parts.

Several authors and scholars have agreed on the different components of an

ontology (Sowa, 2000) (Noy and McGuinness, 2001) (Farquhar, 1997). These are

axioms, class, instances, relations, properties or slots, frame, conceptualization,

taxonomy and a vocabulary. A distinction between different ontologies can be given

depending on the complexity of its construction.

• Reference ontologies: Rich and axiomatic theories that focus on clarifying

the intended meaning of the terms used in specific domains (Borgo et al.,

2002).

• Application ontologies: Provide a minimal terminological structure that fits

the needs of a specific community (Menzel, 2003).

Considering the amount and type of conceptualization the following

classification (van Heijst et al., 1997) is obtained:

1. Terminological ontologies. They specify the terms that are used to

represent knowledge in the universe of discourse. They are often used to

unify vocabulary in a given field.

2. Information ontologies: Specify the storage structure of databases. They

provide a framework for storing standardized information.

47

3. Knowledge modelling ontologies: Specify conceptualizations of knowledge.

They contain a rich internal structure and often fit the particular use of the

knowledge they describe.

3.5.2 Descriptive logic-based representation paradigm

As explained in the above point, ontologies are used in search systems to retrieve

conceptual/semantic information as efficiently and intelligently as possible. The

required information will be obtained by means of a question-answer process,

replacing the search system based on keywords. Such a process would need a

procedure of computable reasoning. The best candidate to add the reasoning is

descriptive logic, which offers a high level language to express knowledge with a high

expressive power, allowing inference tasks.

By definition, descriptive logic is a logical formalism designed to represent

knowledge. This logic defines concepts by providing a formal syntax and semantic.

These characteristics allow avoiding ambiguities in the language. The kinds of

components allowing descriptive logic to perform ontologies are concepts, roles and

individuals.

• Concepts: Represent entities in which certain information will be stored.

• Roles: They are relationships between concepts of the domain, and allow

their properties to be described.

• Individuals: They are instances within the ontology as well as the specific

values of the roles represented by the properties of the individuals.

Finally, according to (Uschold and Gruninger, 1996), the application area of

ontologies can be divided into three sections: Communication, Interoperability and

Systems Engineering.

3.5.3 Defining ontologies

There are several methodologies to build ontologies. To define an ontology an in-

depth and consistent analysis should be made of how to avoid inconsistencies or

incoherencies (Chandrasekaran et al., 1999). Regardless of how an ontology is

created, there is a series of general guidelines of design (Gruninger and Fox, 1995):

clarity, consistency, extensibility, minimum ontological commitment, minimum

dependence of the encoding. One of the most accepted methodologies for creating

ontologies is given in (Noy and McGuinnes, 2001). This methodology is based on the

following steps:

1. Determine the domain and scope of the ontology.

2. Consider reusing existing ontologies.

3. Enumerate important terms in the ontology.

4. Define the classes and the class hierarchy.

5. Define the properties of the classes.

6. Define the characteristics of the properties.

7. Create the instances.

48

Several methods and methodologies f developing ontologies, as defined in method

Ontology 101 (Noy and McGuinness, 2001) and Methontology (Gomez and Rojas,

1999), include the reuse step in the life cycle of developing ontologies. This allows

ontological engineers to integrate existing ontologies by avoiding the design and

implementation of an ontology that has already been created. Reuse of ontologies

usually takes place in the design and implementation stages.

3.5.4 Languages for building ontologies

Although ontologies have been used for many years in different fields of research,

ever since the emergence of the semantic web, ontologies have become the de facto

standard for knowledge representation (García, 2007). The first languages for

representing ontologies with certain relevance were KIF (Knowledge Interchange

Format), OCML (Operational Conceptual Modellig Language) and F-Logic (Frame

Logic). However, with the emergence of the semantic web, the most widely accepted

ontological languages have been those with which the semantic web is associated. We

present two of them, which are the most significant, RDF and OWL.

Lenguaje RDF

Language RDF (Resource Description Framework) is not based on any logical

language; it only takes the syntax of the ontologies (classes, instances and properties

that are related to each other). Various authors do not consider RDF as an ontology

language due to its lack of inferences, but it is the basis for the vast majority of

languages and for representing ontologies graphically (Romero, 2007). RDF is the

model recommended by W3C (World Wide Web Consortium) to represent metadata

by allowing web information to be defined on any domain and represent any type of

arbitrary data. This language, along with other technologies, will add meaning to the

content of web pages and other web-based technologies. Furthermore, it will be

extremely useful when the information is processed by applications instead of

persons. The data model of RDF is based on the known triplets that are commonly

expressed as A (O, V). The elements in a triplet (García, 2012) are:

• Object: Resource or concept to represent. Each having a single and universal

Identifier (URI).

• Attribute: Aspect or property of the object to represent. The relationships of an

object with other objects or values can be defined.

• Value: Value or attribute of the property.

The triplets allow nesting and chaining between annotations, since the object of one

triplet can take the role of the value in another. For the RDF data model, an XML-based

syntax has been proposed, where a description is a set of assertions about a resource.

Ultimately, RDF provides extensibility and the ability to link resources based on its

content. However, it has problems of ambiguity in the definition of its elements

because the recommendations to represent the semantic content or the vocabulary to

be used are not defined. This can lead to two documents using different definitions of

the same concept but unable to decide if they are equivalent (Ruckhaus, 2006).

49

OWL
The web ontology language (Web Ontology Language, OWL) appeared in 2004,

addressing the need of a language that meets certain characteristics:

• Extend existing web standards such as XML, RDF or RDFS.

• Easy to use; that is, based on common terms of knowledge representation.

• Sufficient expressiveness to store the semantic content necessary to enable

the development of the semantic web.

• The language should be formally specified, allowing machine learning.

OWL can be considered the most complete language for the semantic web, as it

provides a common vocabulary and semantic content representation. OWL is

presented in three levels according to its expressiveness (Romero, 2007). This allows

us to choose the language that best fits the needs of each system: the simplest systems

limit their expressiveness by looking for a more effective calculation.

• OWL Lite is the most basic sublanguage and therefore the simplest,

providing support to build hierarchies and the use of simple constructs

(García, 2012).

• OWL DL is the sub-language that allows maximum expressiveness by

ensuring computational completeness, that is, all conclusions are

computable and implemented in a finite time (García, 2012).

• OWL Full is the sub-language that implements maximum functionality

without restrictions of any type, being used in very specific situations

(Romero, 2007).

The following Table 3.1 shows the equivalence between statements in the OWL

language and the syntax of descriptive logic (DL).

Statement OWL Syntax DL

intersectionOf

C_1⊓…⊓C_n

unionOf

C_1⊔…⊔C_n

complementOf
¬C

50

oneOf

〖{x〗_1}⊔…⊔〖{x〗_n}

allValuesFrom

∀P.C

someValuesFrom

∃P.C

maxCardinality
≤nP

minCardinality
≥nP

subClassOf

C_1⊑C_2

equivalentClass
C_1≡C_2

disjointWith
C_1≡〖¬C〗_2

sameIndividualAs
〖{x〗_1}≡〖{x〗_2}

differentFrom

〖{x〗_1}⊑¬〖{x〗_2}

subPropertyOf

P_1⊑P_2

equivalentProperty
P_1≡P_2

51

inverseOf
P_1≡P_2^-

transitiveProperty

P^+⊑P

functionalProperty

T⊑≤1P

inverseFunctionalPrope

rty

T⊑≤1P
-

Table 3.1: Equivalence between language OWL and descriptive logic.

3.6 Conclusions

The goal of this research is to design a methodology that facilitates the

semiautomatic reuse of business processes in a cloud computing environment.

Automation in this process requires the use of efficient and intelligent mechanisms,

and a standardization process. Intelligent management will take place in a distributed

architecture of agent-based organizations such as the one presented in this chapter.

The management of the creation and reuse of a business processes is generally more

efficient if applied to similar processes and/or if they have a common semantic (that

is, the use of a common ontology). The proposed process has been guided by a virtual

organization managed by a multi-agent architecture that implements intelligent

behavior to manage the process by using an ontology.

The goal of this research is to present a model allowing the construction of a

business process from specifications given in text format (with certain constraints) of

the process to be created. The multi-agent system based on virtual organizations will

have the necessary level of knowledge and intelligence to establish the composition of

processes by using standard BPEL (Business Process Execution Language). This

standard can in turn compose Web services in a simple way and with the advantage of

being able to project directly to diagrams BPMN (Business Process Management

Notation). The next topic will review the BPEL standard and the related items as well

as the web services to be used in the composition of business processes.

52

53

4 BUSINESS PROCESSES

4.1 Introduction

The goal of this research is to develop a methodology facilitating the agile and

efficient construction of business processes on cloud environments from developed

components. This goal involves the construction of business processes from other

ones implemented in form of Web services. This process is guided by an agent virtual

organization coupled in a multi-agent architecture that implements the intelligent

behavior necessary to manage such a process by basing on an ontology. In the

previous chapter, the multi-agent systems (MAS) that will be applied to our model

have been analyzed and an ontological model has also been described. Such a MAS

based on virtual organizations will facilitate the process composition by using

standard BPEL, which in turn facilitates the process of composing Web services with

the advantage of having a direct projection from BPMN diagrams. This chapter

presents Web service technology, the SEO architecture, the concept of business

process management and finally, semantic Web services will be analyzed.

4.2 WEB services

The Web has gone from being a collection of pages to a collection of services

(Paolucci et al., 2002). For many years, companies have interacted using ad hoc

approaches that take advantage of the basic infrastructure of the Internet. However, in

recent years Web services have increased in importance, providing a systematic and

extensible framework for the interaction between application-application. This

framework was built from existing Web protocols and based on XML standards

(Curbera et al., 2002). This working style has changed the way software systems are

conceiving distributed software systems (Newcomer, 2002).

A Web service is a software component that represents a service deployed on the

Web platform, and supports automatic interactions between machines in the network

(Walsh, 2002). In addition, they must be described so that they can be discovered,

associated or composed (Le et al., 2009). To support the Web services approach, many

new languages, most XML-based languages have been designed as business

coordination languages (WS-BPEL, (OASIS, 2007)), description languages (WSDL

(Curbera et al., 2002)) and query languages (Xpath, (Clark and DeRose, 1999))

(Lapadula et al., 2010). When most software and processes are supported by Web

services, new types of business paradigms, discussion groups, interactive forums, and

models of publishing will emerge to take advantage of this technology (Newcomer,

2002). Furthermore, the composition of Web services has emerged as a promising

approach to integrating business applications within organizational boundaries (Zeng

et al., 2003).

Service-oriented computing is being considered as the next generation of

distributed computing, being widely adopted. SOA (Service Oriented Architecture)

aims at implementing service-oriented computing by using Web services as the main

block of the applications (Besson et al., 2011). The three key elements associated with

SOA are: WSDL (Web Service Description Language), which describes the Web

54

service; SOAP (Simple Object Access Protocol), which is a transport protocol for the

exchange of information; and UDDI (Universal Description, Discovery and

Integration), which is a register used to store the service and its discovery (Parimala

and Saini, 2011).

SOAP offers the basic communication for Web services, but does not tell us what

messages need to be exchanged to interact successfully with a service. This will be

completed by WSDL, an XML format developed by IBM and Microsoft to describe Web

services as collections of communication points allowing the exchange of certain

messages (Curbera et al., 2002). WSDL describes a Web service interface, consisting of

messages exchanged between the client and the server. Such messages are abstractly

described, and are linked to a specific network protocol and message format. Web

service definitions can be mapped to any implementation language, platform, object

model, or messaging system (Tere and Jadhav, 2012). Web service discovery systems

were developed to search for a suitable Web service from a large number of published

Web services (Le et al., 2009). UDDI appears as an acceptable means of listing and

publishing Web services.

Another advantage of SOA is its close relationship with cloud systems. Applications

in cloud systems need to be flexible; the adoption of SOA can provide cloud computing

developments based on a design to access services through low coupling, and easy

movements that would otherwise be very complex (Arévalo, 2011). In addition, cloud

architectures based on Web services have been proposed (SOCCA, Service-Oriented

Cloud Computing Architecture), so that cloud systems can interact with each other

(Wei-tek et al., 2010).

4.2.1 Basic concepts

There are several complementary definitions of the concept of Web service,

depending on the author or organization. One such definition is provided below:

Web services are self-contained, modular and dynamic applications, that can be

described, published, localized or invoked through the network to create products,

processes and supply chains. These applications can be local, distributed or Web

based. Web services are built on standards such as TCP/IP, HTTP, Java, HTML and

XML (IBM, 2009).

An important benefit of Web services technology is the ability to integrate existing

light applications over public or private networks such as the Internet. New

applications can be developed only using the composition of several Web services

(Lee and Hwang, 2009). Web services have three basic features (Shooting and Foxvog,

2006):

• Functional: indicates what the service does.

• Behavior: details how the Web service works and how it can be integrated.

• Non-functional: restricts the functional properties, which are given by the

user for service discovery.

The Web service architecture varies considerably from one organization to

another. Figures 4.1 and 4.2 show the different components of a Web service-based

architecture:

55

• UDDI (Universal, Description, Discovery and Integration)

• WSDL (Web Service Description Language)

• SOAP (Simple Object Access Protocol)

Figure 4.1: List of related Web service components.

re
gi
st
er
s

pu
bl
is
he
s
W
SD
L

searches
obtains W

SD
L

Figure: 4.2: Web service architecture (GramaticasFormales, 2011).

The programmer builds a Web service by using a specific programming language.

This service is published by using a WSDL interface and can be invoked by a client

using this interface. Web services are presented to customers as a set of operations

that provide business logic on behalf of the provider, enabling customers to invoke

operations on the server’s side.

A different approach of Web services is one that includes semantic content. A

semantic Web service, which is an extension of the traditional concept of Web service,

overcomes the limitations of Web services by using the knowledge representation that

provides the semantic Web. In particular, it uses ontology to describe Web services

(Le et al., 2009), (Kennedy et al., 2012).

Another area improving the efficiency of Web services is multi-agent systems

(MAS). A MAS can be used to assist in the task of Web service composition (Rao,

56

2012). During service composition, software agents engage in conversations with

their peers to agree on the Web services taking place in the process (Maamar et al.,

2005). Several proposals for handling this problem can be found, such as those given

in (Maamar et al., 2005) and (Greenwood and Calisti, 2004).

(i) SOAP (Simple Object Access Protocol)

SOAP is an XML-based protocol for messaging and invoking remote procedures

(RPC). Instead of defining a new protocol, SOAP performs on existing protocols such

as HTTP, SMTP and MQSeries (Curbera et al., 2002). SOAP enables interoperability

between a wide range of programs and platforms. In this sense, the existing

applications can be accessed by a wider range of users (Papazouglu, 2008). The

structure of a SOAP message is composed of the following tags: Envelope, Header, Body

and Fault.

In addition to the basic structure of the messages, the SOAP specification defines a

model that indicates how recipients should process the SOAP messages. The message

model also includes actors indicating who should process the message. A message can

identify the actors that indicate a series of intermediaries who in turn process the

message parts specified for them and pass the rest to others (Papazouglu, 2008). The

Web service communication model describes how to invoke Web services and is based

on SOAP, which is defined from its communication and coding style. SOAP supports

two communication styles (Albreshne et al., 2009): Web services styles RPC and

document style. The codes for both styles have been given below, Codes 4.1 and 4.2.

1 <Envelope xmlns="http://www.w3.org/2001/12/soap-envelope"

2 <Header>

3 ...

4 </Header>

5 <Body>

6 <GetProductPrice>

7 <product-id>4562</product-id>

8 </GetProductPrice>

9 </Body>

10 </Envelope>

Code 4.1: SOAP styles RPC, (Albreshne, 2009).

1 <soap: Envelope xmlns:SOAP=http://www.w3.org/2001/12/soap-envelope>

2 <soap:Body>

3 <pourchaseOrder orderDate=”2009-05-

20”xmlnso=http://www.amzon.com/POs>

4 <po:accountName>Ricard</po:accountName>

5 <po:accountNumber>1234</po:accountNumber>

6 <po:book>

7 <po:title>J2EE Web services</po:title>

8 <po:quantity>300</po:quantity>

9 <po:price>24.5</po:price>

57

10 </p:book>

11 </pourchaseOrder>

12 </soap:Body>

13 </soap:Envelope>
Code 4.2: SOAP styles document, (Albreshne, 2009).

Web service invocation through SOAP requires a SOAP engine (that is, a Web

service engine). The basis of some popular engines such as Apache Axis 2

(http://ws.apache.org/axis2/) is an Internet domain where time requirements

are not very important (Mathes et al., 2009).

(2) WSDL (Web Service Description Language)

WSDL is an XML document describing the access to a Web service and the offered

operations (Walsh, 2002). It defines an abstract description with respect to the

messages exchanged on a service interaction. During the development, the developers

use WSDL as input to a proxy generator that produces the code of the client according

to the requirements of the service (Curbera et al., 2002). Informally, we can

understand that WSDL describes a Web service similarly to an interface (Li et al.,

2006). With WSDL, a client can locate a Web service and invoke any of its public

functions (Tere and Jadhav, 2012).

A WSDL document defines the services as a collection of endpoints1 on the network

or ports. The abstract definition of endpoints and messages in WSDL is separated

from concrete network deployment or data link format. This allows reusing abstract

definitions: Messages, which are abstract descriptions of the exchanged data; and

Prototypes, which are abstract collections of operators. The concrete protocol and the

specification of data format for a particular Port Type is the reusable link. A port is

defined by associating a network address with a reusable link (W3C, 2001). According

to (Erl, 2006), the WSDL description of a service can be separated into Description

Abstract and Concrete Description. A WSDL document uses the following items (W3C,

2001): types, message, port type, operation, binding, service and port. See Code 4.3 and

Figure 4.3.

1 <definition .. >

2 <types>

3 <xsd:schema />

4 </types>

5 <import namespace”http://www.xml.com/tls/schema”

6 Location=http://www.xml.com/tls/schema/car.xsd/>

7 <message name=”getID”>

8 <part type=”xsd:integer”/>

1
 endpoint: Association between a link and a network address, specified by a URI, which can be used to

communicate with an instance of a service. An endpoint indicates a specific location for accessing a service

using a specific protocol and a data format (Haas and Brown, 2004).

58

9 </message>

10 <portType name=”CarInterface”>

11 <documentation>

12 Get Car Details operation.

13 </documentation>

14 <operation name=”getCarDetails”>

15 <input message=”tns:rentCar”/>

16 <output message=”tns: rentCarResponse”/>

17 </operation>

18 <operation name=”UpdateCarDetails”>

20 </operation>

21 </portType>

22 <binding name=”CarBinding” type=”tns:CarInterface”>

23 <soap:binding style=”document”

24 Transport=http://schemas:xmlsoap.org/soap/http/>

25 <operation name=”GetCarDetails”>

27 </operation>

28 </binding>

29 <service name=”CarService”>

30 <port binding=”tns:CarBinding” name=”CarPort”>

31 <soap:address location=http://www.localhost:8080/car/>

32 </port>

33 </service>

34 </definitions>

Code 4.3: WSDL structure (Albreshne, 2009).

(3) UDDI (Universal Description, discovery and Integration)

After defining the data in the message (XML), describing the services that will

receive and process the message (WSDL), and identifying the means of sending and

receiving messages (SOAP), it is necessary to publish the offered services and find the

published services to be used. This is the function performed by UDDI (UDDI, 2002)

(Newcomer, 2002). According to (Sing et al., 2005), UDDI can be defined as:

an XML-based platform independent register for all companies around the world

that can be listed on the Internet. UDDI is an open, industry initiative sponsored

by OASIS, allowing the publication and discovery of services, (Sing et al., 2005).

The UDDI specifications (Universal Description, Discovery, and Integration)

provide users with a systematic and unified way of finding service providers

through a service register similar to a phone book of Web services (Curbera et al.,

2002). The functionalities offered by UDDI are facilitated by WSDL and SOAP

standards. UDDI also provides a set of categories such as NAICS2 and UNSPSC3 to

organize the services offered by the companies in the directory, and enable fast

2
 North American Industry Classification System (NAICS) published by Census.

3 United Nations Standard Product and Services Classification (UNSPSC), System jointly developed by UNDP

(United Nations Development Program) y D&B (Dun & Bradstreet Corporation) in 1998.

59

searches at company and service level (Akkiraju et al., 2003). UDDI supports three

types of service descriptions (Albreshne et al., 2009):

Figure 4.3: Conceptual WSDL, (active endpoints, 2009).

• White Pages. Contain the following fields of information;

• Yellow Pages: Provide business categories organized as taxonomies;

• Green Pages: Contain business information used to describe the way in which

other businesses can conduct electronic commerce with them.

The representation of Web services in UDDI (Paolucci et al., 2002) is shown in

Figure 4.4. A business is represented as an object Business Entity that stores

information such as company name, contact information, business URL, and others. A

Business Entity is associated with one or more Business Services, which are

descriptions of the specific services provided by the company. In turn, a Business

Service is associated with one or more Business Templates, and specifies the access

point to the service. Moreover, UDDI provides a data structure called TModel, which

allows specifying additional attributes of the entities described in the UDDI repository

(Paolucci et al., 2002). A TModel can be understood as metadata containing

information on the artifacts that are being modeled. A TModel in UDDI can refer to a

technical and standard specification (as WSDL) to describe Web services, or abstract

specifications of taxonomic schemes as NAICS or UNSPSC (Akkiraju et al., 2003).

60

Figure 4.4: UDDI register.

UDDI allows us a wide range of searches: the services can be searched by name,

location, links, or TModels. Unfortunately, the search mechanism supported by UDDI

is limited to matching keywords, and does not support any inference based on

taxonomies referring to a TModel (Srinivasan et al., 2004). Several authors have

proposed solutions to this problem by associating UDDI to a mechanism that provides

semantic information (Srinivasan et al., 2004) (Akkiraju et al., 2003).

4.2.2 WEB REST services

REST is a term coined by Roy Fielding in his doctoral thesis (Fielding, 2000) to

describe an architectural style of systems in the network. REST is an acronym for

Representational State Transfer. It is convenient to emphasize that REST is not a

standard, but an architectural style. Such a style cannot be encapsulated; we can only

understand and design Web services by following it. Although REST is not a standard,

it uses the following standards (Costello, 2002): HTTP, URL and XML/HTML/GIF/JPEG

(resource representation).

We can summarize the REST architectural style with four principles (Pautasso et

al., 2008):

• Resource identification by URI. The resources are identified by URI, which

provides a service discovery mechanism.

• Uniform interface: To manage resources, there is a set of four operations:

create, read, update, delete.

• Self-descriptive messages: The resource content can be in various formats

(HTML, XML, plain text, PDF, JPEG, etc.). The metadata on the resource can be

used to detect transmission errors or perform access control and

identification.

61

• Stateful interactions through hyperlinks: interactions without states can be

reached using different techniques, such as URL rewriting, cookies, or hidden

form fields.

4.2.3 SOA (Service Oriented Architecture)

SOA provides a new method to create distributed applications where basic services

can be published, discovered and linked to build more complex services. The

applications interact with services through interfaces and entry points at the

implementation level. Furthermore, the applications become more flexible as a result

of their ability to interact with any implementation of a contract (Papazoglou, 2008).

Web services have enabled companies to cross boundaries and have facilitated better

integration because their purpose is to deal directly with interoperability challenges.

However, they do not help businesses to dynamically accommodate to the changes

since a company’s goals do not include facing challenges related to their agility in

dealing with changes. Fortunately, when they are properly implemented, SOA can

address this problem by coordinating distributed IT resources into a cohesive system

that maximizes organizational agility. This agility is translated to a reduction in

development time for new business solutions (Microsoft, 2010). OASIS defines SOA as:

Paradigm for organizing and using distributed capabilities that may be under the

control of several owners (domain). It provides a uniform means to discover,

interact and use capabilities to yield the desired effects by being consistent with

measurable preconditions and expectations (OASIS, 2006).

SOA allows reusing existing code in the way that can create new services in an

infrastructure or an existing system. In other words, it allows companies to benefit

from the existing investments, enabling the reuse of existing applications, and

promising interoperability between technologies and heterogeneous applications.

SOA provides a level of flexibility that was not possible before its existence

(Mahmoud, 2005). A common misunderstanding is that SOA is a new version of Web

services. The distinction between services SOA and Web services resides in their

respective designs. While SOA defines a model to run a data process, Web services

provide a tactical implementation of the SOA model. Ultimately, Web services are one

of the many ways that we can implement SOA (IBM, 2008). As shown in Figure 4.5,

there are three basic roles in a Web service-based architecture (Albreshne, et al.,

2009): Service Provider, Service Consumer and Service Register. Consequently, the

fundamental concepts in SOA (Hashimi, 2003) can be described as follows:

• Service: for SOA, a service is an exposed functionality with the following

properties:

o The contract of the interface of the service is platform

independent.

o The service can be dynamically invoked and located.

o The service is self-contained. That is, the service maintains its own

state.

• The remaining components, message, dynamic discovery and Web services,

can be studied in (Hashimi, 2003).

62

Figure 4.5: SOA architecture, (Governor et al., 2009).

There are many approaches on how to implement and define SOA. (Arsanjani,

2004) proposes an architecture based on seven layers, Figure 4.6:

• Operational System: This layer consists of applications specifically built and

already existing. SOA-based architectures take advantage of existing

systems to integrate them by using techniques of service-oriented

integration.

• Enterprise components layer: This layer is the component of the company

responsible for making the functionality and maintaining the quality of

service of the exposed services.

• Services: The services that the company chooses to fund and expose reside

in this layer. They may be discovered or statically linked and then invoked,

or possibly choreographed into a composite service.

• Business process choreography: The compositions or choreography exposed

in the third layer are defined in this layer. Services are grouped into a flow

through an orchestration or choreography able to act together as a single

application.

• Access or presentation layer: This layer has the services that allow access

or presentation. Although this layer is usually beyond the scope of the

discussions on SOA, it is gradually gaining importance.

• Integration: This layer allows the integration of services through the

introduction of a reliable set of capabilities such as intelligent routing,

mediation protocol and other transformation mechanisms.

• QoS: This layer provides the capabilities required to monitor, manage and

maintain the service quality as security, performance and availability.

63

Figure 4.6: SOA layers.

4.3 Semantic Web services

The key element in the Semantic Web is the development of a language for encoding

and describing Web content. Such a language should have well-defined semantics, be

sufficiently expressive to describe the complex inter-relationships and the constraints

between Web objects, and be responsible for automatic manipulation and reasoning

according to certain acceptable limits with respect to resources and time (McIlraith

and Martin, 2003). Web services technology is a distributed computing framework,

which provides information and services in demand, in a machine-processable way;

probably including a software component to integrate the results provided by

different services (Sycara et al., 2003).

A semantic Web service is a Web service enriched with metadata for an easy

automatic search and composition, Figure 4.7. Technology used in semantic Web

services employs formal descriptions of machine reasoning to provide the possibilities

described in the previous section. Semantic Web services involve the integration of

the semantic Web and Web services. A semantic Web service extends the concept of

Web service, providing semantic aspects that can be used in an autonomous way by an

information system with access to the Web (Garcia, 2011).

4.3.1 OWL-S

OWL-S (OWL Web Ontology Language for Services) is a language that describes an

ontology specifying semantic Web services. It is a continuation and evolution of

DAML-S (DARPA Agent Markup Language) (OWL, 2012). Based on OWL, OWL-S

provides an ontology that allows us to perform desired tasks in a Web services

architecture: the discovery, invocation, composition and monitoring of Web services.

The ambitious expected scope is that these tasks can automatically and dynamically

be performed through intelligent systems without human intervention.

64

Figure 4.7: Semantics extension of Web services.

OWL-S is a set of high-level ontologies written on OWL specifically for Web service

descriptions. It is designed to allow the automation of Web service discovery, service

invocation and composition (Luo et al., 2006). The structure of the service ontology is

motivated by the need to provide three essential types of knowledge of the service,

each characterized by questions (OWL, 2012) such as What does it do? How is it

accessed? How does it work? The answers to these questions are in Profile, Grounding

and Model as shown in Figure 4.8.

Figure 4.8: OWL-S structure.

(1) Service Profile

The profile section provides a set of concepts to specify the functionality of the

services (Booth et al., 2004) with the goal of supporting functionality-based discovery,

Figure 4.9. Specifically, it enables providers to indicate what makes their services, and

allows the applications to specify the functionality expected from the services.

Basically, ServiceProfile provides an explicit description of this functionality so that it

does not need to be extracted from incidental properties as the name of the service or

the company offering it (Martin et al., 2006).

65

Figure 4.9: Service Profile.

The ServiceProfile class provides a superclass of every type of high-level description

of the service. ServiceProfile does not force any representation of the services, but it

indicates the basic information to link any instance of the profile with a service

instance. There is a bidirectional relationship between a service and a profile, so that

a service can be linked to a profile and a profile can be linked to a service. These

relationships are expressed by the presents and presentedBy properties (Garcia,

2012):

• presents: Describes a relationship between a service instance and a profile

instance, which basically says that the service is described by the profile.

• presentedBy: The inverse of presents; specifies that a determined profile

describes a service.

Name of the service, contact and description

Some properties of the profile provide human readable information that is unlikely

to be automatically processed. These properties include serviceName (name of the

service), textDescription (description of the text) and ContactInformation (contact

information). A profile can have a single service name and description text, but it can

have as many elements of contact information as the provider wants to offer.

Description of the functionality

An essential component of the profile is the specification of the functionality

provided by the service and the conditions that must be met to produce a successful

result. In addition, the profile specifies what conditions are required by the service,

including the expected and unexpected results of the service activity. The OWL-S

Profile represents two aspects of the functionality of the service: information

transformation (represented by inputs and outputs) and the state change yielded by

the running of the service (represented by preconditions and effects), (Garcia, 2012).

66

Specifications of the type of service and product

The two properties, serviceProduct and serviceClassification are used to specify the

type of service provided and the products that are handled by the service. The values

of the two properties are instances of the classes specified in the OWL ontologies of

services and products. The ServiceClassification and serviceProduct properties are

similar to serviceCategory previously described, but differ in that the values of the

properties are OWL instances instead of strings related to a business taxonomy that is

not OWL.

(2) Service model

Once a service has been identified to accomplish its goals, a detailed service model

is necessary to determine if it can meet the required needs. If the above holds true,

then it would be necessary to determine what constraints must be met and what

pattern of interactions is required to use the service (Martin et al., 2006).

OWL-S defines a class derived of ServiceModel to describe the modeling of the

processes. This class is called Process. The specific processes are classes derived from

the Process class. Each described process is a specification of the interaction between

the client and the service. Therefore, it is not the specification of a program to be

executed as a style BPEL. Since the preconditions and effects are represented by

logical rules; a process must not be executed unless their preconditions are met. If the

process is executed without meeting the preconditions, then the result can be

undefined.

These rules will be expressed in any language that has a textual representation. The

logic expressions will have a type literal or literal XML. To the first type, literal,

corresponds to languages such as PDDL (The Planning Domain Definition Language)

or KIF (Knowledge Interchange Format), whereas literal XML corresponds to SWRL

(Semantic We Rule Language).

The processes can be atomic, simple or composed, Figure 4.10. The atomic

processes correspond to actions that the service can make in a single interaction; they

have only two participants: the client and the server (service). The composed

processes are carried out on several steps and can be classified into composed and not

composed processes by means of control structures. The simple processes provide an

abstract mechanism to carry out multiple views of the process.

(3) Service grounding

The ServiceProfile and ServiceModel classes are considered abstract specifications,

in the sense that they do not give details of the message format, used protocol, URL for

access to the service, etc. The ServiceGrounding class mission is to provide all those

details (Garcia, 2012).

67

Figure 4.10: ModelService for OWL-S.

The task of specifying abstractly defined messages and operations was already

done by bindings. Having a particularly stable and extendible specification, widely

used by the industry, OWL-S takes advantage of WSDL and defines new extension

points. It also takes advantage of the relationship of WSDL with SOAP and UDDI,

allowing a theoretically simple extension to add semantic content to traditional Web

services. To convert types of data OWL-S (OWL classes) to the types of WSDL data

(XML Schema types), XSLT transformations can be used (only from OWL-S 0.9). See

Table 4.1 and Figure 4.11.

For OWL-S For WSDL

Atomic processes Operation

Data of input an output for an atomic

process

Messages of input and output of

operation.

Types OWS-L (Classes OWL) Types XML Schema

Table 4.1: OWLS-S/WSDL

68

Figure 4.11: WSDL and OWL-S for Service Grounding

(4) Automatic composition of services

The automatic composition of Web services is the process of automatically

performing the selection procedure, combining, integrating and running the service to

achieve the goal of the user. There are industry standards that provide tools to

automatically run services, which have been previously specified in a manually

generated composition. Such is the case of WS-BPEL (Web Service Business Process

Execution Language) (Arkin et al., 2005). But none of these industry standards of Web

services have information explicitly interpretable by computers to automate the

composition.

Some research has been carried out in this line. The first was based on Golog

(McIlraith and Son, 2002), in which the system combines the execution of

information-providing Web services, performed online, with the simulation of world-

altering Web services, performed offline, adapted to the preferences and needs of the

user. Other research uses the planning paradigm HTN (Hierarchical Task Network)

(Nau et al., 2003).

Finally, a mixed approach is to use OWL-S to increase the capabilities of running a

WS-BPEL engine with ontologies. This way, it allows the discovery and coupling of

services at runtime, as in an SDS (Semantic Discovery Service) proposal.

4.3.2 WSMO (Web Services Modeling Ontology)

This proposal, which had to do with the semantic description of Web services,

chronologically followed OWL-S. Holding a similar vision as the authors of OWL-S,

WSMO provides a conceptual framework and a formal language to semantically

describe all relevant aspects related to Web services so that it facilitates automation

69

tasks such as the discovery, combination, and invocation of electronic services on the

Web. In WSMO, a Web service is defined as a computational entity that, once invoked,

is able to satisfy the goal of the user.

WSMO is based on the conceptual model proposed in the Web Service Modeling

Framework (WSMF), which identifies four key elements to describe semantic Web

services:

1. Ontologies: provide the terminology that will be used by the remaining

elements.

2. Goals: represent the user desires or intentions that must be held by a Web

service.

3. Web service descriptions: define the functional and behavior aspects of a

Web service.

4. Mediators: aimed at automatically managing the interoperability problems

arising between the remaining elements.

Taking into account the concepts identified in WSMF as a basis, WSMO provides

ontological specifications for the elements integrating the kernel of semantic Web

services. Unlike OWL-S, the ontology language used for this purpose in WSML is

WSMO. Figure 4.12 shows the high-level concepts coupling WSWO ontology .

Figure 4.12: General vision of the WMSO performance.

4.3.3 SWSF (Semantic Web Services Framework)

SWSF is a new initiative to define a richer semantic specification on the current

Web service technology that allows greater automation and flexibility in the provision

and use of services. The framework is designed to support the construction of more

powerful tools and methodologies in the Web services environment, and promote the

use of reasoning processes in semantic-based services. In this sense, and as with

previous approaches, SWSF attempts to incorporate richer semantics by supporting

increased automation of tasks such as selection and invocation of services, translation

of the message content between heterogeneous services operating with each other,

service composition, etc. Moreover, it allows integral approximations for service

monitoring and error recovery.

70

This proposal consists of two main components: Semantic Web Services Language

(SWSL) and Semantic Web Services Ontology (SWSO). SWSL is a general purpose

logical language that includes certain features making it more appropriate for the

needs on the Web and semantic Web services. Among these features are the use of

URIs, integration of the types that are part of XML, the use of import mechanisms and

namespaces supporting XML. This language is used to specify the formal

characterizations of concepts related to Web services and their descriptions. It

includes two sublanguages: SWSL-FOL, based on first-order logic with extensions of

HiLog and F-Logic frame syntax. SWSL-Rules, based on the logic programming

paradigm, and used to support the use of the service ontology for reasoning processes

and execution environments based on this paradigm.

SWSO defines a conceptual model on which Web services can be described, and a

formal representation or axiomatization of this model. The full axiomatization is

implemented on first-order logic by using SWSL-FOL, with a Model Theory semantics

that specifies a precise meaning of the ontology concepts. This form of ontology using

first-order logic is called "First-Order Logic Ontology for Web Services" (FLOWS).

4.3.4 WSDL-S (Web Service Semantics)

 (WSDL-S, 2005) radically changed with respect to the "traditional" perspective for

the incorporation of semantics to Web services. WSDL-S defines a mechanism to

associate semantic annotations with Web services by using WSDL (Figure 4.13).

Unlike the languages previously described, WSDL-S assumes the existence of semantic

models of the relevant domain for each service. The services are maintained out of the

scope of documents WSDL, but can be referenced from WDSL documents through

extensibility elements conceived as part of the WSDL-S proposal.

As in the previous cases, the conceptual basis of this approach is based on the fact

of that the current WSDL standard operates at a syntactic level by lacking the

semantic expressiveness necessary to represent the requirements and capabilities of

the services. This way, the incorporation of semantics can improve software reuse and

discovery, facilitate Web service composition, and enable the integration of

applications inherited as part of the business integration processes. The semantic

information considered by WSDL-S includes the definitions of preconditions, inputs,

outputs and effects of the Web service operations.

Figure 4.13: Semantics annotations for elements in WSDL-S.

71

Among the advantages of this novel approach over others, such as OWL-S and

WSMO, we can highlight the following:

1. Users can incrementally describe all details, both semantic and at the

operational level, for WSDL, which is a language that is familiar to the

developer community.

2. By outsourcing semantic models of domain, WSDL-S remains independent

of the ontology representation language to use. This is an additional

advantage, because reusing models of the existing domain that are

expressed in modeling languages as UML can accelerate the incorporation

of semantic annotations.

3. It is relatively easy to modify the existing tools around the WSDL

specification to incorporate the elements proposed by this approach. In

any case, it is faster and reliable than the development of tools

implemented from zero.

4.3.5 SAWSDL (Semantic Annotations for Web Services Description

Language)

SAWSDL is an extension of the language of Web service description (WSDL)

developed by a working group of W3C (in 2007). It is comprised of two basic types of

annotations: the reference to the model; and the mapping of the scheme.

Annotations to reference the model are the same as those used in model WSDL-S

and are used to associate interfaces, ports, operations, inputs, outputs, XML elements

and attributes with semantic concepts. With regards to mapping the scheme, these

elements are attributes added to the XML schema declaration of the elements in order

to specify mappings between XML and semantic information. They are used during

the invocation of services to format the information of the XML customer so that it can

be understood by the Web service. This solves the structure problem of inputs and

outputs of the services. It used to be associated with a XSLT transformation sheet.

Unlike WSDL-S, SAWSDL specifies the behavior of semantic Web services by using

ontology description languages such as OWL, and is useful for carrying out service

choreographies. It also allows the development of the following features:

• Service classification

• Discovery

• Matching

• Composition

• Dynamic invocation.

4.4 BPM and BPEL

A business process is a real-world activity consisting of a set of logically related

tasks that, when they are run in the suitable sequence and follow the business rules,

generate a valid output for the company (make a payment, perform a cash extraction

from a bank account, etc.) (Bazan, 2010). In this context, the flexibility of information

systems has become a major concern for business analysts. In fact, the constant

evolution of the requirements of a company needs to implement a flexible and

72

adaptable information system able to face the modifications of business processes

(Radgui et al., 2012).

The development and analysis of complex business processes requires advanced

tools and methods (Ligeza et al., 2012). BPM (Business Process Management)

emerged as a way to manage business processes. It represents methods, techniques

and software tools to design, enact, control and analyze the operational processes

related to people, organizations, applications, documents and other information

sources (Van Aalst, 2003).

An area intrinsically linked to BPM is one corresponding to Web services and

service-oriented architecture. Web services represent a new generation of Web

applications. They are self-contained, self-describing and modular software

components; that can be accessed, located and invoked from anywhere on the

Internet. BPEL (Business Process Execution Language) appears within this

framework as a de facto standard to run business processes by enabling the

composition and integration of various Web services by itself (Viroli et al., 2007). As

the use of Web services increases, so does the choice of "Business Process Execution

Language" (BPEL) by parts of companies. BPEL is aimed at modeling business

processes within the Web service architecture. By developing Web services from

BPEL, companies can implement aspects of service-oriented architecture that have

previously been difficult to achieve (Pasley, 2005).

When we compare BPEL with similar standards (as XPDL and WSCI), we conclude

that it has a good expressiveness (Wohed, 2003) and is currently the only standard

that has running engines such as (Oracle BPEL Manager, 2012) (IBM BPEL4WS, 2012)

and (ActiveBPEL, 2012) (Morrison and Nugrahanto, 2007). As a result, BPEL has

successfully been implemented in very different areas: software for diagnostic

decision support (Morrison and Nugrahanto, 2007), modeling of clinical applications

(Morrison et al., 2006), multi-agent systems (Viroli et al, 2007) and so on. Moreover,

its implementation in the business environment keeps growing.

4.4.1 BPM (business process management)

BPM (Business Process Management) is the name of a set of software systems, tools

and methodologies, focused on how companies identify, model, develop, distribute

and manage their business processes (Bazan, 2010); it deals with change management

of requirements for improvement and unifies previous disciplines of process

modeling, simulation, work dynamic, enterprise application integration (EAI4), and

integration of "Business-to-Business (B2B5), in a single standard (Owen and Raj,

2003). All this allows us to identify whether business processes are optimal or

beneficial for the company, focusing on continual improvement of such processes.

According to (Van Aalst, 2003), BPM can be defined as:

4
 EAI: Uses software and system architecture principles to integrate a set of applications within any company.

5
 BSB: Transmission of information concerning to electronic commercial transactions, usually using

technology as Electronic Data Interchange (EDI).

73

Discipline supporting business processes by using methods, techniques and

software tools to design, enact, control and analyze operational processes related

to people, organizations, applications, documents and other information sources.

The main benefits of BPM are according to (Bazan, 2010):

1. Reduces the errors of obstruction between business requirements and IT

systems, as business users model the processes and then the IT

department provides the infrastructure to run them.

2. Increases productivity of employees.

3. Increases corporate flexibility and agility by separating the logic of the

process from other business rules. This better absorbs changes in the

requirements.

4. Reduces the cost of development using high-level graphic programming

languages.

A key concept regarding BPM is the definition of its life cycle. There are many

approaches on the life cycle of generic BPM (Havey, 2005), (Hill et al., 2006). Due to its

relevance in the field, a widely accepted definition of the BPM life cycle is given in

(Van Aalst, 2003), which considers the following processes: process design, system

settings, process enactment and diagnosis. Despite the different specifications of the

BPM life cycle, four main processes can be abstracted, Figure 4.14. Thus, the BPM life

cycle would be based on the feedback of the cycle:

1. Modeling: Definition and specification of business processes.

2. Execution: Execution of the processes specified in the previous step.

3. Monitoring: Review of the results of the executed processes.

4. Optimization: From the results, to improve the business processes for

future executions.

MODELING

EXECUTION

MONITORING

OPTIMIZATION

Figure 4.14: Life cycle of BPM.

A categorization of the standards belonging to BPM can be made by considering

four groups according to their functionality and similar characteristics (Ko et al.,

2009):

1. Graphic standards: allow users to express business processes, flows and

transitions in a schematic way (BPMN, UML).

2. Execution standards: the deployment and automation of business processes

(BPEL, BPML) is computed.

3. Interchange standards: facilitate the portability of data, for example, the

portability of business process designs through BPMS, different standards

of execution on different BPMS, translation from graphic standards to

execution standards, and vice versa (XPDL , BPDM).

74

4. Diagnostic standards: provide management and monitoring capabilities.

These standards identify bottlenecks and carry out real-time queries of the

business processes of the company.

An important concept of BPM is its joint application with a service-oriented

architecture. SOA enables the design and construction of a set of services, but this set

will not be of much use unless there is something that makes use of such services.

BPM appears as an alternative to provide maximum performance to SOA, where SOA

will greatly help to build faster processes in the BPM system. All of this means that

both technologies complement each other.

(1) BPMN (Business process management notation)

BPMN (Business Process Modelling Notation) is a graphical notation that describes

the logic of the steps in a business process. This notation has been specially designed

to coordinate the sequence of processes and messages that flow between participants

of different activities. A recent standard is to model the flow of business processes and

Web services. It was created by BPMI (Business Process Management Initiative), so

the main goal of BPMN is to provide a notation readable by all users of the business.

This includes business analysts that create the initial drafts of the processes, and the

technical developers responsible for implementing the technology that will perform

those processes (Owen and Raj, 2003). Despite being a relatively recent proposal,

BPMN is supported by a considerable number of tools (Ouyong et al., 2006).

BPMN specifies a diagram of business processes called Business Process Diagram

(BPD).This diagram has several main points:

• Modeling the business processes in a simple way.

• To be used by non-technical users.

• To offer the expressiveness to model complex business processes.

• Simple mapping to business execution languages (such as BPEL).

Some of the elements that are in the BPD diagram are conceptually presented

below. For the modeling of processes or activities are the following entities (Figure

4.15):

• Task: A task is used when the work in the process does not break down

in more details. It is performed by a person and/or an application.

There are specialized types of tasks for sending and receiving, user-

based tasks, etc. Icons or markers can be added to tasks to help identify

the type of task (White, 2006).

• Subprocess: A subprocess is a composed activity included within a

process. This activity in turn includes a set of activities and a logical

sequence (process) indicating that the activity can be analyzed in more

detail. It may visually appear as collapsed or expanded.

75

Figure 4.15: Activities in BPMN.

The execution flow can be modeled using two elements, that is:

• Gateways, (Figure 4.16): Modeling elements used to control the

divergence and convergence of flow. They are represented by a

diamond.

• Connectors (Figure 4.17): They connect different elements of the

diagram (Mancarella, 2011).

Figure 4.16: Gateway in BPMN.

Figure 4.17: Connectors in BPMN

Another important component in the BPD diagram modeling is the events,

Figure 4.18. An event occurs during the execution of a process, and begins or ends

the process. They are modeled as circles with different lines of thickness or double

lines.

76

Figure 4.18: Events in BPMN

In addition, different triggers indicate specific circumstances of the event (such

as an email message or an error). They are represented by an icon within the circle

of the event, Figure 4.19.

Figure 4.19: Trigger events in BPMN.

BPMN is in version 2.0, released in 2010. With Regard to version 1.0, it includes

improvements such as direct mapping to BPEL and serialization to XML among others.

It also presents execution semantics, which accurately describes the way in which the

BPMN models should behave when they are executed in a tool (Van Gorp and

Dijkman, 2012).

4.4.2 BPEL (Business Process Execution Language)

BPEL is the de facto standard to specify business processes in a Web services

environment. It allows composing Web services and specifying the composition as a

Web service by itself (Weerawarana, 2005). The Web service composition can be

specified as a flow of Web service operations. Therefore, BPEL provides certain

structured activities that prescribe the control flow between interactive activities,

which are the activities modeling the interactions with other Web services (Nitzsche

et al., 2007). Moreover, BPEL is an open standard, making it interoperable and

portable across different environments (Pasley, 2005).

An important advantage of BPEL over other languages is its association with BPMN.

BPMN can specify business processes in a graphical way and is easily compressible.

Furthermore, BPMN supports the graphical properties of the objects that they will

generate an executable BPEL. An example of how to map a BPMN diagram on booking

travel to a BPEL process is given in (White, 2005). (Ouyang et al, 2006) proposes a

method for mapping BPMN to BPEL that solves the underlying problems of mapping

graph-based languages with parallelism. In 2010, with the release of BPMN 2.0, the

standard itself includes a mapping to BPEL.

BPEL is an XML-based standard to define process flows (Pasley, 2005) and is a fully

executable specification language (Bazan, 2010). There are different uses and

approaches of BPEL in the scientific community. One of them is given in (Ferber et al.,

77

2010), and presents an approach for modeling of BPEL processes (BPELROs) to

facilitate the integration of BPELROs to object-oriented programming languages.

In addition to facilitating synchronous (client-server) and asynchronous (p2p6)

Web service orchestration, BPEL provides specific support for long-running processes

that maintain the state. Some of the strongest points of BPEL (Ko et al., 2010) are:

• Popular without serious competitors in the industry (Havel, 2005)

(Koskela and Haajanen, 2007). This implies that the BPEL-compatible

products are stable and the risk of obsolescence is minimal. Having been

adopted by major software vendors, portability is not a problem with small

BPMS providers.

• Focuses on process constructions instead of low-level programming.

Compared with conventional programming languages such as Java; BPEL is

able to model the interactions of typical business processes as long-term

transactions, asynchronous messaging and parallel activities. It would take

much more effort and lines of code to express the same process in a

conventional programming language (Van der Aalst et al, 2005 a, b).

• It is subscribed to the Web service paradigm. This means that BPEL takes

advantage of the highly adaptive and dynamic nature of Web services.

BPEL incorporates a number of specialized features for the development of

Web services, including direct support to define and handle XML data, a

dynamic mechanism based on explicit handling of endpoint references, a

declarative mechanism to correlate incoming messages to process

instances, which is essential for asynchronous communication. As such,

BPEL can be seen as an attractive alternative with respect to conventional

programming languages according to the development of Web services

(Van der Aalst et al, 2005 a, b).

From the point of view of the creators of BPEL (Andrews et al. 2003), business

processes can be described in two ways (Shapiro, 2002):

• Executable business processes: The model describes the behavior of a

participant in a business interaction.

• Business Protocols: In contrast, the protocols include the use of process

descriptions that specify the message exchange behavior of each party

involved, without revealing details or internal behavior. The process

descriptions for protocols are called abstract processes (Havey, 2005).

On the other hand, BPEL is based on two types of files (Andrews et al., 2003). The

BPEL file, encoded as XML is the definition of a process, includes its main activities

such as partner links, variables, and event handlers. The accompanying WSDL file

specifies the Web service interfaces that are of interest for the process defined in the

BPEL file (that is, implemented services and called by the process).

The BPEL programming language also provides:

• A message correlation mechanism based on properties.

• Variables of type XML and WSDL.

6
 p2p: A peer-to-peer network is a computer network in which some or all aspects work without fixed clients

or servers, but a series of nodes that behave as equals.

78

• An extensible language model of components to write expressions and

queries in multiple languages: BPEL supports by default, XPath 1.0.

• Structured programming constructs including "if-then-else if-else", "while",

"sequence" (enables execution of command in order) and "flow" (enables

execution of command in parallel).

• A scope system (scoping) allowing the encapsulation of logic with local

variables, fault handlers, compensation handlers and event handlers.

• Serialized scopes to control access to variables.

(1) WS-BPEL

WS-BPEL (Web Services Business Process Execution Language) is an OASIS

standard that implements the features of BPEL. The basic concepts of WS-BPEL can be

applied in two different ways, as a process Abstract or Executable (OASIS, 2007).

• An abstract WS-BPEL process is a partially specified process that is not

made to be executed and must be explicitly declared as abstract. Unlike the

executable processes, the abstract processes can hide part of the concrete

operational details.

• An executable process is designed to run processes. Moreover, these

processes can interact with other processes in a consistent way regardless

of the support platform or the programming model used for the

implementation of the underlying environment.

WS-BPEL is extensible and supports XML implementations; allowing attributes

defined in a namespace to appear in any WS-BPEL element (OASIS, 2007).

Furthermore, a WS-BPEL process is a container which includes the declaration of

relationships with external partners, the statement of the process data, handlers for

different purposes and most importantly, the activities to be executed. The basic

structure of a WS-BEPL process in Code 4.3 is as follows:

<process name="ncname" targetNamespace="uri"

 queryLanguage="anyURI"?

 expressionLanguage="anyURI"?

 suppressJoinFailure="yes|no"?

 enableInstanceCompensation="yes|no"?

 abstractProcess="yes|no"?

 xmlns="http://schemas.org/ws/2003/03/businessprocess/">

 <partnerLinks>?

 <!-- Note: At least one role must be specified. -->

 <partnerLink name="ncname"

 partnerLinkType="qname"

 myRole="ncname"?

 partnerRole="ncname"?>+

 </partnerLink>

 </partnerLinks>

 <partners>?

 <partner name="ncname">+

 <partnerLink name="ncname"/>+

 </partner>

79

 </partners>

 <variables>?

 <variable name="ncname"

 messageType="qname"?

 type="qname"? element="qname"?/>+

 </variables>

 <correlationSets>?

 <correlationSet name="ncname"

 properties="qname-list"/>+

 </correlationSets>

 <faultHandlers>?

 <!--There must be one fault handler or default.-->

 <catch faultName="qname"?

 faultVariable="ncname"?>*

 activity

 </catch>

 <catchAll>?

 activity

 </catchAll>

 </faultHandlers>

 <compensationHandler>?

 activity

 </compensationHandler>

 <eventHandlers>?

 <!--There must beone onMessage or onAlarm handler. -->

 <onMessage partnerLink="ncname"

 portType="qname"

 operation="ncname"

 variable="ncname"?>

 <correlations>?

 <correlation set="ncname"

 initiate="yes|no"?>+

 <correlations>

 activity

 </onMessage>

 <onAlarm for="duration-expr"?

 until="deadline-expr"?>*

 activity

 </onAlarm>

 </eventHandlers>

 activity

</process>

Code 4.3: WS-BPEL structure.

80

The definition of a WS-BPEL process is always included within the label <process>

and has the following attributes (OASIS, 2007):

• queryLanguage: Specifics the query language used in the process to select

nodes in allocation.

• expressionLanguage. Specifies the expression language used in <process>.

• suppressJoinFailure. Determines if error suppressJoinFailure will be

annulled for all process activities.

• exitOnStandardFault. Indicates that the process must finish its execution

before the occurrence of activity <exit>.

An important use for WS-BPEL is the description of business interactions in which

the business processes of each company interact through Web service interfaces.

WSDL already describes the functionality of a service provided by a partner, on both

levels: abstract and executable. Usually the relationship of a business process to a

partner is peer-to-peer, requiring a two-way dependency at the service level. In other

words, a partner represents both the consumer of a service provided by the business

process, and the service provider of a business process (OASIS, 2007).

WS-BPEL defines several structures to identify roles and relationships in the

interactions. These structures are Partner, Partner Link and Partner Link Type.

Basically, a Partner (also called Business Partner) is a collection of Partner Links,

grouping several services in one Partner, for example: a Partner of “customer service”

could group “price inquiry”, “sale” and “shipment” services. At the same time, a

Partner Link describes the roles processes, services, or data manipulated by that role.

A Link Partner is defined by its Partner Link Type as shown in Figure 4.20.

Figure 4.2: Partners in WS-BPEL.

It is important to note that the definition of a WS-BPEL process is based on XML

Schema and WSDL 1.1 for the definition of data types and service interfaces. The

process definition is also based on concepts such as variable properties, property

alias, types of links etc., which are defined within documents WSDL 1.1 by using the

extensibility features of language WSDL-1.1. The <import> element is used in a WS-

BPEL process to declare a dependency towards an XML document, or WSDL

definitions (OASIS, 2007).

WS-BPEL needs WSDL by assuming that all external interactions of the business

process occur through Web service types of operations. However, WS-BPEL business

processes represent interactions stored by the preceding events in long-running

81

interactions, where each interaction has a beginning, a behavior defined during its

execution cycle, and an end (OASIS, 2007).

4.5 Conclusions

Effective and proper management of business processes can guarantee the

successful development of a company. The analysis, based on the goals, scope and

limitations, made by applying the standards, methodologies and models to carry out

the process approach and the management of these, proves that in many cases

different business processes include similar or identical elements or components. In

particular, if these elements or components are created on the basis of Web services in

the environment of an ontology and similar semantics, it becomes relatively simple to

identify the extent to which this happens without making an exhaustive analysis. For

the development and integration of enterprise applications as well as business

processes to be efficient, it is necessary to have a well-structured methodology and

model. In this chapter we have shown business processes as useful, efficient and

methodologically proven tools to use when implementing computer applications.

These processes can be built with a technology as solid as the technology provided by

Web services. In this context, it is necessary to apply an ontology and maintained

semantics, so that the process of reuse and composition of new processes can be

performed quickly and efficiently. The next chapter presents a systematic and

disciplined process to create new semi-automatically business processes by basing

them on process that already exist in the cloud environment.

82

83

5 IPCASCI

5.1 Introduction

In this chapter we present a business process construction model called IPCASCI

(Intelligent business Processes Composition based on MAS, Semantic and Cloud

Integration). The software development industry requires the fast construction of new

products that will adapt to the emerging needs of an ever-changing market. In this

context and as a method for reusing software components, we present a new model or

methodology that facilitates the reuse of web services in cloud environments to

compose business processes. Here, we present an architecture proposal that, based on

web service technology, allows: (i) Automatically discovering Web services. (ii)

Providing Web services a semantic description. (iii) Automatically composing web

services to generate new services and (iv) Automatically invoking Web services.
All this is done in a way that allows the process of automating the building of new

services to be efficient, and for the services to be associated with intelligent behavior.

By intelligent behavior we mean that staring from an input of requirements carried

out informally (textually), the system is able to: (i) Analyze such an input (ii) Find the

services that allow meeting requirements (iii) carry out the automatic composition of

web services and the corresponding business processes that they define. As a result,

we will obtain new web services which implement the requirements given by the

client, in an automatic process of discovery and composition. There are different

approximations for the implementation of platforms based on semantic Web services.

A solution based on diffuse logic for the discovery of semantic Web services was

proposed in (Su et al., 2012), a solution based on agents and the DAML-S ontological

language is proposed in (Sycara et al., 2003), and in (García et al., 2012) a proposal

based on queries SPARQL and the DAML-S ontological language is used. In general, the

greatest part of the proposals of semantic Web services architecture is based on OWL-

S language. The proposal carried out in this document differs from proposals carried

out until the moment when:

• A global platform is designed, embedded in a cloud environment, whose

structure is specifically thought to offer fast and efficient execution.

• The semantic information of the Web services is independent of the internal

construction of the ontologies, allowing the reuse of any existing ontology,

regardless of the format in which they are built.

• A multi-agent system based on virtual organizations facilitates the process of

discovery and requirement analysis.

• A Web service solution is built from an informal definition carried out by the

client.

84

Web service execution

Input requirements

BPEL file Web services UDDI register

Multi-agent system

Analysis system Search system Composition System

Ontologies

Figure 5.1: Platform description

In Figure 5.1 the different elements composing the platform are shown through a

conceptual diagram:

• Cloud System: A system that follows the paradigm of cloud computing in

which the different elements of the platform are included, offering an

execution and storage environment.

• Web services: Different Web services registered in the platform that can be

used to compose new Web services.

• UDDI registry: A registry system where the different Web services of the

platform are registered.

• Multi-Agent system based on virtual organizations: It offers the functionality

that will allow carrying out the discovery and composition of Web services.

o Analysis System: Analyzes the semantic content introduced by the

user and structures it in such a way that it is computationally

analyzable.

o Search System: In charge of finding out Web services that meet the

semantic as well as format restrictions introduced by the user.

o Composition System: Once Web services that meet the semantic

requirements of the user and their relations are determined, they

will be composed so as to obtain a new Web service.

• Ontologies: Different ontologies that model semantic knowledge which can be

included in Web services.

• BPEL file: Composition of Web service that meets the requirements marked

by the user.

85

Requirements

Requirement

analysis

Search for

services
Service

composition

New available

service

Multi-agent system

Figure 5.2: Process of obtaining Solution Service.

The process to generate a Web service is as follows:

• Users introduce the requirements of the service they wants to obtain

through an assisted system (the system will offer the user the possibility of

defining a series of representative terms of the system requirements – the

term list will be limited by the web service repository of the database). The

result will be a set of related modules, so that each module carries the

following information:
o Module input.
o Output it produces.
o Process carried out in the module. (semantics).
o Domain of the semantics concept (ontological domain) that

represents the module.
o Precondition for its execution.
o Relation with previous modules.

• For each of the modules of the previous stage, a search of the Web services

that fulfill the module requirements will be carried out (the search can also

be done by form of invocation and semantic content).

• We will build a reduced BPD diagram (it will not express all the modeling

capabilities of BPMN standard) in which each Web service is represented

through an activity, and all interactions produced between the various web

services are reflected.

• We present a BPD diagram to the user. It may be the case that for one

activity there are various services that implement its functionality. In that

case, one will be chosen by default; however, the user will be allowed to

choose the service they want among those available.

86

• Starting from the BPD diagram we will carry out a BPEL composition so

that the service requested by the user can be directly invoked.

1 - Input

Assistant

4 - Registers

2 - Generates

3 - Confirms

User

BPMN solution

Platform

Figure 5.3: Process of obtaining the Web service.

5.2 Cloud system

When analyzing the proposed methodology it is necessary to bear in mind what has

been addressed for the composition of web services in a cloud environment. In this

sense, as the generated software will be for shared and distributed use, its

management has to be efficient and reliable, and it must be accessible from any

platform and place. Cloud systems have advantages over conventional distributed

systems for reasons such as those outlined below:

• Elastic peak load management: If many concurrent requests are made to

the server, its performance might be negatively affected. Moreover, we

have to take into account that it is impossible to anticipate when and how

much those peak loads will be. We could carry out a statistical analysis on

the time when more requests are made (to increase the processing

capacity of server load or temporarily add more servers); however, this

option would not ensure that the platform would be able to manage peak

loads at any given time. What is more, the option of hiring more servers

without any kind of control proves to be extremely costly.

• Reliable architecture: Cloud environments are very reliable and robust, as

well as always being active regardless of hardware failure. This is harder to

manage in conventional distributed environments.

• "Unlimited" storage capacity: Applications or business processes

developed for cloud can grow at any moment without requiring important

cost in the software.

87

The main objective of cloud computing is to offer software, services and computing

infrastructures which are carried out independently by the network. This concept is

based on the development of scalable, dynamic and distributed software (Rodríguez et

al., 2010). In this sense, multi-agent systems and SOA integrate well together by

mutually increasing their capacities. There are projects that successfully integrate SOA

and multi-agent systems, such as CISM@ (Bajo et al., 2010), used in the analysis of

microarray, or the project proposed in (Cao et al., 2009), where a cloud architecture

using a multi-agent system and SOA is used to ensure Cloud QoS. One of the greatest

inconveniences and one of the obstacles of this technology is the lack of models or

methodologies that facilitate the agile development of software. By agile, we refer to

the idea that the development process of the new software component is automatic. In

this context, the model proposed here would try to eliminate this barrier and offer a

mechanism to facilitate the composition of new business processes in a significantly

efficient way. From the point of view of the client, apart from the advantages

previously mentioned, cloud systems offer the advantage of a limited economic cost

and pay-per-use. Clients will not have to spend large amounts of capital to acquire

storage systems nor to hire staff to offer support for such systems. Instead, they will

only pay for the use they make of the platform, allowing small and medium-size

companies to benefit from the services offered. All this while ensuring fast and

reliable access, from any place, and at any time.

5.2.1 Cloud services

Cloud systems offer services that can be grouped into three categories:

• Infrastructure as service (IaaS): Distribution of infrastructure resources

upon request, generally in terms of virtual machines.

• Platform as service (PaaS): Support of operating systems and framework of

software development.

• Software as service (SaaS): Contribution of applications upon request on

the Internet.
In the framework of this classification, the proposed model is focused on the layers

of Infrastructure as Service and Software. The layer of infrastructure supplies the

services in charge of storing files, disclosing to the client the responsibility of

acquiring the corresponding storage systems and their maintenance. With respect to

the SaaS layer, the model facilitates the management of a set of REST services (IBM,

2008) that allow managing the various necessary operations for the discovery and

automatic composition of the services.

analyze&Descovery
The functionality analyze&Discover of the proposed model receives as input an

XML document that stores the information about the requirements introduced by the

user, following the structure described in point 5.4.1. Starting from the input, a

diagram will be generated according to the BPMN standard, to represent such an

input. For each activity of the diagram a set of web services will be given back, which

will adjust the semantic, as well as the format requirements of the module

corresponding to the input. The input document will follow the structure described in

Code 5.1.

88

<Descripcion>

 <Modulo nombre=”modulo1>

 <ListaEntradas>

 <Entrada id="idEnt1" tipo= "tipoEnt1">

Concepto1

</Entrada>

 --

 <Entrada id="idEntN" tipo="tipoEntN">

ConceptoN

</Entrada>

 </ListaEntradas>

 <Salida tipo="tipoSalida">Concepto1</Salida>

<Funcionalidad>Funcionalidad1</Funcionalidad>

<Dominio>Dominio1</Dominio>

<Precondicion>Precondicion1</Precondicion>

</Modulo>

--

<Modulo nombre=”moduloN”>----------</Modulo>

<ListaRelaciones>

 <RelacionesSi>

 <RelacionSi condición=”Condicion1”>

 <Origen>ModuloOrigen</Origen>

 <Si>ModuloSi</Si>

 <Sino>ModuloSino</Sino>

 </RelacionSi>

<RelacionSi condición=”CondicionN”>

</RelacionSi>

 </RelacionesSi>

 <RelacionesSiguiente>

 <RelacionSiguiente>

 <Origen>ModuloOrigen</Origen>

 <Destino>ModuloDestino</Destino>

</RelacionSiguiente>

<RelacionSiguiente>

</RelacionSiguiente>

</RelacionesSiguiente>

 <RelacionesParalelo>

 <RelacionParalelo>

 <Origen>ModuloOrigen</Origen>

 <Destino>ModuloDestino1</Destino>

 <Destino>ModuloDestino2</Destino>

</RelacionParalelo>

<RelacionParalelo>

</RelacionParalelo>

89

</RelacionesParalelo>

</ListaRelaciones>

</Descripcion>

Code 5.1: Input of Analyze&Discover.

The input of the analyze&Discover functionality consists of an XML document that

represents the mapping of the functionality, following the BPMN graphic, in Figure 5.4.

Furthermore, a list of Web services fit the input specification of the corresponding

module for each activity.

<BPMN name="bpmnName">

 <ListaActividades>

 <Actividad id="Actividad1">

 <ListaEntradas>

 <Entrada id="idEnt1" tipo= "tipoEnt1"> Concepto1 </Entrada>

 --

 <Entrada id="idEntN" tipo="tipoEntN"> ConceptoN

 </Entrada>

 </ListaEntradas>

 <ListaSalidas>

 <Salida tipo="tipoSalida">Concepto</Salida>

 </ListaSalidas>

 <Precondicion>Concepto</Precondicion>

 <Efecto>Concepto</Efecto>

 <ListaWS>

 <WS nombre=”ws1”></WS>

 --

 <WS nombre=”wsN”></WS>

 </ListaWS>

 </Actividad>

 <Actividad id=”ActividadN”>

 --

 </Actividad>

 </ListaActividades>

 <ListaCompuertas>

 <Compuerta tipo=["XOR"/"AND"] id="idComp1"></Compuerta>

 <Compuerta tipo=["XOR"/"AND"] id="idCompN"></Compuerta>

 </ListaCompuertas>

 <ListaEventos>

 <Evento tipo=[“Inicial”/”Final”] id="idEvento1"> </Evento>

 <Evento tipo[“Inicial”/”Final”] id="idEventoN"> </Evento>

 </ListaEventos>

 <ListaConectores>

 <Conector origen="Nombre" destino="Nombre"> Condicion

90

 </Conector>

 <Conector origen="Nombre" destino="Nombre"></Conector>

 </ListaConectores>

</BPMN>

Code 5.2: Output of BPMN.

• BPMN : Root node
o name: File name
o ListaActividades: Set of diagram activities

� Actividad: Concrete diagram activity

• id: Activity name

• ListaEntradas: Set of inputs the representing

model receives.
o Entrada: Input of the module

representing a semantic concept it has to

receive.

� id: Input identifier.

� tipo: Data type.
o Salida: Output of the module

representing a semantic concept that it

generates. Output generated by the

module representing a semantic concept.

o tipo: Data type.

• Precondition: Precondition that has to be met

for the correct function of the module.

• Efecto: Effect the module produces.

• ListaWS: Set of services that adjust to the activity

and its domain
o WS: Web service that adjusts to the

activity requirements

� nombre: Web service name that

could later be used to carry out a

search by name in UDDI.
o ListaCompuertas: Set of diagram gate.

� Compuerta: Concrete diagram gate.

• tipo: gatetype. Possible values are “XOR” and

“AND”.

• Id: gate identifier.
o ListaEventos: Set of diagram events.

� Evento: Concrete diagram event.

• tipo: Event type. Possible values are “Inicial” and

“Final”.

• Id:Event identifier.

91

o ListaConectores: Set of diagram connectors.

� Conector: Concrete connector of a diagram, it can

optionally include a condition in the label content.

• origen: Origin element identifier.

• destino: Outcome element identifier.

Web services

Input.xml bpmn.xml

analyze&Discover

Figure 5.4: analyze&Discover functionality.

composeService
Functionality of our model that receives as input an XML document with a reduced

BPMN diagram such that each activity is associated with a Web service. The input

format is in the same as Code 5.4, except that instead of an activity it will be associated

with a list of services; it is associated with a service of the list. The expression in Code

5.5 must be replaced by the one in Code 5.6 on Code 5.4.

<BPMN name="bpmnName">

 <ListaActividades>

 <Actividad id="Actividad1">

 <ListaEntradas>

 <Entrada id="idEnt1" tipo= "tipoEnt1"> Concepto1

 </Entrada>

 --

 <Entrada id="idEntN" tipo="tipoEntN"> ConceptoN

 </Entrada>

 </ListaEntradas>

 <ListaSalidas>

 <Salida tipo="tipoSalida">Concepto</Salida>

 </ListaSalidas>

 <Precondicion>Concepto</Precondicion>

 <Efecto>Concepto</Efecto>

 <ListaWS>

 <WS nombre=”ws1”></WS>

 --

 <WS nombre=”wsN”></WS>

 </ListaWS>

92

 </Actividad>

 <Actividad id=”ActividadN”>

 --

 </Actividad>

 </ListaActividades>

 <ListaCompuertas>

 <Compuerta tipo=["XOR"/"AND"] id="idComp1"></Compuerta>

 <Compuerta tipo=["XOR"/"AND"] id="idCompN"></Compuerta>

 </ListaCompuertas>

 <ListaEventos>

 <Evento tipo=[“Inicial”/”Final”] id="idEvento1"> </Evento>

 <Evento tipo[“Inicial”/”Final”] id="idEventoN"> </Evento>

 </ListaEventos>

 <ListaConectores>

 <Conector origen="Nombre" destino="Nombre"> Condicion

 </Conector>

 <Conector origen="Nombre" destino="Nombre"></Conector>

 </ListaConectores>

</BPMN>

<BPMN name="bpmnName">

 <ListaActividades>

 <Actividad id="Actividad1">

 <ListaEntradas>

 <Entrada id="idEnt1" tipo= "tipoEnt1"> Concepto1

 </Entrada>

 --

 <Entrada id="idEntN" tipo="tipoEntN"> ConceptoN

 </Entrada>

 </ListaEntradas>

 <ListaSalidas>

 <Salida tipo="tipoSalida">Concepto</Salida>

 </ListaSalidas>

 <Precondicion>Concepto</Precondicion>

 <Efecto>Concepto</Efecto>

 <ListaWS>

 <WS nombre=”ws1”></WS>

 --

 <WS nombre=”wsN”></WS>

 </ListaWS>

 </Actividad>

 <Actividad id=”ActividadN”>

 --

 </Actividad>

 </ListaActividades>

 <ListaCompuertas>

 <Compuerta tipo=["XOR"/"AND"] id="idComp1"></Compuerta>

93

 <Compuerta tipo=["XOR"/"AND"] id="idCompN"></Compuerta>

 </ListaCompuertas>

 <ListaEventos>

 <Evento tipo=[“Inicial”/”Final”] id="idEvento1"> </Evento>

 <Evento tipo[“Inicial”/”Final”] id="idEventoN"> </Evento>

 </ListaEventos>

 <ListaConectores>

 <Conector origen="Nombre" destino="Nombre"> Condicion

 </Conector>

 <Conector origen="Nombre" destino="Nombre"></Conector>

 </ListaConectores>

</BPMN>

Code 5.4: composeService.

<ListaWS><WS nombre=”ws1”></WS>-------</ListaWS>

Code 5.5: ListaWS.

<WS nombre=”ws1”></WS>

Code 5.6: WS.

Starting from the input document we will carry out a composition of the Web

services in a unique Web service through BPEL (for a detailed description see Section

5.4.3).

Figure 5.5: composeService functionality.

94

5.3 Web services

The main aim of the proposed model consists of re-using web services to compose

new services (automatically). For the representation of services we have opted for the

SOA paradigm (Service Oriented Architecture) with the most common description,

register and messaging protocols:

• SOAP messaging: SOAP is a protocol based on XML for messaging and

invocating remote procedures (RPC). Instead of defining a new protocol,

SOAP works on existing protocols such as HTTP y SMTP, among others.

• WSDL description: WSDL is an XML document that describes how to access

a web service and what operations it offers. It defines an abstract

description with respect to the exchanged messages in a service

interaction.

• UDDI registry: UDDI specifications (Universal Description, Discovery, and

Integration) offer users a systematic and unified form to find service

supplies through a service registry that looks like a “telephone directory”

of web services.
The choice of Web services as a basis for the reuse of software components is due

to the modular nature of (Web services) in which the service interface of their

implementation and their ability to dynamically carry out service links, decouple.

Moreover, we have opted for classic protocol alternatives (SOAP, WSDL, UDDI) as they

offer a basic service register mechanism, a description of interactions among the

different services and a complete and robust messaging protocol.
Nevertheless, SOAP is considered a slower technology compared to other

middleware technologies (Olson and Odbuiji, 2002) and it may lead to security

problems due to the introduction of malicious code. Having taken these cases into

account and, given that the model is included in a cloud environment with good load

balance and multiple virtual machines management, the problem of velocity is

considerably reduced.Moreover, studies were carried out on methods to increase

their performance (Tekli et al., 2012). With respect to SOAP security, there are

different alternatives to protect the system when facing malicious attacks (Pinzón et

al., 2011) (Wei et al., 2012).
The discovery engine of service and requirement analysis is developed through a

multiagent system based on virtual organizations, the interaction between multi-

agent system technologies and SOA has been implemented in various projects with

good results, such as: FUSION@ (Tapia et al., 2008) or the work addressed in (Huhns,

2012).

Figure 5.6 shows a diagram with the main components used in building Web

services in the platform.

• Ontologies: Set of ontologies present in a platform. They represent the

semantic knowledge that will be associated with the Web services.

Moreover, when using an annotation WSDL-S system, these ontologies can

be written in any language.

• UDDI registry: Consists of a UDDI registry where the different Web

services that are present in the platform are published. The WSDL

95

descriptions of the corresponding Web services will be linked to the

different registry inputs.

• MAS: For each ontological concept present in the ontologies there is an

associated agent that will assist in the discovery process of the Web

services for semantics content. Every agent will be associated to a set of

UDDI inputs corresponding to the Web services that make use of the

ontological concept represented by the agent. In Section 5.3.2 we offer

details on how these associations are carried out.

• WSDL: WSDL documents that describe the Web services. These documents

will have semantic annotations following the WSDL-S specification. These

specifications will allow referencing semantic content in the Web services

(Section 5.3.1).

References

Ontologies
Web services

Registered

UDDI register

Links

Multi-agent system

Represents

References

Figure 5.6: Web service structure.

5.3.1 Semantics for Web services

The next point to consider is the integration of semantic knowledge into web

services. The project OWL-S (W3C, 2003), previously DAML-S (DAML-S, 2012) (the

most used to provide semantics to web services), defines a domain ontology for Web

services. This ontology provides tags that can be used to describe Web services. The

ontology consists of three sub-ontologies: service profile, service grounding and process

model. This option can be excessively complex depending on the application area

(Miller et al., 2004).

By considering different options to provide semantic knowledge to web services,

WSDL-S (Akkiraju et al., 2005) appears as the most suitable for the proposed platform

(Garcia, 2011) due to the fact that:

96

• Users can incrementally describe all details, both semantic and at the level

of operations in WSDL, a language that is familiar to the developer

community.

• By outsourcing the domain semantic models, WSDL-S remains

independent of the ontology representation language to be used. This

allows web service developers to annotate their services with the

ontological language of their choice (that is, UML, OWL, etc.). This is an

additional advantage, because reusing models of the existing domain,

which are expressed in modeling languages as UML, can accelerate the

incorporation of semantic annotations.

The WSDL document is the anchor point to describe Web services. Based on the

descriptive power of WSDL, a mechanism to annotate the capabilities and

requirements of Web services with semantic concepts was provided by referencing a

semantic model, Figure 5.7. Mechanisms are used to specify and annotate

preconditions and effects in the Web service WSDL files. These preconditions and

effects, along with the annotations of inputs and outputs allow the service discovery

process to be automated (Akkiraju et al., 2005). This makes it possible to link the

WSDL description to Web service semantic knowledge in such a way that this link is

independent of the language of constructing Web service ontologies.

Figure 5.7: Annotations WSDL to add WSDL-S.

(Akkiraju et al., 2005) describes the attributes and extensible elements allowing the

WSDL description to be associated with the semantic content of the Web service:

modelReference (extension attribute), schemaMapping (extension attribute),

precondition (extension attribute), effect (elements) and category (extension

attribute). These annotations are designed for WSDL 2.0, however, in (Akkiraju et al.,

2005) some minor changes to fit WSDL 1.1 have been indicated. The above attributes

and elements can be adapted to WSDL 1.1 without modification. However, in certain

cases they are applied on different elements.

Input and Output: Attributes schemaMapping and modelReference can be added to

element <part> (behind the message element) to specify an annotation for input or

output that applies to the whole message. These elements are part of structure

<portType> in WSDL 1.1, which corresponds to the structure interface in WSDL 2.0.

Preconditions and Effects: Attributes precondition and effect are descendants of

the element operation in <portType>. Operation is an extensible element in

http://schemas.xmlsoap.org/wsdl/. However, if you use an old version of XML schema

97

for WSDL, item operation may not be extensible. It is therefore recommended to use

element <documentation> to capture the semantics of preconditions and effects.

<portType name="PurchaseOrder">

<operation name="processPurchaseOrder"parameterOrder="billingInfoOrderItem">

 <documentation>

 <wssem:precondition name="PreExistingAcctPrecond"

 wssem:modelReference="POOntology#AccountExists">

 <wssem:effect name="ItemReservedEffect"

 wssem:modelReference="POOntology#ItemReserved"/>

 </documentation>

 <input message="tns:processPurchaseOrderRequest"

 name="processPurchaseOrderRequest"/>

 <output message="tns:processPurchaseOrderResponse"

 name="processPurchaseOrderResponse"/>

</operation>

</portType>

Code 5.1: Annotations in WSDS 1.1.

Code 5.7 obtained from (Akkiraju et al., 2005) is an example of annotations on

WSDL- 1.1. The operation element has been annotated with a precondition and an

effect.

To model the semantic content necessary for the appropriate performance of the

platform (and considering annotations to be carried out on WSDL-1.1), the following

notations of WSDL-S will be used:

• Preconditions and effects: We associate semantic content on an operation of

a Web service to express what this operation makes and the preconditions

that must be taken for its invocation. The annotations will be carried out on

tags <documentation> belonging to <operation>. The precondition

annotation will be used for the preconditions and effect for the

performance of the operation. In both cases modelReference should be

included to link the corresponding semantic content.

• Data types: Both inputs and outputs of an operation may be associated with

an element of the ontological domain. The annotations are carried out on

tags <part> corresponding to the elements modelReference to link the

semantic concept and schemaMapping for complex types.

Code 5.8 shows an example on how to perform annotations necessary for the

WSDL-S description. A Web service called airline has an operation getPlazas which,

using a flight identifier, returns an integer number representing the number of seats

for that flight. The annotations(in bold) are the following:

• Precondition of operation GetPlazas: To run getPlazas, it would be passed

as an argument; a flight identifier, which must belong to an existing flight.

To annotate this precondition annotation <wssem:precondition

name="ExisteVueloCond" ssem:modelReference="AeroOnt#ExisteVuelo">

is used in tag <documentation>.

98

• Effect of operation GetPlazas: The effect occurred in the operation is

annotated as follows <wssem:modelReference name="SeObtienePlazas"

wssem:modelReference= "AeroOnt#PlazasObtenidas"/>

• Annotation of types: The operation getPlazas receives a flight identifier as

an argument, and returns a number that represents the number of

available seats.

o Flight identifier: On the tag <types> where element idVuelo is

defined, wssem:modelReference= "AeroOnt#Vuelo” is added.

o Free seats: Tag <types> where element return of

getPlazasResponse message is defined, wssem: modelReference

= "AeroOnt # PlazasLibres" is added.

<types>

 <xsd:schema>

 <xs:element name="getPlazas" type="tns:getPlazas"/>

 <xs:element name="getPlazasResponse"

 type="tns:getPlazasResponse"/>

 <xs:complexType name="getPlazas">

 <xs:sequence>

 <xs:element name="idVuelo"

 type="xs:string"minOccurs="0"

 wssem:modelReference="AeroOnt#Vuelo"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="getPlazasResponse">

 <xs:sequence>

 <xs:element name="return" type="xs:int" minOccurs="0"

 wssem:modelReference="AeroOnt#PlazasLibres"/>

 </xs:sequence>

 </xs:complexType>

 </xsd:schema>

</types>

<message name="getPlazas">

 <part name="parameters" element="tns:getPlazas"/>

</message>

<message name="getPlazasResponse">

 <part name="parameters" element="tns:getPlazasResponse"/>

</message>

<portType name="Aerolinea">

 <operation name="getPlazas">

 <documentation>

 <wssem:precondition name="ExisteVueloCond"

 wssem:modelReference="AeroOnt#ExisteVuelo">

 <wssem:effect name="SeObtienePlazas"

 wssem:modelReference="AeroOnt#PlazasObtenidas"/>

 </documentation>

99

 <input wsam:Action=

 “http://Aerolinea.com/Aerolinea/getPlazasRequest”

 message="tns:getPlazas"/>

 <output wsam:Action=

 "http://Aerolinea.com/Aerolinea/getPlazasResponse"

 message="tns:getPlazasResponse"/>

 </operation>

</portType>

Code 5.8: Example of WSDL-S airline.

5.3.2 Register system

UDDI is an initiative aimed at creating a network of Web service registries in the

Internet by allowing the discovery of Web services in a simple, fast and dynamic way

(Snirinivasan et al., 2004), Figure 5.8. UDDI is specified by (IBM, 2001):

• businessEntity: Contains information about the company that publishes the

service.

• businessService: Description of the Web service.

• bindingTemplate: Contains technical information to determine the entry

point and specifications for Web service invocation.

• tModel: Provides a reference system to assist in the process of Web service

discovery and acts as a technical specification.

Figure 5.8: UDDI content.

100

Figure 5.9: Link UDDI/WSDL

Figure 5.9 shows how to make the association between lines of register UDDI and

the WSDL specification of different Web services. But one problem with UDDI is that it

only supports keyword-based searches of companies, services and tModels. For

example, it is possible to find all services that contain a specific value associated with

tModel. Because the search in UDDI is restricted to keywords, neither inference

methods nor flexible association can be performed. The UDDI limitation is the lack of

an explicit representation of Web service capabilities. The result is that UDDI supports

the location of the Web service key information once the existence of such a service is

known, but it is impossible to locate a service based solely on its functionality (Sycara

et al., 2003).

Several authors have made proposals to address this deficiency of UDDI. In (Luo et

al., 2006) the authors propose a model in which the whole ontology is imported in the

UDDI register, where every ontological concept and every property are represented in

a separated tModel, which can be referenced individually. Another similar proposal

has been given in (Srinivasan et al., 2004).

In order to extend the search of Web services to semantic content in the proposed

model, we adopt a posture similar to those described above, in the sense of mapping

the ontological information. However, instead of importing the whole ontology to the

UDDI register as in (Luo et al., 2006), our model uses a multi-agent system based on

virtual organizations able to represent this ontology from the user's initial

specifications. In this representation, each agent models an ontological concept and

will be connected (lines of communication) to the other agents that model equivalent

ontological concepts. In addition, each agent will have a list of links to UDDI entries,

thus identifying Web services that contain the concept that the agent represents

(Figure 5.10). This way, the multi-agent system represents the whole ontology of our

proposal as a graph. This process is specified in detail in Section 5.4.1.

101

Agent

Ontological concept

Represented by

Associated with

UDDI register

Figure 5.10: Semantic register

Summarizing:

• Agents were created from the ontological information in order to represent

the expressed concepts. In addition to representing concepts, these agents

also include the properties and attributes of the ontological equivalent

from which the mapping is performed.

• Each agent will be associated with different entries of the UDDI register

such that:

o The Web service has an associated ontological content.

o The Web service is registered by UDDI.

o For each ontological concept used in the service, the agent

representing such a concept will be associated with the line of the

UDDI register to locate the service.

• Agents can be associated with other agents by representing different

ontological relationships such as:

o Equivalence between concepts.

o Subclass relative to other concepts.

Example: Let us suppose there are two Web services "Serv1" and "Serv2". "Serv1"

uses ontological concepts "Ont1, Ont2" and "Ont3" and is registered in "Line1" of

UDDI. "Serv2" uses ontological concepts "Ont2" and "Ont4" and is registered in

"Line2". The representation of this situation is shown in Figure 5.11, where the agent

represents "Ont2" is associated with UDDI lines "Line1" and "Line2" (for services

“Serv1” and “Serv2”).

102

Agent 1

Agent 2

Agent 3

Agent 4

Line 2

Line 1

Figure 5.11: Example of ontological mapping.

Note that we are proposing an architecture where the Web services to be used in

the service composition have been implemented in the repository of the same

architecture. This means that we can only keep an internal register of Web services

without using the UDDI register. However, we have chosen to also maintain the UDDI

register since it provides a more universal solution to our proposal. This allows the

final system an increased scalability and maintainability.

5.4 Multi-agent system (MAS)

This section presents the structure and performance of the multi-agent system

deployed in the platform, which consists of three subsystems:

• Analysis System: This system is responsible for analyzing the

requirements introduced by the user in computationally processable

information.

• Search System: This system is responsible for finding the services that

meet a description received from the input.

• Composition System: This system will be responsible for performing the

BPEL composition of the specified services.

The manager agent acts as the link between the subsystems of search and analysis

and it is responsible for coordinating the operations between them. The search and

analysis systems are designed to have a black-box behavior; that is, their operations

do not depend on other systems and there are no direct communication lines between

103

them. All relationships necessary to reach a complex goal will be organized by the

manager agent. Thus, we can assume each subsystem is a separate module, so they

can be modified and adapted separately without interfering with the performance of

the remaining systems.

Multi-agent sistem

Manager

Analysis system Search system Composition system

Figure 5.12: Architecture of the multi-agent system.

The next subsection describes the operation of each system by indicating their

motivations and presenting the advantages they bring over other design options.

5.4.1 Analysis system

This system is responsible for managing the requirement input in such a way that

it is computable and able to retrieve enough semantic information to perform a search

and subsequent composition. It consists of a coordinator agent (analysis coordinator

agent).

The requirements by the user are input via a graphical assistant, so that an assisted

implementation for each module created by the user will be made. For each module,

the assistant will guide the user in:

• Functionality definition: The functionality of the module is introduced in

text format by using a list of semantic concepts that should be associated

with the module.

• Ontological domain definition: In the definition of each module, the

assistant allows choosing a domain name from a dropdown list with the

available domains (by default, at least one domain will be available). The

list of domain names is determined by the diversity of available Web

services. This means that each Web service in the architecture has

annotated the domain to which it belongs.

• Inputs: The user will determine the inputs that must receive the module

indicated as representing the semantic concept (the concept can be

associated with a basic data type or composed).

104

• Outputs: Similar to the input but specifying the output produced by the

module.

• Interconnection: The assistant will guide the user on how the module is

interconnected with respect to the previous modules. In this sense we have

the following options for flow control between modules:

o [ModuleX] If [Condition] Then [Module]

o [ModuleX] If [Condition] Then [Module1] Else [Module2]

o [ModuleX] Parallel Output [Module1], [Module2]

o [Module1] Follows [Module2]

Once the assistant has represented the information as a diagram flow through

interrelated modules, the information is structured on an XML document. The

assistant then invokes the functionality (or option) analyze&Discover that takes the

XML document as input. analyze&Discover starts agent-based analysis subsystem

through the manager agent, which invokes the agent that will be responsible for

interpreting the information and relationships of each module stored in the XML

document, Figure 5.13. Therefore the analysis coordinator agent is responsible for

interpreting the information in the XML document and creates an agent for each

module, representing its concept. Moreover, the same agent (analysis coordinator)

creates lines of communication (conditional flow control) between the built agents by

basing them on the existing relationships between the modules of the XML document.

This way, the diagram of flow representing the ontology can be modeled as a graph.

Input.xml

XML parser

analyze&Discover

Manager Analysis

coordinator
User

Figure 5.13: Analysis system as agent-based virtual organizations.

 Each agent created by the analysis coordinator agent will manage the following

information (see Figure 5.14):

1. Inputs: Each input will have an associated type and semantic concept.

2. Output: The output is specified by the type and the concept it represents.

3. Description: Concept associated with the operation that the module carries

out; it also includes its domain.

a. Preconditions: List of preconditions that must be met to ensure

appropriate performance of the module.

b. Effects: actions running in the module.

105

Module

Input

Output

Description

Figure 5.14: Relationship Module/Agent.

The relationships between the modules must meet the following properties:

1. There must be an initial module

2. There must be one or more end modules

After the construction of the agent-based subsystem to represent the ontology, a

BPD (Business Process Diagram) of graphic standard BPMN (Business Process

Management Notation) will be built. In this diagram each activity is associated with

an agent of the ontology. The flow control of the BPD diagram will be associated with

the existing lines of communication between agents. The aim is for the final content

the diagram to be projected to a BPEL (Business Process Execution Language) file by

making a faithful and complete mapping of the diagram. Both the features that the

diagram may contain and the process of mapping done from the analysis system are

presented below.

1. Activities: An activity is the mapping of an agent.

2. Gates:

a. XOR gate (Figure 5.15): It has been obtained from the relationship

"[ModuleX] If [Condition] Then [Module1] Else [Modulo2]"

specified by the user. If the relationship is "[ModuleX] If

[Condition] Then [module]", it will then be represented in the

same way but adding only a flow of execution. The mapping will be

carried out by adding this gate and the normal connectors

connecting the activities to the gate, according to the agent who

initiates the relationship.

b. AND gate (Figure 5.16): Corresponds to the relationship

"[ModuleX] Parallel Output to [Module1], [Module2]". The agent

representing "ModuleX" will connect to an AND gate with the

parallel execution flows towards "Module1" and "Modulo2".

3. Events:

106

a. Start and End: Agents associated with brands "Start" and "End",

will create the corresponding start and end events and connect

with these agents.

4. Connectors:

a. Connectors that are not specified above will be obtained from the

relationship "[Module1] Follows [Modulo2]".

b. If two relationships "Follows" have been obtained from the same

predecessor module and the successor is distinct, then an AND

gate is added by connecting the successors and go to the

predecessor.

c. Example (Figure 5.16):

i. Module3 Follows Module1

ii. Module3 Follows Module2

Agent 2

Agent 3

Agent 1

If [Condition]

Else

[Condition] = true

[Condition] = false

Agent 1

Agent 2

Agent 3

Figure 5.15: Mapping of a gate XOR.

Figure 5.16: AND gate as a join of flow.

There may be cases where the proposed relationship system does not express some

cases of flow control allowed by BPMN. As a solution, the definition of virtual modules

does not represent a behavior or concept which will only be allowed to introduce

relationships that otherwise would not be made.

For example, we want connects the output of a parallel flow to a XOR gate. To

represent this situation, we need a virtual module ModuleV that does not represent

107

any behavior. The relationships required to express this situation are described below

and in Figures 5.17 – 5.18:

1. ModuleV Follows Module1

2. ModuleV Follows Module2

3. ModuleV If [Condition] Then ModuleX Else ModuleY

Figure 5.17: Agent-based virtual organization.

Module1

Module2

ModuleX

ModuleY

[Condition] = true

[Condition] = false

Figure 5.18: Mapping of a virtual module.

We see a complete example where the following modules Module1, Modulo2, Module3,

Module4, Module5, Module6 and Module7 have been defined. The initial and final

modules are Module1 and Module7. The following relationships of interconnection

between modules have been defined:

1. Module1 Parallel Output to Module2, Module3

2. Module2 If [Condition] Then Module4 Else Module5

3. Module6 Follows Module4

4. Module6 Follows Module5

5. Module7 Follows Module6

6. Module7 Follows Module3

108

The multi-agent system built by the system analysis for this input is shown in Figure

5.19. From this multi-agent system we are able to obtain the mapping to BPMN as

displayed in Figure 5.20. The output of this system will be an XML file (BPEL)

specifying both the structure of the diagram obtained in the previous step, and the

semantic information collected from the user. Code 5.9 shows the different activities

and attributes that the file contains:

<BPMN name="bpmnName">

 <ListaActividades>

 <Actividad id="Actividad1">

 <ListaEntradas>

 <Entrada id="idEnt1" tipo= "tipoEnt1"> Concepto1

 </Entrada>

 --

 <Entrada id="idEntN" tipo="tipoEntN"> ConceptoN

 </Entrada>

 </ListaEntradas>

 <ListaSalidas>

 <Salida tipo="tipoSalida">Concepto</Salida>

 </ListaSalidas>

 <Precondicion>Concepto</Precondicion>

 <Efecto>Concepto</Efecto>

 <ListaWS>

 <WS nombre=”ws1”></WS>

 --

 <WS nombre=”wsN”></WS>

 </ListaWS>

 </Actividad>

 <Actividad id=”ActividadN”>

 --

 </Actividad>

 </ListaActividades>

 <ListaCompuertas>

 <Compuerta tipo=["XOR"/"AND"] id="idComp1"></Compuerta>

 <Compuerta tipo=["XOR"/"AND"] id="idCompN"></Compuerta>

 </ListaCompuertas>

 <ListaEventos>

 <Evento tipo=[“Inicial”/”Final”] id="idEvento1"> </Evento>

 <Evento tipo[“Inicial”/”Final”] id="idEventoN"> </Evento>

 </ListaEventos>

 <ListaConectores>

 <Conector origen="Nombre" destino="Nombre"> Condicion

 </Conector>

 <Conector origen="Nombre" destino="Nombre"></Conector>

 </ListaConectores>

</BPMN>

Code 5.9: Activities and attributes included in the BPEL file (XML).

109

[Condition] = true

Parallel

Parallel

[Condition] = false

Figure 5.19: A multi-agent system description.

[Condition] = true

[Condition] = false

Figure 5.20: Mapping to standard BPMN from the multi-agent system given in Figure 5.19.

5.4.2 Search system

The search system is responsible for finding a list of Web services from the

semantics and format specifications received from the manager agent (which in turn

comes from analysis system). The discovery process is performed once for each

received input module, and returns a list of Web services fitting the provided

description. Figure 5.21 shows the agents of the search subsystem and its main

connections.

110

1. Search coordinator: Receives as input the description of a module (via the

agent representing the concept associated with the module), which has

been provided by the manager agent. Therefore, it is responsible for

coordinating the whole process for finding Web services. It returns Web

services that fit the description of the input.

2. Semantic coordinator: Receives the semantic concepts that the Web service

must have. For each concept, it will send a message to the localizer agent

(that belongs to register subsystem), which will return the list of UDDI

registers associated with the services using that concept. It should be noted

that the web services to be used in this proposal are implemented in the

Web service repository of our platform. This means that before publishing

them in the UDDI register, the WSDL-S (in the WSDL files) annotations

have been made to provide them with semantics. Thus, we already know

that these services exist (we know their names and characteristics) and

once published in the UDDI register, we can easily locate them. This implies

that it would be enough to request the UDDI register each file WSDL of

registered Web services by our model.

3. Checking coordinator: Receives as input the WSDL file of a Web service, and

the conditions it must meet. It communicates with the checking system to

determine whether the Web service meets the specified requirements. It

will return the checking result to the search coordinator agent.

Search coordinator

Semantic coordinator
Checking coordinator

Localizer

Register

subsystem
Checking

subsystem

Figure 5.21: virtual organization of the search system

111

The first part of the search process consists of finding Web services associated with

a semantic content, Figure 5.22. To do this, the search coordinator agent

communicates with the semantic coordinator agent, which will ask the localizer agent

for the list of entries to the UDDI register with Web services implementing the

specified concept. This process is repeated once for each semantic concept. When the

semantic coordinator agent has found the services associated with each concept, it will

carry out a comparison to eliminate the services associated with all concepts and will,

finally, return them as a result to the search coordinator agent. Note that the fact of

having a domain attribute in the ontological concepts allows us to classify Web

services into groups, so that the search for them by agent localizer will be much more

efficient because it is focused on a domain (on a subset of services) and not the whole

Web service repository. The next step consists of using the list of registers UDDI of the

above step to verify that the services associated with each line UDDI meet the format

constraints.

Search

coordinator

Semantic

coordinator Localizer

Search(ConceptList)

Search(Concept)

Found[UDDI Registers]

ComparingResults
Found[RegisterList]

Figure 5.22: Semantics search.

Checking subsystem

The search system consists of a subsystem (checking system) that will be

responsible for checking that the previously obtained Web services meet the

implementation constraints imposed by the user (Figure 5.23). It has three stages:

1. Input checking: Determines whether the input format of the Web service

holds the description given by the user.

2. Output checking: Determines whether the output format of a Web service

holds the description given by the user.

112

3. Checking of the process: Determines whether the exchange of SOAP

message of the Web service is coherent with the description given by the

user.

The checking process carried out by the checking subsystem is shown in Figure 5.24

and consists of the following steps:

1. The search coordinator agent receives the list of entries to the UDDI

register from the semantic coordinator agent.

2. It sends a message to the coordinator comparison agent to check the

validity of the services along with the descriptions given by the analysis

coordinator agent.

3. For each input in the list, the comparison coordinator agent does the

following:

a. Obtain document WSDL of the Web service from the UDDI register.

b. Send a message to the input, output and process checking systems,

with the WSDL document and the constraints for each system.

c. Once the responses from the three systems have been received, it

verifies that all of them have been approved by these systems. If

so, it marks the Web service as valid.

4. The comparison coordinator agent sends a message to the search

coordinator agent with the services that have overcome the checking

process.

Although the processing load can be considered high since the multi-agent system

is on a cloud system, this type of processing will be performed in a distributed way,

which allows for a quick response.

Figure 5.23: Checking system.

Register subsystem

As mentioned in Section 5.3.2, the ontological information will be mapped by a

subsystem of agents in a multi-agent system platform. Consecuently, ontologies are

usually represented by graphs where nodes represent concepts and edges are the

ontological relationships between these concepts.

113

Input

Checking

Output

Checking
Process

Checking

Search

Coordinator

Checking

Coordinator

Checking[RegisterList]

Obtaining

[WSDL]

Checking[WSDL]

Checking[WSDL]

Checking[WSDL]

Collating Results

[CheckedServiceList]

Figure 5.24: Checking process.

To map the ontological knowledge, an agent will be created for each concept,

representing in this way, the relationships between concepts through the use of

communication lines between the different agents. By using this mapping we can

perform the same operations of inference that can be made on the ontology. Each

agent has the following structure:

1. The ontological concept it represents.

2. The domain of the ontological concept.

3. Communication lines:

a. Destination agent.

b. Line description.

4. List of links to lines of the UDDI register.

114

1 Locates

[Concept]

4 Registers Localizer

2 Responds

[Concept]
3 List of registers

Concept

Figure 5.25: Search process for an ontological concept.

In addition to the agents developing the ontological mapping, there is a localizer

agent responsible for establishing the link between this subsystem and the other

multi-agent systems, Figure 5.25. The localizer agent receives as an ontological

concept as input and sends a broadcast message to the whole subsystem by asking for

services related to the input concept. The agents representing the concept will

respond to the localizer agent by returning it a list of UDDI-registers representing the

services related to the ontological concept. The localizer agent concatenates all the

answers and sends this to the agent who requested the service.

In order to meet the requirement of ontological equality, if an agent responds to the

request message of the localizer agent, it will also send the name of the concepts

associated with equivalent lines (if any). The localizer agent will again launch a

broadcast message asking for those equivalent concepts. This process will be repeated

until no equivalent concepts exist. Thereby, all concepts equivalent to the initial

concept are obtained.

5.4.3 Composition system

Once the reduced BPMN diagram has been obtained, and the Web services have

been associated with each activity, the system is ready to make the composition of

such services by using standard WS-BPEL 2.0 (Arkin et al., 2004). The composition

system will act in response to the invocation of the composeService functionality

specified in Section 5.2.1 (Cloud Services).

There are several alternatives for this process such as those in (Ouyang et al., 2006)

(Jan and Jan, 2006) (Ouvans et al., 2006) (White, 2005). The method provided in

(White, 2005) for the BPEL composition from the BPMN diagram was performed by

obtaining information from the WSDL files of participating Web services and the input

115

the service receives. Preliminary information from the WS-BPEL composition has

been obtained from the input document, which specifies certain general properties of

the final process. These attributes are automatically generated by the system or

obtained from the input:

1. name: Name of the service (obtained from the name attribute of tag BPMN

in the input).

2. expressionLanguage: Language of the expression of the solution (obtained

by default).

3. suppressJoinFailure: Indicates whether it can launch fault joinFailure. The

value will always be "false".

4. abstractProcess: Indicates whether it is an abstract process. The value will

always be "false".

To the PartnerLink section (which shows the different Web services participating in

the composition PartnerLinkType), the values of these elements are obtained from the

WSDL files corresponding to the involved Web services.

• partnerLinkType: expresses the conversational relationships between two

services by defining the roles of the different participants and specifying

the portType provided by each Web service for message reception (Arkin et

al., 2004).

• name: Name of the partner.

The variable section provides the means for storing the messages constituting the

state of the process. In (GuideToBPEL, 2012) the authors show how to link the

different variables of WS-BPEL in the WSDL files of the services.

<types>

 <xsd:schema>

 <xs:element name="getPlazas" type="tns:getPlazas"/>

 <xs:element name="getPlazasResponse"

 type="tns:getPlazasResponse"/>

 <xs:complexType name="getPlazas">

 <xs:sequence>

 <xs:element name="idVuelo"

 type="xs:string"minOccurs="0"

 wssem:modelReference="AeroOnt#Vuelo"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="getPlazasResponse">

 <xs:sequence>

 <xs:element name="return" type="xs:int" minOccurs="0"

 wssem:modelReference="AeroOnt#PlazasLibres"/>

 </xs:sequence>

 </xs:complexType>

 </xsd:schema>

</types>

<message name="getPlazas">

 <part name="parameters" element="tns:getPlazas"/>

</message>

116

<message name="getPlazasResponse">

 <part name="parameters" element="tns:getPlazasResponse"/>

</message>

<portType name="Aerolinea">

 <operation name="getPlazas">

 <documentation>

 <wssem:precondition name="ExisteVueloCond"

 wssem:modelReference="AeroOnt#ExisteVuelo">

 <wssem:effect name="SeObtienePlazas"

 wssem:modelReference="AeroOnt#PlazasObtenidas"/>

 </documentation>

 <input wsam:Action=

 “http://Aerolinea.com/Aerolinea/getPlazasRequest”

 message="tns:getPlazas"/>

 <output wsam:Action=

 "http://Aerolinea.com/Aerolinea/getPlazasResponse"

 message="tns:getPlazasResponse"/>

 </operation>

</portType>

Code <message name="creditInfo">

 <part name="firstname" type="xsd:string"/>

 <part name="surname" type="xsd:string"/>

 <part name="credit" type="xsd:string"/>

</message>

5.26: Example of a WSDL message.

<variable name="creditInformation" messageType="creditInfo"/>

Figure 5.27: Link of a variable WS-BPEL with WSDL message.

For the definition of other properties of composition WS-BPEL, the methods shown

in (White, 2005) are followed. These include:

1. Definition of the start of the process.

2. Definition of the end of the process.

3. Mapping of the parallel flow.

4. Synchronization of the parallel flow.

5. Mapping of loops.

The process described to compose different Web service compositions is

performed by the composition system. After receiving the initiation request from the

manager agent, the composition coordinator agent will create an agent for each

activity/service, Figure 5.28. Each agent achieves the required data from the WSDL

file and will send them to the composition coordinator agent who, by using the method

specified in (White, 2005), will generate the WS-BPEL file. The performance of this

process has been benefitted since it is within a distributed environment of cloud

computing.

117

BPEL

Composition coordinator

Figure 5.28: Composition subsystem.

5.5 Insertion of new services into the platform

The platform is scalable with respect to Web services that have registered; that is, it

is possible to insert and register new Web services, making them available for

subsequent executions. Since the system is immersed in a cloud environment, there

are no problems with respect to the size that the service repository can reach,

allowing it to grow indefinitely. To insert a new Web service into the platform and

allow it to be localized, the following conditions must be met:

1. To have a description file WSDL.

2. To be registered by UDDI.

3. The WSDL file must be endowed with semantic annotations corresponding

to its semantic meaning.

4. If the references to the semantic content are not among the ontologies of

the platform, then that ontology should be added and should go through a

process in which its content is converted into one that is computable. This

process will create an agent for each semantic concept as explained in

Section 5.4.2.

When a new service has been inserted into the platform, the register subsystem,

belonging to the search system is responsible for conducting operations of locating

such a service by carrying out semantic searches. The WSDL file of the Web service

will be analyzed in the search of semantics annotations. For each annotation, the agent

representing that ontological concept will be generated. The line of input to the UDDI

register of the Web service is being introduced will be added to the references of the

agent.

118

5.6 Conclusions

In this chapter we have presented the process of building a model (IPCASCI) in a

cloud environment which focuses on creating new business services in a semi-

automatic way starting from Web services that exist in the platform of the model. The

user introduces a set of specifications (converted in XML format) into the platform.

These specifications are later converted, following the BPMN standard, into a set of

modules with computable information. This information is used to build the agents

associated with each module that will be in charge of representing the introduced

information by forming a multi-agent system based on virtual organizations. For this,

the agents will be in charge of finding Web services that respond to each module and

through a process of Web services composition, a new business service is created as a

solution to the specifications introduced by the user.

One of the main contributions of this model that we can underline is its

implementation on a cloud environment, which brings with it all the advantages and

benefits this paradigm offers (see Chapter 2). This allows users better access. the

ability to use services in the platform from heterogeneous sources, and no

infrastructure costs. Likewise, the automatic composition of Web services to generate

new services (due to the reuse of software components) according to user

specifications, guarantees autonomy in the platform, which is desirable in any system

implemented by a company. Consequently, the two previous contributions are the

basis of our architecture, revealing great advantage over other approaches

Finally, starting from the exhaustive description of the components of the

proposed architecture, we have reached the goals proposed in Chapter 1 of this PhD

Thesis. The next chapter will, therefore, assess our proposal through a case study and

analyze its results, concluding in this way, our global proposal of the IPCASCI

architecture.

119

6 RESULTS AND CONCLUSIONS

6.1 Case study

In this section, we introduce an implementation of our proposal (IPCASCI model)

on a practical case study. The aim of this case study is to bring our proposal to fruition

in a real environment and thus develop a tool to represent the case study. In this

context, we will evaluate different parameters of the tool, both internal and external,

to attain some results that will give us a general vision of the strength of our proposal.

We begin by introducing the proposal of the case study as follows:

This case study develops a tool to automatically build a Web service to reserve a book

through the book lending system in a library. As (the minimum required) input, the Web

service must have the identifier of the user that carries out the request, and the required

book. The task of the Web service is then to check whether the user is registered in the

system and their subscription has not expired. After successfully checking the above, the

Web service must then verify whether the book is available to loan. Moreover, it would

also check whether the user has exceeded the maximum number of books borrowed from

the library. If all the above conditions are held, then the loan is carried out. Otherwise,

the user will be notified (for example, by e-mail) that the request has been denied along

with the reason for it.

Figure 6.1: Flow diagram with the specifications (in form of modules) of the case study to be

introduced by the user.

120

A representation of the scene proposed in the case study can be implemented from

the flow diagram in Figure 6.1 (the components will be explained later). Notice that

this diagram represents the user specifications (through the interrelated units as

indicated by the arrows) to build the new Web service. Therefore, from now on, we

will explain the characteristics of the sub-processes that are part of the tool to convert

the user specifications into processes and connections, which are addressed to create

the new Web service based on the composition from existing services.

6.1.1 Specifications of the users

The tool (named LibraryBookReserve or LBR for short) implements an assistant to

introduce the user specifications, which will be used in the construction of the Web

service that will respond to such effects. Hence, the assistant allows introducing the

specifications though a graphical interface, where we can define each module of the

Web service that we want to generate. Likewise, for each defined module, the

assistant provides a graphical interface to introduce its functionality and its

relationship with other modules. A module is represented by a set of parameters,

which define its behaviour, namely: name, type, action, domain, input, output and

interconnection of the module with other modules. In this context and for our case

study, the modules listed in Table 6.1 have been generated. Notice that the modules

defined in this table will define a flow diagram as the one shown in Figure 6.1.

MODULE DESCRIPTION

CheckingRecord Determine whether the user is registered in the system.

NotifyState Notify the user that the connection has not been established and

the reason.

CheckingBook Verify the existence of the requested book.

ChekingLoan Verify the maximum number of loans stated for the user.

NotifynoStock Notify to the user that there is no existence of the requested book.

NotifyLoanExceed Notify the user that the maximum number of loans has been

exceeded.

MakeLoan Carry out and register the book loan.

CheckedRecord Auxiliary module useful for the later construction of diagram

BPD of graphic standard BPMN. This module is defined by the

system.

Table 6.1: Definition of the modules and their functions for the composition of the Web service.

As mentioned before, each module is described by an ontology that defines its

behaviour and its action. Therefore, the semantics for each module of the previous

table have been described as shown in Tables 6.2, 6.3, 6.4 and 6.5.

Name: CheckingRecord Name: NotifyState

Input: Person

Organization

Input: person

Output: recordState Output: -

121

Precondition: organizationExists Precondition: personExists

Action: verifyRecord Action: sendEmail

Domain: authentication Domain: message

Type: startup Type: end

Table 6.2: Semantics description of the attributes for modules CheckingRecord and NotifyState.

Name: CheckingBook Name: ChekingLoan

Input: book

Organization

Input: person

organization

Output: bookState Output: loanState

Precondition: bookExists

organizationExists

Precondition: personExists

Action: checkingAvailableBook Action: checkingLoan

Domain: Library Domain: library

Type: Intermediate Type: intermediate

Table 6.3: Semantics description of the attributes for modules CheckingBook and ChekingLoan.

Name: NotifynoStock Name: NotifyLoanExceed

Input: person

book

Input: person

Output: - Output: -

Precondition: bookExists

personExists

Precondition: personExists

Action: notifyNoBooks Action: notifyNoLoan

Domain: library Domain: library

Type: end Type: end

Table 6.4: Semantics description of the attributes for modules NotifynoStock and

NotifyLoanExceed.

Name: MakeLoan

Input: person

book

Output: -

Precondition: personExists

bookExists

Action: makeLoan

Domain: library

122

Type: End

 Table 6.5: Semantics description of the attributes for module MakeLoan.

Note that the modules in these tables have been represented in the flow diagram in

Figure 6.1, therefore, once their connections have been established, the tool will

generate a diagram in XML format, which automatically models the requirements that

have been introduced to initiate the process of analysis. The connections defined for

these modules are explained in Tables 6.6 and 6.7. When modelling the introduced

relationships and modules, we obtain a flow diagram as the one in Figure 6.1.

Name: Relation1 Name: Relation2

Type: If/Else Type: Parallel

Startup: CheckingRecord Startup: CheckedRecord

Destination1: NotifyState Destination1: CheckingBook

Destination2: CheckedRecord Destination2: ChekingLoan

Condition: registerState Condition: -

Table 6.6: Semantics description of relationships Relation1 and Relation2 defined on the

modules introduced by the user.

Name: Relation3 Name: Relation4

Type: If/Else Type: If/Else

Startup: CheckingBook Startup: ChekingLoan

Destination1: MakeLoan Destination1: MakeLoan

Destination2: NotifynoStock Destination2: NotifyLoanExceed

Condition: bookState Condition: loanState

Table 6.7: Semantics description of relationships Relation3 and Relation4 defined on the

modules introduced by the user.

6.1.2 The process of analysis

As mentioned before, the specifications given by the user are taken as an input

(XML format) for the analysis system. This system is the content for a virtual

organization of agents in the multi-agent system of the tool (Figure 5.1 of previous

chapter). The tool calls on the functionality analyze&Discover (and therefore, the

analysis system, see section 5.2.1), which will create an agent for each module

indicated in the input specifications. Subsequently, it will analyze the connections

between the modules to reflect them as lines of unidirectional communication

between the agents that have been created. As the result of this process, we will

obtain a diagram of agents (Mapping of the system of agents). In the next step, a

diagram of agents is converted into a BPD diagram (from the standard BPMN) and

following the algorithm explained in section 5.4.1. In this last process, we obtain an

XML file (BPEL file) that stores the information of the BPD diagram and which will be

123

subsequently completed with the information of the search system. Therefore, this

XML file is the output of functionality analyzes&Discover.

6.1.3 Discovery process

The discovery process of the Web services associated with each module is carried

out by the Search system (subsystem of agents) and has two stages:

• Find the Web services associated to the semantic concepts of the modules.

• From the obtained modules, filter those which fulfill the format specifications

of the modules (input, output, preconditions).

To find the set of Web services that are associated with a semantic concept, the

search coordinator agent will send a message to the semantic coordinator agent asking

for the set of services associated with a concept. The above agent will communicate

with the localizer agent for each concept and it will thus obtain the semantically

associated Web services (the localizer agent will carry out a semantic search). Once

the Web services associated with the ontological concepts of the module have been

obtained, the semantic coordinator agent will filter the results obtained from the

localizer agent, thus avoiding duplicated results. Furthermore, it carries out the

intersection of the found Web services, so it will offer as a result those Web services

associated with the total set of concepts. Table 6.8 lists those Web services existing in

the platform and which will be used for the Web service composition.

WEB SERVICES FUNCTION

checkPersonRegister

checkOrgRegister

Check whether a user is registered in the system.

SendMail

sendEMail

emailManager

Send and manage the electronic mail (e-mail).

libraryManager

checkBook

compHLib

Identify books and manage their availability in the library.

stockManager

loanManager

checkLoans

loanController

Check and manage the (maximum) number of books loaned to a user.

sendNotAvaliableBook

notifyBookError

Notify the unavailability of a book, or any other problem preventing

the loan.

124

loanPassed

notifyLoans

libraryLoanError

Notify that the maximum number of book loans has been reached.

doLoan

libraryLoanEffect

bookStoreDoLoan

They are used to register a book loan by the library.

Table 6.8: Web services available in the platform for the case study of architecture IPCASCI.

Once the Web services associated with the ontological concept of each module have

been obtained, those services that fit to the format of each module will be filtered as a

second part of the process. This includes the following filtering process:

• Checking the service input.

• Checking the service output.

• Checking the service process.

These checks must be done because in the previous step we have obtained the Web

services associated with a set of semantic concepts. However, it is not checked if those

Web services have the associated concepts in the place where the requisites of the

corresponding modules determine. For this reason, the checking coordinator agent

will communicate with the subsystems’ input checking, output checking and process

checking. The input for each subsystem will include the WSDL file of the Web service

and the corresponding description of the module. When receiving the results of each

subsystem, the checking coordinator agent will compare the results to obtain the

services that meet all the specifications. In particular, the process of checking if a Web

service holds the ontological specifications in the input section is carried out on the

basis of:

• The Web service WSDL file.

• The list of the semantic concepts of the input.

• The list of the semantic concepts of the output.

On the WSDL file of a Web service, a search for the ontological annotations is

performed (through a XML parser) wssem:modelReference on the tags input,

output or on the XML Schema corresponding to those parameters. The annotations

can be done on simple or compound types. Once all the annotations corresponding to

the inputs and outputs have been localized, the ontological concepts of those

annotations, the input and the output concepts of the module being analyzed will be

checked.

After checking that the inputs and outputs of the Web service have coincided with

the analyzed module, the process checking stage is carried out to ensure that the

125

actions carried out by the Web service correspond with the module specifications. In

this sense, two checks have been carried out:

• Checking preconditions: the content of the WSDL file of the Web service is

analyzed to look for the extensions wssem:precondition on the tags

operation or documentation. In any case the ontological concept is obtained

from the attribute wssem:modelReference.

• Checking actions: the content of the WSDL file is analyzed to look for the

extensions wssem: effect on the tags operation or documentation. In any case

the ontological concept is obtained from the attribute

wssem:modelReference.

At the final stage of the filtering process of the Web services that fit the

specifications, the checking coordinator agent has received the results of the different

subsystems and will compare those results in order to obtain the specific Web

services that fulfil the specifications of the module that is being checked. When this

process has been completed, the list of the Web services will be sent to the search

coordinator agent that will complete the corresponding file. This way, the analysis and

discovery process invoked by tool functionality analyze&Discover will return the file

that represents the BPMN diagram and the list of the Web services associated with

each activity. Table 6.9 shows the list of the Web services adjusted to the semantic

specifications of each module/agent (activity of the BPMN diagram).

MODULES FOUND WEB SERVICES

CheckingRecord checkPersonRegister

checkOrgRegister

NotifyState sendMail

sendEMail

CheckingBook compHLib

ChekingLoan checkLoans

NotifynoStock sendNotAvaliableBook

notifyBookError

NotifyLoanExceed notifyLoans

libraryLoanError

Table 6.9: Web services found and checked by the search system for each module defined by the user.

6.1.4 Validation of the solution

When functionality analyze&Discover ends its task, the tool has executed the search

for the Web services that fit the modules introduced by the user, and elaborated the

BMP diagram (standard BPMN) of the introduced requirement.

126

To build the Web service solution we need to:

• Select the Web service desired for each activity of the BPMN diagram for each

module (it may be the case that different Web services fulfil the requirements

marked by the platform).

• Connect the outputs and input of each activity of the diagram.

Consequently, the user, through the assistant that creates the BPMN diagram,

would need to select the Web service to be used for the implementation of each

activity of the BPMN diagram. The assistant has three sections to carry out this task:

• BPMN diagram: Representation of the BPMN diagram returned in XML

format by the analyze&Discover functionality. The graphic interface of the

application allows us to select and move the different elements in the

diagram.

• List of activities: In this section we can see the different activities of the

BPMN diagram (corresponding to the modules introduced in the section of

introduction of requirements). For each activity in the diagram, the

following information is shown:

o Name of the activity.

o Action performed.

o Domain

o List of inputs to the activity.

o List of outputs of the activity.

o List of preconditions needed for the proper working of the activity.

• Found Web services: List of Web services available for the selected activity.

The first service will be selected by default, thus allowing the user to

choose another one from the list.

The Web services chosen for each activity/module in our case study are shown in

Table 6.10.

ACTIVITY/MODULE CHOSEN WEB SERVICES

CheckingRecord checkPersonRegister

NotifyState sendEMail

CheckingBook compHLib

ChekingLoan checkLoans

NotifynoStock notifyBookError

NotifyLoanExceed libraryLoanError

Table 6.10: Web services selected for each defined module.

127

To complete the process of validating othe solution proposed by the tool and finally

build the solution Web service, we need to associate the data flow with the different

activities of the BPMN diagram.

Each activity of the BPMN diagram receives some inputs that could come from the

previous activity, from other previous activities or from the input to the Web service

we want to build. Therefore, we need a mechanism that allows us to relate the entries

of the different services with the outputs of the preceding ones. The tool would not be

able to automatically carry out this task if there is any repeated concept between the

union of the set of outputs of the previous services. If this were the case, the user

would have to select the desired output to be associated with the input to the activity.

In this specific case, there is no duplicity of concepts between the outputs of the

activities, so the links are 100% reliable.

6.1.5 Composition of the solution Web service

When ending the association process of the Web services between the different

activities and the data connection between them, we can request the tool to execute

the composition of the solution Web service. For that purpose, the composeService

functionality of the tool will be invoked, after which the composition of the services

will take place following the WS-BPEL standard and the specified algorithm (White,

2005). Basically, composeService will invoke the manager agent running the BPMN

diagram. The manager agent will process the request by giving the information to the

composition coordinator of the composition system. The composition coordinator

creates an agent for each Web service (or activity). Each agent will obtain the

necessary data for the composition process from WDL files (see Figure 5.28). Finally,

the composition coordinator receives all the WSDL files and generates the WS-BPEL

file from the data.

The partnerLink section corresponds to the links between the BPEL entities and the

external Web services. In Code 6.1 we can see the partnerLink corresponding to the

Web services checkOrgRegister, senEMail, compHLib and checkLoans.

Code 6.1: partnerLinks

128

In a BPEL process, the variable section is used for the storage of those messages

that can serve as an input to a partner, output from a partner, or required data to store

the state of the process. The data of input to the Web service will also be stored in this

section. That way, the information will be available for the links between the Web

services. In Code 6.2 we can see the variables for the Web services, checkOrgRegister

and compHLibr.

Code 6.2: Variables

Following the steps indicated in (White, 2005), the different components of the

BPEL composition are modeled for the new Web service, which includes:

• Flow control.

• Service start.

• Exchange of messages and

• Events.

6.2 Assessment of the case study

In this section we will evaluate tool LibraryBookReserve built from the approach of

our case study. The evaluation will be carried out following the guideline of software

engineering, taking both internal and external qualities into account. The

accomplishment of an internal quality of a software will therefore allow an easy, tidy

and efficient task for the developers of the system, while the external qualities

evaluate the expected and useful (or usable) factors for the users. Proceeding then

from the previous classification of software quality, we know that the internal quality

is associated with the white box testing (Pressman, 2005), which is a test of the

procedural details of the software. Therefore, all the logical paths of the software are

checked, providing different tests that will execute sets of specific conditions or loops.

Furthermore, the state of the application can be verified in different points with the

goal of determining if the real state coincides with the expected one. The external

quality of a software is associated to the black box testing (Pressman, 2005), which is a

test on the interface of the application. In other words, testing cases try to

demonstrate that the functions of the application are operating and with a correct

result, in addition to the integrity of the external information. A black box test

examines different aspects of the system without having to take into account the

logical internal structure of the software.

129

In our particular case, we will use the basis path testing as the white box testing.

This test is used to evaluate the logic of the flow diagram followed by the composition

of the Web services in the tool. It will thus measure the correction of the new Web

service which has been automatically created. Additionally, as a black box test, we will

use a system of user survey which will cover the software qualities classified in the

ISO 9126 quality metrics (Pressman, 2005). Both tests have been designed according

to the results obtained from 12 users that specified the requirements to create the

Web service (with the tool) from the composition of the existing services, as explained

in the definition of the case study. Each user also completed the survey about the tool

quality.

6.2.1 Basis path testing of the services composition (white box

testing)

The basis path testing is a white box technique suggested by (McCabe, 1976). The

basis path method allows test case designers to create a measure for the logical

complexity of a procedural design and use it as a guide to define a set of basis paths in

implementation. The goal of this test is to determine the number of independent paths

of a structured construction (in our case the flow diagram) to create test cases that

force our Web service to execute each possible path of its logical structure. Thus, it

guarantees that every sentence in its procedure is executed at least once, thus proving

its correctness and integrity.

In our case, which involves the evaluation of the flow diagram that makes up Web

services, a test case was created for each path of the diagram. In Figure 6.2 we can see

the flow diagram with the Web services that take part in the building process our new

Web service according to Figure 6.1 and Table 6.10. From this diagram the different

paths of execution were evaluated. To do so, it is first necessary to build the flow

graph of the diagram in Figure 6.2.

130

Figure 6.2: Flow diagram of the Web service composition to create the service specified by the

user.

In Figure 6.3 we can see the flow network of the process of the Web service

composition. The flow network represents the logical control structure through the

notation given in this figure. The circles, named nodes, represent one or more

procedural sentences (Pressman, 2005). The consecutive sentences can be in the same

node, as the figure shows. The arch represents the flow controls, which have the same

meaning as the ones in the flow diagram of Figure 6.2. The predicate nodes are not the

nodes that represent a conditional sentence in the flow diagram and they are

characterized by the two or more arches coming out from them. Once the flow

network has been defined, we can calculate its cyclomatic complexity and determine

the number of paths independently executing. The cyclomatic complexity is a measure

of the software that provides a quantitative measure of the logical complexity of the

program. It gives us the maximum limit of tests (independent paths) that must be

done to ensure that each sentence is executed at least once. On the other hand, an

independent path is any path in the flow diagram (or flow network) that introduces, at

least, a new set of sentences.

According to (Pressman, 2005), cyclomatic complexity of a flow graph can be

calculated from the expression V(G)= E – N + 2, where E is the number of arcs in the

graph and N is the number of nodes. Therefore in our case:

V(G)= E - N + 2 = 11 arcs - 8 nodes + 2 = 5.

131

Figure 6.3: flow graph of the flow diagram in Figure 6.2.

Consequently, we can now determine the basic set of linearly independent paths.

Value V(G) defines the number of independent paths to check in the control structure

of the flow diagram. As previously calculated from flow graph, we have five paths that

can be described in the following Table 6.11.

LOGICAL PATHS

Path #1: 1 – 2 – 4 – 7 – 6 – 11

Path #2: 1 – 2 – 4 – 7 – 10 – 11

Path #3: 1 – 2 – 5 – 8 – 10 – 11

Path #4: 1 – 2 – 5 – 8 – 9 – 11

Path #5: 1 – 2 – 3 – 11

Table 6.11: Linearly independent paths of the flow graph in Figure 6.3.

For each path, we have developed a test case which forces the Web service (product

of the service composition) to execute the corresponding path. The results showed

that each path had been executed at least once and the results obtained coincided with

the expected ones. Therefore, the logic implemented (based on the user

specifications) in the flow diagram in Figure 6.2, along with the performance of the

Web services used in the composition, worked properly. Additionally, those same

results were obtained for each different flow diagram that had been built with the tool

by the 12 selected users. Notice that in the service composition process (BPMN

132

diagram) the user can select a different Web service from the predetermined by the

tool, which produces a different flow diagram from the one given in Figure 6.2.

6.2.2 Tool functionality test (black box testing)

In this section we will carry out a black box test (external qualities) on the

functionality (interface) of the tool based on the user experience after having used the

tool. As previously mentioned, a black box test (also called behavior testing) is focused

on the functional requisites of the software. Hence, by the application of this test, we

attempt to complement the white box test carried out in the previous section. This will

help to detect errors which are not possible to detect with the white box testing.

To carry out this test, 12 users independently executed the tool and generated the

specifications (modules and relationships) to build the Web service solution based on

the existing Web services in our platform. After the users gained experience with the

use and the generation of the new Web service, they were asked to fill in a survey on

different desirable qualities in a tool framed in the domain of our proposal. The survey

was divided into specific questions on the functionalities of the tool according to the

case study and questions on the desirable functionalities in a tool in general from the

area of our proposal. Therefore, the goal of this test is to validate the performance of

the tool and thus, the case study is based on the experience of the final user.

Figure 6.4 shows the model of the survey applied to each user of the tool. This

model is based on a system of questions that represent desirable attributes and assess

the efficiency (from the point of view of the user) for the tool. For each question the

user can give a score (evaluation) between 1 and 10, where a value less than 5 is

considered a negative evaluation and a value greater than 5 is positive. Notice that in

this case, our model does not include attributes such as efficiency, referring to how

efficiently the software can process/store data; scalability, with regards to data

volume growth; or portability and security of the tool, because these attributes are

obtained from the cloud computing platform, on which our architecture is based.

133

EVALUATION (score between 1 and 10)

Mark with an "X" the chosen score.

QUESTIONS

1 2 3 4 5 6 7 8 9 10

1 The wizard that guides the user through the introduction of

the specifications (through modules and their relationships) to

build the web service is intuitive and relatively easy to use.

2 The time taken for the discovery process (multi-agent system)

of the web services containing the concepts introduced by the

user is reasonable/acceptable.

3 The time taken by the process of web service composition to

construct the new service is reasonable/acceptable.

4 The new web service built from the service composition

represents the user-entered specifications.

5 The selection process (by the user) of a different web service

from the default one shown in the diagram BPM (BPMN) by

the tool for service composition is intuitive and relatively easy.

6 The tool step-by-step guides and reports the process followed

to build the solution web service.

OVERALL ASSESSMENT QUESTIONS

7 Usability: The tool, in general, is simple to understand and

operate from the point of view of the user.

8 Functionality: The tool solves almost all the problems of

operation and information management.

9 Availability/Recoverability: The tool is usually not easily fall.

10 Availability/Recoverability: The tool takes short time to boot

up to reach its functional status.

Figure 6.4: Table representing the attributes (in the form of questions) measured in the survey to

the users of the tool LibraryBookReserve.

Figure 6.5 shows the table of average scores for each question in the model in

Figure 6.4. The reached average score shows user satisfaction with our tool; the same

for the requirements of the proposed case study. In this sense, and based on the case

study, our tool fulfils the goals proposed by our architecture.

QUESTIONS
AVERAGE SCORE ACHIEVED

FROM THE SURVEY

1 9,34

2 9,15

3 9,30

4 8,97

5 8,93

6 9,70

7 8,77

8 8,65

9 10,00

10 8,93

Figure 6.5: Table of average scores achieved from the 12 surveyed users for tool

LibraryBookReserve.

Reinforcing Figure 6.5, Figure 6.6 shows a bar chart representing the scores in this

table. In the x-axis we can see the numbers of the questions whereas in the y-axis we

can see the average scores. As we can see in this figure, the three highest scores were

with questions 1, 6 and 9, which prove that introducing the process of specifications

to build the new Web service is intuitive, the tool is well designed for the end user,

and its behavior is stable.

134

7,50

8,00

8,50

9,00

9,50

10,00

1 2 3 4 5 6 7 8 9 10

Questions

Average Values of the Survey Result

A
v
e
ra
g
e
 s
c
o
re

Figure 6.6: Bar chart with the questions vs. Score of the table in Figure 6.5.

An alternative view to Figure 6.6 is Figure 6.7, which shows the scores of the table

in Figure 6.5 but in a curve.

Average Values of the Survey Result

9,34

9,15

8,97 8,93

9,70

8,77
8,65

10,00

8,93

9,30

8,40

8,60

8,80

9,00

9,20

9,40

9,60

9,80

10,00

10,20

0 2 4 6 8 10 12

Questions

A
v
e
ra
g
e
 s
c
o
re

Figure 6.7: Dot plot (questions vs. average score) of the table values in Figure 6.5.

6.3 Analysis of the case study

In this chapter we have introduced a case study to show the implementation of our

proposal, the business building process model IPCASCI (Chapter 5). The initial results

from our case study was the construction of a tool (LibraryBookReserve) which creates

a Web service (semi-automatically) to reserve books in a library, for which we based

our work on the composition of the existing services in our architecture. This result

can also be seen in our IPCASCI model. Once the tool has been built, we introduced the

process of its validation, evaluating both internal (white box testing) and external

(black box testing) characteristics. The white box testing, also known as small-scale

testing is focused on the control structure of the application, in our case, the flow

diagram that the tool executes in the process of composing/building Web services

(BPMN diagram). The black box testing, also known as large-scale testing expands the

135

approach; it is designed to validate the functional requisites without taking into

account the internal functionality of an application. In our case, the survey system

given to 12 users of the tool aimed to evaluate the quality of the final product of our

model, the LibraryBookReserve tool. The results of this study has proven that our tool,

in a general sense, fulfills the requirements of the proposed case study and that the

Web service built from the BPMN diagram (service composition) holds the

specifications introduced by the user. This also proves the strength as well as the

reliability of the design and the logic structure of the multi-agent virtual organizations

(in our architecture), which are oriented to the discovery/refinement of the Web

services that will take part in the service composition. Finally, the survey results have

also proven that the tool meets most of the expected requirements in an application

oriented to Web services.

6.4 General conclusions

Software development is traditionally associated with a series of problems, the

most common being delay in the date of delivery and the uncontrolled increase in

product cost. As a solution to these problems there are techniques and tools related to

the area of Software Engineering that allow organizing, managing, planning and

securing the quality of the development process. When using these techniques the risk

of the cost of the project going out of control is considerably reduced. However,

carrying out a process model where the project is completely planned (including

analysis costs, temporal planning, development lifecycle and extensive technical

documentation) is a task that takes up a lot of time and work, so it is necessary to

assess if it is worth the cost.

In contrast to a development model that is very controlled, planned and

documented, there are methodologies that speed up this process by making the

development cycle shorter, although they do not have the advantages that a complete

technical documentation offers.

On many occasions, the actual situation in the business world requires developing

software quickly and with a reduced cost. Even with lively methodologies, the

development cost of new software products is high for small and medium size

companies. Apart from that, and due to the fast and constant change of the market

situation, there is a definite need for new software products in a very short time.

In this document we propose a model that adapts itself to the technological

environment of this moment, one that is accessible and useful for the business world.

The main characteristics of this proposal are that:

• It allows creating software from components already implemented.

• It is possible to access anywhere and with any platform.

• It is fast and simple to use.

• The creation of the new software product is done automatically.

• There are reduced and controlled costs.

To fulfill these characteristics we have chosen a model where the reusable software

components are the Web services. Additionally, the access and storage will be done in

136

a cloud system, making this option more affordable for small businesses (as they do

not have to buy big storage systems) and with a good performance.

However, the main attraction of this proposal lies in the automation of the whole

process of software building. The client just needs to introduce the specifications of

the software to be built (easily and with little training), and the model will create the

product as a Web service from the services already stored in the system. To carry out

this task, the system will have a repository of Web services, an ontology that allows

modeling the knowledge on its performance and a multi-agent system that, in an

intelligent way, will be able to create the stored systems to satisfy the client needs.

Unlike the proposals based on OWL-S, the proposed model is based on the semantic

association of the Web services with WSDL-S and a multi-agent system in charge of

discovering and creating tasks.

All of this leads to a system that adapts to the present needs of software

development, where it is possible to have new products in very little time, with a

reduced cost and without going through a long and arduous process.

In short, we present a simple and intuitive model that allows building Web services

from other services, that is usable by clients without technical knowledge, and that

has a relatively low cost.

Some of the most relevant characteristics are:

• Pay-per-use: As the model is incorporated to a Cloud environment,

clients will only pay for the actual use, lowering the usage cost and making it

more accessible to small and medium size companies.

• Scalability regarding size: As it is incorporated in a Cloud, the system

can grow with regard to the amount of reusable services stored without

incurring in an significant cost in hardware components. It will also have a

vast storage system, exempting the business from acquiring large storage

systems.

• Scalability regarding sphere of application: On account of the

ontology structuring and the multi-agent system, the client can add new areas

of application without further work.

• Scalability regarding functionality: The multi-agent system will be

designed in such way that it will make it possible to increase the given

functionality. Furthermore, the Web services used to access the model are

extendable.

• Ubiquity: It will be able to access the system anywhere as the

execution will be done via Web services.

• Multiplatform execution: The use of the system and its access is done

with a BPEL machine, which is an accepted standard by the majority of

manufacturers.

• Business orientation: The execution is done with a BPEL machine,

which can adapt itself to a specific business process (BPM) for each company.

• Reusable functionality: The necessary time to obtain a product that

satisfies client needs is reduced as Web services that have already been

implemented are used and reused for creating new ones.

137

• Quality control: The services given fit the specific process of the

company’s business within a BPM frame. This allows the process to embrace

quality standards.

• Energy efficiency: The energy consumption is reduced as the system

is incorporated in a cloud system, which in addition to reducing costs, is a

better ecological solution than having local severs.

• Ease of use: The platform that implements the model will be designed

for ease of use and learning. Thus, it will be possible to obtain results with

little effort. The use of the platform will be done with intuitive graphic

interfaces.

• Usable for non technical users. The specifications that the solution

must fulfill will be introduced through an assistant that will guide the user

through the entire process. Furthermore, the proposed solution will be

modified with a BPD diagram (Business Process Diagram) belonging to the

BPMN standard (Business Process Management Notation), which is relatively

easy and does not require the user to have advanced computer knowledge.

The result is that practically any person will be able to use the platform

within a short learning period.

138

	
 139	

7 REFERENCES

	

• Akkiraju	
 R.,	
 Farrell	
 J.,	
 Miller	
 J.,	
 Nagarajan	
 M.,	
 Schmidt	
 M.,	
 Sheth	
 A.,	
 Verma	
 K.	
 (2005):	

Web	
 Service	
 Semantics	
 -­‐	
 WSDL-­‐S,	
 W3C	
 Member	
 Submission.	

http://www.w3.org/Submission/WSDL-­‐S/.	

• Arkin	
 A.,	
 Askary	
 S.,	
 Bloch	
 B.,	
 Curbera	
 F.,	
 Goland	
 Y.,	
 Kartha	
 N.,	
 LiuK.,	
 Thatte	
 S.,	
 	
 Yendluri	

P.,	
 Yiu	
 A.	
 (2004):	
 Web	
 Services	
 Business	
 Process	
 Execution	
 Language.	
 Version	
 2.0.	

OASIS.	

• Bajo	
 J.,	
 Zato	
 C.,	
 de	
 la	
 Prieta	
 F.,	
 de	
 Luis	
 A.,	
 Tapia	
 D.	
 (2010):	
 Cloud	
 Computing	
 in	

Bioinformatics.	
 Distrib.	
 Computing	
 &	
 Artif.	
 Intell.	
 (DCAI’10),	
 AISC,	
 Springer-­‐Verlag	

Berlin	
 Heidelberg	
 79:	
 147-­‐155.	

• Blanco	
 S.	
 (2004):	
 Anotaciones	
 semánticas	
 en	
 WebQuest.	
 PhD	
 Thesis,	
 Department	
 of	

Informatics,	
 University	
 of	
 Valladolid.	

• Cao	
 B.,	
 Li	
 B.,	
 Xia	
 Q.	
 (2009):	
 A	
 Service-­‐Oriented	
 Qos-­‐Assured	
 and	
 Multi-­‐Agent	
 Cloud	

Computing	
 Architecture.	
 Cloud	
 Computing,	
 Lecture	
 Notes	
 in	
 Computer	
 Science,	

Springer-­‐Verlag	
 Berlin	
 Heidelberg	
 5931:	
 644-­‐649.	

• DAML-­‐S.	
 DAML-­‐S	
 0.7	
 Draft	
 Release.	
 (Accessed	
 in	
 2012)	

http://www.daml.org/services/daml-­‐s/0.7/	

• García	
 JA.	
 (2011):	
 IRIS	
 &	
 ME	
 OWL-­‐S	
 Sistema	
 de	
 Recomendación	
 en	
 Dispositivo	
 Móvil	

con	
 OWL-­‐S.	
 	
 Master’s	
 Thesis,	
 University	
 of	
 Salamanca.	
 	

• García	
 JM.,	
 Ruiz	
 D.	
 and	
 Ruiz-­‐Cortés	
 (2012):	
 Improving	
 semantic	
 web	
 services	

discovery	
 using	
 SPARQL-­‐based	
 repository	
 filtering.	
 Web	
 Semantics:	
 Science,	
 Services	

and	
 Agents	
 on	
 the	
 World	
 Wide	
 Web,	
 17:	
 12-­‐24.	

• GuideToBPEL.	
 The	
 BPEL	
 Language.	
 Obtained	
 from	
 	

http://www.radikalfx.com/bpel/language.html.	
 (Accessed	
 in	
 2012).	

• Huhn	
 M.,	
 Kowalczyk	
 R.,	
 Maamar	
 Z.,	
 Unland	
 R.	
 (2012):	
 IOS	
 Press.	
 Special	
 issue:	

development	
 of	
 service-­‐based	
 and	
 agent-­‐based	
 computing	
 systems.	
 	

• IBM	
 (2008):	
 Accessed	
 in	
 2012.	
 RESTful	
 Web	
 services:	
 The	
 basics.	

http://www.ibm.com/developerworks/webservices/library/ws-­‐restful/.	

• IBM	
 (2001):	
 Understanding	
 WSDL	
 in	
 a	
 UDDI	
 registry,	
 Part	
 1.	

http://www.ibm.com/developerworks/webservices/library/ws-­‐wsdl/.	

• Jan	
 R.	
 and	
 Jan	
 M.	
 (2006):	
 On	
 the	
 Translation	
 between	
 BPMN	
 and	
 BPEL:	
 Conceptual	

Mismatch	
 between	
 Process	
 Modeling	
 Languages.	
 In	
 Latour,	
 Thibaud	
 &	
 Petit,	
 Michael	

(Eds.)	
 The	
 18th	
 International	
 Conference	
 on	
 Advanced	
 Information	
 Systems	

Engineering.	
 Proceedings	
 of	
 Workshops	
 and	
 Doctoral	
 Consortium,	
 Namur	
 University	

Press,	
 521-­‐532.	

• McCabe	
 T.	
 (1976):	
 A	
 Software	
 Complexity	
 Measure.	
 IEEE	
 Trans.	
 Software	
 Engineering,	

(SE-­‐2):	
 308–320.	

• 	
 Miller	
 J.,	
 Verma	
 K.,	
 Rajasekaran	
 P.,	
 Sheth	
 A.,	
 Aggarwal	
 R.,	
 Sivashanmugam	
 K.	
 (2004):	

WSDL-­‐S:	
 Adding	
 Semantics	
 to	
 WSDL	
 -­‐	
 White	
 Paper.	
 LSDIS	
 Lab,	
 University	
 of	
 Georgia,	

http://lsdis.cs.uga.edu/projects/meteor-­‐s/.	

• Olson	
 M.	
 and	
 Ogbuji	
 U.	
 (2002):	
 The	
 Python	
 Web	
 services	
 developer:	
 Messaging	

technologies	
 compared.	
 IBM	
 developerWorks.	
 Retrieved	
 2011-­‐02-­‐01.	

• Ouvans	
 C.,	
 Dumas	
 M.,	
 Hofstede	
 A.,	
 van	
 der	
 Aalst	
 W.	
 (2006):	
 From	
 BPMN	
 Process	

Models	
 to	
 BPEL	
 Web	
 Services.	
 Proceedings	
 of	
 the	
 IEEE	
 International	
 Conference	
 on	

Web	
 Services	
 (ICWS	
 '06),	
 IEEE	
 Computer	
 Society	
 Washington,	
 DC,	
 USA,	
 285-­‐292.	
 	

• Ouyang	
 C.,	
 van	
 der	
 Aalst	
 W.	
 Marlon	
 D.,	
 Hofstede	
 A.	
 (2006):	
 Translating	
 BPMN	
 to	
 BPEL.	

Digital	
 Repository,	
 Queensland	
 University	
 of	
 Technology,	
 Australia.	

• Pinzon	
 C.,	
 Bajo	
 J.,	
 De	
 Paz	
 JF.,	
 	
 Corchado	
 JM.	
 (2011):	
 S-­‐MAS:	
 An	
 adaptive	
 hierarchical	

distributed	
 multi-­‐agent	
 architecture	
 for	
 blocking	
 malicious	
 SOAP	
 messages	
 within	

Web	
 Services	
 environments.	
 Expert	
 Syst.	
 Appl.,	
 Elsevier	
 38	
 (5):	
 5486-­‐5499.	
 	

• Pressman	
 R.	
 (2005):	
 Software	
 Engineering:	
 A	
 Practitioner’s	
 Approach.	
 Seventh	

Edition,	
 Ph.D.,	
 McGraw-­‐Hill	
 Companies.	

• Rodríguez	
 S.,	
 Tapia	
 D.,	
 Sanz	
 E.,	
 Zato	
 C.,	
 de	
 la	
 Prieta	
 F.	
 and	
 Gil	
 O.	
 (2010):	
 Cloud	

Computing	
 Integrated	
 into	
 Service-­‐Oriented	
 Multi-­‐Agent	
 Architecture.	
 Balanced	

Automation	
 Systems	
 for	
 Future	
 Manufacturing	
 Networks,	
 IFIP	
 Advances	
 in	

	
 140	

Information	
 and	
 Communication	
 Technology,	
 Springer	
 322:251-­‐259.	

• Srinivasan	
 N.,	
 Paolucci	
 M.,	
 Sycara	
 K.	
 (2004):	
 Adding	
 OWL-­‐S	
 to	
 UDDI,	
 implementation	

and	
 throughput.	
 First	
 International	
 Workshop	
 on	
 Semantic	
 Web	
 Services	
 and	
 Web	

Process	
 Composition	
 (SWSWPC).	

• Su	
 Z.,	
 Chen	
 H.,	
 Zhu	
 L.,	
 Zeng	
 Y.	
 (2012):	
 Framework	
 of	
 Semantic	
 Web	
 Service	
 Discovery	

Based	
 on	
 Fuzzy	
 Logic	
 and	
 Multi-­‐phase	
 Matching.	
 Journal	
 of	
 Information	
 &	

Computational	
 Science	
 9:	
 1	
 203–214.	

• Sycara	
 K.,	
 Paolucci	
 M.,	
 Ankolekar	
 A.,	
 Srinivasan	
 N.	
 (2003):	
 Automated	
 discovery,	

interaction	
 and	
 composition	
 of	
 Semantic	
 Web	
 services.	
 	
 Web	
 Semantics:	
 Science,	

Services	
 and	
 Agents	
 on	
 the	
 World	
 Wide	
 Web,	
 Elsevier	
 1:27-­‐46.	

• Tapia	
 D.,	
 Rodríguez	
 S.,	
 Bajo	
 J.,	
 Corchado	
 JM.	
 (2008):	
 FUSION@,	
 A	
 SOA-­‐Based	
 Multi-­‐
agent	
 Architecture.	
 International	
 Symposium	
 on	
 Distributed	
 Computing	
 and	
 Artificial	

Intelligence	
 (DCAI),	
 	
 Advances	
 in	
 Soft	
 Computing,	
 Springer	
 50:	
 99-­‐107.	

• Tekli	
 J.M.,	
 	
 Damiani	
 E.,	
 	
 Chbeir	
 R.,	
 Gianini,	
 G.	
 (2012):	
 	
 SOAP	
 Processing	
 Performance	

and	
 Enhancement	
 Services	
 Computing,	
 IEEE	
 Transactions	
 5	
 (3):	
 387-­‐403	

• W3C	
 OWL-­‐S,	
 (Accessed	
 in	
 2012)	
 http://www.w3.org/Submission/OWL-­‐S/#5.	

• Wei	
 R.,	
 Qiao	
 L.,	
 Yang	
 Z.	
 (2012):	
 A	
 message	
 interaction	
 security	
 mechanism	
 based	
 on	

SOA.	
 Systems	
 and	
 Informatics	
 (ICSAI),	
 International	
 Conference	
 on	

1503-­‐1506.	

• White	
 S.	
 (2005):	
 Using	
 BPMN	
 to	
 Model	
 a	
 BPEL	
 Process.	
 BPTrends,	

http://www.bptrends.com.	

• Abdelkader	
 A.,	
 Bakhta	
 N.,	
 Abdelkader	
 O.M.	
 (2012):	
 Multi-­‐Agents	
 Model	
 for	
 Web-­‐based	

Collaborative	
 Decision	
 Support	
 Systems.	
 In	
 ICWIT,	
 294-­‐299.	

• Abu-­‐	
 Rahmeh	
 O.,	
 	
 Johnson	
 P.	
 and	
 Taleb-­‐Bendiab	
 A.	
 (2008):	
 A	
 Dynamic	
 Biased	
 Random	

Sampling	
 Scheme	
 for	
 Scalable	
 and	
 Reliable	
 Grid	
 Networks.	
 INFOCOMP	
 -­‐	
 Journal	
 of	

Computer	
 Science,	
 ISSN	
 1807-­‐4545,	
 N.4,	
 December,	
 	
 7:	
 01-­‐10.	

• Adobbati	
 R.,	
 Marshall	
 A.	
 N.,	
 Scholer	
 A.,	
 Tejada	
 S.,	
 Kaminka	
 G.	
 A.,	
 Schaffer	
 S.,	
 Sollitto	
 C.	

(2001):	
 Gamebots:	
 A	
 3D	
 virtual	
 world	
 test-­‐bed	
 for	
 multi-­‐agent	
 research.	
 In	

Proceedings	
 of	
 the	
 second	
 international	
 workshop	
 on	
 Infrastructure	
 for	
 agents,	
 MAS,	

and	
 Scalable	
 MAS,	
 Montreal,	
 Canada.	

• Agrawal	
 R.	
 et	
 al.	
 (2008):	
 The	
 Claremont	
 report	
 on	
 database	
 research.	
 SIGMOD	
 Record,	

ACM	
 37	
 (3):	
 9–19.	
 doi:10.1145/1462571.1462573.	
 ISSN	
 0163-­‐5808.	

• Akkiraju	
 R.,	
 Farrel	
 J.,	
 Miller	
 J.,	
 Nagarajan	
 M.,	
 Schmidt	
 M.,	
 Sheth	
 A.	
 and	
 Verma	
 K.	
 (2005):	

Service	
 Semantics	
 -­‐	
 WSDL-­‐S,	
 A	
 joint	
 UGA-­‐IBM	
 Technical	
 Note,	
 version	
 1.0,	
 April	
 18.	

http://lsdis.cs.uga.edu/projects/METEOR-­‐S/WSDL-­‐S	

• Akkiraju	
 R.,	
 Goodwin	
 R.,	
 Doshi	
 P.,	
 and	
 Roeder	
 S.	
 (2003):	
 A	
 Method	
 for	
 Semantically	

Enhancing	
 the	
 Service	
 Discovery	
 Capabilities	
 of	
 UDDI.	
 In	
 IIWeb,	
 87-­‐92.	

• AlBreshne	
 A.,	
 Fuhrer	
 P.,	
 Pasquier	
 J.	
 (2009):	
 Web	
 Services	
 Technologies:	
 State	
 of	
 the	
 Art	

Definitions,	
 Standards,	
 Case	
 Study.	
 Internal	
 working	
 paper	
 /	
 Department	
 of	

Informatics,	
 University	
 of	
 Fribourg.	

• Ali	
 R.,	
 Bryl	
 V.,	
 Cabri	
 G.,	
 Cossentino	
 M.,	
 Dalpiaz	
 F.,	
 Giorgini	
 P.,	
 Molesini	
 A.,	
 Omicini	
 R.,	

Puviani	
 M.,	
 Seidita	
 V.	
 (2008):	
 MEnSA	
 Project	
 -­‐	
 Methodologies	
 for	
 the	
 Engineering	
 of	

complex	
 Software	
 systms:	
 Agent-­‐based	
 approach,	
 Tech.	
 Rep.	
 1.2,	
 UniTn.	

• Alizadeh	
 K.,	
 Seyyedi	
 M.,	
 Mohsenzadeh	
 M.	
 (2012):	
 A	
 Service	
 Identification	
 Method	

Based	
 on	
 Enterprise	
 Ontology	
 In	
 Service	
 Oriented	
 Architecture.	
 International	
 Journal	

of	
 Information	
 Processing	
 and	
 Management	
 (IJIPM),	
 3(2).	

• Andrews	
 T.,	
 Curbera	
 F.,	
 Dholakia	
 H.,	
 Goland	
 Y.,	
 Klein	
 J.,	
 Leymann	
 F.,	
 Liu	
 K.,	
 Roller	
 D.,	

Smith	
 D.,	
 Thatte	
 S.	
 (2003):	
 Business	
 Process	
 Execution	
 Language	
 for	
 Web	
 Services,	

Version	
 1.1.	
 Specification,	
 BEA	
 Systems,	
 IBM	
 Corp.,	
 Microsoft	
 Corp.,	
 SAP	
 AG,	
 Siebel	

Systems,	
 New	
 York,	
 NY.	
 	

• Anton	
 A.	
 (1996):	
 Goal-­‐Based	
 Requirements	
 Analysis.	
 Requirements	
 Engineering,	

Proceedings	
 of	
 the	
 Second	
 International	
 Conference	
 on,	
 136-­‐144.	

• Antonopoulos	
 N.,	
 Anjum	
 A.,	
 Gillam	
 L.	
 (2012):	
 Intelligent	
 techniques	
 and	
 architectures	

for	
 autonomic	
 clouds:	
 introduction	
 to	
 the	
 itaac	
 special	
 issue.	
 Journal	
 of	
 Cloud	

Computing:	
 Advances,	
 Systems	
 and	
 Applications,	
 1:18.	

• Arévalo	
 J.M.	
 (2010):	
 Cloud	
 Computing:	
 fundamentos,	
 diseño	
 y	
 arquitectura	
 aplicados	
 a	

un	
 caso	
 de	
 estudio.	
 Master’s	
 Thesis,	
 University	
 Rey	
 Juan	
 Carlos.	

• Argente	
 E.,	
 Giret	
 A.,	
 Valero	
 S.,	
 Julian	
 V.,	
 Botti	
 V.	
 (2004):	
 Survey	
 of	
 MAS	
 Methods	
 and	

Platforms	
 focusing	
 on	
 organizational	
 concepts.	
 In:	
 Vitria	
 J.,	
 Radeva	
 P.	
 and	
 Aguilo	
 I.	
 (ed).	

	
 141	

Recent	
 Advances	
 in	
 Artificial	
 Intelligence	
 Research	
 and	
 Development,	
 Frontiers	
 in	

Artificial	
 Intelligence	
 and	
 Applications,	
 309-­‐316.	

• Argente	
 E.,	
 Julian	
 V.,	
 Botti	
 V.	
 (2006)	
 Multi-­‐agent	
 system	
 development	
 based	
 on	

organizations.	
 Electronic	
 Notes	
 in	
 Theoretical	
 Computer	
 Science,	
 150:55–71.	

• Arkin	
 A.,	
 Askary	
 S.,	
 Bloch	
 B.,	
 et	
 al.	
 (eds.)	
 (2006):	
 Web	
 Services	
 Business	
 Process	

Execution	
 Language,	
 Version	
 2.0.,	
 Committee	
 Draft.	
 http://www.oasis-­‐
open.org/committees/download.php/14616/wsbpel-­‐specification-­‐draft.htm.	

• Armbrust	
 M.	
 et	
 al.	
 (2010):	
 A	
 View	
 of	
 Cloud	
 Computing.	
 Communications	
 of	
 the	
 ACM,	
 53	

(4):	
 50-­‐58.	

• Arsanjani	
 A.	
 (2004):	
 Service-­‐oriented	
 modeling	
 and	
 architecture.	
 How	
 to	
 identify,	

specify,	
 and	
 realize	
 services	
 for	
 your	
 SOA.	
 IBM.	
 	

• Artikis	
 A.,	
 Kaponis	
 D.	
 and	
 Pitt	
 J.	
 (2009):	
 Multi-­‐	
 Agent	
 Systems:	
 Semantics	
 and	
 Dynamics	

of	
 Organisational	
 Models.	
 Chapter	
 in	
 Dynamic	
 Specifications	
 of	
 Norm-­‐Governed	

Systems,	
 IGI	
 Globa.	

• AWS	
 (2010):	
 Overview	
 of	
 Amazon	
 Web	
 Services.	
 Amazon	
 Web	
 Services.	

• Chandrasekaran	
 B.	
 and	
 Josephson	
 J.R.	
 (1999):	
 What	
 Are	
 Ontologies,	
 and	
 Why	
 Do	
 We	

Need	
 Them?,	
 Ohio	
 State	
 University	
 V.	
 Richard	
 Benjamins,	
 University	
 of	
 Amsterdam.	
 	

• Behsaz	
 B.,	
 Jaferian	
 P.,	
 Meybodi	
 M.R.	
 (2006):	
 Comparison	
 of	
 Global	
 Computing	
 with	

Grid	
 Computing.	
 International	
 Conference	
 on	
 Parallel	
 and	
 Distributed	
 Computing,	

Applications	
 and	
 Technologies,	
 531-­‐534.	

• Bajo	
 J.,	
 Julian	
 V.,	
 Corchado	
 J.M.,	
 Carrascosa	
 C.,	
 de	
 Paz,	
 Y.	
 Botti	
 V.,	
 de	
 Paz	
 J.	
 F.	
 (2008):	
 An	

Execution	
 Time	
 Planner	
 for	
 the	
 ARTIS	
 Agent	
 Architecture.	
 Engineering	
 Applications	
 of	

Artificial	
 Intelligence,	
 21	
 (5):	
 769-­‐784.	

• Basili	
 V.	
 R.,	
 Briand	
 L.	
 C.,	
 Melo	
 W.	
 L.	
 (1996):	
 Assessing	
 the	
 Impact	
 of	
 Reuse	
 on	
 Quality	

and	
 Productivity	
 in	
 Object-­‐Oriented	
 Systems.	
 Communication	
 of	
 ACM.	

• Baumer	
 G.,	
 Breugst	
 M.,	
 Choy	
 S.	
 and	
 Magedanz	
 T.	
 (2000):	
 Grasshopper:	
 A	
 Universal	

Agent	
 Platform	
 based	
 on	
 OMG	
 MASIF	
 and	
 FIPA	
 standards,	
 in:	
 Agents	
 Technology	
 in	

Europe.	

• Bazán	
 P.	
 (2010):	
 BPEL:	
 una	
 propuesta	
 para	
 el	
 uso	
 de	
 Web	
 Services.	
 XIII	
 Congreso	

Argentino	
 de	
 Ciencias	
 de	
 la	
 Computación,	
 IV	
 Workshop	
 de	
 Ingeniería	
 de	
 Software	
 y	

Bases	
 de	
 Datos,	
 306-­‐315.	

• Ben	
 van	
 Eyle	
 (2001):	
 Web	
 Services	
 –	
 A	
 Business	
 Perspective	
 on	
 Platform	
 Choice.	

www.theserverside.com.	
 	

• Berners-­‐Lee	
 T.,	
 Hendler	
 J.,	
 Lassila	
 O.	
 (2002):	
 The	
 Semantic	
 Web.	
 Scientific	
 American.	

• Besson	
 F.,	
 Leal	
 P.,	
 Kon	
 F.,	
 Goldman	
 A.,	
 and	
 Milojicic	
 D.	
 (2011):	
 Supporting.	
 Test-­‐Driven	

Development	
 of	
 Web	
 Service	
 Choreographies.	
 ACM.	

• Bizagi.	
 Process	
 Modeler	
 BPMN	
 Business	
 Process	
 Modeling	
 Notation.	

• Boella	
 G.,	
 Hulstijn	
 J.,	
 Van	
 Der	
 Torre	
 L.	
 (2005):	
 Virtual	
 organizations	
 as	
 normative	

multiagent	
 systems.	
 In	
 HICSS	
 IEEE	
 Computer	
 Society.	

• Boissier	
 O.	
 and	
 Gateau	
 B.	
 (2007):	
 Normative	
 multi-­‐agent	
 organizations:	
 Modeling,	

support	
 and	
 control.	
 In	
 Normative	
 Multiagent	
 Systems.	

• Booth	
 D.,	
 Champion	
 M,	
 Ferris	
 C.,	
 McCabe	
 F.,	
 Newcomer	
 E.,	
 Orchard	
 D.	
 (2003):	
 Web	

Services	
 Architecture,	
 Http://www.w3.org/TR/2003/WD-­‐ws-­‐arch-­‐20030514/,	
 	
 W3C	

Working	
 Draft.	

• Booth,	
 D.,	
 Haas,	
 H.,	
 McCabe,	
 F.,	
 et	
 al.	
 (eds.)	
 (2004):	
 Web	
 services	
 architecture.	
 W3C	

Working	
 Group	
 Note.	
 Available	
 at:	
 http://www.w3.org/TR/ws-­‐arch/	

• Borgo	
 S.,	
 Gangemi	
 A.,	
 Guarino	
 N.,	
 Masolo	
 C.,	
 Oltramari	
 A.	
 (2002):	
 Ontology	
 Roadmap.	
 	

• Borst,	
 P.	
 (1997):	
 Construction	
 of	
 Engineering	
 Ontologies	
 for	
 Knowledge	
 Sharing	
 and	

Reuse.	
 Ph.D.	
 Dissertation,	
 Tweente	
 University.	
 	

• Bou	
 E.,	
 López-­‐Sánchez	
 M.,	
 Rodríguez-­‐Aguilar	
 J.	
 A.	
 (2007b):	
 Towards	
 self-­‐configuration	

in	
 autonomic	
 electronic	
 institutions.	
 To	
 appear	
 In	
 Coordination,	
 Organization,	

Institutions	
 and	
 Norms	
 in	
 agent	
 systems,	
 Lecture	
 Notes	
 in	
 Computer	
 Science.Springer	

Verlag,	
 2007.	

• Bou	
 E.,	
 López-­‐Sánchez	
 M.,	
 and	
 Rodríguez-­‐Aguilar	
 J.	
 A.	
 (2007a):	
 Adaptation	
 of	

autonomic	
 electronic	
 institutions	
 through	
 norms	
 and	
 institutional	
 agents.	
 To	
 appear	
 In	

Engineering	
 Societies	
 in	
 an	
 Agents	
 World,	
 Lecture	
 Notes	
 in	
 Computer	
 Science.	

Springer	
 Verlag,	
 2007.	

• Bou	
 E.,	
 López-­‐Sánchez	
 M.,	
 Rodríguez-­‐Aguilar	
 J.	
 A.	
 and	
 Sichman	
 J.	
 S.	
 (2009):	
 Adapting	

Autonomic	
 Electronic	
 Institutions	
 in	
 Heterogeneous	
 Agent	
 Societies.	
 Organized	

	
 142	

Adaption	
 in	
 Multi-­‐Agent	
 Systems,	
 Lecture	
 Notes	
 in	
 Computer	
 Science,	
 5368:	
 18-­‐35.	

• Bradshaw	
 J.	
 (1997):	
 An	
 introduction	
 to	
 software	
 agents.	
 MIT	
 Press	
 Cambridge,	
 MA,	

USA,	
 3-­‐46,	
 ISBN:0-­‐262-­‐52234-­‐9.	

• Bratman	
 M.E.,	
 Israel	
 D.,	
 Pollack	
 M.E.	
 (1988):	
 Plans	
 and	
 resource-­‐bounded	
 practical	

reasoning.	
 Computational	
 Intelligence,	
 4:	
 349-­‐355.	

• Brescian	
 P.,	
 Perini	
 A.,	
 Giorgini	
 P.,	
 Giunchiglia	
 F.	
 and	
 Mylopoulos	
 J.	
 (2004):	
 Tropos:	
 An	

Agent-­‐Oriented	
 Software	
 Development	
 Methodology.	
 Autonomous	
 Agents	
 and	

Multi-­‐Agent	
 Systems,	
 8	
 (3):	
 203-­‐236.	

doi:http://dx.doi.org/10.1023/B:AGNT.0000018806.20944.ef.	

• Brogi	
 A.,	
 Corfini	
 S.,	
 Popescu	
 R.	
 (2003):	
 Composition-­‐oriented	
 service	
 discovery.	

Proceedings	
 of	
 5th	
 International	
 Conference	
 on	
 Autonomous	
 Agents	
 an	
 Multi-­‐Agent	

Systems	
 (AAMAS).	

• Brooks	
 R.	
 (1986):	
 A	
 Robust	
 Layered	
 Control	
 System	
 for	
 a	
 Mobile	
 Robot.	
 IEEE	
 Journal	

of	
 Robotics	
 and	
 Automation	
 2(1).	

• Burghoff	
 U.,	
 Pareschi	
 R.,	
 Karch	
 H.,	
 Noehmeier	
 M.,	
 Schlichter	
 J.	
 (1996):	
 Constraint	
 based	

Information	
 Gathering	
 for	
 a	
 Network	
 Publication	
 system.	
 PAAM’96,	
 First	
 International	

Conference	
 and	
 Exhibition	
 on	
 the	
 Practical	
 Application	
 of	
 Internet	
 Agents	
 and	
 Multi-­‐
Agent	
 Technology,	
 London	
 22-­‐24.	
 	

• Burgin	
 M.	
 and	
 Dodig	
 G.	
 (2009):	
 A	
 Systematic	
 Approach	
 to	
 Artificial	
 Agents.	
 CoRR,	

abs/0902.3513,	
 http://arxiv.org/abs/0902.3513.	

• Burt	
 R.	
 (1987):	
 Social	
 contagion	
 and	
 innovation:	
 Cohesion	
 versus	
 structural	

equivalence.	
 American	
 J.	
 of	
 Sociology,	
 92:1287-­‐1335.	

• Busi	
 N.,	
 Ciancarini	
 P.,	
 Gorrieri	
 R.	
 and	
 Zavattaro	
 G.	
 (2001):	
 Coordinations	
 Models:	
 A	

Guide	
 Tour.	
 Coordination	
 of	
 Internet	
 Agents:	
 Models,	
 Technologies,	
 and	
 Applications	

(Omicini,	
 Zambonelli,	
 Klush	
 y	
 Tolksdorf,	
 editors).	
 Springer-­‐Verlag,	
 6-­‐24.	

• Buyya	
 R.,	
 Yeo	
 C.,	
 Venugopala	
 S.,	
 Broberg	
 	
 J.,	
 and	
 Brandic	
 I.	
 (2009):	
 Cloud	
 computing	

and	
 emerging	
 IT	
 platforms:	
 Vision,	
 hype,	
 and	
 reality	
 for	
 delivering	
 computing	
 as	
 the	

5th	
 utility.	
 Future	
 Generation	
 Computer	
 Systems,	
 Elsevier	
 25:	
 599-­‐616.	

• Cammarata	
 S.,	
 McArthur	
 D.,	
 and	
 Steeb	
 R.	
 (1988):	
 Strategies	
 of	
 Cooperation	
 in	

Distributed	
 Problem	
 Solving.	
 In	
 Readings	
 in	
 Distributed	
 Artificial	
 Intelligence,	
 Ed.	
 Alan	

H.	
 Bond	
 and	
 Les	
 Gasser,	
 Morgan	
 Kaufmann.	

• Cantera	
 J.M.,	
 Hierro	
 J.J.,	
 Romo	
 P.A.	
 (2007):	
 La	
 Web	
 Semántica,	
 la	
 siguiente	
 generación	

de	
 Webs.	
 Fundación	
 Telefónica,	
 Sociedad	
 de	
 la	
 Información,	

http://sociedadinformacion.fundacion.telefonica.com/.	
 	

• 	
 Carrascosa	
 C.,	
 Bajo	
 J.,	
 Julián	
 V.,	
 Corchado	
 J.M.,	
 Botti	
 V.	
 (2008):	
 Hybrid	
 multi-­‐agent	

architecture	
 as	
 a	
 real-­‐time	
 problem-­‐solving	
 model.	
 Expert	
 Systems	
 with	
 Applications,	
 	

34	
 (1):	
 2-­‐17.	
 Pergamon-­‐Elsevier	
 Science	
 LTD.	
 doi:10.1016/j.eswa.2006.08.031.	

• Carrascosa	
 C.,	
 Giret	
 A.,	
 Julian	
 V.,	
 Rebollo	
 M.,	
 Argente	
 E.,	
 Botti	
 V.	
 (2009):	
 Service	

Oriented	
 MAS:	
 An	
 open	
 architecture	
 (Short	
 Paper).	
 Proc.	
 of	
 8th	
 Int.	
 Conf.	
 on	

Autonomous	
 Agents	
 and	
 Multiagent	
 Systems	
 (AAMAS	
 2009),	
 Decker,	
 Sichman,	
 Sierra	

and	
 Castelfranchi	
 (eds.),	
 May/10–15,	
 Budapest,	
 Hungary,	
 1291–1292.	

• Carrascosa	
 C.,	
 Rebollo	
 M.,	
 Soler	
 J.,	
 Julian	
 V.	
 and	
 Botti	
 V.	
 (2003):	
 SIMBA	
 Architecture	
 for	

Social	
 Real-­‐Time	
 Domains	
 EUMAS	
 2003:	
 The	
 First	
 European	
 Workshop	
 on	
 Multi-­‐Agent	

Systems.	

• Castelfranchi	
 C.,	
 Miceli	
 M.	
 and	
 Cesta	
 A.	
 (1992):	
 Dependence	
 relations	
 among	

autonomous	
 agent.	
 Decentralized	
 Artificial	
 Intelligence,	
 eds.	
 Werner	
 E.	
 and	
 Demazeau	

Y.,	
 SIGOIS	
 Bull	
 13	
 (3),	
 http://doi.acm.org/10.1145/152683.152697.	

• Castelfrancis	
 C.	
 (1995):	
 Guarantees	
 for	
 autonomy	
 in	
 cognitive	
 agent	
 architecture.	
 In:	
 M	

Wooldridge	
 and	
 NR	
 Jennings	
 eds.	
 Intelligent	
 Agents:	
 Theories	
 Architectures,	
 and	

Languages	
 (LNAI),	
 	
 Springer-­‐Verlag	
 890:	
 56-­‐70.	
 	

• Chandrasekaran	
 B.,	
 	
 Josephson	
 J.	
 R.,	
 Benjamins	
 R.	
 (1999):	
 	
 What	
 are	
 Ontologies,	
 and	

Why	
 do	
 we	
 need	
 them?	
 in	
 IEEE	
 INTELLIGENT	
 SYSTEMS.	
 	

• Chang	
 F.,	
 Dean	
 J.	
 et	
 al	
 (2006):	
 Bigtable:	
 a	
 distributed	
 storage	
 system	
 for	
 structured	

data.	
 In	
 Proc	
 of	
 OSDI.	

• Chang	
 V.,	
 Bacigalupo	
 D.,	
 Wills	
 G.,	
 De-­‐Roure	
 D.	
 (2010):	
 A	
 Categorisation	
 of	
 Cloud	

Computing	
 Business	
 Models.	
 10th	
 IEEE/ACM	
 International	
 Symposium	
 on	
 Cluster,	

Cloud	
 and	
 Grid	
 Computing,	
 509-­‐512.	

• Chapell	
 D.	
 (2009):	
 INTRODUCING	
 WINDOWS	
 AZURE.	
 Microsoft	
 Corporation.	

• Chu-­‐Carroll	
 C.	
 and	
 Carberry	
 S.	
 (1995):	
 Conflict	
 Detection	
 and	
 Resolution	
 in	

	
 143	

Collaborative	
 Planning.	
 INTELLIGENT	
 AGENTS	
 II:	
 Agent	
 Theories,	
 Architectures	
 and	

Languages,	
 Springer	
 Verlag,	
 Berlin	
 111-­‐127,	
 Wooldridge,	
 Michael	
 J.,	
 Mueller	
 P.	
 and	

Tambe,	
 Milind,	
 (Ed.).	

• Clark	
 J.,	
 DeRose	
 S.	
 (1999):	
 XML	
 path	
 language	
 (XPath).	
 Version	
 1.0.	
 Tech	
 rep,	
 W3C.	

Available	
 at	
 http://www.w3.org/TR/xpath/	

• Cloud	
 Computing.	
 Retrieved	
 at	
 03.	
 (June	
 2011):	
 [http:/	
 /	
 fclose.com/	
 b/	
 cloud-­‐
computing/	
 article/	
 mrcc-­‐a-­‐distributed-­‐c-­‐compiler-­‐syste	
 m-­‐on-­‐mapreduce/	
]	

• Cohen	
 P.,	
 Levesque	
 H.	
 (1990):	
 Intention	
 is	
 Choice	
 with	
 Commitment.	
 Artificial	

Intelligence	
 42(2-­‐3):	
 213-­‐261.	

• Cole	
 A.	
 (2011):	
 Load	
 Balancing	
 in	
 the	
 Cloud.	
 ITBusiness	
 Edge.	

• Conte	
 R.	
 and	
 Paolucci	
 M.	
 (2001):	
 Intelligent	
 social	
 learning.	
 Artificial	
 Society	
 and	
 Social	

Simulation,	
 4(1):1–23.	

• Corchado	
 J.M.,	
 (2000):	
 Inteligencia	
 Artificial	
 Distribuida.	
 El	
 concepto	
 de	
 agente.	

Department	
 of	
 Computers	
 and	
 Automation,	
 University	
 of	
 Salamanca.	

• Cossentino	
 M.	
 (2005):	
 From	
 requirements	
 to	
 code	
 with	
 the	
 passi	
 methodology.	
 Agent	

Oriented	
 Methodologies,	
 IGI	
 Global,	
 79-­‐106,	
 Web	
 doi:10.4018/978-­‐1-­‐59140-­‐581-­‐
8.ch004.	

• Costello	
 R.	
 (2002):	
 Building	
 Web	
 Services	
 the	
 REST	
 Way.	

http://www.xfront.com/REST-­‐Web-­‐Services.html	

• Criado	
 N.,	
 Argente	
 E.,	
 Julian	
 V.,	
 Botti	
 V.	
 (2009):	
 Designing	
 Virtual	
 Organizations.	
 7th	

International	
 Conference	
 on	
 Practical	
 Applications	
 of	
 Agents	
 and	
 Multi-­‐Agent	
 Systems	

(PAAMS2009),	
 55:440-­‐449.	

• Crosby	
 S.	
 and	
 Brown	
 D.	
 (2007):	
 The	
 Virtualization	
 Reality.	
 Queue	
 -­‐	
 Computer	

Architecture,	
 4	
 (10).	

• Curbera	
 F.,	
 DuftlerM.,	
 Khalaf	
 R.,	
 Nagy	
 W.,	
 	
 Mukhi	
 N.,	
 Weerawarana	
 S.	
 (March-­‐April,	

2002):	
 Unraveling	
 the	
 Web	
 Services	
 Web	
 :	
 An	
 Introduction	
 to	
 SOAP,WSDL	
 and	
 UDDI.	

IEEE	
 Internet	
 Computing,	
 6	
 (2):	
 86-­‐93.	

• d’Aquin	
 M.	
 and	
 Noy	
 N.	
 (September,	
 2011):	
 Where	
 to	
 publish	
 and	
 find	
 ontologies?	
 A	

survey	
 of	
 ontology	
 libraries.	
 	
 Web	
 Semantics:	
 Science,	
 Services	
 and	
 Agents	
 on	
 the	

World	
 Wide	
 Web.	

• D’Inverno	
 M.	
 and	
 Luck	
 M.	
 (2004):	
 Understanding	
 Agent	
 Systems.	
 Springer-­‐Verlag.	

ISBN:	
 354040700.	

• Deloach	
 S.	
 (2009):	
 Multi-­‐Agent	
 Systems:	
 Semantics	
 and	
 Dynamics	
 of	
 Organizational	

Models,	
 IGI	
 Global,	
 Ch.	
 Organizational	
 Model	
 for	
 Adaptive	
 Complex	
 Systems,	
 1–26.	

• Dignum	
 F.	
 (March	
 2011).	
 Agents	
 for	
 games	
 and	
 simulation.	
 Artificial	
 Intelligence,	

Springer,	
 5920,	
 ISBN	
 978-­‐3-­‐642-­‐11198-­‐3.	

• Dignum	
 V.	
 (2004):	
 A	
 model	
 for	
 organizational	
 interaction:	
 based	
 on	
 agents,	
 founded	
 in	

logic,	
 PhD.	
 Thesis,	
 NBC:	
 54.72:	
 kunstmatige	
 intelligentie,	
 	
 Proefschrift	
 Universiteit	

Utrecht.	

• Dignum	
 V.	
 and	
 Dignum	
 F.	
 (2007):	
 A	
 logic	
 for	
 agent	
 organization.	
 In	
 Proc.	

FAMAS@Agents’007.	

• Dignum	
 V.,	
 Vazquez-­‐Salceda	
 J.,	
 Dignum	
 F.	
 (2005):	
 OMNI:	
 Introducing	
 Social	
 Structure,	

Norms	
 and	
 Ontologies	
 into	
 Agent	
 Organizations.	
 Proceeding	
 of	
 3rd	
 International	

Workshop	
 on	
 Programming	
 Multi-­‐Agent	
 Systems,	
 Utretch,	
 The	
 Netherlands,	
 181-­‐198.	

• Dölitzscher	
 F.,	
 Reich	
 C.,	
 Sulistio	
 A.	
 (2010):	
 Designing	
 Cloud	
 Services	
 Adhering	
 to	

Government	
 Privacy	
 Laws.	
 In:	
 Proceedings	
 of	
 10th	
 IEEE	
 International	
 Conference	
 on	

Computer	
 and	
 Information	
 Technology	
 (CIT	
 2010).	
 Furtwangen,	
 Germany,	
 930-­‐935.	
 	
 	

• Doran	
 J.	
 E.,	
 Franklin	
 N.,	
 Jennings	
 N.	
 R.,	
 Norman	
 T.	
 (1997):	
 On	
 cooperation	
 in	

multi-­‐agent	
 systems.	
 The	
 Knowledge	
 Engineering	
 Review,	
 12(3):309-­‐314.	

• Drogul	
 A.	
 and	
 Ferber	
 J.	
 (1992):	
 Using	
 Reactive	
 Multi-­‐Agent	
 Systems	
 in	
 Simulation	
 and	

Problem	
 Solving.	
 In	
 Distributed	
 Artificial	
 Intelligence:	
 Theory	
 and	
 Praxis	
 (eds	
 N.M.	

Avouris	
 and	
 L.	
 Gasser).	

• Dunin-­‐Keplicz	
 B.	
 and	
 Verbrugge	
 R	
 (2003):	
 Calibrating	
 Collective	
 Commitments.	
 In	

Marik,	
 V.,	
 Müller,	
 J.,	
 Pechoucek,	
 M.	
 (Eds.),	
 Multi-­‐	
 Agent	
 Systems	
 and	
 Applications,	
 LNAI	

2691,	
 Springer	
 73-­‐83.	

• Dunn,	
 M.	
 F.	
 y	
 Knight,	
 J.	
 C.	
 (1993):	
 Certification	
 of	
 Reusable	
 Software	
 Parts.	
 Technical	

Report	
 CS-­‐93-­‐41,	
 University	
 of	
 Virginia.	
 	

• Duong	
 D.	
 V.	
 and	
 Grefenstette	
 J.	
 (2005):	
 The	
 emulation	
 of	
 social	
 institutions	
 as	
 a	

method	
 of	
 coevolution.	
 In	
 GECCO	
 '05:	
 Proceedings	
 of	
 the	
 conference	
 on	
 Genetic	
 and	

	
 144	

evolutionary	
 computation,	
 ACM	
 Press,	
 555-­‐556.	

• Durfee,	
 E.	
 H.	
 (1999):	
 Distributed	
 problem	
 solving	
 and	
 planning.	
 In	
 G.	
 Weiß,	
 editor,	

Multiagent	
 Systems:	
 A	
 Modern	
 Approach	
 to	
 Distributed	
 Artificial	
 Intelligence.	
 	

• Duy	
 T.,	
 Sato	
 Y.,	
 Inoguchi	
 Y.	
 (2011):	
 A	
 prediction-­‐based	
 green	
 scheduler	
 for	
 datacenters	

in	
 clouds.	
 IEICE	
 Trans	
 Inf	
 Syst	
 E94-­‐D(9):1731-­‐1741.	

• Eisen	
 M.	
 (April,	
 2012):	
 Introduction	
 to	
 Virtualization.	
 The	
 Long	
 Island	
 Chapter	
 of	
 the	

IEEE	
 Circuits	
 and	
 Systems	
 (CAS)	
 Society.	

• Erl	
 T.	
 (2006):	
 Service-­‐Oriented	
 Architecture,	
 Concepts,	
 Technology,	
 and	
 Design.	
 s.l.	

Prentice	
 Hall	
 Indiana.	
 0-­‐13-­‐185858-­‐0.	

• Erl	
 T.,	
 (2009):	
 SOA	
 Design	
 Patterns.	
 The	
 Prentice	
 Hall	
 Service-­‐Oriented	
 Computing	

Series.	

• Escrivá	
 M.,	
 Palanca	
 J.,	
 Aranda	
 G.	
 and	
 García	
 F.A.	
 (2006):	
 A	
 Jabberbased	
 multiagent	

system	
 platform.	
 In	
 Proc.	
 of	
 AAMAS06,	
 1282-­‐1284.	

• Escriva	
 M.,	
 Palanca	
 J.,	
 Aranda	
 G.,	
 García	
 A.,	
 Julian	
 V.	
 and	
 Botti	
 V.	
 (2006):	
 A	
 Jabber-­‐Based	

Multi-­‐Agent	
 System	
 Platform.	
 Proceeding	
 of	
 5th	
 International	
 Joint	
 Conference	
 on	

Autonomous	
 Agents	
 and	
 Multiagent	
 Systems,	
 Hakodate,	
 Japan,	
 1282-­‐1284.	

• Esteva	
 M.	
 (2003):	
 Electronic	
 Institutions:	
 from	
 specification	
 to	
 development.	
 Ph.	
 D.	

Thesis,	
 Technical	
 University	
 of	
 Catalonia.	

• Farquhar	
 A.	
 (1997):	
 Ontolingua	
 Tutorial.	
 University	
 of	
 Stanford.	

• Fedak	
 G.,	
 Germain	
 C.,	
 N´eri	
 V.,	
 Cappello	
 F.	
 (2001):	
 XtremWeb:	
 a	
 generic	
 global	

computing	
 system.	
 In	
 Proceedings	
 of	
 the	
 1st	
 IEEE	
 International	
 Symposium	
 on	
 Cluster	

Computing	
 and	
 the	
 Grid,	
 582-­‐587.	

• Ferber	
 J.,	
 Gutknecht	
 O.,	
 Michel	
 F.	
 (2004):	
 From	
 Agents	
 to	
 Organizations:	
 an	

Organizational	
 View	
 of	
 Multi-­‐Agent	
 Systems.	
 In	
 Giorgini	
 P.,	
 Muller	
 J.,	
 Odell	
 J.	
 (Eds.),	

Agent-­‐Oriented	
 Software	
 Engineering	
 VI,	
 LNCS	
 2935	
 of	
 Lecture	
 Notes	
 in	
 Computer	

Science,	
 Springer-­‐Verlag	
 214-­‐230.	

• Ferber	
 M.,	
 Rauber	
 T.,	
 Hunold	
 S.	
 (2010):	
 BPEL	
 Remote	
 Objects:	
 Integrating	
 BPEL	

Processes	
 into	
 Object-­‐Oriented	
 Applications.	
 Services	
 Computing	
 (SCC),	
 IEEE	

International	
 Conference	
 on,	
 33-­‐40.	

• Ferber	
 J.	
 (1994):	
 Simulating	
 with	
 Reactive	
 Agents.	
 In	
 Hillebrand	
 E.	
 and	
 Stender	
 J.	

(Eds.),	
 Many	
 Agent	
 Simulation	
 and	
 Artificial	
 Life,	
 Amsterdam:	
 IOS	
 Press,	
 8-­‐28.	

• Fergusson	
 I.	
 (1995):	
 Integrated	
 Control	
 and	
 Coordinated	
 Behavior:	
 A	
 case	
 for	
 agent	

models.	
 Wooldridge	
 M.,	
 Jennings	
 N.	
 (Eds.),	
 Intelligent	
 Agent:	
 Theories,	
 Architectures	

and	
 Languages,	
 LNAI	
 890,	
 Springer	
 203-­‐218.	

• Fernandez	
 M.,	
 Gomez-­‐Perez	
 A.,	
 Juristo	
 N.	
 (1997):	
 Methodology:	
 From	
 Ontological	
 Art	

Towards	
 Ontological	
 Engineering.	
 From	
 AAAI	
 Technical	
 Report	
 ss-­‐97-­‐06.	
 	

• Fielding	
 R.	
 (2000):	
 Architectural	
 styles	
 and	
 the	
 design	
 of	
 network-­‐based	
 software	

architectures.	
 PhD	
 Thesis,	
 University	
 of	
 California,	
 Irvine.	

• Finin	
 L.	
 and	
 Mayfield	
 (1997):	
 KQML	
 as	
 an	
 agent	
 communication	
 language.	
 In	

Bradshaw,	
 J.,	
 Software	
 agents,	
 The	
 MIT	
 Press.	

• Fischer	
 M.	
 (1994):	
 A	
 Survey	
 of	
 METATEM,	
 the	
 Language	
 and	
 its	
 Applications.	
 In	

Gabbay	
 D.,	
 Ohlbach	
 H.	
 (Eds.),	
 Proceedings	
 of	
 the	
 1st.	
 International	
 Temporal	
 Logic	

Conference,	
 LNAI	
 827,	
 Springer.	

• Foner	
 L.	
 N.	
 (1993):	
 What´s	
 an	
 agent,	
 anyway?	
 A	
 sociological	
 case	
 study.	
 Agents	
 Memo	

93-­‐01,	
 Agents	
 Group,	
 MIT	
 Media	
 Lab.	

• Foster	
 I.,	
 Zhao	
 Y.,	
 Raicu	
 I.,	
 Lu	
 S.	
 (2008):	
 Cloud	
 Computing	
 and	
 Grid	
 Computing	
 360-­‐
Degree	
 Compared.	
 Grid	
 Computing	
 Environments	
 Workshop	
 GCE	
 '08:	
 1-­‐10.	

• Foster	
 I.	
 and	
 	
 Kesselman	
 C.	
 (1998):	
 The	
 Grid:	
 blueprint	
 for	
 a	
 new	
 computing	

infrastructure.	
 Morgan	
 Kaufmann	
 Publishers	
 Inc.	
 San	
 Francisco,	
 CA,	
 USA,	
 ISBN:1-­‐
55860-­‐475-­‐8.	

• Foster	
 I.,	
 Kesselman	
 C.,	
 Tuecke	
 S.	
 (2001):	
 The	
 anatomy	
 of	
 the	
 grid:	
 Enabling	
 scalable	

virtual	
 organizations.	
 Int.	
 J.	
 High	
 Perform,	
 Comput.	
 Appl,	
 15	
 (3):	
 200-­‐222.	

• Fox	
 M.	
 and	
 Gruninger	
 M.	
 (1998):	
 Enterprise	
 Modeling.	
 AI	
 Magazine,	
 AAAI	
 Press,	
 Fall,	

109-­‐121.	

• Franklin	
 S.	
 and	
 Graesser	
 A.	
 (1996):	
 Is	
 it	
 an	
 Agent,	
 or	
 Just	
 a	
 Program?	
 A	
 Taxonomy	
 for	

Autonomous	
 Agent.	
 ECAI	
 '96	
 Proceedings	
 of	
 the	
 Workshop	
 on	
 Intelligent	
 Agents	
 III,	

Agent	
 Theories,	
 Architectures,	
 and	
 Languages,	
 21-­‐35.	

• Dudek	
 G.,	
 Jenkin	
 M.,	
 Milios	
 R.,	
 Wilkes	
 D.	
 (1993):	
 A	
 taxonomy	
 for	
 swarm	
 robots.	
 In	

Proceedings	
 of	
 IEEE/RSJ,	
 Conference	
 on	
 Intelligent	
 Robots	
 and	
 Systems.	

	
 145	

• Galvez	
 R.	
 S.	
 (2008):	
 Fundamentos	
 de	
 WS-­‐BPEL.	
 Curso	
 de	
 Tecnologías	
 Emergentes	

Multiplataformas.	
 Department	
 of	
 Languages	
 and	
 Computer	
 Science,	
 University	
 of	

Málaga.	

• Garca-­‐Magario	
 I.,	
 Gómez-­‐Sanz	
 J.	
 and	
 Fuentes	
 R.	
 (2009)	
 Ingenias	
 development	
 assisted	

with	
 model	
 transformation	
 by-­‐example:	
 A	
 practical	
 case.	
 In	
 7th	
 International	

Conference	
 on	
 Practical	
 Applications	
 of	
 Agents	
 and	
 Multi-­‐Agent	
 Systems	
 (PAAMS	

2009),	
 40-­‐49.	
 	

• García	
 F.	
 (2007):	
 Sistema	
 basado	
 en	
 tecnologías	
 del	
 conocimiento	
 para	
 entornos	
 de	

servicios	
 web	
 semánticos.	
 University	
 of	
 Murcia.	

• García	
 J.A.	
 (2012):	
 IRIS	
 &	
 ME	
 OWL-­‐S	
 -­‐	
 Sistema	
 de	
 Recomendación	
 en	
 Dispositivo	
 Móvil	

con	
 OWL-­‐S	
 .	
 Master’s	
 Thesis.	
 University	
 of	
 Salamanca.	

• Garcia	
 V.C.,	
 Lucrédio	
 D.,	
 Alvaro	
 A.,	
 de	
 Almeida	
 E.S.,	
 de	
 Mattos	
 R.P.,	
 de	
 Lemos	
 S.R.	

(2007):	
 Towards	
 a	
 maturity	
 model	
 for	
 a	
 reuse	
 incremental	
 adoption.	
 In:	
 The	
 1st	

Brazilian	
 Symposium	
 on	
 Software	
 Components,	
 Architecture	
 and	
 Reuse,	
 Campinas,	

Sâo	
 Paulo,	
 Brazil,	
 61-­‐74.	

• Gasser	
 L.	
 and	
 Ishida,	
 T.	
 (1991):	
 A	
 dynamic	
 organizational	
 architecture	
 for	
 adaptive	

problem	
 solving.	
 In:	
 Proc.	
 of	
 AAAI-­‐91,	
 185-­‐190.	

• Genesereth	
 M.,	
 Nilsson	
 N.	
 (1987):	
 Logical	
 Foundations	
 of	
 Artificial	
 Intelligence,	

Morgan	
 Kaufmann	
 Publishers	
 In,	
 ISBN-­‐10:	
 0934613311.	

• Genesereth	
 M.R.	
 and	
 Ketchpel	
 S.P.	
 (1994):	
 Software	
 Agents.	
 Communications	
 of	
 the	

ACM,	
 37(7)	
 48-­‐53.	

• Giampapa	
 J.A.	
 and	
 Sycara	
 K.	
 (2002):	
 Team-­‐Oriented	
 Agent	
 Coordination	
 in	
 the	

RETSINA	
 Multi-­‐Agent	
 System.	
 Tech.	
 Report	
 CMU-­‐RI-­‐TR-­‐02-­‐34,	
 Robotics	
 Institute,	

Carnegie	
 Mellon	
 University.	
 Presented	
 at	
 AAMAS	
 2002	
 Workshop	
 on	
 Teamwork	
 and	

Coalition	
 Formation.	

• Gil	
 A.B.	
 (2011):	
 Recuperación	
 inteligente	
 de	
 contenidos	
 digitales	
 educativos.	
 PhD	

Thesis,	
 University	
 of	
 	
 Salamanca.	

• Giner	
 P.,	
 Torres	
 V.,	
 Pelechano	
 V.	
 (2010):	
 Bridging	
 the	
 Gap	
 between	
 BPMN	
 and	
 WS-­‐
BPEL.	
 M2M	
 Transformations	
 in	
 Practice	
 project	
 DESTINO	
 TIN2004-­‐03534.	
 	

• Giret	
 A.,	
 Julian	
 V.,	
 Rebollo	
 M.,	
 Argente	
 E.,	
 Carrascosa	
 C.,	
 Botti	
 V.	
 (2009):	
 An	
 Open	

Architecture	
 for	
 Service-­‐Oriented	
 Virtual	
 Organizations.	
 Seventh	
 international	

Workshop	
 on	
 Programming	
 Multi-­‐Agent	
 Systems	
 (PROMAS),	
 23-­‐	
 33.	

• Goldner	
 S.	
 and	
 Papproth	
 A.	
 (2011):	
 	
 Extending	
 the	
 BPMN	
 Syntax	
 for	
 Requirements	

Management.	
 Business	
 Process	
 Model	
 and	
 Notation,	
 Lecture	
 Notes	
 in	
 Business	

Information	
 Processing,	
 95	
 (2):	
 142-­‐147,	
 DOI:	
 10.1007/978-­‐3-­‐642-­‐25160-­‐3_13.	
 	

• Gomez-­‐Perez	
 A.	
 and	
 Rojas-­‐Amaya	
 D.	
 (1999):	
 Ontological	
 reengineering	
 for	
 reuse.	
 In	

Knowledge	
 Acquisition,	
 Modeling	
 and	
 Management:	
 11th	
 European	
 Workshop,	
 EKAW	

'99,	
 Dagstuhl	
 Castle,	
 Germany.	
 Proceedings,	
 volume	
 1621	
 of	
 Lecture	
 Notes	
 in	

Computer	
 Science,	
 page	
 139.	
 Springer	
 Berlin.	

• Governor	
 J.,	
 Nickull	
 D.,	
 Hinchcliffe	
 B.	
 (2009):	
 Web	
 2.0	
 Architectures	
 Specific	
 Patterns	
 of	

Web	
 2.0.	
 Chapter	
 7,	
 O'Reilly	
 Media	
 /	
 Adobe	
 Dev	
 Library.	

• Greenwood	
 D.	
 and	
 Calisti	
 M.	
 (2004):	
 Engineering	
 Web	
 service	
 -­‐	
 agent	
 integration.	

Systems,	
 Man	
 and	
 Cybernetics,	
 IEEE	
 International	
 Conference	
 on,	
 2:	
 1918-­‐1925.	

• Grosz	
 B.	
 y	
 Sidner	
 C.	
 (1990).	
 Plans	
 for	
 discourse.	
 Intentions	
 for	
 Communication,	
 pp	
 417-­‐
444,	
 MIT	
 Press.	

• Grosz	
 B.,	
 Kraus	
 S.	
 (1996):	
 Collaborative	
 Plans	
 for	
 Complex	
 Group	
 Actions.	
 Artificial	

Intelligence	
 86:	
 269-­‐358.	

• Gruber	
 T.R.	
 (1995):	
 Toward	
 Principles	
 for	
 the	
 Design	
 of	
 Ontologies	
 Used	
 for	

Knowledge	
 Sharing.	
 International	
 Journal	
 of	
 Human-­‐Computer	
 Studies,	
 Special	
 Issue	

on	
 the	
 Role	
 o	
 formal	
 Ontology	
 in	
 the	
 Information	
 Technology,	
 43(5/6):	
 907-­‐928.	

• Gruninger	
 M.,	
 Bodenreider	
 O.,	
 Olken	
 F.,	
 Obrst	
 L.,	
 Yim	
 P.	
 (2007):	
 Ontology	
 Summit	
 2007	

–	
 Ontology,	
 taxonomy,	
 folksonomy:	
 Understanding	
 the	
 distinctions.	
 Applied	
 Ontology,	

IOS	
 Press,	
 191-­‐200,	
 DOI:10.3233/AO-­‐2008-­‐0052.	

• Gruninger	
 M.	
 and	
 Fox	
 M.S.	
 (1995):	
 Methodology	
 for	
 the	
 Design	
 and	
 Evaluation	
 of	

Ontologies.	
 In	
 Proceedings	
 of	
 the	
 Workshop	
 on	
 Basic	
 Ontological	
 Issues	
 in	
 Knowledge	

Sharing,	
 IJCAI-­‐95,	
 Montreal.	

• GTI-­‐IA.	
 (2009):	
 An	
 Abstract	
 Architecture	
 for	
 Virtual	
 Organizations:	
 The	
 THOMAS	

project.	
 http://www.fipa.org/docs/THOMASarchitecture.pdf	

• Guarino	
 N.	
 (1998):	
 Formal	
 Ontology	
 in	
 Information	
 Systems.	
 Proceedings	
 of	
 FOIS’98,	

	
 146	

Trento,	
 Italy,	
 6-­‐8	
 June.	
 	
 Amsterdam,	
 IOS	
 Press,	
 3-­‐15.	

• Gutknecht	
 O.	
 and	
 Ferber	
 J.	
 (2000):	
 MadKit:	
 a	
 generic	
 multiagent	
 platform.	
 In	

Proceedings	
 of	
 the	
 Fourth	
 international	
 Conference	
 on	
 Autonomous	
 Agents	

(Barcelona,	
 Spain,	
 June	
 03	
 -­‐	
 07).	
 AGENTS	
 '00.	
 ACM,	
 New	
 York,	
 NY,	
 78-­‐79.	
 	

• Muller	
 H.	
 J.	
 (1996):	
 Negotiation	
 principles.	
 In	
 John	
 Wiley	
 &	
 Sons,	
 editor,	
 Foundations	
 of	

Distributed	
 Artificial	
 Intelligence,	
 Norway,	
 211-­‐230.	

• Parunak	
 H.V.D.	
 (1996):	
 Applications	
 of	
 distributed	
 artificial	
 intelligence	
 in	
 industry.	
 In	

G.	
 M.	
 P.	
 O’Hare	
 and	
 Jennings	
 N.	
 R.,	
 editors,	
 Foundations	
 of	
 Distributed	
 AI.	
 JohnWiley	
 &	

Sons.	

• Hashimi	
 S.	
 (2003):	
 Service-­‐Oriented	
 Architecture	
 Explained.	
 Published	
 on	

ONDotNet.com	
 (http://www.ondotnet.com/).	

• Hass	
 H.	
 and	
 Brown	
 A.	
 (2004):	
 Web	
 Services	
 Glossary.	
 W3C	
 Working	
 Group	
 W3C,	

http://www.w3.org/TR/ws-­‐gloss/.	

• Havey	
 M.	
 (2005):	
 Essential	
 Business	
 Process	
 Modeling.	
 1st	
 ed.,	
 O’Reilly	
 Media,	

Sebastopol,	
 CA.	

• Hawley	
 A.	
 (2009):	
 Virtual	
 Infrastructure:	
 What	
 Is	
 Required	
 for	
 the	
 Cloud?	
 ORACLE	
 VM.	

• Hendler	
 J.,	
 Berners-­‐Lee	
 T.,	
 Miller	
 E.	
 (2002):	
 Integrating	
 Applications	
 on	
 the	
 Semantic	

Web.	
 Journal	
 of	
 the	
 Institute	
 of	
 Electrical	
 Engineers	
 of	
 Japan,	
 122(10):	
 676-­‐680.	
 	
 	

• Hernandez	
 L.,	
 Botti	
 V.,	
 Garcia-­‐Fornes	
 A.	
 (2006):	
 A	
 deliberative	
 scheduling	
 technique	

for	
 a	
 real-­‐time	
 agent	
 architecture.	
 Engineering	
 Applications	
 of	
 Artificial	
 Intelligence	
 19	

(5):	
 521-­‐534.	

• Hill	
 	
 J.B.,	
 Sinur	
 J.,	
 Flint	
 D.,	
 Melenovsky	
 M.J.	
 (2006):	
 Gartner’s	
 position	
 on	
 business	

process	
 management,	
 Business	
 Issues,	
 Gartner,	
 Stamford,	
 CT.	
 	

• Hill	
 J.B.,	
 Pezzini	
 M.,	
 Natis,	
 Y.V.	
 (2008):	
 Findings:	
 confusion	
 remains	
 regarding	
 BPM	

terminologies.	
 Gartner	
 Research,	
 Stamford,	
 CT.	
 Vol.	
 ID	
 No.	
 G00155817.	

• Hoare	
 C.	
 A.	
 R.	
 (1978):	
 Communicating	
 sequential	
 processes.	
 Communications	
 of	
 the	

ACM,	
 21:666-­‐677.	

• Horling	
 B.	
 and	
 Lesser	
 V.	
 (2005):	
 Using	
 ODML	
 to	
 Model	
 Multi-­‐Agent	
 Organizations.	
 In	

Proc.	
 of	
 the	
 IEEE/WIC/ACM	
 Int.	
 Conf.	
 on	
 Intelligent	
 Agent	
 Technology.	

• Howden	
 N.	
 (2001):	
 JACK	
 intelligent	
 agents—summary	
 of	
 an	
 agent	
 infrastructure.	
 In	

Proceedings	
 of	
 IEEE	
 international	
 conference	
 on	
 autonomous	
 agents,	
 Montreal.	

• Hubner	
 J.F.,	
 Sichman	
 J.S.,	
 Boissier	
 O.	
 (2004):	
 Using	
 the	
 Moise+	
 for	
 a	
 cooperative	

framework	
 of	
 mas	
 reorganisation.	
 In:	
 LNAI	
 Proc.	
 of	
 the	
 17th	
 Brazilian	
 Symposium	
 on	

Artificial	
 Intelligence	
 (SBIA’04),	
 Springer	
 3171:	
 506–515.	

• Hubner	
 J.F.,	
 Sichman	
 J.S.,	
 Boissier	
 O.	
 (2006):	
 S-­‐Moise+:	
 A	
 middleware	
 for	
 developing	

organised	
 multi-­‐agent	
 systems.	
 In:	
 Proc.	
 Int.	
 Workshop	
 on	
 Programming	
 in	
 MAS,	
 LNCS,	
 	

3913:	
 64-­‐78	

• Huhns	
 M.	
 and	
 Stephens	
 L.	
 (1999):	
 Multiagent	
 Systems	
 and	
 Societies	
 of	
 Agents.	
 In:	

Weiss	
 G.	
 (Ed.),	
 Multi-­‐agent	
 Systems:	
 a	
 Modern	
 Approach	
 to	
 Distributed	
 Artificial	

Intelligence,	
 MIT	
 Press.	

• Huhns	
 M.	
 and	
 Larry	
 M.	
 (1999):	
 Multiagent	
 Systems	
 and	
 Societies	
 of	
 Agents.	
 In	

Multiagent	
 Systems:	
 A	
 Modern	
 Approach	
 to	
 Distributed	
 Artificial	
 Intelligence,	
 ed.	
 	

Gerhard	
 Weiss,	
 The	
 MIT	
 Press,	
 Chapter	
 2,	
 121-­‐164.	

• Huth	
 A.	
 and	
 Cebula	
 J.	
 (2011):	
 The	
 Basics	
 of	
 Cloud	
 Computing.	
 US-­‐CERT.	

• IEEE1517-­‐2009	
 D2	
 (2009):	
 IEEE1517	
 Standard	
 for	
 Information	
 Technology	
 -­‐	
 Software	

Life	
 Cycle	
 Processes	
 -­‐	
 Reuse	
 Processes:	
 D2.	
 Software	
 Engineering	
 Standards	

Committee	
 of	
 the	
 IEEE	
 Computer	
 Society,	
 USA.	

• Martínez	
 I.	
 A.	
 (2010):	
 Modelado	
 automático	
 del	
 comportamiento	
 de	
 agentes	

inteligentes.	
 PhD	
 Tesis,	
 Department	
 of	
 Informatics.	
 University	
 Carlos	
 III	
 of	
 Madrid.	

• ISO	
 (1991,	
 1994):	
 Quality	
 Management	
 and	
 Quality	
 Assessment	
 Standards,	
 Part	
 3:	

Guidelines	
 for	
 the	
 ISO	
 9001	
 to	
 the	
 Development,	
 Supply	
 and	
 Maintenance	
 of	
 Software.	

ISO	
 9000-­‐3,	
 International	
 Standards	
 Organization.	

• Euzenat	
 J.	
 and	
 Shvaiko	
 P.	
 	
 (2007):	
 Ontology	
 matching.	
 Springer-­‐Verlag,	
 Berlin	

Heidelberg	
 (DE),	
 SBN	
 (hardcover):	
 978-­‐3-­‐540-­‐49611-­‐3.	

• Diggelen	
 J.v.	
 (2007):	
 Achieving	
 Semantic	
 Interoperability	
 in	
 Multi-­‐agent	
 Systems:	
 A	

Dialogue-­‐based	
 Approach,	
 PhD	
 Thesis,	
 Utrecht	
 University.	

• Ferber	
 J.	
 (1999):	
 Multi-­‐Agent	
 Systems:	
 An	
 Introduction	
 to	
 Distributed	
 Artificial	

Intelligence.	
 Addison-­‐Wesley	
 Longman	
 Publishing	
 Co.,	
 Boston,	
 MA,	
 USA.	

• Jaeger	
 P.	
 T.,	
 Lin	
 J.,	
 Grimes	
 J.M.,	
 Simmons	
 S.N.	
 (2009):	
 Where	
 is	
 cloud?	
 Geography,	

	
 147	

Economics.	
 Env.	
 Jurisdiction	
 Cloud	
 Comput	
 14(5).	

• Jennings	
 N.	
 (1993):	
 Commitments	
 and	
 Conventions:	
 The	
 Foundation	
 of	
 Coordination	

in	
 Multi-­‐Agent	
 Systems,	
 The	
 Knowledge	
 Engineering	
 Review,	
 8	
 (03):	
 223-­‐250.	

• Jennings	
 N.	
 and	
 Wooldridge	
 M.	
 (1988).	
 (eds.),	
 Agent	
 Technology:	
 Foundations,	

Applications	
 and	
 Markets,	
 Springer,	
 ISBN-­‐10:	
 3540635912.	

• Jiao	
 W.P.	
 and	
 Mei	
 H.	
 (2004):	
 Automated	
 adaptations	
 to	
 dynamic	
 software	
 architectures	

by	
 using	
 autonomous	
 agents.	
 Engineering	
 Applications	
 of	
 Artificial	
 Intelligence	
 17	
 (7):	

749-­‐770.	

• Gottschalk	
 K.	
 et	
 al.	
 (2000):	
 Web	
 Services	
 Architecture	
 Overview:	
 The	
 Next	
 Stage	
 of	

Evolution	
 for	
 E-­‐Business.	
 http://www-­‐106.	
 ibm.com/developerworks/library/w-­‐ovr.	

• Kaelbling	
 L.P.	
 (1991):	
 A	
 situated	
 automata	
 approach	
 to	
 the	
 design	
 of	
 embedded	
 agents.	

SIGART	
 Bulletin,	
 2(4):85-­‐88.	

• Karlsson	
 E.	
 A.	
 (1996):	
 Software	
 Reuse:	
 A	
 Holistic	
 Approach.	
 Wiley	
 Series	
 in	
 Software	

based	
 Systems.	
 John	
 Wiley	
 and	
 sons.	

• Keil	
 F.	
 C.	
 	
 (1989):	
 Concepts,	
 Kinds,	
 and	
 Cognitive	
 Development.	
 MIT	
 Press.	

• Kemsley	
 S.	
 (2007):	
 Business	
 Process	
 Design.	
 TIBCO.	
 	

• Kennedy	
 S.,	
 Molloy	
 O.,	
 Stewar	
 R.,	
 Jacob	
 P.,	
 Maleshkova	
 M.,	
 Doheny	
 F.	
 (2012):	
 A	

Semantically	
 Automated	
 Protocol	
 Adapter	
 for	
 Mapping	
 SOAP	
 Web	
 Services	
 to	
 RESTful	

HTTP	
 Format	
 to	
 Enable	
 the	
 Web	
 Infrastructure,	
 Enhance	
 Web	
 Service	
 Interoperability	

and	
 Ease	
 Web	
 Service	
 Migration.	
 Future	
 Internet,	
 4(2):	
 372-­‐395.	

• Khondoker	
 M.	
 R.	
 and	
 Mueller	
 P.	
 (2010):	
 Comparing	
 Ontology	
 Development	
 Tools	

Based	
 on	
 an	
 Online	
 Survey.	
 In	
 Proceedings	
 of	
 the	
 World	
 Congress	
 on	
 Engineering,	
 	
 Vol.	

I.	
 	

• Kittock	
 J.	
 E.	
 (1993):	
 Emergent	
 conventions	
 and	
 the	
 structure	
 of	
 multi-­‐agent	
 systems.	
 In	

Lectures	
 in	
 Complex	
 systems:	
 the	
 proceedings	
 of	
 the	
 1993	
 Complex	
 systems	
 summer	

school,	
 Santa	
 Fe	
 Institute	
 Studies	
 in	
 the	
 Sciences	
 of	
 Complexity	
 Lecture	
 Volume	
 VI,	

Santa	
 Fe	
 Institute,	
 Addison-­‐Wesley	
 507–521.	

• Klusch	
 M.	
 and	
 Sycara	
 K.	
 (2001):	
 Brokering	
 and	
 matchmaking	
 for	
 coordination	
 of	
 agent	

societies:	
 a	
 survey.	
 En	
 Coordination	
 of	
 Internet	
 Agents:	
 Models,	
 Technologies,	
 and	

Applications	
 (Omicini	
 et	
 al.),	
 Springer	
 197-­‐224	

• Knight,	
 J.	
 C.	
 y	
 Dunn,	
 M.	
 F.	
 (1998):	
 Software	
 Quality	
 through	
 Domain-­‐Driven	
 Certifica-­‐	

tion.	
 Annals	
 of	
 Software	
 Engineering,	
 5:	
 293-­‐315.	

• Ko	
 R.,	
 Lee	
 S.	
 and	
 Lee	
 E.	
 (2009):	
 Business	
 process	
 management	
 (BPM)	
 standards:	
 a	

survey.	
 Emerald	
 Business	
 Process	
 Management	
 Journal,	
 15	
 (5):	
 744-­‐791.	
 	

• Kortz	
 D.	
 and	
 Gray	
 R.	
 (1999):	
 Mobile	
 Agents	
 and	
 the	
 future	
 of	
 the	
 Internet.	
 Department	

of	
 Computer	
 Science	
 /	
 Thayer	
 School	
 of	
 Engineering,	
 Dartmouth	
 College.	

• Koskela	
 M.	
 and	
 Haajanen	
 J.	
 (2007):	
 Business	
 process	
 modeling	
 and	
 execution:	
 tools	

and	
 technologies	
 report	
 for	
 the	
 SOAMeS	
 project.	
 VTT	
 Research	
 Notes	
 No.	
 2407,	
 VTT	

Technical	
 Research	
 Centre	
 of	
 Finland,	
 Espoo.	
 	

• Krueger	
 C.	
 W.	
 (1992):	
 Software	
 Reuse.	
 ACM	
 Computing	
 Surveys,	
 24(2):131-­‐183.	

• Labidi	
 S.	
 and	
 Lejouad	
 W.	
 (1993):	
 Del’intelligence	
 artificielle	
 distribu’eeaux	
 syst‘emes	

multiagents.	

• Lakkaraju	
 K.	
 and	
 Gasser	
 L.	
 (2008):	
 Norm	
 Emergence	
 in	
 Complex	
 Ambiguous	

Situations.	
 In	
 Proceedings	
 of	
 the	
 AAAI	
 Workshop	
 on	
 Coordination,	
 Organizations,	

Institutions	
 and	
 Norms	
 AAAI,	
 Chicago,	
 July.	

• Lapadula	
 A.,	
 Pugliese	
 R.,	
 Tiezzi	
 F.	
 (2010):	
 A	
 WSDL-­‐based	
 type	
 system	
 for	
 asynchronous	

WS-­‐BPEL	
 Processes.	
 Form	
 Methods	
 Syst	
 Des,	
 	
 38:	
 119-­‐157.	

• Lee	
 C.H.	
 and	
 Hwang	
 S.Y.	
 (2009):	
 A	
 Model	
 for	
 Web	
 Services	
 Data	
 in	
 Support	
 of	
 Web	

Service	
 Composition	
 and	
 Optimization.	
 ISBN:	
 978-­‐0-­‐7695-­‐3708-­‐5.	

• Lee	
 J.M.	
 (1997):	
 Riemannian	
 Manifolds.	
 An	
 introduction	
 to	
 Curvature.	
 Springer-­‐	
 Verlag,	

New	
 Tork,	
 Inc.	
 	

• Lemley	
 M.	
 and	
 O'Brien	
 D.	
 (1997):	
 Encouraging	
 Software	
 Reuse.	
 Stanford	
 Law	
 Review,	

49,	
 255.	

• Lésperance	
 Y.,	
 Levesque	
 H.,	
 Lin	
 F.,	
 Marcu	
 D.,	
 Reiter	
 R.,	
 Scherl	
 R.	
 (1996):	
 Foundations	
 of	

a	
 Logical	
 Approach	
 to	
 Agent	
 Programming.	
 In	
 Wooldridge	
 M.,	
 Müller	
 J.,	
 Tambe	
 M.	

(Eds.):	
 Intelligent	
 Agents	
 II,	
 LNAI	
 1037,	
 Springer.	

• Li	
 K.,	
 	
 Verma	
 K.,	
 	
 Mulye	
 R.,	
 	
 Rabbani	
 R.,	
 	
 Miller	
 J.,	
 	
 Sheth	
 A.	
 (2006):	
 Designing	
 Semantic	

Web	
 Processes:	
 The	
 Wsdl-­‐S	
 Approach.	
 Semantic	
 Web	
 Services,	
 Processes	
 and	

Applications	
 Semantic	
 Web	
 and	
 Beyond,	
 Part	
 II,	
 3:	
 161-­‐193.	

	
 148	

• Ligeza	
 A.,	
 Kluza	
 K.,	
 Potempa	
 T.	
 (2012):	
 AI	
 Approach	
 to	
 Formal	
 Analysis	
 of	
 BPMN	

Models.	
 Towards	
 a	
 Logical	
 Model	
 for	
 BPMN	
 Diagrams.	
 Preprints	
 of	
 the	
 Federated	

Conference	
 on	
 Computer	
 Science	
 and	
 Information	
 Systems,	
 959–962.	
 	

• López	
 F.	
 (1999):	
 Overview	
 of	
 Methodologies	
 for	
 Building	
 Ontologies.	
 In	
 Proceedings	
 of	

IJCAI-­‐99	
 workshop	
 on	
 Ontologies	
 and	
 Problem-­‐Solving	
 Methods	
 (KRR5)	
 in	
 Stockholm	

Sweden,	
 August	
 2.	

• Lowe-­‐Norris	
 A.G.	
 and	
 Denn	
 R.	
 (2000):	
 Windows	
 2000	
 Active	
 Directory,	
 O’Reilly	
 &	

Associates,	
 Sebastopol,	
 CA.	
 	

• Lu	
 J.,	
 Chen	
 G.,	
 Yu	
 X.	
 (2011):	
 Modelling,	
 Analysis	
 and	
 Control	
 of	
 Multi-­‐Agent	
 Systems:	
 A	

Brief	
 Overview.	
 Circuits	
 and	
 Systems	
 (ISCAS),	
 IEEE	
 International	
 Symposium	
 on,	

2103-­‐2106,	
 ISSN:	
 0271-­‐4302.	

• Luck	
 M.	
 and	
 McBurney	
 P.	
 (2008):	
 Computing	
 as	
 interaction:	
 Agent	
 and	
 agreement	

technologies,	
 in:	
 IEEE	
 SMC	
 Conference	
 on	
 Distributed	
 Human-­‐Machine	
 Systems:	
 1-­‐6.	

• Luo	
 J.,	
 	
 Montrose	
 B.,	
 Kim	
 A.,	
 Khashnobish	
 A.,	
 Kang	
 M.	
 (2006):	
 Adding	
 OWL-­‐S	
 Support	
 to	

the	
 Existing	
 UDDI	
 Infrastructure.	
 Web	
 Services,	
 ICWS	
 '06,	
 International	
 Conference	
 on,	

153-­‐162.	

• Wooldridge	
 M.	
 	
 and	
 Jennings	
 N.	
 R.	
 (1995):	
 Intelligent	
 Agents:	
 Theory	
 and	
 Practice.	
 In	

KNOWLEDGE	
 ENGINEERING	
 REVIEW	
 10(2).	

• Maamar	
 Z.,	
 Mostefaoui	
 S.K.,	
 Yahyaoui	
 H.	
 (2005):	
 Toward	
 an	
 agent-­‐based	
 and	
 context-­‐
oriented	
 approach	
 for	
 Web	
 services	
 composition.	
 Knowledge	
 and	
 Data	
 Engineering,	

IEEE	
 Transactions	
 on,	
 17:	
 686-­‐697.	

• Maedche	
 A.	
 and	
 Staab	
 S.	
 (2001):	
 Learning	
 Ontologies	
 for	
 the	
 Semantic	
 Web.	
 In	

Semantic	
 Web	
 Workshop,	
 Hongkong,	
 China	
 	

• Maes	
 P.	
 	
 (1990)(Ed.):	
 Designing	
 Autonomous	
 Agents.	
 MIT	
 Press.	

• Maes	
 P.	
 (1991):	
 The	
 agent	
 network	
 architecture	
 (ANA).	
 SIGART	
 Bulletin,	
 2(4):	
 115-­‐

120.	
 	

• Mahmoud	
 Q.	
 (2005):	
 Service-­‐Oriented	
 Architecture	
 (SOA)	
 and	
 Web	
 Services:	
 The	
 Road	

to	
 Enterprise	
 Application	
 Integration	
 (EAI).	
 ORACLE.	

• Malone	
 T.	
 and	
 Crowston	
 K.	
 (March,	
 1994):	
 The	
 Interdisciplinary	
 Study	
 of	

Coordination.	
 ACM	
 Computing	
 Surveys	
 26(1).	
 	

• Mancarella	
 S.	
 (January	
 2011):	
 Business	
 Process	
 Modelling	
 Notation	
 –	
 A	
 tutorial.	
 OMG	

SOA	
 Healthcare.	
 SPARX	
 Systems.	
 	

• Martin	
 D.,	
 Burstein	
 M.,	
 McDermott	
 D.,	
 McIlraith	
 S.,	
 Paolucci	
 M.,	
 Sycara	
 K.,	
 McGuiness	
 D.,	

Sirirn	
 E.,	
 Srinivasan	
 N.	
 (2006):	
 Bringing	
 Semantics	
 to	
 Web	
 Services	
 with	
 OWL-­‐S.	
 	

Springer	
 Science	
 +	
 Business	
 Media,	
 LLC.	

• Mas	
 A.	
 (2005):	
 Agentes	
 software	
 y	
 sistemas	
 multiagente:	
 conceptos,	
 arquitecturas	
 y	

aplicaciones.	
 29-­‐64,	
 ISBN	
 84-­‐205-­‐4367-­‐5.	
 	

• Massonet	
 P.,	
 Naqvi	
 S.,	
 Ponsard	
 C.,	
 Latanicki	
 J.,	
 Rochwerger	
 B.,	
 Villari	
 M.	
 (2011):	
 A	

Monitoring	
 and	
 Audit	
 Logging	
 Architecture	
 for	
 Data	
 Location	
 Compliance	
 in	
 Federated	

Cloud	
 Infrastructures.	
 In	
 Parallel	
 and	
 Distributed	
 Processing	
 Workshops	
 and	
 Phd	

Forum	
 (IPDPSW).	
 2011	
 IEEE	
 International	
 Symposium	
 on,	
 1510-­‐1517.	
 	
 	

• Mataric	
 M.J.	
 (1997):	
 Learning	
 Social	
 Behavior.	
 In	
 Robotics	
 and	
 Autonomous	
 Systems,	
 	

20:	
 191-­‐204.	

• Mathes	
 M.,	
 Gartner	
 J.,	
 Dohmann	
 H.,	
 Freisleben	
 B.	
 (2009):	
 	
 SOAP4IPC:	
 A	
 Real-­‐Time	

SOAP	
 Engine	
 for	
 Industrial	
 Automation.	
 Parallel,	
 Distributed	
 and	
 Network-­‐based	

Processing,	
 17th	
 Euromicro	
 International	
 Conference	
 on,	
 220-­‐226.	

• McAllester	
 D.	
 and	
 Rosenblitt	
 D.	
 (1991):	
 Systematic	
 nonlinear	
 planning.	
 In	
 Proceedings	

of	
 the	
 Ninth	
 National	
 Conference	
 on	
 Artificial	
 Intelligence	
 (AAAI-­‐91),	
 2:	
 634-­‐639,	

Anaheim,	
 California,	
 USA,	
 AAA	
 Press/MIT	
 Press.	

• McIlraith	
 S.,	
 Son	
 T.	
 (2002):	
 Adapting	
 golog	
 for	
 composition	
 of	
 semantic	
 web	
 services.	

In	
 Proceedings	
 of	
 the	
 8th	
 International	
 Conference	
 on	
 Principles	
 of	
 Knowledge	

Representation	
 and	
 Reasoning	
 (KR),	
 482-­‐493.	
 Toulouse,	
 France,	
 April.	

• McIlraith	
 S.A.	
 	
 and	
 Martin	
 D.L.	
 (2003):	
 Bringing	
 semantics	
 to	
 Web	
 services	
 18	
 (1):	
 90-­‐	

93.	

• Mell	
 P.	
 and	
 Grance	
 T.	
 (2011):	
 NIST	
 Definition	
 of	
 Cloud	
 Computing	
 v15.	

csrc.nist.gov/groups/	
 SNS/cloud-­‐computing/cloud-­‐def-­‐v15.doc	
 .	

• Mendling	
 J.	
 and	
 Neumann	
 G.	
 (2005):	
 A	
 comparison	
 of	
 XML	
 interchange	
 formats	
 for	

business	
 process	
 modeling,	
 Workflow	
 Handbook,	
 Future	
 Strategies,	
 Lighthouse	
 Point,	

FL.	
 	

	
 149	

• Menzel	
 C.	
 (2003):	
 Reference	
 Ontologies	
 —Application	
 Ontologies:	
 Either/Or	
 or	

Both/And?	
 Texas	
 A&M	
 University.	

• Milenkovic	
 M.,	
 	
 Robinson	
 H.,	
 	
 Knauerhase	
 R.,	
 	
 Barkai	
 D.,	
 Garg	
 S.,	
 Tewari	
 V.,	
 Anderson	
 T.,	

Bowman	
 M.	
 (2003):	
 Toward	
 Internet	
 distributed	
 computing.	
 IEEE	
 Computer,	
 36	
 (5):	

38-­‐46.	

• Moemeng	
 C.,	
 Wang	
 C.,	
 Longbing	
 C.	
 (2011):	
 Obtaining	
 an	
 optimal	
 MAS	
 configuration	
 for	

Agent-­‐Enhanced	
 Mining	
 Using	
 Constraint	
 optimization.	
 Agents	
 and	
 Data	
 Mining	

Interaction,	
 Part	
 I,	
 46-­‐57,	
 DOI:10.1007/978-­‐3-­‐642-­‐27609-­‐5_5.	

• Molesini	
 A.,	
 Omicini	
 A.,	
 Denti	
 E.	
 and	
 Ricci	
 A.	
 (2006):	
 SODA.	
 A	
 roadmap	
 to	
 artefacts.	

Engineering	
 Societies	
 in	
 the	
 Agents	
 World	
 VI	
 LNAI	
 3963:	
 49–62.	

• Morrison	
 I.	
 and	
 Nugrahanto	
 S.	
 (2007):	
 Decision	
 Support	
 With	
 BPEL	
 and	
 Web	
 Services.	

International	
 Journal	
 of	
 Healthcare	
 Information	
 Systems	
 and	
 Informatics	
 (IJHISI),	
 2	

(2).	

• Morrison	
 I.,	
 Lewis	
 B.	
 and	
 Nugrahanto	
 S.	
 (2006):	
 Modelling	
 in	
 Clinical	
 Practice	
 with	

Web	
 Services	
 and	
 BPEL.	
 International	
 Journal	
 of	
 E-­‐Business	
 Research	
 (IJEBR),	
 Chapter	

X,	
 DOI:	
 10.4018/jebr.2006010103.	

• Noy	
 N.	
 and	
 McGuinness	
 D.	
 (2001):	
 Ontology	
 development	
 101:	
 A	
 guide	
 to	
 creating	

your	
 first	
 ontology.	
 Technical	
 Report	
 SMI-­‐2001-­‐0880,	
 Stanford	
 Medical	
 Informatics	

(SMI),	
 Department	
 of	
 Medicine,	
 Stanford	
 University	
 School	
 of	
 Medicine.	

• 	
 Nakrani	
 S.	
 and	
 Tovey	
 C.	
 (2004):	
 On	
 Honey	
 Bees	
 and	
 Dynamic	
 Server	
 Allocation	
 in	

Internet	
 Hosting	
 Centers.	
 Adaptive	
 Behavior	
 12:	
 223-­‐240.	

• Nau	
 D.,	
 Au	
 T.C.,	
 Ilghami	
 O.,	
 et	
 al.	
 (2003):	
 SHOP2:	
 An	
 HTN	
 planning	
 system.	
 J.	
 Artif.	

Intell.	
 Res.	
 20:	
 379-­‐404.	

• Nesse	
 P.J.,	
 Undheim	
 A.,	
 Solsvik	
 F.H.,	
 Dao	
 M.,	
 Salant	
 E.,	
 Lopez	
 J.M.,	
 Elicegui	
 J.M.	
 (2011):	

Exploiting	
 cloud	
 computing:	
 A	
 proposed	
 methodology	
 for	
 generating	
 new	
 business.	

15th	
 International	
 Conference	
 on	
 Intelligence	
 in	
 Next	
 Generation	
 Networks	
 (ICIN),	

241-­‐246.	

• Newcomer	
 E.	
 (2002).	
 Understanding	
 Web	
 Services,	
 XML,	
 WSDL,	
 SOAP	
 and	
 UDDI.	

Independent	
 Technology	
 Guides.	
 David	
 Chapell:	
 Series	
 Editos.	
 ISBN:	
 0-­‐201-­‐75081-­‐3	

• Nitzsche	
 J.,	
 Van	
 Lessen	
 T.	
 Karastoyanova	
 D.,	
 Leymann	
 F.	
 (2007):	
 BPEL	
 for	
 Semantic	

Web	
 Services	
 (BPEL4SWS).	
 Institute	
 of	
 Architecture	
 of	
 Application	
 Systems,	

University	
 of	
 Stuttgart.	
 	

• Noy	
 N.	
 F.	
 and	
 McGuiness	
 	
 D.	
 L.	
 (2001):	
 Ontology	
 Development	
 101:	
 A	
 Guide	
 to	
 Creating	

Your	
 First	
 Ontology.	
 	
 Stanford	
 University.	
 	
 SMI-­‐2001-­‐0880.	

• Nwana	
 H.	
 S.	
 (1996):	
 Software	
 Agents:	
 An	
 Overview.	
 Knowledge	
 Engineering	
 Review,	
 	

Cambridge	
 University	
 Press,11(3):1-­‐40,	

• Nwana	
 H.S.,	
 Ndumu	
 D.T.,	
 Lee	
 L.C.	
 and	
 Collis	
 J.C.	
 (1999):	
 ZEUS:	
 A	
 Toolkit	
 and	
 Approach	

for	
 Building	
 Distributed	
 Multi-­‐Agent	
 Systems	
 Agents,	
 Applied	
 Artifical	
 Intelligence	
 	

Journal,	
 13:	
 129-­‐186.	

• O'hare	
 G.M.	
 and	
 Jennings	
 N.R.	
 (1996):	
 Foundations	
 of	
 Distributed	
 Artificial	

Intelligence.	
 Willey-­‐Interscience.	

• OASIS	
 (April,	
 2007):	
 Web	
 Services	
 Business	
 Process	
 Execution	
 Language.	
 Version	
 2.0,	

OASIS	
 Standard.	
 	

• Odell	
 J.	
 (October	
 2010):	
 Agent	
 Technology:	
 An	
 Overview.	
 Ann	
 Arbor,	
 MI	
 USA,	

http://www.jamesodell.com.	

• Omicini	
 A.,	
 Ricci	
 A.	
 and	
 Viroli	
 M.	
 (2004):	
 Coordination	
 artifacts:	
 Environment-­‐based	

coordination	
 for	
 intelligent	
 agents.	
 In	
 Proceedings	
 of	
 3rd	
 international	
 Joint	

Conference	
 on	
 Autonomous	
 Agents	
 and	
 Multiagent	
 Systems	
 (AAMAS	
 2004),	
 286-­‐293.	

• Osiecki	
 L.,	
 Phillips	
 M.,	
 and	
 Scibilia	
 J.	
 (2011):	
 Understanding	
 and	
 Leveraging	
 a	
 Supplir’s	

CMMI	
 Efforts:	
 A	
 Guidebook	
 for	
 Acquirers	
 (Revised	
 for	
 V1.3).	
 Software	
 Engineering	

Institute,	
 Carnegie	
 Mellon	
 University,	
 Pittsburgh,	
 Pennsylvania,	
 Technical	
 Report	

CMU/SEI-­‐2011-­‐TR-­‐023.	
 	

• Ossowski	
 S.	
 (2001):	
 Agent	
 Coordination	
 by	
 Constraint	
 Optimisation.	
 Electronic	
 Notes	

in	
 Theoretical	
 Computer	
 Science	
 48,	
 Elsevier.	

• Ossowski,	
 S.	
 (1998):	
 Co-­‐ordination	
 in	
 Artificial	
 Agent	
 Societies,	
 LNAI,	
 Springer	
 1535.	

• Ouyang	
 C.,	
 Dumas	
 M.,	
 ter	
 Hofsetede	
 A.,	
 van	
 derl	
 Aalst	
 W.	
 (2006):	
 From	
 BPM	
 Process	

Models	
 to	
 BPEL	
 Web	
 Services.	
 In	
 Proceedings	
 of	
 4th	
 International	
 Conference	
 on	
 Web	

• Services.	
 IEEE	
 Computer	
 Society,	
 285-­‐292.	
 	
 	

• Owen	
 M.	
 and	
 Raj	
 J.	
 (2003):	
 	
 BPMN	
 and	
 Business	
 Process	
 Management	
 –	
 An	

	
 150	

Introduction	
 to	
 the	
 New	
 Business	
 Process	
 Modeling	
 Standard.	
 TechRepublic/US	

• OWL-­‐S	
 (2012):	
 Semantic	
 Markup	
 for	
 Web	
 Services.	
 Available	
 in	

http://www.w3.org/Submission/OWL-­‐S/.	
 	

• Padala	
 P.,	
 Hou	
 K-­‐Y	
 et	
 al.	
 (2009):	
 Automated	
 control	
 of	
 multiple	
 virtualized	
 resources.	

In	
 Proc	
 of	
 EuroSys.	

• Panait	
 L.	
 and	
 Luke	
 S.	
 (2005):	
 Cooperative	
 Multi-­‐Agente	
 Learning:	
 The	
 State	
 of	
 Art.	

George	
 Mason	
 University.	
 	

• Paolucci	
 M.,	
 Kwamura	
 T.,	
 Payne	
 T.,	
 ycara	
 K.	
 (2002):	
 Importing	
 the	
 semantic	
 Web	
 in	

UDDI.	
 Revised	
 Papers	
 from	
 the	
 International	
 Workshop	
 on	
 Web	
 Services,	
 E-­‐Business,	

and	
 the	
 Semantic	
 Web,	
 225-­‐263.	

• Papazoglou	
 M.	
 (2008):	
 Web	
 Services:	
 Principles	
 and	
 Technology.	
 s.l.,	
 	
 Prentic	
 Hall.	

• Parimala	
 N.	
 and	
 Saini	
 A.	
 (2011):	
 X-­‐WSDL:	
 An	
 Extension	
 to	
 WSDL	
 and	
 its	
 mapping	
 to	
 X-­‐

UDDI.	
 The	
 International	
 Journal	
 of	
 Information	
 Studies,	
 3	
 (3):	
 115-­‐127.	

• Pasley	
 J.	
 (May/June	
 2005).	
 How	
 BPEL	
 and	
 SOA	
 Are	
 Changing	
 Web	
 Services	

Development.	
 Published	
 by	
 the	
 IEEE	
 Computer	
 Society,	
 IEEE	
 Internet	
 Computing,	
 60-­‐	

67.	
 	

• Pattison	
 H.	
 E.,	
 Corkill	
 D.	
 D.	
 and	
 Lesser	
 V.	
 R.	
 (1987):	
 Distributed	
 Artificial	
 Intelligence.	

Chapter	
 Instantiating	
 Descriptions	
 of	
 Organizational	
 Structures,	
 59-­‐96.	
 Pitman	

Publishers.	

• Pautasso	
 C.,	
 Zimmerman	
 O.,	
 and	
 Leymann	
 F.	
 (2008):	
 Restful	
 web	
 services	
 vs.	
 "big"'	

web	
 services:	
 making	
 the	
 right	
 architectural	
 decision.	
 Published	
 in	
 WWW	
 '08	

Proceedings	
 of	
 the	
 17th	
 international	
 conference	
 on	
 World	
 Wide	
 Web,	
 	
 805-­‐814.	

• Pavon	
 J.	
 and	
 Gomez-­‐Sanz	
 J.J.	
 (2003):	
 Agent	
 oriented	
 software	
 engineering	
 with	

INGENIAS.	
 In	
 Procedings	
 of	
 CEECMAS,	
 2691:	
 394–	
 403.	

• Pavon	
 J.,	
 Gomez-­‐Sanz	
 J.,	
 Fuentes	
 R.	
 (2005):	
 The	
 INGENIAS	
 Methodology	
 and	
 Tools,	
 Idea	

Group	
 Publishing,	
 article	
 IX:	
 236–276.	

• Pedrinaci	
 C.,	
 Brelage	
 C.,	
 van	
 Lessen	
 T.,	
 Domingue	
 J.;	
 Karastoyanova	
 d.	
 and	
 Leymann	
 F.	

(2008):	
 Semantic	
 business	
 process	
 management:	
 scaling	
 up	
 the	
 management	
 of	

business	
 processes.	
 In	
 2nd	
 IEEE	
 International	
 Conference	
 on	
 Semantic	
 Computing	

(ICSC),	
 Santa	
 Clara,	
 CA,	
 USA.	

• Peiró	
 J.M.	
 (1990):	
 <<Las	
 Nuevas	
 Tecnologías»	
 en	
 Organización.	
 Nuevas	
 perspectivas	

psicosociales,	
 Barcelona,	
 PPU	
 S.A.	
 Penberthy	
 y	
 Weld,	
 Penberthy	
 J.S.	
 and	
 Weld	
 D.,	

UCPOP:	
 A	
 Sound,	
 Complete,	
 Partial-­‐Order	
 Planner	
 for	
 ADL.	
 Third	
 International	

Conference	
 on	
 Knowledge	

• Poulin	
 J.	
 S.	
 (1997):	
 Measuring	
 software	
 reuse	
 -­‐	
 principles,	
 practices,	
 and	
 economic	

models.	
 Addison-­‐Wesley-­‐Longman	
 1997,	
 ISBN:	
 978-­‐0-­‐201-­‐63413-­‐6,	
 I-­‐XIX,	
 1-­‐195.	

• Poulin	
 J.	
 S.	
 (2006):	
 The	
 Business	
 Case	
 for	
 Software	
 Reuse:	
 Reuse	
 Metrics,	
 Economic	

Models,	
 Organizational	
 Issues,	
 and	
 Case	
 Studies.	
 Lecture	
 Notes	
 in	
 Computer	
 Science	
 	

4039:	
 439.	

• Prieto,	
 R.	
 (1993).	
 Status	
 Report:	
 Software	
 Reusability.	
 IEEE	
 Software,	
 10	
 (3):	
 61-­‐66.	

• Prieto,	
 R.	
 (1996).	
 Reuse	
 as	
 a	
 New	
 Paradigm	
 for	
 Software	
 Development.	
 In	
 Sars-­‐	
 har,	
 M.,	

editor,	
 Systematic	
 Reuse:	
 Issues	
 in	
 Initiating	
 and	
 Improving	
 a	
 Reuse	
 Program,	
 London.	

Springer-­‐Verlag.	

• Radgui	
 M.,	
 Saidi	
 R.,	
 Moulina	
 S.	
 (September	
 2012):	
 A	
 Pattern	
 for	
 the	
 Decomposition	
 of	

Business	
 Processes.	
 Special	
 Issue	
 of	
 International	
 Journal	
 of	
 Computer	
 Applications	

(0975	
 –	
 8887)	
 on	
 Software	
 Engineering,	
 Databases	
 and	
 Expert	
 Systems	
 –	
 SEDEXS.	

• Rahman	
 S.,	
 Bhardwaj	
 A.,	
 Pathak	
 M.,	
 Rathore	
 S.	
 (2012):	
 INTRODUCTION	
 OF	

KNOWLEDGE	
 MANAGEMENT	
 ARCHITECTURE	
 USING	
 MULTI	
 AGENT.	
 International	

Journal	
 of	
 Computer	
 Science	
 &	
 Information	
 Technology	
 (IJCSIT),	
 3	
 (6):	
 229-­‐239.	

• Ralyté	
 J.,	
 Mirbel	
 I.,	
 Deneckère	
 r.	
 (2011):	
 Engineering	
 Methods	
 in	
 the	
 Service-­‐Oriented	

Context.	
 4th	
 IFIP	
 WG	
 8.	
 1	
 Working	
 conference	
 on	
 method	
 engineering.	
 Paris,	
 France.	

• Randles	
 M.,	
 Lamb	
 D.,	
 Taleb-­‐Bendiab	
 A.	
 (2010):	
 A	
 Comparative	
 Study	
 into	
 Distributed	

Load	
 Balancing	
 Algorithms	
 for	
 Cloud	
 Computing.	
 IEEE,	
 24th	
 International	
 Conference	

on	
 Advanced	
 Information	
 Networking	
 and	
 Applications	
 Workshops.	

• Rao	
 A.	
 and	
 Georgeff	
 M.	
 (June,	
 1995):	
 Bdi	
 agents:	
 From	
 theory	
 to	
 practice.	
 In	

Proceedings	
 of	
 the	
 First	
 International	
 Conference	
 on	
 Multi-­‐Agent	
 Systems	
 (ICMAS-­‐95),	

312-­‐319,	
 Menlo	
 Park,	
 California.	
 AAAI	
 Press.	

• Rao	
 J.	
 (2012):	
 Semantic	
 Web	
 Service	
 Composition	
 via	
 Logic-­‐based	
 Program	
 Synthesis,	

ISBN	
 82-­‐471-­‐6464-­‐7	

	
 151	

• Rao	
 A.	
 and	
 Georgeff	
 M.	
 (1992):	
 An	
 Abstract	
 Architecture	
 for	
 Rational	
 Agent.	
 In	
 Rich	
 C.,	

Swartout	
 W.,	
 Nebel	
 B.	
 (Eds.):	
 Proc.	
 of	
 KR’92,	
 Morgan	
 Kaufmann.	

• Ravichandran	
 T.	
 (1999):	
 Software	
 reusability	
 as	
 synchronous	
 innovation:	
 a	
 test	
 of	
 four	

theoretical	
 models.	
 European	
 Journal	
 of	
 Information	
 Systems	
 8:	
 83-­‐199	
 	

• Razavi	
 R.,	
 Perrot	
 J.,	
 Guelfi	
 N.	
 (2005):	
 Adaptive	
 modeling:	
 an	
 approach	
 and	
 a	
 method	
 for	

implementing	
 adaptive	
 agents.	
 Lecture	
 Notes	
 in	
 Artificial	
 Intelligence,	
 3446:	
 136-­‐148.	

• RedHat	
 (2007):	
 Virtualization	
 Guide.	
 Red	
 Hat	
 Virtualization.	

• Rehesaar	
 H.	
 (2011):	
 Capability	
 Assessment	
 for	
 Introducing	
 Component	
 Reuse.	
 Lecture	

Notes	
 in	
 Computer	
 Science,	
 	
 Springer	
 6727:	
 87-­‐101.	

• Rehesaar	
 H.	
 (2011):	
 Capability	
 Assessment	
 for	
 Introducing	
 Component	
 Reuse,	
 Top	

Productivity	
 through	
 Software	
 Reuse.	
 Lecture	
 Notes	
 in	
 Computer	
 Science,	
 Springer	

6727:	
 87-­‐101	

• Rodríguez	
 S.	
 (2010):	
 Modelo	
 Adaptativo	
 para	
 organizaciones	
 virtuales	
 de	
 agentes.	
 PhD	

Thesis.	
 University	
 of	
 Salamanca.	

• Rodríguez	
 S.,	
 de	
 Paz	
 Y.,	
 Bajo	
 J.,	
 Corchado	
 J.	
 M.	
 (2011):	
 Social-­‐based	
 Planning	
 Model	
 for	

Multiagent	
 Systems.	
 Expert	
 Systems	
 with	
 Applications	
 38	
 (38):	
 13005-­‐13023.	
 	

• Rodríguez	
 S.,	
 Pérez-­‐Lancho	
 B.,	
 De	
 Paz	
 J.F.,	
 Bajo	
 J.,	
 Corchado	
 J.M.	
 (July,	
 2009):	
 Ovamah:	

Multiagent-­‐based	
 Adaptive	
 Virtual	
 Organizations.	
 12th	
 International	
 Conference	
 on	

Information	
 Fusion,	
 Seattle,	
 Washington,	
 USA.	
 	

• Romero	
 R.	
 (2007):	
 Especificación	
 OWL	
 de	
 una	
 ontología	
 para	
 teleeducación	
 en	
 la	
 Web	

Semántica.	
 PhD	
 Thesis,	
 Polytechnic	
 University	
 of	
 Valencia.	

• Rosenberg	
 D.	
 (November,	
 2011):	
 Are	
 databases	
 in	
 the	
 cloud	
 really	
 all	
 that	
 different?,	

CNET.	

• Rosenschein	
 J.	
 and	
 Zlotkin	
 G.	
 (1994):	
 Rules	
 of	
 Encounter	
 -­‐	
 Designing	
 Conventions	
 for	

Automated	
 Negotiation	
 among	
 Computers.	
 MIT	
 Press.	

• Rosu	
 M.C.	
 (july,	
 2007):	
 A-­‐SOAP:	
 Adaptive	
 SOAP	
 Message	
 Processing	
 and	
 Compression.	

Web	
 Services.	
 ICWS,	
 IEEE	
 International	
 Conference,	
 200-­‐207	

• Ruckhaus	
 	
 E.	
 (2006):	
 RDF	
 and	
 RDF-­‐Schema.	

http://www.ldc.usb.ve/~ruckhaus/materias/ci7453/clase4.pdf	

• Rueda	
 S.,	
 García	
 J.,	
 Simari	
 G.	
 R.	
 (2002):	
 Argument-­‐based	
 negotiation	
 among	
 bdi	
 agents.	

Journal	
 of	
 Computer	
 Science	
 and	
 Technology,	
 2	
 (7):	
 1-­‐8.	

• Russell	
 S.	
 and	
 Norvig	
 P.	
 (1995):	
 	
 Artificial	
 Intelligence:	
 A	
 Modern	
 Approach.	

Englewood	
 Cliffs,	
 NJ:	
 Prentice-­‐Hall.	

• Saffre	
 F.,	
 Tateson	
 R.,	
 Halloy	
 J.,	
 Shackleton	
 M.,	
 Deneubourg	
 J.L.	
 (march,	
 2008):	

Aggregation	
 Dynamics	
 in	
 Overlay	
 Networks	
 and	
 Their	
 Implications	
 for	
 Self-­‐Organized	

Distributed	
 Applications.	
 The	
 Computer	
 Journal,	
 52	
 (4):	
 397-­‐412.	

• Sametinger	
 J.	
 (1997):	
 Software	
 Engineering	
 with	
 Reusable	
 Components.	
 Springer	
 Ver-­‐	

lag,	
 ISBN-­‐10:	
 3540626956.	

• Sanderson	
 D.	
 (November,	
 2009):	
 Programming	
 Google	
 App	
 Engine.	
 O’Reilly	
 Google	

Press.	

• Sansores	
 C.,	
 Pavón	
 J.	
 (2005):	
 Simulación	
 social	
 basada	
 en	
 agentes.	
 Inteligencia	

artificial:	
 Revista	
 Iberoamericana	
 de	
 Inteligencia	
 Artificial,	
 ISSN	
 1137-­‐	
 3601,	
 9	
 (25):	

71-­‐78.	

• Schaaf	
 M.,	
 Koschel	
 A.,	
 Grivas	
 S	
 .G.	
 and	
 Astrova	
 I.	
 (2010):	
 An	
 active	
 DBMS	
 style	
 activity	

service	
 for	
 cloud	
 environments.	
 Cloud	
 Computing:	
 The	
 First	
 International	
 Conference	

on	
 Cloud	
 Computing,	
 GRIDs,	
 and	
 Virtualization	
 in	
 Cloud	
 Computing,	
 Computation	

World	
 2010	
 IARIA,	
 80-­‐85.	
 	
 	

• Schein	
 E.	
 H.	
 (2004):	
 Organizational	
 culture	
 and	
 leadership.	
 Jossey-­‐Bass	
 Edition:	
 3	
 -­‐	
 437	

pages.	

• Schelling	
 T.	
 C.	
 (1960):	
 The	
 Strategy	
 of	
 Conflict.	
 Harvard	
 University	
 Press,	
 Cambridge,	

MA.	

• Schmid	
 K.	
 (2011a):	
 12th	
 International	
 Conference	
 on	
 Software	
 Reuse,	
 ICSR	
 2011,	

Pohang,	
 South	
 Korea.	
 	
 Series:	
 Lecture	
 Notes	
 in	
 Computer	
 Science,	
 	
 6727.	

• Schmid	
 K.	
 (2011b):	
 Top	
 Productivity	
 through	
 Software	
 Reuse.	
 12th	
 International	

Conference	
 on	
 Software	
 Reuse,	
 ICSR,	
 Pohang,	
 South	
 Korea,	
 	
 Proceedings,	
 ISBN:	
 978-­‐3-­‐
642-­‐21346-­‐5.	

• Serrano	
 J.M.	
 and	
 Ossowski	
 S.	
 (2004):	
 RICA-­‐J	
 -­‐-­‐	
 A	
 Dialogue-­‐Driven	
 Software	
 Framework	

for	
 the	
 Implementation	
 of	
 Multiagent	
 Systems.	
 JISBD	
 Taller	
 en	
 Desarrollo	
 de	
 Sistemas	

Multiagente	
 (DESMA-­‐2004),	
 Málaga,	
 48-­‐61.	

	
 152	

• Shang	
 R.	
 D.,	
 Mohan	
 K.,	
 Lang	
 K.	
 R.,	
 Vragov	
 R.	
 	
 (2012):	
 A	
 market	
 mechanism	
 for	
 software	

component	
 reuse:	
 opportunities	
 and	
 barriers.	
 Proceedings	
 of	
 the	
 14th	
 Annual	

International	
 Conference	
 on	
 Electronic	
 Commerce	
 (ICEC),	
 62-­‐69.	

• Shapiro,	
 R.	
 (2002):	
 A	
 technical	
 comparison	
 of	
 XPDL,	
 BPML	
 and	
 BPEL4WS.	
 CAPE	

VISIONS,	
 Software	
 To	
 Simplify	
 Complexity.	
 OASIS	
 XML	
 Cover	
 Pages,	
 Rotterdam.	

• Sherif	
 K.	
 and	
 Vinze	
 A.	
 S.	
 (2003):	
 Barriers	
 to	
 adoption	
 of	
 software	
 reuse:	
 a	
 qualitative	

study.	
 Information	
 and	
 Management	
 41	
 (2):	
 159-­‐175.	
 	

• Shoham	
 Y.	
 and	
 Tennenholtz	
 M.	
 (1992):	
 Emergent	
 conventions	
 in	
 multi-­‐agent	
 systems.	

In	
 Proceedings	
 of	
 Knowledge	
 Representation	
 and	
 Reasoning,	
 225-­‐231.	

• Shoham	
 Y.	
 and	
 Tennenholtz	
 M.	
 (1997):	
 On	
 the	
 emergence	
 of	
 social	
 conventions:	

Modeling,	
 analysis,	
 and	
 simulations.	
 Artificial	
 Intel	
 ligence,	
 94(1-­‐2):139-­‐166.	

• Silberschatz	
 G.	
 (1994):	
 Operating	
 System	
 concepts.	
 Chapter	
 17,	
 Distributed	
 file	

systems.	
 Addison-­‐Wesley	
 Publishing	
 Company,	
 ISBN	
 0-­‐201-­‐59292-­‐4.	

• Simchi-­‐Levi	
 D.,	
 Kaminsky	
 P.,	
 Simchi-­‐Levi	
 E.	
 (2000):	
 Designing	
 and	
 Managing	
 the	

Supply	
 Chain:	
 Concepts,	
 Strategies	
 and	
 Case	
 Studies.	
 McGraw-­‐Hill/Irwin,	
 New	
 York,	

NY.	
 	

• Singh	
 A.	
 and	
 Malhotra	
 M.	
 (2012):	
 Agent	
 Based	
 Framework	
 for	
 Scalability	
 in	
 Cloud	

Computing.	
 International	
 Journal	
 of	
 Computer	
 Science	
 &	
 Engineering	
 Technology	

(IJCSET)	

• Sirin	
 E.,	
 Parsia	
 B.,	
 Cuenca	
 B.,	
 Kalyanpur	
 A.,	
 Katz	
 Y.	
 (2003):	
 Pellet:	
 A	
 Practical	
 OWL-­‐DL	

Reasoner	
 at	
 University	
 of	
 Maryland,	
 MIND	
 Lab.	
 	

• Sowa	
 J.F.	
 (2000):	
 Knowledge	
 Representation:	
 Logical,	
 Philosophical,	
 and	

Computational	
 Foundations.	
 Pacific	
 Grove,	
 CA:	
 Brooks	
 Cole	
 Publishing	
 Co.	
 	

• Spencer	
 H.	
 (1896):	
 The	
 Study	
 of	
 Sociology.	
 New	
 york,	
 D.	
 Appleton	
 and	
 company.	
 	

• Srinivasan	
 N.,	
 Paolucci	
 M.,	
 Sycara	
 K.	
 (July,	
 2004):	
 Adding	
 OWL-­‐S	
 to	
 UDDI,	

implementation	
 and	
 throughput.	
 Proceedings	
 of	
 the	
 first	
 international	
 workshop	
 on	

Semantic	
 Web	
 Services	
 and	
 Web	
 Process	
 Composition	
 –	
 SWSWPC.	

• Stage	
 A.	
 and	
 Setzer	
 T.	
 (2009):	
 Network-­‐aware	
 migration	
 control	
 and	
 scheduling	
 of	

differentiated	
 virtual	
 machine	
 workloads.	
 In	
 Proceedings	
 of	
 the	
 ICSE	
 Workshop	
 on	

Software	
 Engineering	
 Challenges	
 of	
 Cloud	
 Computing	
 (CLOUD	
 '09).	
 IEEE	
 Computer	

Society,	
 Washington,	
 DC,	
 USA,	
 9-­‐14.	
 	
 	

• Stone	
 P.	
 	
 (1997):	
 Reactive	
 vs.	
 Deliberative	
 agents.	
 Multiagent	
 Systems:	
 A	
 Survey	
 from	
 a	

Machine	
 Learning	
 Perspective,	
 Computer	
 Science	
 Department,	
 Carnegie	
 Mellon	

University.	

• Stone	
 P.	
 and	
 	
 Veloso	
 M.	
 (2000):	
 Multiagent	
 systems:	
 A	
 survey	
 from	
 a	
 machine	
 learning	

perspective.	
 Autonomous	
 Robots,	
 8(3):345–383.	

• Stroustrup	
 B.	
 (1996):	
 Language-­‐technical	
 Aspects	
 of	
 Reuse.	
 In	
 Sitaraman	
 M.,	
 editor,	

Fourth	
 International	
 Conference	
 on	
 Software	
 Reuse,	
 IEEE	
 Computer	
 Society	
 Press,	
 11-­‐
19.	

• Sulistio.	
 A,	
 Reich	
 C.,	
 Dölitzscher	
 F.	
 (2009):	
 Cloud	
 Infrastructure	
 &	
 Applications	
 -­‐	

CloudIA.	
 In	
 Proceedings	
 of	
 the	
 1st	
 International	
 Conference	
 on	
 Cloud	
 Computing	

(CloudCom’09),	
 Beijing,	
 China,	
 583-­‐588.	

• Swartout	
 B.,	
 Ramesh	
 P.,	
 Knight	
 K.,	
 Russ	
 T.	
 (1997):	
 Toward	
 Distributed	
 Use	
 of	
 Large	

Scale	
 Ontologies.	
 In	
 AAAI’97,	
 Spring	
 Symposium	
 on	
 Ontological	
 Engineering.	
 Stanford	

University,	
 California.	

http://ksi.cpsc.ucalgary.ca/KAW/KAW96/swartout/Banff_96_final_2.html	

• Swartout	
 W.,	
 Tate	
 A.	
 	
 (1999):	
 Ontologies.	
 IEEE	
 Intelligent	
 Systems,	
 14	
 (1):	
 18-­‐19.	

• Sycara	
 K.,	
 Paolucci	
 M.,	
 Ankolekar	
 A.,	
 Srinivasan	
 N.	
 (2003):	
 Automated	
 discovery,	

interaction	
 and	
 composition	
 of	
 Semantic	
 Web	
 services.	
 Web	
 Semantics:	
 Science,	

Services	
 and	
 Agents	
 on	
 the	
 World	
 Wide	
 Web,	
 Elsevier	
 1	
 (1):	
 27-­‐46.	

• Sycara	
 K.,	
 Paolucci	
 M.,	
 van	
 Velsen	
 M.,	
 Giampapa	
 J.	
 (2003):	
 The	
 RETSINA	
 MAS	

Infrastructure.	
 Journal	
 of	
 Autonomous	
 Agents	
 and	
 Multi-­‐Agent	
 Systems	
 7(1	
 &	
 2),	

Kluwer	
 Academic	
 Publishers,	
 2003.	

• T.	
 W.	
 Malone.	
 (1988):	
 What	
 is	
 coordantion	
 theory?	
 In	
 National	
 Science	
 Foundation	

Coordination	
 Theory	
 Workshop,	
 MIP,	
 EE.UU.	

• Talia	
 D.	
 (2012):	
 Cloud	
 Computing	
 and	
 Software	
 Agents:	
 Towards	
 Cloud	
 Intelligent	

Services.	
 WOA,	
 	
 CEUR	
 Workshop	
 Proceedings,	
 741:	
 2-­‐6.	
 CEUR-­‐WS.org.	

• Tambe	
 M.	
 (1997):	
 Towards	
 Flexible	
 Teamwork.	
 Journal	
 of	
 Artificial	
 Intelligence	

Research	
 7:	
 83-­‐124.	

	
 153	

• Tan	
 M.	
 (1993):	
 Multiagents	
 Reinforcement	
 Learning:	
 Independent	
 vs.	
 Cooperative	

Agents.	
 In	
 Proceedings	
 of	
 the	
 Tenth	
 International	
 Conference	
 on	
 Machine	
 Learning,	

Morgan	
 Kaufmann,	
 330-­‐337.	

• Tao	
 J.,	
 	
 Kunze	
 M.,	
 	
 	
 Castellanos	
 A.	
 C.	
 ,	
 	
 Kramer,	
 D.,	
 Karl,	
 W.	
 (2008):	
 	
 Scientific	
 Cloud	

Computing:	
 Early	
 Definition	
 and	
 Experience	
 High	
 Performance	
 Computing	
 and	

Communications.	
 HPCC	
 '08,	
 10th	
 IEEE	
 International	
 Conference,	
 825-­‐830.	

• Tere	
 G.M.	
 and	
 Jadhav	
 B.T.	
 (2012):	
 Designing	
 Application	
 Framework	
 using	
 WSDL.	

International	
 Conference	
 &	
 Workshop	
 on	
 Recent	
 Trends	
 in	
 Technology	
 (TCET).	

• Toma	
 I.,	
 Foxvog	
 D.	
 (2006):	
 Non-­‐functional	
 properties	
 of	
 web	
 services.	
 WSMO	
 Working	

draft.	
 http://www.wsmo.org/TR/d28/d28.4/v0.1/20060616/.	

• Uschold	
 M.	
 and	
 Gruninger	
 M.	
 (1996):	
 Ontologies:	
 Principles,	
 Methods	
 and	

Applications.	
 Knowledge	
 Engineering	
 Review,	
 11:	
 93-­‐136.	

• van	
 der	
 Aalst	
 W.M.P.	
 de	
 Beer,	
 H.T.	
 and	
 van	
 Dongen	
 B.F.	
 (2005).	
 Process	
 Mining	
 and	

Verification	
 of	
 Properties:	
 An	
 Approach	
 Based	
 on	
 Temporal	
 Logic,	
 Springer,	
 New	
 York,	

NY.	
 	

• van	
 der	
 Aalst	
 W.M.P.,	
 Dumas	
 M.,	
 ter	
 Hofstede	
 A.H.M.,	
 Russell	
 N.,	
 Verbeek	
 H.M.W.,	
 	

Wohed	
 P.	
 (2005):	
 Life	
 after	
 BPEL?,	
 Lecture	
 Notes	
 in	
 Computer	
 Science,	
 Springer	
 3670:	

35-­‐50.	
 	

• van	
 der	
 Aalst,	
 W.M.P.	
 (2003):	
 Patterns	
 and	
 XPDL:	
 a	
 critical	
 evaluation	
 of	
 the	
 XML	

process	
 definition	
 language.	
 QUT	
 Technical	
 Report,	
 FIT-­‐TR-­‐2003-­‐06,	
 Queensland	

University	
 of	
 Technology,	
 Brisbane.	

• van	
 der	
 Aalst	
 W.M.P.	
 (2005):	
 	
 Don’t	
 go	
 with	
 the	
 flow:	
 web	
 services	
 composition	

standards	
 exposed.	
 IEEE	
 Intelligent	
 Systems,	
 DOI:	
 10.1041/x1072s-­‐2003.	

• van	
 Gorp	
 P.	
 and	
 Dijkman	
 R.	
 (September,	
 2012):	
 A	
 visual	
 token-­‐based	
 formalization	
 of	

BPMN	
 2.0	
 based	
 on	
 in-­‐place	
 transformations.	
 Information	
 and	
 Software	
 Technology,	

55	
 (2):	
 365-­‐394.	

• van	
 Heijst	
 G.,	
 Schreibe	
 A.,	
 and	
 	
 Wielinga	
 B.	
 J.	
 (1997):	
 Using	
 Explicit	
 Ontologies	
 in	
 KBS	

Development.	
 International	
 Journal	
 of	
 Human	
 and	
 Computer	
 Studies,	
 46(2/3):	
 183-­‐
292.	
 	
 	

• Vaquero	
 L.,	
 Rodero-­‐Merino	
 L.,	
 Caceres	
 J.,	
 Lindner	
 M.	
 (2009):	
 A	
 break	
 in	
 the	
 clouds:	

towards	
 a	
 cloud	
 definition.	
 ACM	
 SIGCOMM	
 computer	
 communications	
 review.	

• Vidal	
 J.M.	
 (March,	
 2010):	
 Fundamentals	
 of	
 Multi-­‐Agent	
 Systems	
 with	
 Net	
 Logo	

Examples.	
 Copyrigh	
 José	
 M.	
 Vidal.	
 All	
 rights	
 reserved.	

• Villatoro	
 D.	
 and	
 Sabater-­‐Mir	
 	
 J.	
 (2008c):	
 Towards	
 the	
 Group	
 Formation	
 through	
 Social	

Norms.	
 Proceedings	
 of	
 the	
 Sixth	
 European	
 Workshop	
 on	
 Multi-­‐Agent	
 Systems	

(EUMAS08).	

• Villatoro	
 D.	
 and	
 Sabater-­‐Mir	
 J.	
 (2008a):	
 Categorizing	
 Social	
 Norms	
 in	
 a	
 Simulated	

Resource	
 Gathering	
 Society.	
 Proceedings	
 of	
 the	
 AAAI	
 Workshop	
 on	
 Coordination,	

Organizations,	
 Institutions	
 and	
 Norms	
 (COIN	
 @	
 AAAI08).	

• Villatoro	
 D.	
 and	
 Sabater-­‐Mir	
 J.	
 (2008b):	
 Mechanisms	
 for	
 Social	
 Norms	
 Support	
 in	

Virtual	
 Societies.	
 Proceedings	
 of	
 the	
 Fifth	
 Conference	
 of	
 the	
 European	
 Social	

Simulation	
 Association	
 (ESSA08).	

• Viroli	
 M.,	
 Denti	
 E.,	
 Ricci	
 A.	
 (January,	
 2007):	
 Engineering	
 a	
 BPEL	
 orchestration	
 engine	
 as	

a	
 multi-­‐agent	
 system.	
 Science	
 of	
 Computer	
 Programming,	
 66:	
 226–245.	
 	

• Von	
 Martial	
 F.	
 (1992):	
 Co-­‐ordinating	
 Plans	
 of	
 Autonomous	
 Agents.	
 LNAI	
 610,	
 Springer.	

• W3C	
 OWL-­‐S	
 (2012):	
 http://www.w3.org/Submission/OWL-­‐S/#5.	

• Walsh	
 A.E.	
 (2002):	
 UDDI,	
 SOAP	
 and	
 WSDL:	
 The	
 Web	
 Services	
 Specification.	
 1st	
 edition	

ed.	
 2002,	
 Pearson	
 Education.	

• Wang	
 B.	
 and	
 Liu	
 L.	
 (2012):	
 Ontology-­‐Based	
 Multi-­‐Agent	
 Diagnostic	
 System	
 of	

Enterprise	
 Management.	
 Computer	
 Science	
 and	
 Automation	
 Engineering	
 (CSAE),	
 	
 IEEE	

International	
 Conference	
 on,	
 577-­‐581.	

• Wang	
 L.,	
 and	
 Lazewsky	
 G.	
 (2008):	
 Scientific	
 Cloud	
 Computing:	
 Early	
 Definition	
 and	

Experience.	
 Service	
 Oriented	
 Cyberinfrastruture	
 Lab,	
 Rochester	
 Institute	
 of	

Technology.	

• Wang	
 G.,	
 Wong	
 T.N.,	
 Wang	
 X.	
 (2012):	
 An	
 Ontology	
 based	
 Approach	
 to	
 Organize	
 Multi-­‐
Agent	
 Assisted	
 Supply	
 Chain	
 Negotiations.	
 Computers	
 &	
 Industrial	
 Engineering,	

Elsevier	
 65	
 (1):	
 2-­‐15.	

	
 154	

• Weerawarana	
 S.,	
 Curbera	
 F.,	
 Leymann	
 F.,	
 Storey	
 T.	
 and	
 Ferguson	
 D.	
 (2005):	
 Web	

Services	
 Platform	
 Architecture:	
 SOAP,	
 WSDL,	
 WS-­‐Policy,	
 WS-­‐Addressing,	
 WS-­‐BPEL,	

WS-­‐Reliable	
 Messaging	
 and	
 More.	
 Prentice-­‐Hall,	
 Upper	
 Saddle	
 River.	
 	

• Wegner	
 P.	
 (1997):	
 Why	
 Interaction	
 is	
 more	
 Powerful	
 than	
 Algorithms.	
 	

communications	
 of	
 the	
 ACM,	
 5(40):	
 80-­‐91.	

• Wei-­‐TekTsai,	
 Sun	
 X.,	
 and	
 Balasooriya,	
 J.	
 	
 Service-­‐Oriented	
 Cloud	
 Computing	

Architecture	
 (April,	
 2010).	
 Information	
 Technology:	
 New	
 Generations	
 (ITNG),	
 Seventh	

International	
 Conference,	
 684-­‐689.	

• Werner	
 E.	
 (1989):	
 Cooperating	
 agents:	
 A	
 unified	
 theory	
 of	
 communication	
 and	
 social	

structure.	
 Distributed	
 Artificial,	
 Vol.	
 II:	
 3-­‐36.	
 Pitman	
 Publishing:	
 London	
 andMorgan	

Kaufmann:	
 San	
 Mateo,	
 CA.	
 	

• Weyns	
 D.	
 and	
 Georgeff	
 M.	
 (2010):	
 Self-­‐Adaptation	
 Using	
 Multiagent	
 Systems.	
 Software,	

IEEE,	
 27	
 (1).	

• White	
 S.	
 (2005):	
 Using	
 BPMN	
 to	
 Model	
 a	
 BPEL	
 Process.	
 IBM	
 Corp.,	
 United	
 States.	
 	

• White	
 S.	
 (October,	
 2006):	
 Introduction	
 to	
 BPMN.	
 IBM	
 Software	
 Group.	

• Wiederhold	
 G.	
 (1992):	
 Mediators	
 in	
 the	
 Architecture	
 of	
 Future	
 Information	
 Systems.	

IEEE	
 Computer	
 Magazine.	

• Wohed	
 P.,	
 van	
 der	
 Aalst	
 W.	
 M.	
 P.,	
 Dumas	
 M.,	
 ter	
 Hofstede	
 A.	
 H.	
 M.	
 (Octbober,	
 2003):	

Analysis	
 of	
 Web	
 services	
 composition	
 languages:	
 The	
 case	
 of	
 BPEL4WS.	
 In	

Proceedings	
 of	
 the	
 22nd	
 International	
 Conference	
 on	
 Conceptual	
 Modeling	
 (ER’2003),	

Chicago,	
 200-­‐215.	
 	

• Wooldridge	
 M.	
 (2002):	
 An	
 Introduction	
 to	
 Multiagent	
 Systems.	
 Chichester,	
 England,	

John	
 Wiley	
 &	
 Sons,	
 ISBN	
 047149691X.	

• Xu	
 Y.,	
 Singh	
 N.,	
 Deshpande	
 S.	
 (2011):	
 Reuse	
 by	
 Placement:	
 A	
 Paradigm	
 for	
 Cross-­‐
Domain	
 Software	
 Reuse	
 with	
 High	
 Level	
 of	
 Granularity.	
 Top	
 Productivity	
 through	

Software	
 Reuse,	
 Lecture	
 Notes	
 in	
 Computer	
 Science,	
 Springer	
 6727:	
 69-­‐77	

• Yukio	
 S.,	
 Silva	
 H.m.	
 and	
 Barthès	
 J.P.	
 (April	
 2011):	
 Agent	
 and	
 multi-­‐agent	
 applications	
 to	

support	
 distributed	
 communities	
 of	
 practice:	
 a	
 short	
 review.	
 Autonomous	
 Agents	
 and	

Multi-­‐Agent	
 Systems,	
 25	
 (1):	
 87-­‐129.	

• Zambonelli	
 F.	
 	
 and	
 Parunak	
 H.	
 (2002):	
 From	
 design	
 to	
 intention:	
 Signs	
 of	
 a	
 revolution.	

In	
 Proc.	
 1st	
 Int.	
 Joint	
 Conference	
 on	
 AAMAS,	
 455-­‐456.	

• Zambonelli	
 F.,	
 Gleizes	
 M.P.,	
 Mamei	
 M.	
 and	
 Tolksdorf	
 R.	
 (2004):	
 Spray	
 computers:	

frontiers	
 of	
 self-­‐organisation	
 for	
 pervasive	
 computing.	
 Workshop	
 on	
 Enabling	

Techonologies:	
 Infrastructure	
 for	
 Collaborative	
 Enterprises	
 -­‐	
 WETICE04,	
 IEEE	

Computer	
 Society,	
 397-­‐402.	
 	

• Zambonelli	
 F.,	
 Jennings	
 N.	
 R.,	
 Wooldridge	
 M.	
 (2003):	
 Developing	
 multiagent	
 systems:	

The	
 Gaia	
 methodology.	
 ACM	
 Transactions	
 on	
 Software	
 Engineering	
 and	
 Methodology,	

12(3):	
 317-­‐370.	

• Zeng	
 L.,	
 Benatallah	
 B.,	
 Dumas	
 M.,	
 Kalagnanam	
 J.,	
 Sheng	
 Q.	
 (2003):	
 Quality	
 Driven	
 Web	

services	
 Composition.	

• Zhang	
 Q.,	
 Cheng	
 L.,	
 and	
 Boutaba	
 R.	
 (April,	
 2010):	
 Cloud	
 computing:	
 state-­‐of-­‐the-­‐art	
 and	

research	
 challenges.	
 Journal	
 of	
 Internet	
 Services	
 and	
 Applications,	
 Springer	
 1	
 (1):	
 7-­‐
18.	

• Zsu	
 M.T.	
 and	
 Valduriez	
 P.	
 (1999):	
 Principles	
 of	
 Distributed	
 Database	
 Systems.	
 Third	

Edition,	
 Springer,	
 ISBN	
 978-­‐1-­‐4419-­‐8833-­‐1.	

	

7.1 Web REFERENCES

• Active	
 endpoints.	
 (2009).	
 In	
 Depth.	
 http://www.activevos.com/	
 	

• ActiveBPEL.	
 (2012).	
 http://swik.net/ActiveBPEL	

• Amazon	
 Elastic	
 Computing	
 Cloud	
 (2012).	
 aws.amazon.com/ec2	

• Amazon	
 Security.	
 (2012).	
 Amazon	
 Web	
 Services	
 Security.	

http://aws.amazon.com/es/security/	

• Answers.	
 (2012).	
 	
 	
 Cloud	
 Computing.	
 http://www.answers.com/topic/cloud-­‐

computing	

• Apache	
 Cassandra.	
 (2012).	
 http://cassandra.apache.org/	

• Azure	
 Platform.	
 (2011).	
 Microsoft	
 Azure.	
 Introducing	
 Microsoft	
 Azure	
 Platform.	

	
 155	

• Bluelock.	
 (2012).	
 http://www.bluelock.com/	

• 	
 CAR.	
 (2010).	
 Arquitectura	
 Orientada	
 a	
 Servicios	
 (SOA)	
 Cómo	
 reformular	
 la	

Arquitectura	
 Corporativa	
 para	
 alcanzar	
 el	
 alto	
 rendimiento.	
 Un	
 estudio	
 publicado	
 por	

el	
 Centro	
 de	
 Alto	
 Rendimiento	
 de	
 Accenture	
 (CAR)	

• CherryPy.	
 (2012).	
 	
 http://www.cherrypy.org/	

• Citrix.	
 (2012).	
 http://www.citrix.es/lang/Es-­‐es/home.asp	

• CouchDB.(Accedido	
 en	
 2012).	
 http://couchdb.apache.org/	

• Django.	
 (2012).	
 	
 http://django.es/	

• Dropbox.	
 (2012).	
 	
 https://www.dropbox.com/	

• Elasticdrive	
 Project.	
 (2012).	
 	
 http://www.elasticdrive.com/	

• EuroCloud	
 Deutschland_eco	
 eV	
 (2011).	
 Eurocloud	
 star	
 audit	
 saas	
 certificate.	

http://www.saas-­‐audit.de	

• FIPA.	
 (2012).	
 http://fipa-­‐os.sourceforge.net/	
 	

• FIPA.	
 (2012a).	
 http://www.fipa.org	
 	

• FlexiScale	
 Cloud	
 Comp	
 and	
 Hosting.	
 (2012).	
 	
 www.flexiscale.com	

• GoGridCloud	
 Hosting	
 (Accedido	
 2012).	
 CLoud	
 Computing	
 and	
 Hybrid	
 Infrastructure	

from	
 GoGrid,	
 http://www.gogrid.com	

• Google	
 App	
 Engine.	
 (2012).	
 URL	
 http://code.google.com/appengine	

• Google	
 Developers.	
 (2012).¿Por	
 qué	
 App	
 Engine?	

https://developers.google.com/appengine/whyappengine?hl=es	

• GramaticasFormales.	
 (2011).	
 Web	
 Services.	

http://gramaticasformales.wordpress.com/2011/01/24/web-­‐services/	

• IBM	
 BPEL4WS.	
 (2012).	

http://www.ibm.com/developerworks/webservices/library/ws-­‐bpelcol4/	

• IBM.	
 (2009).	
 	
 WebSphere	
 Business	
 Integration	
 Adapters.	

http://publib.boulder.ibm.com/infocenter/wbihelp/v6rxmx/index.jsp?topic=/com.ib
m.wbia_adapters.doc/doc/webservices/webservices17.htm	
 	

• IBM.	
 (January,	
 2008).	
 	
 How	
 service-­‐oriented	
 architecture	
 (SOA)	
 impacts	
 your	
 IT	

infrastructure	
 Satisfying	
 the	
 demands	
 of	
 dynamic	
 business	
 processes.	
 	
 IBM	
 Global	

Technology	
 Services	

• IBM.	
 (2012).	
 	
 IBM	
 Blue	
 Cloud	
 project	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 http://www-­‐03.ibm.com/press/us/en/pressrelease/22613.wss/	

• INSA,	
 NEBUSENS,	
 DIVISAIT,	
 JLLORENS	
 and	
 USAL	
 (2012).	
 Análisis	
 del	
 Estado	
 del	
 Arte	
 y	

la	
 Problemática.	

• JADE	
 (2012)	
 http://jade.tilab.com/	
 	

• Joyent.	
 (2012).	
 http://joyent.com/	

• Microsoft	
 (2010).	
 Service	
 Oriented	
 Architecture	
 Infrastructure	
 	
 Business	
 agility	

through	
 service	
 virtualization.	

• Microsoft	
 SQL	
 Server	
 (2012).	
 http://www.microsoft.com/es-­‐

es/sqlserver/default.aspx	

• MongoDB.	
 (Accedido	
 en	
 2012).	
 http://www.mongodb.org/	

• MySQL.	
 (Accedido	
 en	
 2012).	
 http://www.mysql.com/	

• Nimbus.	
 (2012).	
 Nimbus	
 Project.	
 	
 http://workspace.globus.org/clouds/nimbus.html/	

• North	
 K.	
 (2011).	
 SQL,	
 NoSQL	
 or	
 SomeSQL?,	
 Dr.	
 Dobb's,	
 	

• OASIS.	
 (2006).	
 Reference	
 Model	
 for	
 Service	
 Oriented	
 Architecture	
 1.0	
 Committee	

Specification.	

• OASIS	
 WSBPEL	
 TC.	
 (2007).	
 Web	
 services	
 business	
 process	
 execution	
 language	
 version	

2.0.	
 Tech	
 rep,	
 OASIS.	
 Available	
 at	
 http://docs.oasis-­‐open.org/wsbpel/2.0/OS/	

• Oracle	
 BPEL	
 Manager.	
 	
 (2012).	

http://www.oracle.com/technetwork/middleware/bpel/overview/index.html	

• Oracle	
 Database.	
 (2012).	
 http://www.oracle.com/es/products/database/index.html	

• OWL	
 (2012).	
 http://www.w3.org/TR/owl-­‐features/	

• Point,	
 Tutorials.	
 (2009).	
 What	
 are	
 Web	
 services.	

http://www.tutorialspoint.com/webservices/what_are_web_services.htm	
 	

• Pylons.	
 	
 (2012).	
 http://www.pylonsproject.org/	

• RacksPace,	
 Dedicated	
 Server.	
 (2012).,	
 Managed	
 Hosting,	
 Web	
 Hosting	
 by	
 Rackspace	

Hosting,	
 http://www.rackspace.com	

• S3.	
 Amazon	
 Simple	
 Storage	
 Service.	
 (2012).	
 http://aws.amazon.com/s3/	

• Salesforce	
 CRM.	
 (2012).	
 www.salesforce.com/platform	

	
 156	

• SAP	
 Business	
 ByDesign.	
 (2012).,	
 www.sap.com/sme/solutions/	

businessmanagement/businessbydesign/index.epx	

• SearchCloudComputing.	
 (2012).	

http://searchcloudcomputing.techtarget.com/photostory/2240149038/Top-­‐10-­‐
cloud-­‐providers-­‐of-­‐2012/1/Introduction#contentCompress	

• Terremark.	
 (2012).	
 http://www.terremark.es/default.aspx	

• Thomas.	
 (2010).	
 http://thomas-­‐tin.usal.es/	

• UDDI.	
 (2002).	
 UDDI	
 Technical	
 Committee.	
 Universal	
 Description,	
 Discovery	
 and	

Integration.	
 (UDDI).	
 http://www.oasis	
 -­‐open.org/committees/uddi-­‐spec/	

• VMWare	
 (2012).	
 http://www.vmware.com/es/	

• W3C.	
 (May,	
 2000).	
 Simple	
 Object	
 Access	
 Protocol	
 (SOAP)	
 1.1	
 W3C	
 Note	
 	

• W3C.	
 Christensen	
 E.,	
 Curbera	
 F.,	
 Meredith	
 G.	
 and	
 	
 Weerawarana	
 S.	
 (March,	
 2001).	
 Web	

Services	
 Description	
 Language	
 (WSDL)	
 1.1	

• Web2Py.	
 (2012).	
 http://www.web2py.es/welcome/default/index	

• WidowsServer.	
 Microsoft	
 Windows	
 Server.	
 (2012).	
 http://www.microsoft.com/es-­‐

es/server-­‐cloud/ws2012/default.aspx	

• Windows	
 Azure	
 (Accedido	
 2012).	
 www.microsoft.com/azure	

• WSDL.	
 (2009).	
 http://www.w3.org/TR/wsdl	
 	

	

