Revista de la Sociedad Otorrinolaringológica de Castilla y León, Cantabria y La Rioja

ISSN 2171-9381

Revista de Otorrinolaringología y disciplinas relacionadas dirigida a profesionales sanitarios. Órgano de difusión de la Sociedad Otorrinolaringológica de Castilla y León, Cantabria y La Rioja Periodicidad continuada

Edita: Sociedad Otorrinolaringológica de Castilla y León, Cantabria y La Rioja

Correspondencia: revistaorl@revistaorl.com

web: www.revistaorl.com

Artículo original

Neuromonitorización intraoperatoria y pronóstico de la motilidad laríngea tras cirugía de tiroides

Intraoperative neuromonitoring and prognosis of laryngeal motility after thyroid surgery

José Luis Pardal-Refoyo*, Carlos Ochoa-Sangrador**, Jesús Javier Cuello-Azcárate***, María Ángeles Martín-Almendra****

Complejo Asistencial de Zamora. Hospital Virgen de la Concha. Zamora. España. Grupo de Investigación en patología tiroidea y paratiroidea. *Servicio de Otorrinolaringología. **Unidad de Apoyo a la Investigación. ***Servicio de Anestesiología y Reanimación. ****Sección de Endocrinología jlpardal@saludcastillayleon.es

Recibido: 25/02/2013 | Aceptado: 26/03/2013 | Publicado: 26/05/2013

Conflicto de intereses: Los autores declaran no tener conflictos de intereses

Imágenes: Los autores declaran haber obtenido las imágenes con el permiso de los pacientes

Referencia del artículo:

Pardal-Refoyo JL, Ochoa-Sangrador C, Cuello-Azcárate JJ, Martín-Almendra MA. Neuromonitorización intraoperatoria y pronóstico de la motilidad laríngea tras cirugía de tiroides. Rev Soc Otorrinolaringol Castilla Leon Cantab La Rioja. 2013. 4 (11): 96-105

Resumen	Introducción y objetivos: La neuromonitorización ayuda en la identificación
11000	del nervio laríngeo recurrente (NLR) en cirugía de tiroides, informa de su
	función al finalizar la cirugía y apoya en la toma de decisiones. Objetivo:
	Calcular la validez de la neuromonitorización respecto a la motilidad
	laríngea postoperatoria comprobada con laringoscopia indirecta. Métodos:
	Estudio prospectivo en 185 pacientes (342 NLR incluidos) sometidos a
	primera intervención de tiroidectomía total o parcial. Se recogieron las
	variables cualitativas de la neuromonitorización (presencia o ausencia de
	señal final tras estimulación en el nervio vago) y de las laringoscopias
	indirectas postoperatorias (motilidad normal o parálisis) realizadas en 1º a
	3º día (laringoscopia 1) y entre 3ª a 4ª semana (laringoscopia
	2).Resultados: La exactitud de la prueba fue del 99,7% en laringoscopia 1 y
	98,8% en laringoscopia 2. El valor predictivo positivo (100%) indica alta
	capacidad de la neuromonitorización para predecir parálisis en caso de pérdida de señal y el valor predictivo negativo (99,7% en laringoscopia 1 y
	99,12% en laringoscopia 2) indica su capacidad de predicción de motilidad
_	normal cuando hubo señal normal. Conclusiones: La neuromonitorización
	tiene utilidad para planificar y decidir diferentes estrategias en caso de
	pérdida de la señal o si hubo parálisis laríngea previa y tiene utilidad en la
	gestión de la vía aérea ayudando a la prevención de la parálisis laríngea
- 6	bilateral.
Palabras clave	tiroides; tiroidectomía; nervio laríngeo recurrente; monitorización
The Control	intraoperatoria; parálisis de cuerda vocal; seguridad del paciente;
	Procedimientos Quirúrgicos Ultrasónicos
Summary	Introduction and objectives: Neuromonitoring helps in identifying the
	recurrent laryngeal nerve (RLN) in thyroid surgery, reports on its functioning
100	at the end of surgery and supports decision making. Objective: To estimate the validity of neuromonitoring with regard to postoperative laryngeal motility
	verified with indirect laryngoscopy. Methods: A prospective study in 185
	patients (342 RLN included) undergoing first intervention of partial or total
7.	thyroidectomy. We collected qualitative variables of neuromonitoring
1,6	(presence or absence of final signal after stimulation of the vagus nerve)
	and postoperative indirect laryngoscopy (normal motility or paralysis)
	performed on the 1st to 3rd day (laryngoscopy 1) and from 3rd to 4th week
	(laryngoscopy 2).Results: The accuracy of the test was 99.7% in
	laryngoscopy 1 and 98.8% in laryngoscopy 2. The positive predictive value
	(100%) shows the high ability of neuromonitoring to predict paralysis in case
	of loss of signal and the negative predictive value (99.7% in laryngoscopy 1 and 98.12% in laryngoscopy 2) indicates its predictive capacity for normal
	motility when there is a normal signal. Conclusions: Neuromonitoring is
	useful for planning and deciding different strategies in case of signal loss or
	if there was prior laryngeal paralysis. It is also useful in management of the
	airway to assist the prevention of bilateral laryngeal paralysis.
Keywords	thyroid; thyroidectomy; recurrent laryngeal nerve; monitoring; intraoperative;
	vocal cord paralysis; patient safety; Ultrasonic Surgical Procedures

Introducción

La identificación del nervio laríngeo recurrente (NLR) durante la tiroidectomía reduce la probabilidad de dañarlo [1-3].

La neuromonitorización intraoperatoria intermitente facilita la identificación del NLR [4-7]. Además informa intraoperatoriamente sobre la integridad o fallo de la conducción nerviosa [6-8].

La laringoscopia preoperatoria permite detectar patología laríngea orgánica o trastornos de la motilidad [6,7,9,10]. Mediante la laringoscopia postoperatoria

se evalúa la motilidad laríngea y se confirman los verdaderos y falsos positivos y negativos tras la neuromonitorización [7.11.12].

La relación entre pérdida de señal de neuromonitorización y parálisis laríngea es variable en la literatura y la estrategia que debe seguirse tras una pérdida de señal está sujeta a discusión ya que en un estudio reciente se demuestra la recuperación intraoperatoria de la señal en un alto porcentaje de casos [13].

El objetivo de este estudio es calcular el valor predictivo de la neuromonitorización sobre la motilidad laríngea postoperatoria comprobada con laringoscopia indirecta.

Material y método

Estudio prospectivo no aleatorizado, no estratificado en 185 pacientes consecutivos sometidos a primera intervención de tiroidectomía total o parcial por el mismo cirujano entre enero de 2011 y noviembre de 2012. Los datos de la muestra se exponen en la tabla 1.

Tabla 1. Datos generales de la muestra

	100	n	% IC 95%	NLR	
Número de pacientes	100	185	-8%	370	
Edad (media años, rango)	55,42 (25-81)				
Distribución por género	The same in				
	Mujeres	141	76,22 [70-82,4]		
	Varones	44	23,78 [17,65-29,92]		
Técnica quirúrgica	Libert Ser				
Tire	oidectomía total	161	87,03 [82,2-91,9]	322	
He	mitiroidectomía	24	12,97 [8,1-17,8]	24	
Vaciamiento ganglio	nar lateral (II-V)	2	1,08 [0-2,6]		
Vaciamiento ganglio	onar central (VI)	19	10,27 [5,9-14,6]		
Paratiroided	tomía asociada	20	10,81 [6,3-15,3]		
Histología postquirúrgica	1223				
Histología benigna	-	151	81,6% [76,04-87,20]		
Enferme	edad de Graves	9	36.7		
2.0	Otras tiroiditis	29	1.00		
Multinodular/hiper	olasia/adenoma	113	10.30		
Histología maligna	100	34	18,4 [12,8-23,96]		
	c. papilar	26			
	c. folicular	7			
	c. medular	1			
Motilidad cordal evaluada e	n preoperatorio			370	
NLR en riesgo quirúrgico				346	
NLR excluidos del estudio	400	7		4	_
			por parálisis previa		2
NIB. III			ería del sistema de NM	0.40	2
NLR incluidos en estudio (N				342	
Incidencias relacionadas co	n NM	0	0		

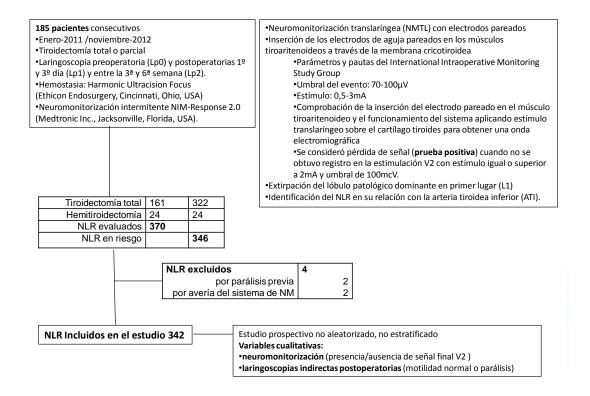
Entre corchetes: intervalo de confianza al 95%

n: número de pacientes; NLR: nervio laríngeo recurrente; NM: neuromonitorización intermitente

A todos los pacientes les fue realizada laringoscopia indirecta con espejo y

rinofibrolaringoscopio, preoperatoria (Lp0) y postoperatoria entre el 1º y 3º día (Lp1) y entre la 3ª y 6ª semana (Lp2).

Se utilizó sistema Harmonic Ultracision Focus (Ethicon Endosurgery, Cincinnati, Ohio, USA) y neuromonitorización intermitente con NIM-Response 2.0 (Medtronic Inc., Jacksonville, Florida, USA) insertando los electrodos de aguja pareados en los músculos tiroaritenoideos a través de la membrana cricotiroidea [14]. En la monitorización se siguieron las pautas indicadas por el International Intraoperative Monitoring Study Group [7]. En todos los casos se extirpó el lóbulo patológico dominante en primer lugar. La identificación del NLR se realizó sistemáticamente en su relación con la arteria tiroidea inferior. Se comprobó la correcta inserción del electrodo pareado en el músculo tiroaritenoideo y el funcionamiento del sistema aplicando estímulo translaringeo sobre el cartílago tiroides obtener una para electromiográfica [7,15].


Se incluyeron en el estudio 342 NLR de los que se recogieron las variables cualitativas de la neuromonitorización (presencia o ausencia de señal final sobre el nervio vago -V2-) y de las laringoscopias indirectas postoperatorias (motilidad normal o parálisis). Se excluyeron 4 nervios (2 por parálisis detectada en la laringoscopia preoperatoria y 2 por ausencia de señal debidas a avería demostrada del sistema de neuromonitorización).

Se consideró pérdida de señal (prueba positiva) cuando no se obtuvo registro en la estimulación V2 con estímulo igual o superior a 2mA y umbral de 100mcV.

Los criterios de inclusión y exclusión se resumen en el diagrama de flujo de la figura 1.

Los estimadores de validez con sus intervalos de confianza se calcularon con la calculadora para pruebas diagnósticas CASPe (J. Primo, Calculadoras CASPe -Critical Appraisal Skills Programme Español-, disponible en http://www.redcaspe.org/).

J. LEOV

Figura 1. Diagrama de flujo con la distribución de la muestra, criterios de inclusión y exclusión y metodología

Resultados

En la tabla 2 se presentan los resultados del estudio expresados en porcentaje con su intervalo de confianza al 95%.

No hubo incidencias ni complicaciones derivadas de la técnica de neuromonitorización.

La exactitud o eficiencia de la prueba fue del 99,7% en Lp1 y 98,8% en Lp2.

El valor predictivo positivo (VPP) obtenido indica alta capacidad de la neuromonitorización para predecir parálisis en caso de pérdida de señal (parálisis en el 100% Lp1) y el valor predictivo negativo (VPN) indica su alta capacidad de predicción de motilidad cordal normal cuando hubo señal (99,7% en Lp1 y 99,12% en Lp2).

El porcentaje y la proporción de falsos positivos es del 0% en Lp1 y del 0,29% en Lp2.

El porcentaje de falsos negativos es del 0,29% en Lp1 (proporción del 33,3% respecto a los nervios con parálisis) y del 0,88% en Lp2 (proporción del 75%). La figura 2 muestra en diagrama la evolución de las parálisis laríngeas respecto a la señal de neuromonitorización y al momento de realizar la laringoscopia (Lp1 y Lp2).

Respecto a la evolución de las parálisis laríngeas detectadas en Lp1, evaluadas en la laringoscopia Lp2, en la muestra estudiada hubo recuperación en el 33,3%, persistencia en el 66,7% y se presentaron nuevas parálisis en el

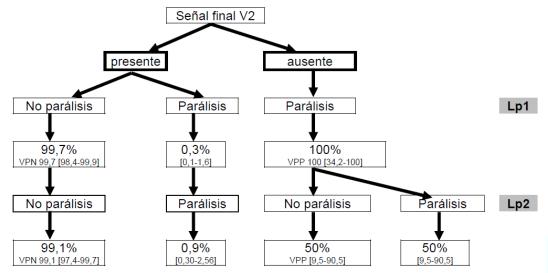

0,6%. Todas las parálisis laríngeas fueron transitorias, con motilidad normal comprobada a las 12 semanas. No hubo ningún caso de parálisis bilateral. La neuromonitorización orientó a cambiar la estrategia en un paciente con bocio nodular compresivo con extensión mediastínica bilateral (0,54% de la muestra) por pérdida de señal con parálisis confirmada en Lp1 (verdadero positivo) y recuperación confirmada en Lp2 (parálisis transitoria) que permitió completar la tiroidectomía en un segundo tiempo sin incidencias.

Tabla 2. Resultados

		Laringos entre e	scopia 1 (Lp1) el 1º y 3º día	Laringoscopia 2 (Lp2) entre la 3ª y 6ª semana	
Nervios evaluados	total	Parálisis	No parálisis	Parálisis	No parálisis
	342	3	339	4	338
Señal de NM final V2 ausente	2	2	0	1	1
Señal de NM final V2 presente	340	1	339	3	337
Cálculos estadísticos		NI	M y Lp1	NM y Lp2	
	% IC 95%		% IC 95%		
S	66,7 [20,8-93,9]		25 [4,6-69,9]		
Es	100 [98,9-100]		99,7 [98,3-99,9]		
Valor predicti		[34,2-100]	50,0 [9,5-90,5]		
Valor predictiv	-		-	99,1 [97,4-99,7]	
Proporción de falso	99,7 [98,4-99,9]				
·	0 [0,0-1,1]		0,3 [0,1-1,7]		
Proporción de falsos	33,3 [6,1-79,2]		75 [30,1-95,4]		
	99,7 [98,4-99,9]		98,8 [97-99,5]		
Probabilidad pre-prueba (Pr	0,88 [0,0-1,87]		1,17 [0,03-2,31]		
Proporción parálisis si señ	100 [34,2-100]		50 [9,5-90,5]		
Proporción parálisis si seña	0,3 [0,1-1,6]		0,88 [0,30-2,56]		
Proporción de motilidad normal	99,7 [98,4-99,9]		99,12 [97,44-99,7]		
Porcentaje de verdadero	0,58 [0,0-1,4]		0,29 [0-0,9]		
Porcentaje de verdaderos	99,12 [98,1-100]		98,54 [97,3-99,8]		
Porcentaje de falso		[0-0,2]	0,29 [0-0,9]		
Porcentaje de falsos		9 [0-0,9]	0,88 [0-1,9]		
Porcentaje de parálisis bilateral		0		0	
Probabilidad parálisis Lp2 si paráli		0		66,7 [20,8-93,9]	
(persistencia de				00,7	[20,6-93,9]
Probabilidad de recuperación en Lp2 si				33,3	[6,1-79,2]
parálisis en Lp1 (recuperación)					
Probabilidad parálisis en Lp2 si Lp1 normal				0,6 [0,2-2,1]	
(presentación de parálisis nueva)		0.00.00.00			
Cambio de estrategia (respecto a NLR) (respecto a la muestra)		0,29 [0- 0,9] 0,54 [0-1,6]			
(respecte a n	a mucsita)		C 95%		IC 0E0/
211 "			IC 95%		
Odds ratio o		∞	112,33 [5,62- 2246,94]		
Índice J		0,7	0,2		
Cociente de probabilidad positivo (CPP)		∞		84,50 [6,34- 1127,09]	
Cociente de probabilidad nega	0.33	[0,07-1,65]	0,75 [0,43- 1,33]		

Entre corchetes: intervalo de confianza al 95%

Lp1: primera laringoscopia indirecta postquirúrgica realizada entre 1º y 3º días; Lp2: segunda laringoscopia indirecta postquirúrgica realizada entre 3º y 6º semanas; NM: neuromonitorización; V2: señal de neuromonitorización obtenida por estímulo del nervio vago tras concluir la lobectomía

Figura 2. Evolución de la motilidad laríngea según el resultado de la neuromonitorización. Lp1: laringoscopia postquirúrgica realizada entre el 1º y 3º día; Lp2: laringoscopia postquirúrgica realizada entre la 3ª y 6ª semana; VPN: valor predictivo negativo; VPP: valor predictivo positivo.

Los valores se expresan en porcentaje con su intervalo de confianza del 95% entre corchetes.

Discusión

La precisión de la neuromonitorización se incrementa si se realiza la prueba V2 final ya que reduce los falsos negativos y confirma los verdaderos positivos [7,16-18]. La señal V2 puede ser suficiente para conocer el estado funcional del NLR al terminar la cirugía [7,19].

El conocimiento del valor predictivo de la neuromonitorización orienta al cirujano en la gestión del riesgo en caso de pérdida de señal tras la primera lobectomía en una tiroidectomía total programada o en caso de parálisis laríngea contralateral ya conocida.

Los resultados publicados sobre el valor predictivo de la neuromonitorización, varían por diversas causas entre las que está el tipo de electrodo de registro utilizado (aguja insertada en el músculo vocal o de superficie en el tubo endotraqueal) [18,20,21].

En el presente estudio, los valores VPP y VPN traducen la alta capacidad pronóstica de la neuromonitorización para predecir motilidad laríngea normal si hubo señal (verdadero negativo en 99,7%) o parálisis si se perdió la señal (100% verdadero positivo).

Las situaciones falso positivo y falso negativo reducen el valor predictivo de la prueba [7]. El falso positivo reduce el VPP y la especificidad. El falso negativo reduce el VPN y la sensibilidad. La validez puede variar según el momento en el que se realice la laringoscopia [13].

Los falsos positivos pueden originarse por mal emplazamiento de los electrodos, avería en el equipo, error de programación, aumento de la impedancia o artefactos en el registro [7,19]. Estas situaciones pueden preverse confirmando el correcto funcionamiento del sistema comprobando el registro de la señal tras estimular sobre el cartílago tiroides [7]. En la

neuromonitorización con electrodos de aguja insertados en el músculo tiroaritenoideo no se manifiestan problemas por incremento de la impedancia por interposición de saliva o por relajación neuromuscular como puede ocurrir con los electrodos de superficie [22]. Esto puede traducirse en menor incidencia de falsos positivos [1,6,7,19,20,22-24].

En caso de pérdida de señal, caben distintas opciones como posponer la segunda lobectomía hasta haber comprobado la motilidad laríngea con certeza [7,21], completar la tiroidectomía con mayor precaución en la segunda lobectomía o comprobar si hubo recuperación intraoperatoria de la señal mediante comprobaciones sucesivas en el NLR y en el vago (registros R3, V3) [13]. En esta situación, la decisión para completar la tiroidectomía debe ser individualizada y dependerá del diagnóstico confirmado en la primera lobectomía, del diagnóstico de sospecha en el lóbulo residual, del estado de la vía aérea, de las alternativas terapéuticas, de la comorbilidad y de la decisión del paciente [21,25].

En el presente estudio, hubo parálisis laríngea confirmada en los casos con pérdida de la señal. Por este motivo, cuando se produce pérdida de señal en la primera lobectomía, mantenemos el criterio de completar la tiroidectomía en una segunda intervención tras confirmar la recuperación de la motilidad laríngea [7]. Además, si se produjera pérdida de la señal en una segunda lobectomía con parálisis contralateral conocida deben extremarse los cuidados en la extubación ante una eventual parálisis laríngea bilateral. Es difícil establecer el impacto de la neuromonitorización en la prevención de la parálisis bilateral [13].

Los falsos negativos pueden deberse a parálisis laríngea producida después de la obtención del registro último V2 (por diversos mecanismos: manipulación inadvertida del NLR, movimientos de rotación de la tráquea, decúbito o succión por los drenajes, hematoma, seroma o fibrosis, neuroapraxia retardada o por lesión cordal o aritenoidea no neural provocada por las maniobras de intubación y extubación [7,16]). La incidencia de falsos negativos en el presente estudio fue del 0,3% en Lp1 y del 0,88% en Lp2. La situación de falso negativo implica un fallo en la predicción de parálisis laríngea. Por ello incide en la seguridad del paciente. El riesgo se incrementa en caso de producirse falso negativo en el lado operado y haber parálisis laríngea en el contralateral (se produciría una parálisis laríngea bilateral).

Al paciente hay que advertirle antes de la operación del riesgo de presentarse una parálisis laríngea aunque se haya obtenido registro electromiográfico normal.

Conclusiones

La señal de neuromonitorización se relaciona con el pronóstico de la motilidad laríngea.

Es útil en la planificación de la estrategia en caso de pérdida de la señal para prevenir una potencial parálisis laríngea bilateral.

Su valor predictivo se modifica con el momento de realización de la laringoscopia postquirúrgica.

Agradecimientos

A Pedro Felipe Rodríguez de la Concepción (Biblioteca).

Bibliografía

- 1. Barczynski M, Konturek A, Cichon S. Randomized clinical trial of visualization versus neuromonitoring of recurrent laryngeal nerves during thyroidectomy. Br J Surg. 2009;96:240–46.
- 2. Cavicchi O, Caliceti U, Fernandez IJ, Ceroni AR, Marcantoni A, Sciascia S, et al. Laryngeal neuromonitoring and neurostimulation versus neurostimulation alone in thyroid surgery: a randomized clinical trial. Head Neck. 2012;34:141-5.
- 3. Hermann M, Alk G, Roka R, Glaser K, Freissmuth M. Laryngeal recurrent nerve injury in surgery for benign thyroid diseases: effect of nerve dissection and impact of individual surgeon in more than 27.000 nerves at risk. Ann Surg. 2002;235:261–68.
- 4. Rosato L, Carlevato MT, De Toma G, Avenia N. Recurrent laryngeal nerve damage and phonetic modifications after total thyroidectomy: Surgical malpractice only or predictable sequence? World J Surg. 2005;29:780-4.
- 5. Higgins TS, Gupta R, Ketcham AS, Sataloff RT, Wadsworth JT, Sinacori JT. Recurrent laryngeal nerve monitoring versus identification alone on post-thyroidectomy true vocal fold palsy: a meta-analysis. Laryngoscope. 2011;121:1009-17.
- 6. Pardal-Refoyo JL. Utilidad de la neuromonitorización en cirugía tiroidea. Acta Otorrinolaringol Esp. 2012;63:355-63.
- 7. Randolph GW, Dralle H; International Intraoperative Monitoring Study Group, Abdullah H, Barczynski M, Bellantone R, et al. Electrophysiologic recurrent laryngeal nerve monitoring during thyroid and parathyroid surgery: international standards guideline statement. Laryngoscope. 2011;121(Suppl 1):1-16.
- 8. Dionigi G, Barczynski M, Chiang FY, Dralle H, Duran-Poveda M, lacobone M, et al. Why monitor the recurrent laryngeal nerve in thyroid surgery? J Endocrinol Invest. 2010;33:819-22.
- 9. Clark OH. Medullary carcinoma of the thyroid: surgical management. In: Wartosfsky L, Van Nostrand D. Thyroid cancer: A comprehensive guide to clinical management. 2th edition. Humana Press Inc. Totowa, New Jersey; 2006. p 595-596.
- 10. Chiang FY, Lee KW, Chen HC, Chen HY, Lu IC, Kuo WR, et al. Standardization of intraoperative neuromonitoring of recurrent laryngeal nerve in thyroid operation. World J Surg. 2010;34:223-29.
- 11. Randolph GW, Kamani D. The importance of preoperative laryngoscopy in patients undergoing thyroidectomy: voice, vocal cord function, and the preoperative detection of invasive thyroid malignancy. Surgery. 2006;139:357-62.
- 12. Schlosser K, Zeuner M, Wagner M, Slater EP, Domínguez E, Rothmund M, et al. Laryngoscopy in thyroid surgery--essential standard or unnecessary routine? Surgery. 2007;142:858-64.
- 13. Sitges-Serra A, Fontané J, Dueñas JP, Duque CS, Lorente L, Trillo L,

- Sancho JJ. Prospective study on loss of signal on the first side during neuromonitoring of the recurrent laryngeal nerve in total thyroidectomy. Br J Surg. 2013 Jan 23. Disponible en: http://onlinelibrary.wiley.com/doi/10.1002/bjs.9044/pdf. [Consultado el 23-01-2013]
- 14. Alon EE, Hinni ML. Transcricothyroid electromyographic monitoring of the recurrent laryngeal nerve. Laryngoscope. 2009;119:1918-21.
- 15. Dionigi G, Chiang FY, Rausei S, Wu CW, Boni L, Lee KW, et al. Surgical anatomy and neurophysiology of the vagus nerve (VN) for standardised intraoperative neuromonitoring (IONM) of the inferior laryngeal nerve (ILN) during thyroidectomy. Langenbecks Arch Surg. 2010;395:893-9.
- 16. Wu CW, Dionigi G, Chen HC, Chen HY, Lee KW, Lu IC, et al. Vagal nerve stimulation without dissecting the carotid sheath during intraoperative neuromonitoring of the recurrent laryngeal nerve in thyroid surgery. Head Neck. 2012 Sep 18. doi: 10.1002/hed.23154. Disponible en: http://onlinelibrary.wiley.com/journal/10.1002. [Consultado el 12/12/2012].
- 17. Thomusch O, Sekulla C, Machens A, Neumann HJ, Timmermann W, Dralle H. Validity of intra-operative neuromonitoring signals in thyroid surgery. Langenbecks Arch Surg. 2004;389:499–503.
- 18. Barczynski M, Konturek A, Cichon S. Randomized clinical trial of visualization versus neuromonitoring of recurrent laryngeal nerves during thyroidectomy. Br J Surg. 2009;96:240–46
- 19. Cernea CR, Brandão LG, Hojaij FC, De Carlucci D Jr, Brandão J, Cavalheiro B, et al. Negative and positive predictive values of nerve monitoring in thyroidectomy. Head Neck. 2012;34:175-9.
- 20. Dralle H, Sekulla C, Lorenz K, Brauckhoff M, Machens A; German IONM Study Group. Intraoperative monitoring of the recurrent laryngeal nerve in thyroid surgery. World J Surg. 2008;32:1358-66.
- 21. Melin M, Schwarz K, Lammers BJ, Goretzki PE. IONM-guided goiter surgery leading to two-stage thyroidectomy-indication and results. Langenbecks Arch Surg. 2012;23. DOI 10.1007/s00423-012-1032-7. Disponible en: http://www.springerlink.com/content/1435-2451/. [Consultado el 15/12/2012].
- 22. Tschopp KP, Gottardo C. Comparison of various methods of electromyographic monitoring of the recurrent laryngeal nerve in thyroid surgery. Ann Otol Rhinol Laryngol. 2002;111:811-16.
- 23. Aggarwal V, Agarwal G. Re: The importance of preoperative laryngoscopy in patients undergoing thyroidectomy: voice, vocal cord function, and the preoperative detection of invasive thyroid malignancy. Surgery. 2007;141:413.
- 24. Hermann M, Hellebart C, Freissmuth M. Neuromonitoring in thyroid surgery: prospective evaluation of intraoperative electrophysiological responses for the prediction of recurrent laryngeal nerve injury. Ann Surg. 2004;240:9-17.
- 25. Zábrodský M, Bouček J, Kastner J, Kuchař M, Chovanec M, Betka J. Immediate revision in patients with bilateral recurrent laryngeal nerve palsy after thyroid and parathyroid surgery. How worthy is it?. Acta Otorhinolaryngol Ital. 2012;32:222-8.