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CHAPTER II: Risk forecasting in the subprime and 

sovereign dept crisis 

 

II.1. Introduction 

Recent literature has extensively focused on studying the causes and consequences of 

the subprime and sovereign debt crisis – e.g. see Shiller (2008), Kolb (2010), Duca et al. 

(2010). The origin of the crisis was the sharp decline of the U.S. housing prices in 2006, 

triggered by the enormous amount of subprime mortgages contracted in a decade 

characterized by low interest rates and irrational expectations about the sustainability of 

real estate market prices. The crisis was amplified by different mechanisms such as the 

highly leveraged banks, the deregulation of the financial system, the growth of 

securitization, the misbehavior of rating agencies and the so-called ‘credit crunch’ 

(Hull, 2009), and it caused the bankruptcy of many investment banks (Bear Stearns and 

Lehman Brothers) and the bailout of insurance companies (AIG).  This situation caused 

panic in the financial markets (Gorton, 2009), dramatically increased systemic risk 

(Harrington, 2009) and turned into a global financial crisis and a major recession 

(Mishkin, 2011). 

From a risk management perspective, the crisis increased volatility in the financial 

markets (Schwert, 2011) and demanded new risk measures and methodologies capable 

of accurately estimating the regulatory capital of financial institutions. Risk measures 

are commonly obtained by quantile-based methods (Dowd and Blake, 2006), and 

among these the most widely used is the Value-at-Risk (hereafter, VaR). Different 

approaches have also been used to compute VaR (see Jorion, 2006; Alexander, 2009; 

Hubbert, 2012; and Hull, 2012, among others) but there is no consensus on the most 

appropriate methodology. Former VaR models have been criticized because the 

normality assumption involves risk underestimation, and thus skewed and heavy-tailed 

distributions (e.g., Bali and Theodossiou, 2008) have been proposed.  

The current paper expands on this issue by comparing the performance of VaR forecasts 

obtained by the normal distribution (benchmark) to four natural candidates that account 

for the heavy tails of stock returns: the Student’s t, a skewed variant of the Student’s t 

distribution (Hansen, 1994), the extreme value theory (EVT) approach (Embrechts et 

al., 1997; Reiss and Thomas, 1997; Coles, 2001; and McNeil et al., 2005) and the semi-

nonparametric approach based on the Gram-Charlier (GC) density, which is an 

expansion around the normal density allowing for skewness and excess kurtosis (Gram, 

1879; Charlier, 1905; Edgeworth, 1907).  

The VaR forecasting performance of the models is analyzed for the high volatility 

scenario of the recent subprime and sovereign debt crises. Furthermore, we compare 

how VaR measures are affected by the occurrence of extreme events in different 



economic areas, e.g. United States, Europe and emerging markets. For this purpose 

three leading world stock indices are considered: MSCI Europe, MSCI USA and MSCI 

Emerging Markets. For these indices, historical daily losses are compared with the 

maximum loss forecasted for each method considering a one-day-ahead horizon. VaR 

forecasts are computed by assuming an ARMA-GARCH model for the conditional 

mean-variance and computing the quantile of the assumed distribution at 99% 

confidence level. This technique is known as backtesting (Zumbach, 2006).  According 

to this procedure, it is expected that for 1% of the cases (days of the sample) the 

historical losses will fall outside the estimated VaR when VaR at 99% is calculated. 

This idea allows a straightforward implementation of VaR backtesting or forecasting 

performance tests (see, e.g., Christoffersen, 2003). We are interested in showing the 

impact of the recent crises on forecasts of the VaR methodology performance and thus 

the backtesting period is divided into two subperiods: pre-crisis and crisis, the latter 

including the subprime and the sovereign debt crises.  

The results show that both the normal and Student’s t are inadequate for high 

confidence levels and/or high volatility periods, although the skewed Student’s t 

(hereafter, skewed-t) outperforms the Student’s t. On the other hand, GC and EVT 

produce accurate VaR forecasts in these contexts. Therefore the optimal VaR model 

depends not only on the assumed confidence level but also on the market conditions 

observed. 

The rest of the paper is organized as follows: Section 2 presents the models and VaR 

methodology, Section 3 analyzes the data and the empirical results on VaR forecasting, 

and section 4 summarizes the main results of the article. 

  

II. 2. Models and Methodology 

Since Mandelbrot (1963) the normality assumption of stock returns is deemed 

inappropriate, revealing the following stylized empirical regularities (Cont, 2001): (1) a 

sharp peak at the mean; (2) heavy tails; (2) skewness; (4) volatility clustering; (5) slow 

decay in the autocorrelation function of the absolute returns. To account for the 

leptokurtosis implied by the first two properties, the use of non-Gaussian distributions is 

proposed, of which the Student’s t is the most widely used. Incorporating asymmetries 

requires, however, the use of other densities such as the skewed-t (Lambert and Laurent, 

2001; and Giot and Laurent, 2003). Alternatively, for purposes of measuring risk, the 

EVT has directly focused on reproducing the behavior at the tails. Within the EVT 

framework, different approaches have been proposed, such as the generalized extreme 

value distribution or the generalized Pareto distribution (GPD). In this article, we 

compare the VaR performance of both the Student’s t and skewed-t to the so-called 

peaks over threshold (POT) method, which is based on the GPD (Smith, 1989; Davison 

and Smith, 1990; and Leadbetter, 1991). Furthermore, we also incorporate the semi-

nonparametric estimation that is based on the asymptotic properties of the GC type A 

series when approximating a frequency function (see Kendall and Stuart, 1977, p. 



168−72).  Most of the financial literature about semi-nonparametric methodologies is 

devoted to price derivatives following the seminal papers of Jarrow and Rudd (1982) 

and Corrado and Su (1996). However, only a few papers focus on the Gram-Charlier 

application to risk management (Mauleón and Perote, 2000; Mauleón, 2003; Marumo 

and Wolff, 2007; Puzanova et al. 2009; Ñíguez and Perote, 2012).  

On the other hand, stock returns also seem to have a small predictable component in the 

conditional mean that has traditionally been modeled according to simple ARMA 

structures. Nevertheless squared returns exhibit particular dynamics (conditional 

heteroskedasticity, clusters of volatility and long memory) that have been extensively 

studied since Engle (1982) and Bollerslev (1986) introduced ARCH and GARCH 

models. As we focus on VaR performance due to the distributional hypotheses, the 

model implemented in this article incorporates an ARMA(1,1) and a GARCH(1,1) for 

modeling the conditional mean and variance, in accordance with the common use in risk 

management applications (see e.g. McNeil et al., 2005; or Jondeau et al., 2007). We 

define the complete model in equations (1) to (4) below. 
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where, for the sake of comparison, different standardized (i.e. zero mean and unit 

variance) density specifications are considered for G. In particular, we consider the four 

following probability density functions (pdf). 

(i) The normal pdf: 
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(ii) The Student’s t pdf:  
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where    is the gamma function and   is the degrees of freedom parameter.  

(iii) The skewed-t pdf by Fernández and Steel (1998): 
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where γ is the shape parameter, which incorporates the skewness, and      is the 

Student’s t pdf in equation (6). 

(iv) The GC Type A density is given by: 

                  
 
             (8) 

where      denotes the normal pdf in equation (5),                 and    is 

the Hermite polynomial (HP) of order s, which can be defined in terms of the 

derivatives of      as  

      

   
                    (9) 

In particular, the first eight HP are:                                   
                                                             

                                                         

 

It is noteworthy that some authors use GC density to denote a positive transformation of 

the Gallant and Nychka (1987) type (e.g. Jondeau and Rockinger, 2001, or León et al. 

2009) of the truncated GC series. We implement the original GC Type A expansion, 

which is simpler and more useful for VaR applications. Furthermore, most of the 

empirical studies truncate the expansion in n = 4 and employ only two terms of the 

expansion,    and   , since these terms account for skewness and excess kurtosis, 

respectively. Then we initially estimate VaR taking into account the GC expansion 

truncated at the fourth order, estimated via method of moments (GC-MM) and 

maximum likelihood (GC-ML1). We follow the procedure proposed by Del Brio and 

Perote (2012) to estimate the density parameters in two steps. First we estimate the 

conditional mean and variance using Quasi Maximum Likelihood (QML) and obtain the 

standardized residuals and, second, we estimate the    parameters for the standardized 

residuals. For the GC-ML1 and GC-MM models, the estimates are obtained by 

maximizing the log-likelihood function, Eq. (53), and applying directly the Eqs. 

(39)−(46) from Brio and Perote (2012, p. 534−5), respectively. Furthermore, we 

consider a second GC model expanded up to the eighth term and estimated by 

maximum likelihood (GC-ML2). For this model, we identify the “optimal” truncation 

order using the Akaike Information Criterion (AIC). 

In this model, the estimated VaR with a confidence level  is computed as the estimated 

α-quantile,       , of the assumed  G  distribution. Therefore, the predicted VaR for the 

variable r at the time horizon t+1 and with confidence level  is given in equation (10).  

      
                   ,     (10) 



where       and       are the predictions for the mean and standard deviation 

conditioned by the available information at time t, t, based on the ARMA-GARCH 

model described in equations (2) and (4).  

Alternatively, VaR can also be computed by the EVT methodology through two 

different approximations: block maxima and POT. We implement the latter method 

following the two-step procedure proposed by McNeil and Frey (2000).  

In the first step, the ARMA(1,1)-GARCH(1,1) model is fitted using QML and in the 

second step the so-obtained standardized residuals are used to implement the POT 

methodology using 10% of the tail of the distribution as the threshold. Thus,        is 

given by 
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where u is the estimated threshold, Nu is the number of exceedances over the threshold, 

n is the sample size (thus Nu/n is a non-parametric estimator of the empirical 

distribution tail) and β and ξ are the scale and shape parameters of the GPD. The 

cumulative distribution function (cdf) of the GPD distribution is given by  

      
                      

                                  
    (12) 

The weakness of the EVT lies in the threshold selection, which involves a tradeoff 

between bias and variance in the estimation of the parameters, especially the shape 

parameter ξ. This parameter can be estimated by bootstrapping or graphical techniques, 

but there is no optimal method to choose the appropriate threshold. Some empirical 

studies have shown that a good approximation is to choose as threshold 5% or 10% of 

the data in the tail of the distribution. We adopt the latter, as in McNeil and Frey (2000). 

 

II. 3. Empirical Application 

3.1. Data and in-sample results 

In this section, we compare the performance of the above-mentioned models for 

computing VaR for different world stock indices: MSCI Europe, MSCI USA and MSCI 

Emerging Markets (EM) and in two different volatility scenarios, which we call pre-

crisis and crisis period. All data were obtained from Datastream; for more details see the 

Appendix. The sample comprises almost 16 years of daily data from December 1997 to 

the first quarter of 2013. We split this sample into two sub-samples and choose as the 

crisis starting date July 2006, one year before the date when Bear Stearns hedge funds 

reported massive losses. Table 1 displays the descriptive statistics for continuously 

compounded returns of these series, defined as rt=100log(Pt/Pt-1), where Pt represents 

the corresponding price index. 



Table 1. Descriptive statistics for European stock index returns 

 Total period Pre-crisis period Crisis period 

Panel A: MSCI Europe 

Mean 0.0025 0.0079 -0.0028 

Median 0.0322 0.0311 0.0326 

Standard deviation 1.4648 1.1567 1.7189 

Variance 2.1457 1.3379 2.9546 

Excess kurtosis 6.1617 2.3405 5.5684 

Skewness  -0.0963 -0.2128 -0.0492 

Range 20.8762 10.8752 20.8762 

Minimum -10.1783 -5.6814 -10.1783 

Maximum 10.6979 5.1938 10.6979 

Panel B: MSCI USA 

Mean 0.0036 -0.0071 0.0143 

Median 0.0258 0.0000 0.0489 

Standard deviation 1.3131 1.1375 1.4681 

Variance 1.7241 1.2939 2.1552 

Excess kurtosis 7.8484 2.7571 8.8208 

Skewness  -0.1829 0.0964 -0.3154 

Range 20.5563 11.7713 20.5563 

Minimum -9.5137 -6.1609 -9.5137 

Maximum 11.0426 5.6104 11.0426 

Panel C: MSCI EMERGING MARKETS 

Mean 0.0268 0.0323 0.0213 

Median 0.1094 0.1128 0.0957 

Standard deviation 1.2850 1.0174 1.5060 

Variance 1.6511 1.0350 2.2681 

Excess kurtosis 7.7059 2.3419 7.2308 

Skewness  -0.5113 -0.6116 -0.4406 

Range 20.0673 9.8876 20.0673 

Minimum -9.9944 -5.8312 -9.9944 

Maximum 10.0729 4.0564 10.0729 

 

Descriptive statistics show that the mean return for the European stock index is positive 

in the pre-crisis period, but becomes negative in the crisis period.  However, the mean 

return for the other indices is positive in the crisis period. Moreover, volatility and 

kurtosis increase in the crisis period compared to the pre-crisis period. The variation 

range also reveals that the data are more disperse in the crisis period, almost double in 

contrast with the pre-crisis period. Skewness of the MSCI USA seems to be positive in 

the pre-crisis period and negative in the crisis period, which means that lower (higher) 

returns were more likely to be obtained in the pre-crisis (crisis) period. The MSCI 

Europe and MSCI Emerging Markets indices, however, exhibit negative skewness in 

both periods. The deviations of the median from the mean and the values of the excess 

kurtosis justify the use of VaR based on skewed and leptokurtic distributions such as the 

skewed-t. 

Figure 1 displays the autocorrelation function (ACF) of the return series (upper graphs) 

and the absolute return series (lower graphs) using the total sample. The ACF of the 



return series shows that there is a slightly autoregressive structure in the data and thus 

either an AR(1) or ARMA(1,1) structure might be identified. The ACF of the absolute 

return series reveals a strong presence of conditional heteroskedasticity in the data that 

can be adequately captured by a GARCH(1,1) process.  

Figure 1. Autocorrelation functions for the selected stock index returns in levels 

and absolute values 

 

Next we proceed to choose between the three plausible models for conditional mean - 

white noise, AR(1) and ARMA(1,1) - according to accuracy criteria. Table 2 shows the 

log-likelihood values of these three models combined with a GARCH(1,1) for modeling 

conditional variance and under different distributional hypotheses, either normal, 

Student’s t or skewed-t. The results show clear evidence in favor of the autoregressive 

models but they do not strongly support the ARMA(1,1) versus the AR(1) model. We 

choose the ARMA(1,1) since it has slightly higher log-likelihood values and it nests the 

AR(1).  

Table 2. Log-likelihood for different conditional mean-variance models and under 

different distributional assumptions. 

 EUROPE USA EM  

Panel A: Normal 
GARCH(1,1) -6358.328 -5908.279 -6052.282  

AR(1)-GARCH(1,1) -6358.105 -5904.808 -5944.017  

ARMA(1,1)-

GARCH(1,1) 

-6356.587 -5899.511 -5943.020  

Panel B: Student’s t 

GARCH(1,1) -6337.145 -5833.96 -6002.947  

AR(1)-GARCH(1,1) -6336.956 -5829.498 -5899.354  

ARMA(1,1)-

GARCH(1,1) 

-6336.815 -5822.885 -5897.602  
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Panel C: Skewed Student’s t 

GARCH(1,1) -6329.544 -5826.936 -5979.551  

AR(1)-GARCH(1,1) -6329.466 -5820.701 -5886.280  

ARMA(1,1)-

GARCH(1,1) 

-6324.653 -5809.244 -5883.286  

 

Table 3 presents the Maximum Likelihood (ML) estimates of the parameters of the 

ARMA(1,1)-GARCH(1,1) model under the three distributional hypotheses. P-values for 

testing the significance of each parameter are given in parentheses. These values show 

that the GARCH(1,1) parameters are statistically significant but not all the parameters 

of the ARMA(1,1) are statistically different from zero. This fact is in line with the 

‘small predictable component of the conditional mean’ stylized fact featured by stock 

returns. Moreover GARCH(1,1) processes exhibit persistent behavior since they are 

close to the non-stationarity (i.e., +  is close to one). This fact captures the ‘long 

memory’ or the ‘persistence of conditional variance’ usually found in this type of data.  

With all this information, we decided to use the ARMA(1,1)-GARCH(1,1) model when 

implementing the backtesting technique to investigate the performance of the different 

distributional hypotheses for VaR computation. Table 3 also includes the estimates for 

the shape parameter (degrees of freedom) and skew parameter of the Student’s t 

distributions. Both parameters are significant, which shows that the distribution is 

leptokurtic and asymmetric. 

Table 3. Parameters of the ARMA(1,1)-GARCH(1,1). 

 EUROPE USA EM  

Panel A: Normal 

 0.0141 (0.0374) 0.0111 (0.0134) 0.0798 (0.0000)  

 0.7699 (0.0000) 0.7682 (0.0000) 0.1338 (0.0975)  

 -0.7896 (0.0000) -0.8124 (0.0000) 0.1159 (0.1549)  

 0.0180 (0.0000) 0.0139 (0.0000) 0.0294 (0.0000)  

 0.0901(0.0000) 0.0783 (0.0000) 0.1005 (0.0000)  

 0.9017 (0.0000) 0.9130 (0.0000) 0.8793 (0.0000)  

Panel B: Student’s t 

 0.0836 (0.0415) 0.0179 (0.0019) 0.0913 (0.0000)  

 -0.3100 (0.5733) 0.7198 (0.0000) 0.0870 (0.2712)  

 0.3194 (0.5576) -0.7711 (0.0000) 0.1506 (0.0569)  

 0.0163 (0.0002) 0.0099 (0.0008) 0.0257 (0.0000)  

 0.0849 (0.0000) 0.0799 (0.0000) 0.0952 (0.0000)  

 0.9086 (0.0000) 0.9169 (0.0000) 0.8876 (0.0000)  

 10 (0.0000) 6.4203 (0.0000) 8.7273 (0.0000)  

Panel C: Skewed Student’s t 

 0.0118 (0.0119) 0.0127 (0.0016) 0.0708 (0.0002)  

 0.7628 (0.0000) 0.7160 (0.0000) 0.0262 (0.7447)  

 -0.7962 (0.0000) -0.7821 (0.0000) 0.2007 (0.0114)  



 0.0165 (0.0001) 0.0094 (0.0008) 0.0239 (0.0000)  

 0.0808 (0.0000) 0.0774 (0.0000) 0.0885 (0.0000)  

 0.9115 (0.0000) 0.9183 (0.0000) 0.8941 (0.0000)  

 10 (0.0000) 6.9753 (0.0000) 9.2225 (0.0000)  

 0.8980 (0.0000) 0.8945 (0.0000) 0.8819 (0.0000)  

P-values for the t-test in parentheses 

The parameters of the EVT and the semi-nonparametric VaR methodologies 

implemented in the article are displayed in Table 4.  In these cases two-step estimation 

was implemented following Del Brio et al. (2011), i.e. returns were filtered according to 

the ARMA(1,1)-GARCH(1,1) estimated in the first step by QML. The shape parameter 

for EVT, ξ in Panel A, is not significantly different from zero for Europe and Emerging 

Market indices but it is for the USA. This means that, after filtering the returns by an 

ARMA(1,1)-GARCH(1,1) model, the standardized residuals exhibit medium-tailed 

distributions (note that if ξ = 0 then GPD becomes the exponential distribution). 

Regarding the GC densities three alternative models are estimated: the GC expanded to 

the fourth term and estimated either by the method of moments (Panel B) or maximum 

likelihood (Panel C) and the GC expanded to the fourth order (Panel D). In all cases 

parameters    and    confirm the presence of (negative) skewness and leptokurtosis. 

Nevertheless, not all the parameters of the larger expansion (GC-ML2) are significantly 

different from zero. Despite this fact we maintain the polynomial structures in order to 

compare the effects not only of the method of estimation but also of the expansion 

length in the VaR forecasting performance implemented in the next section. 

 

Table 4. Parameters of the standardized EVT and GC. 

EUROPE USA EM 

Panel A: EVT 

ξ − 0.0290 (0.2861) − 0.1963 (0.0000) -0.0674 (0.0670) 

    0.4949 (0.0000) 0.5836 (0.0000) 0.5427 (0.0000) 

Panel B: GC-MM 

    −0.0338 −0.0759 −0.0499 

    0.0264 0.0675 0.0421 

Panel C: GC-ML1 

    −0.0345 (0.0000) −0.0449 (0.0000) −0.0370 (0.0000) 

    0.0235 (0.0000) 0.0347 (0.0000) 0.0305 (0.0000) 

Panel D: GC-ML2 

    −0.0242 (0.0035) −0.0651 (0.0000) −0.0405 (0.0000) 

    0.0270 (0.0000) 0.0285 (0.0012) 0.0417 (0.0000) 

    0.0056 (0.0418) −0.0150 (0.0028) −0.0031 (0.1944) 

    0.0021 (0.1232) 0.0000 (0.5130) 0.0049 (0.0095) 

    0.0000 (0.4540) −0.0027 (0.0003) −0.0008 (0.0598) 

    0.0004 (0.0186) 0.0008 (0.0032) 0.0005 (0.0212) 

 



3.2. Backtesting 

In order to test the validity of the distributional assumptions regarding stock returns 

(normal, Student’s t, skewed-t, GC and EVT), the historical series,         , are 

compared to the VaR 
   predicted for the day t           by using a time window 

of the n previous days. In order to test the performance of these models on different 

volatility scenarios (pre-crisis and crisis period), we implement the backtesting 

technique as illustrated in Figure 2. We consider a time window of 500 days for 

computing every one-step-ahead VaR prediction and a total period of 3500 days as the 

backtesting or out-of-sample period. The backtesting period is divided into two 

identically sized sub-periods of 1750 days each: the pre-crisis period (November 1999 

─  July 2006) and the crisis period (July 2006 ─ 1st quarter of 2013).  

 

 

Figure 2. Backtesting periods 

  

The predicted VaR is compared to the observed return at 99% confidence level. 

Therefore, when calculating VaR at 99%, we expect that in 1% of the backtesting days 

the negative returns will exceed VaR predictions. These values are referred to as 

‘violations’ or ‘exceptions’. More specifically, if     is the indicator defined in equation 

(21), 

               
    ,     (21) 

a ‘violation’ occurs when      VaR 
 , and then the indicator function takes on value 1. 

Otherwise,    takes on value 0 [whenever        VaR 
  . Therefore, if the VaR 

methodology is adequate, it is expected that the violation indicator function values will 

behave as realizations of independent and identically distributed (iid) Bernoulli 

experiments with success probability equal to 1 – α, i.e.    
 
              . Thus 

the null hypothesis that ‘the model adequately estimates VaR’ can be tested by a 

straightforward one-sided binomial hypothesis test. The alternative hypothesis suggests 

that the method underestimates or overestimates the VaR calculation depending on the 

number of expected violations. 

We apply this backtesting procedure and binomial test to investigate the performance of 

ARMA-GARCH models with different distributional assumptions: normal, Student’s-t, 

skewed-t, GC and EVT-POT. It is noteworthy that every prediction is based on the 

estimated distribution conditioned by the available information set, which is updated as 

new information is released to the market. Therefore the performance of every 

Dec97 Nov99 Jul06 Apr13

500d 1750d 1750d



distribution depends on its capability of adaptation to the new volatility environment 

and the occurrence of extreme events. Figures 3 − 6 illustrate how distributional 

parameters adapt to the time-varying scenario for the MSCI Europe index (the 

corresponding figures for the USA and Emerging Markets indices present similar 

patterns and are available upon request). In particular, Figure 3.A and Figure 3.B 

display the changes of the degrees of freedom parameter of Student’s t and skewed-t 

over time. Note that the Y-axis is truncated at 10 since for bigger values the distribution 

is not very different from the standard normal. It is clear that this parameter decreases 

(increases) as the volatility increases (decreases) but it remains above 4 so that kurtosis 

is still well-defined.  Figure 3.C displays the evolution of the skew parameter, which is 

relatively stable throughout the pre-crisis period but has a decreasing pattern at the 

beginning of the crisis period. 

 

Figure 3: Student’s t distributions time-varying parameters for MSCI EUROPE index returns. 

Figure 3.A. Student’s t shape (degrees of freedom) parameter 

  
Figure 3.B. Skewed-t shape (degrees of freedom) parameter 

 
Figure 3.C. Skewed-t skew parameter 
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Figure 4 displays the shape parameters for the GPD implemented in the EVT model. 

Parameter  seems to be negative (evidencing shorter tails) in the pre-crisis period and 

positive (heavier tails) at the beginning of the crisis period and becomes negative again 

at the end, and parameter  is very volatile and seems to increase in the crisis period. 

 

Figure 4: Generalized Pareto time-varying parameters for MSCI EUROPE index returns. 

Figure 4.A. Generalized Pareto shape parameter () 

 
Figure 4.B. Generalized Pareto scale parameter () 
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Figures 5.A. and 5.B. illustrate the dynamics for GC-ML1 parameters,    and   , which 

account for skewness and excess kurtosis, respectively. Parameter    estimates are 

positive within a specific time range in the pre-crisis period, whereas this parameter 

remains negative for the whole crisis period. Regarding parameter    estimates, they are 

positive and increasing with extreme values occurrence. 

 

Figure 5: GC-ML1 time-varying parameters for MSCI EUROPE index returns. 

Figure 5.A. GC-ML1    parameter 

 

Figure 5.B. GC-ML1    parameter 
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Figure 6 shows the behavior of the parameters of the GC expanded up to the eighth term 

(GC-ML2). Note that in the first part of the crisis period, only    and    are included 

according to the AIC criterion. In this context, the interpretation of these parameters is 

consistent with the expected values of skewness (negative) and excess kurtosis 

(positive). Nevertheless, when a larger expansion is chosen, skewness is captured by the 

interaction among the odd parameters and heavy-tailed patterns are featured by the 

interaction among the even parameters. Therefore the insights about the combinations 

that may incorporate a certain degree of skewness and kurtosis are not straightforward. 

This is what happens, for instance, in the last part of the crisis period, where odd (even) 

parameters seem to be significantly positive (negative), although they also present an 

extreme volatility. Furthermore, the high presence of extreme values leads to both 

asymmetries and heavy tails and thus the relation between even and odd parameters also 

plays an important role in accounting for them.   

 

Figure 6: GC-ML2 time-varying parameters for MSCI EUROPE index returns. 
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Table 5 displays the number of exceptions and the p-value for the binomial test (in 

parentheses) for the seven models (ARMA-GARCH-normal, ARMA-GARCH-t, 

ARMA-GARCH-skewed-t, ARMA-GARCH-EVT, ARMA-GARCH-GC-MM, ARMA-

GARCH-GC-ML1, ARMA-GARCH-GC-ML2) at 99% confidence level and for the 

three stock indices. Table 4 shows two different panels, one for each backtesting period 

(pre-crisis and crisis periods).  

For the pre-crisis period (Panel A), the normal distribution method underpredicts the tail 

behavior (i.e. the number of exceptions is significantly higher than the expected value) 

for all cases, while the skewed-t and GC-ML2 fail for the MSCI USA case. The t, EVT, 

GC-MM and GC-ML1 models cannot be rejected at 5 per cent confidence for any of the 

series. In the crisis period (Panel B), the normal significantly underpredicts the VaR for 

all series, while the method based on Student’s t cannot be rejected on only one 

occasion (EM). The skewed-t performance, however, tends to overpredict risk (i.e. it 

involves overly conservative risk measures) although it cannot be rejected in any of the 

series. The EVT approach and GC models perform well for all cases since these 

methods focus on modeling the extreme values. 

These results are consistent with the usual evidence found in stock return VaR 

performances, i.e. the normal is strongly rejected (especially for high confidence levels 

and volatile scenarios), the Student’s t might be useful only if kurtosis and skewness are 

not severe and the skewed-t is an alternative to capture skewness although it might not 

be the best option for capturing kurtosis. The EVT and the GC densities involve 

accurate market risk measures since the former focuses on extreme values and the latter 

is very flexible to adapt to different scenarios with a variable number of parameters. 

Nevertheless we find that, for prediction purposes, the larger expansions do not seem to 

provide the best outcomes and also that the simpler MM estimation procedures involve 

accurate VaR forecasts. These results are consistent with Del Brio et al. (2011) and 

Ñíguez and Perote (2012), although the former article only focuses on in-sample fit and 

the latter analyzes VaR forecasting using positive transformations of GC series.  
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Table 5. VaR forecasting performance of different models 

 EUROPE USA EM  

 

Panel A: Pre-crisis period (November 1999 -  July 2006) 

  

99%   1750 days Expected number of exceptions = 17 

ARMA-GARCH-normal 26 (0.0331) 27 (0.0203) 38 (0.0000)  

ARMA-GARCH-t 20 (0.3048) 13 (0.1685) 25 (0.0522)  

ARMA-GARCH-skewed-t  16 (0.4197) 10 (0.0380) 17 (0.5157)  

ARMA-GARCH-EVT  21 (0.2296) 22 (0.1670) 19 (0.3908)  

ARMA-GARCH-GC-MM 21 (0.2296) 18 (0.4842) 19 (0.3908)  

ARMA-GARCH-GC-ML1 21 (0.2296) 18 (0.4842) 20 (0.3048)  

ARMA-GARCH-GC-ML2 22 (0.1670) 26 (0.0332) 20 (0.3048)  

 

Panel B: Crisis period (July 2006 - first quarter of 2013) 

     

99%   1750 days Expected number of exceptions = 17 

ARMA-GARCH-normal 41 (0.0000) 52 (0.0000) 31 (0.0021)  

ARMA-GARCH-t 29 (0.0070) 29 (0.0070) 22 (0.1670)  

ARMA-GARCH- skewed-t  12 (0.1104) 13 (0.1685) 12 (0.1104)  

ARMA-GARCH-EVT  21 (0.2296) 21 (0.2296) 14 (0.2413)  

ARMA-GARCH-GC-MM 20 (0.3048) 12 (0.1104) 16 (0.4197)  

ARMA-GARCH-GC-ML1 20 (0.3048) 21 (0.2296) 17 (0.5157)  

ARMA-GARCH-GC-ML2 25 (0.0522) 19 (0.3908) 15 (0.3265)  

P-values for the binomial test are in parentheses. EVT considers a 10% threshold. 

Finally, the stock index returns and their corresponding forecasted VaR at 99% 

confidence are plotted in Figure 7 for the three series and the whole backtesting period. 

It is clear that the normal (red line) is the distribution that produces less conservative 

VaR measures (lower values) and the EVT (dark blue line) and GC (light blue line) the 

ones that result in higher VaR predictions. 

 

Figure 7. VaR at 99% in the backtesting period under different specifications 

Figure 7.A. MSCI EUROPE 



 

Figure 7.B. MSCI USA 

 

Figure 7.C. MSCI EMERGING MARKETS 
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II. 4. Conclusions 

The recent financial crises have caused high volatility in financial markets and big 

losses for many investors. To quantify the potential losses and comply with regulatory 

capital requirements, financial institutions implement VaR methodologies. However, 

traditional VaR measures, based on the normal distribution, have been criticized 

because of their inability to adequately capture market risk, particularly at high 

confidence levels. For this purpose, the use of alternative thick-tailed and skewed 

distributions has been proposed, but there is still no consensus about the most 

appropriate methodology for VaR forecasting. In this article, we investigate this issue 

by comparing the relative performance of three parametric models (normal, Student’s t 

and skewed-t), the EVT-POT approach and a semi-nonparametric model (GC) for stock 

indices of major economic areas: USA, Europe and emerging markets.  We argue that 

the model ranking depends on the period under analysis, and thus we compare the 

sensitivity of VaR measures to the increase in volatility by studying VaR measures 

before and after the recent subprime and sovereign debt crisis. 

Five main conclusions may be drawn from our study: (i) the normal underestimates risk 

even in low volatility scenarios; (ii) Student’s t seems to be adequate for capturing VaR 

only for “relatively calm” periods and its skewed counterpart seems to be a better model 

for high volatility periods, although it tends to provide conservative risk measures; (iii) 

both EVT and GC are accurate methods for computing VaR at high confidence levels 
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(99%); (iv) the larger GC expansions (GC-ML2) do not necessarily improve VaR 

measures compared to the simpler two-parameter (skewness and excess kurtosis) 

formulations; and (v) the MM estimation method of GC densities seems to provide 

straightforward and accurate risk measures.  

Result (i) is standard in the literature (e.g. see McNeil et al., 2005, p. 46-7 and 58, for a 

VaR performance comparison of the normal and Student’s t at different confidence 

levels). Result (ii) emphasizes the poor VaR forecasting performance of Student’s t in 

highly volatile scenarios and the better performance of skewed-t in this case (although 

likely at the expense of overly conservative VaR measures). This finding might be 

explained by the fact that positive skewed distributions capture the left tail of the 

empirical distribution in bear market periods but not in bull market periods, where the 

distribution exhibits negative skewness. Result (iii) is a consequence of the EVT (POT) 

approach, developed to capture extreme events, and the fact that this methodology is 

very sensitive to the threshold selection. This evidence is consistent with other EVT 

studies, e.g. Rachev et al. (2010). The accurate performance of the GC density lies in 

the asymptotic properties of the Hermite polynomial expansion and the flexibility of its 

formulation, which is capable of capturing not only leptokurtosis and skewness but also 

other features such as jumps in the probabilistic mass. Conclusion (iv) seems to 

contradict our former assessment but it supports the well-known fact that a good in-

sample fit does not guarantee a good out-of-sample performance (see e.g. Hansen, 

2009) and thus simpler models usually provide better forecasting outcomes. Finally, 

result (v) is in line with Del Brio and Perote (2011) and implies that accurate VaR 

forecasts according to the GC specification can be straightforwardly obtained by 

implementing MM techniques.  

All these results highlight the fact that the optimal VaR model depends not only on the 

assumed confidence level (risk aversion) but also on the observed market conditions 

(volatility). Therefore our results could be summarized in a straightforward 

recommendation to risk managers: risk forecasting methodologies should accommodate 

the scenario in which forecasts are computed. Only by combining different methods or 

by using very flexible techniques can the regulatory capital and the provisions of 

financial institutions be accurately estimated. For this reason and according to our 

findings, we recommend implementation of the GC density to forecast VaR.  
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Appendix 

Dataset description: 

Index Description 

MSCI Europe The MSCI Europe Index is a free float-adjusted market 

capitalization weighted index that is designed to measure the equity 

market performance of the developed markets in Europe. The MSCI 

Europe Index consists of the following 16 developed market 

country indices: Austria, Belgium, Denmark, Finland, France, 

Germany, Greece, Ireland, Italy, the Netherlands, Norway, Portugal, 

Spain, Sweden, Switzerland, and the United Kingdom. 

MSCI USA The MSCI USA Index is a free float-adjusted market capitalization 

index that is designed to measure large and mid cap US equity 

market performance. The MSCI USA Index is member of the 

MSCI Global Equity Indices and represents the US equity portion of 

the global benchmark MSCI ACWI Index. 

MSCI Emerging 

Markets 

The MSCI Emerging Markets Index is a free float-adjusted market 

capitalization index that is designed to measure equity market 

performance of emerging markets. The MSCI Emerging Markets 

Index consists of the following 21 emerging market country indices: 

Brazil, Chile, China, Colombia, Czech Republic, Egypt, Hungary, 

India, Indonesia, Korea, Malaysia, Mexico, Morocco, Peru, 

Philippines, Poland, Russia, South Africa, Taiwan, Thailand, and 

Turkey. 

Source: Datastream, Thomson Financial. 

 

 

 

 

 

 



 

CHAPTER III: A multivariate approximation to portfolio 

distribution 

III.1. Introduction 

During the last decades, the literature related to the search of statistical models to 

explain and forecast financial risk has undergone huge developments. The interest 

derives from the needs of risk managers of financial institutions who must decide on the 

most appropriate model for portfolio and risk management. For these purposes many 

perspectives have been proposed mainly concerning either the modelling of the 

conditional moment structure under normality or the underlying distribution of the asset 

returns. 

 

Among the latter approach one of the most interesting and fruitful alternatives has been 

the semi-nonparametric (SNP hereafter) methodology developed by authors such as, 

Sargan (1975), Jarrow and Rudd (1982), Gallant and Nychka (1987), Gallant and 

Tauchen (1989), Corrado and Su (1997), Mauleón and Perote (2000), Nishiyama and 

Robinson (2000), Jondeau and Rockinger (2001), Velasco and Robinson (2001), 

Jurczenko et al. (2002), Verhoeven and McAleer (2004), Tanaka et al. (2005), León et 

al. (2005), Bao et al. (2006), Rompolis and Tzavalis (2006), León et al. (2009), Polanski 

and Stoja (2010), Ñíguez and Perote (2012) and Ñíguez et al. (2012). All these articles 

proposed the use of polynomial expansions of the Gaussian distribution to define 

density functions capable of capturing the stylized features of financial asset returns, 

besides of providing applications to the resulting densities to different contexts, e.g. 

hypotheses testing, density forecasting, Value-at-Risk (VaR hereafter), asset pricing or 

option valuation. The greater goodness-of-fit of this family of densities and the more 

accurate risk measures obtained, as shown in these papers, is a consequence of its more 

general and flexible representation, which admits as much parameters as necessary to 

capture the sharply-peaked, thick-tailed or skewed shapes of the underlying asset returns 

density. 

 

These empirical findings result from the validity of the Gram-Charlier (GC hereafter) 

and Edgeworth series as asymptotic approximations – Charlier (1905) and Edgeworth 

(1907). As a matter of fact, under regularity conditions any frequency function can be 

expressed in terms of an infinite weighted sum of the derivatives of the standard 

Gaussian distribution or their corresponding Hermite polynomials (HP hereafter). The 

main shortcoming of these expansions is the fact that positivity of the finite (truncated) 



expansions does not hold positivity in the entire domain of the parameter set – Barton 

and Dennis (1952).  This problem, has been tackled in the literature by means of 

parametric restrictions (Jondeau and Rockinger, 2001), or through density 

reformulations based on the methodology of Gallant and Nychka (1987). These 

solutions are not always the best option since imposing positivity constraints may lead 

to sub-optimisation and positivity regions are not easy to be defined beyond the simpler 

cases (i.e. for expansions defined in terms of a couple of moments, usually skewness 

and kurtosis). Furthermore, positive transformations induce non-linearities among the 

distribution moments and the density parameters and in some cases lead to symmetric 

distributions. The former problem affects the straightforward interpretation of the 

parameters of the raw GC density and thus seriously restricts the implementation of the 

method of moments (MM hereafter). Alternatively, Maximum Likelihood (ML 

hereafter) techniques are usually employed although optimization algorithms usually 

fail to converge or do it to local optima. In addition, ML estimation only provides 

consistent estimates either under the normal or under the true density. 

 

The extensions of GC densities to other continuous and differentiable non-normal 

densities have also been investigated. Particularly, the Poisson, Gamma, and Beta have 

been proposed as basis (GC Type B, Laguerre and Jacobi expansions, respectively). 

Nevertheless the validity of these series as asymptotic expansions and their empirical 

applicability are still to be proved (see Wallace, 1958, for a discussion on the validity of 

asymptotic expansions using non-normal densities as generating distributions). 

Generalizations of GC densities to the multivariate framework have also been proposed 

as alternatives to copula methods. In particular, Perote (2004) introduced a first 

definition and Del Brio et al. (2009; 2011) proposed more general formulations 

accounting for the positivity and the ‘curse of the dimensionality’ problems, in the same 

spirit as the DCC model by Engle (2002). 

 

In this article we revise the aforementioned multivariate models focusing on the 

implementation of a straightforward MM estimation as alternative to traditionally used 

ML or Quasi ML (QML hereafter) techniques. This proposal is extremely simple for the 

GC densities since the even (odd) parameters are just linear combinations of the even 

(odd) density moments and the moment of order n depends only on the first n density 

parameters. Even more, the MM estimation involves consistent estimates, which is only 

guaranteed for ML under the true density and for QML under density misspecification 

and provided that first and second moments are correctly specified (Bollerslev and 

Wooldridge, 1992). We show that all these techniques, however, produce similar 

results. Furthermore, we implement a three-step estimation method which eases 

estimation of the portfolio density in relation to likelihood optimisation. We proceed as 

follows: Firstly we estimate the conditional variances under the normal distribution for 

every variable by QML; secondly, we estimate the rest of the GC density parameters for 



every variable by MM; thirdly, we estimate the correlation among the portfolio 

variables by MM. 

 

The remainder of the paper reviews the multivariate formulations for the GC 

expansions and explains the MM estimation (Section 2). Section 3 provides an 

application of our MM technique for the estimation and VaR computation of the 

multivariate density of a portfolio composed of three European stock indices. The last 

section (4) summarizes the main conclusions of the paper.  

III. 2. Approximations to portfolio distribution 

2.1. The univariate case 

 

     Let  2)( 2/2x

i ex   be the normal probability density function (pdf hereafter) and 

)( is xH  the Hemite polynomial based on its s-th order derivative, which can be defined 

as in equation (1). 
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    One of the main advantages of this sequence of HP is the fact that under certain 

regularity conditions (Cramér, 1926) a frequency function, )( ixf , can be expanded 

formally in terms of GC Type A series, i.e.  
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where the δs coefficients, 
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 measure the deviations of )( ixf  from )( ix  and can be also expressed in terms of the 

(non-central) moments of the random variable xi with pdf )( ixf . 

     Nevertheless for empirical purposes the asymptotic expansion needs to be truncated 

at a degree (q) and then the univariate GC density is defined as follows, 

 

  )(d)'H(1)d,( iiiiiq xxxf  ,     (7) 

 



where   q

iqiii ddd  'd 21   is a vector of parameters and, by convention, we 

consider H₀(xi)=1 and d₀=1. This distribution in equation (7) satisfies interesting 

properties (see e.g. Mauleon and Perote, 2000). Among them, we enunciate in 

Proposition 1 the one in which the MM estimation method proposed in the present 

article is based. 

   

    Proposition 1: The first q moments of the GC distribution in equation (7) can be 

expressed as a linear function of the vector q

i 'd , 
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where  'Z
2 q

iiii xxx  , and S and B are the matrices described in equations (2) and 

(4), respectively, and qμ  is the vector containing the first q central moments of the 

normal distribution. 
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These relations among the density moments and parameters establish a straightforward 

way of estimating the density by the MM, given by 

 

    μ)ˆ(BSd̂ 1  

ii ZE ,      (9) 

 

where   iZÊ  is the vector containing the first q sample moments of variable xi with pdf 

)d,( iiq xf . 



    The truncated function in (7), however, does not guarantee positivity for all values of 

id  and thus a positive (squared) transformation of the Gallant and Nychka’s (1987) type 

is usually implemented. Next we explain the family of multivariate GC densities 

including these positive transformations. 

 

2.2. The multivariate case 

 

A random vector   n

nxxx  'X 21   belongs to the multivariate GC (MGC 

hereafter) family of distributions if it is distributed according to the following pdf, 
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where  
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is the multivariate normal pdf - with univarite marginals )( ix , Ai is a positive definite 

matrix of order (q+1),   1H1)(h  q

ix  and  iiiiii dxxxxc )()(hA)'(h   (i=1,2,…, n) are 

the constants that make the density integrating up to one – Del Brio et al. (2009). 

Without loss of generality, we are assuming the same truncation order q for every 

dimension i. 

 

This MGC family encompasses many different distributions, such as the multivariate 

extensions of the GC density in León et al. (2009) or the Positive Edgeworth-Sargan in 

Ñíguez and Perote (2012). These two types of distributions are obtained by considering 

Ai=DiDi´ and Ai=  22

1,...,,1 iqi dddiag , respectively, where   1d1D  q

i
 (note that in both 

cases 



q

s

isi sdc
1

2 !1 ). However, in this paper we implement a related family of densities 

proposed in Perote (2004) which does not formally impose positive definiteness but 

presents other interesting advantages from an empirical perspective. Hereafter, we will 

refer to the pdf defined in eq. (12) below as MGC density. 

 



















 


n

i

i

n

i

ii xxGF
11

)(d)'(H)X()X(               (12) 

 

It is clear that for the MGC the marginal density of xi is that of equation (7) and thus the 

MM estimation can be trivially implemented through the relation in equation (9). Even 

more, Del Brio et al. (2011) proved that an equivalent MGC density can be estimated by 

ML in two steps: In the first step, the conditional mean and variance of every variable 

are estimated by QML independently, and in the second step, the rest of the density 

parameters are jointly estimated in the standardised distribution. This paper proposes a 

similar three-step procedure based on the MM: First, QML estimates for conditional 

mean and variance of every variable are obtained independently by assuming a normal 

distribution. Second, the parameters for the univariate GC density of every standardised 

variable are estimated independently by the MM. Third, correlation parameters are 

approximated by the sample correlations.  

     

III. 3. Empirical application 

We illustrate the estimation procedure of the portfolio return distribution described in 

the previous section for a portfolio composed of three European stock indices: 

EUROSTOXX50, Ibex35 and Dax30. The sample comprises almost 10 years of daily 

data (T=2,861 observations) spanning from September 30
th

, 2002, to November 19
th

, 

2013. We model continuously compounded returns, defined as rit=100log(Pit/Pi,t-1). 

Table 1 displays descriptive statistics for the series. These data feature the main 

empirical regularities of high-frequency financial returns: a small predictable 

component in the conditional mean, volatility clustering, skewness, leptokurtosis and, 

likely, multimodality (jumps) in the tails.  

 

Table 1. Descriptive statistics for EUROSTOXX50, Ibex35 and Dax30. 

 EUROSTOXX50 Ibex35 Dax30 

Mean 0. 01134 0.02025 0.04228 

Variance 2.21881 2.26692 2.26598 

Minimum -8.20788 -9.58586 -7.43346 

Maximum 10.43765 13.48364 10.79747 

Skewness 0.07902 0.13892   0.08702 



Kurtosis 5.45580 6.52309   5.38219 

 

 

We specify a multivariate AR(1)-GARCH(1,1) structure for modelling conditional first 

and second moments and the MCG density in equation (12) for capturing the rest of the 

salient empirical regularities of the data. Thus, the mutivariate model for the portfolio 

returns   3

321t 'r  ttt rrr is: 

 

turr 1-t10t   ,                (13) 

))ρα,(,0(u 1t tt MGC  
,               (14) 

)α(σ)ρ(R)α(σ)ρα,( tttt  ,               (15) 

      2

121110

2 )α(Du'u)α(D   tittiit diagdiagdiag   ,     (16) 

 

where 
0 and 

1 are 31 vectors containing the parameters of the AR(1) processes;

 0idiag  ,  1idiag   and  2idiag   are diagonal matrices containing the parameters of the 

GARCH(1,1) processes (hereafter we refer to these parameters as  and , 

respectively). Therefore, the variance and covariance matrix is decomposed in the 

diagonal matrix of conditional deviations, )α(σt
 and the symmetric correlation matrix, 

)ρ(R t
, with general element {ij} (hereafter we refer to the parameters in )ρ(R t

as ). 

Finally,   is the Hadamard product of two identical sized matrices (computed by 

element-by-element multiplication). 

 

The estimation of the model in equations (13)-(16) through our proposed three-step MM 

is carried out in the following three stages: 

 

Stage 1:  and  are estimated by QML as the values that maximise the log-

likelihood of every variable under the Gaussian distribution, i.e., 
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Stage 2: The parameters (d) of the GC expansion are estimated independently 

for every dimension i by using the following correspondences, 
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ˆ  is the s-th order sample moment of 

the standardised series (
ir  and Si denoting the average and standard deviation of 

rit, respectively), which is a consistent estimate of the s-th order moment of the 

true distribution.  

 

Stage 3: The Correlation matrix, R(), is estimated by computing the sample 

correlations among the portfolio variables: 
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This method has the following advantages with respect to the ML: (i) it provides 

consistent estimates, i.e. the first step gives consistent (QML) estimates for conditional 

mean and variance parameters and the second step is also consistent since both log-



likelihood function is separable (see Del Brio et al., 2011) and the MM always yields 

consistent estimates. (ii) It is much simpler than the ML method with regards to 

convergence problems that may arise in optimization. (iii) It solves the curse of 

dimensionality of multivariate modelling, since it is not affected by the number of assets 

considered in the portfolio. (iv) Parameter estimates are the same regardless the 

expansion length and, as we show empirically, the procedure leads to very similar 

outcomes for the estimated density than those obtained by ML. 

 

Table 2 provides two-step ML estimates (t-ratios are displayed in parentheses) for the 

parameters of the GC density of a portfolio composed of EUROSTOXX50, Ibex35 and 

Dax30 indices. We consider expansions up to the eighth term but di1 and di2 are 

constrained to zero since conditional means and variances are captured by the AR(1) 

and the GARCH(1,1) models, respectively. The AR(1)-GARCH(1,1) parameters are 

estimated in the first step by QML. These QML estimates confirm the presence of a 

small predictable component in conditional mean and the persistence and clustering in 

volatility (αi₁+αi₂ is estimated close to one). In the second step, the rest of the 

parameters of the density are estimated by either MM or ML applied to the series 

standardised by the estimated mean and variance of the previous step. The estimates of 

the GC densities exhibit the traditional behaviour of stock returns: (i) (negative) 

skewness is captured by parameter di3 and the rest of the odd parameters are not 

significant; (ii) leptokurtosis is patent since di4 is positive and significant; and (iii) 

presence of extreme values as high order moments (parameters di6 and di8) are also 

significant. Note that the truncation order is chosen according to accuracy criteria (see 

the Akaike information criteria for the MGC model with 2 and 6 parameters), although 

the best model should eliminate the insignificant parameters that we still display in 

Table 2 for the sake of comparison. Finally, the third stage presents the estimate for the 

correlation matrix, which exhibits a positive correlation between EUROSTOXX50 and 

both Ibex35 and Dax30, but absence of correlation between the latter two indices. 

 

Table 2. MGC density of stock indices: EUROSTOXX50, Ibex35 and Dax30.  

 EUROSTOXX50 Ibex35 Dax30 

Stage 1 

i1 0.06776 

(3.290) 

0.08020 

(3.865) 

0.09300 

(4.409) 

i2 -0.05768 

(-2.938) 

-0.00669 

(-0.323) 

-0.03015 

(-1.569) 



i0 0.02389 

(3.060) 

0.02018 

(2.825) 

0.02276 

(3.352) 

i1 0.09721 

(5.265) 

0.09982 

(5.078) 

0.08949 

(6.452) 

i2 0.89217 

(48.341) 

0.89359 

(48.676) 

0.89925 

(65.130) 

Stage 2 (MM) 

di3 -0.04495 -0.04790 -0.05916 

di4 0.05733 0.06572 0.04999 

di5 -0.02341 -0.02207 -0.02759 

di6 0.02333 0.02506 0.02251 

di7 -0.01651 -0.01170 -0.01848 

di8 0.01181 0.00959 0.01316 

Stage 2 (ML) 

di3 -0.02260  

(-1.89038) 

-0.03181 

(-2.54818) 

-0.04127  

(-4.05200) 

di4 0.04212 

(5.27076) 

0.04937 

(5.66917) 

0.02997  

(3.76514) 

di5 0.00401 

(0.89059) 

-0.00176 

(-0.36192) 

-0.00188  

(-0.46320) 

di6 0.00531 

(2.39301) 

0.00808 

(3.25338) 

0.00065  

(0.24688) 

di7 0.00000 

(0.14397) 

-0.00011 

(-0.15316) 

-0.00080 

(-1.19259) 

di8 0.00101 

(4.02314) 

0.00102 

(3.79608) 

0.00068  

(2.35141) 



Loglikelihood -1676.898 -1677.097 -1667.209 

AIC 

(6 parameters) 

3365.796 3366.194 3346.418 

AIC 

(2 parameters) 

3380.726 3380.912 3363.116 

Stage 3 

EUROSTOXX50 1 0.04727 0.03616 

Ibex35 0.04727 1 0.00000 

Dax30 0.03616 0.00000 1 

t-statistics in parentheses 

 

For the sake of comparison, Table 3 shows the joint estimation for the multivariate 

Student’s t distribution. For this distribution departures from normality are only 

captured by the degrees of freedom parameter (ν) and thus it is a much less flexible 

method of estimation. 

 

Table 3. Multivariate t density for EUROSTOXX50, Ibex35 and Dax30. 

 EUROSTOXX50 Ibex35 Dax30 

 

i1 0.06776 0.08020 0.09300 

i2 -0.05768 -0.00669 -0.03015 

i0 0.02389 0.02018 0.02276 

i1 0.09721 0.09982 0.08949 

i2 0.89217 0.89359 0.89925 

ν 10.48116 

Loglikelihood -11941.49 

Correlation Matrix 



EUROSTOXX50 1 0.04284 0.04419 

Ibex35 0.04284 1 -0.00065 

Dax30 0.04419 -0.00065 1 

 

Figure 1 depicts the fitted GC marginal distributions of the returns of the 

EUROSTOXX50, Ibex35 and Dax30 indices compared to the histogram of the data 

(non-parametric estimation). Figures on the right column represent the distributions for 

the whole range and figures on the right the left tails (extreme values) of the 

corresponding distribution. The plots illustrate that both MM and ML methods (GC-

MM and GC-ML, respectively) lead to very similar outcomes and that they approximate 

very accurately the empirical distribution of the portfolio. This evidence is even clearer 

in the tails of the distribution, which is the main focus of risk management. 

 

Figure 1. Fitted GC distributions compared to the data histogram 
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Finally, we calculate VaR at 1% and 5% for an equally weighted portfolio formed with 

the three indices. For this purpose, 1,000 datasets of length 2,861 are simulated. Table 4 

shows the average VaR and its standard error for the multivariate t, MGC estimated by 

MM and ML and the corresponding empirical VaR. The results illustrate how the 

MGC-MM model adequately captures portfolio’s VaR and thus represents a very 

straightforward a useful method for risk management. 

 

Table 4. Estimated VaR for an equally weighted portfolio of EUROSTOXX50, 

Ibex35 and Dax30.  

 Multivariate 

t 

MGC-MM MGC-ML 

Empirical VaR – 1% -1.54395 

Mean VaR – 1% -1.62432 -1.50203 -1.45894 

Standard error 0.06022 0.05312 0.04867 

Empirical VaR – 5%  -1.051891  

Mean VaR – 5% -1.06971 -1.00847 -0.99632 

Standard error 0.02996 0.02827 0.02711 

III. 4. Conclusions 

The GC density has revealed as a powerful tool to account for asset returns distribution 

because it asymptotically captures the true distribution and it represents a general and 

flexible approximation. Nevertheless this distribution has scarcely been used for 

capturing the multivariate behaviour of portfolio distributions due to the so-called ‘curse 

of dimensionality’ that particularly affects this type of distributions that depend on a 

large number of parameters. Furthermore the traditional ML estimation techniques 

usually fail to converge and, more importantly, do not guarantee consistency under 

possibly density misspecification. In order to solve these problems we propose a very 

simple three-step estimation method that combines QML estimation for conditional 

means and variances (Stage 1), MM estimation of the rest of the density parameters 

considering the univariate standardised marginal GC distributions and, finally, MM 

estimation of correlation coefficients. The validity of this proposal is based on three 

main properties of the MGC distribution: (i) Its marginals behave as univariate GC 

distributions; (ii) It admits an independent estimation of the first and second moments 

under the Gaussian hypothesis (QML); (iii) It exists a direct linear relation among 

density moments and parameters, which simplifies the implementation of the MM 



techniques. Furthermore, this method is always consistent and may be straightforwardly 

implemented even for large portfolios.  

An application of such procedure is performed for a portfolio composed of three 

European stock indices as an illustration of the method. The results are not very 

different from those obtained from QML estimation and thus it seems to be a 

straightforward method for estimating portfolio return distributions. The simplicity of 

the method as well as the asymptotic properties of the GC expansion makes this 

approach a very good approximation to portfolio distribution and thus a useful 

methodology for risk managers.   
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