
PhD. Dissertation

Model for WCET Prediction, Scheduling
and Task Allocation for Emergent

Agent-behaviours in Real-time Scenarios

Department of Computer Science and Automation
Faculty of Science

University of Salamanca
Spain

Author: Davinia Carolina Zato Domínguez

Academic advisors:
Dr. D. Juan Francisco de Paz Santana

Dr. D. Javier Bajo Pérez

July 2014

La memoria titulada “Model for WCET prediction, scheduling and task al-
location for emergent agent-behaviours in real-time scenarios” que presenta
Dña. Davinia Carolina Zato Domínguez para optar al Grado de Doctor por la
Universidad de Salamanca ha sido realizada bajo la dirección del profesor Dr. D.
Juan Francisco de Paz Santana, Profesor Ayudante Doctor del Departamento
de Informática y Automática de la Universidad de Salamanca, y por el profesor
Dr. D. Javier Bajo Pérez, Profesor Titular de Universidad del Departamento
de Inteligencia Artificial de la Universidad Politécnica de Madrid.

Salamanca, julio de 2014

El Doctorando:

Fdo. Dña. Davinia Carolina Zato Domínguez

Los Directores:

Fdo: Dr. D. Juan Francisco de Paz Santana
Profesor Ayudante Doctor
Informática y Automática
Universidad de Salamanca

Fdo: Dr. D. Javier Bajo Pérez
Profesor Titular de Universidad
Inteligencia Artificial
Universidad Politécnica de Madrid

Carolina Zato Domínguez
Model for WCET prediction, scheduling and task allocation for emergent

agent-behaviours in real-time scenarios.

PhD. in Intelligent Systems
Advisors: Juan F. De Paz and Javier Bajo

University of Salamanca

All Rights Reserved c© July 2014

A mi padre, por ser un hombre valiente, bueno y un
gran ejemplo a seguir, con una cabeza y un corazón

envidiables.
Gracias por tu apoyo incondicional.

Te quiero.

Agradecimientos

Fran, no sólo has sido un buen director de tesis sino que también
un excelente compañero. Gracias por tu paciencia y toda tu ayuda.
Espero que sientas esta tesis tan tuya como mía. ¡He aprendido

muchísimo trabajando contigo!

Javi, gracias por tus revisiones de la tesis, de artículos y demás.
Gracias por tus palabras de ánimo y por supuesto, gracias por tus

sabios consejos.

Sin las buenas ideas de mis directores no habría alcanzado el final
así que, otra vez, ¡GRACIAS!

También le tengo que agradecer a Juan Manuel la oportunidad que
me brindó, hace ya 5 años, para iniciarme en el mundo de la

investigación.

Gabri, PANGEA no sería lo mismo sin ti, ¡su nacimiento fue
gracias a ti!

Pablo, Parra y Alberto, muchas gracias por prestarme vuestros
"roboticos" para el caso de estudio, ¡son vuestras grandes

creaciones!

A Fer, mi compañero y amigo desde que nos iniciamos en este
mundo de la informática, ¡no hubiese sido lo mismo sin ti! Todo

un camino juntos y ¡ya hemos llegado!

A mi gran amiga Sara le tengo que agraceder tantas cosas... las
risas, los llantos, los desayunos, los artículos a toda prisa, los

consejos, la ayuda y sobre todo, ¡su amistad!

También tengo que dar las gracias a todo el grupo BISITE, a los
que siguen compartiendo los días de trabajo, Anto, Jesús, Loza,
María, Barri, Dani, Carlos y Santos. Y a los que se fueron

dejando un gran recuerdo, Rober, Elena, Virgina, Bea, Álvaro,
Marisol, Honti y Alejandro.

A mis padres, les agradezco profundamente sus esfuerzos para
darme una buena educación que me permite estar aquí hoy. A
"Erico", siempre serás mi hermanito pequeño pero ¡me has

enseñado tantas cosas! ¡estoy muy orgullosa de ti!

A mis abuelos, Loli y Manolo, gracias por cuidarme, protegerme y
quererme como si fuera una hija. Y sobre todo, gracias por saber
mantener a la familia unida, sois un gran ejemplo para todos

nosotros.

A mi primo André, por su sonrisa y su alegría, su bondad y
nuestras "tardes de peli". A mis tíos, Titi, María, Javi y Yoli, y a
mi primito Martín, gracias por los momentos felices que pasamos

todos juntos y que me dan vida.

A mis suegros, María Jesús y Licesio, gracias por acogerme en
vuestra casa con los brazos abiertos, por preocuparos, por hacerme
feliz en los momentos difíciles y dejarme formar parte de vuestra

familia.

Finalmente, a Jesús, a quien se lo debo todo, sin él no habría
llegado a escribir esta página. Gracias por darme tu fuerza, tu

alegría, tu motivación, tu optimismo, tu tiempo y tu amor. Gracias
por tu paciencia y por ¡TODO!

Abstract
To date, there are no known real-time models specially developed for their use
in open systems, such as Virtual Organization of Agents (VOs). Conventionally,
real-time models are applied to closed systems where all the variables are known.
This research includes new contributions and the innovative integration of real-
time agents in VOs. From our knowledge, this is the first model specifically
designed to be applied in VOs with time constraints.

This dissertation provides a new perspective that combines the required open-
ness and dynamism of the VO with the real-time constrains. This is a difficult
task because the fist paradigm is not as strict as the term "open" indicated
but the second paradigm must fulfill strict constraints. In summary, the model
presented enables defining the actions that an organization of agents should
carry out within a deadline, considering the changes that may occur during
the execution of a particular plan. It is a real-time scheduling within an
organization of agents.

One of the main contributions of this dissertation is a new estimation model for
Worst Case Execution Time (WCET). The proposal is an effective model for
calculating the execution time in the worst case scenario when an agent desires
to form part of a VO and wants to include tasks or behaviours in real-time
systems, i.e. to calculate the WCET in emergent behaviours. A local planning
within each node and a global distribution of tasks among the available nodes
of the system are also developed. For both models, advanced mathematical
and statistical methods are used to create an adaptative, robust and efficient
method which can be used within intelligent agents in different organizations.

Additionally, the lack of awareness of the existence of an execution platform
for open systems that supports agents and can also perform tasks with time
constraints, including the necessary mechanisms for the management and
control VOs, provides us with the main motivation for the development of the
PANGEA+RT agent-platform. PANGEA+RT is an innovative multi-agent
platform that provides effective support to the execution of VOs in real-time
environments.

Finally, a case study is presented based on the collaboration of heterogeneous
agent-robots under the PANGEA+RT platform where the proposed model
and the associate platform are tested in detail. The results and conclusions
obtained are presented in the final part of this PhD dissertation.

Resumen
Hasta el momento no se conocen modelos de tiempo real específicamente desar-
rollados para su uso en sistemas abiertos, como las Organizaciones Virtuales
de Agentes (OVs). Convencionalmente, los modelos de tiempo real se aplican
a sistemas cerrados donde todas las variables se conocen a priori. Esta tesis
presenta nuevas contribuciones y la novedosa integración de agentes en tiempo
real dentro de OVs. Hasta donde alcanza nuestro conocimiento, éste es el primer
modelo específicamente diseñado para su aplicación en OVs con restricciones
temporales estrictas.

Esta tesis proporciona una nueva perspectiva que combina la apertura y
dinamicidad necesarias en una OV con las restricciones de tiempo real. Ésto
es una aspecto complicado ya que el primer paradigma no es estricto, como el
propio término de sistema abierto indica, sin embargo, el segundo paradigma
debe cumplir estrictas restricciones. En resumen, el modelo que se presenta
permite definir las acciones que una OV debe llevar a cabo con un plazo
concreto, considerando los cambios que pueden ocurrir durante la ejecución de
un plan particular. Es una planificación de tiempo real en una OV.

Otra de las principales contribuciones de esta tesis es un modelo para el cálculo
del tiempo de ejecución en el peor caso (WCET). La propuesta es un modelo
efectivo para calcular el peor escenario cuando un agente desea formar parte
de una OV y para ello, debe incluir sus tareas o comportamientos dentro del
sistema de tiempo real, es decir, se calcula el WCET de comportamientos
emergentes en tiempo de ejecución. También se incluye una planificación local
para cada nodo de ejecución basada en el algoritmo FPS y una distribución
de tareas entre los nodos disponibles en el sistema. Para ambos modelos se
usan modelos matemáticos y estadísticos avanzados para crear un mecanismo
adaptable, robusto y eficiente para agentes inteligentes en OVs.

El desconocimiento, pese al estudio realizado, de una plataforma para sistemas
abiertos que soporte agentes con restricciones de tiempo real y los mecanismos
necesarios para el control y la gestión de OVs, es la principal motivación para
el desarrollo de la plataforma de agentes PANGEA+RT. PANGEA+RT es una
innovadora plataforma multi-agente que proporciona soporte para la ejecución
de agentes en ambientes de tiempo real.

Finalmente, se presenta un caso de estudio donde robots heterogéneos colaboran
para realizar tareas de vigilancia. El caso de estudio se ha desarrollado con
la plataforma PANGEA+RT donde el modelo propuesto está integrado. Por
tanto al final de la tesis, con este caso de estudio se obtienen los resultados y
conclusiones que validan el modelo.

Contents
List of Figures v

List of Tables vii

I Introduction 1

1 Introduction 3
1.1 Introduction . 4

1.1.1 Motivation and hypothesis 6
1.1.2 Objectives . 7

1.2 Methodology . 8
1.3 Structure of the document . 10

II Basic Concepts and Related Works 13

2 Virtual Organizations of Agents 15
2.1 The concept of agent . 16
2.2 Multi-agent systems . 20
2.3 Societies of agents . 23

2.3.1 Open societies . 25
2.3.2 Closed societies . 26
2.3.3 Semi-open societies . 26
2.3.4 Semi-closed societies . 26

2.4 Organizations of agents . 27
2.5 Conclusions . 33

3 Real-Time Systems 35
3.1 Introduction . 36

3.1.1 Classification of real-time systems 36
3.2 Models of tasks in real-time systems 37
3.3 Real-time scheduling . 39

3.3.1 Local scheduling within computational nodes 40
3.3.2 Global scheduling in a real-time system 43

3.4 Distributed real-time systems 47
3.4.1 Multi-agent systems in real-time environments 50

3.5 Conclusions . 54

ii Contents

III Proposed Model 57

4 Proposed Model 59
4.1 Introduction . 60
4.2 Background and related works 62

4.2.1 Related works of WCET analysis 62
4.2.2 Real-time scheduling and task allocation 64

4.3 WCET in emergent behaviours 67
4.3.1 Node evaluation . 68
4.3.2 Code evaluation . 74
4.3.3 Statistical improvements of the WCET in execution . . 82

4.4 Model of scheduling and task allocation 83
4.5 Local scheduling . 84
4.6 Global scheduling . 85
4.7 Conclusions . 96

IV PANGEA+RT Platform 97

5 PANGEA 99
5.1 Introduction . 100
5.2 Related works . 102
5.3 PANGEA overview . 106

5.3.1 Reorganization and task allocation model 110
5.4 The PANGEA database . 112
5.5 The monitoring tool . 115
5.6 The norms in PANGEA . 117
5.7 The communication module . 119

5.7.1 Testing the communication 122
5.8 Testing the SnifferAgent . 124
5.9 The subscription model . 126
5.10 The Gateway agent . 128

5.10.1 Request protocol . 129
5.10.2 Subscription protocol 130
5.10.3 Contract-net protocol 131
5.10.4 Inform protocol . 131

5.11 Conclusions . 132

6 PANGEA+R 135
6.1 Introduction . 136
6.2 Platforms and middlewares for robotic systems 137
6.3 Multi-agent robotics systems 141

Contents iii

6.4 PANGEA+R platform . 142
6.4.1 The growing need for cooperation in Robotics 143
6.4.2 The contribution of VOs in Robotics 144
6.4.3 Main characteristics of PANGEA+R 146

6.5 Communication module . 148
6.5.1 Message format . 150
6.5.2 Command messages examples 152
6.5.3 Servers and clients . 156

6.6 Conclusions . 158

7 PANGEA+RT 161
7.1 Introduction . 162

7.1.1 Problems of Java in real-time environments 163
7.2 Real-time specification for Java 166
7.3 Real-time Java virtual machines 169
7.4 Annotation for bounded loops 171
7.5 Agents of the platform . 176
7.6 Modification of the classes . 178
7.7 Conclusions . 181

V Case Study and Conclusions 183

8 Case Study 185
8.1 Collaboration of heterogeneous robots for surveillance tasks . . 186
8.2 Related works . 187
8.3 Presentation of the heterogeneous robots 192
8.4 The problem and the VO solution 197

8.4.1 Proposed VO of agents 198
8.5 Collaboration description . 202

8.5.1 Calculations for the collaborative movement 204
8.5.2 Common area calculation 208
8.5.3 Calculation of horizontal and vertical movement for the

HAWK waypoints . 209
8.6 Deployment of the involved agents 211
8.7 Conclusions . 213

9 Results of the Proposed Model 215
9.1 General evaluation of the model 216

9.1.1 WCET evaluation . 216
9.2 Case study results . 225
9.3 Results of the collaboration search 229
9.4 Conclusions . 232

iv Contents

10 Conclusions and Future Work 235
10.1 Conclusions and Main Contributions 236
10.2 Future Work . 238

10.2.1 Future lines related to the model 238
10.2.2 Future lines related to PANGEA+RT 240
10.2.3 Future lines related to the Case Study 241

VI Resumen 243

11 Resumen 245
11.1 Introducción . 246
11.2 Conceptos básicos y trabajos relacionados 248

11.2.1 Análisis del WCET . 249
11.2.2 Planificación en tiempo real y distribución de tareas . . 250

11.3 WCET en comportamientos emergentes 253
11.3.1 Evaluación de los nodos 254
11.3.2 Evaluación del código 257
11.3.3 Adaptación estadística del WCET en tiempo de ejecución261

11.4 Planificación y distribución de tareas 262
11.5 La plataforma PANGEA+RT 268

11.5.1 El protocolo de comunicación 268
11.5.2 Agentes de PANGEA+RT 272
11.5.3 Modificación de las clases 274

11.6 Caso de estudio . 277
11.6.1 Despliegue de los agentes propuestos 280
11.6.2 Resultados . 281

11.7 Conclusiones . 285

Bibliography 291

A Appendix 315
A Related projects . 315

A.1 OVAMAH project . 315
A.2 AZTECA project . 316
A.3 iHAS project . 317

B Related publications . 318
B.1 International journals 318
B.2 Book chapters . 319
B.3 Conferences . 320

List of Figures
3.1 Dhall Effect Behaviour . 45
3.2 Distributed real-time system 48

4.1 Steps of Java code execution process 69
4.2 Steps of the node evaluation . 72
4.3 Steps of the WCET calculation 75
4.4 ICFG Example . 81
4.5 Overview of the RTS . 84
4.6 Timeline for the task set T . 87
4.7 Example of the Branch and Bound method to approximate the

values to integers . 95

5.1 Main classes of the system . 107
5.2 PANGEA agents . 108
5.3 OV topology . 110
5.4 Overview of the agents involved 111
5.5 Database . 113
5.6 InformationAgent replication 114
5.7 Communication scheme for representing events in the monitoring

tools . 116
5.8 NormAgent scheme . 118
5.9 Addition of a new norm in the Monitoring tool 119
5.10 Sequence of steps for an agent to enter an organization 121
5.11 Test Case . 123
5.12 Messages though the server . 124
5.13 Diagram generated by the SnifferAgent (I) 125
5.14 Diagram generated by the SnifferAgent (II) 126
5.15 Communication lines among agents for the Subscription model 128
5.16 Communication between FIPA and PANGEA agents 129
5.17 Request protocol . 130
5.18 Subscription protocol . 130
5.19 Contrat-net protocol . 131
5.20 Inform protocol . 132
5.21 Comparison of the most used Virtual Organization of agentss

(VOs) platforms . 134

6.1 Software tool of GECKO . 147
6.2 MQTT Message Format . 150
6.3 CONNECT Message Format 153
6.4 SUBSCRIBE Message Format 155

vi List of Figures

6.5 PUBLISH Message Format . 155
6.6 Communication with the MQTT protocol 156
6.7 Comparison of the most used VOs and Robotics platforms . . . 160

7.1 Platform Overview . 177
7.2 Main classes of the platform . 179

8.1 Image of GECKO . 192
8.2 Image of HAWK . 193
8.3 Characteristics of HAWK and GECKO 195
8.4 Software tool of HAWK . 196
8.5 Software tool of GECKO . 197
8.6 Proposed VO of agents . 201
8.7 Waypoints that must follow HAWK 203
8.8 General steps of the coordinated movement 204
8.9 Camera placement . 206
8.10 Corners of the field of view . 207
8.11 Corners of the field of view . 208
8.12 Dimensions of the CCD in relation to the displacement of HAWK209

9.1 Time execution of some bytecodes in node 1, 2 and 3 217
9.2 Screenshot of the bytecodes in the JBE tool 220
9.3 CFG of the example . 221
9.4 Real WCET execution and WCET estimation 223
9.5 Results of the utilization factor ρji 227
9.6 Changes of angle according to the path 231

11.1 Pasos para la evaluación de los nodos 254
11.2 Pasos para el cálculo del WCET 257
11.3 Vista general del STR . 263
11.4 MQTT Message Format . 269
11.5 Arquitectura de comunicación con el protocolo MQTT 271
11.6 Agentes de PANGEA+RT . 273
11.7 Clases principales de la plataforma 275
11.8 OV propuesta para el despliegue del caso de estudio 279
11.9 Resultados del factor de utilización ρji 283

List of Tables
2.1 Possible organization topologies 32

3.1 Example Dhall Effect . 44
3.2 Overview of the main global scheduling algorithms 46

4.1 Example FPS . 87

5.1 Summary of middlewares or platforms for VOs 105
5.2 IRC Primitives . 121
5.3 Test results . 124

6.1 Robotics-oriented middlewares and platforms 140
6.2 MQTT message types . 151

7.1 Overview of Java Virtual Machines for real-time 170

8.1 Relation between the nodes and their characteristics 212

9.1 Bytecode execution in Nodes 1 and 2 216
9.2 Bytecode execution in Node 3 217
9.3 Example of some executions . 218
9.4 Bytecodes involved in the example 219
9.5 Comparison between the real WCET execution and WCET

estimation . 222
9.6 Values of the statistical adaptation of the WCET (I) 224
9.7 Values of the statistical adaptation of the WCET (II) 225
9.8 Results of the task allocation model 228
9.9 Modification of the ρj19 . 228
9.10 Results of the scheduling and task allocation model 229
9.11 Results obtained by modifying the hight of HAWK and the camera230
9.12 Results obtained by modifying the hight and the focal lenght, λ 230
9.13 Results of the horizontal and vertical

displacements,(xDist, yDist), for the calculations of the
movement SM . 231

9.14 Summary of flying results . 231

11.1 MQTT message types . 270
11.2 Relación entre los nodos y sus características 281
11.3 Resultados del modelo de distribución de tareas 284
11.4 Modificación del parámetro ρj19 284
11.5 Resultados del modelo de planificación y distribución de tareas 285

Part I
Introduction

1
Introduction

This chapter describes the motivation and the main hypothesis of this PhD thesis
and gives an overview of the methodology used during the research process of
this dissertation. In addition, the main objectives to accomplish are presented.

Contents
1.1 Introduction . 4

1.1.1 Motivation and hypothesis 6
1.1.2 Objectives . 7

1.2 Methodology . 8
1.3 Structure of the document 10

4 1. Introduction

1.1 Introduction

The design of Real-time System (RTS) is an activity that involves meticulous
planning and management of multiple resources. These resources need to be
orchested predictably and in concert with one another to ensure that tasks
executing on the system will meet stringent timing requirements and provide
the desired performance to the application.

Resources need to be allocated with considerations to the functional and non-
functional aspects (timing) of the system and the cost of the design. Online
resource management of a RTS requires fast reaction to changing workload
and efficient tests for schedulability, even when there are several constraints to
deal with. The traditional bounds have been conservative and are such that
as long as the task set does not exceed the utilization bound, all tasks will
meet their deadlines. Alternatively, if a set of tasks violates the utilization
bound, some tasks may miss their deadlines. RTS differ from most computing
systems because of the timeliness properties that they need to satisfy. Tasks
in a RTS are associated with explicit timing constraints which need to be
met for correct behavior. Time becomes an important non-functional element
in RTS because correctness of the system depends not only on the correct
functional execution of tasks, but on the timely completion of tasks. We would
like to distinguish between scheduling and resource management, even though
they are closely related. Scheduling is the aspect of resource management
concerned with ensuring that a set of tasks meets its timing requirements.
Resource management, in its totality, is concerned with higher-level decisions
that determine which resources will carry out a specific task.

Related to the mentioned problem of resource allocation and specifically, task
scheduling, the algorithms are generally independent of resource management
framework. In our case, we propose combining schedulability and resource
allocation since once utilization bounds and the worst case execution time are
estimated, resource management decisions could be made within the region of
schedulability. This is considered as an NP-hard problem: solvable in theory,
but nearly impossible to solve in practice. Nevertheless, we propose a new
approach based on the combination of mathematical methods that lead to a
good solution according to the time constraints.

In this study, we try to put together the required openness and dynamism
of the VO and real-time constrains. The proposal is a real-time scheduling
within an organization of agents. Current research focused on the design of
Multi-agent System (MAS) from the organizational point of view is gaining

1.1. Introduction 5

ground. The prevailing idea is that modelling the interactions of a MAS cannot
be limited to the agent and its communication capabilities, but instead requires
organizational engineering. The concepts of norms [386], institutions [105]
and social structures [279] were born from the idea that we need a higher
level of abstraction, independent of the agent, and the ability to explicitly
define the organization in which the agents reside. The agents in a MAS
based on organizational concepts work in coordination and exchange services
and information; they need to be able to negotiate, collaborate and reach
agreements, and can perform other more complex social actions. The term
coined for these systems is Virtual Organization of Agents (VO) [111]. The
dynamics of open environments is one of the reasons that have encouraged the
use of VO. Nowadays, VOs are an open research issue in MAS due to the need
of these systems to become more open and dynamic. In an open MAS [27]
such a VO should allow the interaction between heterogeneous agents, which
change over time, and architectures, and even different languages. Because
of their inherent changing nature, we cannot rely on agents’ behaviour when
it is necessary to establish controls on the basis of norms or social rules. For
this reason, and because of the characteristics of open environments, new
approaches are needed to support evolutive systems and to facilitate their
dynamic growth and runtime updates. A VO [111] [113] is an open system
designed for grouping; it allows for the collaboration of heterogeneous entities
and provides a separation between the form and function that define their
behaviour.

In summary, the proposed model enables defining the actions that an organi-
zation of agents should carry out within a deadline, considering the changes
that may occur during the execution of a particular plan. It is a real-time
scheduling within an organization of agents. This is a difficult task because
the VO paradigm is not as strict as the term "open" indicates but the RTS
paradigm must fulfill strict constraints.

This thesis is part of the open research lines within the BISITE research
group (bisite.usal.es). The group has extensive experience in the application of
intelligent techniques in multi-agent systems and in their evolution towards
open MAS, where much pioneering research has been published. Moreover,
the group is also working on providing formalism to the technique used in
scheduling and adaptation. This thesis initiates the VO line framed in real-time
with critical constraints.

6 1. Introduction

1.1.1 Motivation and hypothesis

Research is mainly the recognition of the validity of previous studies and
ideas, followed by their implementation, use and improvements in different
contexts. The importance of what has been done, what has already been
investigated, is evident in every new method, in every new model or each new
theory conceived [303]. This PhD thesis provides a new idea and a new model
along with its context, motivation and assumptions that made them arise.

Virtual Organizations [111] are a new way of understanding the modelling of
agent systems from a sociological and organizational point of view. Within the
development of organizations at the agent level, we find a set of requirements [85]
that demands new planning models in which the use of open systems [389] and
dynamic [90] are possible. Open systems are characterized by the heterogeneity
of their participants and their need to adapt to the environment [134] [387]
[372] [65] [301], but this is a difficult challenge when we take into account
emerging entities with a priori unknown behaviors. Currently, it is intended to
develop software systems able to respond to changes and act for themselves in
reaction to changes that occur in their environment. To do this it is necessary
to define theories, models, mechanisms, methods and tools to develop systems
that can reorganize and thus adapt to future changes in their environment.

Moreover, if we add these characteristics to a RTS, the problem is more complex.
To date, there are no known real-time models specially implemented for their
use in open systems, such as VOs. Conventionally, real-time models are applied
to closed systems where all the variables are known. Therefore, the initial
hypothesis is that: it is possible to develop a scheduling and task allocation
model that successfully enables the agents integrated into a VO to fulfil their time
constraints. This model will be theoretically formalized and then implemented
to evaluate the results.

Additionally, the lack of awareness of the existence of an execution platform
for open systems that supports agents and can also perform tasks with time
constraints, including the necessary mechanisms for the management and
control of VOs, provides us with the main motivation for the development of
the PANGEA+RT agent-platform.

1.1. Introduction 7

1.1.2 Objectives

Verifying the hypothesis led to other problems that are specified as specific
objectives of this study, including:

• Study and evaluate mechanisms for temporal prediction in real-time
execution.

• Develop an additional model previous to the scheduling model, since this
must use a task estimation of execution time. In open MAS and emergent
behaviors, task estimation should be calculated at the time the agent
wants to join the system and once the agent indicates its role and the
tasks that can carry out.

• Study useful formal mechanisms in solving optimization problems and
operational research that can be applied to scheduling and allocation
process.

• Develop a scheduling model that must be bounded temporarily. This is
a compulsory requisite to be applied in real-time scenarios.

Once the scheduling and task allocation model is developed, the absence of a
framework for the VO execution in real-time brought up additional objectives:

• Develop a complete platform that can manage the VOs that have strict
real-time constraints.

• This platform should enable a dynamic adaptation and group formation
in execution time with different topologies. It must also cover all the
main issues that the organizations approach requires, such as the norms.

• The platform must allow the heterogeneous agents, which are developed
in different languages and operating systems, to interact in a dynamic
environment.

• The platform must ensure robust communication.

Finally, we must validate the model and the platform. This brings up the
following objectives:

• Carry out a study on the specific problems where a practical application
of the model can be used together to VOs. The application must take
place in dynamic environments and in real-time. This study must include
heterogeneous agents where the formation of groups can improve the
results.

8 1. Introduction

• Evaluate the results empirically in the real application environment.

1.2 Methodology

The methodology for the development of this research follows a structure
previously planned and based on the required scientific principles for this
type of work. First, we review the existing literature in the two areas that
are addressed in this research, the VOs and the RTS. In the absence of a
platform to support VOs, we continue with the steps for the development of
the PANGEA agent-platform and subsequently, we extend the requirements
for its application in the field of robotics. To do this, the advantages and
disadvantages of the existing platforms are studied. With the knowledge gained
during the development of state of the art, we study the possible problems and
solutions to develop the model for planning and distribution of tasks in real-time
organizations. This model is developed and integrated into a new extension
of PANGEA, called PANGEA+RT which includes time constraints and VO
capabilities. Then, we design and carry out the necessary tests. Finally, a real
case study is designed to validate the model results and the PANGEA+RT
platform. This is an innovative and original work that meets the pre-established
steps for a correct scientific research.

The research methodology followed in the development of this work is divided
into six main activities:

1. Study of the basic concepts and related works

a) Study VOs and their main characteristics.

b) Study the characteristics of RTS.

c) Evaluate existing planning models in VOs.

d) Evaluate existing scheduling methods in RTS.

e) Prepare a first draft that considers the issues and the problems of
mixing the two areas (VOs and RTS).

2. Development of the PANGEA agent-platform

a) Study and evaluation of the previous and/or existing agent-
platforms.

b) Analyze the desired characteristics of the new PANGEA platform.

c) Design of the platform according to the VO requirements.

1.2. Methodology 9

d) Integrate a previous proposed scheduling method [391].

e) Case Study: AZTECA project.

3. Development of the +R middleware

a) Study and evaluate previous and/or existing robotics platforms.

b) Analyze the desired characteristics of the middleware to adapt to it
to the robotics field.

c) Design the middleware according to the VOs and robotics require-
ments.

d) Integrate a previous proposed scheduling method [303].

e) Integrate the middleware +R in PANGEA.

f) Case Study: Collaboration of heterogeneous robots (HAWK and
GECKO).

4. Model for scheduling and task allocation in real-time

a) Study and evaluation of previous models.

b) Adapt the studied mechanisms in the activity 1 for scheduling and
task allocation to the problem of VO and emergent behaviours.

c) Evaluate possible mathematical approaches to solve the problem.

d) Develop the proposed model.

e) Test the proposed model and obtain evaluation results.

5. Development of the +RT middleware

a) Analyze the desired characteristics of middleware to adapt the
solution obtained in the activity 3 to the real-time field.

b) Integrate the proposed model.

c) Integrate the +RT middleware in PANGEA.

d) Case Study: Collaboration of heterogeneous robots with real-time
constraints.

6. Generation of the dissertation document

a) Analyze all the generated material and publications.

b) Write the dissertation document.

10 1. Introduction

1.3 Structure of the document

This document has been divided into nine chapters that correspond closely to
the time-line of the methodology.

PART I

The first part of this document corresponds to the present chapter 1, which
includes an introduction to the research done and to the dissertation and
describes the existing problem regarding the development of organizations
based on multi-agent systems and the difficulty of integrating into hard RTS.
Objectives, assumptions and the motivation that led us to the development of
the model are also presented. Finally, the applied research methodology and a
brief description of the structure of this report are both explained in detail.

PART II

An overview of the theories and research areas related to this dissertation are
presented to gain a better understanding of the concepts and ideas presented
later. The purpose is not to give a complete view of these issues, but show
the foundations on which this research is based. This review will constitute
the basis to detect needs, strengths and weakness of the related work, and to
remark the innovations presented in this PhD thesis. This part is divided into
two chapters.

In chapter 2, we explain the paradigm of agents and MAS, emphasizing organi-
zational issues and their related concepts such as group formation, adaptation,
coordination and scheduling.

In chapter 3, we show the most important concepts to understand the strict
requirements of RTS. We focus on the scheduling techniques used in these
systems and the issues that arise when joining real-time with distributing
system and agents.

PART III

This part is devoted to the chapter 4, which contains two main sections holding
the main theoretical content of the dissertation. Moreover, together with
Chapter 7 constitutes the greatest innovation of this work since it is not known
any previous model integrated in a platform that combines agents working in
real-time VOs.

The first section includes the proposed Worst Case Execution Time (WCET)
estimation model. This is an effective model for calculating the execution
time in the worst case scenario when an agent desires to form part of a VO

1.3. Structure of the document 11

and wants to include tasks or behaviours in real-time system, i.e. to calculate
the WCET in emergent behaviours. This measure will be recalculated and
adjusted in the system based on statistical measurements during subsequent
executions.

The second section presents existing problems that arise when virtual organi-
zations of agents and hard-real time systems are combined. Later, the model
dedicated to the local planning within each node and the global distribution of
tasks among the available nodes are explained.

PART IV

This part presents the implementation issues of the proposed agent-platform
and the model from part III. It is divided into 3 chapters.

Chapter 5 presents the new agent-platform called PANGEA. PANGEA is a new
platform that can develop open MAS, specifically those including organizational
aspects. In this chapter, we present the platform’s architecture, the agents
involved, and their functionality. As it will be shown, the platform offers many
advantages and facilities to develop this kind of systems.

Chapter 6 focus on a new perspective to design +R architectures and explains
the relationship and benefits of applying VOs to robotics. The +R middleware
was designed for this purpose; it acts as a repository for developing robotics
oriented services. Therefore, the adaptation of PANGEA, called PANGEA+R,
is presented.

The last chapter in this section, chapter 7, presents the complete PANGEA+RT
agent-platform. In this platform, the model proposed in chapter 4 is integrated
and all the necessary mechanisms to ensure the time constrains are added.
Moreover, the MQTT protocol and the Real-Time Specification for Java are
introduced as main concepts of the platform extension. This platform is used
in Chapter 8 for the case study.

PART V

The evaluation and conclusions are presented in the fifth part. To begin,
chapter 8 includes a case study that allows us to evaluate the PANGEA+RT
platform described in chapter 7 and to, subsequently, obtain objective results
and conclusions. This case study focuses on the collaboration of heterogeneous
robots under real-time constraints. The mentioned results of the model proposed
in part III of this document, with regard to scheduling, task allocation and
WCET estimation, are explained in chapter 9 together with the results of the
case study.

Finally, chapter 10 presents the conclusions and future work in the different
lines that this dissertation can follow.

12 1. Introduction

PART VI

The last part of the document, Part 6 is "Resumen" (“Summary”), which
is composed of an abstract in Spanish of all the work done: initial studies,
proposals, results and final conclusions.

Finally, a list of acronyms and a list of references used to carry out this work are
provided, followed by an appendix with the related publications and projects.

Part II
Basic Concepts and

Related Works

2
Virtual Organizations of

Agents
In this chapter we discuss MAS from its organizational perspective and VOs.
The concept of agent has already been studied in depth in the literature and hence
for the part corresponding to agents and multi-agent systems we only offer a
brief summary of such technology. However, we go further into the consideration
of agent as an entity that operates within a society. Also, we explain issues
that are of particular relevance for an agent within an organization, such as
cooperation, grouping, norms etc. The main aim of this first section is to
address current trends in the development of MAS from the organizational point
of view, establishing all the aspects that should be taken into account when
designing a virtual organization of agents operating in an open and dynamic
environment. This chapter is the first step to establish the characteristics of the
VOs and analyse them in order to adjust their functionality to the constraints
of the scheduling model mentioned as one objectives of this dissertation.

Contents
2.1 The concept of agent 16
2.2 Multi-agent systems . 20
2.3 Societies of agents . 23

2.3.1 Open societies . 25
2.3.2 Closed societies . 26
2.3.3 Semi-open societies . 26
2.3.4 Semi-closed societies 26

2.4 Organizations of agents 27
2.5 Conclusions . 33

16 2. Virtual Organizations of Agents

2.1 The concept of agent

The evolution of software, and more to the point of the software that incorpo-
rates elements of artificial intelligence, tends towards the creation of entities
with behaviours and conducts similar to those of human beings. The theory
of agents rests on the concept of agent [309]. An agent is an autonomous
entity endowed with certain capacities typical of human beings. It may be
seen as a development of the concept of software object, perfected thanks
to the influence of artificial intelligence, that allows characteristics such as
rationality, intelligence, autonomy and learning to be incorporated. As in the
case of human beings, agents must have social skills and be able to perform
tasks or solve problems in a distributed fashion. One then speaks in terms of a
multi-agent system, in which the agents cooperate and interact to achieve the
final aims of the system.

Owing to the multidisciplinary setting in which the concept of agent has always
found itself, it has been difficult to provide a uniform definition. One of the
most widely accepted definitions is as follows:

Definition 1 An agent is an encapsulated computational system located in a
given setting that is able to act autonomously, and flexibly in that setting to
achieve the objectives for which it was designed [309].

Some of the concepts introduced in this definition merit further explanation.
Thus, with "encapsulated computational system" it should be understood that
there is a clear distinction between the agent and its surroundings. Moreover,
the definition implies that there is a well-defined frontier and a specific interface
between the agent and its environment. The key aspect of the definition is
autonomy, referring to the principle that agents are able to act by themselves
without needing human guidance. An autonomous agent has control over its
own actions and internal state; that is, an agent can decide whether it wants
to perform an action that has been requested of it. The definition places an
agent in a specific environment in which the agent can “feel” and “act”. This
leads us to response behaviour. The definition also implies that agents aim to
find solutions to problems with well-defined limits in order to achieve a specific
aim, in other words with specific goals to be attained, and that they exhibit
an active, flexible and pro-active behaviour. For [377], the term agent has the
following properties:

2.1. The concept of agent 17

• Autonomy: Agents operate without direct intervention from humans
or other sources and have some type of control over their actions and
internal states.

• Social skills: Agents interact with other agents (and possibly with humans)
through some language for communication among agents.

• Reactivity: Agents perceive their environment (which may be the physical
world, a user through a graphic interface, a collection of other agents, the
Internet, or perhaps a combination of all the above) and respond within
a given period of time to the changes occurring during this time.

• Pro-activeness: Agent are not limited to acting in response to their
surroundings but are able to manifest types of behaviour directed towards
goals through their own initiative.

A more formal definition would be as follows:

Definition 2 An agent is a physical or abstract entity that is able to perceive
its environment through sensors: it is able to assess such perceptions and make
decisions through simple or complex mechanisms; it is able to communicate with
other agents to obtain information, and it is able to act -through executors- on
the milieu in which it is working. In particular, intelligent agents are considered
a series of entities that attempt to mimic the process of human reasoning or
behaviour. Agents can be used in different areas to facilitate tasks for users,
such as data acquisition, supervision, the filtering of information, etc. [210]

There are other definitions of the term agent. One of those most widely accepted
can be found in [309]:

Definition 3 The notion of agent appears as a tool for analyzing systems, not
an absolute characterization that divides the world into agents and non-agents.

For Russel, an agent can be seen as “something” able to perceive its environment
through sensors and act in that environment through actuators. Thus, Russel
considers that a human agent has sensory organs such as eyes, ears, etc and
that she/he has actuator organs such as hands, legs, a mouth etc. Likewise, a
robotic agent has sensors to gauge pressure and temperature, cameras etc., and
motors as actuators. A software agent receives keys, files, network packages as
input data and acts on its environment by displaying things on screens, writing
files or sending network packages.

Despite the differences found in the definitions that the various authors may
give to the term agent, there is a series of characteristics that agents must
necessarily have. These are:

18 2. Virtual Organizations of Agents

• Autonomy. Agents can act without the need for external interventions,
be they human or otherwise, having some control over their actions and
internal states.

• Situation. Agents are located in an environment, whether real or virtual.

• Reactivity. Agents perceive their environment and act on this with the
capacity to adapt to its needs.

• Pro-activeness or Rationality. Agents are able to take the initiative to
define goals and plans that will allow them to achieve their aims.

• Social skills. Agents are able to interact with other agents and even with
human beings.

• Intelligence. Agents are able to create knowledge (beliefs, desires, inten-
tions and goals) from their environment.

• Organization. Agents are able to organize themselves in societies with
structures similar to those defined in human or ecological societies.

• Learning. Agents have the ability to adapt themselves progressively to
changes in dynamic environments through learning techniques.

The way in which agents are decomposed into a set of modules and the way in
which such modules interact with one another to reach the desired functionality
is driven by the architecture of the agent selected [236]. Several architectures
have been proposed and these classify the agents living in them [370]:

• Agents based on logic: reasoning and decision making are performed
through logic and deduction [132] [214] [112].

• Reactive agents: decision making is carried out through direct mapping
of a situation to an action [57] [230].

• Belief-desire-intention agent architecture (BDI) agents: decision making
depends on the manipulation of the representation of the beliefs, desires
and intentions of the agent [300].

• Agents based on layers: decision making is performed through several
software layers, each of them bearing the reasoning about the environment
at different levels of abstraction [56].

Planning, or scheduling, in decision making is a key criterion when determining
the functioning of agents. Planning systems use models of knowledge represen-
tation and symbolic reasoning and their modus operandi is defined by the need
to satisfy certain basic goals for the elaboration of a schedule. An important
disadvantage of these systems is in their application to real-time environments
since these planning algorithms are sometimes unable to respond in the time

2.1. The concept of agent 19

demanded by the system. Owing to this, new alternatives are being sought that
will implement new models of representation and knowledge. The following
classification attends to three types of architecture that differ with respect to
the reasoning model:

• Deliberative architecture: Deliberative architectures use models of sym-
bolic representation of knowledge and are usually based on the classic
theory of planning, starting out from an initial state in which there are a
series of schedules and a final state to be arrived at. These agents are
endowed with a scheduling system that allows the determination of the
steps to be made in order to achieve the desired goal. Intentional agents
(BDI) can be implemented using a deliberative architecture. These agents
are based on a series of beliefs and intentions that are used to generate
plans [184]. Among these architectures, the one most widely used and
studied is that based on the BDI model [300].

• Reactive architecture: This type lacks complex symbolic reasoning and
knowledge or representation of the environment, such that the mechanisms
for communication with other agents are very basic. The agents that use
this type of architecture receive stimuli from their environment and react
to them by modifying their behaviour and the environment itself [230] .

• Hybrid architecture: These architectures are intermediate between the
other two. Agents of this type include reactive and deliberative behaviours,
generating a perception-decision-action cycle. The reactive behaviour
is used to react to events that do not require complex decisions about
certain actions.

Of the architectures described, special attention should be focused on that
based on the BDI model. On one hand, this type of architecture has become
de facto standard for models of agents and is accepted by the Foundation for
Intelligent Physical Agents (FIPA) [336] and, on the other, it is sufficiently
generic to allow the modeling of agents.

Along this thesis, we shall argue that the agent models of architectures cannot
be based only on the internal specifications of the individual agents. A crucial
aspect is the cooperation of the individual (agent) within a community (orga-
nization). Since it is a generic architecture, BDI offers the best approach for
this requirement.

20 2. Virtual Organizations of Agents

2.2 Multi-agent systems

The usefulness of any technology, including MAS can be judged from two
perspectives: (i) its ability to solve new types of problem and (ii) its ability
to improve the efficiency of current solutions [300]. With this in mind, agents
and multi-agent systems provide a natural way to characterize intelligent
systems. Intelligence and interaction are ineluctably united concepts and
the technology of agents reflects this condition very well. When speaking
of MAS, we are extending the idea of a solitary agent, completing it with
an infrastructure for interaction and communication. Ideally, MAS have the
following characteristics:

• They are typically open and have a non-centralized design.

• They contain autonomous, heterogeneous and distributed agents, with
different “personalities” (cooperative, selfish, honest, etc).

• They provide infrastructure for specifying communications and interaction
protocols. The applications of the agent paradigm can be categorized
in three classes [92]. Open systems, complex systems and ubiquitous
systems.

• Open systems are systems in which the structure is able to change
dynamically. Their components are not known a priori; they change with
time and may be heterogeneous. An example of an open system is the
Internet: any informatics system that is to work in the Internet must
be able to operate with organizations of a very different type and, also,
without constant guidance from users. This type of functionality requires
techniques of negotiation and cooperation and we also find these in the
domain of MAS.

• Complex systems are related to large, unpredictable domains – i.e.,
complex domains. The most powerful tools to tackle the complexity of
these systems are modularity and abstraction. A problem to be resolved
with agents can be divided into a number of sub-problems of lesser
complexity, which are easier to handle. This decomposition allows agents
to use the most appropriate solution of those possible to solve a given
sub-problem.

• Ubiquitous systems aim at improving the use of an informatics system
through the use of computers available in a physical environment, normally
distributed, but doing everything in a way that is concealed from the
user. These systems are more or less the opposite of virtual reality.

2.2. Multi-agent systems 21

Where virtual reality places people within a computer-generated world,
ubiquitous computation obliges the computer “to live” in the world of
people [369]. The system must cooperate with the user to achieve its
aims. The applications must behave like an intelligent agent.

Open MAS should allow the participation of heterogeneous agents, with different
architectures and even different languages [389]. Accordingly, it is not possible
to trust the behaviour of agents and it is necessary to establish controls based
on social norms. To do so, developers have focused on the organizational
aspects of the society of agents, guiding the process of systems development
through the concepts of organization, norms, roles, etc.

Investigations focused on the design of MAS from the organizational point
of view are currently in the timelight. The idea that modeling interactions
with MAS cannot be related only to the agent itself and its capacity for
communication is steadily gaining ground. Instead, it is necessary to have
organizational engineering. The concepts of norms [386], institutions [105]
and social structures [279], to be addressed below, stem from the idea that a
greater level of abstraction, independent of the agent, is required: one which
will explicitly define the organization in which the agents live.

The agents in a MAS based on organizational concepts coordinate with each
other and exchange services and information. They are able to negotiate and
arrive at consensus and they can perform other more complex social actions.
Coordination and cooperation are very important in MAS. In a MAS the agents
must find one another, announce their abilities and the task they are able to
carry out, and request tasks from other agents.

In a MAS it is necessary to develop tasks involving communication, coordination
and negotiation. For agents to be able to interact in a coherent way they must
share information about their aims and tasks. Thanks to the exchange of this
information agents coordinate the development of activities, and are able to
negotiate in the event of conflicts arising and to plan their actions to meet a
goal.

In the interactions of a MAS it is necessary to distinguish between four concepts;
although these are intimately related, they refer to different characteristics of
MAS. These are communication, coordination, cooperation and negotiation.

Communication.

This is the skill of agents to communicate with one another; that is, exchange
information and knowledge in an understandable fashion. It allows them to
obtain the necessary information to decide on the sequence of actions they
must carry out to meet their objectives.

22 2. Virtual Organizations of Agents

Communication enables interaction among agents and for this the messages
exchanged must use not only a common language but, also, the agents must
be able to understand and interpret the information that is exchanged and be
able to exchange it with other agents.

These languages, commonly known as Agent Communication Languages (ACLs),
are inspired in the theory of speech acts [323] and have served as a basis of
the repertory of basic communicative actions defined by current standards.
Agents can exchange messages with one another through a normalized ACL.
The FIPA [336] as the main organization that promotes the agent-based
technology, has developed a current standard, called FIPA-ACL, based on the
Knowledge Query and Manipulation Language (KQML). This language allows
the development of a set of 22 communicative actions, grouped in 4 classes
(information, the performance of actions, negotiation and intermediation).

Coordination.

Coordination is a key characteristic in the development of MAS. Malone [234]
[109] described the coordination of actions as a set of supplementary actions
that can be carried out in a multi-agent environment to reach a goal that a
single agent, with the same aims, would be unable to achieve. In [109], Ferber
defines 4 main reasons for carrying out coordinated actions:

• Agents need information and results that can only be supplied by other
agents

• Resources are limited. Agents can share resources to be able to carry out
their actions.

• Coordination allows costs to be optimized, since it removes the develop-
ment of unjustified or redundant actions.

• Agents have different but interdependent goals and hence they can achieve
their objectives by benefiting from that interdependence.

Cooperation and negotiation.

Cooperation is the mechanism through which agents, working together to attain
a common goal, define a strategy to achieve that goal. By contrast, negotiation
moderates the coordination among self-interested agents able to reach binding
agreements. Negotiation allows joint coordination decisions to be made through
explicit communication [250]. These mechanisms are inspired in models taken
from the social sciences, and especially from economics, where special attention
is paid to strategic negotiation and game theory.

MAS attend to the interactions of the agents comprising them. These agents
form part of a collection and can coordinate their knowledge, aims, skills
and plans together to perform an action or solve a global challenge. In all

2.3. Societies of agents 23

systems there should be a process of rationalization for the coordination of
the set of agents. In general, in these systems the agents -with their beliefs,
desires and intentions- build up the problem and the schedule or sequence of
actions required to solve it. Coordination is a key point in the development of
this investigation. According to Ferber [109] agents share resources, demand
optimization of the costs of the system, and are able to reach their objectives
and become adapted in an independent way.

2.3 Societies of agents

Up to this point we have been using the concept of agents from a cooperative
point of view, but always on an individual basis. That is, we have reviewed
their characteristics as software entities in the environment in which they
may interact and become established, their architectures and current trends.
Henceforth in this chapter and along this thesis we shall address the social
characteristics of agents and make an exhaustive analysis of the organizational
concepts. Prior to this, however, it would seem worth clarifying the key concept:
society.

Definition 4 An artificial society is defined as a set of artificial interrelated
and interacting entities that are governed by certain rules and conditions [9].

The concept of society is widely used in contexts of human and ecological
organization, and in the present case it is used in the context of agents. The
main function of a society is to allow its members to coexist in a shared
environment and attain their goals by cooperating or not with the other
members. The main characteristics defining a society are, for example, the
norms governing it and controlling the behaviour of its members. The structure
is determined by the roles, norms of integration and communication language
among its members. In general, norms can be said to describe the desirable
behaviour of the members of a society and establish taboos and restrictions
that ensure the safety of its members. The main advantage of the development
of MAS from the social point of view is that this allows the creation of systems
with very different languages, together with heterogeneous applications and
characteristics.

Organizations can be understood as a set of entities regulated by mechanisms
of social order that pursue common objectives. The architectures that help
to model and build MAS based on organizations must support frames of

24 2. Virtual Organizations of Agents

coordination among agents as well as be able to become dynamically adapted
to changes in their structure, goals and interactions [92].

From the business point of view, the overall behaviour of the system and the
organizational aspects of the domain (stability over time, consensus about the
goals and strategies to be used) are very important. However, ,when speaking
from the point of view of MAS based on organizations these same factors are
vital for the system. This shows that MAS can be understood much better if
they are inspired in human social behaviour [17] [356] [388].

When MAS are considered from the social point of view, the concept of desirable
behaviour becomes of crucial importance. That is, the individual behaviour of
agents in a society must be understood and described in relation to the social
structure in which the agents are located and the global aims of the society.
Until a short time ago, MAS were mainly seen from the individual perspective,
i.e., as aggregations of agents that interacted with one another, only bearing
in mind how the behaviour of individual agents affected the environment
and viceversa [110]. In an individualistic view of MAS, agents are individual
entities in a society located in a given environment. That is, their behaviour
depends only on the reactions to the environment and on the behaviour of other
agents [83]. It is not possible to impose demands and goals from the global
aspects of the system, something essential in business environments. However,
societies of agents oriented towards organization require a collectivist view of
the relationship between the agent and the environment [303]. An agent in a
society needs to consider not only its own behaviour but also the behaviour of
the system as a whole and how agents affect one another.

In [84], the authors propose a classification for artificial societies based on the
following characteristics:

• Openness, which describes the possibilities of any agent joining the society.

• Flexibility, which indicates the extent to which the behaviour of the agent
is restricted by the norms of the society.

• Stability, which defines the predictability of the consequences of actions,
and

• Trustfulness, which specifies the extent to which agents can trust in the
society.

Depending on the aim for which it was created, a society needs to support all
these characteristics to different extents. On one hand, we have open societies,
which do not impose restrictions on the agents comprising it; that is, they
support flexibility and openness very well but they are lacking in stability and
trustworthiness.

2.3. Societies of agents 25

2.3.1 Open societies

Open societies assume that the agents participating are designed and developed
outside the sphere and design of the society itself and hence the society cannot
base itself on the incorporation of organizational and normative elements in
the intentions, desires and beliefs of the participating agents; instead they must
represent these elements explicitly. These considerations lead to the following
requisites for methodologies in engineering for the construction of open societies
of agents [91]:

• Societies of agents must include formalisms for the description, con-
struction and control of the organizational and normative elements of
a society (roles, norms and objectives) instead of only the states of the
agents [17] [388].

• The methodology should provide mechanisms to describe the environment
of the society and the interactions between the agents and the society,
and also to formalize the expected result regarding functions in order to
check the general behaviour of the society.

• The organizational and normative elements of a society should be specified
explicitly from an open society; they cannot depend on their insertion
into the intentions, desires and beliefs of each agent [87] [274].

• Models and tools are necessary to be able to understand whether the
design of a society of agents satisfies its design needs and its objectives
[187].

• The methodology should provide directives about the capacity of com-
munication and the capacity to adjust to the behaviour expected of the
agents participating in the society.

Agents can enter these societies with no restrictions. They can be generated
creating minimum controls, and sometimes none at all, hence bolstering the
characteristics such as flexibility and the level of openness. However, they are
not beneficial for characteristics such as stability and trustworthiness because
there is no control over which entities enter the society and much less over the
work done or actions taken.

26 2. Virtual Organizations of Agents

2.3.2 Closed societies

Closed societies, at the other extreme, are characterized by having featuring
trustworthiness and stability, owing to their policies stipulating that no external
agents can gain access to the society. Moreover, the norms governing the system
are well delimited as regards the attainment of specific goals. Agents in closed
societies are expressly designed to cooperate in order to achieve a common
objective and they are often highly interdependent with society [388]. Each of
the agents can trust in the others because there will never be outsiders in the
society. Also, this type of society is characterized because each of its members
pursues a common objective. This means that all of them have local goals but
that each goal will make its own contribution to the general objective. Until
recently, most MAS were closed.

In [187] the authors introduce two new types of agent societies: semi-open and
semi-closed. These combine the flexibility of open societies with the stability of
closed societies. This balance between the flexibility and stability of the results
is achieved through mechanisms designed to ensure that the behaviour among
agents will be ethical.

2.3.3 Semi-open societies

Semi-open societies are characterized by having a certain level of balance with
respect to the above features because in order to access one of them it is first
necessary to enter into contact with an admission control mechanism, which
will evaluate the entity requesting entry into the society. Depending on the
characteristics demanded by the society and what is inferred about the entity,
access will be granted or denied. In this way, ingress is only allowed for entities
that seem to be trustworthy and capable in the eyes of the decider. Semi-open
societies to a certain extent limit the openness and flexibility of open societies
but they are able to provide greater stability and trustworthiness.

2.3.4 Semi-closed societies

Unlike semi-open societies, semi-closed societies and closed societies do not allow
access to any new entity, although through a mechanism that communicates

2.4. Organizations of agents 27

with the outside it is possible to request to creation of a new entity inside the
society, which would function in the name of the external agent. Although the
new agent creates functions as a representative of the agent outside the society,
this new agent is not strictly identical to the exterior one; instead, it is created
based on the roles existing within the society. Accordingly, it will not have any
characteristic other than those of the entities making up the society and, in
the long run, control will be more effective [41]. This increases the flexibility
and openness of the society with no detriment to stability and trustworthiness,
since the agents participating are designed following the requirement of the
society and the owner of the society still controls the general architecture of
the system. Semi-closed societies are as open as semi-open societies but less
flexible. For example, this is the focus adopted by the ISLANDER platform,
where the external agents provide an API as an interface for the institution,
which regulates and controls the whole interaction [43].

2.4 Organizations of agents

Organizations of agents of the open type are increasingly in vogue in current
research. In fact, the VOs can be considered to be open systems formed
by the grouping and collaboration of heterogeneous agents, where there is a
clear separation between the structure and function defining how the entities
behave [113] [47]. Much of the research work carried out recently has focused
not only on the use of organizational structures during the design process but
also on regulation and adaptation in open MAS [265] [169].

Not so long ago, MAS were designed by individual teams or in collaborative
work. In these systems, which were developed for a particular domain, there
would be a group of agents that shared a set of objectives. These systems
were scalable only in controlled or simulated environments. The languages of
communication and protocols for interaction were custom-made. That is, they
were designed by developers before the agent was executed and could interact
with other agents. The development platforms, as well as the techniques for
design and modeling, were tailor-made, inspired by the agent-oriented paradigm
rather than by the use of standardized methodologies [227].

Currently, MAS allow the participation of heterogeneous agents, designed by
different teams and organizations. All agents must be able to participate in
these systems, developing public, standardized types of behaviour. However,
these systems continue to be developed for domains of specific applications. The

28 2. Virtual Organizations of Agents

systems developed are implemented with specific methodologies and organiza-
tions that include templates and patterns for different agents and organizations.
The development of programming languages and specific tools is increasing,
which allows the application of techniques with a formal specification. The
semantic elements are of great importance, for example, for coordinated actions
between heterogeneous agents to be performed.

In the not-too-distant future (current trends in research follows these lines), we
shall see the development of MAS in open domains involving the participation
of heterogeneous agents designed by different teams and organizations. The
agents which participate in these systems will be able to learn suitable types of
behaviour for participating in any interaction that might arise during execution.
Moreover, the identification of protocols of interaction and communication will
be selected automatically.

What but a short time ago was seen as a mid- to long-term future [227] is
now almost a reality: agents that are able to form or belong to coalitions that
are created dynamically and whose properties (positive and negative) are not
defined a priori but emerge along the execution process of the agents.

Two definitions of VO are:

Definition 5 An organization will provide a working framework for the activity
and interaction of agents through the definition of roles, expectations about
behaviour and authority relations, such as control [129].

Definition 6 An organization is a collection of roles that maintain certain
relationships with one another and that take part in patterns of interaction with
other roles in an institutionalized and systematic fashion [389].

The structuralist theory [333] holds that systems are closed when they are
isolated from external variables and are deterministic. Thus, the system requires
that all the variables be known and that they be controllable and predictable.
The organizational efficiency of this type of system will always prevail if the
organizational variables are controlled within certain known limits. However,
virtual organizations have all the characteristics of open systems. Some basic
characteristics by which organizations are seen as open systems are [333]:

• In growth

• In the fact of becoming more complex as they grow

• In the fact that on becoming more complex their parts demand increasing
independence

• Because their life is longer than the lives of their component units

2.4. Organizations of agents 29

• Because in both cases there is increasing integration accompanied by
increasing heterogeneity

Change, independence and heterogeneity are concepts of open systems and are
also manifest in societies. Schlein [315] proposes a list of aspects that should
be taken into account in the creation of an organization and that jointly define
the concept of “social model” from a general perspective:

• The organization should be considered an open system.

• The organization should be conceived as a system of multiple objectives
or functions.

• The organization should be viewed as a constitution of many subsystems
that interact dynamically with one another.

• Since they are mutually dependent subsystems, a change in one of them
will affect the others.

• The organization exists in a dynamic environment that includes other
systems

• The multiple links between the organization and its environment hinders
the definition of the frontiers of any organization.

• Social models defend the design of MAS inspired in social theories and
concepts such as norms, social conventions (or customs) or organizations.
Accordingly, the organizational structure is appropriate for designing
mechanisms of coordination in MAS [128] [280].

Now focusing on the computational paradigm, systems can be seen –and in a
natural way- in terms of entities (commonly, agents) that provide and consume
resources [226] and that have probably been designed by different development
teams and that can enter or exit an organization at different times and for
different reasons. Additionally, they may form coalitions or organizations with
each other and have the same aims. Current trends clearly lead to the VO
paradigm [111]

Definition 7 A Virtual Organization is a set of individuals and institutions
that need to coordinate their resources within certain institutional limits [113]
[47].

Accordingly, a VO is an open system formed by the grouping and collaboration
of heterogeneous entities, where there is a separation between the form and
the function defining the behaviour of the agent.

30 2. Virtual Organizations of Agents

Multi-agent technology, which allows the dynamic formation of organizations
of agents, is particularly well-suited to the development of this type of system.
The modeling of organizations based on open MAS not only makes it possible
to describe the structural composition of the system (for example, roles, agents,
groups, tasks, plans and services) but also the norms for the control of the
behaviour of the agents, the dynamic entry/exit of the components, and the
formation, also dynamic, of groups of agents. Research on organizations
of agents varies, ranging from basic concepts such as groups, communities,
roles, etc. [159] [111] [94], the Theory of Human Organization [14], structural
topologies [159] [14] to normative research, including the representation of
norms [224], deontological logics [93] and institutional approaches [103] [105].
The development of open MAS is currently a recent field of enquiry in the agent
paradigm and will allow this technology to be applied in new and complex
domains [29] [157] [185]. In this sense, it is necessary to investigate new
methods for modeling virtual organizations based on open MAS and innovate
in techniques that will endow the virtual organization with capacity.

Following on with the organizational perspective, a system is described by a
social structure and a set of norms that govern interactions among agents. Such
a description identifies the functional components of the system (agents), their
responsibilities (the tasks they must perform) and their resources (knowledge,
hardware, software, tools, etc) and the relationship between them (communica-
tion, assignation, etc). Below we describe some of them.

Social Entity

Organizations are formed by components or social entities that in turn may be
composed of a specific number of members or agents. According to [280], these
entities are as follows:

• They have responsibilities - that is, a set of sub-tasks that they must
carry out- included within the aims of the organization.

• They have and they consume resources. The components have certain
resources with which to perform their tasks. The resources required by a
component will depend on the role it is playing at that moment in the
organization.

• They are structured following given patterns of communication,

• They attempt to attain the global aims of the organization, and

• They are regulated by norms and restrictions.

Structure

The entities of an organization are not independent of one another. They
interact. Commands, information etc, are units that are passed between them.

2.4. Organizations of agents 31

In general, these relations are not given individually within an organization;
instead, a conjunction of relations among groups of entities is required.

In this conjunction, different aspects must be considered: roles, topology,
authority relations. All these will determine the structure of an organization.
Structure can be defined as the distribution, order and interrelationship of
the different parts comprising the organization. In this structure, agents are
ordered and communicate, depending on the topology defining the system.
There are different organization’s topologies that Rodríguez presents in [303]
and are shown in the table 2.1.

Hierarchy: Agents are ordered in a tree-type structure, in
which the lower levels have the basic functionality and the
upper ones are responsible for decision making and control.
Oligarchy: They are nested and hierarchical structures of
holons. A holon is a part of a larger entity, the result of the
grouping of subordinated entities. This type of topology
tends to be applied in domains where the objectives are
decomposed recursively into subtasks.
Coalition: These are transient organizations of agents
formed to achieve a specific objective, which usually provides
certain benefits and reduces costs. Coalitions are dissolved
when the aim has been reached, since there is no longer
any need for grouping or when a critical number of agents
abandons the grouping. Internally, it is usually represented
as a flat structure or with a leader (group representative)
and externally as a single atomic unit.
Groups: These are groupings of cooperative agents, who
work together to achieve a common goal. Thus, they maxi-
mize the usefulness of the team. The representation of aims,
beliefs and schedules is carried out at team level. The groups
are usually applied when solving problems can be achieved
better with joint work. The groups imply greater redun-
dancy and flexibility for uncertain environments, although
also an increase in communication needs.
Matrix-like organizations: In this type of organizational
topology, an agent can be controlled by more than one super-
vising agent. Accordingly, it is necessary to use commitment
assessment mechanisms and the resolution of local conflicts.
It is like a grid-type structure in which the Manager agents
are located around agents.

32 2. Virtual Organizations of Agents

Federations: These are grouping of agents with a rep-
resentative. The members of the rest of the organization
interact only with this representative and lose some of their
autonomy. This “representative” agent also acts as an inter-
mediary between the group and the outside world, carrying
out functions such as (i) broker: this distributes tasks among
the members of a group; (ii) monitor: this facilitates in-
teractions among different agents (it establishes contacts);
(iii) mediator: this controls the states of agents and reports
events, and (iv) embassy: this controls the communica-
tion between external agents and those of the federation (it
translates ontology).
Congregations: These are groupings of agents with similar
or complementary characteristics. In this case, they do not
involve the achievement of a specific goal but do facilitate the
search for suitable collaborators for that goal to be attained.
Accordingly, this type of topology is usually considered for
long-term objectives.

Table 2.1: Possible organization topologies

Functionality

The functionality of an organization is determined by its mission; that is, by
global aims that describe the reason for its own existence. The mission defines
the strategy, the functional requirements (done by the organization) and those
of interaction (how it is done). The objectives can be classified as follows:

• Functional: of each organization group or unit

• Operative: of the agents, their plans (the tasks they will carry out)

Norms

The social norms define the consequences of the actions of agents:

• Restrictions regarding the organization

• Obligations, sanctions to be applied.

• Control over external access

• Decomposition

– Actions that elicit the activation of the norm.

– Set of obligations acquired by the agent.

2.5. Conclusions 33

– Actions that should be performed to remove the obligation.

Environment

The environment defines what exists around the system: resources, applica-
tions, objections, assumptions, restrictions, stakeholders (providers, clients,
beneficiaries). By defining the environment, it is possible to establish a list of
roles with respect to the elements of the environment: mode of access (reading,
interaction, the extraction of information), access permits, etc.

Dynamicity

The organizational dynamics is related to the entry/egress of agents, with the
adoption of roles by these, the creation of groups, and the control of behaviour.
In the definition of the dynamics of an organization, the following must be
specified:

• Regarding the entry of agents: when agents are allowed to enter the
organization; what their position in the organization will be; the pro-
cesses involved for expelling agents displaying anomalous behaviour. For
example, in the model defined in [104] there is an Institution Manager
agent, which authorizes the entry of external agents into the institution.

• Regarding role adoption: how the agents adopt a given role; the associa-
tion of agents with one or more roles. For example, in [104] a description
is given of the transitions between scenes as a function of roles; exchange
of roles.

• With respect to the dynamic creation of groups: the definition of federa-
tions, coalitions, congregations etc.

• Finally, with regard to behaviour control: how to control the conformity
of the behaviour of the agents with the social norms. For example,
in [104] there is a social layer that guarantees that interactions will occur
in accordance with the norms.

2.5 Conclusions

In this chapter we have explored the VOs, which are considered to be the most
suitable MAS development for open environments since they show flexibility,
openness, heterogeneity, capacity to adapt and, above all, with their organi-
zation capacity they are able to emulate the functioning of human society.
Accordingly, this specific technology was chosen.

34 2. Virtual Organizations of Agents

Moreover, we have established the main characteristics that must be taken into
account to apply an organization and open policy: the different topologies, the
norms, the adaptation, the dynamicity, etc. These issues will be applied in the
development of the model and the PANGEA agent-platform.

In the next chapter, we present the main issues and concepts of the RTS that
must be also integrated in the proposal of this dissertation.

3
Real-Time Systems

The real-time computation plays an increasingly important role in computer
systems, since the future directs the evolution of these systems towards a greater
interaction with the real environment. This environment sends stimuli in real-
time expected to be captured and processed by the systems within temporary
constraints that are the most important issue to take into account in a RTS.
From the analytical point of view, a RTS consists of a set of tasks and each
task at the same time is composed by a set of activities or subtasks that run
concurrently cyclic or according to a schedule. An ordinary real time task is
characterized by three main parameters: the runtime, the period and the deadline.
Moreover, the task execution must be controlled by any scheduling algorithm,
which is responsible for organizing the execution time between periodic, aperiodic
or sporadic tasks. In this chapter, we introduce all these basic concepts and
present some related works of MAS in real-time environments. As mentioned in
the previous chapter, this one is also essential to analyse the characteristics of
a RTS in order to adjust their functionality to the constraints of the scheduling
model mentioned as one objectives of this dissertation.

Contents
3.1 Introduction . 36

3.1.1 Classification of real-time systems 36
3.2 Models of tasks in real-time systems 37
3.3 Real-time scheduling 39

3.3.1 Local scheduling within computational nodes 40
3.3.2 Global scheduling in a real-time system 43

3.4 Distributed real-time systems 47
3.4.1 Multi-agent systems in real-time environments 50

3.5 Conclusions . 54

36 3. Real-Time Systems

3.1 Introduction

In a RTS correction depends not only on the logical result of a computation
but also on the moment at which that result is obtained [341]. According to
this definition, apart from the necessary logical corrections to the system it is
also necessary to take into account its temporal correction, which is expressed
by a set of temporal restrictions imposed by the environment. Accordingly, an
RTS must ensure the fulfillment of such restrictions within a deadline to be
met.

Typically, an RTS can be seen as a set of events/responses, since the system
normally performs a cyclic process in which, initially, data from the environment
are read. Then, a response is obtained, based on those data, and finally the
environment is acted on depending on the solution obtained [352]. Currently,
most RTS are implemented with concurrent applications formed by a set of
tasks, each of which must solve a given part of the problem. The tasks tend
to be characterized by priority, a deadline and in the worst case a limited
computing time.

3.1.1 Classification of real-time systems

The deadline defines the longest period of time since activation in which the
tasks should have been performed and, therefore, a response obtained. If the
answer is obtained after that time, it will probably not be of any use. In fact,
on the basis of what happens if a solution is obtained after the deadline, it is
possible to differentiate between two types of RTS [337].

Soft real-time systems

Soft RTS, also known as uncritical, are characterized by the fact that the
completion of a task after its deadline may negatively affect the quality of the
results of the task.

Normally, when a computer controls some type of external device there are
certain temporal requirements. Embedded informatics systems often belong
to this type. The required response time is typically shorter than that of
interactive systems, and is often found in the 10-100 millisecond range. To
maintain control over the external devices it is important that the system should
meet the deadlines. In uncritical (soft) RTS, however, occasional failures to

3.2. Models of tasks in real-time systems 37

meet deadlines can be tolerated. A typical example of a soft RTS described
in [237] is the control of a telephone. To serve a client efficiently, this control
must respond rapidly to the actions of the person making the call. When the
person making the call lifts the handset the telephone must generate a dialing
tone and must be prepared to receive a telephone number. If the telephone fails
to meet these requirements the personal calling might think that the service is
unavailable at that particular moment. In fact, even though the system fails,
the integrity of the system remains unaffected.

The dividing line between interactive systems and soft RTSs is often difficult
to pinpoint. A system of audio reproduction, for example, could be considered
a soft (non-strict) RTS owing to the temporal constraints of its response.

Hard real-time systems

Hard RTSs, also known as critical systems, are characterized by the fact that
the execution of a task after its deadline may negatively affect the quality of
the results of the task. Some RTSs comprise processes with critical temporal
requirements. The loss of a deadline in this type of system often leads to
complete systems failure [55]. Many automatic control systems belong to this
category. This type of system, for example, may be an aerial navigation system,
the control of a robotic arm, or the control of an industrial plant. Such systems
usually require very rapid response times, in the order of milliseconds. The
loss of some deadline in this type of system may lead the control algorithms to
become unstable, with catastrophic results.

As well as this classification of RTS, Bernat et al. [42] have proposed a third
type, called weakly critical systems. In these, a diffusion of the temporal limits
in which the deadlines may not be reached is proposed. These systems are
critical in the sense that they must guarantee beforehand that their temporal
specification will be fulfilled, although they do have some non-critical activities
associated with average response times.

3.2 Models of tasks in real-time systems

As mentioned above, an RTS is implemented by a set of tasks. If one considers
the importance of the work performed by each task in the maintenance of the
integrity of the system, the existing classification is:

• Critical: A failure in one of these tasks may lead the system to a catas-
trophic situation. The failure may be due to an error in the program
code or to a delay in achieving the result.

38 3. Real-Time Systems

• Acritical: These are tasks that collaborate in the functioning of the
system without compromising its integrity in the event of failure or
non-execution.

By contrast, attending to the temporal characteristics of each task, the tasks
can be classified as [237]:

• Periodic: These are tasks that are repeated during their execution in
the system. They are defined by a period that indicates how often the
task will be activated again. Each activation must be completed within
a set response time. There are three parameters that characterize these
tasks, Ti = (Ci, Di, Ti) [237] where: Ci is the computing time, in the
worst case, required in each activation; Di is the relative deadline: the
maximum time available for activation to complete task execution. If for
some reason the result of the execution is not available in Di units of time
after activation has been started, a failure is said to have occurred and
Ti is the activation period, the distance in time between two consecutive
requests.

• Aperiodic: These tasks, Ji, must attend to events that arise unpredictably,
such as an order given by an operator or the appearance of an obstacle.
Depending on the urgency, they can be subdivided into the following
groups:

– With no deadline: Their execution is not critical. They have no
definitive limit in which they must be completed. They can be used
to improve the precision of the control actions or they can generate
reports about the state of the system. Although they have no time
limits for completion, it is desirable that the scheduler execute them
as soon as possible in order to achieve a short response time. The
only parameters that characterizes them is the computation time,
Ji=Ci.

– With a firm deadline: As in aperiodic tasks with no deadline, these
are not critical either. The result of their execution is only of use
to the system if the tasks end before its deadline. If the deadline
cannot be met, the planner must cancel their execution as soon as
possible in order not to waste computing time. This type of task is
based on two parameters: Ji = (Ci, Di).

• Sporadic: These tasks have a maximum deadline and failure to meet
this may be catastrophic for the system [248]. Accordingly, the planner
must guarantee correct execution. The parameters of this type of task
are the same as in the case of the periodic tasks except that the period
represents the minimum distance between two consecutive activations
instead of indicating the time between activations

3.3. Real-time scheduling 39

In most of the existing works [221] [215] [248] [338] [382], in order to guarantee
a correct execution the authors base themselves on explicit knowledge of the
periods of the tasks or, at least, on knowledge of the minimum times between
requests. Accordingly, the tasks considered to be critical must be transformed
into periodic ones, if they are not so already. In particular, sporadic tasks
should be considered as though they were periodic during the designs phase
and in the analysis of the system [237].

Apart from the temporal characteristics of the tasks, in the first real-time
studies the following series of restriction was assumed, although as the theory
has evolved and matured, some restrictions have been eliminated:

• All periodic tasks are critical.

• All tasks can be eliminated from the processor at any moment.

• All tasks begin their execution the moment they are active.

• Ci ≤ Di ≤ Pi

• The overload due to the change of context is considered to be negligible.

• There is no dependence between tasks; that is, the tasks do not share
common resources and there is no precedence relationship between them.
As set of tasks with precedence relations can be transformed into another
set with no precedence problems by modification of the deadlines [70].

• No task is suspended voluntarily, with the exceptions of expulsions caused
by the planning algorithm.

In the context of real-time applications, the actions are tasks (also called
processes) and the organization of their execution by the processors of the
computational architecture is called the real-time scheduling of the tasks. In
the following section, we shall go further into scheduling.

3.3 Real-time scheduling

Within real-time planning it is necessary to distinguish between local planning
and global planning. Local planning refers to the order of execution of the
tasks in a node and global planning refers to the distribution of tasks between
the different nodes comprising the system. Since this thesis covers both aspects,
below we review the most relevant concepts of both types of scheduling.

40 3. Real-Time Systems

3.3.1 Local scheduling within computational nodes

Since one of the relevant points of this thesis is a scheduling model for VOs in
real-time environments, it is important to establish the bases and the evolution
of the concept.

We represent by T the set of periodic (and sporadic) tasks that comprise the
load of the processor. We shall assume that N is the cardinal of the set T .
The most important parameters of the periodic load is the processor use factor,
ρ, which is defined as:

ρi = Ci/Ti (3.1)

A set of tasks, T , is schedulable if and only if there is some scheduling algorithm
able to meet the deadlines of all the activations of T . It should be noted that
the condition of schedulability is a property of the set of tasks and not of the
scheduler. Starting out from these definitions, it is clear that there are sets of
tasks that can be scheduled but that a given scheduling algorithm might be
unable to plan correctly. A scheduler is said to be optimal if and only if it is
able to plan all sets of schedulable tasks correctly.

Scheduling must fulfill the temporal restrictions of the application. The proce-
dures governing the ordered execution of tasks are referred to as the scheduling
policy.

In classic informatics systems, the main objective of the scheduler is usually to
minimize the response times of the tasks; i.e., the feedback-driven scheduling
[342], or sharing processing times among tasks in the most equitable way
possible; Round Robin (RR), and, finally, avoiding context changes with
First Come First Served (FCFS). None of these policies is appropriate in
RTSs [341] [340]. The main aim of any real-time scheduling policy should be
to ensure that all the tasks fulfill their temporal restrictions. As well as this
basic objective, it is desirable that the scheduling policy consider the following
issues [237]:

• Management of the resources when they are shared among the different
tasks of the system

• Recovery from failures

• Minimization of the response time of all the tasks.

• Execution of acritical tasks with no deadline.

3.3. Real-time scheduling 41

• Replacement of tasks during the time of execution (mode change).

• Consideration of the temporal load of the scheduling algorithm itself, of
the change in context, etc.

If possible, it should be easy and simple to use this in practical work. The
only way to guarantee that a given scheduling algorithm will plan a specific
set of tasks correctly is through analysis and through analytical or exhaustive
methods. As stated in [382], simulation is not a valid method for guaranteeing
correct scheduling, since "simulation shows the presence of errors, but not their
absence" [95].

Accordingly, to determine a priori whether a RTS is temporally correct, i.e.
whether it fulfills the temporal restrictions imposed in the specification of the
system- schedulability tests are implemented. We say that a set of tasks in real
time is schedulable if each task completes its execution before its maximum
deadline is reached. Among the basic analytical algorithms for schedulability,
we have Rate Monotonic (RM) [216], Deadline Monotonic Analysis (DMA) [366],
and Earliest Deadline First Scheduling (EDF) [221].

Since we are interested in ensuring that the deadlines will be met in all cases to
fulfil the constraints of the hard real-time systems, in these tests a pessimistic
analysis is used to guarantee that there will be a schedule for the execution
of tasks in which the execution times foreseen for the worst case are within
the deadline demanded for each task [237]. It seems clear that the time of
execution for the worst case, or WCET, of each task is very important for the
construction and verification of the RTS. In most works addressing the issue
of thee scheduling of RTSs, it is assumed that the WCET of all the tasks is
known, although as we shall see along this work this information is very hard
to obtain and in many cases it is only possible to work with predictions. In
sum, a scheduling model is defined by:

• A scheduling algorithm, which determines the order of access to the
system’s resources.

• A method of analysis, which allows the temporal behaviour of a sys-
tem to be calculated. It checks whether the temporal requirements are
guaranteed in all the cases possible (the worst case will be studied).

3.3.1.1 Scheduling models

The simplest planning is static planning, also known as executive cyclic schedul-
ing or time-driven scheduling [205] [390] [382]. It is the class of schedule most

42 3. Real-Time Systems

widely used nowadays. Most of the planning work in this type of scheduling
is done during the design of the system. A table is constructed (also called
static plan or calendar) indicating the instants at which each task should start
being executed and when it must end. The guarantee of correct execution of
all the tasks (schedulability analysis) is done implicitly during the construction
of the schedule itself. The main advances of this policy can be said to be
predictability of efficiency in the time of execution. By contrast, among the
disadvantages of this model are inefficiency in predicting aperiodic events, the
reduced flexibility for modifying the load characteristics (a small change in
one of the tasks implies having to modify the whole schedule) and a possibly
excessive size of the table.

Despite the above, J. Xu and D.L. Parnas made a fiery defense of cyclic
schedulers in [382], and championed the notion that some types of problem can
only be solved with this type of algorithm.

Scheduling by priorities

Unlike cyclic schedulers, there are planners controlled by priorities. In these,
the need for a preset plant is eliminated, allowing decisions to be made by the
scheduler.

The basic scheme of functioning is as shown in [237]. At each moment (typically
when a task arrives or is completed) the scheduler chooses the task whose
priority function is higher than that of all the other active tasks. Depending on
what the priority function is we shall have the following: schedulers with fixed
priorities if a fixed priority is initially assigned to each task, and this value is
used as a priority function, and schedulers with dynamic priorities, in cases in
which the priority function has as parameters data relating to the load present
at the moment of its evaluation.

These methods require a previous test that will guarantee that the particular
planning policy employed will be able to schedule all the critical tasks of the
system correctly.

Within the system of fixed priorities, the two most widely used methods are
Fixed Priority Scheduling (FPS) and EDF [213]. The FPS is also known as RM.
Each task has a static and set priority that is known a priori. The tasks are
executed in the order determined by such priority. The priority is determined
by temporal restrictions (short deadline corresponds to higher priority), not by
its importance for the correct functioning of the system. With the EDF the
tasks are executed in an order stipulated by the task’s deadline such that the
next task to be executed will be the one that has a shorter deadline or one
closer in time. In recent years, scheduling schemes based on fixed priorities have
attracted much attention in the scientific community and have now reached
a high degree of maturity and recognition [338] [23] [326] [214] [213] [59] [21].

3.3. Real-time scheduling 43

In [23], it is possible to find a historical study of the advances made in scheduling
by fixed priorities.

In [61], the following reasons are offered to explain why FPS is considered a
better model:

• It is easier to implement. The parameter used for the scheduling, priority,
is static at the moment when the scheduling is made (although it may
vary in successive iterations), whereas with EDF more computation time
is required and hence this may delay planning; also, its tendency to
produce deviations is greater.

• It is easy to introduce tasks without a specific deadline simply by assigning
them a priority. However, assigning an arbitrary deadline is more abstract
and artificial.

• The notion of priority can include other aspects, such as an evaluation
of the urgency or importance of the task. Nevertheless, the deadlines
cannot be changed.

• In a situation of overload, FPS shows more reasonable behaviour since
poor functioning will occur in the tasks with less priority. However, in
EDF more critical tasks with longer deadlines may be affected, leading
to a domino effect in the other tasks and causing much greater delays.

Despite the above, EDF does have one advantage over FPS. The node use
factor is greater but in a hard RTS the main aim is to ensure that the deadlines
of all the tasks will be met, and hence having a lower use factor is considered
to be a reasonable option. Accordingly, with these considerations the FPS
was chosen although the system of priority application was modified slightly
in order to take into account these critical tasks when the system does not
have more computation nodes to redistribute the agents and their services and
hence control the situation of overload while the system is being re-scheduled
or adapted. In chapter 5 we detail all the characteristics of this model since it
was chosen as the starting point for the work carried out in the preparation of
this thesis.

3.3.2 Global scheduling in a real-time system

The global scheduling of a processing system has the main aim of obtaining
a better yield in the processing capacity of the system. This can be achieved
thanks to the existence of a greater temporal distribution of the load between
the processors: unlike distributed systems, with global scheduling it is possible

44 3. Real-Time Systems

to avoid having a very busy processor, with a long queue of pending tasks,
while other processors are idling. In this way it is possible to advance in
the work, thereby allowing the system to be more available to attend to new
demands [31].

As in the case of monoprocessors, the assignation of priorities may be static
(FPS) or dynamic (Dynamic Priority Scheduling (DPS)). However, FPS loses a
great advantage -determinism- since even though the priorities are fixed if some
unexpected event occurs, such as could be the mere arrival of an aperiodic task,
the whole assignation of periodic tasks to nodes may change, and even the
schedulability of the system may become compromised. By contrast, dynamic
assignation of priorities seeks greater flexibility, in accordance with the aim of
global scheduling [31].

The assignation of fixed priorities, based on some criterion, orders all the tasks
of the system and assigns them decreasing priority. This priority is global and
persists throughout the execution of each of the activations of a task. In certain
cases, these methods may encounter problems with load distribution. For
example, when there are "large" tasks to be performed, where "large" depends
on the use factor of each algorithm, they are assigned a wrong priority. Thus,
most algorithms of this family will be variants of the RM with exceptions for
the case of "large" tasks.

For these reasons, we have chosen to use the scheduling with static assignation
of priorities. Next, we will present the most important schedulers of this type.

Global Rate-Monotonic

The Global Rate-Monotonic (GRM) consists of ordering all the tasks of a
system from smaller to greater periods and assigning them decreasing priority.
During the time of execution of active tasks, they will join a single global queue
ordered according to the priority assigned and the global planner will extract
them as processors become freed-up. Unfortunately, this scheme has a use limit
equal to zero. The table 3.1 and the figure 3.1 show an example of this effect,
which is call the "Dhall Effect" [88] [89].

Task Period Deadline WCET
Ti, i ≤ m 1 1 2ε
Tm+1 1 + ε 1 + ε 1

Table 3.1: Example Dhall Effect

3.3. Real-time scheduling 45

Figure 3.1: Dhall Effect Behaviour

A set of m + 1 tasks in m processors is scheduled with GRM. The m first
tasks have a period Ti = 1 and a poorer computation Ci = 2ε (ε being small),
while the last task has a period Tm + 1 = 1 + ε and a Cm + 1 = 1. If all
the tasks are activated when t = 0, the first m are executed since they have
a smaller period. The last task would end at t = 2ε + 1, losing its place,
Tm + 1 = Dm + 1 = 1 + ε. If m→∞ and ε→ 0 , the use of the system tends
to zero ρ(T) = m2ε/1 + 1/(1 + ε) if ε→ 0 and hence ρ(T) = 1 and ρ = 1/m
and it is not schedulable.

m+1∑
i=1

ρi = m
2ε
1 + 1

1 + ε
−→ 1 if ε −→ 0 (3.2)

It should be noted that this example is also applied to GRM and EDF. In
general, all algorithms that fail to take into account the maximum load of the
individual tasks may undergo the Dhall effect.

Other algorithms for global scheduling

The Table 3.2 shows a summary of the work carried out in [31], where different
global scheduling algorithms are evaluated.

As can be seen, the Dhall effect can only be avoided completely with the
PriD [138] and Proportionate-Fair Planning (Pfair) [34] schedulers. However,
with the PriD, the maximum load is unknown and neither does any method
of evaluation exist. Accordingly, the best of these algorithms is the Pfair,
discussed below.

Proportionate-Fair planning

46 3. Real-Time Systems

Planner Load limit Dhall Effect

Static
Priorities

GRM 0 Yes
AdaptativeTkC Variable Sometimes avoided
RM-U 1/3 Avoided because only

small loads

Dynamic
Priorities

EDF-US 1/2 Avoided because only
small loads

GFB 1− λmax Avoided if small loads
Baker ? ?
EDF ? Avoided depending on k
PriD ? Avoided
M-TBS 1− λmax Avoided if small loads
M-CBS 1− λmax Avoided if small loads
Pfair 1 Avoided

Table 3.2: Overview of the main global scheduling algorithms

Pfair [34], is based on the idea of executing tasks proportionally and accurately
by using fractions of time or quanta. The execution time devoted to a given
task during a period of time is proportional to the weight of the task Ci/Ti. It
is a scheduling with preemption but this can only occur at certain moments of
time, at the end of the quantum. This means that the time devoted to a task
in a period of time t, is approximately proportional to its weight t(Ci/Ti), with
a maximum error of the order of the quantum. The algorithm will minimize
the maximum error committed lag, expressed in the following formula:

lag(Ti, t) = y(Ci/Ti)− dedicated(Ti, t) (3.3)

If the task Ti is executed, the lag(Ti, t) will decrease by 1− (Ci/Ti) whereas if
it is not executed it is increased by Ci/Ti An algorithm is said to be pfair if
and only if for all Ti the following is satisfied:

− 1 < lag(Ti, t) < 1 (3.4)

Pfair algorithms use dynamic priorities to minimize this error at all times,
executing the m tasks with the highest priority. The following scheme describes
the PF algorithm and is pfair :

The condition for a set of tasks to be schedulable with this algorithm is that
the load should not surpass the processing capacity of the multiprocessor. In
other words, it is an optimum algorithm. The greatest drawback is the high
number of appropriations if the quantum is small, or greater error and poor use
of the computational capacity when the quantum is large. Additionally, the

3.4. Distributed real-time systems 47

Algorithm 1 Steps of the PF Algorithm
1: Execute all the urgent tasks; that is the tasks Ti such that lag(Ti, t) > 0

and lag(Ti, t+ 1) ≥ 0 if the task were executed.
2: Do not execute the tasks Ti such that lag(Ti, t) < 0 and and lag(Ti, t+1) ≤ 0

if the task were not executed.
3: For the other tasks, execute the task that has the smallest t′ > t such that
lag(Ti, t′) > 0

algorithm for recalculating the priorities, despite being executed in polynomial
time, must be executed at each quantum.

The main drawbacks of such planners are [31]:

1. Require the quantum level synchronization.

2. Part of the quantum can be wasted because some tasks finish before.

3. Produce a high number of context switches; (iv) can produce a large
number of migrations.

4. Planning decisions are grouped at the beginning of the quantum.

Moreover, in a planning test U ≤ 1 there is no possibility of introducing
sporadic tasks that can arrive frequently in highly changeable systems. In the
solution proposed in this thesis the Dhall effect is not produced because it takes
into account the maximum load of the individual tasks. The replanning is also
avoided in each quantum and so, the number of migrations is reduced.

3.4 Distributed real-time systems

Many of the problems currently found may require complex solutions that
are difficult to approach with a single computer, either owing to the time
costs for the task to be performed or owing to the excessive complexity of the
solution of objectives that are too complex if only one computer is used. In
turn, some systems require the ability to be able to reset themselves in the
case of a failure causing the whole system to fail, and even to prevent that
failure from occurring. Accordingly, a solution via centralized systems in which
the complete solution to the problem is obtained with a single computer may
be a bad approach. Distributed systems have been developed to approach
complex solutions by distributing the load of the solution among different
nodes, such that the complex problem is divided into simple tasks that can
be addressed individually at each node. We define a distributed system as

48 3. Real-Time Systems

a collection of autonomous computers connected in a network and with the
appropriate distributed software for the system to be viewed by users as a
single entity able to provide computational facilities [79].

Figure 3.2: Distributed real-time system

Figure 3.2 shows the general structure of a distributed RTS. In a distributed
RTS, the following characteristics are desirable [79]:

• Resource sharing: the resources in a distributed RTS are physically
encapsulated in one of the computers and can only be accessed by other
computers via communication (the network). For resource sharing to be
effective it must managed by a program that offers a communications
interface, allowing the resource to be accessed, manipulated and updated
reliably and consistently.

• Openness: An informatics system is open if the system can be extended in
different ways. A system may be open or closed with respect to hardware
extensions (adding peripherals, memory or communications interfaces,
etc) or with respect to software extension (adding characteristics to
the operating system, communications protocols and resource sharing
services, etc). The openness of distributed systems is first determined
by the degree to which the new resource-sharing services can be added
without damaging or duplicating those already present.

• Concurrence: In a distributed system based on the resource-sharing model
the possibility of parallel execution occurs for two reasons: (i) Many users
interact simultaneously with application programs. (ii) Many server
processes are executed concurrently, each of them responding to different

3.4. Distributed real-time systems 49

requests from the client processes. The first case is less conflictive since
interaction applications are normally executed in an isolated fashion at
the user’s workstation and do not conflict with the applications executed
at the workstations of other users. The second case arises owing to the
existence of one or two server processes for each type of resource.

• Scalability: Distributed systems operate effectively and efficiently at
many different scales. The smallest scale consists of two workstations
and a file server, while a distributed system built around a simple local
area network could involve hundreds of workstations, several file servers,
printing servers and other servers for specific aims. Neither the software
of the system nor that of the application should change when the scale
of the system is increased. The need for scalability is not only a problem
of the network or hardware capability but is tightly linked to all the
design aspects of distributed systems. The design of the system should
explicitly recognize the need for scalability; otherwise there will be serious
limitations.

• Tolerance to failure: Sometimes, informatics systems fail. When failures
occur in the software or hardware the programs may provide incorrect
results or could stop running before the computing they are performing
has been completed. The design of systems tolerant to failure is based on
two complementary issues: Hardware redundancy (the use of redundant
components) and software recovery (the design of programs able to recover
from failures). In distributed systems, redundancy can be approached at
a lower level than the hardware; the individual servers that are essential
for the continued operation of critical applications can be replicated.
Software recovery is related to the design of software able to recover the
states of the permanent data before the failure occurred.

• Transparency: Transparency is defined as the concealment from the user
and applications programmer of the separation of the components of a
distributed system such that the system will be perceived as a single
entity instead of as a collection of independent components. Transparency
exerts considerable influence on the design of the software of the system.

As seen, distributed RTSs are of great importance and cover a large number
of real situations. Additionally, these systems are highly complex and many
problems remain to be solved. In this sense, MAS can be seen as an alternative
form for the development of RTSs. For this reason, in the next section, we
discuss works addressing this area of enquiry.

50 3. Real-Time Systems

3.4.1
Multi-agent systems in real-time environ-
ments

Regarding improvements in the resolution of highly complex systems in dis-
tributed RTSs, recent years have seen the incorporation of the use of Artificial
Inteligence (AI) techniques, and more specifically of the MAS paradigm, to
offer distributed RTSs the capacity to carry out intelligent problem solving that
will allow such problems to be addressed from other perspectives. The methods
used in AI must be adapted for use in domains in which a real-time response
is demanded. The Real-Time Artificial Intelligence Systems (RTAIS) area was
created with the aim of satisfying these needs. These systems must be able to
satisfy complex, critical goals in settings, probably dynamic, with temporal
restrictions by means of the use of AI techniques. Further information about
RTAIS can be found in [124] [255] [157].

Different approaches have been proposed to adapt classic techniques of artificial
intelligence so that they will be able to cope with real-time requirements. The
main work has revolved around the following aspects:

• The modification of classic algorithms of AI so that their executions will
be temporally bounded, and –in this way- their execution time will be
predictable.

• Software architectures of AI appropriate for operations in real-time, for
example, the MAS paradigm.

• Modification of traditional planning policies in RTSs to adapt them to
the capacity of using less predictable algorithms.

Recent years have seen the coining of the term Real-time Agent (RTA) to
refer to agents that are able to manage temporal restrictions in some of its
capacities [189]. In these agents it is necessary to take temporal correction into
account; this is expressed through a set of temporal restrictions imposed by
the environment. Accordingly, RTA must guarantee the fulfillment of these
temporal restrictions. RTA tasks must therefore, on one hand, have their
temporal behaviour clearly defined through the parameters associated with
the tasks in a RTS and, on the other, it must be possible to analyze and plan
such tasks via a scheduling policy that will allow us to obtain an order of task
execution within the agent, bearing in mind that the tasks must be executed
with their temporal restrictions taken into account.

Once an RTA has been defined, we can define a Real-time Multi-Agent System
(RTMAS) as a MAS with at least one RTA integrated in it [189]. In these
systems, a series of requirements must be met [332]:

3.4. Distributed real-time systems 51

• Management of a global time: In a distributed RTS it is crucial to have
a global time for all the elements belonging to the system. The same is
the case in an RTMAS. There must be a global time that will permit the
synchronization of the different agents of the system.

• Real-time communication: In the communication process carried out be-
tween the agents of the system it may be necessary to transmit temporal
concepts in the messages exchanged. Accordingly, temporal represen-
tations should be permitted in the messages exchanged in the system.
Moreover, depending on the characteristics of the system, the use of
efficient protocols that ensure a maximum time of message arrival and
that will allow communication with a low, restricted lag (interval of time
between the sending and arrival of a message) is necessary.

• Failure-tolerant execution: Real-time systems are considered to be pre-
dictable but at the same time they must be able to tolerate failure.
Tolerance to failure in RTMAS should be more restrictive. The execution
of the agents should be ensured after an internal failure and also after a
failure in the communication process.

In the literature addressing RTAIS we find systems whose main aim is the
development of mechanisms designed to support real-time agents. Several
real-time MAS architectures have been proposed, and different authors have
explored the ways how the scheduling of tasks offered by real-time agents
within the architecture is addressed. A large part of the problem of task
scheduling by real-time agents relies in the assumption that to complete a
task an agent, or set of agents, may have several different options to solve
the problem. Each method of solution requires a different execution time to
calculate a valid result and the response will have a different level of quality
from the results obtained with the other methods. It is logical to think that
the longer the time available for solving the problem, the better the quality of
the result obtained. This consideration is taken into account in most real-time
MAS architectures because it allows a balance between the quality of the
result and the amount of time required to overcome the temporal restrictions
specified to be offered. Using these concepts, Garvey et al. [125] described
their design-to-time scheduling algorithm for incremental decision making that
provides a hierarchical abstraction of problem-solving processes. This algorithm
is extended in [366] to develop a more general model, termed design-to-criteria,
which takes into account other criteria apart from the time for task planning.
These criteria range from adding costs and quality in the methods to including
the concept of uncertainty as part of the decision process. An example of the
use of the design-to-criteria model is the DECAF architecture [142], which
incorporates the programming of algorithms based on this model.

52 3. Real-Time Systems

The ObjectAgent architecture [349] is another example of a RTA. Created
in 2001 by Princeton Satellites, this architecture is used for the control of
the so-called cloud of satellites: small single-function satellites launched into
space in a specific formation. All function as a single satellite with multiple
functions. Each of the mini-satellites is identified with an agent with its own
temporal restrictions. ObjectAgent supports real-time communication as long
as the topology of the network is known and the environment is predictable.
To accomplish this, ObjectAgent makes use of special mono-task agents called
post-offices, whose only mission is to send messages from themselves to the
agents. Thus, assuming a static emplacement of the post-offices it is possible
to predict how long a message will take to arrive from a given point in the
network. Unfortunately, this assumption is only true for certain environments
(CAN networks, laser links between satellites, etc), such that on extrapolating
this platform to common network media (Ethernet, Serial Port, Wifi, etc) these
characteristics are lost.

DiPippo et al [96] [97] have proposed a MAS based on RT-Corba [317] for
distributed RTSs. The functioning of these systems is based on that of CORBA,
except that in this case the clients and servers have added real-time character-
istics. For example, a server records a task in its Scheduling Service together
with certain deadline and quality demands that it is able to meet. When a
client later requests that task within a certain time the Scheduling Service
and its real-time component select a server following algorithms of analysis
of EDF schedulability and pass them to the client, which finally makes a
remote procedure call to that server. Following this distributed architecture of
clients and servers in real time, the RTMA establishes a basic platform for the
functioning of agents. To do so, the architecture has the services required by
the agents Agent Management System (AMS) and Directory Facilitator (DF).
Above the middleware, the agents are implemented with real-time demands.
The agents that offer services are announced in the DF using an extension of
KQML, modified to contain real-time declarations. Via this message, an agent
announces that it is able to execute a task with certain specific parameters
of service quality that relate the response quality to the time taken to fulfill
the service. The problem underlying this approach is that both the time of
deliberation of the Scheduling Service and the communication time itself are
not bounded temporally and hence are not reflected in the declaration made
by the agent. Another problem is reliability. An agent may say that it is able
to perform a task in a given time with the associated quality but if that agent
is not executed on a real-time operating system, it is possible that it may not
live up to expectations.

Another example of a RTA is that proposed by Prouskas et al. [292]. The
authors define their agents, called time-aware agents, as agents with the capacity

3.4. Distributed real-time systems 53

to operate in two temporal dimensions,from agent to agent and from human to
agent, combining the predictability and reliability of exchanges in real time at
small scale, and of the temporal requirements in diffuse human interactions
at large scale. Time-aware systems are joined in a set of hardware, software,
human interactions and interactions in real time to reason about the temporal
restrictions localized in the system for each type of interaction, carrying out the
necessary transformations between them and duly coordinating the activities,
regardless of their limitations. An architecture in which these agents can exist
and work together to achieve their aims has been developed and tested by
means of a prototype called TARA and it has been implemented using the
Agent Process Interaction Language (APRIL) [292].

BarSystems [86] are a type of MAS of the so-called swarm intelligence. The
individual agent is not endowed with intelligence; it is the system that behaves
intelligently (emergent intelligence). These systems are modeled as a soft RTS.
In this type of problem, some agents with limited capacities must cope with a
complex, distributed problem, attending correctly and in a timely fashion to all
the requests from each of the clients. Accordingly, each client will be considered
a task to be met with real-time restrictions and, overall, the aim is to satisfy a
function of global usefulness in some way. The important part of this process
is to pinpoint at each moment which task is the most attractive, and this
depends on each domain in particular. BarSystems is specified at formal level
and there is a software simulator that offers the solution to a concrete problem
(the emplacement of boxes in a warehouse) following this method. However,
since there is no real implementation of the agents of this architecture, it is
not clear what their real-time constraints are or what happens if these are not
fulfilled.

ARTIS agents [55] are specifically designed to develop real-time agents. The
ARTIS architecture is an extension of the blackboard model [263], adapted
to work in critical real-time environments, using Real-time Artificial Intelli-
gence (RTAI) techniques to achieve this and guaranteeing that the real-time
agents can react to changes in the environment in a flexible and dynamic way.
ARTIS agents incorporate a control module responsible for the execution of
the tasks associated with the agent in real-time, controlling how and when
the different components of the agent should be executed. To manage the
communication processes between agents, the ARTIS agent has been extended
with a communications module called CoMO [332]. Additionally, the execution
of the reactive components (components with critical real-time restrictions) is
controlled by a sub-module of the control module integrated in the real-time
operative system. With these characteristics, the architecture of the ARTIS
agent guarantees the response of the agent, fulfilling all the critical temporal
restrictions of the system. Its capacity for problem solving, its adaptability

54 3. Real-Time Systems

and pro-activeness help to provide a sufficiently good response for current
real-time environments. Its requirements of critical time are 100% guaranteed
by means of an off-line shedulability analysis. The main problems of this
proposal are the inability of the ARTIS agents to perform complex reasoning
and the complexity of the design and implementation of the processes used by
them, complicating the use of this proposal by developers not familiar with
their architecture. The SIMBA architecture [332] [190] allows the development
of MAS in real-time domains and, more specifically, in domains where the tem-
poral restrictions must be strictly fulfilled (hard real-time). SIMBA systems are
mainly composed of ARTIS agents. This set of agents controls the sub-system
of the real-time environment with critical temporal restrictions. Additionally,
the system can integrate different types of agent that allow the temporally
non-critical activities of the system to be controlled, using normalized processes
of interaction between different agents. The main problem with this proposal
is the integration of agents without temporal restrictions in their activities
with real-time agents and the use of specific modeling and communications
languages.

Finally, java Agent for Real-Time (jART) [174] is one of the most recent works.
The platform provides to the agents of the system the necessary tools for
their creation, control and communication with other agents in the platform.
For this, a serie of components and auxiliary agents have been created to
provide services to agents in the system. This platform complies with the FIPA
specification, an AMS agent is responsible, among other things,of providing
location services (white pages) and the communication is given by FIPA-ACL
messages. However, no organizational concepts are taken into account and the
communication protocol does not meet the requirements for our specific case.

3.5 Conclusions

In this chapter we have presented the main classification of the RTS and shown
the main characteristics of a hard-RTS, which is the desired type of system in
this dissertation. We have also discussed the main issues of local scheduling
and presented the reasons that lead us to choose the FPS algorithm for each
node of our system.

We have also explained the main characteristics of global scheduling. The
planning mechanisms discussed here reveal limitations (complexity with large
number of tasks, Dhall Effect, etc.), as explained. These limitations will be
resolved with the proposed model, which will allow an effective planning model

3.5. Conclusions 55

to be included in real-time environments and in the developed agent-platform.
It should also be noted that the model encompasses both the overall planning
and distribution of tasks between nodes and also local planning within each
node.

Finally, we have establish the desirable characteristics of a distributed RTS that
have to be taken into account for the design of the PANGEA+RT platform
presented in chapter 7. In the next chapter, the proposal to cover the local
and global scheduling in VOs and taking into account the real-time constraints
is explained.

Part III
Proposed Model

4
Model of WCET

Prediction, Scheduling
and Task Allocation

In this chapter we present the model that gives the title to this dissertation. The
chapter is divided into two different parts. The first one concerns to the WCET
estimation of each task or service when an emergent behaviour is detected or
a new agent wants to enter in a VO. The WCET analysis is divided into two
phases: the high-level WCET analysis that concerns the task’s control flow. And
the low-level WCET analysis that concerns the execution time of individual basic
blocks, and specifically the individual machine code instructions they represent.
This involves estimating the execution time of individual instructions on the
target execution environment. The second part deals with the scheduling and
task allocation taking into account the real-time constraints and the available
nodes where the agents belonging to the VO are executing.

Contents
4.1 Introduction . 60
4.2 Background and related works 62

4.2.1 Related works of WCET analysis 62
4.2.2 Real-time scheduling and task allocation 64

4.3 WCET in emergent behaviours 67
4.3.1 Node evaluation . 68
4.3.2 Code evaluation . 74
4.3.3 Statistical improvements of the WCET in execution . 82

4.4 Model of scheduling and task allocation 83
4.5 Local scheduling . 84
4.6 Global scheduling . 85
4.7 Conclusions . 96

60 4. Proposed Model

4.1 Introduction

Real-time computation plays an increasingly important role in computer sys-
tems, since the future is directing the evolution of these systems towards greater
interaction with the environment. This environment sends stimuli to be cap-
tured and processed by the systems within temporal constraints, which are the
most important issue to take into account in a RTS [60]. The simplest example
is found in a system with sensors and actuators. Once the information has been
captured through a sensor, a real-time system is expected to operate through
the actuator in accordance with a given deadline. Depending on whether the
tasks are considered critical, we can talk about hard or soft real-time systems. A
hard real-time system is a system whose responses must occur within specified
deadlines. A soft real-time system is a system that functions correctly if the
deadline is occasionally missed [60] [222]. The contribution of this work is
with hard real-time systems. Despite the widespread nature of the concept of
real-time, there are still some misunderstanding in its practical use [341].

Many RTS include heuristics and ad-hoc techniques [64]; however, if we deal
with hard-real-time system, this must be treated with care: The use of heuris-
tics, which can, most of the time, provide approximate results under large
computational time, can result in the inability to ensure time constraints. If
all critical constraints are not verified a priori and no specific mechanisms are
provided to handle the tasks time, the system can be unpredictable. Apparently,
it can function properly for a period of time but in certain situations it may
collapse. Depending on the application case, this collapse can be serious or
fatal. Therefore, in a hard real-time system all tasks must be strictly bounded,
which is a problem in dynamic systems where the behaviours are unknown and
the environment is unpredictable and highly changeable. One of the research
lines in dynamic systems focuses on finding mechanisms to control this problem,
such as [258] [156] [375] [394]. In our system, we propose a method that allows
each agent to calculate the WCET of the tasks to be performed which provides
a new perspective to face off the problem.

From the analytical point of view, a RTS consists of a set of tasks and each
task at the same time is composed of a set of activities or subtasks that run
concurrently, cyclical, or according to a schedule. An ordinary real-time task is
characterized by three parameters: the execution time, including all activities
or sub-tasks; the period, i.e., how often the task must be executed; and finally
the deadline, which determines the time that the task must be completed [397].
The task execution must be controlled by any scheduling algorithm, which is
responsible for organizing the execution time between periodic or aperiodic

4.1. Introduction 61

tasks. There are many existing scheduling algorithms [60], often executed by a
Scheduler, and one should always be included in an oriented real-time execution
module. For our work, the Scheduler of the agents is the algorithm known as
Fixed-Priority Scheduling, which is explained in detail in section 4.6.

In VO terms, each agent knows the tasks and services that it offers and should,
as a result, be capable of determining certain values such as computation or
execution time, resources needed, interaction among other tasks, etc. Therefore,
to create a hard real-time model, the task cannot be considered an unknown
process entity; rather, its parameter should be used by the scheduling mecha-
nism to verify the viability (known as schedulability, in this case) of executing
these tasks while the time constraints are also fulfilled [64].

Open MAS are those which have experienced a big evolution and dynamicity.
In fact, s VO can be considered an open system formed by the grouping and
collaboration of heterogeneous entities with a clear separation between the
structure and functionality that defines how these entities behave [113] [47]. In
these system, the agents should be deployed in different devices with different
characteristics, and interact with other agents and the rest of the system
elements. The concept of environment is very important in the definition of
open MAS.

In this dissertation, we present a major challenge in providing a mechanism for
planning tasks and task allocation to members of VOS in real-time. Scheduling
and task allocation is the focal point of a large number of publications within
the research community [20] [385] [276] [381]. The main objective of these
publications is centered on searching mechanisms to achieve a viable distribution
of tasks among the available resources.

The called "ad-hoc approach" is based on design-implementation-tests iterations;
however, the model proposed in this study enables adding restrictions to the
schedule and task allocation both systematically and in real time. In addition,
our work is founded in mathematical methods, so that it is backed by more than
analysis simulations. As explained, it is particularly difficult to develop a hard
real-time system combined with a highly changing environment. We present
the problem of real-time scheduling and task allocation as an optimization
problem and show the mechanisms to solve. The feasibility test of the FPS
algorithm is applied as a constraint in the optimization method.

Most real-time systems shown in the previous chapter need to know the
execution cost of the tasks, which ensures their proper planning. However, in
dynamic environments with emergent behaviors it is difficult to determine the
time needed to complete the task. Therefore, these tasks cannot be handled by
most real-time works previously outlined. The first part of our proposed model

62 4. Proposed Model

aims to solve this problem and obtain temporal bounded tasks. This bounding
will be refined in successive executions through a statistical model.

This guarantees better performance in systems that interact with an unpre-
dictable and dynamic environment. In these open and uncertain environments,
classical methodologies for real-time system designs are hardly applicable since
the set of applications to be executed and their corresponding resource and
timing requirements are changeable in runtime. As such, runtime adaptation
is essential in order to achieve a desired level of performance [283].

Two main objectives arise with this work:

• Proposing an effective model for calculating the execution time in the
worst case (WCET) when an agent desires to form part of a virtual
organization and wants to include tasks or behavior in the real time system,
i.e. to calculate the WCET in emergent behaviours. This measure will be
recalculated and adjusted in the system based on statistical measurements
during subsequent executions.

• Proposing a scheduling model to allocate tasks for the whole system,
i.e. a global scheduling. We use optimization techniques to reduce the
quantity of computational nodes needed and to find the best distribution
of tasks among them. This is done under the real-time constraints.

4.2 Background and related works

This section is divided in two different subsections since we face two problems.
First, we deal with the WCET analysis and study some interesting publications.
The second part is dedicated to task allocation and global scheduling.

4.2.1 Related works of WCET analysis

In a general form, the WCET calculation problems has been studied from
different points of views. In [327] Shaw presents timing schemas to calculate
minimum and maximum execution times for common language constructs.
The rules allow collapsing the abstract syntax tree of a program until a final
single value represents the WCET. However, this approach does not allow
for the straight forward incorporation of global low-level attributes, such as
pipelines or caches. The resulting bounds are not tight enough to be practically

4.2. Background and related works 63

useful. Computing the WCET with an Integer Linear Programming (ILP)
solver is proposed in [295] [218]. This approach is extended to model the
instruction cache with cache conflict graphs [217]. The WCET analysis of
object-oriented languages is presented by Gustafsson [147]. Gustafsson uses
abstract interpretation for automatic flow analysis to find loop bounds and
infeasible paths.

Moreover, automatic cost analysis has many interesting applications. For
instance, the receiver of the code may want to infer cost information in order
to decide if it should reject code with excessively large cost requirements in
terms of computing resources (in time and/or space) and accept code which
meets the established requirements [4] [80] [18]. In fact, this is the main
motivation for the Mobile Resource Guarantees (MRG) research project [18],
which establishes a Proof-Carrying Code [261] framework for guaranteeing
resource consumption. Furthermore, the Mobility, Ubiquity and Security
(MOBIUS) research project [32], also considers resource consumption as one of
the central properties of interest. Also, in parallel systems, knowledge about
the cost of different procedures can be used in order to guide the partitioning,
allocation and scheduling in parallel.

Java has potential for real-time systems development but is inappropriate for
this purpose in its traditional sense. For instance, it lacks the notion of a
deadline and high-resolution real-time clocks. Therefore, recent research has
focused on introducing these concepts in Java by a number of initiatives such as
the Safety Critical Java (SCJ) specification [182] and Predictable Java (PJ) [49]
specification targeted safety-critical systems development. The specification
includes, among others, a new programming model that is more amenable to be
proved temporally correct. Temporal correctness can be ensured by using the
information from a WCET analysis to perform schedulability analysis. With
respect to Java, the WCET analysis is complicated by the presence of the Java
Virtual Machine (JVM), since the JVM introduces an additional layer between
the application itself and the underlying hardware platform. To mitigate this
complexity, research has been focused on eliminating this middle layer by
implementing the JVM in hardware, thereby achieving native execution of Java
Bytecode (JBC) [318]. From this, it has been possible to experiment with Java
to explore its applicability for the development of real-time systems.

WCET analysis at the bytecode level was first considered in [43]. It is argued
that the well-formed intermediate representation of a program in Java bytecode,
which can also be generated from compilers for other languages (e.g. Ada), is
well suited for a portable WCET analysis tool. In that paper, annotations for
Java and Ada are presented to guide the WCET analysis at the bytecode level.
The work is extended to address the machine-dependent low-level timing analy-
sis [36]. Worst case execution frequencies of Java bytecodes are introduced for

64 4. Proposed Model

a machine-independent timing information. In [293] a portable WCET analysis
is proposed. The abstract WCET analysis is performed on the development
site and generates abstract WCET information. The concrete WCET analysis
is performed on the target machine by replacing abstract values within the
WCET formulae by the machine-dependent concrete values. An approach on
how the portable WCET information can be embedded in the Java class file is
presented in [37], an extension of [43] [36]. It is suggested that the final WCET
calculation is performed by the target JVM. The calculation is performed for
each method and the static call tree is traversed by a recursive call of the
WCET analyzer. JVM timing models for the portable WCET analysis can
be derived by measurements [51]. However, measurements cannot guarantee
safe upper bounds of the timing. In [228] the authors describe the design and
the capabilities of the static timing analysis tool TetaSARTS, which assists in
the temporal verification of Safety Critical Java (SCJ) systems. Finally, [48]
presents a selection of tools that assist hard real-time application developers
to verify that programs conform to a Java real-time profile and that platform-
specific resource constraints are satisfied. The problem of these presented
works is that they are closed frameworks that we cannot include in our VOS
environment and adapt to the organizational constraints.

In short, of the ability to provide hard real-time guarantees a Java execution
environment featuring common embedded processors and software implementa-
tions of the JVM, which will greatly increase the incentive for adopting Java
in the domain of real-time systems development [119].

4.2.2 Real-time scheduling and task allocation

In this section some basic concepts of real-time systems will be reviewed, fol-
lowed by a list of the most relevant studies related to this field of application.

In these systems there are two basic types of planning schemes: static, where
predictions are made before the execution and when all tasks are already
in the system; and the dynamic, where the decisions are taken at runtime.
However, this classification is very strict and, as proposed in this paper, a
model considered as static (the FPS model) can be adapted and included in
dynamic environments. This forces the appropriate control and upgrades to
be carried out, taking into account the time of possible changes and bounding
the computation time of replanning. For a hard real-time system where the
tasks are considered critical and all the tasks have a strict response deadline,
introducing a dynamic planning scheme can lead to malfunction. In the same

4.2. Background and related works 65

definition of dynamic planning established by [70] the following characteristics
are mentioned:

• It is not possible to guarantee the response times.

• It is not suitable for critic systems.

• It is not a stable schedule.

In recent years, planning schemes based on fixed priorities have received great
attention in the scientific community, achieving a high degree of maturity and
recognition [339] [348] [213] [326] [59] [21]. A historical study of the progress in
planning for fixed priorities can be found in [23] and [325]. In addition, a review
of various works [133] [275] [51] [116] will show that any dynamic planning
model is highly dependent on the environment and the execution context.
Moreover, it is important to highlight that that the proposed methods are
based on iterative systems with great complexity of computation or heuristics,
where the computation time cannot be ensured and therefore, the tasks cannot
be strictly bounded.

A planning scheme is characterized by two aspects:

• The planning algorithm: determines the order of access to the available
resources in the system.

• The analysis model: needed to calculate and predict the temporal behavior
of the system, i.e., whether the temporal requirements are guaranteed in
all possible cases. To be sure, the worst case scenario must be taken into
account in the calculations.

The RM or FPS algorithm and its extensions are static scheduling algorithms
and represent one major paradigm for real-time scheduling. The RM was
created by C.L. Liu and J.W. Layland in the work [221]. It consists of assigning
the highest priorities to the shortest periods; that is, the priority of each task
is inversely proportional to its period. To implement this policy, the response
time of each task matches with its period.

EDF is the second major paradigm for realtime scheduling. Under certain
conditions, EDF [221] [341] is an optimal dynamic scheduling algorithm in
resource sufficient environments. While real-time system designers try to design
the system with sufficient resources, cost and unpredictable environments often
make it impossible to guarantee that the system resources are sufficient. In
this case, EDFs performance degrades rapidly in overload situations. The
Spring scheduling algorithm [396] can dynamically guarantee incoming tasks
via on-line admission control and planning, and thus is applicable in resource-
insufficient environments. Many other algorithms [341] have also been developed
to operate in this way. These admission control-based algorithms represent the

66 4. Proposed Model

third major paradigm for real-time scheduling. However, despite the significant
body of results in these three paradigms of real-time scheduling, many real
world problems are not easily supported. While algorithms such as EDF,
RM and the Spring scheduling algorithm can support sophisticated task set
characteristics (such as deadlines, precedence constraints, shared resources,
jitter, etc.), they are all "open loop" scheduling algorithms. Open loop refers
to the fact that once schedules are created they are not "adjusted" based
on continuous feedback. While open-loop scheduling algorithms can perform
well in predictable environments in which the workloads can be accurately
modeled (e.g., traditional process control systems), they can perform poorly in
unpredictable environments, i.e., systems whose workloads cannot be accurately
modeled.

In recent years, a new category of soft real-time applications executing in open
and unpredictable environments is rapidly growing [343]. As a cost-effective
approach to guarantee performance in unpredictable environments, several
adaptive scheduling algorithms have been recently developed [1] [38] [251] [355]
[202] [201]. The problem with these proposals is that they are proposed for
soft tasks, above all, in the field of multimedia and communication.

While early research on real-time scheduling was concerned with guaranteeing
complete avoidance of undesirable effects such as overload and deadline misses,
adaptive real-time systems are designed to handle such effects dynamically.
The problem is that the act itself of handling the effects implies a chance
that they will occur, and in a hard real-time system this is a non-allowed
and non-desired characteristic. From our point of view, the need to join more
strict scheduling and adaptive systems is still in progress. To be strict, and
find works related with critical tasks, we have to search in the control and
automation field. Several works choose to apply the control theory [115] to
real-time computing systems. For example, several papers [350] [314] [358]
[257] presented flexible or adaptive real-time scheduling techniques to improve
digital control system performance. These techniques are tailored to the
specific characteristics of control systems instead of general adaptive real-
time computing systems. Several other papers [343] [367] [199] [54] presented
adaptive scheduling algorithms or QoS management architectures for computing
systems such as multimedia and communication systems. After studying
previous works, we can verify that providing a scheduling and task allocation
model in real time when the environment is dynamic and adaptive (such as the
VOS) is an unexplored area. Any methods that have been revised due to their
inability to ensure computation time linked to an effective solution cannot be
considered for application within a system of hard-real-time. To achieve this,
the system must be based on deterministic models with a solid mathematical
foundation to validate the operation.

4.3. WCET in emergent behaviours 67

To the best of our knowledge, no unified model exists to date for designing
an adaptive system with a global and local scheduling where the computation
nodes are minimized and have the ability to dynamically adapt.

4.3
Estimation of the WCET in emergent
behaviours

As mentioned, hard real-time systems are not allowed to exceed their deadlines.
To ensure this, a schedulability analysis can be conducted. This determines if
the set of tasks comprising the system can be scheduled such that no deadlines
are exceeded. The WCET of specific tasks, which can be determined using
WCET analysis, is an integral component for conducting schedulability.

WCET analysis is in general an undecidable problem. Program restrictions, as
given in [294], make this problem decidable. Loops and recursion depths need
to be bounded loops [33]. As the full application has to be available for the
WCET analysis, we disallow dynamic class loading, although for embedded
real-time systems this is not a severe restriction.

• High-Level WCET Analysis: the high-level WCET analysis concerns the
task’s control flow. The control flow can be represented using a Control
Flow Graph (CFG) which is a directed graph consisting of vertices,
denoted as basic blocks, and edges. Each vertex represents a set of
sequentially executed instructions. Connecting the basic blocks with
edges represents the control flow of task capturing e.g. branches. In
this context, the high-level analysis concerns the WCET of the task
based on the control flow, and thus assumes that the cost of the basic
blocks are known, e.g. through low-level analysis. Generating the CFG
from the compiled program is preferable since we can take into account
the optimizations introduced by the compiler. This is important since
compiler optimizations significantly affect the WCETs of a program [50].

• Low-Level WCET Analysis: the low-level WCET analysis concerns the
execution time of individual basic blocks, and specifically the individual
machine code instructions they represent. This involves estimating the
execution time of individual instructions on the target execution environ-
ment, which raises a number of concerns. First of all, these are often not
made available by the vendors. Furthermore, a variety of mechanisms

68 4. Proposed Model

used for reducing the average execution time, such as caching and pipelin-
ing, must be taken into account since their absence in the analyses yield
very pessimistic results.

These analyses are further complicated by the presence of an OS and even a
virtual machine, since they add additional layers of logic between the program
itself and the hardware [119].

4.3.1 Node evaluation

The node evaluation refers to the Low-Level WCET Analysis where the hard-
ware specification has to be taken into account. This involves estimating the
execution time of individual instructions on the target execution environment,
which raises a number of concerns. First of all, these are often not made
available by the vendors.

4.3.1.1 Java virtual machine and Java bytecodes

Knowledge about the Java Bytecode (JBC) and the Java Virtual Machine
(JVM) is imperative for understanding the mechanisms that affect the WCET
of Java programs.

The JVM is a stack machine and essentially prescribes a complete execution
environment for programming languages targeted at the JBC instruction set,
such as Java, with the purpose of being independent of the underlying hardware
and OS. Platform independence is achieved since the JVM can be implemented
for the platforms of interest and may even be independent of an OS. This
is achieved with the premise that the programs are not utilizing platform-
dependent functionality accessed by native methods or using non-standard
runtime libraries.

The Java program is compiled into JBC, which can be uploaded to an arbitrary
JVM running on an arbitrary processor. While this is very important, it
also complicates the problem of calculating the WCET because although the
bytecodes are always the same, they can be executed in different JVM machines
and processors, which can alter the needed processor cycles and the time.

The process of a Java code is shown in the following figure (Figure 4.1) which
is explained in detail in the official JVM specification [219]. In total, JBC is

4.3. WCET in emergent behaviours 69

composed of 256 bycodes. But not all of the possible 256 opcodes are used
because 51 are reserved for future use.

Figure 4.1: Steps of Java code execution process

To illustrate how JBC is represented, we are going to present several examples
to illustrate the procedure. We will see a representation of the JBC using the
corresponding mnemonics.

Example 1

The following code example shows a simple if-else comparing two integer
parameters.

1 pub l i c i n t greaterThan (i n t intOne , i n t intTwo) {
2 i f (intOne > intTwo) {
3 re turn 0 ;
4 } e l s e {
5 re turn 1 ;
6 }
7 }

Programming Code 4.1: Example if-else in Java

This method results in the following bytecode:

70 4. Proposed Model

1 0 : i load_1
2 1 : i load_2
3 2 : i f_ icmple 7
4 5 : iconst_0
5 6 : i r e t u r n
6 7 : iconst_1
7 8 : i r e t u r n

Programming Code 4.2: Example if-else in bytecodes

First the two parameters are loaded onto the operand stack using iload_1 and
iload_2. Then, if_icmple compares the top two values on the operand stack.
This operand branches to byte code 7 if intOne is less than or equal to intTwo.
Notice this is the exact opposite of the test in the if condition of the Java code
because if the byte code test is successful, the execution branches to the else
block where, as with the Java code, if the test is successful the execution enters
the if block. In other words if_icmple is testing whether the if condition is
not true and jumping over the if-block. The body of the if block is byte code
5 and 6, the body of the else block is byte code 7 and 8.

Example 2

This example shows a simple while loop.

1 pub l i c void whileLoop () {
2 i n t i = 0 ;
3 whi l e (i < 2) {
4 i++;
5 }
6 }

Programming Code 4.3: Example if-else in Java

This method results in the following bytecode:

1 0 : iconst_0
2 1 : i s to re_1
3 2 : i load_1
4 3 : iconst_2
5 4 : i f_icmpge 13
6 7 : i i n c 1 , 1
7 10 : goto 2
8 13 : r e turn

Programming Code 4.4: Example if-else in bytecodes

The while loops consist of conditional branch instructions such as if_icmpge
or if_icmplt and a goto statement. The conditional instruction branches the
execution to the instruction immediately after the loop and therefore terminates

4.3. WCET in emergent behaviours 71

the loop if the condition is not met. The final instruction in the loop is a
goto that branches the bytecode back to the beginning of the loop ensuring
the bytecode keeps looping until the conditional branch is met. The iinc
instruction is one of the few instruction that updates a local variable directly
without having to load or store values in the operand stack. In this example
the iinc instruction increases the first local variable i in 1. Java bytecode
generation has to follow stringent rules [220] in order to pass the class file
verification of the Java Virtual Machine (JVM). Those restrictions lead to
an analysis friendly code; e.g. the stack size is known at each instruction.
The control flow instructions are well defined. Branches are relative and the
destination is within the same method. In the normal program, there is no
instruction that loads a branch destination in a local variable or onto the stack.
Detection of basic blocks in Java bytecode and construction of the CFG is thus
straightforward. The JVM must not employ dynamic class loading features,
since this introduces unpredictable behaviour. Instead, a JVM suitable for real-
time systems should employ static linking or linking at program initialization.
All loops must be bounded in order to conduct the WCET analysis. This
can be solved using techniques such as the discriminant function analysis
(DFA) [288] [252] or manual annotations. The general approach has been to
provide fixed loop bounds according to the specific functionality the system
serves; however, should the system be used in another context it may require
the loop bounds to be derived again. Therefore another approach suggested
in citehunt06 consists of annotating loop bounds using the Java Modelling
Language (JML) [69] and using the KeY tool [39] citebeckert11 to determine
the loop bounds symbolically. This means that the bounds depend on certain
input, and when this input is available the correct bounds can be derived
relatively easily. However, such an analyses, and even the DFA itself, requires
much effort in order to be implemented. Instead, we have chosen to explicitly
declare loop bounds using annotations in the code. An extension of the Java
annotation mechanism for WCET-related annotations is proposed in [154]. The
next chapter will discuss the implementation issues and explain how to include
annotations in the code of the agents.

4.3.1.2 Test generation

As mentioned before, the Java program is compiled into JBC, which can be
uploaded to an arbitrary JVM running on an arbitrary processor. This is the
issue that highly complicates the problem. If we consider a real-time system
with a set of computational nodes, each node has its own configuration and
possibly its own JVM as well. We follow the steps shown in Figure 4.2 to

72 4. Proposed Model

obtain the program that should be executed in each node for testing:

Figure 4.2: Steps of the node evaluation

We use the standard Java library System.currentTimeMillis. There is also
another standard method to consider System.nanoTime but the accuracy and
precision of the former justifies our choice since System.nanoTime cannot
guarantee nanosecond accuracy [211]. First, we create Java classes for each
bytecode. We can see an example in the following code 4.5.

1 pub l i c c l a s s TestDLoad
2 {
3 pub l i c s t a t i c void main (St r ing args [])
4 {
5 long time1 , time2 , tme3 ;
6 long r e s u l t ;
7
8 time1=System . cur rentT imeMi l l i s () ;
9 f o r (i n t i =0; i <1000000; i++)
10 t e s t () ;
11
12 time2=System . cur rentT imeMi l l i s () ;

4.3. WCET in emergent behaviours 73

13 f o r (i n t j =0; j <1000000; j++)
14 t e s t 2 () ;
15
16 time3=System . cur rentT imeMi l l i s () ;
17
18 r e s u l t =(tiempo3−tiempo2)−(tiempo2−tiempo1) ;
19
20 // s t o r e r e s u l t in the database
21 }
22
23 //modify t h i s method in the . c l a s s
24 // execute 10000 t imes the bytecode
25 pub l i c s t a t i c void t e s t ()
26 {
27 }
28
29 //modify t h i s method in the . c l a s s
30 // execute 50000 t imes the bytecode
31 pub l i c s t a t i c void t e s t 2 ()
32 {
33 }
34 }

Programming Code 4.5: Java class for bytecode testing

To ensure that the for loop is not affecting the calculations, we program two
different test functions. The difference is calculated in line 293 of the code, so
we know the time of performing the preset number of the bytecodes without
the interference of the loop.

To modify and create the .class file including the edited bytecodes, we use the
tool JBE [310]. It is an open-source bytecode editor suitable for viewing and
modifying java class files. For verification and exporting the class files, JBE
uses the the Bytecode Engineering Library by Apache’s Jakarta project [72].
The advantages of this tool are that all changes are directly applied to the
class file, it uses the standard mnemonics for JVM opcodes such as instruction
names and the type information; exceptions and annotations are also written
as they appear in class files.

1 0 : lconst_0
2 1 : lconst_1
3 2 : lcmp
4 3 : lconst_0
5 4 : lconst_1
6 7 : lcmp
7 [. . .]
8 150001: re turn

Programming Code 4.6: lcmp bytecode test

74 4. Proposed Model

It is important to note that there are bytecodes that cannot be tested alone,
i.e., we need to mix them with other bytecodes, after which we can perform
the calculations needed to know the time execution of the bytecode alone. One
example is the bytecode lcmp that compares two longs values. In the test
function, we should include lconst_0 and lconst_1 as shown in 4.6.

This is because the bytecode lmcp needs to have two long values on the stack
that we must push onto the stack previously. After the execution of the
bytecode, it leaves an integer value in the stack that is not possible to use with
the lmcp bytecode. This forces us to push two long values onto the stack again.
As we know the execution time the bytecodes lconst_0 and lconst_1, we
can perform the calculation in the TestLConst0.java before the final value is
inserted. In the code 4.6 we have two methods, the first one with the bytecode
lmcp inserted 10000 times and in the second one, inserted 50000 times.

This data is stored in a database. When it is read in the next step, the values
are stored in a global table R(I205, Ntotal) where each row corresponds to each
bytecode and the column is the cost in the N nodes of the system.

4.3.2 Code evaluation

High-Level WCET Analysis consists of the evaluation of the code that carries
out a task. For this to succeed, the control flow of the task must itself
be analyzable. Therefore, it must not contain constructs which make this
impossible. Furthermore, constructs which result in very pessimistic WCET
estimates should preferably be avoided as well. Some of these are described
in [294]. The most classic examples are recursion and unbounded loops.

The general steps of the process are included in Figure 4.3. They will be
explained in the next subsections, except for the node evaluation, which has
been already presented.

4.3. WCET in emergent behaviours 75

Figure 4.3: Steps of the WCET calculation

4.3.2.1 How to obtain the weighted ICFG

A CFG can be used as the foundation for different program analyses such as
for WCET analysis and for compiler optimization to e.g. determine infeasible
paths [5]. Therefore, before introducing the actual CFG, it is convenient to
establish the definition of what we are going to consider a basic block of code.

Definition 8 A basic block is a block enclosing a number of instructions that
do not contain any jumps or jump targets. The only jump target is when the
basic block starts and the only jump is at the end of the basic block. Call
instructions are normally not considered as branches since the control flow
continues immediately after the call has been processed. However, it is important
to note that since it is impossible to guarantee whether the control flow continues
immediately after processing the call, it must be considered as a basic block
itself [5].

A CFG of a program represents all the paths that are traversable during
execution, thereby capturing the control flow of the program. The CFG is
based on a directed graph and hence can be seen as an abstract representation
of the control flow where each vertex in the graph represents a basic block.
Connecting the vertices by edges captures the jumps in the control flow [119].
Formally, a CFG is defined as:

Definition 9 A CFG is described as a directed graph G = (V,E, i), where
the vertices, V , correspond to basic blocks and edges E ⊆ V × V connect two
basic blocks vi, vj ∈ V if vj is executed immediately after vi. i ∈ V represents

76 4. Proposed Model

the start vertex, denoted as the source, which has no incoming edges, that is:
@v ∈ V talque (v, i) ∈ E [223].

An execution path is defined as a sequence of interconnected basic blocks.
Formally defined:

Definition 10 An execution path Υ through a control flow graph G = (V,E, i)
is defined as a sequence of basic blocks (vi, . . . , vn) ∈ V ∗, with v1 = i and
∀j ∈ 2, . . . , n talque (vj , vj+1) ∈ E [223].

In our case, we will focus the problem on the analysis of the Java bytecodes,
so the definition can be more specific as [395] explains:

Definition 11 An Extended Control Flow Graph (eCFG) of a Java method
M is a 4-tuple (V,A, s, t) where (V,A) is a simple diagram such as that V is
a set of vertices which represent possible flow of control between basic blocks
in M , and A ⊆ V × V is a set of arcs which represent possible flow of control
between basic blocks in M . s ∈M is a unique vertex, called start vertex which
represent the entry point of M , such that in-degree s = 0 and T ⊂ V is a set of
vertices, called termination vertex which represents the exit points of M , such
that for any t ∈ T out-degree t = 0 and for any v ∈ V (v 6= s & v 6= t). ∃t ∈ T
such that there exists at least one path form s to v and at least ones path from
v to t.

Traditional control flow analysis treats an individual statement of a program
as a vertex in the CFG. However, when analyzing Java bytecode, using a basic
block as a vertex in the CFG is considered more appropriate as the number of
instructions is very large. Thus, according to the definition 11 of [395], vertices
represent basic blocks and arcs represent the control of flow between the basic
blocks. The CFG contains one unique vertex s to represent the entry point of
a method and a set of vertices T to represent the termination of the method
because the control flow may terminate at multiple program points due to
handling exceptions during the execution.

It is now the moment to introduce the rules for generation the CFG. First of
all, the main vertices have to be identified. This is the vertex from which one
or more arcs has to start. A main vertex is always:

• the first instruction of a method and the first instruction of every handler
of the method.

• all the instructions that correspond to unconditional branch: goto,
goto_w, jsr, jsr_w, ret.

4.3. WCET in emergent behaviours 77

• all the instructions that are the target of a conditional branch: ifeq,
iflt, ifle, ifne, ifgt, ifge, ifnull, ifnonnull, if_icmpeq,
if_icmpne, if_icmplt, if_icmpgt, if_icmple, if_icmpge, if_-
acpeq, if_acmpne, lcmp, fcmpl, fcmpg, dcmpl, dc,pg.

• all the instructions that are the target od a compound conditional branch
or a return: tableswitch, lookupswitch .

• all the instructions that immediately follow a conditional or unconditional
branch: ireturn, lreturn, freturn, dreturn, return.

• all the instructions that immediately follow an instruction that explicitly
throw an exception: athrow.

• all the instructions that immediately follow an instruction that implicity
throw an exception: aaload, aastore, anearray, arraylength, ba-
load, bastore, caload, castore, checkcast, daload, dastore,
faload, fastore, getfield, getstatic, iaload, iastore, idiv,
instanceof, invokeinterface, invokeespecial, invokeestatic,
invokevirtual, irem, laload, lastore, ldc, ldc_w, ldc2_w,
ldiv,lrem,monitorenter, monitorexit, multianewarray, new,
newarray, putfielf, putstatic, saload, sastore.

Each main vertex includes a basic block, formed by all the instructions until
the next main vertex or the end of the bytecode [395]. Once, we have the basic
blocks, the following rules are used to construct the eCFG for the method. If
u ∈ V and v ∈ V are two basic blocks:

• If v follows u in the bytecode and u does not terminate in a unconditional
branch, then add an arc (u, v).

• If the last instruction of u is a conditional or unconditional branch to the
first instruction in v, then add an arc (u, v).

• Always add an arc (u, v) from the basic block of each tableswitch or
lookupswitch to the basic block of each instruction that is defined as
the target in the switch.

• When there is a subroutine, then two arcs have to be added. One arc
(u1, v1) from the basic bloc of the jsr or jsr_w to the basic block of target.
Other arc (u2, v2) from the basic block containing the corresponding ret
instruction to the basic block of the instruction that immediately follows
the call.

• add an arc (u, v) from the basic block of each instruction that may throw
an exception to the entry basic block of every exception handler that
covers the region of the bytecode in which the instruction appears.

78 4. Proposed Model

• add an arc (u, v) from the basic block of each instruction that may throw
an exception to a dummy basic block that represents abnormal completion
of the method, i.e. the situation where a thrown exception is not caught
by any handler of the method.

In order to determine the WCET, it is needed that all the included arcs (ui, vi)
are correctly annotated. This means that they must be bounded with the
number of times that it is possible to go through the arc in the execution
path Υ. This frequency di is used in section 4.3.2.2 when the Implicit Path
Enumeration Technique (IPET) technique is introduced.

Zhao in [395] includes a new definition to extend the eCFG to a complete or
partial Java program.

Definition 12 An Interprocedural Control Flow Graph (ICFG) for a partial
or complete Java program us a tuple (G1, . . . , Gk, C,R) where (G1, . . . , Gk) are
flow graphs representing the Java methods in the program. C is a set of call
arcs, R is a set of return arcs, g is the final ICFG and VGi is the set of vertex
in the graph Gi. A ICFG of a partial program satisfies the following conditions:

• There is a one-to-one onto mapping between C and R. Each call arc is
of the form (u, v1Gi

) ∈ C and the corresponding return arc is of the form
(v1Gi

) ∈ R, where u ∈ VGi
, for some Gi ∈ g and v1Gi

are the initial and
final vertices, respectively, of some Gj ∈ g.

• g contains two distinguished vertices: an initial vertex v1G = v1Gi
and a

final vertex vFG = vFGi , Gi ∈ g.

In this way, an ICFG for a partial or complete Java program consists of (i) a
set of CFGs, each one representing the control flow of a method in the program,
and (ii) some call and return arcs that are linked together. The difference
between an ICFG for a partial program and a complete program is that for a
partial program the start vertex may be the entry vertex of any method in the
partial program, whereas in the complete program the start vertex must be
the start point of the main method. After the complete ICFG, if any vertex
cannot be reached from the entry vertex s has to be eliminated.

4.3.2.2 Calculation the WCET with the IPET technique

The Path-Based WCET Analysis consists of transforming the ICFG into a
weighted graph, in which the execution cost of each individual basic block is
used as weights. Standard graph algorithms can then be used to identify the

4.3. WCET in emergent behaviours 79

longest path in the graph, which in turn results in the WCET of an analysed
task [102] [374]. One specific approach proposed in [102] consists of four steps
where the final three are primarily used to increase precision.

1. Find the longest path in the graph using a standard graph algorithm.

2. Check if the path is feasible.

3. If the path is not feasible, exclude it from the graph and return to the
first step.

4. When the longest feasible path is found, its length is the WCET of the
task.

Note that the complexity of analysing such a graph is exponential with the
depth of conditional statements and thus poses some difficulty in analysing
large systems [164]. As this method can take a long time to calculate, we
use the improvement called IPET introduced by Li and Malik in [218]. This
technique is applied with the constrains 1 and 2 that will be explained in the
next pages.

In principle, the WCET is calculated by summarising the worst-case execution
frequencies of the basic blocks multiplied with their costs. Thanks to the table
obtained in the previous step, R(I205, Ntotal) where each row Ii corresponds
to each bytecode, and the column is the cost in the N nodes of the system, we
already know the cost of each bytecode for each node. Then, we need first to
calculate the cost τ of each basic block BB for each node k:

τBB =
M∑
j=1
Rkj (4.1)

where M is the total number of instructions in the basic block BB y Rkj
represents the cost of each individual instruction j in the node k.

Again, we obtain a table R∗(BBtotal, Ntotal) where each row corresponds with
each BB and each column with one of the nodes of the system then, in each
cell of the table, we have the cost of the basic block BB in the node N τNBB in
the node N .

Finally, we can define the following ILP problem:

WCETP = max
I∑
i=1

τNBBxi (4.2)

80 4. Proposed Model

where B is the number of basic blocks, xi is the execution frequency of the
basic block i and thanks to the previous table R∗, we know the value of τNBB .
The WCET have to be calculated for each node n of the system.

To calculate the WCET of each BB, the bounds for the execution frequencies
of the basic blocks must be determined. This requires the annotations, which
were previously explained, and the resulting equation is maximised. Thus, the
bounds must be determined for the execution frequencies; if not, the result
of maximising the equation would be infinite. The bounds can be expressed
using a set of constraints expressed for the control flow of the program. These
constraints are:

• Structural Constraints: Constraints on the control flow of the program
such as branches. These can be extracted from the CFG.

• Functional Constraints: Constraints on the behaviour of the control flow,
such as loop bounds. These can be extracted from the annotations.

Constraint 1 Simple structural constraints can be expressed by equations
stating the execution frequencies each basic block x0, . . . , xB as the sum of all
its incoming transitions or the sum of all outgoing transitions. Therefore, the
frequency xi for a given block i is the equation:

xi =
∑
j∈Ii

dj =
∑
k∈Oi

dk (4.3)

in which Ii is the set of all incoming transitions to basic block i, and Oi is the
set of all outgoing arcs from basic blocks i. By repeating this proces for each
basic block, a set of constraints such as the following can be constructed.

Example 3

An example is shown in Figure 4.4. The basic block are denoted as B0, . . . , B5
and the execution frequencies as x0, . . . , x5 and each transition between basic
blocks have also their frequencies d0, . . . , d0

4.3. WCET in emergent behaviours 81

Figure 4.4: ICFG Example

The structural constraints obtained from the ICFG are:

x0 = d0 + d6 = d1 + d7

x1 = d1 = d2 + d3

x2 = d2 = d4 (4.4)
x3 = d3 = d5

x4 = d4 + d5 = d6

x5 = d7 = d8

Constraint 2 A common functional constraint is loop bounds. A loop consists
of a loop head, which is the entry basic block to the loop, and the loop body
which is the basic blocks executed as part of the loop. A functional constraint
is that the number of edges from the loop body to the loop head must be less
than or equal to the number of incoming edges to the loop head, which do not
originate from the loop body, multiplied with the loop bound. This is expressed
in the equation [320]: ∑

j∈Ch

dj ≤ n
∑
k∈Eh

dk (4.5)

where Ch is the set of arcs from loop body to loop head, and Eh is the set of
incoming arcs entering the loop head not originating from the loop body. Finally,
n is the loop bound.

According to the Figure 4.4, the functional constraint can be expressed as
(4.6):

82 4. Proposed Model

d6 ≤ n · d0 (4.6)

The above equations (4.4, 4.6) are then solved using an ILP solver, which finds
the execution frequencies resulting in the maximum value, in this case, the
WCET. Solving these equations is an NP-complete problem in the general case,
even though Li and Malik in [218] have shown that the nature of the problem
very often results in equations which can be solved in polynomial time. We
use the Simplex Algorithm to obtain the solutions of the liner programming
according to the constraints (4.4, 4.6) and the objective function (4.2).

Finally, we will have a final vector FV that will be used in the global scheduling.
This FV stores the WCETP for each node n of the system. The entire
procedure can be summarised in the following algorithm (2):

Algorithm 2 Code Evaluation
1: procedure highLevelEvaluation(R[I205, Ntotal])
2: ICFG← generateInterproceduralControlF lowGraph(file.class)
3: ICFGw ← getWeights(ICFG)
4: for n = 1 to N do
5: for BB = 1 to totalBB do
6: τBB ← costBB(I1, . . . , In)
7: R∗[BB,n]← R∗[τBB , n]
8: WCETBB ← simplexMethod(

∑N
i=1 τixi, constraints)

9: WCETP ←WCETP +WCETBB
10: FV (n)←WCETP
11: end for
12: end for
13: return FV
14: end procedure

4.3.3
Statistical improvements of the WCET in
execution

The successive executions of the task enable to improve the precision of the
measure by statistical techniques. This means that the estimation of the
execution time can be carried out statically if there are enough samples of the
execution time of the task.

Selecting the WCET according to the analysis of the bytecodes provides an
upper bound in execution time; however, this upper bound is a limit which is
difficult to reach. A statistical analysis would narrow the variation interval of

4.4. Model of scheduling and task allocation 83

the WCET, thus avoiding the use of large upper bounds. This process can be
carried out by applying a confidence interval analysis to the execution times
obtained during the different iterations. For example, a statistical distribution
such as t − student could be used with a sample containing more than 30
values. The main problem is that the sample should meet several conditions
for the confidence intervals to be realistic. Consequently, we opted for other
alternatives such as the estimation of WCET through the analysis of atypical
values, which were obtained from previous executions. An atypical value ai or
aj is defined according to the following equations (4.7) (4.8):

ai < Q1 − 3 · (Q3 −Q1) (4.7)

aj < Q3 + 3 · (Q3 −Q1) (4.8)

where Q1 and Q3 represent the first and third quartile in the sample.

The WCET value is calculated according to the upper value, and is defined as
follows:

WCET = Q3 + 3 · (Q3 −Q1) (4.9)

4.4
Model of scheduling and task alloca-
tion

Figure 11.3 shows the global RTS. The FPS algorithm is used for the scheduling
inside each node and the proposed scheduling and task allocation model is
applied to the global scheduling.

84 4. Proposed Model

Figure 4.5: Overview of the RTS

An alternative to use heuristics is to employ algorithms that attempt to
capture the timing behavior of all tasks in the system. The goal of these
algorithms is to provide a high degree of schedulability resource utilization
and an a priori verification of timing correctness for all tasks in the system.
These algorithms are more restrictive than the heuristic methods in that they
require more knowledge about task utilization, arrival patterns, and resource
requirements [335]. The well-developed algorithms in this class are for the
priority-driven, preemptive scheduling of periodic tasks with hard deadlines.
These algorithms assign priorities based on task deadlines, available slack time
or, in our case, frequency (FPS).

Each task is characterized by the following parameters: C is the worst case
execution time (WCET);D is the task deadline; I is the notation for the possible
interferences or the maximum delays allowed due to the communication (in
case the task requires programming); ρ indicates the utilization of the task in
each computational node; P is the minimum time between two consecutive
arrivals of the task (period); H is the importance or valuation of the task inside
the system (just taken into account if the nodes are full).

4.5 Local scheduling

As can be observed in Figure 11.3, the scheduling inside each node is carried
out with the FPS algorithm. Some studies [63] [285] [379] have demonstrated

4.6. Global scheduling 85

the advantages that the offers compared to the EDF algorithm:

• It is more easily implementable. The parameter used for scheduling, (the
priority) is static at the moment that the scheduling is done (although it
may vary in successive iterations) while the EDF requires more computa-
tion time and therefore, it may delay the plan. Moreover, its tendency to
produce deviations is greater.

• It is easy to introduce tasks without a specific deadline, simply assigning
them a priority. However, assigning an arbitrary deadline is more abstract
and artificial.

• The notion of priority can include other aspects such as a rating on the
urgency or importance of the task, however, deadlines are immovable.

• In an overload situation, the FPS has a more reasonable behavior since
the malfunction will be given on those tasks with less priority. However,
with EDF, the most critical tasks with a longer deadline may be affected
and cause a domino effect on the remaining tasks, producing much greater
delays.

However, EDF has an advantage over FPS. The utilization factor is higher
in the nodes but in a system of hard real-time system, the main purpose
is to ensure that the deadline for all tasks is fulfilled; therefore, having a
lower utilization factor is considered an acceptable consequence. As a result
of these considerations, we selected the FPS planning model for our system.
The following section will explain in detail how it is also applies to task
distribution.

4.6 Global scheduling

The model for task planning and allocation is presented in this section. The
problem of planning, in its broadest sense, is to assign an appropriate order of
execution to a set of tasks seeking specific criteria: efficiency, quality, time, cost,
etc. in an organization [10]. In our case, the main criteria is the fulfilment of
the time constraint when executing the task. According to Ojeda [268], effective
planning depends on two essential tasks: programming and allocation.

Thanks to optimization, we are able to obtain a task allocation with the
minimum number of nodes. We identify the place of execution of each task,
after which the roles required to the agents are assigned. In case of overload,
the system will modify the nodes in which the tasks are executed; otherwise

86 4. Proposed Model

it could be necessary to increase the number of nodes. If no more nodes are
available, the system uses the parameter H that indicates the criticality of a
task.

One of the basic constraints of the optimization model is derived from the
FPS feasibility test. To verify the feasibility of a plan that takes into account
time constraints with the FPS, we apply the utilization test proposed by Lui
and Layland [221]. It is the most restrictive test as well as the easiest to
apply, which reduces the computation time. This test is based on the following
observation:

Let T be a set od periodic tasks. The longest response time for
any task occurs when all tasks are activated simultaneously. This
moment is called critical moment [237].

Definition 13 If the task set is synchronous (all tasks have the same phase),
the initial critical moment is the one that occurs at zero moment.

This indicates that when the critical moment occurs, then the worst-case load
appears in the node. In a static priority preemptive system, where a task can
be interrupted by another with a higher priority, the critical moment is the
most difficult time to guarantee all the task deadlines. Theorem 1 shows that
if deadlines can be guaranteed for releases starting at critical time, they can be
guaranteed, by implication, for the lifetime of the system [22].

The basic schedulability conditions for RM proposed by Liu and Layland were
derived for a set of T periodic tasks under the assumptions that all tasks start
simultaneously at time t = 0, relative deadlines are equal to periods Di,k = kPi
and tasks are independent. Under such assumptions, a set of T of periodic
tasks is schedulable by the FPS algorithm if the equation 4.10 is true.

Theorem 1 The set of tasks T is schedulable under RM if:

N∑
i=1

ρi ≤ N(21/N − 1) (4.10)

where:

ρi = Ci/Ti (4.11)

The schedulability bound of FPS is a function of the number of tasks, and it
decreases with N [63]. Moreover, it is important to realize that:

4.6. Global scheduling 87

lim
N→∞

N(21/N − 1) = ln2 ' 0.693 (4.12)

for large values of N , the bound asymptotically approach to 69.3%. Then, any
combination of N tasks with an utilization factor ρ less then 69.3% will be
always schedulable following a preemptive priority-based scheduling scheme
(where there will be an immediate switch of execution to the higher priority
task). That means that any task set can be scheduled by FPS if ρ ≤ 0.69, but
not all task sets can be scheduled if 0.69 < ρ ≤ 1 [63].

For the global scheduling of the system the total number of tasks are taken
into account,T . Before each replanning and task allocation, this value must be
known T and the scheduled program will be viable while the T remains static.
Any change in the set T leads to replanning to ensure that the task are still
viable.

Example 4

Consider the following table 4.1 with a set T of three tasks:

Task T Period P Computation Time C Priority PI Utilization ρ
a 50 12 1 0.24
b 40 10 2 0.25
c 30 10 3 0.33

Table 4.1: Example FPS

The sum of the utilization is ρ = 0.82, then the condition ρ ≤ 0.693 is not
fulfilled. In the Figure 4.6, we can see how the task a does not fulfil its deadline
following a FPS preemptive scheme.

Figure 4.6: Timeline for the task set T

88 4. Proposed Model

We assume an organizational model where each role is associated with a set
of services that determine the capabilities of the agent. With the presented
task allocation model, it is possible to obtain a distribution of the different
roles required for the teamwork between the available agents in the system’s
execution nodes.

To perform task allocation we minimize the number of nodes needed:

min
N∑
j=1

xj (4.13)

where j identifies the node, N is the total number of available nodes and
xj = {0, 1}.

The constraints applied to the problem will now be described, taking into
account the following notation: xji where i identifies the task and j the node; T
is the total number of the tasks in the system; ρji is the utilization factor when
executing the task i in the node j, it is obtained from the equation 11.10.

First, we establish the link between the objective function and the constraints
in the following way (11.4):

Constraint 1
∀i (xj ≥ xji) (4.14)

It means that for each task i, if a node has a task xji assigned, xj will be 1
adding the value to the final result of the objective function (11.12).

Now we must take into account the utilization factor of each node, so that the
tasks assigned to each of the nodes do not exceed this factor. To formulate this
constraint 11.4 the equation 4.10 is taken into account.

Constraint 2

∀j
T∑
i=1

ρjix
j
i ≤ min(

T∑
i=1

xji (2
(1/
∑T

i=1
xj

i
) − 1), 1) (4.15)

Expanding the equation according to the number of nodes N , we have N
inequations with the following form:

4.6. Global scheduling 89

ρ1
1x

1
1 + ρ1

2x
1
2 + ρ1

3x
1
3 + . . .+ ρ1

T x
1
T ≤ min(

T∑
i=1

x1
1(2(1/

∑T
i=1

x1
T) − 1), 1)

ρ2
1x

2
1 + ρ2

2x
2
2 + ρ2

3x
2
3 + . . .+ ρ2

T x
2
T ≤ min(

T∑
i=1

x2
1(2(1/

∑T
i=1

x2
T) − 1), 1)

. . . ≤ . . .

ρN1 x
N
1 + ρN2 x

N
2 + ρN3 x

N
3 + . . .+ ρNT x

N
T ≤ min(

T∑
i=1

xNT (2(1/
∑T

i=1
xN

T) − 1), 1)

The next constraint (11.4) establish that the same task i is not allocated in
more than one node.

This constraint may be modified if necessary for replication. If any overload
occurs, the task replication is a mechanism widely used in hard real-time that
enables any of the nodes where the task is running to be able to finish on time.
In our case, we will ensure that all tasks are performed by calculating the
minimum number of nodes required for it; if there is an overload, the number
of nodes required increases according to 11.12.

Constraint 3

∀j
N∑
i=1

xji = 1 (4.16)

The constraint 11.4 guarantee that all the assigned at least to one node.

Constraint 4

∀j
T ,N∑

i=1,j=1
xji = T (4.17)

As with a VO, we work with roles that can be associated with different tasks.
If the same role must, for example, execute two different tasks, then there must
be a way to indicate that those tasks must be assigned to the same node where
the agent with the corresponding role will work. With the following constraint
(11.4), task i and task k will be allocated to the same node j.

Constraint 5
xji = xjk (4.18)

90 4. Proposed Model

Finally, we limit the values of xji with the constraint 11.4 and 11.4. In this
way, they can take only the value 0 or 1. If the node j has the task i assigned
then xji = 1, otherwise, xji = 0.

Constraint 6
xji ≤ 1 (4.19)

Constraint 7
xji , integer (4.20)

4.6.0.1 Method of resolution

With regard to solving assignment problems, there are two alternatives: exact
methods and approximate methods. The first consists of solving problems
exactly, with the risk of incurring longer computation times. The second
involves using approximate methods with a high degree of approximation to
the optimal solution but investing less time finding them. The nature of
the task allocation problem is combinatorial and therefore the time required
to find the optimal solution grows exponentially with the number of tasks
considered [359].

These issues are included within an area known as combinatorial optimization.
In the best case, these problems are classified as NP (non-deterministic polyno-
mial) [123], which do not have an optimal solution, i.e., there is no algorithm
with polynomial complexity to solve them. But a solution can be obtained
(not as efficient or optimal), often taking very large spaces of time for small
instances [241]. However, most combinatorial optimization problems belong to
the family of NP-hard problems (a subclass of NP) [282].

The value of xj in the objective function varies according to the task allocation
and the constraints, which means that the value cannot be set in advance. It
is necessary to establish all possible permutations xji of the constraints and
the permutations of xj in the objective function. When facing this kind of
problem the easiest approach is the linear programming (LP) or the integer
linear constraint [235], but in our case we have non-linear constraints and we
should use another method.

Heuristic methods are used to approximate the solution, but they are not exact
and difficult time-bounded methods, and the outcome depends on the ability
of the designer and their knowledge of the problem to develop. Although,
the solutions generated in this way are generally quite good, most of these

4.6. Global scheduling 91

algorithms do not adapt well to problems slightly different from those for which
they were conceived [312].

Our time constraints do not allow us to use algorithms where many iterations
are necessary to reach a solution, nor can we choose heuristics approximated
methods. Therefore, we must look for a mechanism based on approximated
methods, one that could feasibly be implemented by finding a good solution
within a bounded time. It is therefore necessary to use an alternative method
to reach a solution. Moreover, most known non-linear programming techniques,
such as the multipliers of Lagrange [41] or the Kuhn-Tucker method [209]
are problematic in their practical application due to the resulting equations
after performing the partial derivatives of the constraints. Consequently, the
method chosen is the Method of Approximation Programming (MAP) which is
explained below.

4.6.0.2 MAP (Method of approximation programming)

The Frank-Wolfe algorithm [114] finds a feasible solution to a nonlinear program
with linear constraints, but since we have nonlinear constraints, we must use
its extension, called MAP [24].

The MAP algorithm extends general nonlinear programs by making linear
approximations to the constraints as well as the objective function. When the
constraints are highly nonlinear, however, the solution to the approximation
problem can become far removed from the feasible region since the algorithm
permits large moves from any candidate solution. The MAP is a simple
modification of this approach that limits the size of any move. As a result, it
is sometimes referred to as a small-step procedure.

Let x0 = (x0
1, x

0
2, . . . x

0
3) be any candidate solution to the optimization prob-

lem:

max f(x1, x2, . . . , xn) (4.21)

subject to:

gi(x1, x2, . . . , xn) ≤ 0 (i = 1, 2, . . . ,m).

Each constraint can be linearized, using its current value gi(x0) plus a linear
correction term, as:

92 4. Proposed Model

ĝi(x) = gi(x0) +
n∑
j=1

aij(xj − x0
j) ≤ 0, (4.22)

where aij is a partial derivative of constraint gi with respect to variable xj
evaluated at the point x0. This approximation is a linear inequality, which can
be written as:

n∑
j=1

aijxj ≤ b0
i ≡

n∑
j=1

aijx
0
j − gi(x0), (4.23)

since the terms on the righthand side are all constants.

The MAP algorithm uses these approximations, together with the linear
objective-function approximation, and solves the liner-programming problem:

max z =
n∑
j=1

cjxj (4.24)

subject to:

n∑
j=1

aijxj ≤ b0
i (i = 1, 2, . . . ,m)

x0
j − δj ≤ xj ≤ x0

j + δj (j = 1, 2, . . . , n).

the last constraints restrict the step size; they specify that the value for xj can
vary from x0

j by no more than a user-specified constant δj .

When the parameters δj are selected to be small, the solution to this linear
program is not far removal from x0. We might expect then that the additional
work required by the line-segment optimization of the Frank-Wolfe algorithm is
not worth the slightly improved solution that it provides. MAP operates on this
premise, taking the solution to the linear program (4.25) as the new point x1.
The partial-derivative data aij , bi and cj is recalculated at x1, and the procedure
is repeated. Continuing in this manner determines points x1, x2, . . . , xk, . . .

and, as in the Frank-Wolfe procedure, any point x∗ = (x∗1, x∗2, . . . , x∗n) that
these points approach in the limit is considered a solution.

Since many of the constraints in the linear approximation merely specify upper
and lower bounds on the decision variables xj , the bounded-variable version
of the simplex method is employed in its solution. Also, the constants δj are

4.6. Global scheduling 93

Algorithm 3 Steps of the MAP Algorithm
1: Let x0 = (x0

1, x
0
2, . . . x

0
3) be any candicate solution, usually selected to be

feasible or near-feasible. Set k = 0.
2: Calculate cj and aij(i = 1, 2, . . . ,m), the partial derivatives of the objective

function and constraits evaluated at xk = (xk1 , xk2 , . . . xkn). Let bki = aijx
k−

gi(xk).
3: Solve the linear-approximation problem (4.25) with bki and xkj replacing b0

i y
x0
j respectively. Let xk+1 = (xk+1

1 , xk+1
2 , . . . , xk+1

n) be its optimal solution.
Increment k to k + 1 and return to step 1.

usually reduced as the algorithm proceeds. The common method to implement
this algorithm is to reduce each δj by between 30 and 50 percent at each
iteration.

If we apply this method to our problem, the constraints equations are:

∀j xj ≥ xji
N∑
j=1

xji = 1

T ,N∑
i=1,j=1

xji = T

xji ≤ 1 integer
xji ≤ xjk

∀j
T∑
i=1

∂gj

∂xji
(y)xji ≤

T∑
i=1

∂gj

∂xji
(y)yi − gi(y)

where:

∂gj

∂xji
= pji ≤

∑
i6=k

xjk
−1

(
∑
i=1 x

j
i)

2 · 2
1∑

i=1
x

j
i · ln2

+ 2
1∑

i=1
x

j
i + xji

−1
(
∑
i=1 x

j
i)

2 · 2
1∑

i=1
x

j
i · ln2− 1

the equation 11.20 is the value of the partial derivative in the y-point.

∂gj

∂xji
(y) (4.25)

94 4. Proposed Model

gi is the constraint j, T is the set of the tasks and y is the point which
corresponds to the current solution.

4.6.0.3 The Branch and Bound method

The Branch and Bound method [212] is a type of divide and conquer technique.
In the branch part, the large problem is divided into a few smaller ones. The
conquering part is done by estimate how good a solution we can get for each
smaller problems (to do this, we may have to divide the problem further, until
we get a problem that we can handle), that is the bound part [196].

In our problem, including the constraint 11.4 presented in 4.6, which force the
solutions to be integers, is a very costly process in terms of computational time.
So, we use the linear programming relaxation [3] to estimate the solution of an
integer programming. This means that for an integer programming model P ,
we get a reduced linear programming model by dropping the requirement that
all variables must be integers. This is called the linear programming relaxation
of P , Pr. First, we obtain a valid solution to our Pr with the MAP method,
but we need to approximate the values to the nearest integers {0, 1}. So, the
best form to calculate them is using a threshold function T = f(vi) where vi
are the results after the MAP method and then, use the Branch and Bound
method for the rest of the values.

T = f(vi) =

0 if vi ≤ 0.15
1 if vi ≥ 0.85
BranchAndBound otherwise

4.6. Global scheduling 95

Figure 4.7: Example of the Branch and Bound method to approximate the values
to integers

For the case f(vi) = 1, the values vi that fulfill the threshold vi ≥ 0.85 are
arranged in a decreasing order and starting from the higher value, they are
approximated to 1 if they comply the constraint 2 of the model.

A graphical example is included in Figure 4.7 with a set of values S =
v1 = 0.35, v2 = 0.10, v3 = 0.88, v4 = 0.72, v5 = 0.47, v6 = 0.68. Applying the
threshold function T = f(vi) the values are S = {v1 = 0.35, v2 = 0, v3 =

96 4. Proposed Model

1, v4 = 0.72, v5 = 0.47}, then the variables v2 and v3 have already a result and
are fixed at the beginning of the method.

To expand the tree faster is possible to include several constraints at the same
time in one branch. The method have two stopping criteria: it examines or
"pruned" all the possible nodes or the preset maximum time for getting a
solution runs out. In this case, the best value found at that moment will be a
valid solution but it may not be the best to the global problem.

As we are trying to minimize the objective function, at the end of the process
we choose the min Zi obtained in the last step.

4.7 Conclusions

In this part we have proposed an effective model which is divided in two
different steps. First, the model calculates the WCET when an agent desires
to form part of a virtual organization and wants to include tasks or behavior
in the real time system, i.e. to calculate the WCET in emergent behaviours.
And after, using the previous estimation, the model generates a scheduling
plan to allocate tasks for the whole system, i.e. a global scheduling. This
model has been specially designed for VOs that interact continuously with
the environment and have to fulfill real-time constraints. For achieve this, we
have applied a combination of mechanisms that all together allow us to present
a novel model for the WCET estimation followed by a scheduling and task
allocation in real-time VOs.

To sum up, we have used many techniques to fulfil the steps of the model and
solve all the difficulties. For the estimation of the WCET, we have studied
concepts such as Java bytecodes and the functioning of the JVM, the ICFG, the
IPET technique to improve the time estimation, etc. For the scheduling and
task allocation we have gone further in the FPS algorithm and its feasibility
test, integer linear programming, the MAP algorithm, the Branch and Bound
Method, etc. Mixing all these elements, we have obtained a successful method
that fulfil the initial hypothesis: it is possible to develop a scheduling and task
allocation model that successfully enables the agents integrated into a VO to
fulfil their time constraints. This model will be theoretically formalized and
then implemented to evaluate the results. The next step is to demonstrate with
results the effectiveness of the method.

In the next part of the document, we present different versions of the agent-
platform PANGEA, where this model has been included. In Part 5, we include
the results of the model and its integration in a real case study.

Part IV
PANGEA+RT Platform

5
PANGEA

New trends in multi-agent systems call for self-adaptation and high dynamics,
hence the new model of open MAS or virtual organization of agents. However,
as existing agent platforms are not yet equipped to support this behavior, it is
necessary to create new systems and mechanisms to facilitate the development of
these new architectures. In this chapter, we present PANGEA, an agent platform
to develop open multi-agent systems, specifically those including organizational
aspects such as virtual agent organizations. The platform allows the integral
management of organizations and offers tools to the end user. Additionally, it
includes a communication protocol based on the IRC standard, which facilitates
implementation and remains robust even with a large number of connections.

Contents
5.1 Introduction . 100
5.2 Related works . 102
5.3 PANGEA overview . 106

5.3.1 Reorganization and task allocation model 110
5.4 The PANGEA database 112
5.5 The monitoring tool . 115
5.6 The norms in PANGEA 117
5.7 The communication module 119

5.7.1 Testing the communication 122
5.8 Testing the SnifferAgent 124
5.9 The subscription model 126
5.10 The Gateway agent . 128

5.10.1 Request protocol . 129
5.10.2 Subscription protocol 130
5.10.3 Contract-net protocol 131
5.10.4 Inform protocol . 131

5.11 Conclusions . 132

100 5. PANGEA

5.1 Introduction

Nowadays, one of the research lines that the multi-agent systems are following
is directed toward ensuring that these systems become more open and dynamic.
An open MAS [27] should allow for the interaction between heterogeneous
agents, which change over time, and architectures and even different languages.
Because of their inherent changing nature, we cannot rely on agents’ behaviour
when it is necessary to establish controls on the basis of norms or social rules.
For this reason, and because of the characteristics of open environments, new
approaches are needed to support evolutive systems and to facilitate their
growth and runtime updates. The dynamics of open environments is one of
the reasons that have encouraged the use of VOs. A VO [111] [113] is an open
system designed for grouping; it allows for the collaboration of heterogeneous
entities and provides a separation between the form and function that define
their behaviour.

VOs are conceived as a set of agents with roles and rules that determine
their behavior and where previously established capabilities play a crucial role.
Possible topologies and organizational aspects well as their communication
and coordination mechanisms determine largely the flexibility, dynamism and
openness that the multi-agent system can offer. The concept of organization
is seen as a promising solution to manage the coordination of the agents and
control their behaviours and actions. Every organization needs coordination
support to determine explicitly how to organize and carry out the actions and
tasks within it. There are different platforms, which will be shown later, that
allow for the creation of multi-agent systems. These platforms greatly facilitate
the task of working with agents. However, in terms of platforms that allow for
the creation of a VO, the number is drastically reduced; it is in fact difficult
to find a single platform that covers all the requirements that a VO requires,
such as reorganization and adaptation facilities, norm compliance, different
organizational topologies, service and role management.

At the same time, distributed multi-agent systems have become increasingly
sophisticated in recent years, with a growing potential to handle large volumes
of data and coordinate the operations of many organizations [155]. Distributed

5.1. Introduction 101

intelligent systems are based on the use of cooperative agents, where each
agent independently handles a small set of specialized tasks and cooperates to
achieve the system-level goals and a high degree of flexibility [145]. Another
problem for distributed systems is that they must now be able to accept requests
from different devices. There is, furthermore, a rapidly growing use of mobile
devices with limitless connection possibilities and computing power. From a
practical perspective, multi-agent systems face yet another challenge: obtaining
light intelligent agents that can be deployed in this type of device without
relinquishing their capabilities.

For the aforementioned reasons, PANGEA introduces a new protocol based
on the Internet Relay Chat (IRC) standard to facilitate communication in
distributed multi-agent systems. This protocol facilitates cooperation between
agents, which is critical in these kinds of systems. It includes a robust com-
munication model that allows intelligent agents to connect from a variety of
devices. This communication is easy to implement and enables agents deployed
in different devices to cooperate. These agents can be developed both quickly
and in any language using the tools provided by the platform. PANGEA
also includes facilities for implementing VOs and suborganizations, following
any topology and with the appropiate tools for managing the VO itself. It is
important to highlight that PANGEA is not a framework or a simple tool; it is
a complete platform for the execution and management of VOs. Following an
organizational perspective, the most important concepts to consider are:

• Organizations are social entities formed with patterns of communication,
responsibilities or tasks, and are regulated by norms and restrictions.

• Entities in an organization are not independent of each other; instead they
interact with each other. Different structures are possible and entities
are sorted according to the topology of these structures. Some possible
topologies are hierarchies, oligarchy, congregations, federations, coalitions,
etc.

• Organizations are linked to the norms. There are social norms that
define the consequences of the entities’ actions, control the access and
communications, and are forced to acquire certain behaviors or not allow
them.

• Organizations such as open systems are dynamic and should facilitate
the input and output of heterogeneous entities, taking different roles by
these entities and the group formation.

102 5. PANGEA

5.2 Related works

All platforms for creating multi-agent systems that exist to date should be
studied according to two principal categories: those that simply support the
creation and interaction of agents, and those that permit the creation of virtual
organizations with such key concepts as norms and roles. Initially, most of the
agents’ platforms do not allow VOs. This is the case of FIPA-OS [287], April
Agent Platform (AAP) [239] and JASON [52] [53], which its main contribution
is the easy with which BDI [76] agents can be implemented [299]. In practice,
the platform that is most commonly used to develop multi-agent systems in
real case studies is Java Agent DEvelopment Framework (JADE) [40] and
Jadex [284]. Jadex is a software framework and a extension of JADE for the
creation of goal-oriented agents following the BDI model.

One of the more recent platforms is JIAC [158] [229], a service-aware framework.
JIAC V is a Java based agent framework with an emphasis on industrial
requirements such as software standards, security, management, and scalability.
It combines agent technology with a service oriented approach. Together with
the framework, a new language called JADL++ was created; this platform
stands out because of its service matching capabilities and an excellent usability.
Until now, these platforms can create agents (some with different models),
follow their life cycle and manage communication and services. However, in the
case of VO, it is necessary to take into account the normative and organizational
aspects that the platform itself should provide.

MadKit [150] was one of the first platforms to consider basic organizational
aspects. The platform architecture is rooted in the AGR (agent-group-role)
model [149] developed in the context of the AALAADIN project. Another
pioneering platform in terms of its structural aspect was Jack Teams [225],
which introduced the concept of “Team-oriented programming” as an intuitive
paradigm to encapsulate coordination activity. The JACK Teams extension
introduces the new constructs team, role, teamdata, and teamplan. Various
authors have used JACK Teams in their research, notably [107] [181] [44] [81].
The main disadvantage of this platform is that it only allows hierarchical
team structures. S-MOISE+ is an organizational middleware that follows the
MOISE+ model [168] [165]. In MOISE+ a multi-agent system is specified
as an organization, distinguishing three main aspects. The structural aspect
is in charge of the structure or topology of the organization. The functional
aspect is in charge of the organizational operations and the tasks that should be
carried out. And the normative aspect specifies the permission and obligations
of each role. The printed material used for this research includes systems

5.2. Related works 103

that were developed in conjunction with JASON, using S-MOISE+ as the
middleware to achieve a more complete model [167]. Hence the emergence of
J-Moise+ [166], which is very similar to S-Moise+ regarding the overall system
concepts. AMELI is a middleware that can work with electronic institutions
(similar to VO) [331]. An innovative feature of AMELI is its general purpose;
because it can interpret any institution specification, organization or topology,
it can be regarded as domain-independent, which is the reason why AMELI
offers a higher (social) level of abstraction [103].

One of the main disadvantages of platforms geared toward VO is that the
concept of service is somewhat diminished, which impacts the management
associated with these services and the DF described in the FIPA standard [13].
This need led to the creation of the THOMAS framework [28]. THOMAS
is based on the idea that no internal agents exist and architectural services
are offered as Web Service (WS). As a result, the final product is entirely
independent of any internal agent platform and fully addressed for open multi-
agent systems [135]. Until now, all tools used to create, manage and control VOs
are frameworks or middlewares that require other agent platforms to be able to
integrally develop a VO. This implies that the deficiencies of agent platforms are
further diffused if the layer for managing the VO cannot solve the problem. One
of the most complete and recent platforms that have been found in the literature
review is Janus [122]. Janus is the evolution towards organizations of the
platform previously known as TinyMAS (no longer under development.). This
platform was specially designed to deal with the implementation and deployment
of Holonic multi-agent system (HMAS) [130]. The key aspects handled by the
platform are organizations, roles, interactions and capacities [122]. However, it
disregards the concept of norm and service. The platform does not explicitly
consider the normative aspects of the organizations; they are instead included
within the concept of role.

In summary, to deal with all aspects of complex systems, MAS such as VO, it
is necessary to deal with multiple levels of abstractions and openness, which
is not the case for most solutions [78]. In addition, it is needed to establish
controls on the basis of norms or social rules, in the interactions and topologies,
these characteristics are also no included in most solutions. Moreover, although
the agent frameworks or platforms have similarities, there are subtle differences,
too. Each framework uses a different model file syntax and provides different
libraries. In our platform, we have tried to use standards that have already
demonstrated their robustness and are known within the research community,
making the implementation of new architectures easier and highly reliable.

104 5. PANGEA

MadKit [150] The platform architecture is rooted in the AGR
(agent-group-role) model [149] and developed in the
context of the AALAADIN project. One important
characteristic is the Agentification of services [151].

Jack Teams [160]
[225]

An extension to JACK Intelligent Agents [62] which
provide a team-oriented modelling framework. The
JACK Teams extension introduces the new concepts
of: team, role, teamdata and teamplan [334] [107].

S-MOISE+ [168] An organizational middleware that follows the
MOISE+ model. A multi-agent system is speci-
fied as an organization, distinguishing three main
aspects [165] [82]: structural, functional and norma-
tive.

J-Moise+ [166] Very similar to S-Moise+ regarding the overall system
concepts. In S-Moise+ agents are programmed in
Java (using a very simple agent architecture), while
in J-Moise+ they are programmed in AgentSpeak, a
programming language based on BDI concepts and
thus more suitable for programming agents.

AMELI [106] A middleware that can work with electronic institu-
tions (similar to VO) [103]. An innovative feature of
AMELI is its general purpose (it can interpret any
institution specification, organization or topology).
This allows it to be regarded as domain-independent,
the reason why AMELI offers a higher (social) level
of abstraction.

Electronic Institu-
tions Development
Environment, EIDE
[66]

Consists of the integration of various tools: IS-
LANDER (a graphical specification language), the
middleware AMELI [106], SIMDEI (a debugging and
monitoring tool,) and ABuilder (an agent-shell builder
that can produce an agent “skeleton” for each agent
role).

RICA-J (acronym
for RICA-
Jade) [324]

Allows programming multiagent systems based on
the RICA theory (role/interaction/communicative
action). RICA-J is designed as a framework on top of
the existing JADE tool that can reuse the middleware
aspects required for supporting agent interactions, as
well as the different agent abstractions provided.

5.2. Related works 105

THOMAS frame-
work [306]

There are no internal agents and architectural services
offered as web services. As a result, the final product
is entirely independent of any internal agent platform
and fully addressed for open multiagent systems [135].
The main components of THOMAS are: Service Fa-
cilitator (SF), Organization Manager Service (OMS)
and Platform Kernel (PK).

Janus [122] Janus is the evolution towards organizations of the
platform previously known as TinyMAS (no longer
under development.). This platform was especially
designed to deal with the implementation and de-
ployment of holonic and multiagent systems. Its key
feature is that it supports the implementation of the
concepts of role and organization as first-class entities
(a class in the object-oriented sense) [131].

BVM (Brahms Vir-
tual Machine) [330]

A multi-agent discrete-event engine. It cannot be
defined as a platform per se; instead it is a set of
development tools to develop and simulate human
organizations and work processes. It uses its own
language and its main application is the simulation
of multiagent models based on norms [329].

ICARO-T [126] The distinguishing factor of this framework is the
use of component patterns for modelling MAS: agent
organization pattern, cognitive and reactive agent
patterns, and resource patterns. This facilitates the
implementation of the agents.

Table 5.1: Summary of middlewares or platforms for VOs

The idea of creating PANGEA [392] emerges from the analysis of this table
where we find disadvantages to all existing platforms. While Madkit [150]
does work with the concept of role, it does not consider a role to be a class
entity. In fact, the behavior associated with the role is directly implemented
into the agent who assumes the role, which leads to the problem of roles being
strongly linked to the agent’s architecture. This approach harms the reusability
and modularity [106] of organizations. JACK Teams only allows hierarchical
team structures. S-MOISE+ lacks a monitoring mechanism to detect whether
the agents actually fulfill the goals belonging to their required missions. The
printed material used for this research includes systems that were developed
in conjunction with JASON, using S-MOISE+ as the middleware to achieve
a more complete model [167]. RICA-J uses JADE. Another drawback of this
approach, however, is that it defines an agent mainly by means of the role it will

106 5. PANGEA

play during its life; such a definition could clash with other agent models and
theories forcing the agent developer to mentally shift toward a new definition
of agent. AMELI and EIDE can be considered complete platforms. They are
oriented toward electronic institutions [105], which is not our desired paradigm,
and not VOs.

In general, one of the main disadvantages of platforms geared toward VOs is that
the concept of service is somewhat diminished, which impacts the management
associated with these services and the DF described in the FIPA standard.
In addition to an extension of the DF adapted to the VO, it would also be
necessary to have an extension of the AMS to enable the creation of dynamic
and reorganizable structures in execution time. THOMAS overcomes this
problem, but its monitoring tools are poor and do not provide implementing
facilities. Janus is one of the most complete and recent platforms, but it
disregards the concept of norm and service. It does not explicitly consider the
normative aspects of the organizations; they are instead included within the
concept of role. However, in order to allow for more flexible open systems, it
is necessary to specify the norms beyond the role. The platform also fails to
consider the concept of service as an independent entity and instead includes
it within the capacity associated with the roles. In summary, to deal with all
aspects of complex systems, whether MAS or VO, it is necessary to deal with
multiple levels of abstractions and openness, which is not the case for most
existing solutions [78].

At the end of the chapter, the figure 5.21 includes a brief compilation of
well-known VOs middlewares or platforms.

5.3 PANGEA overview

As previously mentioned, a platform that can integrally create, manage and
control VOs was developed for this study. In general terms, the proposed
platform includes the following characteristics:

• Different models of agents, including a BDI and CBR-BDI architecture
[76].

• Ability to control the life cycle of agents with graphic tools.

• A communication protocol that allows broadcast communication, multi-
cast according to the roles or suborganizations, or agent to agent.

• A debugging tool.

5.3. PANGEA overview 107

• Module for interacting with FIPA-ACL agents.

• Service management and tools for discovering services.

• Web services.

• Flexibility in allowing organizations with any topology and suborganiza-
tions.

• Organization management.

• Services for dynamically reorganizing the organization [391].

• Services for distributing tasks and balancing the workload [391].

• A business rules engine to ensure compliance with the standards estab-
lished for the proper operation of the organization.

• Java programming and easily extensible.

• Possibility of having agents in various platforms (Windows, Linux, MacOS,
Android and IOS)

• Interface to oversee the organizations.

Figure 5.1 displays the principal classes of the system, and illustrates how the
roles, norms and the organizations themselves are classes that facilitate the
inclusion of organizational aspects. The services are also included as classes
completely separate from the agent, facilitating their flexibility and adaption.
Capacity determines the reasoning mechanisms available to the agent.

Figure 5.1: Main classes of the system

When launching the main container of execution, the communication system
is initiated; the agent platform then automatically provides some agents to
facilitate the control of the organization. In the Figure 5.2, we can see the
agents’ roles and their interactions.

108 5. PANGEA

• OrganizationManager: the agent responsible for the actual management
of organizations and suborganizations. It is responsible for verifying the
entry and exit of agents, and for assigning roles. To carry out these tasks,
it works with the OrganizationAgent, which is a specialized version of
this agent.

• OrganizationAgent: it is a specialized version of the OrganizationManager,
which is introduced automatically in each suborganization to help the
OrganizationManager and avoid its overload.

• InformationAgent: the agent responsible for accessing the database con-
taining all pertinent system information.

• ServiceAgent: the agent responsible for recording and controlling the
operation of services offered by the agents. It works as the Directory
Facilitator defined in the FIPA standar.

Figure 5.2: PANGEA agents

• NormAgent: the agent that ensures compliance with all the refined norms
in the organization.

• CommunicationAgent: the agent responsible for controlling communica-
tion among agents, and for recording the interaction between agents and
organizations.

5.3. PANGEA overview 109

• SnifferAgent: manages the message history and filters information by
controlling communication initiated by queries.

The platform enables two modes of operation. In the first mode, the agents
reside in the machine itself, while in the second mode the platform allows for
the possibility of initiating all agents in different machines. The latter case
has the disadvantage of allowing only minimal human intervention since it is
necessary to previously specify the address of the machine where each of the
agents are to reside; however it has the advantage of greater system distribution.
We have created a service-oriented platform that can take maximum advantage
of the distribution of resources. To this end, all services are implemented as
Web Services. This makes it possible for the platform to include both a service
provider agent and a consumer agent, thus emulating a client-server architecture.
The provider agent (a general agent that provide a service) knows how to contact
the WS, the rest of the agents know how to contact with the provider agent due
to their communication with the ServiceAgent, which contains this informacion
about services. In section 3.1, when the communication platform is explained,
the Figure 5 shows how a general provider agent (one who has a service to
offer) can enter a suborganization and register its services using the specific
communicational primitives.

Once the client agent’s request has been received, the provider agent extracts
the required parameters and establishes contact. Once received, the results are
sent to the client agent. Using WS also enables to introduce Service-oriented
Application (SOA) [188] into MAS systems and in the platform . SOA is
an architectural style for building applications that use services available in
a network such as the web. It promotes loose coupling between software
components so that they can be reused. Applications in SOA are built based
on services. A service is an implementation of a well-defined functionality,
and such services can then be consumed by clients in different applications or
processes. SOA allows for the reuse of existing services and a level of flexibility
that was not possible before in the sense that:

• Services are software components with well-defined interfaces that are
implementation-independent. An important aspect of SOA is the sep-
aration of the service interface from its implementation. Such services
are consumed by agent clients that are not concerned with how these
services will execute their requests.

• Services are self-contained and loosely coupled encouraging independence.

• Services can be dynamically discovered

• Composite services can be built from aggregates of other services [378].

110 5. PANGEA

Each suborganization or work unit is automatically provided with an Orga-
nizationAgent by the platform during the creation of the suborganization.
This OrganizationAgent is similar to the OrganizationManager, but is only
responsible for controlling the suborganizationn, and can communicate with
the OrganizationManager if needed. If another suborganization is created
hierarchically within the previous suborganization, it will include a separate
OrganizationAgent that communicates with the OrganizationAgent from the
parent organization. These agents are distributed hierarchically in order to free
the OrganizationManager of tasks. This allows each OrganizationAgent to be
responsible for a suborganization although, to a certain extent, the Organiza-
tionManager can always access information from all of the organizations. Each
agent belongs to one suborganization and can only communicate with the Orga-
nizationAgent from its own organization; this makes it possible to include large
suborganizational structures without overloading the AgentManager. All of
the OrganizationAgents from the same level can communicate with each other,
unless a specific standard is created to prevent this. One possible topology is
shown in Figure 5.3, with the ManagerAgent establishing communication with
the OrganizationManager.

Figure 5.3: OV topology

5.3.1 Reorganization and task allocation model

Along this part of the dissertation, we are explaining the evolution of the
PANGEA platform. The first approach of PANGEA (without any extension)
has its own reorganization and allocation model published in a previous work

5.3. PANGEA overview 111

[391]. For this purpose, a genetic algorithm, the queuing theory, and a CBR
are used to obtain an efficient distribution.

In the Figure 5.4, the agents’ roles involved and their interactions are shown.

Figure 5.4: Overview of the agents involved

The model proposed in our mentioned work focuses on developing a planning
mechanism to coordinate the agents found in the VOs. Thus, first we will set
out the roles that these agents can take:

• Processor role. Responsible for carrying out the activities required for

112 5. PANGEA

each specific task. For this reason, the responsible agent will specialize
depending on the type of tasks the system must solve.

• Planner role. Design the overall plan to be implemented by the organiza-
tion. Sets the number of processor agents and makes the distribution of
tasks.

• Distributor role: Distributing tasks according to its completion by the
agents and checks that each task is being processed within time limits to
serve the plan.

• Manager role: This agent manages all the information of the task and
communicates to the user.

As previously said, the result and the detailed model can be found in [391] but
this model cannot be applicable in real-time environments, then it is important
to note that PANGEA+RT includes the new model developed specially for
real-time in this dissertation.

5.4 The PANGEA database

To create an organization, a database consisting of the following information
is needed in order to store all the relevant information. The scheme of the
database can be seen in the figure 5.5.

A list of services (SERVICE). It acts as DF. The purpose of this list is to store
all the services that provide the agents or other entities, to others agents that
are looking for some service or capability. This is similar to the yellow pages.
If necessary, it must also be possible to register a new service in the system. To
do so, a service has to be well defined and specified. The following attributes
are compulsory for each service:

• Each service must have a unique identifier.

• Name

• Description

• Provider agents: all agents that provide this service should be included.
It is important to note that the way to perform the task of the service
is independent of its definition, so each provider agent can perform the
service in a different way or with a different implementation than others.

5.4. The PANGEA database 113

• Norms associated to the service: in this section, the agent’s roles that
can consume this service must be specified. It are similar to permissions
for each service, and not every agent can access them. Moreover, other
norms can be defined, such as dates, agent attributes, number of calls,
etc.

Figure 5.5: Database

A list of members (AGENT). All agents that work in the organization must be
registered here. Each agent must be uniquely identified including both its local
name and the address of the machine on which it is located. A list of roles

114 5. PANGEA

(ROLE), which includes the roles that the agents can take. A role must meet a
certain goal or goals, so it will need to consume services. Similarly, a role also
provides services. When an agent takes a particular role, it has to adapt to the
model of that role, i.e., it must be able to provide and do everything that the
role in question poses.

A list of suborganizations or units of work (WORK UNIT). An organization
of agents may have various structures or topologies. It is necessary to know
how the topology is, to configure the norms and the communication among
the agents. Moreover, it is common for agents to be divided recursively into
groups, and each group has a leader.

Figure 5.6: InformationAgent replication

The database is managed by the agent InformationAgent. Except for the
CommunicationAgent (which has its own replication mechanism) and the Orga-
nizationManager (which has the similar OrganizationAgent to avoid overload),

5.5. The monitoring tool 115

the remaining agents that manage the platform are controlled by the Organi-
zationManager when faced with the possibility of work overload. Each agent
starts with a queue of messages. If the queue is too long, the agent itself will
be responsible for instantiating new agents to share the work, thus creating
a new organization. This occurs most commonly with the InformationAgent.
This agent, who is in charge of data base access, can find itself overloaded
with requests. Using a duplication mechanism, it can create instances of other
InformationAgents although they would each be dependent on the initial In-
formationAgent. The newly created InformationAgents do not have their own
task queue; instead the parent InformationAgent is in charge of managing a
single task queue that it assigns to the children InformationAgents according to
the task distribution mechanism. In this way, the platform would go from being
an InformationAgent to an InformationOrganization; that is, an organization
that would carry out tasks originally assigned to a single agent. This would
avoid the overload or duplication of the message queues for each agent (Figure
5.6).

5.5 The monitoring tool

PANGEA have a tool that can monitor the status of the platform (connected
agents and existing organizations) and the messages that are passed between
agents or between agents and organizations.

To carry out this almost real-time monitoring, the MonitorAgent was created.
This agent is in charge of redirecting all message traffic to the visualization tool.
The agent is responsible for listening to all events that occur in the system (agent
connection, agent disconnection, an agent joining an organization, message
interaction, etc.).

The server architecture was slightly modified for the MonitorAgent tasks. With
this new configuration, a message is generated at all points where the system
receives an event. In this case, the sender is the OrganizationManager and the
receiver the MonitorAgent. It has one of the following formats:

• [Date and Time] -> JOIN -> [Agent]
2014/03/28 18:30:17->JOIN->suma->#arithmetic
The agent agent03 is connected to #initial-world by autojoin.

• [Date and Time] -> JOIN -> [Agent] -> [Organization]
2014/03/28 18:31:47->JOIN->add->#arithmetic
The agent add is connected to the #arithmetic organization.

116 5. PANGEA

• [Date and Time] -> PART -> [Agent] -> [Organization]
2014/03/28 18:33:40->PART->add->#arithmetic
The agent add leaves the organization #arithmetic.

• [Date and Time] -> QUIT -> [Agent]
2014/03/28 18:48:03->QUIT->info_agent
The agent info_agent has been disconnected.

• [Date and Time] -> QUIT -> [Agent] -> Agent PING TIME-
OUT
2014/03/28 18:50:27->QUIT->info_agent->Agent PING TIMEOUT
The agent info_agent has been disconnected because it does not reply
to the PING messages.

• [Date and Time] -> PRIVMSG -> [Agente Origen] -> [Agente
Destino] -> [Message]
2014/03/28 18:53:50->PRIVMSG->agent18->news_agent->getnews
The agent agent18 sends to the agent news_agent a message with the
text getnews asking for the service.

• [Date and Time] -> PRIVMSG -> [Agente Origen] -> [Agente
Destino] -> [Message]
2014/03/28 19:08:44->PRIVMSG->agent09->#p_subs09->hello
The agent agent09 sends to the suborganization p_subs09 a message
with the text ḧellö.

Now, there is an agent capable of real-time monitoring everything that happens
in the platform. Moreover, as the visualization tool may be used on more than
one machine at a time, each instance of this tool is a new agent that we call
MonitorClientAgentX, where X is an available random number.

The communication follows the scheme shown in the Figure 5.7.

Figure 5.7: Communication scheme for representing events in the monitoring tools

5.6. The norms in PANGEA 117

When an agent generates an event, the platform translates it through a mes-
sage to the MonitorAgent and then communicates the event to all the con-
nected MonitorClientAgentX. Each instance of a monitoring tool creates a
MonitorClientAgentX to receive the events.

5.6 The norms in PANGEA

The norms that control the system are indispensable in the management of a
virtual organization because they are in charge of the organizational aspect.
Not all interactions are allowed in an organization, therefore, the PANGEA
platform includes the NormAgent to provide this functionality. There are
different privileges, roles or other criteria that will make a message deliverable
or not, according to the established norms (previously or in real-time through
an on-line tool).

The norms are stored in an xml file, which will be read by the agent in charge
of the rules (NormAgent) whenever they change. As a result, it is not necessary
to access the database since the request and the response messages to read the
norms and the accesses to the database are saved.

These norms have an xml structure, which is totally customizable with several
criteria to consider when deciding whether to deliver the message or not. The
structure is defined in a .csv file. For example, a possible structure could
be:
1 <?xml ve r s i on =\"1.0\"?>
2 <ru l e s >
3 <ru l e id=\"1\">
4 <name>Agent A does not communicate with Agent B</name>
5 <de s c r i p t i on>Desc r ip t i on o f the norm</de s c r i p t i on >
6 <from type=\"Agent\">A</from>
7 <to type=\"Agent\">B</to>
8 <precond i t ion ></precond i t ion>
9 <postcond i t i on ></postcond i t i on>
10 <code>
11 <type>Proh ib i t i on </type>
12 <value></value>
13 </code>
14 </ru le>
15 </ru l e s >

Programming Code 5.1: A norm example

Internally the server intercepts all the messages that are generated in the
platform and redirects them with the help of the OrganizationManager. The

118 5. PANGEA

format of these messages will be detailed in the following sections. The analysis
performed by the NormAgent will determine if the message can reach the
recipient or not. If not, it is not redirected; if so, the message is delivered in
a transparent way to each of the recipients, following the scheme that can be
seen in the figure 5.8.

Figure 5.8: NormAgent scheme

In the IRC server communication, the receipt of messages sent to organizations
(or channels) or privately (between agents) is redirected to the NormAgent (if
the message meets certain requirements) for further analysis in the following
format:

date and time of the message -> sender -> receiver -> message

The NormAgent looks for information about the sender and receiver (which
may be an organization), so it would need to contact the InformationAgent
to get the information from the database. Once it has all the necessary data
to analyze the message (roles, organizations, etc..) it will proceed with the
analysis. The NormAgent will then send a message to himself with the same
format. This message will be intercepted by the server, which is responsible
for delivering the message to the recipients in a transparent manner.

An applet in Java has been implemented to facilitate the management of norms.
The interface contacts with the NormAgent to obtain and forward the norm

5.7. The communication module 119

files and structure files. The tool makes is possible to query the norms that
the NormAgent is applying. Moreover, it offers the possibility of modifying or
adding new norms in execution time. The NormAgent will read them when
they are sent, at which time their norms will be applied.

Figure 5.9: Addition of a new norm in the Monitoring tool

5.7 The communication module

This section will focus on describing the communication platform and protocol.
PANGEA will not pretend to present a new communication protocol; instead
it will introduce the IRC protocol within multi-agent systems. This protocol is
widely used in other distributed environments and has already demonstrated
its reliability and robustness. What is proposed is its use within the platform,
providing advantages, such as ease of implementation and reliability, given
that it has been widely used in online communities with good functionality.
As observed in Figure 5.2, the communication platform includes two main
agents: the CommunicationAgent and the SnifferAgent. The first is in charge
of checking the connections to confirm that the agents are online and see
which ones have disconnected. It is also in continual communication with

120 5. PANGEA

the NormAgent to ensure that the agents respect the lines of communication
and comply with the standards. The SnifferAgent is in charge of recording
all communication, offers services so that other agents can obtain history
information, and facilitates the control of information flow for programmers
and users.

The IRC protocol was used to implement communication. IRC is an internet
protocol for simultaneous text messaging or conferencing. This protocol is
regulated by 5 standards: RFC1459 [267], RFC2810 [194], RFC2811 [195],
RFC2812 [193] and RFC2813 [192]. It is designed primarily for group conversa-
tions in discussion forums and channel calls, but also allows private messaging
for one on one communications, and data transfers, including file exchanges.
The protocol in the OSI model is located on the application layer and uses
TCP or alternatively TLS. An IRC server can connect with other IRC servers
to expand the user network. Users access the IRC networks by connecting a
client to a server. There have been many implementations of clients, including
mIRC or XChat. The original protocol is based on flat text (although it was
subsequently expanded), and used TCP port 6667 as its primary port, or other
nearby ports (for example TCP ports 6660-6669, 7000). The standard structure
for an IRC server network is a tree configuration. The messages are routed only
through those nodes that are strictly necessary; however, the network status is
sent to all servers. When a message must be sent to multiple recipients, it is
sent to a multidiffusion; that is, each message is sent to a network link only
once. This is a strong point in its favor compared to the no-multicast protocols
such as SimpleMail Transfer Protocol (SMTP) or the Extensible Messaging
and Presence Protocol (XMPP).

One of the most important features that characterize the platform is the use of
the IRC protocol for communication among agents. This allows for the use of
a protocol that is easy to implement, flexible and robust. The open standard
protocol enables its continuous evolution. There are also IRC clients for all
operating systems, including mobile devices. All messages include the following
format: prefix command command <parameters> \r \n. The prefix may be
optional in some messages, and required only for entering messages; this is one
of the original commands from the IRC standard.

NICK <agent> Specifies the name of the agent with which it wishes
to initiate communication. Must contain at least 5
characters. If the Nick is currently in use, the server
will return an error message.

VERSION Returns information regarding the version of the
server to which we are connected.

5.7. The communication module 121

PONG Term used to maintain the client connection to the
server. If an agent does not periodically pong the
server, it will be forced to disconnect.

QUIT VUsed to abandon the architecture and force the
client to disconnect.

WHOIS <agent> Displays information about the agent, provides infor-
mation about the organizations to which it belons, if
it has been identified in the system, etc.

PART <org> Term used by agents to abandon a specific organiza-
tion in execution time.

PRIVMSG
<org:texto>

Used to send a message to an agent in the system,
where parm1 is the receiving agent and texto the text
string to be sent. If parm1 is an organization, the
message is sent to all agents belonging to it.

LIST Displays the system organizations and their descrip-
tion.

Table 5.2: IRC Primitives

The Figure 5.11 illustrates the message flow required for an agent to enter
an organization. These messages use the PRIVMSG command followed by the
parameters indicated by the arrows in the diagram.

Figure 5.10: Sequence of steps for an agent to enter an organization

122 5. PANGEA

Another advantage in using IRC involves the ease in implementing communica-
tion. The platform’s code generating tool makes it possible to easily create an
outline of an agent, with the communication code requiring few lines of code.
The code 5.2 displays the code for an agent in C#. It is clear that the function-
ality of the code consists of associating different events to the OnqueryMessage
method, intercepting when an agent receives a message or enters an organiza-
tion, and effectively handling that action from the OnqueryMessage method.
The Connect method specifies the host and the communication server port,
which is responsible for enabling all agents to connect and communicate. The
OnRawMessage event is responsible for intercepting all server responses.
1 p r i va t e void connect (Object sender , EventArgs e) {
2 i r c . OnJoin += new JoinEventHandler (OnQueryMessage) ;
3 i r c . OnQueryMessage += new IrcEventHandler (OnQueryMessage) ;
4 i r c . OnRawMessage += new IrcEventHandler (OnRawMessage) :
5 i r c . Connect (host . Text , 6667) ;
6 i r c . Login (agent , Text , nu l l) ;
7 i r c . L i s t en ()
8 }

Programming Code 5.2: Example of the connection code for an C# agent

5.7.1 Testing the communication

In order to test communication among the agents deployed in the platform, a
test case was designed, as shown in figure 5.11. The first building contains a
machine with an Intel Core 2 CPU 6600 2.4GHz processor with 4Gb RAM and
a 64 bit operating system connected to a network with a symmetrical speed
of 2 Mb. The communication server is installed on this machine. Located in
the same building but on a different network, there are 4 PCs each containing
15 agents. In another building located 4 kms away, 2 laptops, each containing
300 agents, and a PC with 6000 agents are connected. In a third building, 10
agents join the platform from a connected PC; 4 agents are connected from
Android Smartphones, and 2 from iPhones. The purpose of the study is to
test communication. Consequently, the 7360 agents involved do not carry
out complex computational tasks; instead they simply request information
from web-based news services or other basic services configured within the
platform.

Two tests were carried out. The first was performed on a Monday with agents
active during a 24 hour period, while the second was performed on a Friday
with agents functioning during an 18 hour period, so that different network
conditions could be analyzed.

5.7. The communication module 123

Figure 5.11: Test Case

As previously explained, the agents can be developed in any language that uses
sockets to enable communication. The table 5.3 displays the number of agents
according to the language implemented, and the number of down agents during
the test execution. The third column lists the number of resent messages. Since
all messages should arrive to the destination agent, the platform configures
time-outs to resend the messages. This column, therefore, represents the
number of messages that were unable to be sent on the first attempt, and
have remained in the server’s time-out system waiting to be sent and receive
confirmation. Resending and deleting duplicates is automatically managed by
the IRC protocol.

The evolution of the number of messages that the server transmitted during
the first test can be seen in Figure 5.12. For each hour, the average number of
messages is shown.

124 5. PANGEA

Agent
Type

No. of
deployed
agents

No. of down
agents

No. of resend
agents

Test 1 Test 2 Test 1 Test 2
.NET 2100 21 44 28 18
C# 2000 35 32 47 40
Objective C 20 0 2 6 5
Phyton 1400 10 8 26 35
Java 1800 12 13 23 23
Java Android 40 2 5 9 12

Table 5.3: Test results

Figure 5.12: Messages though the server

PANGEA has great potential to create distributed systems as VOs. One of
the greatest advantages of this system is the communication platform that,
by using the IRC standard, offers a robust and widely tested system that can
handle a large number of connections and ensure scalability.

5.8 Testing the SnifferAgent

The platform we have developed can create a general type of organization,
and includes the possibility of creating open and highly dynamic systems.
In order to test the SnifferAgent, a case study was prepared to simulate a
working environment. Four organizations were created to simulate four different
departments within a company: accounting (composed of 4 accounting agents,
one manager and 2 secretaries); quality control (composed of 2 evaluating
agents and two training specialist agents); technical services (composed of 6

5.8. Testing the SnifferAgent 125

technical agents); and customer service (composed of 8 telephonist agents).
According to the role of each agent, there are specific services offered that
allow them to resolve the queries they receive. In one possible case, the client
agent contacts the telephonist agent, which simply receives the requests and
redirects it to the agent qualified to resolve the request. The telephonist agent
extracts the key words from the message sent by the client and contacts the
Services Agent to determine which agent can address the required service. If
the message contains the keyword “invoice”, the query will be handled by
the Accounting agent; if the keyword is “switch on” it will be handled by the
Technical agent. Once the client is in contact with the appropriate agent, the
agent can communicate with other agents in its organization to carry out the
task.

Four 30-minute simulations were performed with 20 different types of requests
randomly provided. Studying the Evaluation and Sniffer agents it was possible
to observe how both the simulation and message flow unfolded. Focusing
specifically on the SnifferAgent, it is possible obtain summary charts and
diagrams, and specific numbers. Once the query is made, the SnifferAgent
consults the database, filters the data and returns a URL that displays the
desired data.

It is possible to obtain the number of each type of message that a specific agent
has received. Each message includes a tag that identifies the type of message,
which makes it possible to filter information, which can be seen in the figure
5.13.

Figure 5.13: Diagram generated by the SnifferAgent (I)

126 5. PANGEA

Figure 5.14: Diagram generated by the SnifferAgent (II)

It is also possible to obtain a diagram of messages according to organization
instead of agents, as shown in the figure 5.14. Using the message identifier,
it is also possible to see which agents processed a given request; using the
Evaluation agents we can determine the number of requests processed by each
agent.

We can conclude that the architecture we are developing has great potential to
create open systems, and more specifically, virtual agent organizations. This
architecture includes various tools that make it easy for the end user to create,
manage and control these systems. One of the greatest advantages of this system
is the communication platform that, by using the IRC standard, offers a robust
and widely tested system that can handle a large number of connections, and
that additionally facilitates the implementation for other potential extensions.
Furthermore, the use of the Communication and SnifferAgent agents offers
services that can be easily invoked to study and extract message information.

5.9 The subscription model

The platform allows creating organizations that are referred to, in terms of
the IRC protocol, as channels. In such organizations, all agents, by default,
have the same status, can send messages to all other agents in the organization,
and receive everything that the other agents have sent to the organization
(to which they belong). In the case of a subscription model, the concept of
"pseudo-virtual organization" emerges in the platform. It is no more than
an organization where only the creator of the virtual organization can send

5.9. The subscription model 127

messages, i.e., offering a subscription, while the remaining users will only be
able to read the messages of the creator.

This new concept was developed using IRC protocol options as they meet
the requirements perfectly without any modification or adaptation needed.
The IRC protocol offers the possibility of establishing different configurations
for organizations and agents that are located inside them (by default, free
configuration). Among these modes are the following:

• Mode +o (agent): This mode enables an agent to be the "operator" or
"moderator" in an organization. The moderator may have different tasks,
but for this model only one, which will be explained later, is relevant.

• Mode +m (organization): This mode is also called "moderated", which
allows only the agents configured as "moderator" (+ o) to send messages
to the organization. These agents have "voice" (+ v).

The subscription model has been implemented using these modes. By default,
the agents that have created an organization and the organization itself is
+m. Thus, only the creator can send messages to all the member agents of
the virtual organization while the remaining members cannot send anything.
Recall that when an agent sends a message to an organization of any kind
through IRC, it reaches all the agents within the organization (excluding them-
selves), which that the scheme is perfectly suitable for our needs. An agent
was included to use the subscription model of PANGEA. This agent, called
SubscriptionManager, is responsible only for managing subscriptions. The
SubscriptionManager can communicate and is coordinated with the rest of the
agents in charge of the working platform, such as the OrganizationManager
(in charge of organizations) or the InformationAgent (responsible for access-
ing the information in the database). The working scheme is the same as in
case of the ServiceAgent. In order to offer a subscription the agents must
contact the OrganizationManager, which will then contact the Subscription-
Manager. The SubscriptionManager performs the appropriate actions including
the communication with the InformationAgent for queries to the database.

128 5. PANGEA

Figure 5.15: Communication lines among agents for the Subscription model

Among the options offered by the SubscriptionManager are:

• Offersubs: enables an agent to offer a subscription. Since then, the
subscription will become part of the platform and can be found by other
agents. The creator will automatically enter with the mode +o whenever
it logs into the platform.

• Findsubs: enables an agent to find subscriptions in the platform according
to pre-established values.

• Subscribe: enables an agent to subscribe to an existing subscription
channel. At that moment, when the agent logs into the platform, it
will automatically enter the virtual organization associated with the
subscription

• Unsubscribe: enables an agent to remove its subscription.

5.10 The Gateway agent

The gateway arises from the need for external agents to communicate with
PANGEA. The external agent must send a FIPA-ACL object to the IP address

5.10. The Gateway agent 129

of the PANGEA MAS through the 6668 port. The object must have all the
necessary fields for good communication. This includes the ontology, content,
sender, etc. The ACLAgent, which is deployed in PANGEA, is responsible
for making inside-outside communication. This special agent is responsible for
converting FIPA-ACL messages into PANGEA messages. Additionally, it also
carries out the requested operations and must return the results using an ACL
object.

Figure 5.16: Communication between FIPA and PANGEA agents

The Gateway agent initially takes cares of the operations based on the re-
quest, inform, subscription, and contract-net protocols. The subsections below
show these operations based on the protocols. JAVA introspection is used to
differentiate the previously protocols.

5.10.1 Request protocol

This kind of operation is used in order to get a result of a known WS offered
in the PANGEA platform. In the next figure it is possible to observe the
workflow that is followed in this protocol. First of all, the external agent
sends the object to the ACLAgent. The ACLAgent then sends a message to
OrganizationManager to get a service result. The OrganizationManager talks
with the InformationAgent if there is a service with a specific name. If there
is no service with the same description, the ACLAgent collects the message,
and then asks the manager Organization, creating an ACLHelper agent. The
manager returns the ACLHelper agent’s name responsible for that service to
the ACLAgent. Finally ACLAgent sends the response to the external agent.
The sequence can be seen in the figure 5.17.

130 5. PANGEA

Figure 5.17: Request protocol

Figure 5.18: Subscription protocol

5.10.2 Subscription protocol

The External agent requests a subscription. The ACLAgent will return it all
the news or modifications made in that subscription. The initiator agent sends
an ACL message to the ACLAgent with the desired subscription information.
The ACLAgent searches for the subscription agent directory if there is already
an agent responsible for that subscription. If one does not exist, it will ask to
create one and will then send it to it the subscription data. Finally, for each
message arriving at the subscription, the ACLAgent sends a message to each
foreign agent associated with it. The sequence can be seen in the figure 5.18.

5.10. The Gateway agent 131

5.10.3 Contract-net protocol

In this protocol, the external agent can search, find and execute a specific
service. To do so, it is necessary to send multiple messages. Since it is necessary
to know the name of the service which will be executed, a CFP message (Call
for proposals) is sent with a brief description of the service needed in the
content field. Several answers will be sent to the external agent. The agent
will choose one of the answers, be executed. The sequence can be seen in the
figure 5.19.

Figure 5.19: Contrat-net protocol

5.10.4 Inform protocol

The inform protocol is used to inform PANGEA that a new service is offered.
The external agent sends a message with the content right format, and will
then receive an answer (refuse, failure, inform-done). The workflow is shown
in the following image. The external agent wants to register a new service in
PANGEA. It sends an object to the ACLAgent with the service description.
The ACLAgent sends it to the OrganizationManager and it registers the service.
Finally, ACLAgent sends a response to the external agent. The sequence can
be seen in the figure 5.20.

132 5. PANGEA

Figure 5.20: Inform protocol

5.11 Conclusions

PANGEA is a complete and innovative platform. We can conclude that
PANGEA has great potential to create open multi-agent systems, and more
specifically, VOs. One of the greatest advantages of this system is the commu-
nication platform that, by using the IRC standard, offers a robust and widely
tested communication system that can handle a large number of connections
and ensure scalability. Moreover, it offers compatibility with FIPA thanks to
the GatewayAgent.

This protocol also offers reliability. In the tests carried out, the deployed agents
were able to send and receive all messages without losses. Furthermore, the
use of the Communication and Sniffer agents offers services that can be easily
invoked to study and extract message information.

Another reason that justifies the scalability of the platform is the way of mod-
elling the services as SOA architecture compliant and using WS. The platform
offers an IDE, which facilitates the implementation process. It automatically
offers the skeleton of an agent and the communication between agents can
be implemented with few lines of code. The platform admits mobile agents
and agents in any programming language, it is not necessary to learn a new
language in order to use it.

This chapter was focused on explaining the implementation of PANGEA. But
this is the first step because PANGEA is just the first artifact of the global
platform:

1. PANGEA: VO-oriented platform.

2. PANGEA+R: collaborative-robotics-oriented platform.

5.11. Conclusions 133

3. PANGEA+RT: real-time-oriented platform.

At the end, we will have a complete platform which can deal with organizational
aspects, can be used in the robotics field and support teams of robots and
handle time constraints. In the next chapter, we will see the improvements
made to extend PANGEA to use it in the robotics field and with a most
appropriate communication protocol.

Finally, we present a summary of the studied platforms (Figure 5.21).

134 5. PANGEA

Figure 5.21: Comparison of the most used VOs platforms

6
PANGEA+R

MAS are commonly used in robotics; however, many issues arise when joining
the agent technology, the robotics field and the collaboration requirement. In
this chapter, we evaluate the existing platforms that are used for developing
agent groups for robotics, and for muti-agent robotic systems trying to focus on
the collaboration aspect. We then analyze the requisites and justify the proposal
of a new platform called PANGEA+R, an evolution of the previous existing
PANGEA platform, especially designed to operate in robotic environments. The
purpose of PANGEA+R is to apply virtual organizations of agents to the field of
robotics in order to foster collaboration and the work between distributed robotic
systems and agents. PANGEA+R was built as an evolution of the PANGEA
platform, including a new communication protocol called MQTT. MQTT is
a lightweight broker-based publish/subscribe messaging protocol designed to
be open, simple, lightweight and easy to implement. +R was designed as a
repository of services frequently used in robotics with the intention of creating a
collaborative environment and fosters the reutilization.

Contents
6.1 Introduction . 136
6.2 Platforms and middlewares for robotic systems . . . 137
6.3 Multi-agent robotics systems 141
6.4 PANGEA+R platform 142

6.4.1 The growing need for cooperation in Robotics 143
6.4.2 The contribution of VOs in Robotics 144
6.4.3 Main characteristics of PANGEA+R 146

6.5 Communication module 148
6.5.1 Message format . 150
6.5.2 Command messages examples 152
6.5.3 Servers and clients . 156

6.6 Conclusions . 158

136 6. PANGEA+R

6.1 Introduction

Open systems are systems in which the structure is able to change dynamically.
The components of the systems are not known a priori, change over time and
may be heterogeneous. Open MAS have been gaining relevance over the last
years given the importance of open, dynamic and adaptive systems as well
as the internal capacities of MAS, which make them appropriate for fulfilling
these needs. An open MAS must allow the participation of heterogeneous
agents with different architectures and even languages [389]. A key concept
when working with open MAS is the concept of organization, and the ability to
dynamically re-organize the internal components of the system. The agents in a
MAS based on organizational concepts, such as the VOs, work in coordination
and exchange services and information; they need to be able to negotiate,
collaborate and reach agreements, and can perform other more complex social
actions.

Robotics is now facing a similar problem. Current trends no longer consist
of a single robot dedicated to a single task, but groups of robots working in
increasingly dynamic environments, with more exchange of information and
more specific skills that must be shared to achieve a global goal. Most of the
existing works in this line of research focus on robot groups seeking a common
goal, where each of them has a different perspective of the environment and
some specific skills. But this approach can go further, and it is possible to have
systems with groups of heterogeneous robots that can interact with each other
and share resources.

Many studies highlight the suitability of using MAS in the field of robotics [113]
[278] [383]. The authors in [176] highlight the ability of implementing software
which is more reusable, scalable and flexible, while maintaining parallelism,
robusteness and modularity. Most of the existing works focus on the concept
of emergence, and pay attention to biological behaviors. Interaction standards,
social abilities and cooperation are areas that have already been fully developed
in the field of MAS and can be easily applied to groups of robots, mainly oriented
to supervise emergent behaviors and coalition formation. Formally, a collection
of two or more mobile robots working together is termed a team or society of
multiple mobile robots [253]. In these cases, multi-robot approaches must show
a collaborative behaviour. Thus multi-agent, multi-robot approaches study how
to achieve cooperation by using the multi-agent paradigm. It should be noted
that in this case the robot itself can be an agent or a collection of agents.The
multi-agent paradigm is then implemented inside the robot architecture and is
also used outside to control the team, society or organization [177]. Aspects

6.2. Platforms and middlewares for robotic systems 137

such as coordination and communication justify the importance of a VO in
robot teams. PANGEA+R combines two concepts: self-organization [90] and
re-organization [391]. The former refers to emergent behavior. The latter refers
to organizational aspects that can be managed from a higher perspective. Thus,
we make use of emergent programming [90] to supervise and control emergent
behaviors that can occur in a robotic society. Collaboration between agents,
whether or not they are robotic agents, must be supported at a low level by
the capacity of self-organization in an emergent and natural way. Furthermore,
the high-level contextual information obtained by considering organizational
aspects will make it possible to study the formation and regulation of VOs,
either in the form of coalitions, hierarchies or simple working groups, to carry
out specific tasks within the framework of an organization regulated by norms.

PANGEA+R presents the necessary infrastructure to enable heterogeneous
agents to work collaboratively, solving problems at a low level (so that the
communication between agents and the implementation are facilitated) and,
simultaneously, supporting control problems and/or high level supervision.
These are the two main reasons that led us to develop the PANGEA+R
platform, a platform that enables collaboration among heterogeneous, robotic
and non-robotic agents, supporting everything from the implementation to
the supervision of the life cycle and formation of groups. For this purpose,
a review of existing platforms that develop robotic systems was carried out.
As discussed below, there are numerous studies in this field. However, their
limitations lead us to justify the creation of our PANGEA+R platform. It is
specifically intended to cover the field of robotics and collaborative robotics
using MAS.

6.2
Platforms and middlewares for
robotic systems

Robotics middleware are developed “to manage the heterogeneity of the hard-
ware, improve software application quality, simplify software design, and reduce
development costs” [99]. Every middleware contains logic, mechanisms or
algorithms designed to solve specific problems. Their integration with other
components can save time in development and promote reuse. A survey of Robot
Development Environments (RDEs) [206] described nine open middlewares,
evaluated and compared from various points of view. Another review [246]
presents a short overview of several research projects in middleware for robotics,
and their main objective. Mohamed et al. [247] provide a thorough study with

138 6. PANGEA+R

different criteria for evaluating networked robot middleware. Furthermore,
in [256], some middleware frameworks for robotics are addressed, including
their technologies within the field of multirobot systems. The main challenges
for middlewares are presented in [246]. These challenges can be summarized as
follows:

• Facilitate the process of developing and encouraging abstraction, even
with simple interfaces.

• Provide efficient communication and simple interoperability required to
facilitate interaction between modules.

• Encourage the integration and reuse of software.

• Provide the system with enough computing resources, allowing for the
replication or distribution of tasks to balance the workload.

• Provide heterogeneity abstractions: any robotic system contains many
heterogeneous hardware and software components.

• Support communication with other systems.

• Avoid rewritten implementations: There are many often-needed robot
services that should be provided by robotic middleware, which allows the
reuse of the modules offering these functionalities.

• Provide automatic service discovery with different configurations.

• Support embedded components and low-resource-devices: robots in many
situations use or interact with embedded devices that may have several
limitations such as limited power, small memory, limited operating system
functionalities and limited connectivity.

Another study [373] mentions more necessary requirements. The most important
is openness and organization, which happen to be the main characteristics
of virtual organizations of agents representing open MAS. In the context
of distributed software systems, openness is the property by which services
provided by a system adhere to standardized protocols which formalize their
syntax and semantics [368]. Other characteristics derived from the concept of
openness include:

• Portability: The property of being able to function in different execution
environments without modification. Examples include different hardware
and software platforms and their respective constraints regarding available
(parallel) processing, memory and network resources.

6.2. Platforms and middlewares for robotic systems 139

• Flexibility: The ease with which the structure of a software system can
be changed, e.g., by adding new components or altering behaviors of
system parts.

• Interoperability The ability to function in conjunction with other sys-
tems designed for the same domain. Many components written for one
middleware already exist and can be used in other middlewares if both
have sufficient interoperability qualities.

• Scalability. Scalable systems foster the integration of components. The
ability to scale the size of a system implies sufficient efficiency in its
processing.

• Organization: The extent to which a system can be administered, which
is developed by several organizational structures with potentially over-
lapping or conflicting aims and guidelines.

Table 6.1 includes a brief compilation of well-known robotics-oriented middle-
wares. In these cases the concept of agent is not taken into account.

Miro [101] [361] Improves the software development process for mo-
bile robots and enables the interaction of CORBA
between robots and enterprise systems using the dis-
tributed object paradigm.

Orca [233] Enables software reuse in robotics using component-
based development.

Player/Stage Sys-
tem [207]

Provides a development platform that supports differ-
ent robotic hardware, and provides common services
needed by different robotic applications.

ORiN [245] Provides an interface for accessing and controlling
robotic systems from PCs

ASEBA [231] “It allows distributed control and efficient resources
utilization of robots with multiprocessors”.

Orocos [203] Develops a general purpose modular framework for
robot and machine control.

Pyro [46] “It provides a programming environment for easily
exploring advanced topics in artificial intelligence and
robotics without having to worry about the low level
details of the underlying hardware”.

OpenRTMaist [8] Provides efficient development for robotic systems by
proposing a modular software structure platform and
“simplifies the process of building robots by simply
combining selected modules

140 6. PANGEA+R

OPROS [180] “It establishes a component based standard software
platform for the robot which enables complicated
functions to be developed easily by using the stan-
dardized components in the heterogeneous communi-
cation network”.

CLARAty [262] A reusable robotic framework to enable integration,
maturation, and demonstration of advanced robotic
technologies, from multiple institutions on NASA’s
rover platforms in support of its technology programs
(Mars and Intelligent Systems).

ROS [296] It provides the operating system’s services such as
“hardware abstraction, low-level device control, imple-
mentation of commonly-used functionality, message-
passing between processes, and package manage-
ment”.

SmartSoft [316] Implements sensorimotor systems based on commu-
nication patterns as the central means to achieve
decoupling at various levels; supports model-driven
software development ERSP. “Provides cutting edge
technologies for vision, navigation, and system devel-
opment”.

Webots [244] “It provides a rapid prototyping environment for mod-
eling, programming and simulating mobile robots”.

RoboFrame [281] Covers the special needs of autonomous lightweight
robots such as dynamical locomotion and stability.

Carnegie Mel-
lon Navigation
(CARMEN)
Toolkit [249] [360]

“CARMEN is an open-source collection of software
for mobile robot control. CARMEN is modular soft-
ware designed to provide basic navigation primatives
including: base and sensor control, logging, obstacle
avoidance, localization, path planning, and mapping.
Communications between CARMEN programs is han-
dled using a separate package called IPC.” [360]

Table 6.1: Robotics-oriented middlewares and platforms

As previously mentioned, in our proposal is important to include the agent
technology in the robotics systems since it can provide many advantages. For
this reason, the next section presents some solutions that combine agents and
robotics.

6.3. Multi-agent robotics systems 141

6.3 Multi-agent robotics systems

In this section, we will focus on robotic systems based on MAS, formally
referred to as Multi-agent Robotic System (MARS), and a platform called Yet
Another Robot Platform (YARP) [186]. Initially, this platform focused on the
development of humanoid robots, although its mechanism of communication and
modularity have made this platform extend its development to teams of robots
with multiple CPUs or even systems to control [243]. This section should also
make mention of the SWARM [186] system, which is considered the precursor
of robotics as a collaborative distributed system made up of a large number of
autonomous robots. From this project, the term "Swarm intelligence" was coined
to define the ability of multiple unintelligent entities that, working together,
exhibit an intelligent collective behavior. It is a homogeneous architecture
in which interaction is limited to the nearest neighbors [186]. This platform
is based in the concept of emergence, but does not take into account the
organizational perspective. As mention in the introduction, our proposal is
focused on collaborative robotics using MAS. There are only two platforms
that allow the use of agents and are focused on collaboration. The first is
Cooperative Architecture for Intelligent Mobile Robots (ACROMOVI) [260]. It
has an embedded agent-based architecture for the development of collaborative
applications for teams of heterogeneous mobile robots. It is developed over
the JADE platform in Java for collaborative robot teams. According to [260]
the main purpose of ACROMOVI is to add a layer where a set of agents
supervise and control access to the agents at the lower layer. In the lower layer,
there are a set of components that access to the physical parts of the robots,
such as the sonar, the sensors; and other special components. ACROMOVI
allows the reuse of code by means of native components, thanks to agent-based
distributed architecture. The main disadvantage is not allowing agents or
robots programmed in C or C + +. This platform also does not take into
account the concept of organization or aggrupation formation. Consequently,
supervision and control is limited to individual agents since no organizational
conceps are taken into account. The second platform is called ICARO-T [126].
The distinguishing factor of this framework is its use of component patterns
for modelling MAS: agent organization pattern, cognitive and reactive agent
patterns and resource patterns. They are described in UML, include consistent
Java code, and are used in the development of a team of cooperating robots
for achieving differents tasks. According to the publication [148], ICARO-T
offers the possibility to model MAS cooperation in two ways: (i) following
AMAS theory [136], where task responsibility is assigned according to the most
suitable cost evaluation to achieve the goal. This assignment is agreed upon

142 6. PANGEA+R

between team nodes by exchanging messages containing these estimates. Or
(ii) a hierarchical model where a coordinator assigns the task team members
estimates and then assigns the task to the most suitable agent based on the
cost evaluations. This platform includes the concept of organization, but does
not take into account most of the organizational aspects required to manage
virtual organization. The platform ICARO is integrated with the INGENIAS
Development Kit (IDK) [127] with the development of two IDK modules (code
generator and code update) for the implementation of ICARO reactive agent
applications. Moreover, no tools are developed to facilitate the implementation
of other agent architectures, and in an intelligent and adaptative systems, other
architectures such as deliberative architectures [75], are essential. In conclusion,
after an exhaustive review, there is no platform that combines the needs that
are required for the development of a collaborative MARS. In the next section,
we present the reasons that led us to create the PANGEA+R platform.

6.4 PANGEA+R platform

The importance of having a good platform arises from the need for a scalable
system. Prototypes are initially configured with a few agents, which offer
limited services, and robots (each made up by agents). However, as they
are expected to have more applications, further extensions and modifications
will be necessary. Moreover, it is becoming increasingly necessary to have
mechanisms for collaboration (communication and service management) and
facilities for reusing the robotic agents. As a final benefit, this platform offers
all the advantages of the MAS and VOs, such as regulatory mechanisms of high-
level organizational aspects, which include grouping entities and supervision.
Currently, MAS applied to robotic environments are based on the concept
of emergence and, in the majority of the cases, they perform reorganizations
based on the concept of adaptation [304]. Thus, the agents adapt to the
changes that occur in the environment; the strategy that the agents use to
adapt to changes and reorganizes is primarily based on collaborative aspects.
However, when working with systems that have been defined according to
organizational requirements and social norms, it becomes necessary to design
new models to monitor the behavior of the MAS and provide mechanisms for
reorganization at a higher level. It would be possible to design systems with
reactive capabilities and emergent behaviors at low level and organizational
capabilities in the high level. With PANGEA+R it is possible to establish a
gateway between the two levels by using the concept of emerging programming
and the previous work done in relation to VOs with self-organizing capabilities.

6.4. PANGEA+R platform 143

To solve the problem of the Emergent Programming, the theory presented
in [136] and called AMAS (Adaptative Multi-Agent Systems) was chosen. It uses
mechanisms based on self-organization and collaboration to develop advanced
adaptative systems. This theory highlights the importance of providing agents
with regulated behaviors (in our case, thanks to the programming norms in
the VOs) and fostering collaboration and interaction between agents and the
environment. So, PANGEA+R provides a high level control that enables the
extraction of information on emerging behaviours of robots, environmental
norms, objectives and tasks, human interaction and contextual information.
With this information, PANGEA+R provides a self-organizing mechanism for
the agents. If any action were necessary at a low level, incentives are provided
to the agents that allow them to evolve by adapting to a new organizational
model.

6.4.1 The growing need for cooperation in Robotics

Human and autonomous robots with different capabilities will soon need to
collaborate on tasks that can be performed much more efficiently by working
together. The philosophy of developing a collaborative agent system is to
create a system that interconnects all the collaborative agents allowing them
to function beyond the individual abilities of any one of its members [120].
Having a single robot with multiple capabilities can lead to a waste of resources,
computing overhead and lower efficiency. Applying the method known as
"divide and conquer", we can deduce that different robots, each one with
its own settings, form a more flexible, robust and low implementing cost
system [260]. Even, if tasks are too complex for a single robot, multiple robots
can perform these tasks more effectively by working together [11]. Until now,
most robotic teams were formed by homogeneous entities. A review of existing
literature finds cases of exploration areas [277], playing soccer [117] [362], joint
surveillance [35] [191], cooperative hunting [383], etc.

However, the biggest disadvantage of these devices is that the robots are very
similar to each other, equipped with the same set of sensors and actuators,
meaning that they offer limited benefits when performing complex tasks. In
collaborative robotics, robots are now simpler, less equipped than before. As a
result, less expensive equipment is needed because efficiency lies in collective
intelligence and collaborative work.

Depending on the level of heterogeneity, robots in a team are jointly classified
as weakly or strongly heterogeneous [198]. When the robots only differ in
their capabilities, they are not identical but are still commonly considered to

144 6. PANGEA+R

form a homogeneous robot team [277]. The main difficulty comes when the
robots are equipped with different sensing, perception, motion and onboard
computing capabilities. In this case, for example, an application with a strongly
heterogeneous robot team was developed for aerial surveillance [269], where
different robot types (a blimp, an airplane and a helicopter) cooperatively
monitor a rural area detecting forest fires.

With PANGEA+R, heterogeneous agents deployed on different operating
systems and implemented with different languages can be integrated into
groups formally regulated by the platform. In addition, another recurring
issue in robotics and collaboration is reuse. With the provision of services that
PANGEA+R offers, it is possible for mechanisms, algorithms, methods or other
frequently used tools to form part of the service repository that provides an
agent and/or group. Therefore, thanks to the supervision offered by e-agents
in PANGEA+R, it is possible to form groups that benefit and foster reuse.

6.4.2 The contribution of VOs in Robotics

Until now, different platforms or middlewares for robotics or MAS have been pre-
sented. In some cases, they are specialized in VO or collaborative robotic tasks;
however, none of them combines all the advantages of a VO for collaborative
robotics, especially with regard to heterogeneous teams and organizations. The
use of MAS composed of mobile robots that perform tasks in a non-structured
environment offers several advantages, such as:

• Robustness: defined as resistance to a malfunctioning of any of the robots.
A simple robot failure does not keep the remaining robots from performing
correctly.

• Specialization: creating different functional types to suit different required
characteristics in the same environment for the performance of a certain
global task. One example is the possibility of specializing in performing
sub-tasks.

• Implementation of functions that robots are not capable of performing
individually. From simple robots with limited decision capabilities, the
collective work may reach high complexity tasks.

• Communication between robots that leads to a better understanding of
the environment. While it is not essential for communication to exist,
most multi-robot systems include this capability in varying degrees.

6.4. PANGEA+R platform 145

• Easy robot programming. We assume that the programming is done for
a team composed of single robots. The power lies in working together.

As previously mentioned, collaboration must be supported at a low level by an
infrastructure that enables effective communication and formation of groups
working to achieve global and local goals. While there are many studies that
propose models for coalition formation, such as [328] [297] [313] [306] [179], they
propose methods or techniques; none of them explain at the lower level, the
needs of these mechanisms, or propose a generic platform that supports such
proposals. The coalitions, which are so frequently used in robotics and multi-
agent systems, are considered a type of VOs. According to [306], coalitions are
defined within the VO as "a temporary group of agents to achieve a particular
goal. These coalitions are dissolved when they reach the goal, since the need
for grouping no longer exists, or when a critical number of agents leave the
group. Internally, they are usually represented as a flat structure or with a
leader or representative, and externally as a single atomic entity".

In our proposal, the coalition and other group formations are done through
a formalized model in [304]. We use cooperative agents, each one capable of
establishing plans dynamically in order to reach its objectives. Additionally,
there is a global mechanism that can optimally assign activities to the agents so
that they can work in a coordinated manner. The global mechanism considers
the global objective of the society, as well as its norms and roles. The model is
presented in [304] in detail.

The importance of monitoring mechanisms is highlighted in the definition
of [129]. Thanks to the VOs, the control and supervision can be carried out
by using different mechanisms. With the concept of normativity, there is a
set of norms governing the operation of a group in any organization. These
norms may affect individual and collective behaviors, communications and
interaction between agents and even different organizations, and access to
services. Since the definition of norms is an important point that greatly
facilitates overall control, a platform oriented to the collaborative work of
groups cannot neglect this aspect. This possibility is offered in PANGEA+R,
not only by its implementation but also through a graphical interface for easy
management and control.

Another important point is the description of groups. Clarifying this, groups can
be formed according to various characteristics, taking the global objective into
account. Therefore, it is important to allow the input/output of entities that
group dynamically, and, if necessary, to control and limit such access. Groups
can also have different topologies, largely determined by the objective to achieve
and the high or low need for interaction between agents. With PANGEA+R
it is possible to define groups with different topologies, or to define derivative

146 6. PANGEA+R

groups or subgroups. This fact, coupled with the efficiency of norms, enables
the control and monitoring of the functioning of each organization working
within the established limits and according to its goals.

As mentioned, the input and output of entities must be fluid and, at the
same time, be controlled. In this sense, the concept of role takes on a special
relevance. Roles are the mechanism used to manage access to the system and
the different organizations. As in the previous point, and thanks to the norms
related to the roles, the access and interaction of entities with other entities or
groups is limited to specific roles. In PANGEA+R, each agent has a role for
every moment, although it is possible for the roles to change over time, which
allows the agents to get in and out of different organizations but always with
the appropriate permission.

Finally, there is a concept of service that is identified with the skills, abilities
or behavior that each agent offers. Services are intrinsically linked to roles,
because in the first instance, unless there is a norm indicating otherwise, a
certain role offers a compendium of services. PANGEA+R has mechanisms
for management, control and service discovery, which easily make it possible
to request entities capable of performing different tasks if so required by an
organization to meet its objective.

Using PANGEA+R in the field of collaborative robotics can greatly facilitate the
implementation of monitoring and control processes thanks to the characteristics
of VOs. As previously mentioned, the studies on collaboration through grouping,
and especially the creation of coalitions among robotic entities, have solid
models; however, they are not implemented on a platform that facilitates the
infrastructure at a low-level and a high-level supervision. This requires more
effort in verifying the collaboration models that can be avoided with the use of
PANGEA+R. The next section presents some characteristics of the proposed
PANGEA+R platform to cover the presented issues.

6.4.3 Main characteristics of PANGEA+R

After identifying the mentioned shortcomings, we developed a platform called
PANGEA with the necessary facilities for developing new architectures based
on VOs. The PANGEA platform [393] for the development of VO and the
integral management of open MAS has been used as the base platform for the
design of architectures applied to different fields such as environmental intelli-
gence, development of tools for handicapped people, and energy management.
The new +R middleware is proposed to extend this platform for its use in
robotics, highlighting the software reusability and allowing the programmer

6.4. PANGEA+R platform 147

to integrate native software components (computer vision libraries, navigation
modules, location, etc.). PANGEA [144] [392] models agent capabilities as
Web services and has the needed functionality to manage them. By adding
the +R middleware, the functionality of these services is extended to agents
with robotic tasks such as algorithms, drivers and mechanisms often used in
robotic systems, thus avoiding continuous reimplementation. Furthermore, the
different collaborative entities can offer services and acquire easily developed
complex robotic systems based on the request and composition of existing
services within the +R middleware. Figure 6.1 shows the mentioned layer +R
added to PANGEA.

Thus, as with MAS, robotics needs social entities capable of cooperation
and able to operate in highly dynamic and unpredictable environments. To
overcome these obstacles, the entities must have large amounts of resources at
their disposal. These resources can be managed similarly to a collaborative
repository. The purpose of the +R middleware is to extend this platform
to include its use in robotics, highlighting software reusability and allowing
the programmer to integrate native software components (computer vision
libraries, navigation modules, location, etc.). The relevant characteristics of
the PANGEA platform and the performance of the +R middleware are shown
below.

Figure 6.1: Software tool of GECKO

148 6. PANGEA+R

The +R middleware was designed as a repository of specific services oriented to
the development of robotics, which facilitates the development of collaborative
robot teams. The functionality of managing the life cycles of agents and
organizations with their rules and roles does not differ from previous versions
of PANGEA, available at [144]. However, changes were made for the entry of
new entities (as they must provide specific features). Additionally, the process
was defined for the management of services.

6.5 Communication module

The PANGEA+R communication module is improved using the Message Queue
Telemetry Transport (MQTT) [170] instead of the IRC protocol. MQTT is a
lightweight broker-based publish/subscribe messaging protocol designed to be
open, simple, lightweight and easy to implement. These characteristics make it
ideal for use in constrained environments. It was originally developed by IBM
and its partners from the industrial sector (Dr Andy Stanford-Clark of IBM,
and Arlen Nipper of Eurotech, in 1999). Since, the protocol has been opened
to open source community and has significant growth in popularity.

There are two main specifications for MQTT [170]:

• MQTT v3.1 specification – the primary MQTT specification is available,
for royalty-free implementation. This protocol enables a publish/sub-
scribe messaging model in an extremely lightweight way. It is useful
for connections with remote locations where a small code footprint is
required and/or network bandwidth is at a premium.

• MQTT-SN v1.2 specification – MQTT for Sensor Networks is aimed at
embedded devices on non-TCP/IP networks, such as Zigbee. MQTT-SN
is a publish/subscribe messaging protocol for Wireless Sensor Networks
(WSN), with the aim of extending the MQTT protocol beyond the reach
of TCP/IP infrastructure for Sensor and Actuator solutions.

Currently, only the first specification is used since all our agents run in an
infrastructure with a TCP/IP connection. But, in further versions we will
extend it to allow its use in embedded reactive architectures.

MQTT is a publish/subscribe, extremely simple and lightweight messaging
protocol, designed for constrained devices and low-bandwidth, high-latency or
unreliable networks. The design principles are to minimise network bandwidth
and device resource requirements whilst also attempting to ensure reliability

6.5. Communication module 149

and some degree of assurance of delivery. MQTT defines three levels of Quality
of Service (QoS):

• Level 0: The broker/client will deliver the message once, with no confir-
mation.

• Level 1: The broker/client will deliver the message at least once, with
confirmation required.

• Level 2: The broker/client will deliver the message exactly once by using
a four step agreement.

The QoS defines how hard the broker/client will try to ensure that a message
is received. Messages may be sent at any QoS level, and clients may attempt
to subscribe to topics at any QoS level. This means that the client chooses
the maximum QoS it will receive. For example, if a message is published at
QoS 2 and a client is subscribed with QoS 0, the message will be delivered to
that client with QoS 0. If a second client is also subscribed to the same topic,
but with QoS 2, then it will receive the same message but with QoS 2. For a
second example, if a client is subscribed with QoS 2 and a message is published
on QoS 0, the client will receive it on QoS 0. Higher levels of QoS are more
reliable, but involve higher latency and have higher bandwidth requirements.

Other important characteristics of the protocol are [172]:

• A small transport overhead (the fixed-length header is just 2 bytes), and
protocol exchanges minimised to reduce network traffic

• A messaging transport that is agnostic to the content of the payload:
The protocol does not require that the content of messages be in any
particular format.

• The publish/subscribe message pattern to provide one-to-many message
distribution and decoupling of applications. MQTT uses a publish/sub-
scribe messaging pattern that has loose coupling. Clients do not need to
be aware of the existence of other devices. They just need to care about
the content to be delivered or received

• Open and royalty-free for easy adoption and adaptation for the wide
variety of devices, platforms, and operating systems that are used at the
edge of a network.

• MQTT is highly scalable, it is possible to create systems that involve
hundreds or even thousands of remote devices.

150 6. PANGEA+R

6.5.1 Message format

MQTT allows different messages formats, in this section we will present the
message format and the adaptations that we adopt to include the protocol in
our platform.

The message header for each MQTT command message contains a fixed header.
The figure 11.4 shows the format.

Figure 6.2: MQTT Message Format

The fields are:

• Message Type: Represented as a 4-bit unsigned value (Table 11.1).

• Dup: This flag is set when the client or server attempts to re-deliver a
PUBLISH, PUBREL, SUBSCRIBE or UNSUBSCRIBE message. This
applies to messages where the value of QoS is greater than zero, and
an acknowledgment is required. When the DUP bit is set, the variable
header includes a Message ID.

• QoS: indicates the level of assurance for delivery of a PUBLISH message.
The values were previously defined in section.

• Retain: This flag is only used on PUBLISH messages. When a client
sends a PUBLISH to a server, if the Retain flag is set ti 1, the server
should hold on to the message after it has been delivered to the current
subscribers. When a new subscription is established on a topic, the last
retained message on that topic should be sent to the subscriber with the
Retain flag set. If there is no retained message, nothing is sent.

• Remaining Length: Represents the number of bytes remaining within the
current message, including data in the variable header and the payload.
It must be at least one byte.

6.5. Communication module 151

The numbers used in the field "Message Type" of the figure 11.4 are shown in
the following table 11.1.

MNENONIC NUMBER DESCRIPTION
CONNECT 1 Client request to connect to the server.
CONNACK 2 Connect Acknoledgment
PUBLISH 3 Publish message
PUBACK 4 Publish Acknoledgment
PUBREC 5 Publish received (part 1)
PUBREL 6 Publish release (part 2)

PUBCOMP 7 Publish complete (part 3)
SUBSCRIBE 8 Client Subscribe request
SUSACK 9 Subscribe Acknoledgment

UNSUBSCRIBE 10 Client Unsubscribe request
UNSUBACK 11 Unsubscribe Acknoledgment
PINGREQ 12 PING request
PINGRESP 13 PING response

DISCONNECT 14 Client is disconnecting

Table 6.2: MQTT message types

The following types of MQTT command message have a payload:

• CONNECT: The payload contains one or more UTF-8 encoded strings.
They specify a unique identifier for the client, a Will topic and message
and the User Name and Password to use. All but the first are optional
and their presence is determined based on flags in the variable header.

• SUBSCRIBE: The payload contains a list of topic names to which the
client can subscribe, and the QoS level. These strings are UTF-encoded.

• SUBACK: The payload contains a list of granted QoS levels. These are
the QoS levels at which the administrators for the server have permitted
the client to subscribe to a particular Topic Name. Granted QoS levels
are listed in the same order as the topic names in the corresponding
SUBSCRIBE message.

• PUBLISH: The payload part of a PUBLISH message contains application-
specific data only. No assumptions are made about the nature or content
of the data.

The Message Identifier (Message ID) field is only present in messages where
the QoS bits in the fixed header indicate QoS levels 1 or 2 and is included in
the variable header. The Message ID is a 16-bit unsigned integer that must
be unique amongst the set of in process messages in a particular direction of
communication. It typically increases by exactly one from one message to the
next, but is not required to do so. A client will maintain its own list of Message

152 6. PANGEA+R

IDs separate to the Message IDs used by the server it is connected to. It is
possible for a client to send a PUBLISH with Message ID 1 at the same time
as receiving a PUBLISH with Message ID 1.

UTF-8 is an efficient encoding of Unicode character-strings that optimizes the
encoding of ASCII characters in support of text-based communications. In
MQTT, strings are prefixed with two bytes to denote the length, the string
length is the number of bytes of encoded string characters, not the number of
characters.

6.5.2 Command messages examples

Some types of MQTT command messages also contain a variable header com-
ponent. It resides between the fixed header and the payload. The message
identifier is present in the variable header of the following MQTT messages:
PUBLISH, PUBACK, PUBREC, PUBREL, PUBCOMP, SUBSCRIBE, SUB-
ACK, UNSUBSCRIBE, UNSUBACK.

It is impossible to specify all of them in this document, so, we will include the
three most used. All of them contains three fields in the following order: fixed
header, variable header and payload.

6.5.2.1 CONNECT command

It is used when a client requests a connection to a server. When a TCP/IP
socket connection is established from a client to a server, a protocol level session
must be created using a CONNECT flow. In the Figure 6.3 the format of this
type of message is presented.

The flags involved in the connection are:

• Clean session flag: if not set (0), then the server must store the subscrip-
tions of the client after it disconnects. If set (1), then the server must
discard any previously maintained information about the client and treat
the connection as "clean". The server must also discard any state when
the client disconnects.

• Keep Alive timer: The Keep Alive timer, measured in seconds, defines
the maximum time interval between messages received from a client. It
enables the server to detect that the network connection to a client has
dropped, without having to wait for the long TCP/IP timeout. The

6.5. Communication module 153

client has a responsibility to send a message within each Keep Alive time
period. In the absence of a data-related message during the time period,
the client sends a PINGREQ message, which the server acknowledges
with a PINGRESP message.

Figure 6.3: CONNECT Message Format

• Will flag: it defines that a message is published on behalf of the client by
the server when either an I/O error is encountered by the server during

154 6. PANGEA+R

communication with the client, or the client fails to communicate within
the Keep Alive timer schedule. Sending a Will message is not triggered
by the server receiving a DISCONNECT message from the client. If the
Will flag is set, the Will QoS and Will Retain fields must be present in
the Connect flags byte, and the Will Topic and Will Message fields must
be present in the payload.

• Will QoS: A connecting client specifies the QoS level in the Will QoS field
for a Will message that is sent in the event that the client is disconnected
involuntarily. The Will message is defined in the payload of a CONNECT
message. If the Will flag is set, the Will QoS field is mandatory, otherwise
its value is disregarded.

• Will Retain flag: The Will Retain flag indicates whether the server should
retain the Will message which is published by the server on behalf of the
client in the event that the client is disconnected unexpectedly. The Will
Retain flag is mandatory if the Will flag is set, otherwise, it is disregarded.

• User name and password flags: A connecting client can specify a user
name and a password, and setting the flag bits signifies that a User Name,
and optionally a password, are included in the payload of a CONNECT
message. If the User Name flag is set, the User Name field is mandatory,
otherwise its value is disregarded. If the Password flag is set, the Password
field is mandatory, otherwise its value is disregarded.

6.5.2.2 SUBSCRIBE command

The SUBSCRIBE message allows a client to register an interest in one or more
topic names with the server. Messages published to these topics are delivered
from the server to the client as PUBLISH messages. The SUBSCRIBE message
also specifies the QoS level at which the subscriber wants to receive published
messages. In the fixed header, SUBSCRIBE messages use QoS level 1 to
acknowledge multiple subscription requests. In the variable header another
QoS field is included, this field is equivalent to saying "I would like to receive
messages on this topic at the QoS at which they are published". This means
a publisher is responsible for determining the maximum QoS a message can
be delivered at, but a subscriber is able to downgrade the QoS to one more
suitable for its usage. The QoS of a message is never upgraded. The Figure
6.4 shows the format of the message.

6.5. Communication module 155

Figure 6.4: SUBSCRIBE Message Format

Figure 6.5: PUBLISH Message Format

6.5.2.3 PUBLISH command

A PUBLISH message is sent by a client to a server for distribution to interested
subscribers. Each PUBLISH message is associated with a topic name (also
known as the Subject or Channel). The topic name (a UTF-encoded string)
is the key that identifies the information channel to which payload data is
published. Subscribers use the key to identify the information channels on
which they want to receive published information. This is a hierarchical name
space that defines a taxonomy of information sources for which subscribers can

156 6. PANGEA+R

register an interest. A message that is published to a specific topic name is
delivered to connected subscribers for that topic. If a client subscribes to one
or more topics, any message published to those topics are sent by the server to
the client as a PUBLISH message. In the Figure 6.5 the format of the message
is presented.

6.5.3 Servers and clients

Another important feature is that different clients and servers exist in different
languages (http://mqtt.org/software), such as Java, C, Arduino, Javascript,
etc.

Figure 6.6: Communication with the MQTT protocol

MQTT brokers

An MQTT broker is a server that implements the MQTT protocol. It mediates
communication between MQTT client applications, such as those running in
remote sensors and other devices, and the enterprise integration layer. Really
Small Message Broker (RSMB) is a small, freely available C implementation
of an MQTT broker. It also is an advanced MQTT V3 client application.
Developers usually use it as a hub to store and forward messages from MQTT
clients to a backend MQTT broker. We use Mosquitto (http://mosquitto.org/).
It is a small, no-cost, open source implementation of an MQTT broker that
supports the MQTT V3.1 protocol. Mosquitto replicates the functionality of
RSMB. In the figure 6.6 our architecture is shown.

Mosquito supports 3 types of connections:

• Port 1883: it is the standar port for communications without encrypting.

• Port 8883: with SSL/TLS encrypting.

6.5. Communication module 157

• Port 8884: with SSL/TLS encrypting and requires certificate.

It is easily installable both in any Linux distribution including the Raspbian.
In the part V of this dissertation, more information can be found.

MQTT clients

An MQTT client (also called a client application) collects information from a
telemetry device, connects to a messaging server, and uses a topic string to
publish the information in a way that allows other clients or applications to
retrieve it. An MQTT client also can subscribe to topics, receive publications
associated with those topics, and issue commands to control the telemetry
device. Client libraries can simplify the process of writing MQTT client
applications. The Eclipse tools facilitate designing and developing connectivity
solutions between devices and applications, thereby enabling and encouraging
more innovative M2M integration. Users can write their own API to interface
with the MQTT protocol in their preferred programming language on their
preferred platform.

We use the Eclipse Paho project (http://www.eclipse.org/paho/) that pro-
vides scalable, open-source messaging models for machine-to-machine (M2M)
communication, starting with C- and Java-based client implementations of
MQTT.

1 public void Publ ishAndSuscr ibeBlocking () throws Exception {
2 MQTT mqtt = new MQTT() ;
3 mqtt . setHost (" tcp :// mosquito . f i s . u sa l . e s :1883 ") ;
4 BlockingConnect ion connect ion = mqtt . b lock ingConnect ion ()

;
5 connect ion . connect () ;
6 Topic [] t o p i c s = {new Topic (ut f8 (" Presentat ionTopic ") ,

QoS .AT_LEAST_ONCE) } ;
7 byte [] qoses = connect ion . sub s c r i b e (t op i c s) ;
8 connect ion . pub l i sh (" Presentat ionTopic " , " He l l o " . getBytes

() , QoS .AT_LEAST_ONCE, fa l se) ;
9 Message message = connect ion . r e c e i v e () ;
10 Assert . a s s e r tEqua l s (" He l lo " , new St r ing (message .

getPayload ())) ;
11 message . ack () ;
12 connect ion . d i s connec t () ;
13 }

Programming Code 6.1: Example connect and subscribe in Java

1 broker = \ " tcp :// mosquito . f i s . u sa l . e s : 1883\"
2 port = 1883
3 mypid = os . ge tp id ()
4 c l i en t_un iq = " pubcl ient_ "+s t r (mypid)
5 mqttc = paho . C l i en t (c l i ent_uniq , Fa l se)
6 mqttc . connect (broker , port , 60)

158 6. PANGEA+R

7 whi le mqttc . loop () == 0 :
8 msg = " t e s t message "+time . ctime ()
9 mqttc . pub l i sh (" timesample " , msg , 0 , True)
10 p r i n t " message pub l i shed "
11 time . s l e e p (1 . 5)
12 pass

Programming Code 6.2: Example connect and subscribe in Python

PANGEA+R and the MQTT enables to connect an agent in many other
languages, but without this two are the easiest.

The agents of the platform are clearly reduced in comparison with the agents
that compose the PANGEA platform, the reason is the introduction of the
MQTT communication protocol. The allowed us to remove the Communica-
tionAgent, the SnifferAgent and the SubscribeAgent since all their functions
are automatically supported by the protocol and the Mosquitto broker. The
GatewayAgent is also no more needed because the link between MQTT and
FIPA-ACL is not beneficial and can cause dangerous delays.

6.6 Conclusions

Many platforms have been presented in this work. As a summary, a table
reflecting the main characteristics required since the robotics point of view
is presented below (Figure 6.7). The PANGEA+R platform is included to
demonstrate that the inclusion of the robotics characteristics specific to VOs can
lead to many improvements, allowing for one single platform which includes all
the main characteristics. Looking at these tables, we propose a new middleware,
which enable a connection with the PANGEA platform, creating as its final
product the PANGEA+R platform together with the included new message
protocol.

The main question that arises is: why another platform? One reason is the
capacity of improvement that VO can provide to robotic middlewares where
the importance of a solid distributed infrastructure with supervision capacities
is the main feature. Another reason is the need to foster collaboration among
heterogeneous robotic agents, thus facilitating the implementation and the
reutilization of frequently used methods, hardware control or algorithms. The
integration of our PANGEA platform with the collaborative +R middleware
forms an integral system. PANGEA+R enables the creation of complex teams
of cooperative agents and robotic agents. The power of multiple heterogeneous
robots working on the same task are still being studied and growing. This kind

6.6. Conclusions 159

of platform can allow the robotics community to share software infrastructures
based on common requirements and objectives, which is clearly an important
goal to reach in order to avoid the duplication of efforts. Finally, we present a
summary of the platforms and middlewares (Figure 6.7).

At the end, we can conclude that we have a complete platform that can manage
VOs with different topologies and taking into account organizational aspects.
Any king of agent is supported including robotics and embedded agents thanks
to the lightweight MQTT protocol. In the next chapter, the last milestone is
presented, to include real-time constraints with the proposed scheduling and
task allocation model.

160 6. PANGEA+R

Figure 6.7: Comparison of the most used VOs and Robotics platforms

7
PANGEA+RT

In this chapter we present the last milestone of the desired platform, that we
name as PANGEA+RT. We have included the WCET estimation, scheduling
and task allocation model defined in the part III of this dissertation. The
inclusion of this model lead us to other modifications and extensions. We have
removed some agents that are not necessary and cannot be temporal bounded
but we have included some requirements of the real-time systems. The agent
that plays the role PlannerAgent is the most important change since it is
responsible for the scheduling and task allocation in the real-time system. In
this chapter we deal with real-time execution environments according to the
Real-Time Specification for JAVA and with the virtual machines also for real-
time and Java. Moreover, we include a mechanism to annotate the behaviour
of the agent in order to perform the WCET analysis, moreover, this mechanism
follows the current standards to make our proposal more accessible to the users.
Finally, we show some examples of a basic agent implementation. With all
these characteristics we have developed an innovative platform since there is
no other platform suitable for VOs with real-time constraints.

Contents
7.1 Introduction . 162

7.1.1 Problems of Java in real-time environments 163
7.2 Real-time specification for Java 166
7.3 Real-time Java virtual machines 169
7.4 Annotation for bounded loops 171
7.5 Agents of the platform 176
7.6 Modification of the classes 178
7.7 Conclusions . 181

162 7. PANGEA+RT

7.1 Introduction

In recent years, most of the researches working on MAS have been using the
Java programming language for the implementation of agents. Java is an
object-oriented programming language and it is highly suitable for its use by
researchers in the development of agents. This is due to the similarities that
can be established between agents and objects. In the object-oriented paradigm,
a systems is seen as a set of objects that communicate one with another to
perform internal operations. While, the agent-oriented paradigm envisions a
set of agents whose internal operations are based on beliefs, capabilities and
actions, and that communicate with other agents using messages based on
communication theory.

In their book, Jennings and Wooldridge [183] highlighted three main differences
between agents and objects:

• The first is the degree in which agents and objects are autonomous. In
this case, we do not think in agents as the method callers between them
instead they ask for the realization of actions. In the object-oriented case,
the decision falls on the object that invokes the method. For agents, the
decision lies with the agent receiving the request.

• The second distinction is that an agent has an autonomous and flexible
behavior (reactive, proactive, social).

• The last major difference is that it is considered that each agent has its
own flow control. In the object standard model, there is a single flow of
control for the entire system.

As Navarro mentioned in its study [258] one of the major advantages of Java
is a secure programming language, ie, that the results of every execution are
represented by the program source code. This does not indicate that there can
be errors in programming, but these are not caused by uncontrollable execution

7.1. Introduction 163

errors, eg, due to poor allocation of memory, out of memory range (overflow),
etc. In other programming languages both memory assignment and release
must be done manually. This can cause undetectable errors at compilation
time and uncontrollable errors at runtime, being difficult to debug besides the
need for the programmer of being aware of what memory area must reserve and
release. Java solves this problem by automatically allocating memory when
the object is created. In turn, all the memory allocated to objects that are not
referenced at the time of the garbage collector (GC) runs will be automatically
released by it.

To complement the design of PANGEA+RT that will allow us to take into
account real-time constraints and the model developed, in chapter 4 is necessary
to consider the following issues:

• To introduce the real-time specification for Java, and evaluate possible
real-time virtual machines for Java.

• To enable the class annotation of the classes that represents the agents’
behaviour, which must go through the WCET estimation model.

• To extend the model created for PANGEA+R, which mainly implies
providing to the main agents communication capabilities inside the new
communication mechanism and temporarily limit their behavior.

7.1.1 Problems of Java in real-time environments

Because of the popularity of Java as a development language, there has been a
major effort to address the shortcomings of Java as a real-time development
language and to introduce new features into the language to support real-time
development. These led, over a number of years, to the development of a
real-time specification for Java. This includes both changes to the language
and to the Java Virtual Machine (JVM), the run-time system for Java.

The main problems studied in the IBM Toronto Lab and published in [347]
are:

• Thread management: Standard Java provides no guarantees for thread
scheduling or thread priorities. An application that must respond to
events in a well-defined time has no way to ensure that another low-
priority thread won’t get scheduled in front of a high-priority thread. To
compensate, a programmer would need to partition an application into a
set of applications that the operating system can then run at different

164 7. PANGEA+RT

priorities. This partitioning would increase the overhead of these events
and make communication between the events far more challenging.

• Class loading: A Java-conformant JVM must delay loading a class until
it’s first referenced by a program. Loading a class can take a variable
amount of time depending on the speed of the medium (disk or other)
the class is loaded from, the class’s size, and the overhead incurred by
the class loaders themselves. The delay to load a class can commonly
be as high as 10 milliseconds. If tens or hundreds of classes need to
be loaded, the loading time itself can cause a significant and possibly
unexpected delay. Careful application design can be used to load all
classes at application start-up, but this must be done manually because
the Java language specification doesn’t let the JVM perform this step
early.

• Garbage collection: The benefits of GC to application development –
including pointer safety, leak avoidance, and freeing developers from need-
ing to write custom memory-management tooling – are well documented.
However, GC is another source of frustration for hard RT programmers
using the Java language. Garbage collects occur automatically when the
Java heap has been exhausted to the point that an allocation request
can’t be satisfied. The application itself can also trigger a collection.
On the one hand, GC is a great thing for Java programmers. Errors
introduced by the need to manage memory explicitly in languages such as
C and C++ are some of the most difficult problems to diagnose. Proving
the absence of such errors when an application is deployed is also a funda-
mental challenge. One of the Java programming model’s major strengths
is that the JVM, not the application, performs memory management,
which eliminates this burden for the application programmer. On the
other hand, traditional garbage collectors can introduce long delays at
times that are virtually impossible for the application programmer to
predict. Delays of several hundred milliseconds are not unusual. The
only way to solve this problem at the application level is to prevent GC
by creating a set of objects that are reused, thereby ensuring that the
Java heap memory is never exhausted. In other words, programmers
solve this problem by throwing away the benefits of the managed memory
by explicitly managing memory themselves. In practice, this approach
generally fails because it prevents programmers from using many of the
class libraries provided in the JDK and by other class vendors, which
likely create many temporary objects that eventually fill up the heap.

• Compilation: Compiling Java code to native code introduces a similar
problem to class loading. Most modern JVMs initially interpret Java
methods and, for only those methods that execute frequently, later

7.1. Introduction 165

compile to native code. Delayed compiling results in fast start-up and
reduces the amount of compilation performed during an application’s
execution. But performing a task with interpreted code and performing
it with compiled code can take significantly different amounts of time.
For a hard RT application, the inability to predict when the compilation
will occur introduces too much nondeterminism to make it possible to
plan the application’s activities effectively. As with class loading, this
problem can be mitigated by using the Compiler class to compile methods
programmatically at application start-up, but maintaining such a list of
methods is tedious and error prone.

Although Java is a programming language suitable for implementing agents,
their use in an environment with real-time characteristics is inappropriate,
mainly because one of its greatest qualities; the garbage collector. A real-time
environment must take all the control over all the tasks that can be executed
within the system. When the garbage collector runs, all Java threads are
stopped at the moment until the collector completes its task [258].

We should not allow this to happen if we want that the agents’ tasks finish
according to their deadlines. Another of the reasons that Java is not a suitable
language for the implementation of applications with time constraints are:

• Java has no mechanism for analyzing the viability of the plan, necessary
if you want to know, a priori, whether a task is schedulable.

• The threads used in Java applications do not have methods to add
temporal characteristics to them.

• Java does not resolve the problem of priority inversion in tasks that share
resources.

• And in general, it is not intended to run real-time applications, whereby
the use of such language is inappropriate.

One solution is to adapt Java in the way that solves the above mentioned
problems. Today there are two committees in charge of adapting Java to real-
time systems: the first is the Real-Time for Java Expert Group that propose
a specification called Real-Time Specification for Java (RTSJ) [140], and the
second group is called J-Consortium [74] with its specification Real-Time Core
Extensions for Java. The extension proposed by RTSJ is the most known and
therefore, is the one chose for this platform.

We must clearly distinguish between the above specifications and execution
environments for this it. After selecting RTSJ, we evaluated different available
JVMs. Therefore, in this chapter we present in two distinct sections the bases
of RTSJ and in the next, the possible JVMs. Later, we deal with the problem
of annotating the bounded loops. At the end of the chapter, we present the

166 7. PANGEA+RT

agents needed for the execution of the platform and how the classes changed
in comparison with the PANGEA platform.

7.2 Real-time specification for Java

Because of the popularity of Java as a development language, there has been a
major effort to address the shortcomings of Java as a real-time development
language and to introduce new features into the language to support real-time
development. These led, over a number of years, to the development of a
real-time specification for Java. This includes both changes to the language
and to the JVM, the run-time system for Java.

The RTSJ extends the JVM and Java class libraries in order to facilitate
real-time development with Java. The initial version 1.0 of the specification
was conceived in 2001 as JSR 1 and this description is based on the current
stable version 2.2 of the specification [273]. The key features that have been
included in real-time Java are:

• Precise memory management. A major problem with Java is that garbage
collection is unpredictable and, if garbage collection kicks in during an
operation, the response time may be affected. Real-time Java introduces
the notion of immortal memory where objects are created but never
destroyed and scoped memory where objects are destroyed when a process
goes out of scope. Neither of these memory types are garbage collected.

• Direct memory access. Programs can access physical memory directly,
thus allowing direct hardware interaction in embedded systems.

• Asynchonous communications. This includes asynchonous event handling
where the response to events from outside the JVM can be scheduled
and asynchronous transfer of control which allows threads to be safely
interrupted.

• Precise timing specification. Time may be specified to the nanosecond
level of precision.

• Real-time threads. These are processes that are not interrupted by
garbage collection and which may be assigned up to 28 priority levels. A
lower priority thread cannot block access to a resource that is needed by
a higher-priority thread.

Java RTS is similar to Java SE in many ways. The most important are [58]:

7.2. Real-time specification for Java 167

• JAVA RTS uses the same unmodified compiler, javac.

• Supports many of the same command-line options.

• Is fully bytecode-compatible with Java SE and will run all existing .class
and .jar files that are Java SE 5-compliant.

• Works with most existing Java SE tool, however there are exceptions.

The following gives an overview of some of the changes introduced by the
RTSJ [119]:

Memory management

Java does not provide means for explicitly deallocating memory, instead a
garbage collector is normally used in various JVMs. Unfortunately, as noted
in [371], garbage collection affects the timing predictability of real-time systems,
which in turn complicates WCET analysis. Some research has been conducted
on the subject of real-time garbage collection [319] [25], but the RTSJ does
not rely solely on this yet. Instead, the RTSJ provides a memory model which
avoids garbage collection, providing time predictable memory allocation and
deallocation. This new memory model consists of two new memory areas in
addition to the heap which can be used when allocating new objects. The two
new areas are:

• The Immortal Memory is released when the application ends, therefore
all the defined in this type of memory cannot be removed while the
application is being executed.

• The Scope Memory is released when there is no object referencing to that
memory.

Schedulable objects and scheduling

Java supports threads and priorities, but the Java specification does not
guarantee that the threads are executed in accordance with their priorities
if e.g. the underlying OS does not support them [371]. Furthermore, Java
does not support expressing concepts such as release patterns in real-time
systems. This is solved in the RTSJ through two changes. One is a more
general notion of schedulable objects and a number of classes used to specify
important properties of these, such as their priority and period. Furthermore,
the JVM must be more strict in its notion of priorities such that real-time
scheduling policies can be adhered to.

RTSJ enables to create a special class of real time thread,
NoHeapRealTimeThread. This thread has the characteristic that it can
not be located or reference the heap memory area, ie, the one that is affected
by the GC. The most important parameters of the real-time thread include:

168 7. PANGEA+RT

• SchedulingParameters: Provides the parameters needed by the system
scheduler for the calculation of planning. The priority of the thread is
defined inside this parameter.

• ReleaseParameters: This parameter defines the characteristics of
the thread, for example, whether the thread is periodic or sporadic.
We can use for this the subclasses of ReleaseParameters that are
PeriodicParameters, AperiodicParameters and within the latter a
special class called SporadicParameters. In our case, we are interested
in PeriodicParameters where the behavior is defined in case of a pe-
riodic. This behavior will come defined by the attributes start, period,
cost y deadline. The start attribute defines when the thread starts its ex-
ecution. The period attribute specifies when the thread will be activated
again. The cost attribute is the necessary execution time to complete the
task defined in the thread in the worst case. And finally, the deadline
attribute defines how much time it is available to complete the task.

Asynchronous event handing and timers

In addition to the threading model, a model of asynchronous event handlers
has been added which allows for executing schedulable objects on specific
events. These events can be fired from the software itself, hardware interrupts,
periodically by timers, etc. This model co-exists with the threading model and
provides an alternative approach to executing tasks in a real-time system.

Asynchronous Transfer of Control (ATC) ATC is a mechanism which allows
schedulable objects to interrupt each other in order to change their control
flow. This mechanism is motivated by the need to implement forms of error
recovery and mode change which needs to take effect quickly.

Scheduling characteristics

The specification RTSJ provides a scheduler that is responsible for checking if
the tasks are feasible according to the policy used and managing the execution
of schedulable objects. The schedulable objects are: the RealtimeThread,
the NoHeapRealtimeThread and the AsyncEventHandler (asynchronous event
manager). By default, the Scheduler has the following characteristics:

• 28 priority levels.

• The scheduling algorithm is preemtive (with replacement) and with fixed
priorities.

• The policy used to test the feasibility of a particular task will be planning
algorithm Rate Monotonic.

7.3. Real-time Java virtual machines 169

Physical and raw memory access

In real-time systems, and especially embedded real-time systems, it is often
necessary to handle physical memory. This may be the case if one needs to
interact with memory-mapped devices or differentiate between different types of
memory connected to the system. To support this, the RTSJ provides facilities
to specify the placement of memory areas and to access memory more directly
than allowed in traditional Java.

Time values and clocks

Time is inherently an important part of real-time systems, thus the RTSJ
provides enhancements to Java in the form of a high resolution timer, with
support for representing times down to one nano-second, given a hardware
clock supporting this. The timer is supported by a concept of clocks which
show the passage of time and concepts of absolute and relative time used in
various parts of the API.

7.3 Real-time Java virtual machines

We look for a Real-time Java Virtual Machines (RTJVMs) that must be
completely RTSJ compliant. For this election, we have studied the most used
at this moment. Until 2009 the official RTJVM was the Sun Java RTS [272]
but when Oracle abandoned its support and the RTJS was released, different
virtual machines has been developed with different levels of success. In this
section we present a summary of them and the justification of our choice.

Atego
Perc [19]

"Atego Perc Ultra is one of the most deployed embedded
and real-time Virtual Machines in the industry. Atego Perc
Ultra is a virtual machine and tool set expressly created for
demanding embedded and real-time systems requiring Java
Standard Edition support. Atego Perc Ultra delivers the
ease and efficiency of Java SE without sacrificing integrity,
performance, or real-time behavior. The Atego Perc product
line offers Ahead-of-Time (AOT) and Just-in-Time (JIT)
compilation, remote debug support, deterministic garbage
collection and standard graphics." [264]

170 7. PANGEA+RT

JamaicaVM
[73]

Developed by the Aicas Company, JamaicaVM is a hard
real-time Java VM with a fully preemptable, deterministic
garbage collector. Depending on the hardware and operat-
ing system a submicrosecond jitter can be achieved. The
JamaicaVM toolchain contains an application builder and
profiler for optimizing your applications and all the J2SE 6
language features are supported.

IBM Web-
Sphere [171]

WebSphere Real Time bundles real-time capabilities with
the standard JVM. It is possible to enable real-time ca-
pabilities by using the -Xrealtime option when running
the JVM or any of the tools provided. WebSphere Real
Time removes these obstacles of a classical JVM by pro-
viding: the Metronome Garbage Collector, an incremental,
deterministic garbage collector with very small pause times
Ahead-Of-Time (AOT) compilation and a priority based
FIFO scheduling.

Reference
Implementa-
tion [353]

The Reference Implementation (RI) de Java is developed
by the company TimeSys. This company participates in
the definition of RTSJ and is responsible for developing
the official reference implementation of RTSJ. TimeSys
is authorized by the Java Specification Process Executive
Committee to maintain and modify the specification RTSJ.
But it can not be used in production environments.

jRate [77] Developing at the University of California, Irvine. It is an
extension of the GNU Compiler for Java (GCJ) and supports
the specification RTSJ. One goal of the project is that the
user can generate a customize jRate version adapted to his
machine and his needs. Currently, it have not a full version
that meets all requirements of the specification RTSJ.

Ovm [365] Ovm is implemented almost exclusively in Java with only
small amounts of C for the bootloader and low level facilities.
The Ovm project aims to develop a customizable framework
for research in virtual machines and object-oriented pro-
gramming language runtime systems. It has been used to
implement a Real-time JVM. The high performance realtime
configuration of OVM relies on ahead of time compilation.
The entire program is processed to maximize the opportuni-
ties for optimization and an executable image is generated
for a particular Java application. [15]

Table 7.1: Overview of Java Virtual Machines for real-time

7.4. Annotation for bounded loops 171

Looking for applications that can help to choose one among the presented,
we found that just four of the RTJVM are succesfully introduced into real
applications, for example: US Navy’s Aegis Weapon System uses Atego Perc,
US Navy’s DDG-1000 uses IBM WebSphere and JamaicaVM is in use some
avionics platforms. We reject the TimeSys RI because even though it is
currently the official one, in the work [77] they show performance results of
jRate that illustrate how well it performs compared to the TimeSys RI. Due
to this, we decide to restrict our choice in these four. The ATEGO PERC
and IBM WebSphere need expensive licence and for research issues is out of
our reach. The JamaicaVM and jRate have academic licenses, so we based
our finally decision on the quality of the existing documentation for solving
implementation issues and the users’ opinions. According to these factors, we
chose JamaicaVM, highly extended in the Java real-time community.

In our case, the embedded nodes have the single-board computer Raspberry
Pi, so PANGEA+RT has been tested with a Debian distribution and the Fiji
VM [173]. For the high-level computational nodes we have installed different
Linux distributions. But the standard Linux kernel only meets soft real-time
requirements: it provides basic POSIX operations for userspace time handling
but has no guarantees for hard timing deadlines. With Ingo Molnar’s Realtime
Preemption patch (RT-Preempt) and Thomas Gleixner’s generic clock event
layer with high resolution support, the kernel gains hard real-time capabilities.
So, we have installed the RT-Preempt patch. This can be consulted in chapter
9 of this document.

7.4 Annotation for bounded loops

The temporal analysis of the tasks cannot be made automatic and normally
requires source annotations to assist the analysis. Then, in order to integrate
the proposed WCET model, it is needed to include a new mechanism to bound
the loops in the code. To enable an automatic timing analysis of arbitrary
programs, the user is typically forced to support the WCET analyzer with
program annotations about the loop iteration counts. In a similar way, recursion
depths and target addresses of dynamic calls and jumps, which can not be
statically determined, make a user annotation mandatory. If the program
execution is dependent on input data, e.g., in sorting algorithms, the user
annotations must respect all potential values that may be provided to the
program [223].

A number of competing and incompatible styles of annotation have been

172 7. PANGEA+RT

developed for real-time Java. The earliest work in WCET annotations for Java
comes from Bernat, who proposed a portable WCET analysis tool [43]. In
this case, portable refers to language portability: The tool was designed for
analyzing Java, C, Ada, and any other language that could be translated to
Java bytecode. To achieve such portability, source code must invoke methods
in a predefined class whenever a WCET annotation is required. Compared
to traditional annotations, this style mingles non-functional metadata (that
is, the WCET information) with the normal source code statements, making
programs more difficult to read. The XRTJ project [163] implemented WCET
annotations in a more traditional way. All annotations appear as comments
with the characters //@ for single lines and /*@ ...@*/ for multiple lines [162].
The XRTJ compiler parses these lines and writes them to an XAC (Extensible
Annotation Class) file, an XML-like text file that is paired with its class in
a real-time Java program. The XRTJ analyzer then reads each XAC file to
determine loop bounds, timing modes, and other details necessary to derive
the WCET [161]. In more recent work, Schoeberl and Pedersen implemented a
WCET analyzer for JOP [318]. This tool introduced yet another syntax for
annotations. Although it still used the same //@ start marker, the syntax of
the annotations differed from the XRTJ project, making the tools incompatible
with each other.

The Java Modelling Language (JML) is a notation for formally specifying the
behavior and interfaces of Java [16] [139] classes and methods. However, the
design of design currently has minimal support for especification of space and
timing constraints, based on the work of Krone et al. [208]. SafeJML [152] is
an extension to the JML for specification of safety critical Java programs. The
SafeJML design as a JML extension supports the modular specification of both
functional and timing constraints. Although, we face the same problem since
it still used the same //@ start marker.

In the works presented above, the annotations are not comments despite their
format. Instead, they are first-class objects in the Java language, requiring
special compiler support. They can have parameters and must conform to
type-checking rules, for example. Such a substantial change to the language
demanded formal review under the Java Community Process (JCP): a public,
cooperative system for adopting new technologies as official Java specifica-
tions.

The proposed annotation framework was submitted to the JCP as JSR-175 [290]
and met final approval in September 2004. That same month, Sun released Java
5, Standard Edition, which included support for JSR-175 annotations. A new
edition of the Java Language Specification [4] was published the following year
to formalize these annotations and ensure that tools and libraries using them
would remain compatible with each other. Today, annotations are a standard,

7.4. Annotation for bounded loops 173

well-defined part of the Java platform. Currently, the version JSR-308 [291] is
the last one but it was expected to be included in the Java SE 8 but it has not
yet received official final approval.

One of the advantages of Java annotations and a key difference versus existing
WCET annotation frameworks, is that the annotation data is stored directly in
files .class. Embedding annotations within classes simplifies code management
because a separate file format for metadata is not required to be maintained.
Also, existing mechanisms for storing, distributing, and deploying class files
can readily be used for annotation data. For instance, a build script that
packages a class library into a JAR file (Java ARchive) will automatically
package annotations, as well.

However, Java annotations cannot be placed on critical source code statements
such as loops, rendering the mechanism useless for WCET annotations. The
JSR-308 committee is currently investigating the possibility of removing this
restriction. Analysis tools for determining WCET may suffer from limited
reasoning capabilities or lack of knowledge about the execution context. Devel-
opers should be able to supply information to the WCET analysis, allowing a
static analyzer to compute a better bound on the WCET. For example:

1 @LoopBound(max=100)
2 for (int i =0; i<percent ; i++)
3 { . . . }

Programming Code 7.1: Desired annotation in JSR-308

Now Java is becoming viable for hard real-time systems, however, Java anno-
tations are simply too limited. For instance, the @LoopBound example shown
above is currently impossible because Java annotations simply aren’t allowed
on loops. An extension of the annotation mechanism to support statements is
therefore necessary.

We want to follow the current standards to make our proposal more accessible
to the users and since Java SE 5, annotations can only be applied to type
uses. This means that annotations can be used anywhere you use a type. For
example, in a class instance creation expressions new, cast, implements and
throw clauses. This form of annotation is called a type annotation (7.2).

1 public void Example ()
2 {
3 @AnnotationValid // l e g a l in Java
4 int i = 10 ;
5
6 @LoopCount (100) // i l l e g a l in Java
7 for (int k = 0 ; k < nextFree ; k++) {
8 retValue . theItems [k] = theItems [k] ;
9 }

174 7. PANGEA+RT

10
11 return retValue ;
12 }

Programming Code 7.2: Example of type annotation

Then, we have adapted our annotation mechanism to meet this standard
in PANGEA+RT. This lead us to establish the following restriction when
programming loops:

All the methods that include loops should declare the variable used to go
through each loop at the beginning of the method and include there the

corresponding annotation. As consequence, no duplicate variables can be used
in different loops belonging to the same method.

1 public void ExampleRestr ict ion ()
2 {
3 @LoopBoundAnnotation
4 int i ;
5 @LoopBoundAnnotation
6 int j ;
7 @LoopBoundAnnotation
8 int k ;
9
10 for (i =0; i<t o t a l ; i++)
11 { . . . }
12
13 j =0;
14 while (j < 11)
15 { . . . }
16
17 for (k=0; k<10; k++)
18 { . . . }
19 }

Programming Code 7.3: Desired annotation in JSR-308

We developed our personalized label using the standard available since SE 5.
Creating an annotation is similar to creating an interface. But the annotation
declaration is preceded by an @ symbol. The annotation declaration itself must
be annotated with the @Retention annotation. The @Retention annotation
is used to specify the retention policy, which can be SOURCE, CLASS, or
RUNTIME.

• RetentionPolicy.SOURCE retains an annotation only in the source file
and discards it during compilation.

• RetentionPolicy.CLASS stores the annotation in the .class file but does
not make it available during runtime.

7.4. Annotation for bounded loops 175

• RetentionPolicy.RUNTIME stores the annotation in the .class file and
also makes it available during runtime.

We chose the RUNTIME retention policy since we have to evaluate the class
files.

An annotation cannot have the extends clause. However, annotations implic-
itly extend the Annotation interface but it is needed to include the package
java.lang.annotation. The body of an annotation consists of method decla-
rations without body. These methods work like fields.

1 @Retention (Retent ionPo l i cy .RUNTIME)
2 @int e r f a c e LoopAnotation
3 {
4 double maxBound () ; // Annotation member
5 double minBound () ; // Annotation member
6 }

Programming Code 7.4: Loop-bound annotation

Once an annotation is created, it can be applied. While applying an annotation
to a declaration, it is necessary to provide values for its members (7.5):

1 public class Test
2 {
3 public void ExampleMyAnnotation ()
4 {
5 @LoopAnotation (maxBound=20,minBound=0)
6 int i ;
7 @LoopAnotation (maxBound=11,minBound=0)
8 int j ;
9 @LoopAnotation (maxBound=10,minBound=0)
10 int k ;
11
12 for (i =0; i<t o t a l ; i++)
13 { . . . }
14
15 j =0;
16 while (j < 11)
17 { . . . }
18
19 for (k=0; k<10; k++)
20 { . . . }
21 }
22 }

Programming Code 7.5: Desired annotation in JSR-308

Now, thanks to the Java Reflection property which can be use to load the Java
class, call its methods or analysis the class at runtime, the annotations can be
queried at runtime (7.6):

176 7. PANGEA+RT

1 public stat ic void getAnnotat ions ()
2 {
3 Test t e s t=new Test () ;
4 try
5 {
6 Class c=t e s t . g e tC la s s () ;
7 Method m=c . getMethod (" ExampleMyAnnotation ") ;
8
9 LoopAnotation annotat ion=m. getAnnotation (

LoopAnotation . class) ;
10 double maxBound=annotat ion .maxBound () ;
11 double minBound=annotat ion . minBound () ;
12 . . .
13
14 }
15 catch (NoSuchMethodException ex)
16 { . . . }
17 }

Programming Code 7.6: Obtaining annotations in runtime

7.5 Agents of the platform

The agents of the platform are clearly reduced in comparison with the agents
that compose the PANGEA+R platform. The introduction of the MQTT
communication protocol in the previous version PANGEA+R has already
allowed us to remove the CommunicationAgent, the SnifferAgent and the
SubscribeAgent since all their functions are automatically supported by the
protocol and the Mosquitto broker. The GatewayAgent is also no more needed
because the link between MQTT and FIPA-ACL is not beneficial when working
in real-time and can cause dangerous delays.

We only maintain the strictly necessary agents to avoid possible delays and to
limit the communication acts:

• OrganizationManager: the agent responsible for the actual management
of organizations and suborganizations. It is responsible for verifying the
entry and exit of agents, and for assigning roles. To carry out these tasks,
it works with the OrganizationAgent, which is a specialized version of
this agent.

• OrganizationAgent: it is a specialized version of the OrganizationManager,
which is introduced automatically in each suborganization to help the

7.5. Agents of the platform 177

OrganizationManager and avoid its overload. It communicates with the
real-time agents in order to verify their functioning and time contraints.

Figure 7.1: Platform Overview

• InformationAgent: the agent responsible for accessing the database con-
taining all pertinent system information.

178 7. PANGEA+RT

• ServiceAgent: the agent responsible for recording and controlling the
operation of services offered by the agents. It works as the DF defined in
the FIPA standar.

• NormAgent: the agent that ensures compliance with all the refined norms
in the organization.

Now, we need an extra role called PlannerAgent. This role implements the
model presented in chapter 4 for the global scheduling and task allocation.
It is in contact with the OrganizationManager. The OrganizationManager
controls the entering of new agents and notify the PlannerAgent this kind of
events. The PlannerAgent is also in contact with the OrganizationAgent, who
notifies when a replanning action is needed in case that any agent had suffered
a problem.

In this version of the platform only real-time agents are allowed. The main
reason is that the communication between a non-real-time agent and a real-time
agent is not time bounded since one of the agents does not follow the real-time
constraints. Then, the possible interaction between them can lead to a time
fault.

7.6 Modification of the classes

As we explained in Chapter 5, in PANGEA each agent extends of an abstract
class called Agent. For PANGEA+RT, we develop a different abstract class to
include all the time constraints, AgentRT. The same happens with the abstract
class Behaviour, now we have the BehaviourRT class.

In Figure 11.7 we can see the main classes of the implementation:

• AgentRT: it defines all the methods that the real-time agents must imple-
ment.

• MqttCallback: this is not a class specifically of the platform. But all the
agents must extends this class to use the MQTT protocol.

• RealtimeThread: as the previous class, this is not a proper class of the
platform but is totally needed. All the agents must extend this class to
be executed as real-time threads in Java.

7.6. Modification of the classes 179

Figure 7.2: Main classes of the platform

• BehaviourRT: it defines the behaviour of the agent, that can be periodic
or aperiodic.

– PeriodicBehaviourRT: this class specifies a deadline that the be-
haviour and the period of execution must comply .

180 7. PANGEA+RT

– AperiodicBehaviourRT: at this moment, PANGEA+RT only allows
sporadic and aperiodic task assigning period = deadline.

It is important to mention the method controlDeadline of the BehaviourRT
class. If the tasks programmed inside the method run are not finish within the
time constraints (the specified deadline), controlDeadline must generate an
event to handle the problem and notify the incident to the OrganizationAgent.
The attribute WCET is also defined in the BehaviourRT class. This attribute
enables to store the WCET estimation made using the model presented in
Chapter 4.

Now, we present one simple example with the skeleton of an agent (11.5) an
its associated behaviour (11.4).

1 public class MyBehaviour extends PeriodicBehaviourRT
2 {
3 public MyBehaviour (int importante , long WCET, long

deadl ine , long per iod)
4 {
5 //Constructor
6 super () ;
7 }
8 public void run ()
9 { //Task to carry out }
10
11 public cont ro lDead l ine ()
12 { //Actions i f the dead l ine i s not f u l f i l l e d }
13 }

Programming Code 7.7: Example of a simple MyBehaviour class

1 public class MyAgent extends MqttCallback implements AgentRT
2 {
3 private MyBehaviour behaviour ;
4 private BlockingConnect ion connect ion ;
5
6 public MyAgent(s t r i n g ovCurrent , s t r i n g brokerCurrent ,

MyBehaviour behaviour)
7 {
8 //Constructor
9 this . behaviour=behaviour ;
10 super () ;
11 }
12
13 public void run ()
14 { //Actions be f o r e s t a r t i n g the pe r i od i c ta s k o f the

behaviour }
15
16 public void addMQTTComunication (s t r i n g brokerCurrent)
17 {
18 //MQTT c l i e n t

7.7. Conclusions 181

19 MQTT mqtt = new MQTT() ;
20 mqtt . setHost (brokerCurrent) ;
21 BlockingConnect ion connect ion = mqtt .

b lock ingConnect ion () ;
22 connect ion . connect () ;
23 }
24
25 public sendMessage (s t r i n g message , s t r i n g top i c)
26 {
27 connect ion . pub l i sh (top ic , message . getBytes () , QoS .

AT_LEAST_ONCE, fa l se) ;
28 }
29
30 [. . .]
31 }

Programming Code 7.8: Example of a simple MyAgent class

The class MyAgent will be executed as a real-time Java thread (11.6).

1 public stat ic void main (St r ing [] a rgs)
2 {
3 MyAgent agent = new MyAgent () ;
4 agent . s t a r t () ;
5 try{
6 agent . j o i n () ;
7 } catch (Inter ruptedExcept ion i e)
8 //Exception
9 }
10 }

Programming Code 7.9: Real-time Java thread

7.7 Conclusions

We have developed an innovative platform because, as mentioned in the related
works in chapter 3, to the best of our knowledge there is no other platform
suitable for VOs with real-time constraints. The advantages of PANGEA and
PANGEA+R are extended to enables real-time agents to interact within a
temporal control.

In PANGEA+RT, by means of the PlannerAgent, we have implemented the
model presented in the fourth part of this document. Now, the platform can
control the arrival of new agents, each one with different behaviours. Despite
this diversity, the platform can include the agents in an organization and follow
the real-time schedule and distribution of task among the available nodes.

182 7. PANGEA+RT

The platform requirements for each node are initially a Linux RT distribution
with a real-time patch or a RT-Linux OS. It is also needed a RTJVM.

We have also shown how a basic agent has to be implemented to fulfill its
time constraints and to be supported by the platform. We have also explained
how to annotate the loops in the Java classes to be properly bounded and get
satisfactory WCET estimations.

In the next part of this document, we will see the results including a case study
"Collaboration of heterogeneous robots for surveillance tasks developed under
the agent-platform PANGEA+RT" where two kind of robots: HAWKs, a UAV
(Unmanned Aerial Vehicle) developed by the BISITE group, and GECKOs, a
UGV (Unmanned Ground Vehicle) also developed by the BISITE group. The
teamś goal is to scan a large peripheral area focusing on surveillance tasks but
this system can be also applied to rescue tasks using image processing. All the
development of this team is implement with the PANGEA+RT platform.

Part V
Case Study and

Conclusions

8
Case Study

In this chapter, we present a case study where all the innovations presented in
this PhD dissertation are evaluated. The case study describes the collaboration
of heterogeneous robots for surveillance tasks developed under the agent-platform
PANGEA+RT. This scenario involves two kind of robots: HAWKs, which are
UAVs (Unmanned Aerial Vehicle) developed by the BISITE group, and GECKOs,
UGVs (Unmanned Ground Vehicle) also developed by the BISITE research group.
The team’s goal is to scan a large peripheral area focusing on surveillance tasks
using image processing. This case study allows us to mix the concept of VO by
team formations, the real-time model proposed in the part III of this document
and finally, to test the PANGEA+RT platform which includes all the desired
characteristics to develop successfully all the requirements of this case study.

Contents
8.1 Collaboration of heterogeneous robots for surveil-

lance tasks . 186
8.2 Related works . 187
8.3 Presentation of the heterogeneous robots 192
8.4 The problem and the VO solution 197

8.4.1 Proposed VO of agents 198
8.5 Collaboration description 202

8.5.1 Calculations for the collaborative movement 204
8.5.2 Common area calculation 208
8.5.3 Calculation of horizontal and vertical movement for the

HAWK waypoints . 209
8.6 Deployment of the involved agents 211
8.7 Conclusions . 213

186 8. Case Study

8.1
Collaboration of heterogeneous robots
for surveillance tasks

The philosophy of developing a model of collaborative agents is to create a
system that interconnects the agents, allowing their collaborative effort to
extend beyond the individual abilities of the members [121]. In general, having
a single robot with multiple capabilities can lead to a waste of resources,
increased overhead and lower efficiency. Applying the method known as "divide
and conquer", we can deduce that different robots, each one with their own
settings, form a more flexible, robust and cost efficient system [259]. Indeed,
while some tasks can be too complex for a single robot, multiple robots can
perform these tasks more effectively by working together [12].

Many studies highlight the suitability of using MAS in the robotics field [346] [35]
[197]. Researchers in [175] highlight the benefit of implementing software which
is more reusable, scalable and flexible, while maintaining parallelism, robustness
and modularity. Interaction standards, social abilities and cooperation are
areas that have already been fully developed in the field of MAS and can
be easily applied to groups of robots. Formally, a collection of two or more
mobile robots working together is termed a team or society of multiple mobile
robots [254]. In these cases, multi-robot approaches must show collaborative
behaviour. Thus a multi-agent, multi-robot approach focuses on how to achieve
cooperation by using the multi-agent paradigm. It should be noted that in this
case the robot itself can be either a single agent or a collection of agents. The
multi-agent paradigm is implemented inside the robot architecture, and it is
also used outside to control the team, society or organization [177].

Possibilities offered by Unmanned Aerial Vehicles (UAVs) have increased in
recent years thanks to advances in the technological world, especially aerial
imaging. Aerial imaging enables quick monitoring of large areas, making it a
very efficient way to solve problems related to surveillance tasks, rescue tasks,
tracking animals or people, etc. In our case, not only does the system coordinate
UAVs, but Unmanned Ground Vehicles (UGVs) have also been included in the
team. The UAVs take aerial images while the UGVs are responsible for taking
images of the ground, using their front camera. The main contribution is that
each team is made up of a number of heterogeneous agents, some running
inside the vehicles and others in the different nodes of the system. Therefore,
each team will consist of a HAWK and GECKO and all necessary agents for
controlling and monitoring the team. Moreover, many teams can focus on the
task and can be coordinated in every moment.

8.2. Related works 187

The team’s goal in the case study is to scan a large peripheral area of a route
chosen by the personnel. Our main goal is to focus on surveillance tasks;
however, this system can easily be adapted to be applied to rescue tasks. One
of the advantages of the system proposed in the case study is that search
time can be reduced as the team of robots helps scan the search area. The
current system is precisely focused on providing a solution to help human staff
with the surveillance efforts and reducing as much as possible the amount of
time invested in the exploration of areas. It is necessary to remark that the
PANGEA+RT platform [144] [392], specially designed to manage VOs, was
successfully used as the infrastructure at a low level for the development of the
system, introducing a new perspective where organizational theory, robotics
and MAS are combined to manage real-time scenarios. The system was applied
in a real environment to manage surveillance tasks in a leisure park called
Valcuevo.

In the robotics field and, specifically, in this case study in which there are
vehicles in movement, the real-time aspect takes an important role. AS previ-
ously mentioned, in this case study we use PANGEA+RT which facilitates the
development of the VO by team formations and integrates the model proposed
in the part III of this document.

8.2 Related works

An examination of the process of collaboration from the point of view of
the VO indicates that it is closely linked to the concepts of coordination,
communication and cooperation. Collaborative environments are described as
a group of entities working together in the same work environment to promote
the achievement of a shared goal task. Some features, mentioned in [303], that
are needed to cover such environments are:

• Social Organization: Refers to the way the groups of agents in the
system are organized according to the function or role, characteristics,
responsibilities, or needs that they have, taking into account the purpose
of their communication with other agents.

• Cooperation: Refers to the process of sharing intermediate results in an
effort to find a solution for the specific objectives of other agents, while at
the same time advancing toward the achievement of the global objectives
of the system. In short, cooperation is the mechanism by which the
agents work together to achieve a common goal, and define a strategy to
achieve this goal [45].

188 8. Case Study

• Coordination: This is understood as a set of additional actions which may
be performed to achieve a goal which an agent with the same objective
would not be able to achieve on its own. Gutknecht and Ferber in [151]
define two basic reasons for coordinated actions: (i) Resources are limited.
Agents can share resources to develop actions. (ii) Coordination optimizes
costs by eliminating unjustified or redundant actions.

• Comunication: Enables interaction among agents. To this end, not only
should all messages exchanged between agents share a common language,
but the agents themselves should be able to understand and interpret
the knowledge being exchanged and be able to exchange it. This involves
the ability of agents to communicate with each other, i.e., exchange
information and knowledge in an understandable way. It allows agents
to obtain the knowledge they need to decide the sequence of actions
that must be executed according to their goals. Since communication
enables interaction between agents, the exchanged messages must use a
common language and the agents must be able to understand, interpret
and redistribute the exchanged knowledge.

Until now, the majority of robotic teams were formed by homogeneous entities.
A review of existing literature finds cases of exploration areas [269], soccer
matches [118] [362], joint surveillance [35] [191], cooperative hunting [384], etc.
But the biggest disadvantage of these devices is that the robots are very similar
to each other, equipped with the same set of sensors and actuators, meaning
that they offer limited benefits when performing complex tasks. In collaborative
robotics, robots are now simpler and less equipped than before. As a result, less
expensive equipment is needed because efficiency lies in collective intelligence
and collaborative work.

Depending on the level of heterogeneity, robots in a team are jointly classified
as weakly or strongly heterogeneous [197]. When the robots only differ in
their capabilities, they are not identical but are still commonly considered to
form a homogeneous robot team [277]. The main difficulty comes when the
robots are equipped with different sensing, perception, motion and onboard
computing capabilities. In this case, for example, an application with a strongly
heterogeneous robot team was developed for aerial surveillance [269], where
different robot types (a blimp, an airplane and a helicopter) cooperatively
monitor a rural area to detect forest fires. This system called COMETS (Real-
Time Coordination and Control of Multiple Heterogeneous Unmanned Aerial
Vehicles) is aimed at designing and implementing a system for cooperative
activities using heterogeneous UAVs. Heterogeneity is considered both in
terms of aerial vehicles and onboard processing capabilities, ranging from
fully autonomous systems to conventional remotely piloted vehicles. The

8.2. Related works 189

COMETS system also involves cooperative environmental perception including
fire detection and monitoring as well as terrain mapping.

In [68], the authors present a heterogeneous ensemble of mobile robots focused
on the development of mapping and exploration tasks. This system is based on
the already cited method known as "divide and conquer", because it is formed
by many robots with limited processing and sensing abilities. This means that
each robot may not be able to execute all components of the mapping and
exploration task. The hierarchical system proposed consists of computationally
powerful robots (managers) at the upper level and limited capability robots
(workers) at the lower levels. This enables resources (such as processing) to be
shared.

For surveillance tasks, [384] presents a novel feedback-control law for coordi-
nating the motion of multiple mobile robots for security against invaders in
surveillance areas. Each robot in this control law (which can be similar to our
norms) has its own coordinate system and it senses a target/invader, other
robots and obstacles, to achieve this cooperative behavior without making any
collision. There is no centralized controller and each robot has a vector referred
to as a formation vector, and the formations are controllable by the vectors.

The work presented in [363] is similar to this since they describe localization-
space trails (LOST), a method that enables a team of robots to navigate
between places of interest in an initially unknown environment using a trail
of landmarks (or waypoints, as in our case). The landmarks are not physical;
they are waypoint coordinates generated online by each robot and shared
with teammates. Waypoints are specified in each robot’s local coordinate
system, and contain references to features in the world that are relevant to the
team’s task and common to all robots. Despite significant divergence of their
local coordinate systems, the robots are able to share waypoints, forming and
following a common trail. But this system is oriented to indoor environments
and makes no mention of agents or any distributed method of computation.
Feddema et. al. [108], highlight how a decentralized control theory can be used
to analyze the control of multiple cooperative robotic vehicles. They also present
three applications of this theory: controlling a formation, guarding a perimeter,
and surrounding a facility. The work most similar to ours, regarding teams
involving aerial and ground vehicles, is the CROMAT Project architecture,
which also implemented cooperative perception and multi-robot task allocation
techniques [364]. This paper presents a system for the coordination of aerial
and ground robots for applications such as surveillance and intervention in
emergency management. Moreover, the paper presents a demonstration with a
team of heterogeneous robots (aerial and ground) cooperating in a mission of
fire detection and extinguishing. Nevertheless, this system does not mention
any organizational aspects or supervision of teams.

190 8. Case Study

In the paper [240], an intelligent cooperative control and path-following al-
gorithm is proposed and tested for a group of mobile robots. The designed
fuzzy model employs two behaviors: path following and group cooperation. As
the robots move along individual predetermined paths, the designed algorithm
adjusts their velocities so that the group arrives at their target points within the
same time duration regardless of the length of each individual path. However,
necessary to have a predetermined path involving a known environment, which
is not the case in the majority of the situations.

Many studies focus on mapping unknown environments and the methods used
to navigate through them using a team of simple robots. This is the case of [71].
The authors present a system where minimal assumptions are made about the
abilities of the robots on a team. The robots can explore the environment using
a random walk, detect the goal location, and communicate among themselves
by transmitting a single small integer over a limited distance and in a direct
line of sight. Additionally, one designated robot in the system, the navigator
acting as a coordinator, can track toward a team member when it is nearby
and in a direct line of sight. Another example is presented in [141]. The robots,
called Millibots, are configured from modular components that include sonar
and IR sensors, camera, communication, computation, and mobility modules.
Robots with different configurations use their special capabilities collaboratively
to accomplish a given task. They have developed a localization system that
uses sonar-based distance measurements to determine the positions of all the
robots in the group. Wurm et. al. [380], focus their paper on the key issue
of how to assign target locations to the individual robots so that the overall
mission time is minimized. To achieve this, they divide the space into segments,
for example, corresponding to individual rooms. Instead of only considering
frontiers between unknown and explored areas such as target locations, they
send the robots to the individual segments with the task of exploring the
corresponding area.

Alessandro Renzaglia et. al., in [302] take one step further, presenting a multi-
robot three-dimensional coverage of unknown areas. They explain the problem
of deploying a team of flying robots to perform surveillance coverage missions
over an unknown terrain of complex and non-convex morphology. In such a
mission, the robots attempt to maximize the part of the terrain that is visible
while keeping the distance between each point in the terrain and the closest
team member as small as possible.

In the context of Urban Search and Rescue (USAR), there is no standard
robot platform capable of solving all the challenges offered by the environment
[30]. The RoboCup Rescue competitions provide a benchmark for evaluating
robot platforms for their usability in disaster mitigation and are experiencing
ever-increasing popularity [200]. Since its inception, RoboCup Rescue has

8.2. Related works 191

been structured into two leagues, the Rescue Robot League and the Rescue
Simulation League. Whereas the Rescue Robot League fosters the development
of high-mobility platforms with adequate sensing capabilities, e.g., to identify
human bodies under harsh conditions, the Rescue Simulation League promotes
research in planning, learning, and information exchange in an inherently
distributed rescue effort. This study [30] evaluates the groups of robots that
have participated in this league.

Currently many studies focus on UAVs. For example, [270] compiles many
studies related to teams of UAVs. Maza et al. [238] describe a multi-UAV
distributed decisional architecture developed in the framework of the AWARE
Project together with a set of tests with real UAVs and WSNs to validate this
approach in disaster management and civil security applications. The paper
presents the different components of the AWARE platform and the scenario
in which the multi-UAV missions were carried out. The missions described in
this paper include surveillance with multiple UAVs, sensor deployment and
fire threat confirmation. In this case, however, the UAVs can be considered a
weakly heterogeneous team since all the team components are similar. In [242]
cooperation perception methods for multi-UAV systems are proposed. Each
UAV extracts knowledge by applying individual perception techniques [204],
and the overall cooperative perception is performed by merging the individual
results. This approach requires knowing the relative position and orientation
of the UAVs.

In general terms, teams composed of heterogeneous members involve challenging
aspects, even for the intentional cooperation approach [271]. After consulting
many studies, we realized that:

• There are few studies in which the level of heterogeneity can be considered
strong. The robots used in the equipment are very similar, except in a
few mentioned examples.

• The use of the agent technology and VOs, which can bring many ad-
vantages in cooperation, adaptation and resource management, has not
been practically introduced into robotics, mainly focus on the concept of
emergence.

• The proposed systems do not use a basis platform for managing low-level
emergent behaviors or automatically manage the formation groups. Some
studies focused on forming groups or coalitions [297] [146] [179], but they
propose methods or techniques and none of them explain the needs of
these mechanisms at a lower level, or propose a generic platform that
supports such proposals. Hence, the use of our platform PANGEA+RT.

192 8. Case Study

The UAV and UGV vehicles used in this study will now be presented, followed
by a description of the developed system.

8.3
Presentation of the heterogeneous
robots

The robot team presented is this work is composed of two types of vehicles
with different configurations (heterogeneous), which collaborate autonomously
and perform their tasks to reach their final goal. One of the vehicles is an UAV
nicknamed HAWK and presented in the figure 8.2, and the other is a UGV
nicknamed GECKO that can be seen in the figure 8.1.

Figure 8.1: Image of GECKO

One of the most popular technological advances in recent years are the multi-
rotors or multicopters, a type of UAV capable of aerial filming, among other
things, as described in [232]. The use of this kind of system to obtain an aerial
video with enough quality is a tool that, in combination with image analysis
to detect animals in the area, can save considerable time and money in the
process of counting animals.

A powerful computer and a good communication system are needed to process
the large amount of data obtained by HAWK. The transmission of large amounts
of data requires at least one channel with high bandwidth. Most multirotor
systems that exist today use analog channels for transmitting flight orders to a
multirotor and sending the captured video [357] [153] [298].

8.3. Presentation of the heterogeneous robots 193

Figure 8.2: Image of HAWK

The proposed system presents an alternative to these systems, taking advantage
of existing technological advances such as powerful antennas and Wi-Fi, to
unify the task of sending information such as flight commands, telemetry and
high resolution video, through a single digital channel. Currently there are
some systems that utilize UAV communication using sockets, but are restricted
to use in UAV type aircraft.

This form of communication can both control the multirotor and obtain infor-
mation about the status of the sensors it carries, such as the Global Positioning
System (GPS) or altimeter. Of course, it can also send video images taken
by its camera. Furthermore, the use of a computer instead of a radio station
as a multirotor control element provides processing capacity that the station
does not have; this allows the computer to control the multirotor intelligently
without a human pilot. The architecture of the multirotor for obtaining images
consists of three main parts: hardware, software and communication protocol.

The hardware part of the system refers to the system running the software
and is present at both ends of the communication channel. At one end is the
multirotor UAV with 6 engines and 6 arms. The UAV carries a Single Board
Computer (SBC) with a 700MHz processor and 512MB memory capable of
running a Linux distribution. The connectivity of the SBC allows connecting a
camera via Ethernet, a Wi-Fi antenna Universal Serial Bus (USB) and gets
the information that the Electronic Speed Controller (ESC) needs to control
the motors of multirotor. At the other end of the communication is an access
point whose strength depends on the distance to be achieved, and that can
cover distances of up to 3 kilometers. This access point will connect the SBC
UAV control computer to a high performance laptop with a USB gamepad
connected for manual control.

The SBC runs a software that is primarily used to read, process and deliver
telemetry, and is responsible for carrying out the calculations for the behavior

194 8. Case Study

and stability of the multirotor. On the other hand, in the computer runs a
software specifically developed (in Java) to control the multirotor both manually
and autonomously through waypoints . The user can see all the information
from the sensors that the multirotor sends in real time, such as information
relating to power consumption, intensity and quality of the Wi-Fi signal, image
and video (Figure 8.4). This information generates log files in XML format
that will serve to make a more accurate and detailed analysis of the captured
images, as it will provide additional useful information such as height and
GPS.

The UAV configuration consists of a multi-rotor with the power required to
transport vision equipment. It must also have sufficient stability to support
the presence of adverse weather conditions (such as rain or wind) although, as
noted above, its eventual improvement still remains a pending task.

In addition to stability, one reason for choosing a multi-rotor system is its
vertical takeoff capability (VTOL), which does not require a large space for
its implementation. Furthermore, the mechanical properties of a multi-rotor
facilitate its transportability, due in large part to the folding arms system. This
makes it ideal for use in leafy areas, as in the case of study for which it was
developed.

The components of this equipment can be controlled by a programmed on-board
autopilot system with Linux OS, which enables connecting peripherals through
its multiple input ports as Ethernet port. This allows any type of IP camera to
be connected. The cameras stream the images via a Wi-Fi network to a base
station for monitoring and controlling. Under this scheme, different types of
cameras for the UAV can be used:

• Optical Camera: Due to the presence of a high resolution optical camera,
the ground conditions viewed from an aerial perspective can be checked
remotely at any time. The status information is available at all times
from the best viewing angle. Similarly, the optical camera can be useful
for GECKO to record the ground level from different points of view.

• Thermal camera: This camera enables a better definition of objects with
higher temperatures, making these images more easily visible to the
human eye, and more easily identifiable by intelligent automatic detection
systems.

The UGV is a 4x4 off-road car (scale 1:8) which can be tele-operated and
combined with autonomous control in certain situations. The components of
this type of robot are generally the same as those used with the UAV, excluding
the thermal camera, thus lowering costs. However, the UGV incorporates an

8.3. Presentation of the heterogeneous robots 195

IP camera with the same characteristics as the UAV. The most significant com-
ponents are: the controller (onboard computer with Linux), Wi-Fi adapter for
USB, IP Camera/Thermal camera, stabilizer, GPS, magnetometer, ultrasonic
distance sensors (Sonar), barometric sensor.

The control logic for each type of vehicle is defined independently by the control
agent of its vehicle, because they move by different means. Moreover, it is
necessary to consider the obvious differences in the structure of the vehicle.

In Figure 8.3, a resume table is presented with the main technical characteris-
tics.

Figure 8.3: Characteristics of HAWK and GECKO

Both vehicles are permanently connected to the global system, thanks to the
agents deployed in the PANGEA+RT platform, and are able to communicate
with each other (see section 8.4). For this communication, a Wi-Fi antenna

196 8. Case Study

module was incorporated and installed into every one of the team members [2].
This allows them to exchange a lot more information than they could by using
a Radio control module. However, this communication scheme penalizes the
system in terms of information exchange, and even more so in the case of
radio-frequency. On the other hand, the WiFi communication level of coverage
can be increased with more powerful antennas than those used in this case
study. In the checkpoint there is another powerful WiFi antenna which, under
optimal conditions, allows the signal to reach distances of up to 10 km.

The communication mechanism between all the different agents is implemented
using the MQTT protocol [178] as explained in the chapter 6. In this way,
the system is ready for a possible extension where one computer can control
different multirotors at the same time, and even communicate with each of
them to achieve common goals more efficiently [307] [137] [143].

Finally, some screenshots of the software developed for GECKO (Figure 8.5)
and for HAWK (Figure 8.4) are presented.

Figure 8.4: Software tool of HAWK

8.4. The problem and the VO solution 197

Figure 8.5: Software tool of GECKO

8.4 The problem and the VO solution

In the proposed case study, the team’s goal is to scan a large peripheral area
of a route chosen by the personnel, in our case, who knows and monitors the
Valcuevo park. Our main goal is to focus on surveillance tasks. With this
system, search time can be reduced as the team of robots helps scan the search
area. The current system is precisely focused on providing a solution to help
human staff with their surveillance efforts and reducing the amount of time
invested in the exploration of areas as much as possible.

As the system is agent-oriented, the PANGEA+RT platform has been success-
fully used for the system development. A cooperative-robotic heterogeneous VO
was developed to aid in the surveillance tasks taking organizational aspects into
account. In this section, the agents that form the VOs will be explained and
finally, the steps carried out to define the collaborative work will be detailed.

The studies mentioned in the previous section show different systems for
coordinated teams of robots. But none of them combines all the advantages
that a VO can offer to collaborative robotics, specifically when focusing on
heterogeneous teams and organizations. The use of a MAS composed of
mobile robots that perform tasks in a non-structured environment offers several
advantages such as robustness, specialization, implementation of functions that
robots are not capable of performing individually, communication improvement,
and easier robot programming thanks to the reuse. In order to facilitate the
interaction among the robots, all of the characteristics offered by MAS, and all
of the advantages of VO are included in PANGEA+RT.

198 8. Case Study

Because the PANGEA+RT platform is VO-oriented, we can benefit from its
advantages:

• The restrictions of the global objectives or limitations when forming
groups can be formalized.

• With the concept of normativity, in any organization it is possible to define
a set of norms governing the operation of the group. These norms may
affect individual and collective behaviors, communications and interaction
between agents and even between different organizations, and the access
to the services.

• Description of groups and their topology. The groups can be formed ac-
cording to various characteristics taking the global objective into account.
Therefore, it is important to allow the input/output of entities to form
groups dynamically, and if necessary, to control and limit such access.

• PANGEA+RT has mechanisms for management, control and service
discovery, which makes it very easy to request entities to perform different
tasks if an organization requires it to meet its objective.

Using PANGEA+RT in the field of collaborative robotics can greatly facilitate
the implementation of monitoring and control processes thanks to the charac-
teristics of VOs. The platform was used together with the +R middleware to
facilitate its use in robotics, highlighting software reusability and allowing the
programmer to integrate native software components (computer vision libraries,
navigation modules, location, etc.). Moreover, the +RT middleware allows the
system to work under real-time constraints.

8.4.1 Proposed VO of agents

The agents are immersed in a virtual organization where different roles, norms,
capacities and tasks are defined. With the VO approach, different agents can
adopt different roles. The role is associated with the capabilities or behavior of
the agent. Over time, an agent can play different roles and, thanks to the task
allocation provided by PANGEA+RT, the roles can be reassigned to different
agents on different nodes of the system in order to improve efficiency or simply
to solve communication problems, non-desired stops of a node, etc..

A team must have agents that can play on all the roles presented below. However,
there may be several agents playing the same role, increasing the number of
agents in the team. This is very common in the case of the InterfaceAgent
because if either the control interface of HAWK, the control interface of the

8.4. The problem and the VO solution 199

GECKO, or the interface controlling all the teams are deployed at more than
one node, then all the nodes must include an InterfaceAgent for capturing the
data from the ControlAgent of each robot. With our notation, when an specific
agent plays a role, it is named as the role following by the word "Agent". For
example, the agent that plays the role Interface is called InterfaceAgent.

The figure 8.6 presents an overview of the roles that the agents can take.
The agents represented in blue are executed in the robots (depending on
the proximity to the image that represents HAWK or GECKO). The agents
represented in green are executed in any of the available nodes.

The agents and their associated roles required for a minimal team are:

InterfaceAgent: this role is responsible for capturing the data needed for the in-
teraction between the personnel and the vehicles. There are three specializations
of this role. The InterfaceGECKOAgent communicates with its corresponding
ControlAgent to get the data from the GECKO, and the sensors display them
in the interface (Figure 8.5). The InterfaceHAWKAgent communicates with
its corresponding ControlAgent to get the data from the HAWK and sensors
display them in the interface (Figure 8.4). Finally, the TeamInterface interacts
with the ControlAgent of all the vehicles and teams and with the Movement-
ControllerAgent to get and show the position of all the teams working at every
moment. Moreover, it receives an alert from the AlertColisionAgent if two
vehicles will collide or from the MovementControllerAgent in case two different
teams explore the same area. Other alerts can be also configured.

ControlAgent: this agent runs on the node physically located inside the vehicle.
It encapsulates the logic and functionality needed when controlling the specific
vehicle. It is based on information received from the sensor agents in conjunction
with possible control commands arriving from the interface agents. Therefore,
this agent offers a control service to handle the movements of the vehicle. It
uses the information obtained by the SensorAgents. In the same way that
the SensorAgent, it has two specializations, the ControlHAWKAgent and the
ControlGECKOAgent.

SensorAgent: this agent role refers to each of the vehicle sensors participating
in the system. It runs in the node located in the robot vehicle, and may vary
depending on the purpose of practical case or vehicle (SensorHAWKAgent or
SensorGECKOAgent). Their mission is to measure environmental information
for further interpretation. The most important tasks of the SensorAgent used
by the system are:

• It is in charge of picking up the wireless signal that reaches the system
and avoiding loss of connection.

200 8. Case Study

• Using the sonar, it is in charge of detecting and reporting any obstacles
in its path in order to, for example, avoid possible collisions and analyze
possible objectives.

• It uses a GPS network to locate the vehicle on the map. The objective
is to know its location at all times. This behaviour, which is performed
autonomously, supports searches conducted between waypoints. If the
GPS gets lost, this agent sends an alert to stop the movement of the
robots in its team.

• It carries a magnetometer to indicate the direction of a vehicle using the
North Magnetic Pole as a point of reference. This allows predicting the
path taken by the vehicle. This behaviour is required to autonomously
track the paths.

MovementControllerAgent: this role is deployed in any node of the system. It
is responsible for performing the calculations for the movement of GECKO and
HAWK controlling that the scanned area by HAWK at different consecutive
moments does not overlap more than a percentage set by the user in the
TeamInterface.

ScanningRouteAgent: this role is deployed in any node of the system and is
responsible for calculating the path that the multirrotor must follow to reach
the waypoints. It is possible to configure the speed to reach the points, the
height, or a timeout at the corresponding point. Thus, it is possible to explore
an area from the air autonomously. This agent receives information from the
MovementControllerAgent about the horizontal and vertical displacements
that HAWK must move to reach the waypoints WPNn of the image 8.7. In
section 8.5.1 the needed calculations will be explained in detail. Once the
displacements are known, this agent configures the WPNn to carry out the
complete scanning movement SM , from WP1a to WP9a according to the
Figure 8.7.

RouteAreaAgent: this role is deployed in any node of the system. It is responsible
for controlling the movements done by the two robots (with their possible
errors and deviations) and stores the information until the end of the mission.
Then, it presents the results of the flight. For this, it communicates with the
TeamInterface.

8.4. The problem and the VO solution 201

Figure 8.6: Proposed VO of agents

There are also two mandatory roles for each team in charge of the study of
the images transmitted by HAWK and GECKO. However, as mentioned, this
particular study is presented in [67]. This work is more oriented to rescue
tasks, while for surveillance tasks, personnel have devices with the mentioned
interfaces where they can view the images that HAWK and GECKO transmit.

ImageProcessorAgent: this agent is responsible for recognizing human patterns

202 8. Case Study

in the images. There are also two specializations of this role. For HAWK, the
ImageProcessingHAWKAgent receives the images from the air with a value
alpha = 0. For GECKO, the ImageProcessingGECKOAgent, which has the
camera in the front of the UGV, transmits the images with alpha = 90 according
to the perspective projection of the Figure 8.9. The images are transmitted
from the camera to the agent using the First-person View (FPV), also known
as Remote-person View (RPV), a method used to control a radio-controlled
vehicle from the driver or pilot’s view point [266] [376].

In the system there is also an agent that communicates with the MovementCon-
trollerAgent of each group. This agent called AlertColisionAgent receives the
coordinates for where HAWK will be positioned for the next scan. If another
HAWK has previously scanned a configurable percentage of that area, the
AlertColisionAgent launches an alert for a new calculation.

8.5 Collaboration description

This section will show, in general terms, the coordinated movements performed
by two robots. Then we will provide information about the agents that formed
the team and made the collaboration between all entities of the team possible.
The purpose of the team, or the different teams, is to cover an area with
predefined routes set by the security personnel. Currently, due to the large
area to check, the personnel have to walk all over the park after the closing
time. This is a waste of time and human resources that our proposed system
can avoid. At the same time, GECKO will be taking front images while HAWK
scans the area surrounding GECKO. As explained in section 8.5.1, this area will
depend on the flight’s altitude and the characteristics of the camera installed
in HAWK.

GECKO covers the ground and can be configured in two ways. As it has a
front camera, it can be run by the surveillance personnel through the camera
and the control software (Figure 8.5). Alternatively, waypoints can be specified
to the agent in charge of the autonomous movements of GECKO using the
mentioned control software. This agent, ScanningRouteAgent, will be explained
in section 8.5.1.

HAWK flies automatically over the area surrounding GECKO. The HAWK is
always autonomous but alerts can be sent for an emergency stop. The same
alarm system controls possible collisions with other teams. If the connection
is lost, HAWK stops automatically; and if the disconnection persists, HAWK
automatically returns to the starting point of the flight.

8.5. Collaboration description 203

The Figure 8.7 shows the flight path of HAWK and what will now be referred to
as the scanning movement, SM , formed by nine waypoints (WP1a, . . . ,WP9a),
all of them calculated automatically by the ScanningRouteAgent using the
information provided by the MovementControllerAgent. Each small rectangle
of the image shows the field of view from the waypoints more distant that
HAWK can reach , in this way, the combination of the 9 rectangles will form
the field of view after performing the the SM .

Figure 8.7: Waypoints that must follow HAWK

The main steps of the process are presented in Figure 8.8. The image is also
simplified since all the agents involved in the process are omitted (in the section,
these agents will be presented). These steps are:

1. GECKO stops in a GPS coordinate and shares this coordinate with
HAWK. Then, HAWK flies to that position until arriving just over
GECKO.

2. HAWK scans the area around the initial GPS coordinate (sent by
GECKO) to take images

3. While the previous is performing, GECKO begins to move to the next
stop point. This stop corresponds to a GPS coordinate which is calculated
by the MovementControllerAgent, which will be describe in section 8.5.1.

4. HAWK starts its movement towards the place where GECKO is located.

5. HAWK receives the exact new start position where it carry out a new
scanning movement, SM .

6. HAWK repeats the SM over the surroundings of GECKO.

204 8. Case Study

Figure 8.8: General steps of the coordinated movement

As observed in the experiments, the maximum speed of the team is largely
determined by the meteorological conditions, since the flying capabilities of
HAWK get worse with adverse environmental conditions. It is also reduced by
the rectangular SM performed by HAWK in each cycle.

Both HAWK and GECKO send the images that they have taken to the agents in
charge of analyzing them. These agents will play the role ImageProcessorAgent
(see section 8.4.1). This step can be very useful for locating people more quickly
during search efforts in large areas. The work related to the analysis of the
images is not the object of this dissertation but it can be consulted in [67].

8.5.1 Calculations for the collaborative movement

The algorithm 4 shows the behavior of the agent that plays the role Move-
mentControllerAgent during the execution of the surveillance task. The initial
parameters that it receives are: the GECKO’s position (in a GPS measurement)
through its SensorAgent, the HAWK’s height, also through its SensorAgent,
and a percentage value of the maximum area that the system will allow to
overlap between two consecutive SM . This value is chosen by the personnel
and get through the TeamInterfaceAgent. This algorithm is in permanent
execution while GECKO is moving. For each iteration of the loop, the agent
requests the GECKO’s position from the SensorAgent. At the end, a stop

8.5. Collaboration description 205

command is sent to the RouteAgent of GECKO. This command includes the
actual GPS position in which GECKO has to stop and HAWK has to start the
next scan. Likewise, this position is sent to agent ScanningRouteAgent HAWK
to take the position as the center of the next scanning movement.

Algorithm 4 Procedure MovementControllerAgent
1: procedure calculateNewPosition(GPSLati, GPSLongi,
HAWKHeight, threshold)

2: repeat
3: (GPSLatf , GPSLongf , angle)← getPositionGECKO()
4: percCommonArea← commonAreaCalculation(GPSLati,
GPSLongi, GPSLatf , GPSLongf , HAWKHeight, angle)

5: until percCommonArea > threshold
6: sendStopRouteArea(GPSLatf , GPSLongf)
7: sendScannigRouteAreaAgentPosition(GPSLatf , GPSLongf)
8: end procedure

The algorithm 5 presents the calculations needed to obtain the percentage of
the overlapped area between two consecutive positions.

Algorithm 5 Common Area Calculation
1: procedure commonAreaCalculation(GPSLati, GPSLongi,
GPSLatf , GPSLongf , HAWKHeight, angle)

2: Ci ← cornersProjection2Dto3D()
3: scannedArea← areaCalculation(Ci)
4: (∆xG,∆yG)← GPStoXY (GPSLati, GPSLongi, GPSLatf , GPSLongf)
5: Cf ← cornersProjection2Dto3D(∆xG,∆yG, angle)
6: crossPoints← rectangleCrossPoints(Ci, Cf)
7: convexV alues← convexHull(Ci, Cf)
8: commonArea← polygonArea(convexV alues)
9: percCommonArea← commonArea/scannedArea
10: return percCommonArea
11: end procedure

8.5.1.1 Corners projection

The first step is to obtain the images captured in different consecutive instants
of time. The images are captured by an onboard camera facing the ground at
an angle α and height Z0, as shown in Figure 8.9.

206 8. Case Study

Figure 8.9: Camera placement

To calculate the common area it is first necessary to calculate the four corners
that form the field of view that HAWK reaches after its autonomous scanning
movement SM (Figure 8.7). To calculate the real position of each point, it is
necessary to know the intrinsic and extrinsic parameters of the camera. Using
descriptive geometry (8.1, 8.2) the position in the space of a pixel in the image
is calculated. For this, we take a known dimension. All the points of the images
are considered in the surface of the ground, ie, Z = 0.

Y = ((λy ·Z0 ·φ) + (yi · ρ ·Z0)) + (yi · ρ)
((λy · ρ)− (yi ·φ)) (8.1)

X = (xi ·Y ·φ) + (xi ·Z0 · ρ) + (xi ·λX)
λX

(8.2)

where (xi, yi) is the point of the images, measured in millimeters, from which the
projection will be calculated inside the size of the CCD of the camera; (λx, λy)
is the focal length of the camera; Z0 is the height in millimeters where the
camera of the HAWK is located; φ y ρ are the sinα and the cosα, respectively;
α is the orientation angle of the camera. In our case, the HAWK camera is
always oriented to the ground, then, α = 0. After these calculations, we know
the four corners that form the HAWK’s field of view after its autonomous
movement. In Figure 8.10 the points are (C1, C2, C3, C4). These are stored in
the vector Ci.

8.5. Collaboration description 207

Figure 8.10: Corners of the field of view

The corners that form the field of view in the case of HAWK have to be placed
in the position where GECKO is after the movement. They are stored in Cf .
Because this position is determined by GPS coordinates, they must previously
be transformed to Cartesian coordinates using the initial point of GECKO as
the origin. The HAWK movement is determined by the values (∆xG,∆yG)
and the change of orientation suffered by GECKO stored in angle.

The new field of view will have the same area as the previous one, if the height
of flying HAWK is maintained. With the advancement and possible rotation of
GECKO, the coordinates of the final corners must be recalculated according to
the starting point. To do so, the corresponding translation and rotation matrix
must be applied (8.3).

Cf =

xfyf
1

 =

cos(angle) − sin(angle) ∆x
sin(angle) cos(angle) ∆y

0 0 1

 ·
xiyi

1

 (8.3)

Therefore, the end points of the corners used in the coordinate system, which
is centered in the initial position of GECKO, are calculated according to the
equations (8.4) y (8.5).

xf = xi cos(angle)− yi sin(angle) + ∆x (8.4)
yf = xi sin(angle) + yi cos(angle) + ∆y (8.5)

208 8. Case Study

8.5.2 Common area calculation

Once the limits of the field of view in both positions are known, the next step is
to calculate the points that are visible in both fields. The algorithm 6 presents
the steps to calculate the intersections between the two fields of view. To do
this, the points where the lines delimiting each one of rectangles (fields of views)
intersect must be calculated.

Algorithm 6 Rectangle Cross Points
1: procedure rectangleCrossPoints(Ci, Cf)
2: for ci = Ci[1] to Ci[3] do
3: Si ← segment(ci, next(ci))
4: for cf = Cf [1] to Cf [3] do
5: Sf ← segment(cf , next(cf))
6: Cp ← segmentCross(Si,Sf)
7: if Cp then
8: Ec ← cornersInsideP(Ci, Cf , Cp)
9: end if
10: end for
11: end for
12: crossPoints← {Cp}+ {Ec}
13: return crossPoints
14: end procedure

Figure 8.11: Corners of the field of view

Two consecutive corners form a linear segment delimiting that field. For each
segment of the initial field of view, Si, the crossing points are checked with all
the segments of the other rectangle of view, Sf ; in Figure 8.11, the points are
P1, P2. These points are stored in the vector Cp. If there is a cross between
two segments, we must determine which segment extremes form the common
area, Ec, in figure 8.11 the points are P2, P3. The result of this process is a

8.5. Collaboration description 209

cloud of points that includes the crossing points and the crossing corners of
each rectangle that belong to the common area, crossPoints.

To obtain the polygon P with the maximum area formed by a cloud of points,
the function of convex hull [98] is used. P describes the common points in both
fields of views. Later, the area of P is calculated, commonArea. And finally,
the only thing left to calculate is the percentage of the common area with
respect to the total scanned area at the initial moment, percCommonArea
(8.7).

percCommonArea = commonArea

scannedArea
· 100% (8.6)

8.5.3
Calculation of horizontal and vertical move-
ment for the HAWK waypoints

To indicate the ScannigRouteArea, that is, the horizontal and vertical displace-
ment that enables configuring the waypoints of HAWK’s navigation, we should
again take the following equations into account: (8.1, 8.2). As shown in Figure
8.12, if the rectangle represents the dimensions of the CCD of the camera
(dix, diy), then the displacement from the midpointM1 of the rectangle to the
next midpointM2 of the bottom rectangle is equal to diy. The same happens
for the horizontal displacement, the distance fromM3 toM4 is equal to dix.

Figure 8.12: Dimensions of the CCD in relation to the displacement of HAWK

Therefore, knowing these measures in the image, the projection can be calculated
with (8.1, 8.2). For the vertical distance, and using the center of the coordinates

210 8. Case Study

at pointM1 where the movement SM starts, we haveM1 = (x1, y1) = (0, 0).
Applying the mentioned equations, the new values of the point in the projection
are:

Y1 = λy ·Z0 ·φ
λy · ρ

= Z0 ·φ
ρ

(8.7)

X1 = 0
λy

= 0 (8.8)

The second point corresponds to the point M2 = (x2, y2) = (0, diy), in the
projection according to the equations:

Y2 = ((λy ·Z0 ·φ) + (diy · ρ ·Z0)) + (diy · ρ)
((λy · ρ)− (diy ·φ)) (8.9)

X2 = 0
λy

= 0 (8.10)

Therefore, the vertical distance yDist betweenM1 andM2 is:

yDist =
√

(X2 −X1)2 + (Y2 − Y1)2 =
√

0 + (Y2 − Y1)2 = Y2 − Y1 =

= ((λy ·Z0 ·φ) + (diy · ρ ·Z0)) + (diy · ρ)
((λy · ρ)− (diy ·φ)) − Z0 ·φ

ρ

(8.11)

where diy, λy, φ and ρ are constants while the camera does not change,
and then, the distance only depends on the height Z0 of the HAWK flying,
yDist = f(Z0).

For the horizontal distance, as observed in Figure 8.12, the horizontal dis-
placement corresponds to the distance fromM2 toM3, which is equal to dix.
Considering the center of the coordinates again where the movement starts,
in the pointM2, we haveM2 = (x2

′, y2
′) = (0, 0). Applying the mentioned

equations, the new values of the point in the projection are:

Y2
′ = λy ·Z0 ·φ

λy · ρ
= Z0 ·φ

ρ
(8.12)

X2
′ = 0

λy
= 0 (8.13)

8.6. Deployment of the involved agents 211

Then, the following point would be the point corresponding to the point
M3 = (x3, y3) = (dix, 0) in the projection, according to the equations::

Y3 = Z0 ·φ
ρ

(8.14)

X3 =

(
dix ·Z0 · φ

2

ρ

)
+ (dix ·Z0 · ρ) + (dix ·λX)

λX

(8.15)

Therefore, the horizontal distance xDist between M2 and M3, taking into
account Y2

′ = Y3, is:

xDist =
√

(X3 −X2
′)2 + (Y3 − Y2

′)2 =
√
X3

2 + (Y3 − Y2
′)2 = X3 =

=

(
dix ·Z0 · φ

2

ρ

)
+ (dix ·Z0 · ρ) + (dix ·λX)

λX

(8.16)

where dix, λy, φ and ρ are constants and the horizontal distance only depends
on the height Z0 of the flight of HAWK, xDist = f(Z0).

Once we know the functioning and responsibilities of the roles involved in the
case study, in the next section we will explain the hardware specifications for
the deployment of the robot teams.

8.6 Deployment of the involved agents

For the deployment of the system, we have three different types of nodes with
the following characteristics:

• Type 1: Intel Core 2 Duo at 3.00 GHz and 4Gb RAM. As operating system,
it has a Fedora 20 kernel 3.10.22 and the real-time patch RT-PREEMPT
(patch-3.10.22.rt20). The RTJVM is the JamaicaVM Personal Edition
6.2.

• Type 2: i7-3630QM at 3.40 GHz and 8Gb RAM. As operating system, it
has a Fedora 19 kernel 3.12.11 and the real-time patch RT-PREEMPT
(patch-3.12.11.rt19). The RTJVM is the JamaicaVM Personal Edition
6.2.

212 8. Case Study

• Type 3: Raspberry Pi Single Board Computer (SBC) at 700MHz processor
and 512MB RAM with a Raspbian kernel 3.12.1 and the real-time patch
RT-PREEMPT (patch-3.12.1-rt4). The RTJVM is the FijiVM Academic.

We have 10 nodes, the type of each node can be seen in the table 8.1.

Node 1 Type 3 (Raspberry Pi)
Node 2 Type 3 (Raspberry Pi)
Node 3 Type 2 (Intel i7-3630QM)
Node 4 Type 1 (Intel Core 2 Duo)
Node 5 Type 1 (Intel Core 2 Duo)
Node 6 Type 3 (Raspberry Pi)
Node 7 Type 3 (Raspberry Pi)
Node 8 Type 2 (Intel i7-3630QM)
Node 9 Type 1 (Intel Core 2 Duo)
Node 10 Type 1 (Intel Core 2 Duo)

Table 8.1: Relation between the nodes and their characteristics

The agents related to the interfaces of the team or the vehicles (TeamInter-
faceAgent, InterfaceHAWKAgent, InterfaceGECKOAgent) are executed in
independent nodes which are not taken into account since the hard real-
time constraints are nor applied to the interface applications. The agents
of PANGEA+RT itself are executed in another node which is specifically re-
served because it is not necessary that these agents interact in real-time. As
we explained in the chapter 7, these agents are: the OrganizationAgent, the
ManagerAgent, the NormAgent, the InformationAgent and the ServiceAgent.
Nevertheless, the PlannerAgent is included in the real-time environment in
order to bound its execution time (the MAP algorithm and the Branch and
Bound methods are included in the proposed model to reduce the execution
time). Its purpose is to generate a new planning and task allocation when a
change occurs, i.e., a new agent enters the organization, an agent wants to
change its role, a node fails, etc. For this, the PlannerAgent uses the remaining
computational capacity of any of the available nodes.

In the proposed model, as we explained in chapter 4, we use the basic schedu-
lability condition for the RM proposed by Liu and Layland [221], which is
taken into account in the constraint 2 of the model for the task allocation.
The schedulability bound of RM decreases with the number of tasks, N , as
Butazzo [63] demonstrate in 8.17.

lim
N→∞

N(21/N − 1) = ln2 ' 0.693 (8.17)

8.7. Conclusions 213

This means that the capacity of any node is 69.3% applying our model. When
the PlannerAgent needs to execute, it uses the remaining percentage of one
node. In the next chapter, we will present the results related to the rest of the
agents and nodes involved in the case study.

8.7 Conclusions

In this chapter we have presented the case study with the vehicles and the
agents involved. The vehicles HAWK and GECKO were developed by the
BISITE research group and together with the proposed model included in the
PlannerAgent, another innovative aspect of this proposal is the mechanism
developed for their collaboration. All the collaboration was carried out using
agents integrated in different VOs and using the infrastructure provided by
PANGEA+RT.

We include a basic design of VOs which is limited by the number of available
robots and in chapter 10, we include the study of more complex VOs as future
work.

This is a real case study since the system can be used for surveillance tasks as
we have demonstrated in the Valcuevo leisure park. In the next chapter, we
will show the results obtained when the complete system is executing using the
proposed model and the PANGEA+RT platform .

9
Results of the Proposed

Model
In this chapter, we present the results related with the proposed method and
the case study previously explained. The chapter is composed of three main
sections, in first place we present some general tests carried out to verify the
model for the WCET estimation presented in the section 11.3 of the chapter 4.
We dedicated a special section to this with an easier example using the Bubble
Sort Algorithm because the generated graphs in the case study are impossible
to represent in an image that fits in this document. Later, we include the
results obtained when we applied the model with the agents proposed in the
case study for the collaboration of heterogeneous robots for surveillance tasks
presented in the chapter 8. And as the third part, we show some results of
the mathematical collaboration model for scanning areas. This model was also
presented in chapter 8 but, specifically in section 8.5. Finally, as conclusions
we present some qualitative advantages that the PANGEA+RT provided for
the development of the whole case study.

Contents
9.1 General evaluation of the model 216

9.1.1 WCET evaluation . 216
9.2 Case study results . 225
9.3 Results of the collaboration search 229
9.4 Conclusions . 232

216 9. Results of the Proposed Model

9.1 General evaluation of the model

In this section, we have to distinguish two different subsections. The first one
is devoted to the evaluation of the WCET predicted with the proposed model
and the second part shows the results of the task allocation model.

9.1.1 WCET evaluation

For the node evaluation, we use tree nodes each one corresponding with the
three types presented in the previous chapter 8. This means node 1 is the type
1, node 2 is type 2 and node 3 is type3.

With the designed program described in chapter 4 we perform the test to
obtain the time execution in nanoseconds of each bytecode. In the tables 9.1
and 9.2, we present the results in nanoseconds corresponding to the most used
bytecodes in each node. To get these results each bytecode has been executed
in 1000 blocks of 5000000 executions per block. The column "Error Rate"
corresponds with maximum difference in nanoseconds between the 1000 blocks
of executions.

The results of the execution time of some bytecodes are presented in a compar-
ative graph (Figure 9.1) corresponding to the data in tables 9.1 and 9.2. The
corresponding bytecode is represented in the x-axis of the graph and the time
in nanoseconds taken to execute it in the y-axis .

Bytecode Node 1 Node 2 Error Rate
iconst_[0-5] 4,7126 ns 3,1612 ns 0,01 ns
lconst_[0-5] 6,9756 ns 4,2986 ns 0,01 ns

lcmp 44,3769 ns 29,2526 ns 0,01 ns
dup 6,0662 ns 3,1816 ns 0,01 ns

bipush 7,3112 ns 5,3088 ns 0,01 ns
sipush 10,9586 ns 8,0544 ns 0,03 ns

dup_x[1-2] 30,5263 ns 17,3002 ns 0,02 ns
if_icmpgt 15,8049 ns 18,5756 ns 0,04 ns

ddiv 56,2395 ns 32,2563 ns 0,04 ns
pop 6,5632 ns 4,9568 ns 0,01 ns
if_eq 16,4586 ns 12,3689 ns 0,03 ns
frem 72,2365 ns 44,287 ns 0,04 ns

Table 9.1: Bytecode execution in Nodes 1 and 2

9.1. General evaluation of the model 217

Bytecode Nodo 3 Error Rate
iconst_[0-5] 25,0796 ns 0,05 ns
lconst_[0-5] 38,0464 ns 0,06 ns

lcmp 195,0205 ns 0,07 ns
dup 32,8319 ns 0,03 ns

bipush 39,0198 ns 0,03 ns
sipush 58,0805 ns 0,04 ns

dup_x[1-2] 160,8704 ns 0,09 ns
if_icmpgt 82,7686 ns 0,09 ns

ddiv 301,813 ns 0,05 ns
pop 35,0369 ns 0,05 ns
if_eq 87,6744 ns 0,06 ns
frem 332,0282 ns 0,05 ns

Table 9.2: Bytecode execution in Node 3

Figure 9.1: Time execution of some bytecodes in node 1, 2 and 3

Now, we evaluate a piece of code of the Bubble Sort Algorithm. First, we
present the Java code used (9.1).

1 pub l i c s t a t i c void t e s t () {
2 i n t [] a = new in t [1 0] ;
3 f o r (i n t ind=0; ind <10; ind++){
4 a [ind] = randInt (0 , 10) ;
5 }
6 i n t i , j , v1 , v2 ;
7 time1 = System . cur rentT imeMi l l i s () ;
8 f o r (i =9; i >0; i−−){
9 f o r (j =1; j<=i ; j++){
10 v1 = a [j −1] ;
11 v2 = a [j] ;

218 9. Results of the Proposed Model

12 i f (v1 > v2) {
13 a [j] = v1 ;
14 a [j −1] = v2 ;
15 }
16 }
17 }
18 time2=System . cur rentT imeMi l l i s () ;
19 t e s t = t e s t + time2 − time1 ;
20 }

Programming Code 9.1: Test in Java

An example of some executions in the node 2 gives the following results (Figure
9.3). In the first column the time of the best case is presented, in this case the
10 element-array is fully ordered and the code included in the if-comparison is
never executed. In the second column the time of the worst case is presented.
This case happens when the 10 elements array is fully disordered and the code
included in the if-comparison is always reached. In the last column, we present
some executions with the array randomly initialized. Each row correspond
with the WCET of 5000 tests.

Test Best Case Worst Case Random Case
WCET 1 5589 ns 8695 ns 7475 ns
WCET 2 5574 ns 8654 ns 7436 ns
WCET 3 5584 ns 8692 ns 7391 ns
WCET 4 5500 ns 8670 ns 7333 ns
WCET 5 5524 ns 8692 ns 7491 ns
WCET 6 5568 ns 8668 ns 7455 ns
WCET 7 5562 ns 8679 ns 7500 ns
WCET 8 5559 ns 8690 ns 7499 ns
WCET 9 5578 ns 8682 ns 7498 ns
WCET 10 5529 ns 8687 ns 7402 ns
Error Rate 0.089 ns 0.041 ns 0.166 ns

Table 9.3: Example of some executions

In table 9.4, we show a brief description of the bytecodes included to understand
the flow and in the second column the WCET estimation in the node 2 (necessary
to the next step) is presented.

Bytecodes WCET Node 2 Description
invokestatic 171 ns invoke a static method, where the

method is identified by method reference
index in constant pool (in the example
#14)

9.1. General evaluation of the model 219

putstatic 110.5158 ns set static field to value in a class, where
the field is identified by a field reference
index in constant pool (in the example
#15)

bipush 5.3088 ns push a byte onto the stack as an integer
value (in the example value 9 at the
beginning of the loop)

istore_1 5.9975 ns store int value into variable 1
iload_1 4.3539 ns load an int value from local variable 1

ifle 16.7540 ns if value is less than or equal to 0, branch
to instruction at branchoffset (in the ex-
ample the offset is +50, to the instruc-
tion 88 that finish the initial for-loop)

icons_1 3.1612 ns load the int value 1 onto the stack
istore_2 5.9975 ns store int value into variable 2
if_icmpgt 26.5756 ns if value1 is greater than value2, branch

to instruction at branchoffset (in the
example, the offset is 37 which lead to
the instruction 82, the end of the second
for-loop)

aload_0 6.0978 ns load a reference onto the stack from local
variable 0

if_icmple 22.2732 ns if value1 is less than or equal to value2,
branch to instruction at branchoffset (n
the example, the offset is 14 to reach
the instruction 76, the end of the if-
comparison)

iinc 10.8821 ns increment local variable #index by
signed byte const (next iteration of the
loop)

goto 4.1158 ns goes to another instruction at branchoff-
set (in the example, -36 to reach the
second for-loop or -48 to the first for-
loop)

Table 9.4: Bytecodes involved in the example

With this data, we can build the annotated control flow graph (aCFG). The
arcs contain labels showing how often the between the two basic block (vertex),
BB are taken. If N is size of the array and N = 10, then the number of
iterations of the outer for-loop is one less than the array size: F1 = N − 1 = 9.

220 9. Results of the Proposed Model

The inner for-loop is executed (9.1):

F2 =
F1∑
i=1

i = F1(F1 + 1)
2 (9.1)

The figure 9.2 corresponds to the generated bytecodes after the initial-
ization of the array. It can be seen the two calls to the method
System.currentTimeMillis() at the beginning and at the end of the or-
dering process. In the example, F2 = 45 times. The outer for-loop consist on
the BBs from B3 to B8 and the inner for_loop consist on the BBs from B5
to B7.

Figure 9.2: Screenshot of the bytecodes in the JBE tool

The figure 9.3 shows the corresponding graph. As explained in chapter 4, the

9.1. General evaluation of the model 221

complexity of analysing a graph is exponential depending on the depth of the
conditional statements. As this method can take a long time to calculate, we
use the improvement called IPET (see section 4.3.2.2).

Figure 9.3: CFG of the example

We define the following ILP problem according to the constraints 1 and 2
and the objective function according to the equation 4.2. Then, the objective
function is:

WCETP = max (τ1x1 + τ2x2 + τ3x3+
+ τ4x4 + τ5x5 + τ6x6 + τ7x7 + τ8x8) (9.2)

where we can substitute the cost τBB of each BB and the equation of the
objective function is:

WCETP = max (11.3063x1 + 21.104x2 + 35.60x3 + 46.975x4+
30.981x5 + 46.975x6 + 14.9921x7 + 14.9921x8 (9.3)

222 9. Results of the Proposed Model

The structural constraints are:

x1 = d0 ; x1 = d1 ; x2 = d1 ; x2 = d2 + d11 ;
x3 = d2 + d8 ; x3 = d3 + d9 ; x4 = d3 ; x4 = d4 ;

x5 = d4 ; x5 = d5 + d7 ; x6 = d5 ; x6 = d6 ;
x7 = d7 + d6 ; x7 = d8 ; x8 = d9 ; x8 = d10 (9.4)

And finally, the functional constraints are:

d10 <= 8 ∗ d1 ; d8 <= 8 ∗ d2 (9.5)

We solve this IPL problem with the Simplex Algorithm obtaining a value
of WCETP = 8732.35 with corresponds with the nanoseconds of the worst
execution time. The comparison between the estimated and the real execution
time is shown in table 9.5 and figure 9.4.

Test WCETBS Worst Case Error Rate
WCET 1

8732 ns

8695 ns 0.037 ns
WCET 2 8654 ns 0.078 ns
WCET 3 8692 ns 0.040 ns
WCET 4 8670 ns 0.062 ns
WCET 5 8692 ns 0.040 ns
WCET 6 8668 ns 0.064 ns
WCET 7 8679 ns 0.053 ns
WCET 8 8690 ns 0.042 ns
WCET 9 8682 ns 0.050 ns
WCET 10 8687 ns 0.045 ns
Average 8732 ns 8681.5 ns 0.0505 ns

Table 9.5: Comparison between the real WCET execution and WCET estimation

9.1. General evaluation of the model 223

Figure 9.4: Real WCET execution and WCET estimation

9.1.1.1 Statistical adaptation of the WCET

The Bubble Sort Algorithm was used again to improve the estimated WCET
with the statistical method. The execution time of this algorithm in the worst
case, that is, with sorted in the opposite direction values, gives a value of
8695 ns. On the other hand the execution time in the best case, that is, with
the elements sorted, was 5500. The execution time cannot be established
beforehand because it depends on the data. The number of elements to be
sorted was fixed at 100. The system generated 30 sets of random values, after
which the bubble algorithm was applied. This process was repeated 30 times
and the execution time was stored. The system then calculates the execution
time of 30 new sets of values. The WCET was predicted using confidence
intervals and atypical values. The average confidence interval with unknown
variance was calculated using a t-student and a normal distribution. The
WCET is established by the upper bound in the average confidence intervals
with α = 0.01.

The Tables 9.6 and 9.7 shows the obtained values. The t-student column shows
the upper bound obtained from the last 30 execution times, the next column
shows the difference with the real value. The WCET is similarly calculated
using a normal distribution. The atypical column shows the WCET using
atypical values. In this case, the system does not obtain negative values, which
means that the system does not any have predictions out of range. However,
if the system received a completely unordered list, this value would probably

224 9. Results of the Proposed Model

have exceeded the estimated WCET; if several unordered lists arrived, the
WCET would adapt to the new executions.

WCET (ns) t-student Difference Normal Difference
7416 7451.22896 35.2289595 7448.94947 32.9494676
7597 7448.84527 -148.154726 7446.60111 -150.398893
7422 7458.52503 36.5250273 7455.95101 33.9510149
7421 7459.37655 38.3765544 7456.81346 35.8134584
7472 7461.0146 -10.9854015 7458.53978 -13.4602191
7334 7460.1068 126.106803 7457.65367 123.653667
7393 7457.23689 64.2368862 7454.70778 61.7077768
7518 7453.02248 -64.9775214 7450.54945 -67.4505466
7429 7454.1112 25.1112041 7451.60319 22.6031942
7442 7451.0122 9.01220297 7448.56839 6.56839434
7355 7452.34366 97.3436615 7449.89683 94.8968284
7374 7449.89236 75.8923608 7447.4123 73.4123001
7372 7448.2587 76.2587041 7445.76357 73.763567
7340 7448.91851 108.918515 7446.55512 106.555119
7344 7446.31073 102.310734 7443.89478 99.8947828
7308 7445.00951 137.009507 7442.54455 134.544551
7617 7442.21846 -174.781536 7439.65513 -177.344868
7508 7452.89949 -55.1005132 7449.94929 -58.050706
7478 7458.15306 -19.8469365 7455.14628 -22.8537216
7445 7458.64914 13.6491394 7455.63197 10.6319699
7500 7461.50437 -38.4956316 7458.55239 -41.4476065
7469 7466.12817 -2.87182815 7463.15405 -5.84595025
7504 7468.55537 -35.4446262 7465.57356 -38.4264405
7491 7471.90587 -19.0941288 7468.87694 -22.1230591
7488 7474.97016 -13.0298444 7471.91752 -16.0824753
7430 7478.0407 48.0406992 7474.97577 44.9757664
7444 7479.96625 35.9662527 7477.02064 33.020638
7458 7481.16738 23.1673812 7478.23544 20.2354396
7435 7481.02036 46.020356 7478.08974 43.0897374

Table 9.6: Values of the statistical adaptation of the WCET (I)

Atypical Difference
7668 252
7652 55
7668 246

7657.5 236.5

9.2. Case study results 225

Atypical Difference
7651.5 179.5
7651.5 317.5
7657.5 264.5
7637 119
7637 208
7603 161
7603 248
7641 267

7669.5 297.5
7665 325

7670.5 326.5
7679.5 371.5
7700.5 83.5
7726.5 218.5
7768.5 290.5
7768.5 323.5
7743 243
7751 282
7763 259
7781 290
7819 331
7839 409

7807.5 363.5
7807.5 349.5
7807.5 372.5

Table 9.7: Values of the statistical adaptation of the WCET (II)

9.2 Case study results

As explained in the previous chapter and shown in figure 8.6, we have 9 agents
per team and the AlertCollisionAgent that is the only one for both teams.
We have as maximum 10 nodes of computation as explained in the previous
chapter.

We have to add four more constraints per team. This is due to the node 1 cor-
responds to the Raspberry Pi of GECKO and the agents ControlGECKOAgent
and SensorGECKOAgent must be executed in such node. Moreover, the node 2

226 9. Results of the Proposed Model

corresponds to the Raspberry Pi of HAWK and the agents ControlHAWKAgent
and SensorHAWKAgent must be executed in this node. The constraints are
expressed in the equation 9.6.

x1
1 = 1, x1

2 = 1, x2
3 = 1, x2

4 = 1
x6

10 = 1, x6
11 = 1, x7

12 = 1, x7
16 = 1 (9.6)

The figure 9.5 presents the utilization factor ρji where: i represents the task
and j the computational node. The results are obtained with the proposed
WCET estimation model. The value −1 is assigned to the nodes where the
task cannot be executed according to the equations 9.6.

With these values, we can obtain the results of the proposed task allocation
model shown in the table 9.8. The nodes appear in the first column and the
tasks allocated to such node in the second column. For the third column, we
calculate final utilization factor of the node, ρj , using the values ρji of the
previous figure 9.5 and with the formula 9.7.

ρj =
Nj∑
i

ρji (9.7)

where Nj is the number of tasks allocated in the node j.

The last column corresponds with the remaining capacity of each node, φj . The
theorem 1 of Liu and Layland and the equation 4.10 is used to the calculation
(formula 9.8).

φj =
{
Nj(21/Nj − 1)− ρj if N > 0
1 if N = 0

(9.8)

9.2. Case study results 227

Figure 9.5: Results of the utilization factor ρj
i

The value of the objective function is 9 and the node 5 is free of tasks. The
nodes 1, 2, 6 and 7 are the ones with more remaining capacity (φj = 0.67),
nevertheless, if the table in the figure 9.5 is consulted, there is no possibility to
assign any other agent because of two possible reasons: (i) all the remaining
tasks in these nodes have φji = −1 what means that the tasks cannot be
assigned to such nodes or (ii) all the remaining tasks in these nodes have

228 9. Results of the Proposed Model

Node Agent (ρji)
Utilization
Factor ρj

Current Remaining
Capacity φj

1 1 (0.02) and
2 (0.13) 0.15 0.67

2 3 (0.02) and
4 (0.13) 0.15 0.67

3 7 (0.37) and
16 (0.37) 0.74 0.088427

4
8 (0.18), 9 (0.15),
17 (0.18) and
18 (0.15)

0.66 0.096828

5 Empty 0 1

6 10 (0.02) and
11 (0.13) 0.15 0.67

7 12 (0.02) and
13 (0.13) 0.15 0.67

8 19 (0.45) 0.45 0.55

9 6 (0.36) and
15 (0.36) 0.72 0.108427

10 5 (0.36) and
14 (0.36) 0.72 0.108427

Table 9.8: Results of the task allocation model

their φji with a value that would exceed the allowed utilization factor, i.e.,
ρj > 21/Nj − 1 .

In the node 8 there is only one task i = 19. In order to test the model, we
manually adapt the values of φj19 to verify that in this case, the task is allocated
to a different node and the number of nodes needed is reduced to 8 instead of
9. In the table 9.9, we show the adapted values.

Agent 19
AlertCollisionAgent
ρj19 Before ρj19 After

Node 3 0.45 0.08
Node 4 0.39 0.06
Node 5 0.39 0.06
Node 8 0.45 0.08
Node 9 0.39 0.06
Node 10 0.39 0.06

Table 9.9: Modification of the ρj
19

With these new values, the value of the objective function is 8. This means
that two nodes suffer modifications, the task 19 is now allocated to the node 4

9.3. Results of the collaboration search 229

and the node 8 is now empty. This is the best solution in this case. The results
are shown in the table 9.10.

Node Agent (ρji)
Utilization
Factor ρj

Current Remaining
Capacity φj

4
8 (0.18), 9 (0.15),
17 (0.18), 18 (0.15)

and 19 (0.06)
0.72 0.023492

8 Empty 0 1

Table 9.10: Results of the scheduling and task allocation model

9.3 Results of the collaboration search

The results presented in this section correspond to the model explained in
section 8.5 of the chapter 8. The notation used is the same that in such
section.

The system was tested in the natural park of Valcuevo, owned by the Spanish
bank Caja España-Duero. This park is located in the municipality of Valverdón,
approximately 6 km away from the center of Salamanca city in Spain. It is used
for leisure and familiar activities due to its characteristics. The prototype was
used in this park for surveillance tasks and was used at closing time, to make
sure that no one was left locked inside the enclosure. Given the size and the
topographic features of the park, the prototype is ideal for this task, moreover,
the only security guard takes a long time to walk around the whole park.

The performance tests were conducted under favorable environmental conditions
(minimal winds with relatively clear skies and no harsh climate). The main
problem of the system is the duration of the batteries used for HAWK. Since
HAWK can carry about 5 kilos, we chose to add longer lasting batteries, but
the maximum flight time achieved was 19 minutes (without counting the time
of the flight back to the starting point). The battery life depends heavily
on flying height, since wind resistance is greater at higher elevations and the
meteorological conditions are worse in general. The optimal velocity of HAWK
is between 3 and 5 m/s to avoid any instability when performing the movement
SM and to capture images with the enough quality.

The Table 9.11 presents the relationship between the height Z0 of HAWK and
the characteristics of different cameras with a field of view with an area
of (FOV) and a total field of view after completing the SM (FOV SM).
In the first case, the camera used is the GoPro Hero 3 with the following

230 9. Results of the Proposed Model

characteristics: CCDdiagonal = 7.81mm;λ = 2.98mm. In the second case,
the camera Logitech HD C920 was chosen with the following characteristics:
CCDdiagonal = 8.46mm;λ = 3.67mm.

The results of the image analysis are not good when the height exceeds Z0 = 7m.
Consequently, the parameter λ must be increased, which means the camera
must simply zoom in. With these latest cases, in the Table 9.12 we can see
how FOV SM varies according to the values of λ.

Z0 = 4m Z0 = 5m Z0 = 6m Z0 = 7m

CASE 1 FOV (m2) 53.94 84.25 121.30 165.08
FOV SM (m2) 485.47 758.32 1091.8 1485.8

CASE 2 FOV (m2) 41.74 65.20 93.86 127.74
FOV SM (m2) 375.70 586.82 844.82 1149.7

Table 9.11: Results obtained by modifying the hight of HAWK and the camera

Z0 = 3m Z0 = 5m
GoPro Hero 3 λ 3,18 3,38 3,18 3,38

CCDdiagonal = 7.81mm FOV SM 239.95 200.41 665.98 556.17
$Logitech HD C920 λ 3,87 4,07 3,87 4,07

CCDdiagonal = 8.46mm FOV SM 190.19 163.84 527.78 54.63

Z0 = 7m
GoPro Hero 3 λ 3,18 3,38

CCDdiagonal = 7.81mm FOV SM 1304.9 1089.7
$Logitech HD C920 λ 3,87 4,07

CCDdiagonal = 8.46mm FOV SM 1034 8414.4

Table 9.12: Results obtained by modifying the hight and the focal lenght, λ

Both Tables 9.11 and 9.12 show that using the GoPro Hero 3 enables the device
to fly higher and, therefore, to avoid more obstacles while maintaining the
image quality for better analysis.

The Table 9.13 corresponds to the values (xDist, yDist) that the MovementCon-
trollerAgent should provide to the ScanningRouteAgent in order to calculate
the waypoints of the autonomous movement SM .

The Table 9.14 shows a summary that compiles data taken from some tests,
where LMHAWK refers to the total linear distance travelled by HAWK and
LMGECKO to the total linear distance travelled by GECKO.

As previously explained, the parameter percCommonArea can be configured
by the user and it can be change at any time during the task. Increasing this
parameter, we can make sure that no large corners remain without exploration

9.3. Results of the collaboration search 231

Z0 = 4m Z0 = 5m Z0 = 6m Z0 = 7m

CASE 1 xDist(m) 8.11 10.14 12.17 14.20
yDist(m) 6.64 8.30 9.96 11.62

CASE 2 xDist(m) 7.14 8.92 10.71 12.49
xDist(m) 5.84 7.30 8.76 10.22

Table 9.13: Results of the horizontal and vertical displacements,(xDist, yDist), for
the calculations of the movement SM

Time of
flight

HAWK
Velocity

Z0 LMHAWK LMGECKO TotalScannedArea

19min 3m/s 5m 3422m 1885m 27077m2

7m 3431m 1901m 38287m2

18min 4m/s 5m 4328m 2223m 35827m2

7m 4319m 2397m 52636m2

17min 4m/s 5m 4080m 1958m 33537m2

7m 4107m 1918m 47047m2

16min 5m/s 5m 4791m 2203m 39957m2

7m 4800m 2164m 53972m2

15min 5m/s 5m 4508m 2235m 37475m2

7m 4541m 2482m 55188m2

Table 9.14: Summary of flying results

between consecutive FOV SM movements. But in this case, more time is
required and for this time the total scanned area is also reduced.

In Figure 9.6, we can see what we call corners without exploration and observe
how they depend on the route that GECKO follows and the stop points. In
both images, the percCommonArea is the same; however, in the upper image,
GECKO follows a route almost without curves or turns while in the lower image,
the curve means that the angle of GECKO changes. The yellow indicates the
corner without exploration, which even affects a part of the path.

Figure 9.6: Changes of angle according to the path

232 9. Results of the Proposed Model

9.4 Conclusions

The most important issue that we have probed in this chapter is the suitability
and efficiency of the proposed model. We have shown the results of several
applications of the model with different values and situations. It is now
possible to distribute agents working in the same team in the most suitable
computational resources while the real-time constraints are always complied.
Moreover, the scalability of the system is remarkable; it enables new agents
with new tasks to enter the VOs and join the team or even add new teams.

From the point of view of the collaboration, we have also developed a successful
system tested in real conditions. Given the characteristics quality/price of
the vehicles, the results are good. Currently, we have only two teams, but
once the future work proposed in 9.4 is more advanced, more teams will be
added for testing. We have also demonstrated that the model proposed for the
collaborative scanning area is correct and fulfill its objectives.

The advantages of using VOs are well documented in our previous studies
[308] [305]. Traditional MAS development methodologies are not suitable for
developing systems where the members dynamically change because they assume
a fixed number of agents that are specified during the system analysis phase.
It then becomes necessary to have an infrastructure that can use the concept
of agent technology in the development process, and apply decomposition,
abstraction and reorganization methods. To solve this, the concept of VOs
emerged as a paradigm to apply organizational aspects and emergent behaviours
to open systems, which are characterized by their dynamic nature. The use of
VOs in robotics, and especially in heterogeneous teams, can be beneficial for
the following reasons:

• The concept of normativity: in any organization or group there is a
set of norms governing the operation of the group. These norms may
affect individual and collective behaviors, communications and interaction
between agents and even between different groups and organizations, and
access to the services.

• The ability to define groups with different topologies, ie, coalitions,
hierarchical, etc

• The ability to create different roles, which is one helpful mechanism used
to manage access to the system and the different organizations.

• The ability regulate the access to the services, which are identified with
the skills, abilities or behavior that each agent offers.

9.4. Conclusions 233

For these same reasons, the use of the PANGEA+RT platform is also an
advantage. PANGEA+RT covers all the mentioned issues and provides the
following desired characteristics:

• PANGEA+RT can facilitate the implementation of monitoring and con-
trolling processes for teams of agents. Additionally, organizational mech-
anisms can take advantage of the continuous monitoring of emergent
behaviours and interaction with users, to define more precise decision
making mechanisms.

• Robustness: if an agent controlling the movement of a robot fails, this
agent can be easily replaced and does not prevent the remaining robots
from performing correctly.

• Specialization: creating different functional types (roles) that specialize
in one sub-task.

• Decision capabilities: the collective work may reach high complexity tasks,
and organizational mechanisms can take advantage of the continuous
monitoring of emergent behaviours and interaction with users, to define
more precise decision making mechanisms.

• Easy robot programming because the objective is for them to work
together. This means that the individual mechanisms of each robot can
be simpler since the efficiency of the process lies in the group.

• Efficient communication and simple interoperability required to (i) fa-
cilitate interaction between agents and (ii) design open robotic societies
where new agents or robots can be dynamically incorporated to the
system or leave it.

• Encourage the integration and reuse of software without having to rewrite
implementations.

• Provide the system with enough computing resources, allowing for the
replication or distribution of tasks to balance the workload.

• Provide automatic service discovery with different configurations. A
service oriented approach facilitates the development of open systems
and the reusability of resources.

• Provide mechanisms to control emergent behaviours and to reconfigure
the groups and coalitions of agents.

In summary, the most important milestones that have been achieved with this
case study are:

234 9. Results of the Proposed Model

• To demonstrate the proper functioning of the model for the WCET
estimation and task allocation proposed in the chapter 4.

• To develop a complete system with heterogeneous agents and robotic
entities over the PANGEA+RT platform. The platform has facilitated
the development and it manages the formation of new groups as well as
the allocation of tasks through the several available nodes.

• End user products, including monitoring and controlling interfaces for
HAWK and GECKO, were also implemented, in addition to the interface
for controlling all the teams that participate in the task.

• Team members are able to work together to scan areas. And moreover,
that different teams work together to share information.

• An integral system consisting of a group of heterogeneous robots for
surveillance was developed. This system significantly helps the personnel
dedicated to this task.

• All these milestones have been achieved using an agent technology with
organizational concepts which have not yet been introduced in the field
of robotics and the real-time.

10
Conclusions and Future

Work
This chapter presents the conclusions that were obtained during this research.
The main contributions are presented, as well as possible future research, which
includes the issues that require improvement and are open to further research.

Contents
10.1 Conclusions and Main Contributions 236
10.2 Future Work . 238

10.2.1 Future lines related to the model 238
10.2.2 Future lines related to PANGEA+RT 240
10.2.3 Future lines related to the Case Study 241

236 10. Conclusions and Future Work

10.1 Conclusions and Main Contributions

This chapter describes how we achieved the proposed objectives at the beginning
of this research to validate and evaluate the initial hypothesis: it is possible
to develop a scheduling and task allocation model that successfully enables the
agents integrated into a VO to comply with their time constraints. This model
will be theoretically formalized and then implemented to evaluate the results.

The research presented in this document provides new contributions, and the
innovative integration of real-time agents in VOs. From our knowledge, this
is the first model and the first agent-platform specifically designed to develop
VOs in real-time environments. The process from establishing the hypothesis
to obtain results for the proposed model and the implemented platform has
been described throughout this document. This complies with the methodology
required to successfully validate the initial hypothesis.

The main contributions of this research are described next.

Study of related works, technologies and methodologies

At the beginning of this investigation, a study of the RTS and VO paradigms
was carried out. This study is a complete compendium with basic literature to
start future projects in related areas for new researchers. Moreover, references
to other important reference works were also included in order to provide a list
of must-read documents. This work is reflected in Part II of this document.

Design, development and test of the proposed model

With the main contribution of this dissertation presented in part III, we have
fulfilled two objectives:

• Developing an effective model for calculating the WCET when an agent
desires to form part of a virtual organization and wants to include tasks or
behavior in the real time system, i.e. to calculate the WCET in emergent
behaviours.

• Developing a model of scheduling and task allocation for the whole system,
i.e. global scheduling.

Moreover, we have shown the good results obtained when applying the model
in the Chapter 9.

Platform for real-time agents’ execution

This contribution was divided into three milestones, each one resulting in a
different version of the platform:

10.1. Conclusions and Main Contributions 237

• PANGEA: VO-oriented.

• PANGEA+R: collaborative-robotics-oriented.

• PANGEA+RT: real-time-oriented.

We can conclude that we have a complete platform that can manage VOs with
different topologies and take organizational aspects into account. PANGEA+R
supports any kind of agent including robotics and embedded agents thanks to
the lightweight MQTT protocol. And finally, in PANGEA+RT we included
real-time constraints with a scheduling and task allocation model.

Application and use of the platform in a real problem

A case study was developed to test the validity of the proposed model and the
functioning of the PANGEA+RT platform. The case study was applied in a
real environment to surveillance tasks in a leisure park called Valcuevo and
is focused on the collaboration of two robots, HAWK and GECKO, both of
which were developed by the BISITE group. The team’s job is to scan a large
peripheral area of a route chosen by the personnel. The main goal is to focus
on surveillance tasks; however, this system can be also applied to rescue tasks.
With this system, search time can be reduced as the team of robots helps
scan the search area. The current system is precisely focused on providing a
solution to help human staff with the surveillance efforts and reducing as much
as possible the amount of time invested in the exploration of areas.

Establishment of new knowledge and future research lines

The research in the field of the VO started within the BISITE group with a
national project called THOMAS; subsequently, two projects have continued
in this line:

• THOMAS Project(M’etodos T’ecnicas y Herramientas para Sistemas
Multiagente Abiertos), TIN 2006-14630-C03-03, funded by the Spanish
Ministry of Science and Innovation.

• OVAMAH Project(Organizaciones Virtuales Adaptativas: Mecanismos,
Arquitecturas y Herramientas), TIN 2009-13839-C03-03, funded by the
Spanish Ministry of Science and Innovation (Projects of non-oriented
fundamental Research).

• iHAS Project (Intelligent Social Computing for Human-Agent Societies),
TIN 2012-36586-C03-03, funded by the Spanish Ministry of Science and
Innovation (Projects of non-oriented fundamental Research).

The last project will allow us to continue and extend the development of this
research, as explained in the next section, and to apply it to other scenarios
presented in the project.

238 10. Conclusions and Future Work

We had a special interest in disseminating the experiences and progress of
this research during its development, from its earliest stages to its final form,
through various publications and attendance at conferences, workshops, etc.
that can be consulted in the Appendix of this document.

10.2 Future Work

This dissertation opens new lines of research that can be classified into three
groups. The first group includes issues related to the developed model shown in
part III, the second group is formed by the points related to the agent-platform
presented in part IV, and finally, the third group is composed of issues related
to the case study in chapter 8. They are presented next.

10.2.1 Future lines related to the model

Extent the model to bounded communication

Scheduling message communication in a network is difficult since some com-
munication media such as Ethernet do not guarantee bounded communication
delay at the media access level and do not provide priority-based arbitration.
In order to guarantee that the timing requirements of all tasks are met, the
communication delay between a sending task queuing a message, and a receiv-
ing task accessing that message, must be bounded. This total delay is termed
the end-to-end communication delay. Tindell [354] defines the four major
components that must be taken into account in an end-to-end communication
delay:

1. the generation delay: the time taken for the application task to generate
and queue the message

2. the queuing delay: the time taken by the message to gain access to the
communications device after being queued

3. the transmission delay: the time taken by the message to be transmitted
on the communications device

4. the delivery delay: the time taken to process the message at the destina-
tion processor before finally delivering it to the destination task

10.2. Future Work 239

Currently, in our model we use a I parameter to include possible delays when
a task includes communication among agents. We will improve this mechanism
according to the previously mentioned points and in some guidelines presented
by [26]. The main challenges in this field is to develop a formal model to the
delay calculation.

Handle aperiodic and sporadic tasks

The scheduling problem for aperiodic and sporadic tasks is very different from
that for periodic tasks. Scheduling algorithms for aperiodic tasks must be
able to guarantee the deadlines for hard deadline aperiodic tasks and provide
good average response times for soft deadline aperiodic tasks, even though
the occurrence of the aperiodic requests are non-deterministic. The aperiodic
scheduling algorithm must also accomplish these goals without compromising
the hard deadlines of the periodic tasks.

Two common approaches for servicing soft deadline aperiodic requests are
background processing and polling tasks. Background servicing of aperiodic
requests occurs whenever the processor is idle (i.e., not executing any periodic
tasks and no periodic tasks pending). If the load of the periodic task set is
high, then the utilization left for background service is low, and background
service opportunities are relatively infrequent. Polling consists of creating a
periodic task for servicing aperiodic requests.

In the future, we will study these proposals to adapt them to our work. Although
these types of tasks in our system are currently converted to periodic tasks,
this solution obtains worse performance results.

Resource limited systems

In our model, we suppose that enough nodes are available for all the tasks. In
the case study, we show a scenario where we overload the system and we must
use the parameter H, which indicates the importance or valuation of the task
inside the system (see section 11.4). But this may result in some tasks with a
lower level of importance being missed.

We will improve the proposal under conditions of limited or changing resource
availability where the system can exhibit an inefficient and erratic behavior, or
low or unacceptable utility. When a resource failure occurs, the system may
not have sufficient resources to redistribute important tasks. This limitation
will be taken into account in the future.

Supported Languages in Class Annotation

Agents implemented in various languages can be deployed in the PANGEA+R
platform, but PANGEA+RT has only implemented the mechanism for annotat-
ing classes in Java. Currently, if a real-time agent written in another language

240 10. Conclusions and Future Work

wants to be integrated into the platform, it must provide the WCET with an
explanation of its tasks.

The next step in this line is to include the class annotation for C++ in
PANGEA+RT. So far, most of the frameworks to annotate in C++ are oriented
to information-flow security and policies [311], compilation efficiency [286] [6]
or executing the code in a type-safe manner [351].

Starting from the "The annotated C++ reference manual" [100] we will adapt
it to our needs, specifically, the loop boundaries.

10.2.2 Future lines related to PANGEA+RT

Distributed Java

This line is closely related to the Distributed Real-Time Specification for Java
(DRTSJ) [289]. As its creators mention in [7], the main goal is to enhance RTSJ
with trans-node real-time end-to-end support, using REMOTE METHOD
INVOCATION (RMI) as the distribution mechanism, specifically:

• The primary aim is to offer end-to-end timeliness by guaranteeing that an
application’s trans-node has its timeliness properties explicitly employed
during resource management. Provide for and express propagation,
resource acquisition/contention and storage and failure management in
the programming abstraction.

• The second goal is to enhance the programming model with control flow
facilities that model real-time operations composed of local activities.
The activity-control actions include: suspend, abort, changes propagation,
failure propagation, consistency mechanisms, and event notification. The
result of this activity is distributable real-time threads.

Hard real-time communication protocol

Real-time extensions to standard switched Ethernet widen the field of computer
networking into the time-critical domain. These technologies have started
to establish in process automation, where Ethernet-based communication
infrastructures are challenged by particularly hard real-time constraints. Some
examples are the OMNeT++ INET framework [344] for simulating real-time
Ethernet with high temporal accuracy. The FlexRay system [345] is based on
time-triggered Ethernet, which is implemented as a replacement of current in-
vehicle bus-systems. Further it is shown that a switched system has advantages
in bandwidth utilization over a shared bus, when using group communication.

10.2. Future Work 241

Another possibility is the Real Time Messaging Protocol (RTMP) [321] [322]
developed by Macromedia for soft real-time systems.

We will delve more deeply into this topic and study all the possibilities to
include an existing protocol in the platform or create an adapted protocol if
the existing ones do not meet our requirements.

10.2.3 Future lines related to the Case Study

All the mentioned future lines will improve the case study and will enable new
features. But, current points to start working in this practical approach are:

• Improving the HAWK features to allow more autonomous flight time.

• Automatic avoidance of obstacles. The height of the flight for HAWK is
currently set up over any obstacle, while for GECKO, the waypoints are
defined to avoid obstacles.

• Introducing a mechanism that is based on the route or the preset area by
and with which the user can coordinate various teams obtaining optimum
movements. Currently, each team is configured separately, although the
teams do coordinate to avoid studying the same area.

• Performing a correlation study; an evaluation of how the configurable
variables affect the analysis of the images, such as the height and speed
of the HAWK flight.

Part VI
Resumen

11
Resumen

Este último capítulo corresponde al resumen en castellano dónde se incluyen las
principales aportaciones de esta tesis. Se presenta el modelo propuesto dividido
en dos partes, la estimación del WCET y la planificación y asignación de tareas
respetando las restricciones de tiempo real. También se incluye una descripción
de la plataforma de agentes PANGEA+RT que permite ejecutar VOs en un
entorno de tiempo real con el modelo propuesto y además, incluyen todas las
características necesarias para la formación de equipos desde el punto de vista
organizacional. Una vez explicado el modelo y la plataforma, se presenta el
caso de estudio centrado en la colaboración de robots heterogéneos para tareas
de vigilancia. Finalmente, se muestran los resultados del caso de estudio con
la evaluación del modelo propuesto y las conclusiones.

Contents
11.1 Introducción . 246
11.2 Conceptos básicos y trabajos relacionados 248

11.2.1 Análisis del WCET . 249
11.2.2 Planificación en tiempo real y distribución de tareas . 250

11.3 WCET en comportamientos emergentes 253
11.3.1 Evaluación de los nodos 254
11.3.2 Evaluación del código 257
11.3.3 Adaptación estadística del WCET en tiempo de ejecución261

11.4 Planificación y distribución de tareas 262
11.5 La plataforma PANGEA+RT 268

11.5.1 El protocolo de comunicación 268
11.5.2 Agentes de PANGEA+RT 272
11.5.3 Modificación de las clases 274

11.6 Caso de estudio . 277
11.6.1 Despliegue de los agentes propuestos 280
11.6.2 Resultados . 281

11.7 Conclusiones . 285

246 11. Resumen

11.1 Introducción

El diseño de un sistema de tiempo real (STR) es un actividad donde es necesario
desarrollar una planificación meticulosa y una gestión efectiva de múltiples
recursos. Estos recursos deben funcionar de forma predecible para asegurar
que las tareas que se ejecuten en el sistema cumple los requisitos temporales y
con el funcionamiento esperado del sistema.

Los recursos deben ser asignados teniendo en consideración tanto aspectos
funcionales como no funcionales (temporales) del sistema y el coste del diseño.
El control y asignación de los recursos en ejecución dentro de un STR requiere
una reacción rápida a los cambios de la carga de trabajo y comprobaciones
eficientes para la planificabilidad, incluso cuando hay muchas limitaciones
a controlar. Hasta ahora, los límites tradicionales han sido conservadores
cumpliendo que, siempre y cuando el conjunto de tareas no supere el factor
de utilización, se cumplirá que todas las tareas acaben dentro de sus plazos
de ejecución. Alternativamente, si un conjunto de tareas supera el factor de
utilización, se puede dar el caso en el que algunas tareas agoten sus plazos.

Los STR difieren de la mayoría de los sistemas de computación, debido a
las restricciones temporales que tienen que satisfacer. Las tareas en un STR
se asocian a limitaciones de tiempo explícitas que deben cumplirse para el
correcto comportamiento. El tiempo se vuelve un elemento no funcional
importante porque la corrección del sistema no sólo depende de la ejecución
funcional correcta de las tareas sino también en el momento de finalización de
las mismas.

Se debe distinguir entre la planificación y la gestión de recursos, a pesar de que
están estrechamente relacionadas. La planificación es el aspecto de la gestión
de los recursos de que trata de asegurar que un conjunto de tareas cumple con
sus requisitos temporales. La gestión de recursos en su totalidad, tiene que ver
con las decisiones de más alto nivel que determinan qué recursos llevarán a
cabo una tarea específica.

Los algoritmos de planificación de tareas son generalmente independientes del
marco de gestión de recursos. En este trabajo, se ha combinado planificabilidad
y asignación de recursos ya que una vez se estiman los límites de utilización y
el peor tiempo de ejecución para las tareas (WCET), las decisiones de gestión
de recursos se pueden hacer dentro de la llamada región de planificabilidad.
Esto se considera como un problema NP-hard: solucionable en teoría, pero casi
imposible de resolver en la práctica. No obstante, se propone una combinación

11.1. Introducción 247

de métodos matemáticos que llevan a una buena solución de acuerdo con las
restricciones temporales.

En esta tesis se pretende que los STR hagan uso del paradigma de agentes. La
investigación actual centrada en el diseño de sistemas multi-agente (MAS) desde
el punto de vista organizativo está ganando terreno. La idea que prevalece es
que el modelado de las interacciones de un MAS no puede limitarse al agente
y sus capacidades de comunicación, sino que requiere de la ingeniería de la
organización. Los conceptos de normas [386], instituciones [105] y estructuras
sociales [279] nacieron de la idea de que es necesario un mayor nivel de ab-
stracción, independiente del agente, y la capacidad de definir explícitamente la
organización en la que los agentes residen. Los agentes de un MAS basado en
conceptos organizativos trabajan en coordinación e intercambian servicios e
información que necesitan para ser capaces de negociar, colaborar y realizar
otras acciones sociales más complejas. El término acuñado para estos sistemas
es Organizaciones Virtuales (OV) [111]. La dinámica de los entornos abiertos
es una de las razones que han alentado el uso de OV. Hoy en día, los MAS
deben ser más abiertos y dinámicos. En un MAS abierto [27] como una OV
se debe permitir la interacción entre agentes heterogéneos, que cambian con
el tiempo y con arquitecturas e incluso diferentes lenguajes de programación.
Debido a su propia naturaleza cambiante, no podemos confiar en el compor-
tamiento de los agentes cuando es necesario establecer controles sobre la base
de normas o reglas sociales. Por esta razón, y debido a las características de
los entornos abiertos, se necesitan nuevos enfoques para apoyar a los sistemas
evolutivos y para facilitar el crecimiento en tiempo de ejecución. Por tanto, una
OV [111] [113] es un sistema abierto diseñado para la agrupación que permite
la colaboración de entidades heterogéneas y proporciona una separación entre
la forma y la función que definen su comportamiento.

En este estudio, se trata de conjugar la apertura y el dinamismo necesarios en
las OV y las restricciones que imponen los STR. Esta no es una tarea trivial, ya
que el primer paradigma no es estricto, como el término "abierto" indica, pero
el segundo paradigma debe cumplir con estrictas limitaciones. En resumen, el
modelo que se presenta permite definir las acciones que una organización de
agentes debe llevar a cabo dentro de un plazo de tiempo determinado, teniendo
en cuenta los cambios que se puedan producir durante la ejecución de un plan
en particular. Se trata de una planificación en tiempo real dentro de una OV.

Con esta tesis se pretende cumplir principalmente con dos objetivos:

• Proponer un modelo efectivo para el cálculo del tiempo de ejecución de
una tarea en el peor caso posible cuando un agente nuevo desea unirse a
una OV proporcionando un nuevo comportamiento o servicio en tiempo
real, es decir, calcular el WCET en un comportamiento emergente y

248 11. Resumen

teniendo en cuenta restricciones temporales. Esta medida se recalculará
y ajustará mediante técnicas estadísticas en las sucesivas ejecuciones.

• Proponer un modelo de planificación y distribución de tareas para el
sistema, es decir, un nuevo sistema de planificación global.

Hasta el momento, no existe ningún modelo de tiempo real especialmente
desarrollado para su uso en sistemas abiertos como las OV. Convencionalmente,
los modelos de tiempo real se aplican a sistemas cerrados donde todas las
variables y los componentes son conocidos a priori. Sin embargo, este modelo
presenta limitaciones cuando se trabaja con sistemas abiertos que incorporan
conceptos organizativos, ya que se necesita capacidad para evolucionar y
adaptarse a las necesidades de los sistemas actuales. Por tanto, la hipótesis
inicial que se plantea en este trabajo de tesis doctoral es que: es posible
desarrollar un modelo de planificación y asignación de tareas que permita
a los agentes pertenecientes a una OV rematar con éxito sus tareas dentro
de las limitaciones temporales. Este modelo será formalizado teóricamente e
implementado para evaluar los resultados.

Además, tomando como referencia el estudio y la búsqueda exhaustiva de
trabajos llevada a cabo en este trabajo de tesis doctoral, no se conoce la
existencia de ninguna plataforma de ejecución para agentes que soporte las
restricciones del tiempo real y a la vez, los mecanismos para el control y gestión
de las OV. Estos hechos proporcionan la motivación necesaria para el desarrollo
de la plataforma de agentes denominada PANGEA+RT.

11.2
Conceptos básicos y trabajos rela-
cionados

Esta sección está dividida en dos subsecciones ya que nos enfrentamos a dos
problemas por separado. Primero, se debe afrontar la predicción del WCET y
para ello, se muestran algunas de las publicaciones más relevantes relacionados
con este ámbito. La segunda parte de la sección está dedicada a la planificación
global y la distribución de tareas.

11.2. Conceptos básicos y trabajos relacionados 249

11.2.1 Análisis del WCET

Los problemas relacionados con el cálculo del WCET han sido estudiados desde
diferentes perspectivas. En [327] Shaw presenta un conjunto de esquemas
temporales para calcular los tiempos mínimo y máximo de ejecución mediante
reglas y árboles de decisión. En [295] [218] se propone el cálculo mediante IPL
y [147] se centra en el uso del control del flujo de ejecución para detectar límites
en los bucles. En términos de coste de computación se presentan interesantes
propuestas en [4] [80] [18]. En particular, en [261] se presenta un framework que
regula el conjunto de recursos en tiempo real. También el proyecto Mobility,
Ubiquity and Security (MOBIUS) [32] trata con la planificación y la distribución
de tareas.

Si centramos el estudio en el lenguaje Java, surgen dificultades como la falta
de un reloj con precisión para tiempo real o el concepto de plazo. Iniciativas
como las especificicaciones Safety Critical Java (SCJ) [182] y Predictable Java
(PJ) [49] pretenden establecer a Java como un lenguaje de peso dentro de los
sistemas de tiempo real. La nueva especificación incluye, entre otros, un nuevo
modelo de programación que es más susceptible de ser temporal correcto. La
corrección temporal puede garantizarse mediante el uso de la información a
partir de un análisis WCET para realizar análisis de planificabilidad. Con
respecto a Java, el análisis del WCET se complica por la presencia de la
Máquina Virtual de Java (JVM), ya que ésta introduce una capa adicional
entre la propia aplicación y la plataforma de hardware subyacente. Para mitigar
esta complejidad, los trabajos se ha centrado en la eliminación de esta capa
intermedia mediante la implementación de la JVM en hardware, consiguiendo
de este modo la ejecución del código nativo de Java, los llamdaos bytecodes
(JBC) [318]. Esta línea ha sido una de las más exploradas para experimentar
con Java en el desarrollo de sistemas de tiempo real.

Bernat [43] fue el primero en considerar el análisis del WCET a nivel de
bytecodes. Bernat argumenta que la correcta representación intermedia de un
programa en bytecodes de Java, que también puede ser generada a partir de
compiladores para otros lenguajes (por ejemplo, ADA), es altamente adecuada
para una herramienta de análisis del WCET. En dicho trabajo, se utilizan
anotaciones de Java y Ada para guiar el análisis del WCET a nivel de bytecodes.
El trabajo se extendió para abordar el análisis del tiempo a bajo nivel donde
es dependiente de la máquina [36].

En [293] se presenta un mecanismo portable del WCET. Este análisis abstracto
se lleva a cabo durante el desarrollo y genera información abstracta que se usa
posteriormente. El análisis concreto se efectua en la máquina de ejecución final

250 11. Resumen

reemplazando estos valores abstractos en las fórmulas del WCET propuestas.
En [37] se presenta un mecanismo que muestra cómo la información sobre el
WCET puede ser embebida en la clase compilada de Java, es una extensión de
los trabajos [43] [36]. Sin embargo, la medidas obtenidas no pueden garantizar
los límites temporales superiores de manera segura. En [228], el autor describe el
diseño y las capacidades de la herramienta TetaSARTS que de manera estática
lleva a cabo un análisis del WCET y verifica que las aplicaciones cumplen la
especificación nombrada anteriormente, Safety Critical Java (SCJ).

Por último, Bogholm [48] presenta una selección de herramientas que ayudan a
los desarrolladores de aplicaciones de tiempo real estricto a verificar que los
programas se ajustan a un perfil en tiempo real en Java, y que se satisfacen
las limitaciones de recursos específicos de la plataforma. El problema de los
trabajos presentados es que son frameworks cerrados que no podemos incluir
en nuestro entorno de OVs y adaptarse a las restricciones que imponen cada
una de las organizaciones.

En definitiva, fomentando la capacidad de Java y su entorno de ejecución
para sistemas críticos de tiempo real con mecanismos deterministas de com-
portamiento y planificación facilitará que Java se convierta en un impor-
tante lenguaje y entorno de ejecución en el desarrollo de sistemas de tiempo
real [119].

11.2.2
Planificación en tiempo real y distribución de
tareas

En esta sección se introducen algunos conceptos básicos sobre tiempo real y se
mencionan los estudios más relevantes relacionados con el campo de aplicación
de esta tesis.

Existen dos tipos básicos de esquemas de planificación: estática, donde las
predicciones se hacen antes de la ejecución y cuando todas las tareas se conocen;
y dinámica, donde las decisiones se toman en tiempo de ejecución. Sin embargo,
esta clasificación es muy estricta y como se propone en esta tesis, un modelo
considerado como estático, el FPS, puede ser adaptado e incluido en ambientes
dinámicos. Esto obliga a introducir un control teniendo en cuenta los posibles
cambios a los largo del tiempo y acotando temporalmente este proceso de
replanificación. Es necesario tener en cuenta que para un sistema de tiempo
real estricto donde las tareas son críticas y todas tienen un plazo de respuesta
introducir un modelo de planificación dinámica puro puede conllevar un mal

11.2. Conceptos básicos y trabajos relacionados 251

funcionamiento. En la propia definición de planificación dinámica establecida
por [70], se mencionan las siguientes características:

• No es posible garantizar los plazos de respuesta.

• No es adecuada para sistemas críticos.

• No se puede establecer una planificación estable.

En los últimos años, los sistemas de planificación basados en prioridades
han recibido una especial atención en la comunidad científica, alcanzando
un alto grado de madurez y reconocimiento [339] [348] [213] [326] [59] [21].
En [23] y [325] se pueden encontrar dos interesantes estudios históricos sobre
el progreso en la planificación con prioridades fijas. Además, una revisión
de varios trabajos [133] [275] [51] [116] [133] [275] [51] [116] muestra que
la planificación dinámica es muy dependiente del ambiente y del contexto
de ejecución. También es importante resaltar que los métodos propuestos
están basados en sistemas iterativos con gran complejidad computación o con
heurísticas que no pueden asegurar el tiempo de computación y por lo tanto,
las tareas no están estrictamente acotadas en el tiempo.

Un sistema de planificación está caracterizado por dos aspectos:

• El algoritmo de planificación: determina el orden de acceso a los recursos
disponibles en el sistema.

• El modelo de análisis: se encarga de calcular y predecir el comportamiento
en el tiempo del sistema, es decir, si los requisitos y restricciones tem-
porales están garantizados en todos los casos posibles. Para asegurarse,
debe tenerse en cuenta el escenario en el peor de los casos.

El Rate-Monotonic (RM) o también conocido como algoritmo Fixed Priority
Scheduling (FPS) y sus extensiones son algoritmos de planificación estáticos y
representan el mayor paradigma de planificación para tiempo real. C.L. Liu
y J.W. Layland propusieron por primera vez el RM en su trabajo [221]. De
manera simple, consiste en asignar las máximas prioridades a las tareas con
los periodos más cortos, esto es, la prioridad de cada tarea es inversamente
proporcional a su periodo. Para implementar esta política de planificación,
se debe establecer que el tiempo de respuesta de cada tarea es igual a su
periodo.

El Earliest Deadline First Scheduling (EDF) es el segundo paradigma para la
planificación de tiempo real. sobre ciertas condiciones, el EDF [221] [341] es
un algoritmo óptimo para la planificación si existen suficientes recursos para la
computación. Sin embargo, el coste y los entornos impredecibles hacen imposible
garantizar que los recursos del sistema sean siempre suficientes. En este caso,
cuando existen situaciones de sobrecarga, el rendimiento del EDF se degrada

252 11. Resumen

rápidamente. El algoritmo de planificación conocido como Spring [396] puede
garantizar la correcta ejecución de tareas mediante un sistema de admisión en
línea y que es aplicable en entornos con recursos insuficientes. Muchos otros
algoritmos [341] se han diseñado para operar de esta forma. Estos algortimos
basados en sistemas de admisión controlados representan el tercer paradigma
en la planificación de tiempo real. Sin embargo, hay problemas del mundo real
que no son fácilmente soportados dentro de estos tres paradigmas.

Los algoritmos como el EDF, el RM y el Spring pueden soportar conjuntos
de tareas con características complejas (tales como plazos, restricciones de
precedencia, recursos compartidos, jitter, etc) pero todos ellos son algoritmos
con programación de bucle abierto. Bucle abierto se refiere al hecho de que
una vez que se establece la planificación no se ajustan teniendo en cuenta una
continua retroalimentación. Mientras que los algoritmos de programación en
bucle abierto pueden funcionar bien en ambientes predecibles en los que las
cargas de trabajo pueden ser modeladas con precisión (por ejemplo, sistemas de
control de procesos tradicionales), pueden tener mal rendimiento en ambientes
impredecibles, es decir, los sistemas cuyas cargas de trabajo no se pueden
modelar con precisión.

En los últimos años, una nueva categoría de aplicaciones de tiempo real no-
estrictas que se ejecutan en ambientes impredecibles está rápidamente siendo
implantada [343]. Algunos algoritmos adaptativos han sido recientemente
desarrollados [1] [38] [251] [355] [202] [201] como un enfoque efectivo en tér-
minos de coste para garantizar un rendimiento aceptable en dichos ambientes
impredecibles. El problema es que estas propuestas son apropiadas para tareas
no-críticas sobre todo en el campo de la comunicación y sistemas multimedia,
mientras que nuestro estudio de centra en tareas críticas.

Los primeros estudios en planificacion de tiempo real se centraban en evitar
en su totalidad cualquier efecto indeseable como la sobrecarga o la pérdida
de plazos, en cambio, los sistemas adaptativos de tiempo real se diseñan para
manejar dinámicamente y con éxito estos efectos. El problema principal es
que el propio acto de tratar estos efectos implica la posibilidad de que se
produzcan, lo que propiamente se puede considerar un efecto indeseable pero
a la vez inevitable en sistemas dinámicos de tiempo real. Desde nuestro
punto de vista, la necesidad de conjugar una planificación estricta en sistemas
adaptativos está todavía en su fase inicial de estudio. Para ser estrictos y
encontrar trabajos relacionados con tareas críticas, debemos recurrir al campo
del control y la automatización. Diversos trabajos han optado por aplicar la
teoría del control [115]. Por ejemplo, trabajos como [350] [314] [358] [257]
presentan técnicas de planificación flexibles para mejorar el control de sistemas
digitales. Estas técnicas están diseñadas específicamente para el control de
sistemas y son díficilmente aplicables a escenarios de tiempo real en sistemas

11.3. WCET en comportamientos emergentes 253

adaptativos. También otros trabajos [343] [367] [199] [54] presentan algoritmos
de planificación que basan su adaptación en arquitecturas de QoS para sistemas
multimedia y de comunicación.

Después del estudio de los trabajos mencionados, podemos aseverar que pro-
poner un modelo de planificación y asignación de tareas en tiempo real y
además en un ambiente dinámico y adaptativo como son las OV, es un area
por explorar. Los métodos revisados no pueden ser aplicados en este campo
debido a una falta de capacidad para asegurar tiempo de computación con una
solución efectiva hablando de sistemas de tiempo real estrictos. Para lograr
esto, el sistema debe estar basado en modelos deterministas con un fundamento
matemáticos sólido para validar el procedimiento.

Finalmente, después del extenso estudio realizado y consultadas diversas fuentes
de información, no es posible afirmar que existe hasta el momento, ningún
modelo unificado para el desarrollo de un sistema adaptativo y dinámico con
una planificación local y global donde los nodos de computación necesarios se
recalculen en tiempo real para lograr la capacidad del sistema de adaptación
dinámica.

11.3
Modelo de estimación del WCET en
comportamientos emergentes

Como se ha mencionado, en los sistemas de tiempo real crítico no puede
permitirse que se produzcan oérdidas de plazos en la realización de sus tareas.
Para asegurar que se cumpla esta, se debe aplicar un análisis de planificabilidad
de manera que determine si un conjunto de tareas pueden ser incluidas en un
sistema sin que excedan su tiempo de ejecución y terminen dentro del plazo
previsto. El denominado WCET de una tarea es el parámetro clave de dicho
análisis de planificabilidad.

Existen dos tipos análisis del WCET:

• Análisis de alto nivel: se refiere al control de flujo de la tarea. Este flujo
se representa mendiante un grafo dirigido (GFC) con vértices denomi-
nados bloques básicos y arcos. Cada vértice representa un conjunto de
instrucciones que se ejecutan secuencialmente. Los bloques básicos se
conectan mediante arcos que representan las posibles ramas de ejecución.
A este nivel se supone que se conoce el coste de cada bloque básico, ya
que se ha obtenido mediante el análisis a bajo nivel. El GFG es preferi-
ble generarlo a partir de un programa compilado donde ya se pueden

254 11. Resumen

tener en cuenta las optimizaciones introducidas por el propio compilador,
esto es importante ya que dichas optimizaciones afectan directamente al
WCET [50].

• Análisis de bajo nivel: este análisis se refiere al tiempo de ejecución de un
bloque básico en una máquina específica. Esto implica el cálculo de cada
una de las instrucciones individuales en la máquina donde finalmente se
ejecutará la tarea. El primer problema, reside en que estos datos no son
proporcionados por los vendedores y además existen diversos métodos
que utilizan para reducir el tiempo de ejecución como la memoria caché
o las tuberías.

Estos análisis se complican más por la presencia de un sistema operativo e
incluso una máquina virtual, ya que añaden capas adicionales entre la lógica
del propio programa y el hardware [119].

11.3.1 Evaluación de los nodos

La evaluación de los nodos se refiere al análisis WCET de bajo nivel donde las
especificaciones hardware tienen un papel crucial. Esto implica que se debe
estimar el tiempo de ejecución de cada instrucción en el nodo donde se va a
ejecutar, lo que no es sencillo.

Figure 11.1: Pasos para la evaluación de los nodos

11.3. WCET en comportamientos emergentes 255

Un programa Java se compila en los denominados javabytes (JBC), que se
pueden cargar en una máquina virtual de Java (JVM) arbitraria a su vez en
ejecución en un procesador arbitrario. Este es el aspecto principal que complica
el problema. Si consideramos un sistema en tiempo real como un conjunto
de nodos de cálculo, cada nodo tiene su propia configuración y, posiblemente,
su propia JVM también. Los pasos para obtener el programa que debe ser
ejecutado en cada nodo para el análisis de los WCET se muestran en la figura
11.1.

Las pruebas se realizan con la biblioteca estándar de Java
System.currentTimeMillis. Existe también otra biblioteca a consid-
erar System.nanoTime pero la precisión de la primera justifica la elección ya
que System.nanoTime no garantiza la precisión en nanosegundos como se
prueba en [211]. Primero, se crean las clases de Java para cada bytecode. En
el código 11.1 se muestra un ejemplo de evaluación de nodos.

1 pub l i c c l a s s TestDLoad
2 {
3 pub l i c s t a t i c void main (St r ing args [])
4 {
5 long time1 , time2 , tme3 ;
6 long r e s u l t ;
7
8 time1=System . cur rentT imeMi l l i s () ;
9 f o r (i n t i =0; i <1000000; i++)
10 t e s t () ;
11
12 time2=System . cur rentT imeMi l l i s () ;
13 f o r (i n t j =0; j <1000000; j++)
14 t e s t 2 () ;
15
16 time3=System . cur rentT imeMi l l i s () ;
17
18 r e s u l t =(tiempo3−tiempo2)−(tiempo2−tiempo1) ;
19
20 // s t o r e r e s u l t in the database
21 }
22
23 //modicar l o s m{\ ’ e} todos en e l f i c h e r o . c l a s s
24 pub l i c s t a t i c void t e s t ()
25 {
26 }
27 pub l i c s t a t i c void t e s t 2 ()
28 {
29 }
30 }

Programming Code 11.1: Clase Java para la evaluación de un bytecode

Para asegurarnos de que el bucle for no afecta a los cálculos, se programan

256 11. Resumen

dos funciones de test diferentes. La diferencia se calcula en la línea 293 del
código, así se conoce el tiempo de ejecución del número de bycodes predefinidos
sin que interfiera el bucle.

Para modificar y crear el fichero .class incluyendo los bytecodes editados se
usa la herramienta JBE [310]. Es un editor de bytecodes abierto y adecuado
para consultar y modificar archivos .class. Para verificar y exportar las
clases, JBE utiliza la biblioteca Bytecode Engineering del proyecto Apache’s
Jakarta [72]. Las principales ventajas que nos llevan a elegir esta herramienta
es que todos los cambios se aplican directamente al fichero compilado de la
clase, que usa los mnemónicos estándar para los JVM opcodes y las excepciones
y otras anotaciones también son visibles en la interfaz de la herramienta.

1 0 : lconst_0
2 1 : lconst_1
3 2 : lcmp
4 3 : lconst_0
5 4 : lconst_1
6 7 : lcmp
7 [. . .]
8 1500001: r e turn

Programming Code 11.2: Prueba para el bytecode lcmp

Es importante remarcar que hay bytecodes que no se pueden probar de man-
era independiente, es decir, que dependen de otros bytecodes para tener los
operandos necesarios. Por tanto, para determinar el valor de estos bytecodes
se necesita conocer previamente el tiempo de ejecución de los que sí pueden ser
independientes. Un ejemplo es el bytecode lcmp que compara dos valores de
tipo long. Esto fuerza a introducir lconst_0 y lconst_1 en la función test
como se muestra en 11.2.

Esto se debe a que el bytecode lmcp necesita dos valores de tipo long en la pila
y deben introducirse antes de su ejecución. Después de la ejecución, lmcp dejan
un entero en la pila pero que no es posible usarlo en las siguientes ejecuciones
del bytecode por el tipo. Esto nos obliga a introducir repetidamente dos nuevos
valores de tipo long. Como previamente conocemos el tiempo de ejecución
del bytecode lconst_0, podemos calcular el valor en TestLConst0.java antes
de que éste sea almacenado. Estos datos son introducidos en una base de
datos. Cuando se utilizan en el siguiente paso se recuperan de una tabla global
R(I205, Ntotal) donde cada fila corresponde con un bytecode y la columna es el
coste en el nodo N del sistema.

11.3. WCET en comportamientos emergentes 257

11.3.2 Evaluación del código

El análisis del WCET conlleva el estudio del código de programación por tanto,
es necesario que el código no contenga estructuras que hagan imposible seguir
el flujo de análisis. Además, los bucles no acotados o la recursión pueden tener
como resultado evaluaciones pesimistas [294].

Los pasos generales para este proceso se muestran en la Figura 11.2.

Figure 11.2: Pasos para el cálculo del WCET

Ahora se introducen las reglas principales para la generación del GFC. En
primer lugar, se identifican todos los vértices principales, éstos corresponden
con las siguientes intrucciones: goto, goto_w, jsr, jsr_w, ret, ifeq,
iflt, ifle, ifne, ifgt, ifge, ifnull, ifnonnull, if_icmpeq,
if_icmpne, if_icmplt, if_icmpgt, if_icmple, if_icmpge, if_-
acpeq, if_acmpne, lcmp, fcmpl, fcmpg, dcmpl, dc,pg, tableswitch,
lookupswitch, ireturn, lreturn, freturn, dreturn, return, athrow,
aaload, aastore, anearray, arraylength, baload, bastore, caload,
castore, checkcast, daload, dastore, faload, fastore, get-
field, getstatic, iaload, iastore, idiv, instanceof, invoke-
interface, invokeespecial, invokeestatic, invokevirtual, irem,
laload, lastore, ldc, ldc_w, ldc2_w, ldiv,lrem,monitorenter,
monitorexit, multianewarray, new, newarray, putfielf, putstatic,
saload, sastore.

Cada vértice incluye un bloque básico de instrucciones formado por todas las
intrucciones hasta el siguiente vértice o el final de los bytecodes [395]. Ahora
se deben construir el eCFG. Si u ∈ V y v ∈ V son dos bloques básicos:

258 11. Resumen

• Si v sigue a u en el fichero de bycodes y u no termina en una rama
incondicional entonces se debe anañadir un arco (u, v).

• Si la última instrucción de u es un rama condicional o incondicional a la
primera instruccion en i v se debe añadir un arco (u, v).

• Se debe añadir un arco (u, v) desde un bloque tableswitch o
lookupswitch al bloque básico de cada instrucción definido como objetivo
en el switch.

• Cuando hay un subrutina, entonces se deben de añadir dos arcos. Un arco
(u1, v1) desde el bloque básico de jsr o jsr_w al bloque básico objetivo.
Y otro arco (u2, v2) desde el bloque básico que contiene la instrucción
ret al bloque básico de la instrucción que sigue inmediatamente en el
flujo de ejecución.

• Se añade un arco (u, v) desde el bloque básico de cada instrucción sus-
ceptible de lanzar una excepción a la entrada del bloque básico del
correspondiente manejador.

• Finalmente, se añade un arco (u, v) desde el bloque básico de cada
instrucción que sea susceptible de lanzar una excepción a un bloque que
represente el final anómalo si la excepción no tiene manejador.

Zhao en [395] incluye una definición para extender el eCFG en un programa
Java.

Definition 14 Un ICFG de un programa Java parcial o completo es una tupla
(G1, . . . , Gk, C,R) donde (G1, . . . , Gk) son grafos de flujo que representan los
métodos del programa. C es el conjunto de los arcos de llamada/salida, y R
es el conjunto de arcos de retorno/entrada. Un ICFG de un programa parcial
satisface las siguientes características:

• Existe una relación uno a uno entre C y R. Cada llamada es un arco de
la forma (u, v1Gi) ∈ C y su correspondiente arco de retorno de la forma
(v1Gi) ∈ R, donde u ∈ VGi , y Gi ∈ g y v1Gi son el vértice inicial y final
respectivamente, de algún Gj ∈ g.

• g contiene dos vértices distintos: uno inicial v1G = v1Gi
y otro final

vFG = vFGi
, Gi ∈ g.

11.3.2.1 Cáculo del WCET mediante la técnica IPET

El método para el análisis del WCET basado en rutas consiste en transformar
el ICFG en un grafo ponderado, donde el WCET de cada bloque básico se

11.3. WCET en comportamientos emergentes 259

utiliza como peso y los arcos se anotan con la frecuencia de ejecución. La
propuesta específica explicada en [102] consiste en cuatro pasos:

1. Encontrar la ruta más larga en el grafo utilizando un algoritmo estándar
para grafos.

2. Comprobar que la ruta es posible.

3. Si la ruta no es posible, excluirla del grafo y volver al primer paso.

4. Cuando la posible ruta más larga se encuentre, su longitud corresponde
con el WCET de la tarea.

La complejidad para el análisis de un grafo de este tipo es exponencial y
dependiente de la profundidad del grafo lo que supone una dificultad en tareas
grandes [164]. Esto significa que puede se necesita gran cantidad de tiempo
de ejecución para resolverlo, por lo que en nuestro caso usamos una mejora
denominada Implicit Path Enumeration Technique (IPET) y presentada por
Li y Malik en [218].

En principio, el WCET se calcula sumando las frecuencias de ejecución en
el peor caso por sus costes. Gracias a la tabla obtenida en el paso previo,
R(I205, Ntotal) donde cada fila Ii corresponde con un bytecode y las columnas
corresponden con el coste en cada nodo N del sistema, se conoce el coste de
cada bytecode en los diferentes nodos. Por lo tanto, ahora es necesario calcular
el coste de cada bloque básico BB en cada nodo k:

τBB =
M∑
j=1
Rkj (11.1)

donde M es el número total de intrucciones en el bloque básico BB y Rkj
representa el coste de cada instrucción individual j en el nodo de computación
k.

De nuevo, se obtiene una tabla R(BBtotal, Ntotal) donde cada fila corresponde
a cada BB y la columna es el coste τBB en el nodo N .

Finalmente, se puede definir el siguiente problema ILP:

max WCETBB =
N∑
i=1

τixi (11.2)

donde N es el número de bloques básicos, xi es la frecuencia de ejecución del
bloque básico i y gracias a la tabla previa R, conocemos el valor de τi. El
WCET se debe calcular para cada nodo k del sistema.

260 11. Resumen

Para calcular el WCET para cada BB, debe establecerse los límites en la
frecuencia de ejecución de cada bloque usando la anotación de los arcos del
grafo. La ecuación 11.2 resultante de aplicar el método IPET se maximiza para
quedarnos con el peor de los casos. Los límites pueden expresarse usando una
serie de restricciones basándose en el control del flujo del programa. Con la
técnica IPET, éstas son:

• Restricciones estructurales: se refieren a aquellas restricciones rela-
cionadas con el flujo como pueden ser ramas condicionales. Se pueden
obtener del ICFG.

• Restricciones funcionales: se refieren a las restricciones en el compor-
tamiento del flujo de control como los bucles. Se pueden obtener de las
anotaciones del código.

Restricción 1:

Las restricciones estructurales pueden expresarse mediante ecuaciones estable-
ciendo la frecuencia de ejecución de cada bloque básico x0, . . . , xB como la
suma de todos los arcos de entrada o la suma de todos los arcos de salida. Por
tanto, la frecuencia xi para un bloque dado i es la ecuación:

xi =
∑
j∈Ii

dj =
∑
k∈Oi

dk (11.3)

donde Ii es el conjunto de todos los arcos o llamadas de entrada a uun bloque
básico i, y Oi es el conjunto de todos los arcos o llamadas de salida desde
un bloque básico i. Mediante la repetición de este proceso para cada bloque
básico, se construyen el conjunto de las restricciones estructurales.

Restricción 2:

La restriccion funcional se refiere a la acotación de los bucles. Un bucle consiste
en una condición de entrada y el cuerpo que constituye un bloque básico.
En una restricción funcional el número de arcos desde el cuerpo del bucle a
la condición debe ser menor o igual que el número de arcos de entrada a la
condición que no se inician en el cuerpo, multiplicado por el valor que acota
cada arco. Esto se expresa en la siguiente ecuación [320]:∑

j∈Ch

dj ≤ n
∑
k∈Eh

dk (11.4)

donde Ch es el conjunto de arcos desde el cuerpo del bucle a la condición del
bucle y Eh es el conjunto de arcos de entrada a la condición del bucle que no se
originan en el cuerpo del bucle. Finalmente, n es el valor que acota el número
de veces que se puede ejecutar cada arco.

11.3. WCET en comportamientos emergentes 261

Las ecuaciones resultantes (11.3.2.1, 11.3.2.1) se resuelven usando ILP, donde
se toma el máximo valor de las frecuencias obteniendo así el WCET. Resolver
estas ecuaciones generalmente es un problema de complejidad NP-completo,
aunque Li and Malik en [218] muestran que la naturaleza del problema resulta
frecuentemente en ecuaciones que pueden resolverse con un orden de complejidad
polinomial. En nuestro caso, se usa el algoritmo del Simplex para obtener las
soluciones para el problema de programación lineal planteado en las restricciones
(11.3.2.1, 11.3.2.1) y la función objectivo (11.2).

El WCET del programa completo es la suma de todos los BB que lo forman
(11.5):

WCETP =
M∑
b=1

WCETb (11.5)

Finalmente, se obtiene un vector FV que será necesario para la planificación
global. Este FT almacena el WCETP para cada nodo N del sistema. El
procedimiento completo puede resumirse en el siguiente algoritmo (7):

Algorithm 7 Análisis del código
1: procedure evaluacionAltoNivel(R(I205, Ntotal))
2: ICFG← generateInterproceduralControlF lowGraph(file.class)
3: ICFGw ← getWeights(ICFG)
4: for n = 1 to N do
5: for BB = 1 to totalBB do
6: τBB ← costBB(I1, . . . , In)
7: R(BB,n)← R(τBB , n)
8: WCETBB ← simplexMethod(

∑N
i=1 τixi, constraints)

9: WCETP ←WCETP +WCETBB
10: FV (n)←WCETP
11: end for
12: end for
13: return FV (N)
14: end procedure

11.3.3
Adaptación estadística del WCET en tiempo
de ejecución

Las sucesivas ejecuciones de la tarea permiten mejorar la precisión de la
estimación mediante técnicas estadísticas. Esto significa que la estimación

262 11. Resumen

puede ajustarse estadísticamente si hay suficientes muestras de ejecución de la
tarea.

El análisis estadístico permite estrechar el intervalo de variación del WCET
estimado y del WCET efectivo en ejecución, evitando así el uso de un límite
superior demasiado amplio. Este proceso se puede llevar a cabo aplicando un
análisis del intervalo de confianza a la muestra de las diferentes ejecuciones. La
distribución estadística t− student se puede usar si la muestra contiene más
de 30 valores pero el problema reside en que la muestra debe cumplir varias
restricciones para que el intervalo de confianza sea realista. Por tanto, se opta
por otra alternativa como es el análisis de valores atípicos. Un valor atípico ai
o aj se define de acuerdo a las siguientes ecuaciones (11.6) (11.7):

ai < Q1 − 3 · (Q3 −Q1) (11.6)

aj < Q3 + 3 · (Q3 −Q1) (11.7)

donde Q1 y Q3 representan el primer y el tercer cuartil de la muestra, respecti-
vamente.

El valor de WCET se calcula de acuerdo la valor superior y se define de la
siguiente manera:

WCET = Q3 + 3 · (Q3 −Q1) (11.8)

11.4
Modelo de planificación en tiempo
real y distribución de tareas

La figura 11.3 muestra el STR global. El algoritmo FPS se usa para la
planificación dentro de cada nodo y el modelo propuesto se aplica para la
planificación global.

Usando técnicas de optimización computacional, el modelo propuesto obtiene
una distribución de tareas con el número mínimo de nodos. A cada nodo se le
asignan los agentes con los roles responsables de realizar cada tarea. En caso
de sobrecarga en algún nodo, el sistema replanifica y si no existen más nodos
disponibles el sistema usa el parámetro H que indica la criticidad e importancia
de una tarea.

11.4. Planificación y distribución de tareas 263

Cada tarea se caracteriza por los siguientes parámetros: C es el WCET; D
es el plazo para completar la ejecución; I indica posibles interferencias en la
comunicación que puedan causar retraso; ρ indica el factor de utilización de
cada tarea en un nodo; P es el periodo mínimo entre dos llegadas consecutivas
de la tarea (periodo); H es la importancia o criticidad (sólo se tiene en cuenta
en caso de recursos insuficientes). El número total de tareas en el sistema se
denota con T . Este valor se conoce antes de cada replanificación y distribución
es valor y el plan y la distribución es viable mientras T no se altere. Cualquier
cambio en el conjunto de tareas T conlleva una replanificación para asegurar que
las tareas son todavía planificables cumpliendo las restricciones temporales.

Figure 11.3: Vista general del STR

Una de las restricciones básicas del modelo de optimización deriva del test de
viabilidad del FPS. Para verificar la viabilidad de un plan tomamos el test de
utilización propuesto por Lui y Layland [221]. Es el test más restrictivo pero a
su vez el más fácil de aplicar lo que reduce el tiempo de ejecución. Según este
test, un conjunto de tareas periódicas T es planificable con el algoritmo FPS si
se cumple la ecuación 11.9.

Theorem 2 Teorema 1: El conjunto de las tareas T es planificable con el
RM si:

N∑
i=1

ρi ≤ N(21/N − 1) (11.9)

donde:

264 11. Resumen

ρi = Ci/Ti (11.10)

El límite de planificabilidad del FPS depende del número de tareas y decrece
con N [63]. Además, es importante resaltar que:

lim
n→∞

N(21/N − 1) = ln2 ' 0.693 (11.11)

para valores altos de N , el límite se acerca asintóticamente a 69.3%. Esto
significa que cualquier tarea puede ser distribuida en un nodo que siga el FPS
si ρ ≤ 0.69, pero no todas las tareas pueden ser distribuidas y por lo tanto,
seguir un modelo planificable si 0.69 < ρ ≤ 1 [63].

Se asume un modelo organizacional donde cada rol tiene asignados un con-
junto de servicios que determinan las capacidades del agente. Con el modelo
de distribución de tareas presentado, es posible obtener una distribución de
los diferentes roles necesarios para completar el trabajo dentro del tiempo
establecido.

Para realizar la distribución de tareas, se minimiza el número de nodos nece-
sarios:

min
N∑
j=1

xj (11.12)

donde j identifica el nodo, N es el número total de nodos disponibles y
xj = {0, 1}.

Las restricciones que deben aplicarse al problema se describen a continuación
teniendo el cuenta la siguiente notación: xji donde i identifica la tarea y j el
nodo; T es el número total de tareas en el sistema; ρji es el factor de utilización
de la tarea i en el nodo j, el cual se obtiene a partir de la ecuación 11.10.

Primero se establece el vínculo entre la función objetivo y las restricciones de
la siguiente manera:

Restricción 3:

∀i (xj ≥ xji) (11.13)

Esto significa que por cada tarea i, si el nodo tiene una tarea asignada xji , se
sumará 1 a la función objetivo.

11.4. Planificación y distribución de tareas 265

Ahora se debe tener en cuenta el factor de utilización de cada nodo, de manera
que el total de las tareas asignadas al nodo en cuestión no superen dicho factor.
Para formular esta restricción 4 se debe tener en cuenta la ecuación 11.9.

Restricción 4:

∀j
T∑
i=1

ρjix
j
i ≤ min(

T∑
i=1

xji (2
(1/
∑T

i=1
xj

i
) − 1), 1) (11.14)

Desarrollando la ecuación, se tienen N inecuaciones de la siguiente forma:

ρ1
1x

1
1 + ρ1

2x
1
2 + ρ1

3x
1
3 + . . .+ ρ1

T x
1
T ≤ min(

T∑
i=1

x1
1(2(1/

∑T
i=1

x1
T) − 1), 1)

ρ2
1x

2
1 + ρ2

2x
2
2 + ρ2

3x
2
3 + . . .+ ρ2

T x
2
T ≤ min(

T∑
i=1

x2
1(2(1/

∑T
i=1

x2
T) − 1), 1)

. . . ≤ . . .

ρN1 x
N
1 + ρN2 x

N
2 + ρN3 x

N
3 + . . .+ ρNT x

N
T ≤ min(

T∑
i=1

xNT (2(1/
∑T

i=1
xN

T) − 1), 1)

La siguiente restricción (5) establece que la misma tarea i no se asigna a más de
un nodo. Esta restricción se debe modificar en caso de permitir la replicación.
En caso de error, la replicación es un mecanismo ampliamente usado en sistemas
de tiempo real críticos.

Restricción 5:

∀j
N∑
i=1

xji = 1 (11.15)

La restricción 6 garantiza que todas las tareas se asignan, al menos, a un
nodo.

Restricción 6:

∀j
T ,N∑

i=1,j=1
xji = T (11.16)

Con las OV se trabaja con roles que pueden estar asociados a diversas tareas.
Si el mismo rol debe ejecutar dos tareas diferentes con la siguiente restricción
(7), la tarea i y la tarea k se asignan al mismo nodo j.

266 11. Resumen

Restricción 7:

xji = xjk (11.17)

Finalmente, los valores de xji se limitan con la restricciones 8 y 9. De esta
forma, sólo pueden tomar el valor 0 ó 1. Si el nodo j tiene asignada la tarea i
entonces xji = 1, sino, xji = 0.

Restricción 8:

xji ≤ 1 (11.18)

Restricción 9:
xji , entero (11.19)

11.4.0.1 Método de resolución

El algoritmo de Frank-Wolfe [114] encuentra posibles soluciones a un problema
de programación no lineal con restricciones lineales, pero en nuestro problema
también contamos con restricciones no lineales por lo que debemos usar su
extensión denominada MAP [24]. El algoritmo MAP extiende un problema
general de programación no lineal haciendo aproximaciones lineales de las
restricciones y de la función objectivo.

Algorithm 8 Pasos del algoritmo MAP
1: Sea x0 = (x0

1, x
0
2, . . . x

0
3) un solución candidata, normalmente posible o

"casi" posible. Sea k = 0.
2: Calcular cj y aij(i = 1, 2, . . . ,m), las derivadas parciales de la función

objetivo y las restricciones evaluadas en xk = (xk1 , xk2 , . . . xkn). Sea bki =
aijx

k − gi(xk).
3: Solucionar el problema como una aproximación lineal (4.25) con
bki y xkj sustituyendo por b0

i y x0
j respectivamente. Sea xk+1 =

(xk+1
1 , xk+1

2 , . . . , xk+1
n) su solución óptima, incrementar k a k + 1 y volver

al paso 1.

Si se aplica este método a nuestro problema, las ecuaciones de las restricciones

11.4. Planificación y distribución de tareas 267

son:

∀j xj ≥ xji
N∑
j=1

xji = 1

T ,N∑
i=1,j=1

xji = T

xji ≤ 1 integer
xji ≤ xjk

∀j
T∑
i=1

∂gj

∂xji
(y)xji ≤

T∑
i=1

∂gj

∂xji
(y)yi − gi(y)

donde:

∂gj

∂xji
= pji ≤

∑
i6=k

xjk
−1

(
∑
i=1 x

j
i)

2 · 2
1∑

i=1
x

j
i · ln2

+ 2
1∑

i=1
x

j
i + xji

−1
(
∑
i=1 x

j
i)

2 · 2
1∑

i=1
x

j
i · ln2− 1

la ecuación 11.20 es el valor de la derivada parcial en el punto y.

∂gj

∂xji
(y) (11.20)

gi es la restricción j, T es el conjunto de tareas y y es el punto que corresponde
con la solución actual.

11.4.0.2 El método Branch and Bound

El método Branch and Bound [212] es una técnica de tipo "divide y vencerás".
Para nuestro problema incluyendo la restricción 9 de la sección 11.4 fuerza a
la solución a ser valores enteros. Nuestros experimentos muestran que esto es
un proceso costoso en términos de tiempo de computación. Por ello, se usa la
programación lineal relajada [3] para estimar una solución a la programación
lineal pura. Esto significa que para una modelo de programacion entera P se

268 11. Resumen

obtiene un modelo reducido eliminando la restricción de que todas las variables
deben ser enteras. Esto se denomina programación lineal relajada de P , Pr.
Primero, se obtiene una solución válida para el Pr con el método MAP pero
posteriormente, es necesario aproximar los valores al entero {0, 1} más cercano.
Para ello, se usa una función umbral T = f(vi) donde vi es el resultado después
de aplicar el método MAP y se usa el método Branch and Bound para el resto
de resultados.

T = f(vi) =

0 if vi ≤ 0.15
1 if vi ≥ 0.85
BranchAndBound en otro caso

Para el caso f(vi) = 1, la valores vi que cumple la condición umbral vi ≥ 0.85
se ordenan decrecientemente y empezando por el valor más alto se aproximan
a 1 mientras se cumplan las restricciones del modelo.

Si se desea expandir el árbol de manera más rápida es posible incluir varias
restricciones en una misma ramificación. Se establecen dos criterios de parada
para este método: cuando todas las posibilidades se han explorado o estable-
ciendo un máximo temporal predeterminado para obtener una solución. En
este último caso, la mejor solución obtenida hasta es momento será una solución
válida pero puede que no la mejor solución al problema global.

Dado que se pretende minimizar la función objetivo, al final del proceso se elige
el min Zi obtenido en el último paso.

11.5 La plataforma PANGEA+RT

PANGEA+RT es la evolución de la plataforma PANGEA [393] [144] [392]
hacia la robótica y el tiempo real. En los siguientes apartados se explicarán las
modificaciones y extensiones incluidas en este trabajo de investigación dentro
la plataforma PANGEA para conseguir su adaptación.

11.5.1 El protocolo de comunicación

El módulo de comunicación de PANGEA+RT se mejora usando el proto-
colo MQ Telemetry Transport (MQTT) [170] en vez de el IRC que usaba

11.5. La plataforma PANGEA+RT 269

PANGEA. MQTT es un protocolo ligero basado en un modelo de subscripción
con un servidor (broker) y clientes. Está diseñado para ser abierto, simple y
fácil de implementar, lo que lo convierte en ideal para su uso en ambientes
restringidos.

Algunas características del protocolo son [172]:

• La trama es pequeña (la longitud fija mínima son 2 bytes) y los intercam-
bios de mensajes del sistema son mínimos por lo que el tráfico de red se
reduce.

• Mediante la configuración de la calidad del servicio (QoS) es posible
definir cómo de estrictos serán los controles entre el cliente y servidor
para asegurarse de la recepción de los mesajes.

• El protocolo no determina el formato en el que se incluye el contenido
específico del mensaje.

• El protocolo utiliza un patrón de publicación y suscripción lo que favorece
el bajo acoplamiento. Los clientes no tienen porque conocerse previamente
entre sí.

• Abierto y no es necesaria licencia, por lo que es fácilmente adaptable a
multitud de servicios, plataformas y sistemas operativos.

• Altamente escalable para permitir crear sistemas con multitud de dispos-
itivos remotos.

11.5.1.1 Formato básico del mensaje

MQTT permite diferentes tipos de formatos para los mensajes, pero todos los
mensajes contienen una cabecera fija. La tabla de la figura 11.4 muestra su
formato.

Figure 11.4: MQTT Message Format

270 11. Resumen

Los campos incluidos son:

• Tipo de mensaje: se representa como un entero sin signo con 4 bits, los
diferentes tipos pueden verse en la tabla 11.1.

• Dup: se establece este flag a 1 cuando el cliente o el servidor intentan
reenviar un mesaje de tipo PUBLISH, PUBREL, SUBSCRIBE o UN-
SUBSCRIBE. Se aplica a mensajes donde el valor de QoS es mayor que 0
y por lo tanto, se requiere un mensaje de tipo acuse de recibo. Si se activa
este bit, la cabecera variable debe incluir un identificador de mensaje.

• QoS: indica el nivel de garantía para la entrega de un mensaje PUBLISH.

• Retain: Se usa sólo en los mesajes tipo PUBLISH. Cuando un cliente
envía un mesaje PUBLISH a un servidor, si este flag está activado el
servidor debe almacenar el mensaje después de que sea enviado a los
clientes suscritos. Cuando se establece una nueva suscripción, el último
mensaje almacenado debe ser enviado al nuevo suscriptor.

• Remaining Length: Represents the number of bytes remaining within the
current message, including data in the variable header and the payload.

Los números que se usan en el campo tipo de mensaje se muestran a continuación
11.1:

MNENONIC NUMBER DESCRIPTION
CONNECT 1 Un cliente solicita la conexión con unservidor
CONNACK 2 Acuse de recibo Connect
PUBLISH 3 Comando para publicar un mensaje
PUBACK 4 Acuse de recibo Publish
PUBREC 5 Publish recibido (parte 1)
PUBREL 6 Publish publicado (parte 2)

PUBCOMP 7 Publish completado (parte 3)
SUBSCRIBE 8 Un cliente solicita unirse a un tema
SUSACK 9 Acuse de recibo Subscribe

UNSUBSCRIBE 10 Un cliento solicita cancelar una suscripción
UNSUBACK 11 Acuse de recibo Unsubscribe
PINGREQ 12 solicitud PING
PINGRESP 13 respuesta PING

DISCONNECT 14 Un cliente solicita la desconexión

Table 11.1: MQTT message types

Cada uno de estos mensajes contiene además de una cabecera fija y una
cabecera variable. Además, algunos de ellos contiene lo que se denomina
carga significativa del mensaje, es decir, el mensaje en sí, como CONNECT,
SUBSCRIBE, SUBACK y PUBLISH.

11.5. La plataforma PANGEA+RT 271

11.5.1.2 Servidores y clientes

En la figura 11.5 se muestra la arquitectura de comunicación con el protoloco
MQTT.

MQTT brokers: un broker MQTT es un servidor que implementa el proto-
colo y hace de intermediario entre los clientes. Really Small Message Broker
(RSMB) es la implementación del broker programada en C que se usa en
PANGEA+RT.

MQTT clientes: para los clientes existen librerías que simplifican el pro-
ceso de desarrollo. En nuestro caso, se usa el proyecto Eclipse Paho
(http://www.eclipse.org/paho/) que permite clientes en C y Java.

Figure 11.5: Arquitectura de comunicación con el protocolo MQTT

Otra característica importante es que clientes y servidores pueden estar imple-
mentados en diferentes lenguajes (http://mqtt.org/software), como Java, C,
Arduino, Javascript, etc. La introducción del protocolo MQTT permite eliminar
algunos agentes de la versión previa, PANGEA, como el CommunicationAgent,
el SnifferAgent y el SubscribeAgent ya que sus funciones son automáticamente
soportadas por el protocolo y el broker Mosquitto. El GatewayAgent tampoco
es necesario porque el enlace entre MQTT y FIPA-ACL no es beneficioso ya
que puede causar retrasos peligrosos para el correcto funcionamiento.

La sección de código 11.3 corresponde con un ejemplo de conexión y subscripción
en Java.

1 public void Publ ishAndSuscr ibeBlocking () throws Exception {
2 MQTT mqtt = new MQTT() ;
3 mqtt . setHost (" tcp :// mosquito . f i s . u sa l . e s :1883 ") ;
4 BlockingConnect ion connect ion = mqtt . b lock ingConnect ion ()

;
5 connect ion . connect () ;

272 11. Resumen

6 Topic [] t o p i c s = {new Topic (ut f8 (" Presentat ionTopic ") ,
QoS .AT_LEAST_ONCE) } ;

7 byte [] qoses = connect ion . sub s c r i b e (t op i c s) ;
8 connect ion . pub l i sh (" Presentat ionTopic " , " He l l o " . getBytes

() , QoS .AT_LEAST_ONCE, fa l se) ;
9 Message message = connect ion . r e c e i v e () ;
10 Assert . a s s e r tEqua l s (" He l lo " , new St r ing (message .

getPayload ())) ;
11 message . ack () ;
12 connect ion . d i s connec t () ;
13 }

Programming Code 11.3: Conexión y subscripción en Java

11.5.2 Agentes de PANGEA+RT

Como se ha explicado en la sección anterior, en PANGEA+RT el número de
agentes predeterminados para el funcionamiento de la plataforma se reduce y
sólo se mantienen los estrictamente necesarios.

• OrganizationManager: es el agente responsable de la gestión y control
de la organizaciones y suborganizaciones. Verifica la entrada y salida de
agentes y la asignación de roles. Trabaja junto al OrganizationAgent que
es una especialización de este agente.

• OrganizationAgent: se introduce automáticamente en cada suborgani-
zación para ayudar al OrganizationManager y evitar sobrecargas. Se
comunica con los agentes de tiempo real para verificar su funcionamiento
y las restricciones temporales.

• InformationAgent: es el agente responsable del acceso a los datos y la
información del sistema.

• ServiceAgent: es el encargado de controlar y asignar los servicios ofrecidos
por los agentes. Funciona como el denominado Directory Facilitator (DF)
definido en el estándar FIPA.

• NormAgent: asegura el cumplimiento de todas las normas definidas para
el sistemas y las diferentes organizaciones.

En la figura 11.6 se puede observar la arquitectura para la distribución de los
agentes de PANGEA+RT.

11.5. La plataforma PANGEA+RT 273

Figure 11.6: Agentes de PANGEA+RT

Ahora es necesario un nuevo rol al que denominamos PlannerAgent. Este rol
es ejecutado por un agente que implementa el modelo presentado en la sección
11.4 para la planificación y la asignación de tareas. El OrganizationManager
controla la entrada de nuevos agentes en el sistema y notifica al PlannerAgent el
evento. El PlannerAgent está también en contacto con el OrganizationManager
en caso de que la planificación falle.

274 11. Resumen

En esta versión de la plataforma sólo se permiten agentes de tiempo real.
La principal razón es que la comunicación entre un agente sin restricciones
temporal y otro con ellas puede conllevar un mal funcionamiento si el agente sin
restricciones se retrasa y no cumple la planificación. Por lo tanto, la interacción
entre ellos se elimina para evitar fallos.

11.5.3 Modificación de las clases

En PANGEA cada agente extiende de la clase abstracta denominada Agent.
Para PANGEA+RT se crea una nueva clase abstracta que incluye las restric-
ciones temporales, AgentRT. Lo mismo ocurre con la clase abstracta Behaviour,
ahora reconvertida a la clase BehaviourRT.

En la figura 11.7 se pueden observar las principales clases de la imple-
mentación:

• AgentRT: define todos los métodos que los agentes de tiempo real deben
implementar.

• MqttCallback: no es una clase específica de la plataforma pero todos los
agentes deben extender de esta clase para usar el protocolo MQTT.

• RealtimeThread: esta clase tampoco es propia de la plataforma pero
todos los agentes deben extender de ella para ejecutarse como hilos de
tiempo real de Java.

• BehaviourRT: define el comportamiento del agente donde se incluye la
tarea a realizar, puede ser periódica o aperiódica.

– PeriodicBehaviourRT: se utiliza esta clase donde se espefica el
plazo que debe cumplir el comportamiento de un agente con una
tarea periódica junto con el periodo de ejecución.

– AperiodicBehaviourRT: hasta el momento, PANGEA+RT sólo per-
mite tareas espórativas y aperiódicas asignando period = deadline.

11.5. La plataforma PANGEA+RT 275

Figure 11.7: Clases principales de la plataforma

Es importante destacar el método controlDeadline de la clase BehaviourRT.
Si las tareas programadas dentro del método run no finalizan cumpliendo
las restricciones temporales (con el plazo deseado), controlDeadline genera
un evento que debe ser tratado por un manejador y notificar la incidencia al
OrganizationAgent. El atributo WCET permite almacenar la estimación temporal
obtenida con el modelo previamente explicado.

A continuación, se presenta el esqueleto de una clase de un agente (11.5)

276 11. Resumen

asociada a su comportamiento (11.4).
1 public class MyBehaviour extends PeriodicBehaviourRT
2 {
3 public MyBehaviour (int importante , long WCET, long

deadl ine , long per iod)
4 {
5 //Constructor
6 super () ;
7 }
8 public void run ()
9 { //Task to carry out }
10
11 public cont ro lDead l ine ()
12 { //Actions i f the dead l ine i s not f u l f i l l e d }
13 }

Programming Code 11.4: Ejemplo de una clase MyBehaviour básica

1 public class MyAgent extends MqttCallback implements AgentRT
2 {
3 private MyBehaviour behaviour ;
4 private BlockingConnect ion connect ion ;
5
6 public MyAgent(s t r i n g ovCurrent , s t r i n g brokerCurrent ,

MyBehaviour behaviour)
7 {
8 //Constructor
9 this . behaviour=behaviour ;
10 super () ;
11 }
12
13 public void run ()
14 { //Actions be f o r e s t a r t i n g the pe r i od i c ta s k o f the

behaviour }
15
16 public void addMQTTComunication (s t r i n g brokerCurrent)
17 {
18 //MQTT c l i e n t
19 MQTT mqtt = new MQTT() ;
20 mqtt . setHost (brokerCurrent) ;
21 BlockingConnect ion connect ion = mqtt .

b lock ingConnect ion () ;
22 connect ion . connect () ;
23 }
24
25 public sendMessage (s t r i n g message , s t r i n g top i c)
26 {
27 connect ion . pub l i sh (top ic , message . getBytes () , QoS .

AT_LEAST_ONCE, fa l se) ;
28 }
29
30 [. . .]
31 }

11.6. Caso de estudio 277

Programming Code 11.5: Ejemplo de la clase básica MyAgent

La clase MyAgent se ejecuta como un hilo de tiempo real de Java (11.6).

1 public stat ic void main (St r ing [] a rgs)
2 {
3 MyAgent agent = new MyAgent () ;
4 agent . s t a r t () ;
5 try{
6 agent . j o i n () ;
7 } catch (Inter ruptedExcept ion i e)
8 //Exception
9 }
10 }

Programming Code 11.6: Hilo de tiempo real de Java

11.6 Caso de estudio

En este apartado, se explica el caso de estudio práctico para evaluar el modelo
y la plataforma desarrollados. El caso de estudio se basa en la colaboración
de robots heterogéneos para tareas de vigilancia. Existen dos tipos de robots
involucrados: HAWKs, que son UAVs (Unmanned Aerial Vehicle) y GECKOs,
UGVs (Unmanned Ground Vehicle) desarrollados por el grupo BISITE. La
meta del equipo o equipos involucrados es escanear grandes áreas de terreno,
con este sistema el tiempo de búsqueda se reduce si lo comparamos con recursos
humanos. Para el desarrollo de la infraestructura a bajo nivel se ha utilizado
la plataforma PANGEA+RT [144] [392]. Y el sistema se ha probado en un
parque de ocio llamado Valcuevo en la localidad de Salamanca.

En el campo de la robótica y especialmente, en este caso donde hay vehículos
en movimiento, cumplir con las restricciones de tiempo real es importante. Este
caso de estudio nos permite combinar el concepto de OV mediante la formación
de equipos, el modelo propuesto para la planificación y distribución de tareas y
la plataforma PANGEA+RT.

Los agentes trabajan dentro de sus correspondientes organizaciones dependiendo
del equipo del que forman parte, para ello se configuran las normas y las
capacidades asociadas a roles de los agentes. Cada agente puede tomar diferentes
roles y gracias a la distribución de tareas, los roles pueden ser reasignados a
diferentes agentes en diferentes nodos mejorando la eficiencia o simplemente

278 11. Resumen

para resolver problemas de comunicación, paradas indeseadas de un nodo,
etc.

Un equipo debe tener como mínimo los roles que se presentan a continuación.
Pero puede suceder que varios agentes tomen el mismo rol, incrementando el
número de agentes en el sistema. Esto es común en el caso del InterfaceAgent
ya que la monitorización de HAWK, de GECKO y la del equipo puede realizarse
desde varios nodos que deben incluir el InterfaceAgent para capturar los datos
del ControlAgent de cada robot.

Los agentes necesarios para formar un equipo mínimo son:

InterfaceAgent: es el responsable de capturar los datos necesarios para la interac-
ción entre los usuarios y los vehículos. Hay tres especializaciones de este rol. El
InterfaceGECKOAgent se comunica con el correspondiente ControlAgent para
obtener los datos de GECKO, y la información de sus sensores se muestra en la
interfaz. El InterfaceHAWKAgent se comunica con el de HAWK para mostrar
los datos en la interfaz . Finalmente, el agente TeamInterface interactúa con el
ControlAgent de todos los vehículos y equipos y con el MovementController-
Agent para obtener y mostrar la posición de los vehículos en cada momento.
Además, este agente recibe una alertas del agente AlertColisionAgent en caso
de que dos equipos vayan a colisionar o del MovementControllerAgent si sus
áreas de escaneo se solapan.

ControlAgent: este agentes se ejecuta dentro de cada vehiculo. Encapsula la
lógica y funcionalidad necesaria para controlar el vehículo. Recibe información
de los agentes encargados de sondear los sensores y se comunica también con los
agentes interfaz. Por tanto, es el agente base para el control de los movimientos y
captura de imágenes del vehículo. SensorAgent: este agente se ejecuta también
dentro de cada vehículo y tiene diferentes especializaciones dependiendo del
vehículo y del sensor. Su principal misión es captar información del medio para
su interpretación.

MovementControllerAgent: este rol puede desplegarse en cualquier nodo del
sistema y es el responsable de realizar los cálculos correspondientes para el
movimiento sincronizado de GECKO y HAWK.

ScanningRouteAgent: este rol también puede desplegarse en cualquier nodo del
sistema y se encarga de calcular los mencionados waypoints que debe seguir
HAWK. Recibe la información del agente MovementControllerAgent.

RouteAreaAgent: éste también puede desplegarse en cualquier nodo del sistema
y controlas las posibles desviaciones y errores que se produzcan en el movimiento
sincronizado. También se encarga de almacenar la información para presentar
en la interfaz los resultados finales de la misión.

11.6. Caso de estudio 279

Figure 11.8: OV propuesta para el despliegue del caso de estudio

Existen también dos roles obligatorios que se encargan del procesado de las
imágenes que transmiten HAWK y GECKO. Sin embargo, el caso particular
del tratamientos de imágenes se presenta en el trabajo [67].

ImageProcessorAgent: se encarga de reconocer patrones de figuras humanas en
las imágenes. Existen también dos especializaciones de este agente, ImagePro-
cessingHAWKAgent yImageProcessingGECKOAgent, y puesto que las imágenes

280 11. Resumen

que capta HAWK son hacia el suelo y las que capta GECKO son frontales.
Las imágenes se transmiten de la cámara al agente usando el protocolo FPV,
conocido también como RPV [266] [376], muy usado para controlar vehículos
por radiofrecuencia desde el punto de vista del piloto.

En el sistema se incluye un agente con rol AlertColisionAgent que se comunica
con el MovementControllerAgent de cada equipo. Este agente recibe las
coordenadas en las que HAWK se posicionará en el próximo movimiento de
escaneo. Si otro HAWK ha escaneado previamente un porcentaje superior al
configurado por el usuario, el AlertColisionAgent lanza una alerta para realizar
un nuevo cálculo de la zona a escanear.

La figura 11.8 presenta un esquema general de los roles que los agentes pueden
tomar. Los agentes en azul pueden desplegarse en cualquier nodo del sistema
mientras que los agentes en verde deben ejecutarse dentro del vehículo corre-
spondiente (HAWK o GECKO, dependiendo de la proximidad del agente al
robot en el dibujo).

11.6.1 Despliegue de los agentes propuestos

Para la ejecución de los agentes se dispone de 3 tipos diferentes de nodos con
las siguientes características:

• Tipo 1: Intel Core 2 Duo a 3.00 GHz y 4Gb de RAM. El sistema operativo
es un Fedora 20 kernel 3.10.22 y el parche de tiempo real instalado es RT-
PREEMPT (patch-3.10.22.rt20). La RTJVM es la JamaicaVM Personal
Edition 6.2.

• Tipo 2: i7-3630QM a 3.40 GHz y 8Gb de RAM. El sistema operativo es
un Fedora 19 kernel 3.12.11 y el parche de tiempo real instalado es RT-
PREEMPT (patch-3.12.11.rt19). La RTJVM es la JamaicaVM Personal
Edition 6.2.

• Tipo 3: Raspberry Pi Single Board Computer (SBC) con procesador a
700MHz y 512MB de RAM con el kernel Raspbian 3.12.1 y el parche de
tiempo real RT-PREEMPT (patch-3.12.1-rt4). La RTJVM es la FijiVM
Academic.

Se dispone de 10 nodos, el tipo de nodo que determina sus características se
muestra en la tabla 11.2.

Los agentes de las interfaces (TeamInterfaceAgent, InterfaceHAWKAgent, In-
terfaceGECKOAgent) se ejecutan en nodos diferentes ya que las restricciones de
tiempo real no se aplican. Los propios agentes de la plataforma PANGEA+RT

11.6. Caso de estudio 281

Nodo 1 Tipo 3 (Raspberry Pi)
Nodo 2 Tipo 3 (Raspberry Pi)
Nodo 3 Tipo 2 (Intel i7-3630QM)
Nodo 4 Tipo 1 (Intel Core 2 Duo)
Nodo 5 Tipo 1 (Intel Core 2 Duo)
Nodo 6 Tipo 3 (Raspberry Pi)
Nodo 7 Tipo 3 (Raspberry Pi)
Nodo 8 Tipo 2 (Intel i7-3630QM)
Nodo 9 Tipo 1 (Intel Core 2 Duo)
Nodo 10 Tipo 1 (Intel Core 2 Duo)

Table 11.2: Relación entre los nodos y sus características

también se ejecutan en otro nodo específico ya que tampoco es necesaria su
actuación en tiempo real. Como se ha explicado en la sección 11.5, estos agentes
son: el OrganizationAgent, el ManagerAgent, el NormAgent, el InformationA-
gent y el ServiceAgent. Sin embargo, el PlannerAgent se incluye en el sistema de
tiempo real para que el tiempo de ejecución del modelo incluyendo el algoritmo
MAP y el método Branch and Bound puedan acotarse temporalmente. Para
esto, el PlannerAgent utiliza el porcentaje de utilización restante en alguno de
los nodos.

En el modelo propuesto, se utiliza la condicion de planificabilidad para el
RM ó FPS propuesta por Liu y Layland [221], y que se tiene en cuenta en la
restricción 4 del modelo. El límite de planificabilidad decrece con el número de
tareas N , como Butazzo [63] demuestra en 11.21.

lim
N→∞

N(21/N − 1) = ln2 ' 0.693 (11.21)

Esto significa que la capacidad de cada nodo aplicando el modelo propuesto
es del 69.3%. Cuando el PlannerAgent necesita tiempo de ejecución, usa el
porcentaje restante de cada nodo. En la próxima sección, se presentan los
resultados relacionados con los agentes y nodos del caso de estudio.

11.6.2 Resultados

Como se ha explicado previamente y cómo se muestra en la figura 11.8, cada
equipo está compuesto por 9 agentes y el agente AlertCollisionAgent que
es común para todos los equipos. Se dispone como máximo de 10 nodos
presentados en la tabla 11.2.

282 11. Resumen

Por cada equipo se añaden cuatro restricciones más. Esto se debe a que el nodo
1 corresponde a la Raspberry Pi de GECKO y los agentes ControlGECKOA-
gent y SensorGECKOAgent se deben ejecutar obligatoriamente en este nodo.
Además, el nodo 2 corresponde a la Raspberry Pi de HAWK y los agentes
ControlHAWKAgent y SensorHAWKAgent deben obligatoriamente ejecutarse
en este nodo. Las restricciones se muestran en la ecuación 11.22.

x1
1 = 1, x1

2 = 1, x2
3 = 1, x2

4 = 1
x6

10 = 1, x6
11 = 1, x7

12 = 1, x7
16 = 1 (11.22)

La figura 11.9 presenta el factor de utilización ρji donde: i representa la tarea
y j el nodo de computación. Los resultados se obtienen mediante la aplicación
del modelo propuesto de estimacion para el WCET. El valor −1 se asigna a los
pares tarea-nodo donde dichas tareas no pueden ejecutarse de acuerdo con las
ecuaciones 11.22.

Con estos valores, se puede aplicar el modelo propuesto para la planificación y
asignación de tareas, los resultados se muestran en la tabla 11.3. En la primera
columna se encuentran los nodos y la segunda el conjunto de tareas asignadas
al correspondiente nodo. En la cuarta columna, se encuentra el valor final del
factor de utilización, ρj , cuyo cálculo se realiza utilizando los valores ρji de la
figura 11.9 y la fórmula 11.23.

ρj =
Nj∑
i

ρji (11.23)

donde Nj es el número de tareas asignadas al nodo j.

La última columna corresponde con la capacidad sobrante en cada nodo, φj .
Para este cálculo se utiliza el teorema de Liu y Layland y la ecuación 11.9, así
se obtiene la siguiente fórmula 11.24:

φj =
{
Nj(21/Nj − 1)− ρj if N > 0
1 if N = 0

(11.24)

11.6. Caso de estudio 283

Figure 11.9: Resultados del factor de utilización ρj
i

El valor de la función objetivo es 9 y el nodo 5 se queda libre de tareas. Los
nodos con mayor capacidad sobrante (φj = 0.67) son el 1, 2, 6 y 7, sin embargo,
si se consulta la tabla de la figura 11.9 no existe la posibilidad de asignar otro
agente a esos nodos ya que todas las tareas tienen φji > 0.67.

Al nodo 8 se le asigna únicamente una tarea, i = 19. Para verificar el modelo,
manualmente se adaptan los valores de φj19 para comprobar que en este caso,

284 11. Resumen

Nodo Agente (ρji)
Factor de

Utilización ρj
Capacidad Sobrante

Actual φj

1 1 (0.02) and
2 (0.13) 0.15 0.67

2 3 (0.02) and
4 (0.13) 0.15 0.67

3 7 (0.37) and
16 (0.37) 0.74 0.088427

4
8 (0.18), 9 (0.15),
17 (0.18) and
18 (0.15)

0.66 0.096828

5 Empty 0 1

6 10 (0.02) and
11 (0.13) 0.15 0.67

7 12 (0.02) and
13 (0.13) 0.15 0.67

8 19 (0.45) 0.45 0.55

9 6 (0.36) and
15 (0.36) 0.72 0.108427

10 5 (0.36) and
14 (0.36) 0.72 0.108427

Table 11.3: Resultados del modelo de distribución de tareas

la tarea se asigna a otro nodo y el número de nodos disminuye a 8. En la tabla
11.4 se muestran los nuevos valores.

Agent 19
AlertCollisionAgent

ρj19 Antes ρj19 Después
Nodo 3 0.45 0.08
Nodo 4 0.39 0.06
Nodo 5 0.39 0.06
Nodo 8 0.45 0.08
Nodo 9 0.39 0.06
Nodo 10 0.39 0.06

Table 11.4: Modificación del parámetro ρj
19

Con estos valores, el valor de la función objetivo es 8. Esto significa que 2 nodos
sufren modificaciones, la tarea 19 se asigna al nodo 4 y el nodo 8 queda vacío.
Para este caso, la solución obtenida es la mejor. Los resultados se muestran en
la tabla 11.5.

11.7. Conclusiones 285

Nodo Agente (ρji)
Factor de

Utilización ρj
Capacidad Sobrante

Actual φj

4
8 (0.18), 9 (0.15),
17 (0.18), 18 (0.15)

and 19 (0.06)
0.72 0.023492

8 Empty 0 1

Table 11.5: Resultados del modelo de planificación y distribución de tareas

11.7 Conclusiones

En este trabajo de tesis doctoral se ha propuesto un modelo efectivo de esti-
mación del WCET y de planificación y distribución de tareas. En primer lugar,
con el modelo se calcula el WCET de las tareas asociadas a un agente que desea
entrar a formar parte de una OV teniendo en cuenta restricciones de tiempo
real. Una vez hecha dicha estimación, el modelo genera una planificación y una
distribución de tareas que permite minimizar el número de nodos del sistema.
Este modelo se diseñó específicamente para OVs donde los agentes llevan a
cabo tareas con restricciones temporales lo que supone una novedad objetiva
con respecto al estado del arte de la técnica.

Esta investigación aporta nuevas contribuciones hacia la integración de agentes
con comportamientos emergentes que deben trabajar dentro de una OV de
tiempo real. Después de un estudio exhaustivo de la literatura existente, éste
es el primer modelo que cumple con dichas características desarrollado para
este tipo de sistemas. El proceso seguido desde la propuesta de la hipótesis
hasta la implementación de la plataforma y la obtención de resultados cumple
con la metodología exigida para un trabajo de investigación. La evaluación del
modelo propuesto y las comparativas realizadas en el estado del arte, permiten
afirmar que, en la actualidad, existen diversas plataformas de agentes, algunas
orientadas a OVs ó a robótica pero ninguna combina tiempo real con OVs que
cumplan con todas las características organizacionales.

En el marco de este trabajo se han usado diversas técnicas para conseguir
resolver los pasos del modelo y las dificultades que éste presenta. Así, para la
estimación del WCET, se han aplicado conceptos como los Java bytecodes y
profundizado en el funcionamiento de una JVM. Se han utilizado técnicas de
modelado de grafos como el ICFG y la técnica IPET para mejorar la estimación.
Para la planificación y la distribución de tareas se ha aplicado el algoritmo
FPS y su test de viabilidad, programación no lineal, el algoritmo MAP, el
método Branch and Bound, etc. Con todos estos elementos hemos obtenido

286 11. Resumen

un método novedoso y que, tras ser evaluado, ha proporcionado resultados
que permiten concluir que el modelo permite demostrar la hipótesis inicial
planteada: es posible desarrolar un modelo de planificación y asignación de
tareas que permita a los agentes pertenecientes a una OV rematar con éxito
sus tareas dentro de las limitaciones temporales. Este modelo será formalizado
teóricamente e implementado para evaluar los resultados.

También como parte de este trabajo doctoral se ha diseñado y desarrollado
la plataforma PANGEA+RT que proporciona soporte al modelo propuesto y
obteniendo tres artefactos diferentes durante el proceso:

• PANGEA: orientada a OV.

• PANGEA+R: orientada a robótica colaborativa.

• PANGEA+RT: orientada a tiempo real.

Por lo tanto, se puede concluir que PANGEA+RT es una plataforma com-
pleta para gestionar OV con diferentes topologías y teniendo en cuenta los
diferentes aspectos organizacionales. Puede incluir cualquier tipo de agente,
incluso robóticos como en el caso de estudio gracias al protocolo ligero MQTT.
También, incluye el modelo de planificación y distribución de tareas que permite
desarrollar OVs en tiempo real cumpliendo con la dinamicidad y apertura de
estos sistemas.

Finalmente, como se ha mostrado con el caso de estudio, se han obtenido
buenos resultados experimentales que revelan el buen funcionamiento no sólo
del modelo propuesto sino de la plataforma PANGEA+RT.

List of Acronyms
ACL Agent Communication Language. 22

AI Artificial Inteligence. 49, 50

AMS Agent Management System. 52, 54, 106

APRIL Agent Process Interaction Language. 52

BDI Belief-desire-intention agent architecture. 18, 19, 101, 106

CFG Control Flow Graph. 67, 70, 75, 76, 80

DF Directory Facilitator. 52, 103, 106, 112

DMA Deadline Monotonic Analysis. 41

DPS Dynamic Priority Scheduling. 44

DRTSJ Distributed Real-Time Specification for Java. 240

eCFG Extended Control Flow Graph. 76, 77, 78

EDF Earliest Deadline First Scheduling. 41, 42, 43, 45, 52, 65, 84, 85

FCFS First Come First Served. 40

FIPA Foundation for Intelligent Physical Agents. 19, 22, 54

FPS Fixed Priority Scheduling. 42, 43, 44, 61, 64, 65, 83, 84, 85, 86, 87

FPV First-person View. 201, 279

GPS Global Positioning System. 193, 194, 200, 203, 204, 207

GRM Global Rate-Monotonic. 44, 45

HMAS Holonic multi-agent system. 103

ICFG Interprocedural Control Flow Graph. 78, 81, 258

ILP Integer Linear Programming. 62, 79, 82, 221, 259

IPET Implicit Path Enumeration Technique. 78, 79, 220

IRC Internet Relay Chat. 101, 118, 119, 120, 121, 123, 124, 126, 127, 132, 148

288 List of Acronyms

JADE Java Agent DEvelopment Framework. 101, 104, 105

jART java Agent for Real-Time. 54

JML Java Modelling Language. 172

JVM Java Virtual Machine. 163, 164, 165, 166, 167, 169

KQML Knowledge Query and Manipulation Language. 22, 52

MAP Method of Approximation Programming. 91, 92, 94

MARS Multi-agent Robotic System. 140

MAS Multi-agent System. 4, 5, 7, 10, 11, 15, 19, 20, 21, 22, 23, 24, 25, 27, 28,
29, 33, 35, 49, 50, 51, 52, 53, 61, 99, 100, 103, 104, 106, 109, 128, 135,
136, 137, 138, 140, 142, 144, 146, 147, 162, 186, 197, 232

MQTT Message Queue Telemetry Transport. 148, 149, 150, 151, 152, 156,
157, 158, 159, 237

Pfair Proportionate-Fair Planning. 45, 46

RDE Robot Development Environment. 137

RM Rate Monotonic. 41, 42, 44, 65, 86, 212, 263

RMI Remote Method Invocation. 240

RPV Remote-person View. 201, 279

RR Round Robin. 40

RSMB Really Small Message Broker. 156

RTA Real-time Agent. 50, 51, 52

RTAI Real-time Artificial Intelligence. 53

RTAIS Real-Time Artificial Intelligence Systems. 49, 51

RTJVM Real-time Java Virtual Machine. 169, 170, 181

RTMAS Real-time Multi-Agent System. 50, 51

RTS Real-time System. 4, 5, 6, 8, 10, 34, 35, 36, 37, 40, 41, 43, 48, 49, 50, 52,
53, 54, 55, 60, 83, 236

RTSJ Real-Time Specification for Java. 165, 166, 167, 168, 169, 240

SOA Service-oriented Application. 109, 132

List of Acronyms 289

UAV Unmanned Aerial Vehicle. 186, 188, 191, 192, 193, 194

UGV Unmanned Ground Vehicle. 186, 191, 192, 194, 201

VO Virtual Organization of agents. v, vii, 4, 5, 6, 7, 8, 9, 10, 11, 15, 27, 28,
29, 33, 39, 55, 59, 61, 63, 66, 89, 96, 100, 101, 102, 103, 104, 105, 106,
111, 124, 132, 134, 136, 142, 144, 145, 146, 158, 159, 161, 181, 185, 186,
187, 191, 197, 198, 213, 231, 232, 236, 237

WCET Worst Case Execution Time. 10, 11, 41, 59, 60, 62, 63, 67, 68, 70, 74,
75, 78, 79, 80, 82, 83, 84, 163, 167, 171, 173, 180, 182, 236, 239, 259, 260,
261

WS Web Service. 103, 109, 129, 132

WSN Wireless Sensor Networks. 148, 191

Bibliography
[1] T. F. Abdelzaher and N. Bhatti. Web server qos management by adaptive content

delivery. In Quality of Service, 1999. IWQoS’99. 1999 Seventh International Workshop
on, pages 216–225. IEEE, 1999.

[2] J. H. Ahnn. The Robot control using the wireless communication and the serial
communication. PhD thesis, Cornell University, 2007.

[3] F. A. Al-Khayyal. Generalized bilinear programming: Part i. models, applications and
linear programming relaxation. European Journal of Operational Research, 60(3):306–
314, 1992.

[4] E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-carrying code. In Logic for
Programming, Artificial Intelligence, and Reasoning, pages 380–397. Springer, 2005.

[5] F. E. Allen. Control flow analysis. In ACM Sigplan Notices, volume 5, pages 1–19.
ACM, 1970.

[6] L. O. Andersen. Program analysis and specialization for the C programming language.
PhD thesis, University of Cophenhagen, 1994.

[7] J. S. Anderson and E. D. Jensen. Distributed real-time specification for java: a status
report (digest). In Proceedings of the 4th international workshop on Java technologies
for real-time and embedded systems, pages 3–9. ACM, 2006.

[8] N. Ando, T. Suehiro, and T. Kotoku. A software platform for component based
rt-system development: Openrtm-aist. In Simulation, Modeling, and Programming for
Autonomous Robots, pages 87–98. Springer, 2008.

[9] M. Annunziato and P. Pierucci. The emergence of social learning in artificial societies.
In Applications of evolutionary computing, pages 467–478. Springer, 2003.

[10] M. T. Anticona. A grasp algorithm to solve the problem of dependent tasks scheduling
in different machines. In M. Bramer, editor, Artificial Intelligence in Theory and
Practice, volume 217 of IFIP International Federation for Information Processing,
pages 325–334. Springer US, 2006.

[11] T. Arai, E. Pagello, and L. E. Parker. Editorial: Advances in multi-robot systems.
IEEE Transactions on robotics and automation, 18(5):655–661, 2002.

[12] T. Arai, E. Pagello, and L. E. Parker. Editorial: Advances in multi-robot systems.
IEEE Transactions on robotics and automation, 18(5):655–661, 2002.

[13] E. Argente, S. Giret, S. Valero, V. Julian, and V. Botti. Survey of mas methods
and platforms focusing on organizational concepts. Recent advances in Artificial
Intelligence Research and Development, 113:309, 2004.

[14] E. Argente, V. Julian, and V. Botti. Multi-agent system development based on
organizations. Electronic Notes in Theoretical Computer Science, 150(3):55–71, 2006.

[15] A. Armbruster, J. Baker, A. Cunei, C. Flack, D. Holmes, F. Pizlo, E. Pla, M. Prochazka,
and J. Vitek. A real-time java virtual machine with applications in avionics. ACM
Transactions on Embedded Computing Systems (TECS), 7(1):5, 2007.

[16] K. Arnold, J. Gosling, and D. Holmes. The Java programming language, volume 2.
Addison-wesley Reading, 2000.

292 Bibliography

[17] A. Artikis, L. Kamara, and J. Pitt. Towards an open agent society model and animation.
In Proceedings of the Agent-Based Simulation II workshop, Passau, pages 48–55, 2001.

[18] D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile resource
guarantees for smart devices. In Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices, pages 1–26. Springer, 2005.

[19] Atego. Atego perc virtual machine. http://www.atego.com/products/atego-perc/,
2014.

[20] G. Attiya and Y. Hamam. Task allocation for maximizing reliability of distributed sys-
tems: a simulated annealing approach. Journal of parallel and Distributed Computing,
66(10):1259–1266, 2006.

[21] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings. Applying new
scheduling theory to static priority pre-emptive scheduling. Software Engineering
Journal, 8(5):284–292, 1993.

[22] N. C. Audsley. Optimal priority assignment and feasibility of static priority tasks with
arbitrary start times. Technical report, University of York, England, 1991.

[23] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and A. J. Wellings. Fixed priority
pre-emptive scheduling: An historical perspective. Real-Time Systems, 8(2-3):173–198,
1995.

[24] M. Avriel. Nonlinear programming: analysis and methods. Courier Dover Publications,
2012.

[25] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage collector with low
overhead and consistent utilization. ACM SIGPLAN Notices, 38(1):285–298, 2003.

[26] J. Baillieul and P. J. Antsaklis. Control and communication challenges in networked
real-time systems. Proceedings of the IEEE, 95(1):9–28, 2007.

[27] J. Bajo, J. M. Corchado, V. Botti, and S. Ossowski. Practical applications of agents
and mas: methods, techniques and tools for open mas. Journal of Physical Agents,
3(2):1–2, 2009.

[28] J. Bajo, J. A. Fraile, B. Pérez-Lancho, and J. M. Corchado. The thomas architecture in
home care scenarios: A case study. Expert Systems with Applications, 37(5):3986–3999,
2010.

[29] J. Bajo, V. Julián, J. M. Corchado, C. Carrascosa, Y. De Paz, V. Botti, and J. F.
De Paz. An execution time planner for the artis agent architecture. Engineering
Applications of Artificial Intelligence, 21(5):769–784, 2008.

[30] S. Balakirsky, S. Carpin, A. Kleiner, M.l Lewis, A. Visser, J. Wang, and V. A. Ziparo.
Towards heterogeneous robot teams for disaster mitigation: Results and performance
metrics from robocup rescue: Field reports. J. Field Robot., 24(11-12):943–967,
November 2007.

[31] J. M. Banús. Planificación global en sistemas multiprocesador de tiempo real. PhD
thesis, Universitat Politecnica de Catalunya, 2008.

[32] G. Barthe, L. Beringer, P. Crégut, B. Grégoire, M. Hofmann, P. Müller, E. Poll,
G. Puebla, I. Stark, and E. Vétillard. Mobius: Mobility, ubiquity, security: Objectives
and progress report. In In Trustworthy Global Computing’06, LNCS. Citeseer, 2007.

[33] M. Bartlett, I. Bate, and D. Kazakov. Challenges in relational learning for real-time
systems applications. In Inductive Logic Programming, pages 42–58. Springer, 2008.

Bibliography 293

[34] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress:
A notion of fairness in resource allocation. Algorithmica, 15(6):600–625, 1996.

[35] M. Batalin and G. S. Sukhatme. Coverage, exploration and deployment by a mobile
robot and communication network. Telecommunication Systems, 26(2-4):181–196,
2004.

[36] I. Bate, G. Bernat, G. Murphy, and P. Puschner. Low-level analysis of a portable java
byte code wcet analysis framework. In Real-Time Computing Systems and Applications,
2000. Proceedings. Seventh International Conference on, pages 39–46. IEEE, 2000.

[37] I. Bate, G. Bernat, and P. P. Puschner. Java virtual-machine support for portable worst-
case execution-time analysis. In Object-Oriented Real-Time Distributed Computing,
2002.(ISORC 2002). Proceedings. Fifth IEEE International Symposium on, pages
83–90. IEEE, 2002.

[38] G. Beccari, S. Caselli, and F. Zanichelli. A technique for adaptive scheduling of soft
real-time tasks. RealTime Systems, 30(3):187–215, 2005.

[39] B. Beckert, R. Hähnle, and P. H. Schmitt. Verification of object-oriented software:
The KeY approach. Springer-Verlag, 2007.

[40] F. Bellifemine, A. Poggi, and G. Rimassa. Jade–a fipa-compliant agent framework. In
Proceedings of PAAM, volume 99, page 33. London, 1999.

[41] R. Bellman. Dynamic programming and lagrange multipliers. Proceedings of the
National Academy of Sciences of the United States of America, 42(10):767, 1956.

[42] G. Bernat. Specification and Analysis of Weakly Hard Real-Time Systems. PhD thesis,
Universidat de les Illes Balears, 1998.

[43] G. Bernat, A. Burns, and A. Wellings. Portable worst-case execution time analysis using
java byte code. In Real-Time Systems, 2000. Euromicro RTS 2000. 12th Euromicro
Conference on, pages 81–88. IEEE, 2000.

[44] S. Bisht, A. Malhotra, and S. B. Taneja. Modelling and simulation of tactical team
behaviour. Defence Science Journal, 57(6):853–864, 2007.

[45] A. Biswas, S. Sen, and S. Debnath. Limiting deception in groups of social agents.
Applied Artificial Intelligence, 14(8):785–797, 2000.

[46] D. Blank, D. Kumar, L. Meeden, and H. Yanco. The pyro toolkit for ai and robotics.
AI magazine, 27(1):39, 2006.

[47] G. Boella, J. Hulstijn, and L. Van Der Torre. Virtual organizations as normative
multiagent systems. In System Sciences, 2005. HICSS’05. Proceedings of the 38th
Annual Hawaii International Conference on, pages 192c–192c. IEEE, 2005.

[48] T. Bøgholm, C. Frost, R. R. Hansen, C. S. Jensen, K. S. Luckow, A. P. Ravn,
H. Søndergaard, and B. Thomsen. Towards harnessing theories through tool support
for hard real-time java programming. Innovations in Systems and Software Engineering,
9(1):17–28, 2013.

[49] T. Bøgholm, R. Hansen, A. P. Ravn, B. Thomsen, and H. Søndergaard. A predictable
java profile: rationale and implementations. In Proceedings of the 7th International
Workshop on Java Technologies for Real-Time and Embedded Systems, pages 150–159.
ACM, 2009.

294 Bibliography

[50] T. Bøgholm, H. Kragh-Hansen, P. Olsen, B. Thomsen, and K. G. Larsen. Model-based
schedulability analysis of safety critical hard real-time java programs. In Proceedings
of the 6th international workshop on Java technologies for real-time and embedded
systems, pages 106–114. ACM, 2008.

[51] B. Bonet and H. Geffner. Planning with incomplete information as heuristic search
in belief space. In Proceedings of the Fifth International Conference on Artificial
Intelligence Planning and Scheduling, Seattle, WA, AAAI Press, pages 52–61, 2000.

[52] R. H Bordini, J. F Hübner, and R. Vieira. Jason and the golden fleece of agent-oriented
programming. In Multi-agent programming, pages 3–37. Springer, 2005.

[53] R. H Bordini, J. F. Hübner, and M. Wooldridge. Programming multi-agent systems in
AgentSpeak using Jason, volume 8. John Wiley & Sons, 2007.

[54] E. Borowsky, R. Golding, A. Merchant, L. Schreier, E. Shriver, M. Spasojevic, and
J. Wilkes. Using attribute-managed storage to achieve qos. In Building QoS into
distributed systems, pages 203–206. Springer, 1997.

[55] V. Botti, C. Carrascosa, V. Julián, and J. Soler. Modelling agents in hard real-time
environments. In Multi-Agent System Engineering, pages 63–76. Springer, 1999.

[56] M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded practical
reasoning. Computational intelligence, 4(3):349–355, 1988.

[57] R. A. Brooks. A robust layered control system for a mobile robot. Robotics and
Automation, IEEE Journal of, 2(1):14–23, 1986.

[58] E. J. Bruno and G. Bollella. Real-Time Java Programming: With Java RTS. Pearson
Education, 2009.

[59] A. Burns. Scheduling hard real-time systems: a review. Software Engineering Journal,
6(3):116–128, 1991.

[60] A. Burns and A. Wellings. Real-Time Systems and Programming Languages: Ada,
Real-Time Java and C/Real-Time POSIX. Addison-Wesley Educational Publishers
Inc, USA, 4th edition, 2009.

[61] A. Burns and A. J. Wellings. Real-time systems and programming languages, volume
2097. Addison-Wesley, 1998.

[62] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas. Jack intelligent agents-
components for intelligent agents in java. AgentLink News Letter, 2(1):2–5, 1999.

[63] G. C. Buttazzo. Rate monotonic vs. edf: Judgment day. In Rajeev Alur and Insup
Lee, editors, Embedded Software, volume 2855 of Lecture Notes in Computer Science,
pages 67–83. Springer Berlin Heidelberg, 2003.

[64] G. C. Buttazzo. Hard Real-Time Computing Systems, volume 24. Springer, 2011.

[65] D. Capera, J. Georgé, M. Gleizes, and P. Glize. Emergence of organisations, emergence
of functions. In AISB’03 symposium on Adaptive Agents and Multi-Agent Systems,
pages 103–108, 2003.

[66] H. G. Ceballos, P. Noriega, and F. J. Cantu. Dispatching agents in electronic institutions.
In The First International Workshop on Infrastructure and Tools for Multiagent
Systems ITMAS 2010, page 26, 2010.

Bibliography 295

[67] P. Chamoso, W. Raveane, V. Parra, A. Gónzalez, and S. Rodríguez. Uavs applied to
species accounting and monitoring of animals. In igeru Omatu, José Neves, Juan M.
Corchado, Juan F. De Paz Santana, and Sara Rodríguez González, editors, Distributed
Computing and Artificial Intelligence, 11th International Conference., 2014.

[68] P. Chand and D. A. Carnegie. Mapping and exploration in a hierarchical heterogeneous
multi-robot system using limited capability robots. Robotics and Autonomous Systems,
61(6):565 – 579, 2013.

[69] Y. Cheon and G. T. Leavens. A runtime assertion checker for the java modeling language
(jml). In Proceedings of the International Conference on Software Engineering Research
and Practice (SERP’02), Las Vegas, Nevada, USA, pages 322–328, 2002.

[70] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling of real-time tasks under
precedence constraints. Real-Time Systems, 2(3):181–194, 1990.

[71] W. Cohen. Adaptive mapping and navigation by teams of simple robots. Journal of
Robotics & Autonomous Systems, 18:411–434, 1996.

[72] Apache Commons. Apache commons bcel. Last Access: 2014-04-03.

[73] Aicas Company. Jamaica virtual machine. https://www.aicas.com/cms/en/JamaicaVM,
2014.

[74] J Consortium. Real-time core extensions for the java platform. International J
Consortium Specification, 187, 2000.

[75] J. M. Corchado, M. Glez-Bedia, Y. de Paz, J. Bajo, and J. F. de Paz. Concept,
formulation and mechanism for agent replanification: Mrp architecture. Comput. Intell,
24(2):77–107, 2008.

[76] J. M. Corchado, M. Glez-Bedia, Y. De Paz, J. Bajo, and J. F. De Paz. Replanning
mechanism for deliberative agents in dynamic changing environments. Computational
Intelligence, 24(2):77–107, 2008.

[77] A. Corsaro and D. C. Schmidt. The design and performance of the jrate real-time
java implementation. In On the Move to Meaningful Internet Systems, 2002 - DOA/-
CoopIS/ODBASE 2002 Confederated International Conferences DOA, CoopIS and
ODBASE 2002, pages 900–921, London, UK, UK, 2002. Springer-Verlag.

[78] M. Cossentino, N. Gaud, V. Hilaire, S. Galland, and A. Koukam. Aspecs: an agent-
oriented software process for engineering complex systems. Autonomous Agents and
Multi-Agent Systems, 20(2):260–304, 2010.

[79] G. F. Coulouris, J. Dollimore, and T. Kindberg. Distributed systems: concepts and
design. pearson education, 2005.

[80] K. Crary and S. Weirich. Resource bound certification. In Proceedings of the 27th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
184–198. ACM, 2000.

[81] Y. H. Daren. Automatic protocol generation based on commitment machines. The
University of Western Australia, 2004.

[82] M. Dastani, N. AM Tinnemeier, and J. C. Meyer. A programming language for
normative multi-agent systems. Multi-Agent Systems: Semantics and Dynamics of
Organizational Models, pages 397–417, 2009.

296 Bibliography

[83] K. Dautenhahn. Reverse engineering of societies-a biological perspective. In Proceedings
of the AISB Symposium, Starting from Society-the application of social analogies to
computational systems, 2000.

[84] P. Davidsson. Categories of artificial societies. In Engineering Societies in the Agents
World II, pages 1–9. Springer, 2001.

[85] F. de la Prieta, B. Pérez-Lancho, J. F. De Paz, J. Bajo, and J. M. Corchado. Ovamah:
Multiagent-based adaptive virtual organizations. In Information Fusion, 2009. FU-
SION’09. 12th International Conference on, pages 990–997. IEEE, 2009.

[86] E. Del Acebo and J. L. De la Rosa. Introducing bar systems: a class of swarm
intelligence optimization algorithms. In AISB Convention Communication, Interaction
and Social Intelligence, pages 18–23, 2008.

[87] C. Dellarocas and M. Klein. Contractual agent societies. In Social Order in Multiagent
Systems, pages 113–133. Springer, 2001.

[88] S. K. Dhall. Scheduling periodic-time-critical jobs on single processor and multipro-
cessor computing systems. PhD thesis, University of Illinois at Urbana-Champaign,
1977.

[89] S. K. Dhall and C. L. Liu. On a real-time scheduling problem. Operations Research,
26(1):127–140, 1978.

[90] G. Di Marzo, M. Gleizes, and A. Karageorgos. Self-organisation and emergence in mas:
An overview. Informatica (03505596), 30(1), 2006.

[91] F. Dignum. Agents, markets, institutions, and protocols. In Agent Mediated Electronic
Commerce, pages 98–114. Springer, 2001.

[92] M. V. Dignum. A model for organizational interaction: based on agents, founded in
logic. University Utrecht, 2003.

[93] V. Dignum and F. Dignum. A logic of agent organizations. Logic Journal of IGPL,
20(1):283–316, 2012.

[94] V. Dignum, J. Vázquez-Salceda, and F. Dignum. Omni: Introducing social structure,
norms and ontologies into agent organizations. In Programming Multi-Agent Systems,
pages 181–198. Springer, 2005.

[95] E. W. Dijkstra, E. W. Dijkstra, and E. W. Dijkstra. Notes on structured programming.
Technological University Eindhoven Netherlands, 1970.

[96] L. C. DiPippo, V. Fay-Wolfe, L. Nair, E. Hodys, and O. Uvarov. A real-time multi-
agent system architecture for e-commerce applications. In Autonomous Decentralized
Systems, 2001. Proceedings. 5th International Symposium on, pages 357–364. IEEE,
2001.

[97] L. C. DiPippo, E. Hodys, and B. Thuraisingham. Towards a real-time agent architecture-
a whitepaper. In Object-Oriented Real-Time Dependable Systems, 1999. WORDS
1999 Fall. Proceedings. Fifth International Workshop on, pages 59–64. IEEE, 1999.

[98] B. Efron. The convex hull of a random set of points. Biometrika, 52(3-4):331–343,
1965.

[99] A. Elkady and T. Sobh. Robotics middleware: A comprehensive literature survey and
attribute-based bibliography. Journal of Robotics, 2012, 2012.

Bibliography 297

[100] M. A. Ellis and B. Stroustrup. The annotated C++ reference manual. Addison-Wesley
Longman Publishing Co., Inc., 1990.

[101] S. Enderle, H. Utz, S. Sablatnög, S. Simon, G. Kraetzschmar, and G. Palm. Miro:
Middleware for autonomous mobile robots. Telematics Applications in Automation
and Robotics, 2001.

[102] J. Engblom, A. Ermedahl, and F. Stappert. Comparing different worst-case execution
time analysis methods. In Work-in-Progress session of the 21st IEEE Real-Time
Systems Symposium (RTSS 2000), 2000.

[103] M. Esteva. Electronic Institutions: from specification to development. PhD thesis,
Technical University of Catalonia, 2003.

[104] M. Esteva, D. De La Cruz, and C. Sierra. Islander: an electronic institutions editor.
In Proceedings of the first international joint conference on Autonomous agents and
multiagent systems: part 3, pages 1045–1052. ACM, 2002.

[105] M. Esteva, J. A. Rodríguez-Aguilar, C. Sierra, P. Garcia, and J. L. Arcos. On the formal
specification of electronic institutions. In Frank Dignum and Carles Sierra, editors,
Agent Mediated Electronic Commerce, volume 1991 of Lecture Notes in Computer
Science, pages 126–147. Springer Berlin Heidelberg, 2001.

[106] M. Esteva, B. Rosell, J. A. Rodriguez-Aguilar, and J. L. Arcos. Ameli: An agent-based
middleware for electronic institutions. In Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems-Volume 1, pages 236–243.
IEEE Computer Society, 2004.

[107] R. Evertsz, M. Fletcher, R. Jones, J. Jarvis, J. Brusey, and S. Dance. Implementing
industrial multi-agent systems using jacktm. In Programming multi-agent systems,
pages 18–48. Springer, 2004.

[108] J.T. Feddema, C. Lewis, and D.A. Schoenwald. Decentralized control of cooperative
robotic vehicles: theory and application. Robotics and Automation, IEEE Transactions
on, 18(5):852–864, Oct 2002.

[109] J. Ferber. Multi-agent systems: an introduction to distributed artificial intelligence,
volume 1. Addison-Wesley Reading, 1999.

[110] J. Ferber and O. Gutknecht. A meta-model for the analysis and design of organizations
in multi-agent systems. In Multi Agent Systems, 1998. Proceedings. International
Conference on, pages 128–135. IEEE, 1998.

[111] Jacques Ferber, Olivier Gutknecht, and Fabien Michel. From agents to organizations:
An organizational view of multi-agent systems. In Paolo Giorgini, JörgP. Müller, and
James Odell, editors, Agent-Oriented Software Engineering IV, volume 2935 of Lecture
Notes in Computer Science, pages 214–230. Springer Berlin Heidelberg, 2004.

[112] M. Fisher. A survey of concurrent metatemÑthe language and its applications. In
Temporal Logic, pages 480–505. Springer, 1994.

[113] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable
virtual organizations. International journal of high performance computing applications,
15(3):200–222, 2001.

[114] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

[115] G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback control of dynamics
systems. Addison-Wesley, Reading, MA, 1994.

298 Bibliography

[116] E. Frazzoli, M. A Dahleh, and E. Feron. Real-time motion planning for agile autonomous
vehicles. Journal of Guidance, Control, and Dynamics, 25(1):116–129, 2002.

[117] M. Friedmann, J. Kiener, S. Petters, D. Thomas, O. Von Stryk, and H. Sakamoto.
Versatile, high-quality motions and behavior control of a humanoid soccer robot.
International Journal of Humanoid Robotics, 5(03):417–436, 2008.

[118] M. Friedmann, J. Kiener, S. Petters, D Thomas, O. Von Stryk, and H. Sakamoto.
Versatile, high-quality motions and behavior control of a humanoid soccer robot.
International Journal of Humanoid Robotics, 5(03):417–436, 2008.

[119] C. Frost, C.S. Jensen, Luckow K.S., and B. Thomsen. Wcet analysis of java bytecode
featuring common execution environments. Technical report, Aalborg University, 2011.

[120] J. A. Galicia. Protocolo de colaboración entre robots autónomos. PhD thesis, Instituto
Politécnico Nacional de México, 2012.

[121] J.A. Galicia. Protocolo de Colaboración entre Robots Autónomos. PhD thesis, Instituto
Plitécnico Nacional de México, 2012.

[122] S. Galland, N. Gaud, S. Rodriguez, and V. Hilaire. Janus: Another yet general-purpose
multiagent platform. In Seventh AOSE Technical Forum, Paris, 2010.

[123] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[124] A. Garvey and V. Lesser. A survey of research in deliberative real-time artificial
intelligence. Real-Time Systems, 6(3):317–347, 1994.

[125] A. J. Garvey and V. R. Lesser. Design-to-time real-time scheduling. Systems, Man
and Cybernetics, IEEE Transactions on, 23(6):1491–1502, 1993.

[126] J. M. Gascueña, A. Fernández-Caballero, and F. J. Garijo. Using icaro-t framework for
reactive agent-based mobile robots. In Advances in Practical Applications of Agents
and Multiagent Systems, pages 91–101. Springer, 2010.

[127] J. M. Gascuena, E. Navarro, A. Fernández-Caballero, and J. Pavón. Development of a
code generator for the icaro agent framework. In Advances in Artificial Intelligence–
IBERAMIA 2012, pages 402–411. Springer, 2012.

[128] L. Gasser, C. Braganza, and N. Herman. Mace: A flexible testbed for distributed ai
research. Distributed AI, 1987.

[129] L. Gasser and T. Ishida. A dynamic organizational architecture for adaptive problem
solving. In AAAI, volume 91, pages 185–190, 1991.

[130] N. Gaud, S. Galland, V. Hilaire, and A. Koukam. An organisational platform for
holonic and multiagent systems. PROMAS-6@ AAMAS, 8:111–126, 2008.

[131] N. Gaud, S. Galland, V. Hilaire, and A. Koukam. An organisational platform for
holonic and multiagent systems. In Programming Multi-Agent Systems, pages 104–119.
Springer, 2009.

[132] M. R. Genesereth and N. J. Nilsson. Logical foundations of artificial intelligence,
volume 9. Morgan Kaufmann Los Altos, CA, 1987.

[133] K. Gharachorloo, A. Gupta, and J. Hennessy. Hiding memory latency using dynamic
scheduling in shared-memory multiprocessors, volume 20. ACM, 1992.

[134] A. Giret, V. Botti, and S. Valero. Mas methodology for hms. In Holonic and Multi-
Agent Systems for Manufacturing, pages 39–49. Springer, 2005.

Bibliography 299

[135] A. Giret, V. Julián, M. Rebollo, E. Argente, C. Carrascosa, and V. Botti. An open
architecture for service-oriented virtual organizations. In Programming Multi-Agent
Systems, pages 118–132. Springer, 2010.

[136] M. Gleizes, V. Camps, and P. Glize. A theory of emergent computation based on
cooperative self-organization for adaptive artificial systems. In Fourth European
Congress of Systems Science, 1999.

[137] J. Gómez-Romero, M. A. Patricio, J. García, and J. M. Molina. Communication in
distributed tracking systems: an ontology-based approach to improve cooperation.
Expert Systems, 28(4):288–305, 2011.

[138] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling of periodic task
systems on multiprocessors. Real-time systems, 25(2-3):187–205, 2003.

[139] J. Gosling. The Java language specification. Addison-Wesley Professional, 2000.

[140] J. Gosling and G. Bollella. The real-time specification for Java. Addison-Wesley
Longman Publishing Co., Inc., 2000.

[141] R. Grabowski, L. E. Navarro-Serment, C. J. Paredis, and P. Khosla. Heterogeneous
teams of modular robots for mapping and exploration. Autonomous Robots, 8(3):293–
308, 2000.

[142] J. R. Graham and K. S. Decker. Towards a distributed, environment-centered agent
framework. In Intelligent Agents VI. Agent Theories, Architectures, and Languages,
pages 290–304. Springer, 2000.

[143] D. Griol, J. García-Herrero, and J. M. Molina. Combining heterogeneous inputs for
the development of adaptive and multimodal interaction systems. ADCAIJ: Advances
in Distributed Computing and Artificial Intelligence Journual, 1(6):37–53, 2013.

[144] BISITE Research Group. Pangea web page. http://pangea.usal.es/, 2013.

[145] W. Gruver. Technologies and applications of distributed intelligent systems. IEEE
MTT-Chapter Presentation, 2004.

[146] J. Guerrero and G. Oliver. Multi-robot coalition formation in real-time scenarios.
Robotics and Autonomous Systems, 60(10):1295 – 1307, 2012.

[147] J. Gustafsson. Analyzing execution-time of object-oriented programs using abstract
interpretation. PhD thesis, Uppsala University, 2000.

[148] C. Gutiérrez. Analysis of bullying in cooperative multi-agent systems’ communications.
International Jorunal of Interactive Multimedia and Artificial Intelligence, 2(Regular
Issue), 2013.

[149] O. Gutknecht and J. Ferber. Madkit: Organizing heterogeneity with groups in a
platform for multiple multi-agent systems. rapport n Ó RR97188, 1997.

[150] O. Gutknecht and J. Ferber. The madkit agent platform architecture. In Infrastructure
for Agents, Multi-Agent Systems, and Scalable Multi-Agent Systems, pages 48–55.
Springer, 2001.

[151] Olivier Gutknecht and Jacques Ferber. Madkit: A generic multi-agent platform. In
Proceedings of the Fourth International Conference on Autonomous Agents, AGENTS
’00, pages 78–79, New York, NY, USA, 2000. ACM.

300 Bibliography

[152] G. Haddad, F. Hussain, and G. T. Leavens. The design of safejml, a specification
language for scj with support for wcet specification. In Proceedings of the 8th Interna-
tional Workshop on Java Technologies for Real-Time and Embedded Systems, pages
155–163. ACM, 2010.

[153] H. Haehnel. Remote controlled flying robot platform. In Digital Information Man-
agement, 2008. ICDIM 2008. Third International Conference on, pages 920–921, Nov
2008.

[154] T. Harmon and R. Klefstad. Toward a unified standard for worst-case execution time
annotations in real-time java. In Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International, pages 1–8. IEEE, 2007.

[155] A. Helsinger, M. Thome, and T. Wright. Cougaar: a scalable, distributed multi-agent
architecture. In Systems, Man and Cybernetics, 2004 IEEE International Conference
on, volume 2, pages 1910–1917. IEEE, 2004.

[156] L. Hernández. Heurísticas para el control deliberativo en una arquitectura de agentes
inteligentes de tiempo real. PhD thesis, Universitat Politecnica de Valencia, 2004.

[157] L. Hernández, V. Botti, and A. García-Fornes. A deliberative scheduling technique
for a real-time agent architecture. Engineering Applications of Artificial Intelligence,
19(5):521–534, 2006.

[158] B. Hirsch, T. Konnerth, and A. Heßler. Merging agents and services—the jiac agent
platform. In Multi-Agent Programming:, pages 159–185. Springer, 2009.

[159] B. Horling and V. Lesser. Using odml to model multi-agent organizations. In Intelligent
Agent Technology, IEEE/WIC/ACM International Conference on, pages 72–80. IEEE,
2005.

[160] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas. Jack intelligent agents-summary
of an agent infrastructure. In 5th International conference on autonomous agents,
2001.

[161] E. Hu, G. Bernat, and A. Wellings. Addressing dynamic dispatching issues in wcet
analysis for object-oriented hard real-time systems. In Object-Oriented Real-Time
Distributed Computing, 2002.(ISORC 2002). Proceedings. Fifth IEEE International
Symposium on, pages 109–116. IEEE, 2002.

[162] E. Hu, G. Bernat, and A. Wellings. A static timing analysis environment using
java architecture for safety critical real-time systems. In Object-Oriented Real-Time
Dependable Systems, 2002.(WORDS 2002). Proceedings of the Seventh International
Workshop on, pages 77–84. IEEE, 2002.

[163] E. Y. Hu, A. Wellings, and G. Bernat. Xrtj: An extensible distributed high-integrity
real-time java environment. In Real-Time and Embedded Computing Systems and
Applications, pages 208–228. Springer, 2004.

[164] B. Huber and P. P. Puschner. A code policy guaranteeing fully automated path analysis.
In WCET, pages 77–88, 2010.

[165] J. F. Hübne, J. S. Sichman, and O. Boissier. S-moise+: A middleware for developing
organised multi-agent systems. In COIN I, volume 3913 of LNAI, pages 64–78. Springer,
2006.

[166] J. F. Hübner. J -moise+ programming organisational agents with moise+ & jason.
Technical Fora Group at EUMAS 2007, 2007.

Bibliography 301

[167] J. F. Hübner, R. H. Bordini, and G. Picard. Using jason and\ mathcal {M} oise+
to develop a team of cowboys. In Programming Multi-Agent Systems, pages 238–242.
Springer, 2009.

[168] J. F. Hübner, J. S. Sichman, and O. Boissier. A model for the structural, functional,
and deontic specification of organizations in multiagent systems. In Advances in
artificial intelligence, pages 118–128. Springer, 2002.

[169] J. F. Hübner, J. S. Sichman, and O. Boissier. Using the\ mathcal {M} oise+ for a
cooperative framework of mas reorganisation. In Advances in artificial intelligence–
SBIA 2004, pages 506–515. Springer, 2004.

[170] IBM. Mq telemetry transport. http://mqtt.org/, 2014.

[171] IBM. Websphere product. http://www-03.ibm.com/software/products/es/real-time/,
2014.

[172] International Business Machines Corporation (IBM). Mqtt v3.1 protocol specification.
Technical report, IBAM, 2010.

[173] Fiji Systems Inc. Fiji virtual machine. http://fiji-systems.com/, 2014.

[174] V. J. Inglada, V. Botti, M. Navarro, and V. Soler. jart: A real-time multi-agent
platform with rt-java. In 3rd International workshop on practical applications of
agents and multiagent systems: IWPAAMS 2004, pages 73–82. Universidad de Burgos,
2004.

[175] P. Iñigo-Blasco, F. Diaz-del Rio, M. A. Romero-Ternero, D. Cagigas-Muñiz, and
S. Vicente-Diaz. Robotics software frameworks for multi-agent robotic systems devel-
opment. Robotics and Autonomous Systems, 60(6):803 – 821, 2012.

[176] P. Iñigo-Blasco, F. Diaz-del Rio, M. C. Romero-Ternero, D. Cagigas-Muñiz, and
S. Vicente-Diaz. Robotics software frameworks for multi-agent robotic systems devel-
opment. Robotics and Autonomous Systems, 60(6):803–821, 2012.

[177] B. Innocenti. A Multi-agent Architecture with Distributed Coordination for an Au-
tonomous Robot. PhD thesis, Universitat de Girona, 2008.

[178] Eurotech International Business Machines Corporation (IBM). Mqtt v3.1 protocol
specification. http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-
v3r1.html, 1999.

[179] Yang. J. and Z. Luo. Coalition formation mechanism in multi-agent systems based on
genetic algorithms. Applied Soft Computing, 7(2):561 – 568, 2007.

[180] C. Jang, S. Lee, S. Jung, B. Song, R. Kim, S. Kim, and C. Lee. Opros: A new
component-based robot software platform. ETRI journal, 32(5), 2010.

[181] J. Jarvis, R. Rönnquist, D. McFarlane, and L. Jain. A team-based holonic approach
to robotic assembly cell control. Journal of Network and Computer Applications,
29(2):160–176, 2006.

[182] The java community process. Jsrs: Java specification requests. Last Access: 2014-03-30.

[183] N. Jennings and M. J Wooldridge. Agent technology: foundations, applications, and
markets. Springer, 1998.

[184] N. R. Jennings. Specification and implementation of a belief-desire-joint-intention
architecture for collaborative problem solving. International Journal of Intelligent and
Cooperative Information Systems, 2(03):289–318, 1993.

302 Bibliography

[185] W. Jiao and H. Mei. Automated adaptations to dynamic software architectures by using
autonomous agents. Engineering Applications of Artificial Intelligence, 17(7):749–770,
2004.

[186] J. Johnson and M. Sugisaka. Complexity science for the design of swarm robot
control systems. In Industrial Electronics Society, 2000. IECON 2000. 26th Annual
Confjerence of the IEEE, volume 1, pages 695–700. IEEE, 2000.

[187] C. Jonker, M. Klusch, and J. Treur. Design of collaborative information agents. In
Cooperative Information Agents IV-The Future of Information Agents in Cyberspace,
pages 262–283. Springer, 2000.

[188] N. Josuttis. SOA in Practice. Oŕeilly, 2007.

[189] V. Julian and V Botti. Developing real-time multi-agent systems. Integrated Computer-
Aided Engineering, 11(2):135–149, 2004.

[190] V. Julian, J. Soler, M. C. Moncho, and V. Botti. Real-time multi-agent system
development and implementation. Frontiers in artificial intelligence and applications,
Ourense, Espana, 113:333–340, 2004.

[191] N. Kalra, D. Ferguson, and A. Stentz. Hoplites: A market-based framework for planned
tight coordination in multirobot teams. In Robotics and Automation, 2005. ICRA
2005. Proceedings of the 2005 IEEE International Conference on, pages 1170–1177,
April 2005.

[192] C. Kalt. Internet relay chat: Architecture rfc 2811. Technical report, The Internet
Society, 2000.

[193] C. Kalt. Internet relay chat: Channel management rfc 2811. Technical report, The
Internet Society, 2000.

[194] C. Kalt. Internet relay chat: Client protocol rfc 2812. Technical report, The Internet
Society, 2000.

[195] C. Kalt. Internet relay chat: Server protocol rfc 2813. Technical report, The Internet
Society, 2000.

[196] K. Kianfar. Branch-and-bound algorithms. Wiley Encyclopedia of Operations Research
and Management Science, 2010.

[197] J. Kiener and O. Von Stryk. Cooperation of heterogeneous, autonomous robots: A
case study of humanoid and wheeled robots. In Intelligent Robots and Systems, 2007.
IROS 2007. IEEE/RSJ International Conference on, pages 959–964, Oct 2007.

[198] J. Kiener and O. Von Stryk. Towards cooperation of heterogeneous, autonomous
robots: A case study of humanoid and wheeled robots. Robotics and Autonomous
Systems, 58(7):921–929, 2010.

[199] K. S. Kim. Transmission scheduling with deadline and throughput constraints. PhD
thesis, Massachusetts Institute of Technology, 2013.

[200] H. Kitano. Robocup rescue: a grand challenge for multi-agent systems. In MultiAgent
Systems, 2000. Proceedings. Fourth International Conference on, pages 5–12, 2000.

[201] T. Kiyofumi. Adaptive edf: Using predictive execution time. SIGBED Rev., 10(4):41–44,
December 2013.

[202] T. Kiyofumi. Adaptive real-time scheduling for soft tasks with varying execution times
(preprint). IPSJ Journal, 55(2), feb 2014.

Bibliography 303

[203] M. Klotzbücher, P. Soetens, and H. Bruyninckx. Orocos rtt-lua: an execution envi-
ronment for building real-time robotic domain specific languages. In International
Workshop on Dynamic languages for RObotic and Sensors, page 284289, 2010.

[204] M. Kontitsis, R.D. Garcia, and K.P. Valavanis. Design, implementation and testing of
a vision system for small unmanned vertical take off and landing vehicles with strict
payload limitations. Journal of Intelligent and Robotic Systems, 44(2):139–159, 2005.

[205] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft, and R. Zainlinger.
Distributed fault-tolerant real-time systems: The mars approach. Micro, IEEE, 9(1):25–
40, 1989.

[206] J. Kramer and M. Scheutz. Development environments for autonomous mobile robots:
A survey. Autonomous Robots, 22(2):101–132, 2007.

[207] M. Kranz, Radu B. Rusu, A. Maldonado, M. Beetz, and A. Schmidt. A player/stage
system for context-aware intelligent environments. Proceedings of UbiSys, 6:17–21,
2006.

[208] J. Krone, W. F. Ogden, and M. Sitaraman. Modular verification of performance con-
straints. In ACM OOPSLA Workshop on Specification and Verification of Component-
Based Systems (SAVCBS), pages 60–67, 2003.

[209] J. Kyparisis. On uniqueness of kuhn-tucker multipliers in nonlinear programming.
Mathematical Programming, 32(2):242–246, 1985.

[210] S. Labidi and W. Lejouad. De l’intelligence artificielle distribuee aux systemes multi-
agents. Technical Report 1(2004), Inria Sophia University, 1993.

[211] J. M. Lambert and J. F. Power. Platform independent timing of java virtual machine
bytecode instructions. Electronic Notes in Theoretical Computer Science, 220(3):97–
113, 2008.

[212] E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. Operations
research, 14(4):699–719, 1966.

[213] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: Exact
characterization and average case behavior. In Real Time Systems Symposium, 1989.,
Proceedings., pages 166–171. IEEE, 1989.

[214] Y. Lespérance, H. J. Levesque, F. Lin, D. Marcu, R. Reiter, and R. B. Scherl. Foun-
dations of a logical approach to agent programming. In Intelligent Agents II Agent
Theories, Architectures, and Languages, pages 331–346. Springer, 1996.

[215] J. Y. Leung and M. L. Merrill. A note on preemptive scheduling of periodic, real-time
tasks. Information processing letters, 11(3):115–118, 1980.

[216] J. Y. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of
periodic, real-time tasks. Performance evaluation, 2(4):237–250, 1982.

[217] Y. Li, S. Malik, and A. Wolfe. Efficient microarchitecture modeling and path analysis
for real-time software. In Real-Time Systems Symposium, 1995. Proceedings., 16th
IEEE, pages 298–307. IEEE, 1995.

[218] Y. S. Li and S. Malik. Performance analysis of embedded software using implicit path
enumeration. ACM SIGPLAN Notices, 30(11):88–98, 1995.

[219] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. Java virtual machine specification.
Last Access: 2014-03-30.

304 Bibliography

[220] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java Virtual Machine
Specification. Addison-Wesley, 2013.

[221] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the ACM (JACM), 20(1):46–61, 1973.

[222] J. W. Liu. Real Time Systems. Prentice Hall, 2000.

[223] P. Lokuciejewski and P. Marwedel. Worst-case execution time aware compilation
techniques for real-time systems. Springer, 2010.

[224] F. López, M. Luck, and M. d’Inverno. A normative framework for agent-based systems.
Computational & Mathematical Organization Theory, 12(2-3):227–250, 2006.

[225] Agent Oriented Software Pty Ltd. Jack intelligent agents teams manual.
http://www.aosgrp.com/documentation/jack/JACK_Teams_Manual_WEB/, 2005.

[226] M. Luck and P. McBurney. Computing as interaction: agent and agreement technologies.
In IEEE SMC Conference on Distributed Human-Machine Systems, pages 1–6, 2008.

[227] M. Luck, P. McBurney, and C. Preist. Agent technology: Enabling next generation com-
puting (a roadmap for agent based computing). AgentLink/University of Southampton,
2003.

[228] K. S. Luckow, T. Bøgholm, B. Thomsen, and K. G. Larsen. Tetasarts: a tool for
modular timing analysis of safety critical java systems. In Proceedings of the 11th
International Workshop on Java Technologies for Real-time and Embedded Systems,
pages 11–20. ACM, 2013.

[229] M. Lützenberger, T. Küster, A. Heßler, and B. Hirsch. Unifying jiac agent development
with awe. In Multiagent System Technologies, pages 220–225. Springer, 2009.

[230] P. Maes. Designing autonomous agents: Theory and practice from biology to engi-
neering and back. MIT press, 1990.

[231] S. Magnenat, P. Rétornaz, M. Bonani, V. Longchamp, and F. Mondada. Aseba:
a modular architecture for event-based control of complex robots. Mechatronics,
IEEE/ASME Transactions on, 16(2):321–329, 2011.

[232] R. Mahony, V. Kumar, and P. Corke. Multirotor aerial vehicles: Modeling, estimation,
and control of quadrotor. Robotics Automation Magazine, IEEE, 19(3):20–32, Sept
2012.

[233] A. Makarenko, A. Brooks, and T. Kaupp. Orca: Components for robotics. In
International Conference on Intelligent Robots and Systems (IROS), pages 163–168,
2006.

[234] T. W. Malone and K. Crowston. The interdisciplinary study of coordination. ACM
Computing Surveys (CSUR), 26(1):87–119, 1994.

[235] Q. Martín. Investigación Operativa. Pearson Educacion, 2003.

[236] A. Mas. Agentes software y sistemas multiagente: conceptos, arquitecturas y aplica-
ciones. Prentice Hall, 2005.

[237] M. A. Masmano. Gestión de memoria dinámica en sistemas de tiempo real. PhD
thesis, Universitat Politecnica de Valencia, 2006.

[238] I. Maza, F. Caballero, J. Capitán, J.R. Martínez-de Dios, and A. Ollero. Experimental
results in multi-uav coordination for disaster management and civil security applications.
Journal of Intelligent & Robotic Systems, 61(1-4):563–585, 2011.

Bibliography 305

[239] F. G. McCabe and K. L. Clark. April—agent process interaction language. In Intelligent
Agents, pages 324–340. Springer, 1995.

[240] H. Mehrjerdi, M. Saad, and J. Ghommam. Hierarchical fuzzy cooperative control and
path following for a team of mobile robots. Mechatronics, IEEE/ASME Transactions
on, 16(5):907–917, Oct 2011.

[241] R. Z. Mercado and J. F Bard. Heurísticas para secuenciamiento de tareas en líneas de
flujo. Ciencia UANL, 3(4):420–427, 2000.

[242] L. Merino, F. Caballero, J.R. Martínez-de Dios, J. Ferruz, and A. Ollero. A cooperative
perception system for multiple uavs: Application to automatic detection of forest fires.
Journal of Field Robotics, 23(3-4):165–184, 2006.

[243] G. Metta, P. Fitzpatrick, and L. Natale. Yarp: Yet another robot platform. Interna-
tional Journal of Advanced Robotic Systems, 3(1), 2006.

[244] O. Michel. Webotstm: Professional mobile robot simulation. arXiv preprint cs/0412052,
2004.

[245] M. Mizukawa, H. Matsuka, T. Koyama, and A. Matsumoto. Orin: Open robot interface
for the network, a proposed standard. Industrial Robot: An International Journal,
27(5):344–350, 2000.

[246] N. Mohamed, J. Al-Jaroodi, and I. Jawhar. Middleware for robotics: A survey. In
Robotics, Automation and Mechatronics, 2008 IEEE Conference on, pages 736–742.
IEEE, 2008.

[247] N. Mohamed, J. Al-Jaroodi, and I. Jawhar. A review of middleware for networked
robots. International Journal of Computer Science and Network Security, 9(5):139–148,
2009.

[248] A. K. Mok. The design of real-time programming systems based on process models. In
Proc. of IEEE Real-Time Systems Symposium, pages 5–17, 1984.

[249] D. Montemerlo, N. Roy, and S. Thrun. Perspectives on standardization in mobile
robot programming: The carnegie mellon navigation (carmen) toolkit. In Intelligent
Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International
Conference on, volume 3, pages 2436–2441. IEEE, 2003.

[250] H. J. Mueller. Negotiation principles. In Foundations of Distributed Artificial Intelli-
gence. Wiley, 1996.

[251] R. Mukul, P. Singh, D. Jayaram, D. Das, N. Sreenivasulu, K. Vinay, and A. Ramamoor-
thy. An adaptive bandwidth request mechanism for qos enhancement in wimax real
time communication. In Wireless and Optical Communications Networks, 2006 IFIP
International Conference on, pages 5 pp.–5, 2006.

[252] R. Mundry and C. Sommer. Discriminant function analysis with nonindependent data:
consequences and an alternative. Animal Behaviour, 74(4):965–976, 2007.

[253] R. Murphy. Introduction to AI robotics. MIT press, 2000.

[254] R. Murphy. Introduction to AI robotics. MIT press, 2000.

[255] D. J. Musliner, E. H Durfee, and K. G. Shin. Circa: A cooperative intelligent real-
time control architecture. Systems, Man and Cybernetics, IEEE Transactions on,
23(6):1561–1574, 1993.

306 Bibliography

[256] M. Namoshe, N. S. Tlale, C. M. Kumile, and G. Bright. Open middleware for
robotics. In Mechatronics and Machine Vision in Practice, 2008. M2VIP 2008. 15th
International Conference on, pages 189–194. IEEE, 2008.

[257] O. Naseer, A. Shah, and A. A. Khan. Feedback control scheduling for crane con-
trol system. In Engineering of Computer Based Systems (ECBS), 2013 20th IEEE
International Conference and Workshops on the, pages 187–195. IEEE, 2013.

[258] M. Navarro. Gestión de compromisos en sistemas multi-agente de tiempo real. PhD
thesis, Universitat Politecnica de Valencia, 2011.

[259] P. Nebot and E. Cervera. A framework for the development of cooperative robotic
applications. In Advanced Robotics, 2005. ICAR’05. Proceedings., 12th International
Conference on, pages 901–906. IEEE, 2005.

[260] P. Nebot and E. Cervera. Acromovi architecture: A framework for the development of
multirobot applications. Mobile Robots: Moving Intelligence, 2006.

[261] G. Necula. Proof-carrying code. Springer, 2011.

[262] I. A. Nesnas, R. Simmons, D. Gaines, C. Kunz, A. Diaz-Calderon, T. Estlin, R. Madison,
J. Guineau, M. McHenry, H. Shu, et al. Claraty: Challenges and steps toward reusable
robotic software. International Journal of Advanced Robotic Systems, 3(1), 2006.

[263] H. P. Nii. The blackboard model of problem solving and the evolution of blackboard
architectures. AI magazine, 7(2):38, 1986.

[264] K. Nilsen. Differentiating features of the perc virtual machine. Technical report, Atego,
2009.

[265] P. Noriega and C. Sierra. Electronic institutions: Future trends and challenges. In
Cooperative information agents VI, pages 14–17. Springer, 2002.

[266] Aeronautical Association of Australia. First person view (fpv) policy. Technical report,
Aeronautical Association of Australia, 2012.

[267] J. Oikarinen and D. Reed. Internet relay chat protocol rfc1459. Technical report, The
Internet Society, 1993.

[268] R.J. Ojeda. Programacion de horarios semanales de trabajadores polivalente en un
centro de servicios. PhD thesis, Universitat Politecnica de Catalunya, 2004.

[269] A. Ollero, S. Lacroix, L. Merino, Jeremi Gancet, J. Wiklund, V. Remuss, I.V. Perez, L.G.
Gutierrez, D.X. Viegas, M.A.G. Benitez, A. Mallet, R. Alami, R. Chatila, G. Hommel,
F.J.C. Lechuga, B.C. Arrue, J. Ferruz, J.R. Martinez-De Dios, and F. Caballero.
Multiple eyes in the skies: architecture and perception issues in the comets unmanned
air vehicles project. Robotics Automation Magazine, IEEE, 12(2):46–57, June 2005.

[270] A. Ollero and I. Maza. Introduction. In Aníbal Ollero and Iván Maza, editors, Multiple
Heterogeneous Unmanned Aerial Vehicles, volume 37 of Springer Tracts in Advanced
Robotics, pages 1–14. Springer Berlin Heidelberg, 2007.

[271] A. Ollero and I. Maza, editors. Multiple Heterogeneous Unmanned Aerial Vehicles,
volume 37. Springer Tracts in Advanced Robotics, 2007.

[272] Oracle. Sun java real-time system 2.2 update 1 technical documentation.
http://docs.oracle.com/javase/realtime/rts_productdoc_2.2u1.html, 2009.

Bibliography 307

[273] Oracle. Sun java real-time system 2.2 up-
date 1. http://docs.oracle.com/javase/realtime/doc_-
2.2u1/release/JavaRTSReleaseNotes.html, 2010.

[274] S. Ossowski. Co-ordination in artificial agent societies: social structures and its
implications for autonomous problem-solving agents. Springer-Verlag, 1999.

[275] I. M. OVACIKT and R. Uzsoy. Rolling horizon algorithms for a single-machine dynamic
scheduling problem with sequence-dependent setup times. International Journal of
Production Research, 32(6):1243–1263, 1994.

[276] A. J. Page, T. M. Keane, and T. J. Naughton. Multi-heuristic dynamic task allocation
using genetic algorithms in a heterogeneous distributed system. Journal of parallel
and distributed computing, 70(7):758–766, 2010.

[277] L. Parker. Intelligence, reasoning, and knowledge in multi-vehicle systems: Recent
advances and current research challenges. In 1st IFAC-Symposium on Multivehicle
Systems, 2005.

[278] L. E. Parker. Alliance: An architecture for fault tolerant multirobot cooperation.
Robotics and Automation, IEEE Transactions on, 14(2):220–240, 1998.

[279] H. Parunak and JamesJ. Odell. Representing social structures in uml. In MichaelJ.
Wooldridge, Gerhard Weiß, and Paolo Ciancarini, editors, Agent-Oriented Software
Engineering II, volume 2222 of Lecture Notes in Computer Science, pages 1–16. Springer
Berlin Heidelberg, 2002.

[280] H. E. Pattison, D. D. Corkill, and V. R. Lesser. Instantiating descriptions of organiza-
tional structures. Distributed Artificial Intelligence, 1:59–96, 1987.

[281] S. Petters, D. Thomas, and O. Von Stryk. Roboframe-a modular software framework
for lightweight autonomous robots. In Proc. Workshop on Measures and Procedures
for the Evaluation of Robot Architectures and Middleware of the 2007 IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, 2007.

[282] M. Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2012.

[283] L.M. Pinho. Time-Bounded Adaptive Quality of Service Management for Cooperative
Embedded Real-Time Systems. PhD thesis, Universidade do Porto, Portugal, 2009.

[284] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A bdi reasoning engine. In
Multi-agent programming, pages 149–174. Springer, 2005.

[285] T. Pop, P. Pop, P. Eles, and P. Zebo. Optimization of hierarchically scheduled
heterogeneous embedded systems. In Embedded and Real-Time Computing Systems
and Applications, 2005. Proceedings. 11th IEEE International Conference on, pages
67–71, Aug 2005.

[286] J. Porubän, M. Forgáč, M. Sabo, and M. Běhálek. Annotation based parser generator.
Computer Science and Information Systems/ComSIS, 7(2):291–307, 2010.

[287] S. Poslad, P. Buckle, and R. Hadingham. The fipa-os agent platform: Open source for
open standards. In Proceedings of the 5th International Conference and Exhibition on
the Practical Application of Intelligent Agents and Multi-Agents, volume 355, page
368, 2000.

[288] J. Poulsen and A. French. Discriminant function analysis (da). San Francisco State
University, available at: http://online. sfsu. edu/, efc/classes/biol710/discrim/discrim.
pdf# search1/4, 22, 2004.

308 Bibliography

[289] Java Community Process. Jsr 50: Distributed real-time specification.
https://jcp.org/en/jsr/detail?id=50, 2006.

[290] Java Community Process. Jsr 175: A metadata facility for the java programming
language. https://jcp.org/en/jsr/detail?id=175, 2014.

[291] Java Community Process. Jsr 308: Annotations on java types.
https://jcp.org/en/jsr/detail?id=308, 2014.

[292] K. Prouskas and J. Pitt. Towards a real-time architecture for time-aware agents. In
Proceedings of the first international joint conference on Autonomous agents and
multiagent systems: part 1, pages 92–93. ACM, 2002.

[293] P. P. Puschner and G. Bernat. Wcet analysis of reusable portable code. In Real-Time
Systems, 13th Euromicro Conference on, 2001., pages 45–52. IEEE, 2001.

[294] P. P. Puschner and C. Koza. Calculating the maximum execution time of real-time
programs. Real-Time Systems, 1(2):159–176, 1989.

[295] P. P. Puschner and A. V. Schedl. Computing maximum task execution times—a
graph-based approach. Real-Time Systems, 13(1):67–91, 1997.

[296] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng. Ros: an open-source robot operating system. In ICRA workshop on open source
software, volume 3, 2009.

[297] Talal Rahwan and Nicholas R. Jennings. An algorithm for distributing coalitional
value calculations among cooperating agents. Artificial Intelligence, 171(8–9):535 –
567, 2007.

[298] H. Ramli, W. Kuntjoro, and A. K. Makhtar. Advanced autonomous multirotor response
system. Applied Mechanics and Materials, 393:299–304, 2013.

[299] A. S Rao and M. P. Georgeff. Modeling rational agents within a bdi-architecture.
Readings in agents, pages 317–328, 1997.

[300] A. S. Rao, M. P. Georgeff, et al. Bdi agents: From theory to practice. In ICMAS,
volume 95, pages 312–319, 1995.

[301] R. Razavi, J. Perrot, and N. Guelfi. Adaptive modeling: an approach and a method
for implementing adaptive agents. In Massively Multi-Agent Systems I, pages 136–148.
Springer, 2005.

[302] A. Renzaglia, L. Doitsidis, A. Martinelli, and E. Kosmatopoulos. Multi-robot three
dimensional coverage of unknown areas. International Journal of Robotics Research,
March 2012.

[303] S. Rodríguez. Adaptative Model for Virtual Organizations of Agents. PhD thesis,
University of Salamanca, 2010.

[304] S. Rodríguez, Y. de Paz, J. Bajo, and J. M. Corchado. Social-based planning model
for multiagent systems. Expert Systems with Applications, 38(10):13005–13023, 2011.

[305] S. Rodríguez, Y. De Paz, J. Bajo, and J. M. Corchado. Social-based planning model
for multiagent systems. Expert Systems with Applications, 38(10):13005 – 13023, 2011.

[306] S. Rodríguez, V. Julián, J. Bajo, C. Carrascosa, V. Botti, and J. M. Corchado.
Agent-based virtual organization architecture. Engineering Applications of Artificial
Intelligence, 24(5):895–910, 2011.

Bibliography 309

[307] S. Rodríguez, V. Julián, J. Bajo, C. Carrascosa, V. Botti, and J.M. Corchado. Agent-
based virtual organization architecture. Engineering Applications of Artificial Intelli-
gence, 24(5):895 – 910, 2011.

[308] S. Rodríguez, V. Julián, A. L. Sánchez, C. Carrascosa, V. F. López, J. M. Corchado,
and E. Corchado. Trends on the development of adaptive virtual organizations. In
AndrePonce Leon F. de Carvalho, Sara Rodríguez-González, JuanF. Paz Santana, and
JuanM.Corchado Rodríguez, editors, Distributed Computing and Artificial Intelligence,
volume 79 of Advances in Intelligent and Soft Computing, pages 113–121. Springer
Berlin Heidelberg, 2010.

[309] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards. Artificial
intelligence: a modern approach, volume 2. Prentice hall Englewood Cliffs, 1995.

[310] A. Saabas. Jbe: Java bytecode editor. Last Access: 2014-04-03.

[311] A. Sabelfeld and A.C. Myers. Language-based information-flow security. Selected Areas
in Communications, IEEE Journal on, 21(1):5–19, Jan 2003.

[312] P. Sánchez-Martín and S. López-De Haro. Programación de tareas, un reto diario en
la empresa. In Anales de mecánica y electricidad, volume 82, pages 24–30. Asociacion
de Ingenieros del ICAI, 2005.

[313] T. W. Sandhlom and V. R. Lesser. Coalitions among computationally bounded agents.
Artificial intelligence, 94(1):99–137, 1997.

[314] P. Sarma, L. J. Durlofsky, K. Aziz, and W. H. Chen. Efficient real-time reservoir
management using adjoint-based optimal control and model updating. Computational
Geosciences, 10(1):3–36, 2006.

[315] E. H. Schein. Organizational culture and leadership, volume 356. John Wiley & Sons,
2006.

[316] C. Schlegel and R. Worz. The software framework smartsoft for implementing sensori-
motor systems. In Intelligent Robots and Systems, 1999. IROS’99. Proceedings. 1999
IEEE/RSJ International Conference on, volume 3, pages 1610–1616. IEEE, 1999.

[317] D. C. Schmidt and F. Kuhns. An overview of the real-time corba specification.
Computer, 33(6):56–63, 2000.

[318] M. Schoeberl. JOP: A Java Optimized Processor for Embedded Real-Time Systems.
PhD thesis, Vienna University of Technology, 2005.

[319] M. Schoeberl. JOP Reference Handbook: Building Embedded Systems with a Java
Processor. CreateSpace, 2009.

[320] M. Schoeberl, W. Puffitsch, R. U. Pedersen, and B. Huber. Worst-case execution time
analysis for a java processor. Software: Practice and Experience, 40(6):507–542, 2010.

[321] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. 3550 a transport protocol
for real-time applications (rtp). Technical report, Columbia University, Packet Design,
2013.

[322] H. Schulzrinne, A. Rao, and R. Lanphier. Rfc 2326 real time streaming protocol (rtsp).
Technical report, Columbia University, Netscape, 2013.

[323] J. R. Searle. Speech acts: An essay in the philosophy of language, volume 626.
Cambridge university press, 1969.

310 Bibliography

[324] J. M. Serrano and S. Ossowski. On the impact of agent communication languages on
the implementation of agent systems. In Cooperative Information Agents VIII, pages
92–106. Springer, 2004.

[325] L. Sha, T. Abdelzaher, K. Årzén, A. Cervin, T. Baker, A. Burns, G. Buttazzo,
M. Caccamo, J. Lehoczky, and A. K. Mok. Real time scheduling theory: A historical
perspective. Real-time systems, 28(2-3):101–155, 2004.

[326] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An approach
to real-time synchronization. IEEE Transactions on computers, 39(9):1175–1185, 1990.

[327] A. C. Shaw. Reasoning about time in higher-level language software. Software
Engineering, IEEE Transactions on, 15(7):875–889, 1989.

[328] Onn Shehory and Sarit Kraus. Methods for task allocation via agent coalition formation.
Artificial Intelligence, 101(1–2):165 – 200, 1998.

[329] M. Sierhuis. Modeling and simulating work practice. Social Science and Informatics,
page 350, 2001.

[330] M. Sierhuis, W. J. Clancey, and R. J. Van Hoof. Brahms: a multi-agent modelling
environment for simulating work processes and practices. International Journal of
Simulation and Process Modelling, 3(3):134–152, 2007.

[331] C. Sierra, J. A. Rodriguez-Aguilar, P. Noriega, M. Esteva, and J. L. Arcos. Engineering
multi-agent systems as electronic institutions. European Journal for the Informatics
Professional, 4(4):33–39, 2004.

[332] J. Soler, V. Julián, A. García-Fornes, and V. Botti. Real-time extensions in multi-agent
communication. In Current Topics in Artificial Intelligence, pages 468–477. Springer,
2004.

[333] H. Spencer. The study of sociology, volume 5. Henry S. King, 1873.

[334] O. Spillum. A comparison between jack intelligent agents and jack teams applied.
Technical report, Norwegian University of Science and Technology, 2008.

[335] B. Sprunt. Aperiodic task scheduling for real-time systems. PhD thesis, Carnegie
Mellon University, 1999.

[336] FIPA IEEE Computer Society Standards. Fipa: Foundation for intelligent physical
agents. http://www.fipa.org/, 2014.

[337] J. A Stankovic. Distributed real-time computing: The next generation. Technical
Report COINS 92(01), University of Massachusetts, 1992.

[338] J. A. Stankovic and K. Ramamritham. Hard real-time systems. IEEE Computer
Society Press, 1988.

[339] J. A. Stankovic and K. Ramamritham, editors. Tutorial: Hard Real-time Systems.
IEEE Computer Society Press, Los Alamitos, CA, USA, 1989.

[340] J. A. Stankovic, M. Spuri, M. Di Natale, and G. C. Buttazzo. Implications of classical
scheduling results for real-time systems. Computer, 28(6):16–25, 1995.

[341] John A. Stankovic. Real-time computing system: The next generation. Technical
report, University of Massachusetts, Amherst, MA, USA, 1988.

[342] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J. Walpole. A feedback-
driven proportion allocator for real-rate scheduling. In OSDI, volume 99, pages 145–158,
1999.

Bibliography 311

[343] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J. Walpole. A feedback-
driven proportion allocator for real-rate scheduling. In OSDI, volume 99, pages 145–158,
1999.

[344] T. Steinbach, H. D. Kenfack, F. Korf, and T. C. Schmidt. An extension of the omnet++
inet framework for simulating real-time ethernet with high accuracy. In Proceedings of
the 4th International ICST Conference on Simulation Tools and Techniques, SIMU-
Tools ’11, pages 375–382. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2011.

[345] T. Steinbach, F. Korf, and T.C. Schmidt. Comparing time-triggered ethernet with
flexray: An evaluation of competing approaches to real-time for in-vehicle networks.
In Factory Communication Systems (WFCS), 2010 8th IEEE International Workshop
on, pages 199–202, May 2010.

[346] P. Stone and M. Veloso. Task decomposition, dynamic role assignment, and low-
bandwidth communication for real-time strategic teamwork. Artificial Intelligence,
110(2):241–273, 1999.

[347] M. Stoodley, M. Fulton, M. Dawson, R. Sciampacone, and J. Kacur. Using java code
to program real-time systems. https://www.ibm.com/developerworks/library/j-rtj1/,
2010.

[348] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable server algorithm for
enhanced aperiodic responsiveness in hard real-time environments. Computers, IEEE
Transactions on, 44(1):73–91, 1995.

[349] D. M. Surka, M. C. Brito, and C. G. Harvey. The real-time objectagent software
architecture for distributed satellite systems. In Aerospace Conference, 2001, IEEE
Proceedings., volume 6, pages 2731–2741. IEEE, 2001.

[350] P. Tabuada. Event-triggered real-time scheduling of stabilizing control tasks. Automatic
Control, IEEE Transactions on, 52(9):1680–1685, Sept 2007.

[351] W. Taha and T. Sheard. Metaml and multi-stage programming with explicit annotations.
Theoretical Computer Science, 248(1–2):211 – 242, 2000. PEPM’97.

[352] A. Terrasa, A. García-Fornes, and V. J. Botti. Flexible real-time linux: A flexible hard
real-time environment. Real-Time Systems, 22(1-2):151–173, 2002.

[353] TimeSys. Rtsj reference implementation (ri). http://www.timesys.com/java/, 2008.

[354] K. Tindell, A. Burns, and A. J. Wellings. Analysis of hard real-time communications.
Real-Time Systems, 9(2):147–171, 1995.

[355] R. J. Tobias. Hard real-time beam scheduler enables adaptive images in multi-probe
systems. In SPIE Medical Imaging, pages 904010–904010. International Society for
Optics and Photonics, 2014.

[356] R. Tolksdorf and F. Zambonelli. Engineering societies in the agent world. In First
International Workshop ESAW 2000. Springer, 2000.

[357] V. Tretyakov and H. Surmann. Hardware architecture of a four-rotor uav for usar/wsar
scenarios. In Workshop Proceedings of SIMPAR 2008-International Conference on
Simulation, Modeling and Programming for Autonomous Robots, 2008.

[358] L. Tribioli, M. Barbieri, R. Capata, E. Sciubba, E. Jannelli, and G. Bella. A real
time energy management strategy for plug-in hybrid electric vehicles based on optimal
control theory. Energy Procedia, 45(0):949 – 958, 2014. {ATI} 2013 - 68th Conference
of the Italian Thermal Machines Engineering Association.

312 Bibliography

[359] M. Tupia and D. Mauricio. Un algoritmo voraz para resolver el problema de la
programación de tareas dependientes en máquinas diferentes. RISI, 1(1):9–18, 2004.

[360] Carnegie Mellon University. The carnegie mellon robot navigation toolkit.
http://carmen.sourceforge.net, 2008.

[361] H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschmar. Miro-middleware for mobile
robot applications. Robotics and Automation, IEEE Transactions on, 18(4):493–497,
2002.

[362] H. Utz, F. Stulp, and A. Mühlenfeld. Sharing belief in teams of heterogeneous robots.
In Daniele Nardi, Martin Riedmiller, Claude Sammut, and José Santos-Victor, editors,
RoboCup 2004: Robot Soccer World Cup VIII, volume 3276 of Lecture Notes in
Computer Science, pages 508–515. Springer Berlin Heidelberg, 2005.

[363] R.T. Vaughan, K. Stoy, G. Sukhatme, and M.J. Mataric. Lost: localization-space trails
for robot teams. Robotics and Automation, IEEE Transactions on, 18(5):796–812, Oct
2002.

[364] A. Viguria, I. Maza, and A. Ollero. Distributed service-based cooperation in aerial/-
ground robot teams applied to fire detection and extinguishing missions. Advanced
Robotics, 24(1-2):1–23, 2010.

[365] J. Vitek, F. Pizlo, T. Kalibera, et al. Ovm project.
https://www.cs.purdue.edu/homes/jv/soft/ovm/index.html, 2009.

[366] T. Wagner and V. Lesser. Design-to-criteria scheduling: Real-time agent control. In
Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-Agent Systems,
pages 128–143. Springer, 2001.

[367] N. Wang, Y. Yang, K. Meng, Y. Chen, and H. Ding. A task scheduling algorithm
based on qos and complexity-aware optimization in cloud computing. In Information
and Communications Technology 2013, National Doctoral Academic Forum on, pages
1–8. IET, 2013.

[368] M. Weber. Verteilte Systeme. Spektrum, Akad. Verlag, 1998.

[369] M. Weiser. Ubiquitous computing. IEEE Computer Hot Topics, 26(10):71–72, 1993.

[370] G. Weiss. Multiagent systems: a modern approach to distributed artificial intelligence.
MIT press, 1999.

[371] A. Wellings. Concurrent and real-time programming in Java. John Wiley & Sons,
2005.

[372] D. Weyns, K. Schelfthout, T. Holvoet, and O. Glorieux. A role based model for
adaptive agents. In AISB 2004 Convention, page 75, 2004.

[373] J. Wienke and S. Wrede. A middleware for collaborative research in experimental
robotics. In System Integration (SII), 2011 IEEE/SICE International Symposium on,
pages 1183–1190. IEEE, 2011.

[374] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, et al. The worst-case execution-time prob-
lem—overview of methods and survey of tools. ACM Transactions on Embedded
Computing Systems (TECS), 7(3):36, 2008.

[375] R. Wilhelm and D. Grund. Computation takes time, but how much? Communications
of the ACM, 57(2):94–103, 2014.

Bibliography 313

[376] D. Windestal. Fpv starting guide. http://rcexplorer.se/educational/2009/09/fpv-
starting-guide/, 2009.

[377] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The
knowledge engineering review, 10(02):115–152, 1995.

[378] D. Wu, E. Sirin, J. Hendler, D. Nau, and B. Parsia. Automatic web services composition
using shop2. Technical report, DTIC Document, 2006.

[379] J. C. Wu, J. Hao, and C. Y. Guo. Research on real-time simulation of can bus with
priority promotion algorithm. Advanced Materials Research, 433:5167–5171, 2012.

[380] K.M. Wurm, C. Stachniss, and W. Burgard. Coordinated multi-robot exploration
using a segmentation of the environment. In Intelligent Robots and Systems, 2008.
IROS 2008. IEEE/RSJ International Conference on, pages 1160–1165, Sept 2008.

[381] P. Xiao and D. Liu. Multi–scheme co–scheduling framework for high–performance
real–time applications in heterogeneous grids. International Journal of Computational
Science and Engineering, 9(1):55–63, 2014.

[382] J. Xu and D. L. Parnas. On satisfying timing constraints in hard-real-time systems.
IEEE Transactions on software engineering, 19(1):70–84, 1993.

[383] H. Yamaguchi. A cooperative hunting behavior by mobile-robot troops. The Interna-
tional Journal of Robotics Research, 18(9):931–940, 1999.

[384] H. Yamaguchi. A cooperative hunting behavior by mobile-robot troops. The Interna-
tional Journal of Robotics Research, 18(9):931–940, 1999.

[385] P. Yin, S. Yu, P. Wang, and Y. Wang. Task allocation for maximizing reliability of a
distributed system using hybrid particle swarm optimization. Journal of Systems and
Software, 80(5):724–735, 2007.

[386] F. Zambonelli. Abstractions and infrastructures for the design and development of
mobile agent organizations. In Agent-Oriented Software Engineering II, pages 245–262.
Springer, 2002.

[387] F. Zambonelli, M. P. Gleizes, M. Mamei, and R. Tolksdorf. Spray computers: frontiers
of self-organisation for pervasive computing. workshop on enabling techonologies:
Infrastructure for collaborative enterprises. In WETICE04, pages 397–402. IEEE
Computer Society, 2004.

[388] F. Zambonelli, N. R. Jennings, and M. Wooldridge. Organisational abstractions for the
analysis and design of multi-agent systems. In Agent-Oriented Software Engineering,
pages 235–251. Springer, 2001.

[389] F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multiagent systems:
The gaia methodology. ACM Transactions on Software Engineering and Methodology
(TOSEM), 12(3):317–370, 2003.

[390] J. Zamorano, J. L. Redondo, C. Blanco, J. I. Tortosa, and J. A. de la Puente. Ejecutivo
cíclico. Manual de Usuario, 1992.

[391] C. Zato, J. F. De Paz, A. De Luis, J. Bajo, and J. M. Corchado. Model for assigning roles
automatically in egovernment virtual organizations. Expert Systems with Applications,
39(12):10389–10401, 2012.

[392] C. Zato, G. Villarrubia, A. Sánchez, J. Bajo, and J. M. Corchado. Pangea: A new
platform for developing virtual organizations of agents. International Journal of
Artificial IntelligenceTM, 11(A13):93–102, 2013.

314 Bibliography

[393] C. Zato, G. Villarrubia, A. Sánchez, I. Barri, E. Rubión, A. Fernández, C. Rebate,
J. A. Cabo, T. Álamos, J. Sanz, et al. Pangea–platform for automatic construction of
organizations of intelligent agents. In Distributed Computing and Artificial Intelligence,
pages 229–239. Springer, 2012.

[394] M. N. Zeilinger, D. M. Raimondo, A. Domahidi, M. Morari, and C. N. Jones. On
real-time robust model predictive control. Automatica, 2014.

[395] J. Zhao. Analyzing control flow in java bytecode. In Proceedings of the 16th Conference
of Japan Society for Software Science and Technology, pages 6–16, 1999.

[396] W. Zhao, K. Ramamritham, and J. A. Stankovic. Preemptive scheduling under time
and resource constraints. Computers, IEEE Transactions on, 100(8):949–960, 1987.

[397] A. Zuhily. Scheduling Analysis of Fixed Priority Hard Real-Time Systems with
Multiframe Tasks. PhD thesis, University of York, U.K., 2009.

Appendix

A
Appendix

This appendix is organized in two different sections. In the first one, we include
a brief description of the main projects related to this dissertation. And in the
second section, the main publications in the last two years of this research are
presented.

A Related projects

Three projects are directly related with the development of this dissertation:
OVAMAH, AZTECA and iHAS.

A.1 OVAMAH project

This project entitled in Spanish "Organizaciones Virtuales Adaptativas: Mecan-
ismos, Arquitecturas y Herramientas." (reference TIN 2009-13839-C03-03) was
funded by the Spanish Ministry of Science and Innovation.

The aim of this project is to provide a virtual organization with autonomy
capabilities that allow it to have a dynamic response in view of potential
changing situations by means of the adaptation or evolution of the organization.
In this way, it will be able to detect situations of interest (e.g. operation errors)
and to manage them maximising the adaptation flexibility and capacity. The
organization adaptation implies, among other aspects, its norms, agreements,
commitments and topological structure. Therefore, the adaptation of the
system can be carried out at different granularity levels. At a general level,
the fact that environmental changes in any type of system can give rise to the
need of certain adaption or re-organization is obvious. However, to determine
under which situations the agent or the organization decides to modify its

316 A. Appendix

behaviour and to estimate when a partial or a complete change in the current
organizational structure is necessary is extremely difficult. It must be said that
the stability of a multi-agent system is a crucial aspect when developing this
type of systems. However, a possible reorganization can affect notably to this
stability, which makes even more crucial to detect which are the conditions that
give rise to the necessity of a system re-organization even at the risk of affecting
its stability. Thus, to provide the developer during the system development
process with precise measures that ensure that the benefits and usefulness of
adapting the system is greater than not doing so is necessary. In this way,
the possibility of designing and implementing suitable mechanisms to perform
these measurements can be taken into account during the system development
process.

In general, it is necessary to define the standards and platforms required
for the interoperability of the agents that meet these requirements. This
article attempts to identify and analyze the research topics that touch on the
development of open MAS systems based on virtual organizations. Additionally,
it will present a study in which a high level abstract architecture was applied
with the specific intent of addressing the design of open multi-agent systems
and virtual organizations.

This project arises as a continuation of the THOMAS project, "Methods,
techniques and tools for Open Multi-Agent Systems" (reference TIN 2006-
14630-C03) project, whose main objective was to provide technology based on
agents and multi-agent systems for the development of virtual organizations
on open environments.

A.2 AZTECA project

The AZTECA project entitled in Spanish "Ambientes Inteligentes con Tec-
nología Accesible para el Trabajo" was supported by the Spanish CDTI. Com-
pany Cooperation Project with FEDER funds.

The effective integration of people with disabilities in the workplace is a
huge challenge to society, and it presents an opportunity to make use of new
technologies. The project, called AZTECA, aims to develop new tools that
contribute to the employment of groups of people with visual, hearing, or motor
disabilities in office environments.These different tools for the disabled people
have been modelled with intelligent agents that use Web services. These agents
are implemented and deployed within the PANGEA platform so PANGEA
conforms the skeleton of the system and allows to develop an integral system.

A. Related projects 317

The line more related with this dissertation is the "Design and implemen-
tation of a multi-agent service-oriented architecture". We try to obtain an
oriented-service architecture based on MAS that provides communication and
coordination mechanisms for the integration of multimodal interaction services
and user services in environments where disabled people have to live. Moreover,
the architecture must have advanced capabilities to customize the services
depending on the needs of the users. The architecture must also include a
reorganizational model based on VO, which enable to model the work environ-
ment as a virtual society, establishing special roles for disabled people and that
can dynamically evolve (change roles, adapt norms, include new roles, etc.)
according to the changes that occur in the work environment.

In conjunction with PANGEA, AZTECA contains an innovative solution with
a high technological component that, unlike any architecture known to exist at
this point, is capable of integrating adaptive interface systems, identification and
localization systems, indoor guiding, and training and workplace virtualization
systems using the TV and the internet for the integration of persons with
physical disabilities into the workforce.

A.3 iHAS project

The iHAS project entitled in Spanish "Computación Social Inteligente para
Sociedades Humano-Agente" (reference TIN 2012-36586-C03-03) was funded
by the Spanish Ministry of Science and Innovation.

Humans and agents have the ability to establish a series of relationships/collab-
orative interactions with each other, forming what might be called human-agent
teams to meet their individual or collective goals within an organisation or
social structure. This relationship between humans and agents can be implicit
or explicit, pre-designed or emergent, static or dynamic. Considering systems
of people and agents operating on a large scale offers an enormous potential
and, if performed properly, it will help tackle complex social applications,
which are critical to our future. This view is closely related to the concept of
social computing, where systems are constructed from the interactions between
entities that are part of them. Possible applications of such systems are virtual
marketplaces where either agents or humans interact, simulation and training
environments, the area of health and medical applications, home automation,
etc..

Therefore, this work proposes the development of mechanisms, algorithms, tools
and models that enable the creation of open systems where virtual agents and

318 A. Appendix

humans coexist and interact transparently into a fully integrated environment.
We call this type of systems as Human-Agent Societies (HAS). This project
aims to provide answers to questions like: What is necessary to know and design
for humans to interact with software agents? and how these interactions should
be formalised and structured to obtain software products that are effective
in such environments? How emergent behaviours can be included in these
societies?. The objective of this project is to advance and provide solutions in
these lines.

This project is proposed as an further research of the project "OVAMAH: Adap-
tive Virtual Organizations: Mechanisms, Architectures and Tools" (reference
TIN 2009-13839-C03).

B Related publications

In this section, the main publications related with this dissertation in the last
two years are included.

B.1 International journals

1. C. Zato, G. Villarrubia, A. Sánchez, J. Bajo, and J. M. Corchado. Pangea:
A new platform for developing virtual organizations of agents. Interna-
tional Journal of Artificial Intelligence, 11(A13):93–102, 2013.

2. C. Zato, A. Sánchez, G. Villarrubia, J. Bajo, and S. Rodríguez. Person-
alization of the workplace through a proximity detection system using
user profiles. International Journal of Distributed Sensor Networks, 2013
(Article ID 281625):1–10, 2013.

3. C. Zato, J. F. De Paz, A. De Luis, J. Bajo, and J. M. Corchado. Model
for assigning roles automatically in e–government virtual organizations.
Expert Systems with Applications, 39(12):10389–10401, 2012.

4. C. Zato, A. De Luis, J. Bajo, J. F. De Paz, and J. M. Corchado. Dynamic
model of distribution and organization of activities in multi-agent systems.
Logic Journal of IGPL, 20(3):570–578, 2012.

B. Related publications 319

5. R. González, C. Zato, R. Benito, J. Bajo, J.M. Hernández, J.F. De
Paz, V. Vera, and Corchado J.M. Automatic knowledge extraction in
sequencing analysis with multiagent system and grid computing. Journal
of integrative bioinformatics, 9(3):206, 2012.

6. G. Verde, L. García-Ortiz, C. Zato, J. F. De Paz, S. Rodríguez, and M. A.
Merchán. Platform image processing to study the structural properties
of retinal vessel. ADCAIJ: Advances in Distributed Computing and
Artificial Intelligence Journal, 1(4):55–59, 2013.

7. D. I. Tapia, R. S. Alonso, J. F. De Paz, C. Zato, F. De la Prieta. A Tele-
monitoring System for Healthcare Using Heterogeneous Wireless Sensor
Networks. International Journal of Artificial Intelligence, 6(S11):93–102,
2011.

B.2 Book chapters

1. C. Zato, S. Rodríguez, D. I. Tapia, J. M. Corchado, and J. Bajo. Vir-
tual organizations of agents for monitoring elderly and disabled people
in geriatric residences. In Information Fusion (FUSION), 2013 16th
International Conference on, pages 327–333. IEEE, 2013.

2. C. Zato, A. Sánchez, G. Villarrubia, J. Bajo, S. Rodríguez, and J. F. Paz.
Personalization of the workplace through a proximity detection system
using user’s profiles. In 7th International Conference on Knowledge
Management in Organizations: Service and Cloud Computing, volume
172 of Advances in Intelligent Systems and Computing, pages 505–513.
Springer Berlin Heidelberg, 2013.

3. A. Sánchez, G. Villarrubia, C. Zato, S. Rodríguez, and P. Chamoso. A
gateway protocol based on fipa-acl for the new agent platform pangea.
In Trends in Practical Applications of Agents and Multiagent Systems,
pages 41–51. Springer, 2013.

4. A. Sánchez, C. Zato, G. Villarrubia-González, J. Bajo, and J. F. De Paz.
An integral system based on open organization of agents for improving
the labour inclusion of disabled people. In Distributed Computing and
Artificial Intelligence, pages 369–376. Springer, 2013.

5. J. F. De Paz, C. Zato, G. Villarubia, J. Bajo, and J. M. Corchado.
Distribution of roles in virtual organization of agents. In Lorna Uden,
Leon S.L. Wang, Juan Manuel Corchado Rodríguez, Hsin-Chang Yang,
and I-Hsien Ting, editors, The 8th International Conference on Knowledge

320 A. Appendix

Management in Organizations, Springer Proceedings in Complexity, pages
485–497. Springer Netherlands, 2013.

6. C. Zato, A. Sánchez, G. Villarrubia, J. Bajo, and S. Rodríguez. Integra-
tion of a proximity detection prototype into a vo developed with pangea.
In Management Intelligent Systems, pages 197–204. Springer, 2012.

7. C. Zato, G. Villarrubia, A. Sánchez, I. Barri, E. Rubión, A. Fernández, C.
Rebate, J. A. Cabo, T. Álamos, J. Sanz, et al. Pangea–platform for auto-
matic construction of organizations of intelligent agents. In Distributed
Computing and Artificial Intelligence, pages 229–239. Springer, 2012.

8. E. García, V. Gallego, S. Rodríguez, C. Zato, J. F. de Paz, and J. M.
Corchado. Simulation and analysis of virtual organizations of agents.
In Trends in Practical Applications of Agents and Multiagent Systems,
pages 65–74. Springer, 2012.

9. J. M. Corchado, G. Villarrubia, J. J. De Paz, S. Rodríguez, C Zato,
and F. De la Prieta. Practical applications of virtual organizations and
agent technology. In Highlights on Practical Applications of Agents and
Multi-Agent Systems, Multi-agent based Applications for Sustainable
Energy Systems (MASSES), pages 17–23. Springer, 2013.

B.3 Conferences

1. C. Zato, F. De la Prieta, S. Rodríguez, Y. Demazeau and J. M. Corchado.
An adaptive multi-agent architecture for workplace integration. AsMAS
(Agentes y Sistemas Multi-Agente: de la Teoría a la Práctica (ASMas),
Multiconferencia CAEPIA 2013.

2. G. Villarrubia, J. Bajo, J. F. De Paz, C. Zato, and J. M. Corchado.
Asignación de roles automática en organizaciones virtuales de agentes.
In Conferencia de la Asociación Española para la Inteligencia Artificial
(CAEPIA 2013), pages 1523–1531, 2013.

3. C. Zato, S. Rodríguez, V. Parra, J. Bajo and J. M. Corchado. Sistema
para la telemonitorización y la gestión del rastro asistencial de personas
ancianas. International Symposium on Artificial Intelligence and Assistive
Technology (CEDI 2013), Madrid, 2013.

4. C. Zato, J. Bajo, and J. M. Corchado. A new platform for developing,
management and monitoring open multiagent systems. In Third Inter-
national Workshop on Infrastructures and Tools for Multiagent Systems
(ITMAS12), AAMAS 2012, page 27, 2012.

B. Related publications 321

5. C. Zato, A. Sánchez, G. Villarrubia, S. Rodríguez, J. M. Corchado, and
J. Bajo. Platform for building large-scale agent-based systems. In 2012
IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS
2012), pages 17–24, 2012.

6. Zato, C. and Sánchez, A. and Villarrubia, G. and Rodríguez, S. and
Bajo, J. and Corchado, J. M. Personalization of the workplace using the
PANGEA multiagent platform. In Intelligent systems for context-based
information fusion (ISCIF 2012), IBERAMIA 12, 2012.

PhD. Dissertation

Model for WCET Prediction, Scheduling and Task
Allocation for Emergent Agent-behaviours in

Real-time Scenarios

Author: Davinia Carolina Zato Domínguez

University of Salamanca
Spain

July 2014

	List of Figures
	List of Tables
	I Introduction
	Introduction
	Introduction
	Motivation and hypothesis
	Objectives

	Methodology
	Structure of the document

	II Basic Concepts and Related Works
	Virtual Organizations of Agents
	The concept of agent
	Multi-agent systems
	Societies of agents
	Open societies
	Closed societies
	Semi-open societies
	Semi-closed societies

	Organizations of agents
	Conclusions

	Real-Time Systems
	Introduction
	Classification of real-time systems

	Models of tasks in real-time systems
	Real-time scheduling
	Local scheduling within computational nodes
	Global scheduling in a real-time system

	Distributed real-time systems
	Multi-agent systems in real-time environments

	Conclusions

	III Proposed Model
	Proposed Model
	Introduction
	Background and related works
	Related works of WCET analysis
	Real-time scheduling and task allocation

	WCET in emergent behaviours
	Node evaluation
	Code evaluation
	Statistical improvements of the WCET in execution

	Model of scheduling and task allocation
	Local scheduling
	Global scheduling
	Conclusions

	IV PANGEA+RT Platform
	PANGEA
	Introduction
	Related works
	PANGEA overview
	Reorganization and task allocation model

	The PANGEA database
	The monitoring tool
	The norms in PANGEA
	The communication module
	Testing the communication

	Testing the SnifferAgent
	The subscription model
	The Gateway agent
	Request protocol
	Subscription protocol
	Contract-net protocol
	Inform protocol

	Conclusions

	PANGEA+R
	Introduction
	Platforms and middlewares for robotic systems
	Multi-agent robotics systems
	PANGEA+R platform
	The growing need for cooperation in Robotics
	The contribution of VOs in Robotics
	Main characteristics of PANGEA+R

	Communication module
	Message format
	Command messages examples
	Servers and clients

	Conclusions

	PANGEA+RT
	Introduction
	Problems of Java in real-time environments

	Real-time specification for Java
	Real-time Java virtual machines
	Annotation for bounded loops
	Agents of the platform
	Modification of the classes
	Conclusions

	V Case Study and Conclusions
	Case Study
	Collaboration of heterogeneous robots for surveillance tasks
	Related works
	Presentation of the heterogeneous robots
	The problem and the VO solution
	Proposed VO of agents

	Collaboration description
	Calculations for the collaborative movement
	Common area calculation
	Calculation of horizontal and vertical movement for the HAWK waypoints

	Deployment of the involved agents
	Conclusions

	Results of the Proposed Model
	General evaluation of the model
	WCET evaluation

	Case study results
	Results of the collaboration search
	Conclusions

	Conclusions and Future Work
	Conclusions and Main Contributions
	Future Work
	Future lines related to the model
	Future lines related to PANGEA+RT
	Future lines related to the Case Study

	VI Resumen
	Resumen
	Introducción
	Conceptos básicos y trabajos relacionados
	Análisis del WCET
	Planificación en tiempo real y distribución de tareas

	WCET en comportamientos emergentes
	Evaluación de los nodos
	Evaluación del código
	Adaptación estadística del WCET en tiempo de ejecución

	Planificación y distribución de tareas
	La plataforma PANGEA+RT
	El protocolo de comunicación
	Agentes de PANGEA+RT
	Modificación de las clases

	Caso de estudio
	Despliegue de los agentes propuestos
	Resultados

	Conclusiones

	Bibliography
	Appendix
	Related projects
	OVAMAH project
	AZTECA project
	iHAS project

	Related publications
	International journals
	Book chapters
	Conferences

