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Abstract

In this work we contribute to the formal and computational analysis of the
measurement of consensus in a society. We propose a unifying model that
generates a consistent decision in terms of the individual preferences and
then measures the consensus that arises from it. We focus our inspection
on two relevant and specific cases: the Borda and the Copeland rules under
a Kemeny-type measure. A computational analysis of these two proposals
serves us to compare their respective performances.
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1. Introduction

A classical group decision making problem is established in a context
where a group of voters or experts have to make a decision on a set of alter-
natives or candidates. The experts’ opinions about alternatives are usually
characterized by their ideas, principles, knowledge, etc., and the Arrovian
position assumes that each expert constructs a preference binary relation
(usually a weak order) on the set of alternatives by using some unspecified
internal process. This causes difficulties when it comes to making a collec-
tive decision or selecting one alternative (see [1]) and many voting procedures
have been proposed to account for different sets of compatible aggregation
properties. Therefore it is important to provide distinctive properties of focal
voting rules.

In this paper we are interested in measures of the consensus in a society,
in the sense of the seminal Bosch [2], from an Arrovian perspective. Our mo-
tivation is that a large proportion of the settings where measuring consensus
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is relevant relate to aggregating individual information. Let us introduce our
problem with a common situation, namely, the case of a (finite) committee
that intends to offer vacancies to a (finite) list of candidates. Each member
is assumed to produce a complete preorder on the candidates, that is, ties
are allowed but all pairs of alternatives are comparable. For various plausible
reasons the committee wants to agree on a complete preorder of the candi-
dates, for example because the candidates may reject the offer, or because
the number of candidates to be appointed is externally and independently
decided. It is intuitively clear that some orderings convey “higher consensus”
than others, irrespective of the formal meaning that we attach to that term.
Thus a consensus measure could be interpreted as a social welfare function,
where group satisfaction relates to the coherence between individual prefer-
ences and social decision. From this perspective we obtain evidence that the
outcome after aggregation must not be isolated from the degree of agreement
among the individual preferences. 1

We here propose a model that considers both aspects of the process,
namely, the social preference on the alternatives and the consensus that arises
from it. Generally speaking, the question we pose ourselves is: How should
the design be for the committee to reach a consistent decision (in the form of
a complete preorder on the candidates) with regard to favouring consensus?
The literature abounds with references about the decision making process
under different positions such as the Theory of Decision Making (see [3], [4],
[5], [6] and [7], among others) and the Social Choice Theory (see [8], [9],
[2] and [10], among many others). In this paper we focus on measuring the
degree of agreement between the voters and the final decision reached via
voting systems.

Regarding the assessment of cohesiveness we separate from the main trend
in the literature, that consists of proposing and axiomatizing particular for-
mulations for an absolute intrinsic measure of consensus or coherence (v.,
e.g., Bosch [2] or Alcalde and Vorsatz [9]). We here provide an alternative

1To name an extreme instance: Suppose there are only two candidates x and y, all
members of a huge committee agree that x is better than y except for one that thinks
the opposite, but the social decision is dictatorial and as a result y is appointed. Can we
detach this outcome from the composition of the preference profile and just claim that the
measurement of the consensus is almost the highest possible? Under a welfarist point of
view, certainly not because social welfare is a function of personal utilities and almost all
members are disgruntled.
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and practical methodology for approaching the measurement of consensus,
which we call referenced consensus measures. A study of its analytic prop-
erties is beyond the scope of this paper and we refer to [11] for a thorough
exposition. We then focus on two relevant cases whose explicit constructions
are detailed from an algorithmic viewpoint. We compare their relative per-
formance for a realistic situation, where the number of candidates and voters
is small. This permits to assess which voting procedure should be invoked
before facing the choice, as a function of its particular parameters.

This paper is organized as follows. Section 2 is devoted to introduce basic
notation and definitions, as well as our proposal of measurement of consen-
sus, the referenced consensus measure. A first result is that such apparent
technicality does not exclude any standard consensus measure in the sense of
[2]. Then we introduce the particular subclass of normal referenced consen-
sus measures as a suitable framework where a better normative behavior can
be guaranteed. In Section 3 we present two explicit proposals of our model,
give operational characterizations and provide simple algorithms for their
implementation. A computational comparison of these proposals is shown
in Section 4. Finally, Section 5 concludes and poses questions for further
research.

2. Notation and Definitions

We fix X = {x1, ..., xk}, a finite set of k options, alternatives or candi-
dates. Abusing notation, on occasions we refer to option xs as option s for
convenience. A population of agents or voters is a finite subset
N = {1, 2, ..., N} of natural numbers. We also denote K = {{i, j} ⊆ N :
i, j ∈ {1, 2, ..., k}, i < j}.

Let W (X) be the set of weak orders or complete preorders on X , that
is, the set of complete and transitive binary relations on X . If R ∈ W (X)
is a weak order on X that reflects the preferences of a voter, then by xkRxj

we mean “R-voter thinks that alternative xk is at last as good as xj”. L(X)
denotes the set of linear orders on X , where ties are not permitted.

A profile R = (R1, . . . , RN ) ∈ W (X)× N.... ×W (X) is a vector of weak
orders, where Ri ∈ W (X) represents the preferences of the individual i on
the k alternatives or candidates for each i = 1, . . . , N . We say that the profile
R is constant to R if R = (R, N......, R).

Any permutation σ of the voters {1, 2, ..., N} determines a permutation
of R by Rσ = (Rσ(1), ......, Rσ(N)). Similarly, any permutation π of the can-
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didates {1, 2, ..., k} determines a permutation of every complete preorder
R ∈ W (X) via xs

πRi xt ⇔ xπ−1(s)Ri xπ−1(t) for all s, t ∈ {1, . . . , k} and
i ∈ {1, . . . , N}. Then with R and π we can associate πR = (πR1, ......,

π RN ).
Finally, given any profile of weak orders R = (R1, . . . , RN) ∈ W (X)N

and any weak order R′ on X , we denote R ⊎ R′ the profile (R1, . . . , RN , R
′)

of N + 1 weak orders. We denote by P(X) the set of all profiles, that is,
P(X) =

⋃
N>1W (X)N .

2.1. Basic Definitions

We start by defining the basic concept of consensus measure (Bosch [2]).

Definition 1. A (conventional) consensus measure is a mapping:

M : P → [0, 1]

that assigns a real number M(R) to each profile of complete preorder R
with the following properties:

i) M(R) = 1 if and only if R is a constant profile.

ii) M(Rσ) = M(R) for each permutation σ of the voters.
iii) M(πR) = M(R) for each permutation π of the candidates.

Example 1. Among other instances, Bosch [2] characterizes the trivial mea-

sure T (R) or the simple measure S(R) defined as follows: for each profile
of complete preorders R, let A(R) denote the set of alternatives that are
ranked at the same position by all voters according to R, then

T (R) =

{
1 if R is a constant profile
0 otherwise.

and S(R) =
|A(R)|

n. of alternatives

Our proposal is based on the following alternative concept.

Definition 2. A Consensus measure with reference to a consensus function

(henceforth, referenced consensus measure, also RCM, when the consensus
function is common knowledge) is a pair M = (C, ∂) where:

1) C is a consensus function (cf., McMorris and Powers, [12]), that is, a
mapping

C : P(X) → W (X),

that associates a complete preorder C(R) with each profile of complete
preorders R. We speak of the consensus preorder C(R) associated with
R, and assume that it verifies
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1.a) Unanimity: C(R) = R for each profile R that is constant to the
complete preorder R.

1.b) Anonymity: C(Rσ) = C(R) for each profile of complete preorders
and σ permutation of the voters.

1.c) Neutrality: C(πR) =π C(R) for each profile of complete preorders
and π permutation of the candidates or alternatives.

2) ∂ is a referenced measure function (RMF), that is, a mapping

∂ : P(X)×W (X) → [0, 1],

that assigns a real number, ∂(R, R) ∈ [0, 1], to each pair formed by
a profile of complete preorder R and a complete preorder R, with the
following properties:

2.a) ∂(R, R) = 1 if and only if R is constant to R.

2.b) ∂(Rσ, R) = ∂(R, R) for each possible permutation σ of the voters.

2.c) ∂(πR,π R) = ∂(R, R) for each possible permutation π of the can-
didates.

With regard to M = (C, ∂) each profile of complete preorders R on X has
a consensus ∇M(R) = ∂(R, C(R)). Figure 1 sketches how RCMs measure
consensus.

Preferences

of the 

experts

or

agents

Referenced consensus measure

Advice: ranking 

of the 

alternatives

Consensus

function

Consensus

distance

Consensus reached

by the experts on the 

alternatives

Solution

Figure 1: Consensus measure with reference to a consensus function
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The following lemma reveals that despite its apparently restrictive formu-
lation we do not lose generality by using the RCM concept to define consensus
since it incorporates the usual model.

Lemma 1. Each conventional consensus measure can be interpreted as a
referenced consensus measure, that is for every consensus measure M, there
are RCMs (C, ∂) such that both M and (C, ∂) associate the same number
with every profile of weak orders, i.e., M(R) = ∇M(R) throughout.

Proof 1. Given a consensus measure M we define its associated RMF as

∂M(R, R) =

{
M(R ⊎R) if R is constant,
M(R) otherwise.

Now it is straightforward to check that ∂M satisfies 2.a), 2.b) and 2.c), and
that ∂M(R, C(R)) = M(R) holds for any consensus function C.

Note that contrary to the spirit of our proposal, the role of C(R) is irrelevant
in the previous construction. In order to enhance the influence of C(R) in the
consensus measure and thus favour its analysis we restrict our attention to
referenced measure functions that verify an additional property and introduce
the corresponding new subclass of consensus measures.

Definition 3. A referenced consensus measure M = (C, ∂) is called normal

referenced consensus measure if its referenced measure function ∂ verifies

2.d) ∂(R, R) > 0 whenever R ∈ R.

If we adopt the position that overall welfare is an aggregate of individual
satisfaction (under our approach, in terms of coherence) then property 2.d)
can be regarded as natural. We emphasize that the subclass of normal refer-
enced consensus measures does not coincide with the conventional ones. For
example, the trivial measure is not a normal RCM. To see this, note that we
can assume that there exists a non-constant profile R such that C(R) ∈ R
(this forcefully holds e.g., when the number of voters is higher than the car-
dinality of W (X)). We conclude because T (R) = 0 and ∂(R, C(R)) > 0 for
any normal RCM.

Concerning normative behavior, Alcantud et al. [11, Section 4] shows
that normality permits to guarantee that consensus measures verify various
interesting properties.

6



3. Some proposals for normal referenced consensus measures

In this section we detail the construction of two relevant normal RCM
proposals. These models reach the consensus decision via the Borda and
Copeland methods, thus 1.a) to 1.c) are ensured, and both measure consensus
via the Kemeny’s measure.

The Borda rule [13] is a classic procedure that is frequently used in group
decision making problems where there are several alternatives or candidates
(v., [14, 15, 16, 17]). In this work we consider the tie-breaking Borda rule
given by Suzumura [18, pp. 107-108] (see also Bouyssou et al. [19]), which
ranks the candidates according the following scores:

β(xs) =
N∑

i=1

(#{ xt ∈ X : xs Ri xt } −#{xt ∈ X : xtRi xs}) .

Henceforth, CB(R) denotes the complete preorder that the Borda rule pro-
duces from the profile R.

Another classical rule that we take into account is the Copeland rule.
We follow the Copeland method as described in Saari and Merlin [20] or
Suzumura [18, p. 108]. It ranks the candidates according to their respective
Copeland score defined as follows:

κ(xs) = #{ xt ∈ X : xs beats xt by s.s.m.}

−#{ xt ∈ X : xt beats xs by s.s.m.},

where s.s.m. stands for “strict simple majority”. Henceforth CC(R) denotes
the complete preorder that the Copeland rule produces from the profile R.

Finally to measure the agreement between the individuals preferences
and the final decision we use Kemeny’s measure, that we now recall. Let
R = (R1, . . . , RN) be a profile of complete preorders, its Kemeny’s measure,
denoted K(R), is the probability that the binary ordering between a pair of
randomly selected alternatives is the same for all voters. On this basis we
define a distance between R and a complete preorder R as the average of the
“individual” Kemeny’s measures K(Ri ⊎ R) given by: for each i = 1, ..., N ,

K(Ri ⊎ R) =
2

k(k − 1)

∑

(s,t)∈K

Ks,t(Ri ⊎R)

with

Ks,t(Ri ⊎R) =

{
1 if Ri and R coincide when comparing xs and xt,
0 otherwise.
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Consequently we henceforth refer to:

∂K(R, R) =
K(R1 ⊎ R) + . . .+K(RN ⊎R)

N
.

It is trivial to check that properties 2.a) to 2.d) hold true.

Remark 1. Let M be a consensus measure. Given a profile of complete
preorders R and a complete preorder R we define the µp(M)-reference mea-

sure function (µp(M)-RMF) as the p-generalized mean of the RN vector that
has the i-th component equal to M(Ri ⊎R), that is

∂
p
M
(R, R) =

(
N∑

i=1

1

N
M(Ri ⊎R)p

)1/p

.

Then Alcantud et al. [11] proves that most analytic properties of the mod-
els do not vary when RMFs from this family replace ∂K. Nevertheless a
computational analysis calls for a focal specific instance.

3.1. Some Operational Characterizations

Let us fix a profile R = (R1, ..., RN) of complete preorders on X . Its
Borda and Copeland scores can be reinterpreted in terms of simple matrix
operations. For each complete preorder Rs its preference matrix Ps is defined
as the k×k binary matrix whose (i, j) cell is 1 when xi Rs xj , and 0 otherwise.
We say that R has an aggregate preference matrix A(R) = P1 + ...+PN .

If we define A(R) = A(R)− (A(R))t then the sum of the cells in its i-th

file is β(xi), the Borda score of xi. If we further define Ã(R) = sig(A(R))
then the sum of the cells in its i-th file is κ(xi), the Copeland score of xi (for
a complete description, see Alcantud et al. [11]).

Calculating ∂K(R, R) for R = (R1, ..., RN) profile of complete preorders
and R complete preorder is trivial from the numbers Ks,t(Ri ⊎ R). These
amounts can be computed with the assistance of basic matrix manipulations
too. The following algorithm outputs these quantities:
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Algorithm: Kemeny’s measure K(R1, R2)
Input: Two weak orders R1 and R2 on k options, and their respective

k × k preference matrices P1 and P2

d = 0

for i = 1 to k
for j = i+ 1 to k

if
(

P1(i, j) +P2(i, j) == 2 OR P1(j, i) +P2(j, i) == 2

OR P1(i, j) +P2(i, j) +P1(j, i) +P2(j, i) == 0
)

then
d = d+1;

Output: K(R1, R2) =
2d

k(k−1)

3.2. The RCM-B proposal

Our first proposal is the referenced consensus measure given by the tie-
breaking Borda rule. It is defined as MB = (CB, ∂K), where CB denotes the
consensus function based on the Borda rule, and ∂K is the Kemeny’s measure.
We now present an algorithm to compute it and a simple example:

Algorithm: RCM-B

Input: A profile R = (R1, . . . , RN ) of N weak orders on k options

(1) For each preorder compute its k × k preference matrix Ps(i, j)

(2) Calculate the aggregate preference matrix: A(i, j) =
∑N

s=1 Ps(i, j)

(3) Compute rule score AB = A− At, RR(i) =
∑N

j=1 AB(i, j)

(4) Compute rule preference matrix yielding RR

(5) Compute ‘individual’ measures K(Rs, RR) for each s = 1, . . . , N

Output: Measure K(R, RR) =
∑

N

s=1
K(Rs,RR)

N

Example 2. Suppose X = {x, y, z, w} thus k = 4. Let R = (R1, R2, R3) be
the profile of three linear orders given by:

wR1 y R1 xR1 z, z R2wR2 y R2 x, xR3 z R3 y R3w.

Then simple computations yield ∇MB
(R) = ∂K(R, CB(R)) = 2+4+1

3×6
= 7

18
.

This means that 7 out of 18 possible pairwise comparisons made by a mem-
ber of the society {1, 2, 3} coincide with the binary ordering given by the
consensus function in the model.

3.3. The RCM-C proposal

Our second proposal is based on the Copeland method. We refer to this
model as RCM-C, and it is given by MC = (CC , ∂K). The RCM-C algorithm
is the same as the RCM-B above, except in that step (3) is replaced by:
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(3) Compute rule score AC = sign(A−At), RR(i) =
∑N

j=1AC(i, j).

Example 3. Elaborating on the data of Example 2 one gets
∇MC

(R) = ∂K(R, CC(R)) = 7
18
. Thus for such situation, the referenced con-

sensus measures obtained by the Borda and the Copeland rules are the same.

4. Computational comparison among different particular proposals

In this section we carry out a computational exploration of the behaviour
of our proposals for k = 3 and k = 4 alternatives and small societies. We
do not need to study the dichotomous case (k = 2), where the Borda and
Copeland rules coincide, because it admits a purely analytic treatment (as
shown in Alcantud et al. [11, Subsection 3.4]). Besides we restrict our
study to the case where the voters linearly order the alternatives, both for
expository and computational reasons. Of course, even though all voters
have linear orders the models can produce ties in the consensus preorder.

Tables 1 and 2 show the respective performance when k = 3 and k = 4.
The total number of cases that must be listed for k options and n experts
is shown in the first row, and it is given by the number of n-combinations
with repetition from a set of k! elements (the number of linear orders), i.e.(
k!+n−1

n

)
. We provide the number of cases where the Borda and Copeland

methods convey the same consensus, resp., Borda gives a higher consensus
than Copeland. The tables convey relative values (in larger types) and abso-
lute values. We observe that for the cases that have been examined, RCM-C
performs better than RCM-B when the number of experts is odd and the
situation is the opposite for even-numbered groups (cf., Fig. 2). We do not
have an analytic proof that this is a generalized property but we guess that
it is partially due to the fact that even though all voters have linear orders
the consensus preorder can produce ties, which ceteris paribus harms con-
sensus. Although the combinatorial argument would be lengthy and tedious,
we can observe that contrary to the case of the Borda rule, the proportion of
consensus preorders under the Copeland rule that are (or are not) linear is
very sensible to the parity of n for small societies (cf., Table 3 and Fig. 3).

5. Concluding remarks and future research

Alongside with normative approaches like the foundational Bosch [2] or
Alcalde and Vorsatz [9], we have analysed the measurement of consensus from
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Table 1: Comparing RCMs for 3 options

Experts
n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

56 126 252 462 792 1, 287 2, 002 3, 003

B=C 79% 90% 74% 82% 73% 78% 73% 75%
44 114 186 378 582 993 1, 468 2, 253

B>C 0% 10% 2% 13% 4% 14% 5% 15%
0 12 6 60 30 186 90 450

B<C 21% 0% 24% 5% 23% 8% 22% 10%
12 0 60 24 180 108 444 300

Table 2: Comparing RCMs for 4 options

Experts
n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
2, 600 17, 550 98, 280 475, 020 2, 035, 800 7, 888, 725 28, 048, 800 92, 561, 040

B=C 57% 72% 46% 59% 43% 52% 42% 49%
1, 472 12, 726 45, 312 281, 304 882, 456 4, 134, 345 11, 942, 136 45, 046, 752

B>C 6% 18% 14% 24% 18% 27% 20% 29%
168 3, 120 13, 968 114, 972 362, 520 2, 151, 372 5, 510, 328 26, 736, 828

B<C 37% 10% 40% 17% 39% 20% 38% 22%
960 1, 704 39, 000 78, 744 790, 824 1, 603, 008 10, 596, 336 20, 777, 460
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80

100

Experts (k=3)

 

 

B=C
B>C
C>B

4 6 8 10
0

20

40

60

80

100

Experts (k = 4)

 

 

B=C
B>C
C>B

Figure 2: Comparison between RCM-B and RCM-C for k = 3 and k = 4.

a descriptive point of view. We have presented a general framework and given
two particular specifications that link this proposal to voting theory.

Our formulation permits to compare a finite list of proposals on a common
ground so that the society can decide which one conveys a higher consensus.
Nonetheless its primary objective is to assess the coherence within a society
with reference to a given voting rule. As is apparent, this may serve to
discriminate among the voting rule that should be selected if we aim at
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Table 3: Proportion of consensus preorders under Borda and Copeland rules that are
linear.

Experts
n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

k = 3 B 75% 76% 78% 79% 83% 82% 85% 85%
C 96% 66% 95% 71% 94% 74% 94% 76%

k = 4 B 56% 51% 59% 60% 64% 65% 68% 69%
C 84% 46% 80% 51% 79% 55% 78% 57%
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100

Expert (k = 3)

 

 

Borda
Copeland
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Copeland

Figure 3: Proportion of consensus preorders under Borda and Copeland rules that are
linear for k = 3 and k = 4.

producing indisputable results. For example, our tables show that for 3
candidates and 3 voters the Borda rule never produces higher consensus
than the Copeland rule, and for 3 candidates and 4 voters the Copeland rule
never produces higher consensus than the Borda rule.

Several questions remain open. Clearly, the performance of other mea-
sures with reference to alternative voting rules is a direct variation of our
analysis. Also, different subclasses besides normal referenced consensus mea-
sures can yield a good normative performance. An ambitious project is
the identification of the consensus function that yields the highest consen-
sus as a function of the consensus distance (or at least, for focal examples
like ∂K)

2. Obviously when such procedure is used to make social decisions,
the researcher can elaborate on manipulability issues too.

2This has slight resemblances to the approach by Meskanen and Nurmi [21].
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