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Abstract

Nowadays attosecond science tools have opened new avenues to access the ultrafast

electronic motion in matter with unprecedented time and spatial resolutions.

This thesis is dedicated to the study of both the structural and dynamical informa-

tion carried by the electrons in atoms and small molecules. Our first aim consists

in applying the schemes widely used in optics to reconstruct the amplitude and

phase of the ultrafast laser pulses. Analogously, we extend these schemes to the

matter-wave characterization. By using the attosecond streak camera concepts,

we theoretically demonstrate that the application of two attosecond pulses, in the

presence of a moderated infrared laser field, leads to the emission of two coherent

electron wavepackets (EWP). The resulting interferogram contains full informa-

tion about the phase difference between the two ionization events. Conceptually,

this ionization scheme is equivalent to the optical technique named Spectral Phase

Interferometry for Direct Electric-field Reconstruction (SPIDER). In a similar way

to the one used in optics, we apply the SPIDER algorithm but in this case to

extract information of an atomic system. This information is encoded in the com-

plex bound-free dipole transition matrix element, amplitude and phase, and can

be obtained from the final interferogram.

Furthermore, the time delay in photoemission or Wigner time delay is a funda-

mental quantity related to the time-dynamics of an EWP when it is ionized by

a single attosecond pulse. The now available attosecond streaking technique has

demonstrated to be the adequate tool to extract the time delay in the photoioniza-

tion process. However, due to the problems related to the Coulomb-laser coupling

(CLC), the information of the intrinsic Wigner time delay is intertwined in the

measurement process. In this thesis we will evaluate an alternative method to

remove the CLC from the measurement process of the Wigner time delay and ad-

dress its reliability. To this end we use a small asymmetric molecule. By measuring

two streaking traces, to either side of the molecular orientation axis, the resulting

left-right time delay is obtained. We demonstrate that this simple asymmetric

time delay removes completely the so-problematic CLC. At the same time, our

numerical calculations suggest that the exact asymmetric Wigner time delay is

comparable to the stereo streaking delay.
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Resumen

Hoy en d́ıa las herramientas de la ciencia de attosegundos han abierto nuevas v́ıas

para acceder al movimiento electrónico ultra-rápido en la materia con resoluciones

temporales y espaciales por primera vez observadas.

La presente tesis está dedicada al estudio de la información estructural y dinámica

asociada a los electrones en átomos y moléculas. Nuestro primer propósito consiste

en aplicar algunos esquemas usados en Óptica para reconstruir la amplitud y la fase

de pulsos láseres ultra-rápidos. Análogamente y desde un punto de vista teórico,

nosotros extendemos éstos esquemas a la caracterización de ondas de materia.

Mediante el uso de los conceptos de la attosecond streak camera, demostramos

que la aplicación de dos pulsos de attosegundos en presencia de un pulso láser

en el régimen del infrarrojo y con intensidad moderada, conduce a la emisión de

dos paquetes de ondas de electrónes (EWP). El interferograma resultante contiene

información completa acerca de la diferencia de fase entre los dos eventos de ion-

ización. Conceptualmente, dicho esquema de ionización es equivalente a la técnica

de caracterización en Óptica denominada Spectral Phase Interferometry for Di-

rect Electric-field Reconstruction (SPIDER). De manera semejante a la seguida en

Ópitca, aplicamos el algoritmo SPIDER, pero en nuestro caso con el propósito de

recuperar información estructural de sistemas atómicos. Dicha información está

codificada en el elemento de transición dipolar complejo entre los estados ligados y

los del continuo. Esta información puede ser obtenida a partir del interferograma

de paquetes de ondas electrónicos.

Por otro lado, el retado en la foto-emisión o tiempo de Wigner es una cantidad

fundamental relacionada con la dinámica de un EWP cuando éste es ionizado

mediante un pulso de attosegundos. La técnica attosecond streaking ha demostrado

ser la herramienta adecuada para extraer el retardo en el proceso de foto-emisión.

Sin embargo, debido al acoplamiento entre el potencial de Coulomb y el láser

(CLC), la información del tiempo de Wigner se observa mezclada en el proceso de

medición. Como segundo propósition, en esta tesis se sugiere un método alternativo

para remover el CLC en el proceso de medición del tiempo de Wigner. Con tal fin,

usamos una molécula asimétrica “pequeña”. Mediante la medición de dos trazas

streaking, una a la izquierda y otra a la derecha con respecto al eje de orientación

molecular, obtenemos el retardo temporal asimétrico izquiera-derecha. Con ello,

demostramos que esta simple asimetŕıa en la medición de los retardos remueve

completamente el llamado CLC. Simultáneamente, nuestros cálculos numéricos

sugieren que la asimetŕıa en el tiempo de Wigner es comparable al retardo relativo

izquierda-derecha obtenido con el método streaking.
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Introduction

The physical description of natural phenomena depends on their spatial and temporal

scales. For example, the orbital period of the earth around the sun is one year (about

1.3×106 s), the period orbits of the moon around the earth is one month (∼ 9.8×104 s)

and the period of the heart palpitations is ∼ 1 s. These phenomena can be considered

within the human time scale and can be studied with available technologies.

Faster natural phenomena such as the flapping of bee wings or the vibration period

of the strings of a violin (∼ 10−3 s (ms)), can be characterized if a suitable instrument

is used, i.e., a camera with a shutter speed of about 10−4 s. The typical biological

processes of life are in the range of ∼ 10−6 s (µs), i.e., the RNA molecule motion or

deformation, protein motion in cells, etc. In electronic devices such as a microprocessor,

the processing of data occurs in times of the order 10−9 s (ns) (see, for instance Fig. 1.1).

Changes in the nuclear structure of molecules, such as the vibrations or the breaking

and formation of chemical bonds occur at the characteristic timescale of a few fem-

toseconds (∼ 10−15 s (fs)) to a few thousand femtoseconds or picoseconds (∼ 10−12 s

(ps)) [1, 2, 3].

Nowadays all of these time scales of biological, chemical and physical phenomena

can be addressed due to the remarkable advance of the electronic devices, particularly

the laser pulses [3].

The femtosecond and attosecond laser sources are considered to be the main tools

for resolving the fast electron motion in matter temporally and spatially down to sub-

Ångstrom (1 Å= 10−10 m) resolution [4, 5, 6].

For atomic physics, the most fundamental process is the electron transition between

states. Until recently, it was not possible to observe the “motion” of the electrons,

because there were no high-resolving tools available. But, with the advent of the at-
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tosecond (10−18 s (as)) pulses a new time perspective is opened [3, 7].

The femtosecond and attosecond pulses have become one of the main tools to mea-

sure the fast electron motion. This thesis is devoted to the study of ultrafast electron

phenomena as a result of the attosecond and femtosecond pulses interacting with the

atoms and molecules.

Figure 1.1: Timescale of different physical phenomena. This picture depicts differ-
ent temporal scales of natural phenomena and technological development.
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1.1 Brief history of ultra-short laser pulses

The generation of short laser pulses started right after the first implementation of the

laser in 1960 [8] by Maiman. During the following decades, the development of new

techniques helped to achieve shorter and shorter pulses [6, 9]. A diagram showing the

evolution of pulse duration during the 1960-2010 time frame is depicted in Fig. 1.2.

The Q-Switching [10] is an active technique which modulates the cavity losses.

When the losses are momentarily reduced the accumulated energy is launched in a

short pulse. As the modulation is active, it is limited to the speed of the change in the

modulation. This technique is used to generate nanosecond pulses of high energy in

solid-state lasers [10, 11].

The Kerr Lens Mode-locking (KLM) [9] is a passive technique which achieves two

things simultaneously. Using the nonlinear response of a material such as the Kerr

effect the modulation of the cavity is much faster leading to very short emissions. To

produce short pulses, it is necessary to support a broad spectrum with synchronized

phases.

The Mode-locking was reported for the first time by Hargrove et al. in 1964 [12,

13]. The purpose of this technique is to synchronize or “lock” the relative phases

of the modes oscillating inside the laser cavity. These frequencies add up coherently

(constructively) and the intra-cavity intensity increases.

This technique helped to produce the first femtosecond pulses, typically between 30 fs

and 30 ps, in extreme cases down to ∼ 5 fs [11, 14].

Femtosecond pulses can only be produced if the gain media in the laser cavity

support a broad spectrum. In 1982, a new laser material, the Ti:Sapphire (Ti:Al2O3)

was developed by Moulton [15]. This crystal allows the generation of very short pulses

because of its large gain bandwidth (650− 1100 nm).

Another breakthrough was developed by Strickland and Mourou in 1985. It is CPA [19],

which enables the amplification of femtosecond lasers by several orders of magnitude

(from the nanojoule (nJ) to the multi-Joule level).

The CPA technique solves the problem of damage threshold on the crystal when a

femtosecond pulse is amplified in the laser. To bypass this problem the ultrashort

pulses are stretched out in time, reducing the peak power (typically a 104 or higher

factor), avoiding crystal damage. Once the pulses are amplified, they are compressed

back to the original duration achieving a high peak power. With this process very high

peak powers as large as 1× 1015 W can be achieved.

Simultaneous to the development of these techniques it was necessary to develop
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Figure 1.2: Evolution of ultrafast laser pulses. The time duration of laser pulses
decreases continually from the discovery of Q-Switching and mode-locking in 1963-64 until
1987 when 6 fs pulses were reported [16]. At this time duration of the laser pulses, 6 fs (three
periods of light in the mid-IR), different technology was required in order to study and control
natural phenomena at this time scale. This development took about 15 years. According to
Corkum and Krausz [6] nowadays the attosecond technology is providing new tools for science.
Thus, it is again opening new fields for real-time measurement, i.e., the electron dynamics in
the photoemission process [17, 18].
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characterization methods of the time profile of these ultrashort laser pulses. Several

techniques to diagnose the spectral amplitude and phase of the laser pulse electric field

have been developed within the IR electromagnetic spectral range. Some examples

of these are: SPIDER [20, 21], Spatially Encoded Arrangement for SPIDER (SEA-

SPIDER) [22], FROG [23], GRating-Eliminated No-nonsense Observation of Ultrafast

Incident Laser Light E-fields (GRENOUILLE) [24], SpatioTemporal Amplitude-and-

phase Reconstruction by Fourier-transform of Interference Spectra of Highly-complex-

beams (STARFISH) [25, 26], amongst others.

After the CPA development, the need to compress pulses up to the diffraction limit

arises with the purpose of accessing the ultrafast molecular dynamics. Some of the

methods to achieve short laser beam pulses of 30 fs, of the Ti:Sapphire laser (800 nm

of carrier wavelength) are the propagation of the laser beam along a gas, where the

nonlinear interaction leads to a broader spectrum (filamentation process and nonlinear

process in hollow fibers) [27, 28, 29, 30]. These methods have been able to generate the

shortest few-fs pulses, corresponding to three, two and even shorter, one cycles (2.6 fs)

of the carrier wave frequency [30, 31, 32].

The short laser pulses from oscillators and the high power amplified pulses opened

a new research field within the femtosecond timescale. When these pulses are focused

close to the diffraction limit about a few µm2 at focus, the laser peak intensity can be

very high leading to strong field effects.

These high intensities can produce highly nonlinear responses in atoms and molecules.

In particular if the intensity of the laser pulse is comparable to the atomic unit Iau =

3.5× 1016 W/cm2, the laser field of the pulse will create an electric field comparable to

the electrostatic field experimented by the electron inside the atom or molecule.

In such a case, the laser matter interaction is not perturbative anymore and strong field

phenomena arise.

The ultrashort laser technology available today allows physicists to address a wide

variety of interesting strong field phenomena with unprecedented time-resolution. For

example, the tunneling ionization process which leads to the high-order harmonic gen-

eration, the above threshold ionization, the double and multi-electron ionization, molec-

ular dissociation and nuclear dynamics, can now be understood and controlled thanks

to the ultrashort laser technology [6, 33, 34, 35, 36].

Attosecond science is the most important spin-off of strong field physics. Based

on the generation and control of the envelope and carrier of the femtosecond pulses

[37, 38], it is possible to generate and synthesize attosecond pulses.

Physicists have developed novel pump-probe techniques based on the combined use
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of both attosecond and femtosecond pulses which allows to access to the real-time

electron dynamics [39]. Attosecond streaking, is one example of this techniques, which

allows us to access to the real-time electron dynamics, i.e., it was used to characterize

the electronic Auger relaxation dynamics in krypton [39].

Finally, one of the amazing phenomenon in attosecond physics is the HHG which

enables to the synthesis of attosecond pulses [37, 38] within unprecedented short time

durations. The next Section will be dedicated to describing the HHG process.

1.2 High-order harmonic generation

The first experimental demonstration of the emission of high-order harmonics was ob-

served by McPherson et al. [40] using an intense ultraviolet (248 nm) laser pulse and

by Ferray et al. [41] with an IR Nd:YAG laser (1064 nm) focused in different atomic

gas targets. These experiments, and in particular [41], show a different harmonic shape

than expected by the perturbative theory. This harmonic emission had a distinct form,

with three regions clearly distinguishable, namely: (i) a strong signal for low harmonics

(perturbative region), (ii) the middle region harmonics, larger than the ∼ 5th harmonic

(plateau region which has a constant amplitude for intermediate harmonics) and (iii)

the high harmonic region (cutoff region).

The interaction of these ultrashort IR laser pulses of high intensity (1013 − 1015

W/cm2) with a gas targets, leads to the electron being released to the continuum by

tunneling and with it to the HHG process. A classical picture describing this phe-

nomenon, was first introduced by Corkum [42] in 1993 using the so-called three-step or

simple man’s model.

This model suggests that, first, when the electric field of the laser is around its

maximum, the atomic potential barrier is deformed in such a way that the electron

can be ionized via tunneling. It is supposed that when the electron appears in the

continuum, it has a position coordinate and velocity equal to zero. Second, once the

electron is in the continuum, it is accelerated by the driven laser electric field gaining

energy, as it is illustrated in Fig 1.3. Once in the continuum, the influence of the

Coulomb potential of the remaining ion is neglected. Third, when the electromagnetic

field of the laser changes its sign, the electron turns back to its parent ion and returns to

its initial ground state (recombination), converting its kinetic energy in a high energy

photon of frequency ωmax. This process occurs at some time around the zero of the

laser electric field (see part-(v) in Fig. 1.3). Then, the atom emits its excess energy in

the form of XUV radiation. Fig. 1.3 illustrates the classical picture of the HHG process.
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According to this classical model the maximum photon-emission energy ωmax is

given by ωmax = Ip + 3.17Up, where Ip is the ionization potential of the system, and

Up =
ε20

4ω2
0

is the the ponderomotive energy. Here, ε0 and ω0 denote the peak amplitude

of the IR oscillating electric field and its carrier frequency, respectively1 .

Another theoretical approach, with grounds on Quantum Mechanics, was been de-

veloped by Lewenstein et al. in 1994 [43]. This theoretical approximation is usually

referred as Lewenstein’s model or SFA. In this scheme the TDSE is solved under three

main assumptions: (i) the contribution to the evolution of the system of all the bound

states can be neglected, but not that of the ground state one; (ii) The depletion of

the ground state is neglected and (iii) in the continuum, the electron can be treated

as a free particle moving in the laser electric field and is not affected by the atomic

potential.

Within this approximation, the HHG process can be easily characterized from a

quantum viewpoint. There are several appealing facts about this model. The odd

harmonic structure, the plateau spectral region and the cutoff law energy naturally are

reproduced. It is also demonstrated that the electron short-long trajectories emerge

directly in the description of the HHG process using SFA. This model has been used

quite successfully, in particular, for the analysis of the attosecond synchronization of

high harmonics [44].

However, one of the main limitations of this model arises by considering how the

continuum electron recombines when it is near the parent ion. Here, neglecting the

electron-potential interaction is rather questionable [45, 46]. Various efforts have been

made to improve upon the SFA model, i.e., by including the Coulomb distortion [45,

47, 48, 49].

The most general treatment of the strong field interaction with matter is the solution

of the TDSE and in particular it can be applied to HHG. Thus, it is interesting to point

out that the full time-space position electron density depicted in Fig. 1.4a), shows a

similar behaviour described by the three steps classical model.

Fig 1.4 depicts an example of HHG spectra according to the 1D TDSE numerical

solution. Fig. 1.4a) shows the electron z-position distribution as a function of time

and in Fig. 1.4b), we depict the corresponding HHG spectrum. The electron density is

obtained as a result of the interaction of a strong IR laser field with a hydrogen atomic

1D model. The IR laser can be considered as a Titanium Sapphire (Ti:Sa) laser with

central wavelength of 800 nm (ω0 = 0.057 a.u. of central frequency) and a time duration

1Note that atomic units are used throughout this thesis. This means that the fundamental constants
are |qe| = me = ~ = a0 = 1, c = 137, etc.
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Figure 1.3: Classical scheme of HHG process. This picture describes the classical
mechanism of the HHG and with it the generation of attosecond pulses. (i) The Coulombic
potential and the electron in the ground state, when the laser is turned off. (ii) When the IR
laser electric field reaches the negative maximum, the Coulombic potential is deformed creating
a potential barrier. Thus, the electron tunnels out through the potential barrier. The electron
is accelerated in the (iii) and (iv) by the driving laser electric field in such a way that the it
gains energy and goes back to the ion core between (iv) and (v). (v) The electron re-collides
with its parent ion, then it re-combines with the atom emitting the gained energy in form of a
high order harmonic frequency of the fundamental laser or XUV frequency photon.
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about 13-fs at FWHM. It is clear that the three steps described in Fig. 1.3, namely

tunnel ionization, movement in the continuum and recombination, can be appreciated

within the time-position map of the electronic current density.

Figure 1.4: Strong field ionization and HHG spectrum. a) TDSE numerical solution
for the z-position probability density of the electronic wavefunction as a function of time (gray
color scale, black is the lowest and white, the highest). This time-space electron density is
the result of the strong IR laser field (red solid line) interaction with the 1D hydrogen atom
model. The peak intensity of the IR laser is 8.5 × 1013 W/cm2. The simulation is performed
with a sin2 envelope of 10 cycles. b) HHG spectrum as a function of the harmonic order is
depicted in the blue line. The spectral emission radiation is defined as the absolute square of
the dipole acceleration Fourier Transform along the time axis. The red dashed vertical line
denotes the cutoff photon energy ωmax/ω0. The harmonic spectrum consists of three main
parts, the perturbative, the plateau and the cut-off spectral regions. First, the perturbative
region denotes the spectral range where the perturbative theory describes perfectly the harmonic
emission behaviour. Second, the plateau is the range where the harmonic intensity seems to be
constant. And third, when a drastic reduction of the harmonic intensity is reached, the cut-off
region is defined. This region shows that the short-long trajectories correspond to “single”
recombination events.

In addition, note that the emitted HHG spectrum (Fig. 1.4b)) is composed of odd

harmonics only. It is so because the time-space symmetry of the atomic and laser

potential cause the radiated dipole acceleration to follow the negative value of the

electric field [50]. These harmonics are integer multiples of the fundamental IR laser

frequency ω0 = 0.057 a.u.

In the next Section we will review briefly the synthesis of the HHG spectra in an

APT and a SAP.
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1.3 Attosecond pulse generation

One of the remarkable features of the HHG is that the emitted radiation is a coherent.

As the re-collisions are periodic, these harmonics are emitted at each zero of the field

in short bursts of light. Because of the coherence it produces a short pulse and if there

are several re-collisions provoked by the driving IR laser field, then the emission is a

train of pulses.

Many experimental efforts have been done to control and manipulate the coherent

XUV light from HHG [37, 38, 51, 52], to produce attosecond pulse trains [38] and a

single attosecond pulse [37].

A train of pulses is generated by filtering the higher frequency part of the HHG spec-

trum that corresponds to the plateau region [38]. The first experimental observation

of an APT was obtained by Paul and coworkers [38] by isolating the five consecutive

emitted harmonics from Ar. They measured an APT with a duration per pulse of

250 as, separated by a one half-cycle of the IR laser period with the train extending

over some 10 fs.

To achieve single attosecond pulses many techniques exist [37, 53, 54, 55]. By

manipulating the temporal duration and the shape of the electric field the number of

re-collisions can be controlled.

The fundamental process to generate an APT consists of isolating a spectral region

of the HHG spectrum. Experimentally, spectral filtering is achieved using different

materials to remove the lowers harmonic [38].

Figure 1.5 depicts a numerical calculation performed with the Lewenstein’s model. The

plot a) shows the selected spectral region between the plateau and cutoff (see Fig. 1.5a)).

Then, by Fourier Transform of the selected signal, the APT can be generated. This

process also can be performed on the plateau region as it is shown in reference [56].

With a similar procedure to the one described in Fig. 1.6, Hentschel et al. [37]

reported the first experimental observation of an isolated SAP. The measured pulse

had a time duration of about 650 as. Such a measurement was performed by filtering

a few cut-off harmonics. The HHG spectrum had been produced by focusing a linearly

polarized laser pulse, with a wavelength of 750 nm, a time-duration 4-fs and stabilized

CEP, in Ar.

Fig. 1.6 depicts the same process followed in Fig. 1.5, but now to obtain a single

attosecond pulse. In this case, the physical mechanism for the HHG differs that in

the APT generation. The driving IR laser field is a few-cycle pulse. According to the

semiclassical or Lewenstein’s model, this means that few re-collision events will take

10



Attosecond pulse generation

Figure 1.5: Attosecond pulses train. a) In green dark line, the HHG spectrum as a
function of the harmonic order which is computed by the SFA model for the hydrogen atom.
The isolated spectrum between the plateau and cut-off region is marked in a violet dashed line.
b) In violet area, the attosecond pulse train intensity as a function of the time. This APT is
obtained by computing FFT of the isolated spectrum of a). The time domain of the IR laser
field is shown by the red line. The IR laser peak intensity utilized for such a calculation is
1× 1014 W/cm2 and the FWHM = 18-fs, the central frequency is ω0 = 0.057 a.u. (800 nm of
wavelength).

place. Then, it is expected that the control of a single re-collision event leads to the

emission of a SAP.

Another interesting method to isolate SAP, was developed by Sola et al. [53]. By

modulating the polarization of a carrier-envelope phase-stabilized short laser pulse, a

very precise control the EWP dynamics can be achieved. Then, they used high-order

harmonic generation to probe these dynamics. This scheme temporally confines the

XUV emission to an SAP with a broad and tunable bandwidth [53].

These XUV sources, the APT and the SAP, need to be characterized in time by

measuring the electric field amplitude and phase. This is a very hard task because

these pulses in the UV and XUV are absorbed by the materials. In addition, it is very

difficult to produce a nonlinear response in this spectral range. For these reasons, the

manipulation of the HHG spectra in the lab to perform a diagnostic of the XUV source

is difficult.

Nevertheless, the characterization of these pulses is possible. By analyzing the emitted

electrons which are created by the interaction of the HHG signal with gasses several

techniques have been developed. Most of the measurement techniques take advantage

of the high-photon energy of the APT (or the SAP) and combine it with a moderated in-

tense IR laser to modulate the ionization dynamics. Thus, the temporal characteristics

of the pulses are inferred.

These are the basis of the RABBIT technique [38, 57] to diagnose an APT, and the
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Figure 1.6: Single attosecond pulse. a) and b) depict the same that in Fig. 1.5 but
the HHG spectrum is driving by few-cycle IR laser as it is denoted by the red line in b). A
single attosecond pulse is obtained when the same filter employed in Fig. 1.5a) is utilized to
the spectrum in a).

FROG-CRAB technique [58, 59] to characterize a SAP [59, 60]. Both techniques pro-

vide a full reconstruction of the temporal shapes of an APT [38] and a SAP [58, 61],

respectively.

The FROG CRAB technique uses the attosecond streak camera [37, 59, 61], which

is a very good technique to characterize the isolated XUV attosecond pulse and the

ultrashort IR laser field.

The attosecond streak camera is a pump probe technique, where the time dependence

of the laser can be mapped into the final momentum of an electron. Electrons ionized

by the SAP in the presence of a moderated IR laser field are shifted or streaked in

momentum by the value of the vector potential at the ionization time [59, 61]..

The final electron energy or momentum depends on the time delay between the isolated

XUV SAP and the oscillating IR laser field. In the Chapters 4 and 5 we will address

in detail the theoretical aspects of this revolutionary technique.

More theoretical techniques have been proposed later on, i.e., XSPIDER [62], which

is an SPIDER version for the characterization of a single XUV attosecond pulse. How-

ever, we will not comment the details about this wonderful XUV optics metrology field

in this thesis.

The generation and control of the attosecond pulses, and the related diagnostic

techniques are the main tools of the attoscience and open new possibilities to study

ultrafast dynamics.

Next we provide a brief review of the most relevant experimental, theoretical efforts

and the state-of-the-art in the attoscience.
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1.4 State-of-the-art in attosecond physics

Electron structural and dynamics information can be experimentally scrutinized by

utilizing the now available attosecond technology. The key point is how this information

can be deducted from the results of laser-matter interaction. This is one of the big

challenges for attosecond science.

During the last two decades, many experimental and theoretical efforts have been

done to develop and understand the attosecond tools and their main mechanisms, e.g.,

the high-order harmonic spectroscopy and the attosecond spectroscopy [6, 63].

According to Corkum and Krausz in [6] three main areas have been opened with at-

tosecond science: metrology of the attosecond pulses [64], attosecond spectroscopy and

attosecond dynamics. Several experiments have been carried out within these fields.

Here, we will address only a few of those regarding the electron structure and attosec-

ond electron dynamics. We restrict ourselves to these last topic because our interest is

to access to the structural and dynamics information of the system.

Electron structural information

In 2004 Itatani et al. reported one of the first experiments which utilized the high-order

harmonic spectroscopy to extract structural information. They performed a tomogra-

phy reconstruction of the HOMO of the N2 [5]. According to Itatani’s paper the dipole

matrix element of the HHG process contains structural information about the initial

state of the electron inside the molecule.

This tomography method consists of three steps: (i) the measurement of the HHG

spectrum as a function of the molecular alignment angle between the IR laser, linearly

polarized, and the molecular axis, (ii) the measurement of the harmonic emission of

an atomic reference system with similar ionization potential than the N2 molecule, i.e.,

the Ar atom, and (iii) the application of a reconstruction algorithm for all the different

angles.

To perform a full tomography reconstruction, the phase measurement is important in

the Fourier analysis required for the retrieval as well. In spite of the fact the authors in

[5] reconstructed the HOMO for N2, the relative phase of the harmonic emission was

not measured for every alignment angle.

Haessler et al. [65], addressed this problem and measured the phase of the HHG

spectrum for each alignment angle in both systems, i.e., the atomic reference and the

molecule under study. They took advantage of the RABBIT technique to measure the

spectral phase for every HHG signal. In this way, a full experimental reconstruction of
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the HOMO and HOMO-1 for the aligned molecule N2 was performed in 2010.

Even though, the high-order harmonic spectroscopy appears to be a good technique

to image the molecular orbital, this method requires several experimental steps. Even

more, the difficulties to find an atomic reference potential which matches the ionization

potential of the molecular system in study, reduces drastically the range of molecules

which can be tackled.

In particular, other interesting developed experiment to extract structural informa-

tion was reported by Remetter et al. [66] in 2006. Such experiment consists of making

use of the ionization led by the interaction of an APT in the presence of a weak IR

laser with an atomic gas target, e.g. Ar. The multiple EWPs created by the APT

were measured onto a final momentum interferogram, which was clearly the function

of the time delay between the APT and the IR laser pulse. It is remarkable that this

final interferogram encodes structural nodal information about the bound state of the

Ar system. However, an algorithm to retrieve the full EWP phase or the bound-free

dipole transition matrix element, is still absent.

Here we introduce two of the main research questions of this thesis: first, is it possi-

ble to design a new technique to extract structural information, i.e., bound-free dipole

transition matrix element, by applying the attosecond science tools? Second, can this

technique be a single shot and an auto-referenced? These questions will be addressed

with more details in the Chapter 4.

Electron dynamics information

Furthermore, when a SAP or an APT interacts with an atom or a molecule, a coherent

ultra broadband EWP is created. If the photon energies of the attosecond pulse are

higher than the ionization potential, the electron is then ionized and the momentum

distribution of these electrons maps the characteristics of the attosecond pulse and the

parent system [61, 67].

The emission of this EWP is not an instantaneous process in the sense that a short

period of time is taken by the electron to leave from the binding potential [68]. This

delay in the photoelectron emission process is known as Wigner time delay or Wigner-

Eisenbud-Smith time [69, 70]. Formally, the Wigner time is defined as the energy

derivative of the dipole phase or the phase shift that takes the EWP in the one photon

ionization process [69, 70, 71].

Utilizing the attosecond streaking technique Schultze et al. [17] have measured the

relative delay in photoemission of Ne from the 2s and 2p states [37]. The measurement

is based on the production and control of a SAP of around 200 as duration and central
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energy of 106 eV joint with an ultrashort IR laser pulse. The results showed a 21 as

relative delay between both emission channels (2s and 2p) whereas the Wigner-time

theoretically calculated given in the same paper predicted a value of 6.4 as.

Recently, the RABBIT technique [38] has been employed to measure the relative

delay between the 3s and 3p states in Ar [18]. This technique uses an APT with mean

energy of 35 eV in the presence of a moderate IR laser pulse. In this case the 3p electron

shows a delay of around 100 as with the 3s electron which seems to be released early

by the laser field. In the same paper, they have found that an extra delay is introduced

in the measurement process seeming like an additional mechanism is involved in.

This disagreement between theory and experiment has attracted the attention of

several experts. The aim is to explore new theoretical proposals to find a clear physical

explanation of the experimental results. The large measured time delay in photoe-

mission suggests that the Wigner time is not sufficient to explain the streaking or

experimental results and an additional mechanism seems to be implicated.

Pioneering works by Nagele [72], Kheifets [73], and Ivanov [74], have found that the

IR laser field might be responsible for the large delay observed in the experiment. In

particular, Ivanov and Smirnova suggested that the measurement is influenced by the

coupling between the IR laser pulse and the Coulomb potential of the system [74].

Recent work has also theoretically addressed the time delay in small molecules, such

as hydrogen molecules [75, 76], emphasizing the consequences to have two centers in the

angular dependence on the Wigner time. In reference [76] they have also studied the

dependence of the Wigner delay on the internuclear distance and the angular alignment

of the hydrogen molecular ion. These results show that the Wigner time delay also

contains information about the geometrical structure of the molecule. Furthermore,

and most importantly, from the observable streaking delay the intrinsic Wigner time

can be extracted. However, it is important to note that the Coulomb-laser coupling

can not be removed from the measurement process.

Those studies about the influence of the IR laser on the detection of the Wigner

time have shown that the Coulomb-laser coupling plays an important role in the mea-

surement process.

Pioneer theoretical studies by Maquet et al. [68] suggest that the Coulomb tail, i.e.,

−Z/r, and its coupling with the IR, adds up a symmetry influence to the detection

of the Wigner time [72, 74]. This means that the CLC is symmetric regarding to the

potential well, in the sense that the electrons emitted on the left and right experiments

the same CLC delay in the streaking measurement process.

Ones would wonder if an alternative method would remove this CLC influence [77].
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It is by comparing the extracted left-right with respect to the scattering center (core of

the potential) time delay by the attosecond streak camera that the CLC is removed from

the measure. However, in case of symmetric potentials, i.e., hydrogen, this asymmetric

delay will remove the CLC as well as the Wigner time delay.

Throughout this thesis we also address another research questions regarding to

the electron dynamics within the photoemission process. We wonder if an alternative

method can be used in the detection of the delay in photoemission that directly relates

the Wigner time delay with the streaking time delay and, simultaneously, if this method

removes the so-called Coulomb-laser coupling from the measurement process. These

questions will be studied with more details in the Chapter 5.

1.5 Aim of the thesis

With the motivations cited above, the aim of this thesis is to apply the attosecond

science tools with the goal to extract two different kinds of information, namely: elec-

tron structural information and electron dynamics information in the photo-ionization

process assisted by an IR laser pulse.

In particular:

(i) On the one hand, we will propose a general technique to reconstruct the complex

bound-free dipole transition matrix element, by employing an interferometric method.

As in Optical Physics, where there exists a set of interferometric techniques to retrieve

the amplitude and phase information of the laser beam, we will construct an analogy

for the quantum physics. But now these analogies will be applied to the reconstruction

of the attosecond EWPs. By SFA analytical and TDSE numerical calculations, we

will demonstrate that the subsequent application of two delayed attosecond pulses, in

presence of a weak IR laser field, leads to the emission of two EWPs to continuum.

If the central frequency of the XUV attosecond pulses are the same, those EWPs

will interfere in the momentum space. The resulting interferogram then contains full

information about the dipole phase difference between both ionization events. We will

show that this scheme is conceptually equivalent to the so-called SPIDER interferogram

in Optics.

(ii) On the another hand, dynamics information, such as the Wigner time delay, will

be studied by utilizing the attosecond streaking technique with an alternative proposal

to measure the delay in the photoemission process. Based on the TDSE numerical

solution in 1D and 3D for an small asymmetry molecular system, we will show that

the stereo Wigner time delay can be directly associated to the stereo streaking time
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delay. The latter will be obtained by the calculation of two streaking traces, one on the

left and another on the right with respect to the ion core (or linearly polarized laser

field). The great advantage of this stereo technique is that the problematic CLC will

be removed from the measurement process.

1.6 Outline

The outline of this thesis is as follows. In Chapter 2, an overview of the theoretical tools

the Quantum Mechanics employed to the strong field processes is addressed. Mainly the

Schrödinger formalism and the Strong Field Approximation approach are described in

this second chapter. In addition, we will describe the numerical methods to implement

the TDSE in different geometries, i.e, the cartesian coordinates in 1D, 2D, and 3D, and

the cylindrical coordinates for a full 3D calculation that will be required to address

adequately our research questions.

In the following Chapter 3, we will define the computational tools that we have

developed to perform the strong field interaction of laser pulses with matter, and the

designed strategy to address, from a computational viewpoint, our physical problems.

In Chapter 4, we will study how the structural information, i.e., the bound-free

dipole transition matrix element, can be retrieved by employing attosecond science

tools. We will do analogies between optical techniques to characterize the ultrafast

laser pulse and the quantum EWP created by the attosecond pulse interaction with an

atomic or molecular system.

In the next Chapter 5, the study of the Wigner time delay in photoemission will

be addressed. We will propose here a novel method to remove the induced CLC in the

detection process of the fundamental Wigner time delay.

Finally, we will present the conclusions and a brief outlook. We will also include

futures studies or open research questions to be considered in the near future.
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2

Theoretical and numerical

methods

2.1 Strong field interaction

At the atomic time and space scales, the electron structure and electron dynamics de-

scription of the matter is fully governed by the laws of Quantum Mechanics. Typically,

the study of the Quantum phenomena has been performed within the frame of the per-

turbative theory. It is a very good approximation in case that the coupling interaction

potential of the system with an external field can be considered as a perturbation of

the field-free Hamiltonian [78, 79, 80, 81]. This theoretical approach has been quite

successful to explain an ample range of experimental results [82, 83, 84]. However, in

case of ultrashort and ultra intense laser pulses, the interaction term can not be treated

any more as a perturbation of the field-free Hamiltonian. A new and totally different

theory needs to be developed in order to explain the experimental results in this regime.

The most general treatment of the Quantum Mechanics is the Time Dependent

Schrödinger Equation. It governs the time evolution of a wavefunction and with it, a

quantification of the observables can be obtained.

Pioneering theoretical approaches have been developed by Keldysh [78], Faisal [79],

Resnik [80], Lewenstein [43], etc., to describe the main processes and their mechanisms

of the referred Strong Field Interaction phenomena [85]. By utilizing the S-Matrix,

interesting phenomena, such as multi-photon ionization, tunneling ionization, HHG,

ATI, etc., have been successfully explained under some ingenious assumptions.

In this Chapter we will describe the theoretical tools required to address the physical

problems and questions that this thesis proposes to answer.
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Two main formalisms are addressed: first, the Schrödinger formalism, where the time

dependent quantum evolution of a wavefunction by the TDSE is used to compute the

observables of interest. Second, the Chapter will describe the Strong Field Approxima-

tion as a tool to study the ionization led by attosecond pulses assisted by a moderated

IR laser field.

Furthermore, another important goal is to set up our numerical methods to solve

the TDSE which will be used throughout the rest of this thesis.

The organization of this Chapter will be as follows. In the Section 2.1.1, we begin our

theoretical approach by defining the general non-relativistic Schrödinger formalism for

the description of the electron wavefunction dynamics and its evolution when an general

external electromagnetic field is acting on the system. In the following Section 2.1.2

is devoted to a fast review of the time evolution operators as an alternative to solve

the TDSE. This scheme considers that initially the wavefunction is well known and

the problem is reduced to the time-space propagation of this initial state to a future

time. In the Section 2.1.3 we derive the formal form of this evolution operator when

the Hamiltonian of the system is time independent. As a natural consequence, in

Section 2.1.4, we will review how such an evolution operator changes if the Hamiltonian

is time dependent and commutes on different times. The measured observables of the

system are also defined in a general way in Section 2.1.5.

In the Section 2.1.6, we describe the general Strong Field Approximation under the

time propagation operator formalism. It is also described in Section 2.1.6.1 the Volkov

states for a free electron interacting with a strong laser field. Thus, with this theoretical

basis, we derive the SFA complex transition amplitude in Section 2.1.6.2 in the length

gauge.

In the next Section 2.2 is dedicated to describe the numerical algorithms used to

solve the TDSE in two different symmetries or geometries, namely cartesian coordi-

nates, 1D, 2D and 3D, and cylindrical coordinates. In particular, Section 2.2.1 presents

how the general evolution operator and the wavefunction evolution are written within

the Spectra Split Operator method in cartesian coordinates for the 1D, 2D and 3D

cases.

Numerical aspects about position and momentum space grids discretization are defined

in Section 2.2.1.2. In addition, the numerical implementation of the Hamiltonian of the

system, wavefunction and potential are addressed in Section 2.2.1.3. Section 2.2.1.4

describes how the discrete and continuum spectra are computed by using the reverse

imaginary time propagation method, the diagonalization matrix method and the Nu-

merov method. In the next Section, 2.2.1.5, we define the laser pulses used throughout
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this thesis. The Section 2.2.1.6 includes brief comments about the used numerical tools

to perform the real-time evolution of the system under the influence of the laser pulse,

from the initial (bound) state to the final (continuum) one.

In the Section 2.2.1.7 we will give a short description of our numerical absorbing

boundary method. The quantum mechanics numerical observables which will be used

throughout this thesis are described in Section 2.2.1.8.

In the next Section 2.2.2, we will address the numerical implementation of the TDSE

solution in cylindrical coordinates and a similar description of the position-momentum

space grids will be given as it was done for cartesian coordinates in Section 2.2.2.2.

Finally, in the Sections 2.2.3.1 and 2.2.3.2 the fourth-order Runge-kutta method

will be described in order to explain how the complex transition amplitude for the

ionization is computed via SFA theory.

2.1.1 Schrödinger formalism

Within non-relativistic Quantum Mechanics, the most general description of an atomic

or molecular system and their interactions with an external electromagnetic field E(r, t)

is given by the state |Ψ(t)〉 or wavefunction Ψ(r, t). This wavefunction allows us to

predict the electron time-space evolution of the system and encodes complete informa-

tion about the observables. For example, in case of the electron ionization by an IR

strong field laser, the measured common observables are: the photoelectron spectra,

the electron momentum distribution, the momentum and energy expectation values,

asymmetry of detected electron left-right with respect to the linearly polarized laser,

among others [3].

The time dependent Schrödinger equation describes the time-space evolution of the

wavefunction. In case of atomic or molecular system under the single active electron

approximation, the TDSE reads:

HΨ(r, t) = i
∂

∂t
Ψ(r, t), (2.1)

where H defines the full Hamiltonian operator of the system and contains all the inter-

actions of the electron with the nucleus and with any arbitrary external field.

The Hamiltonian operator is:

H = T + V0(r) + Vi(r, t), (2.2)
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where T = p2

2µ denotes the full kinetic operator with p = −i∇ is the canonical momen-

tum operator and µ = meM
me+M

∼ me the reduced mass of the system. Here, M is the

nucleus mass. The V0(r) is the electrostatic potential energy of the system, i.e., it is

defined from the Coulomb interactions, and Vi(r, t) is the potential energy which defines

the electron interaction with the external field. The functional form of the potential Vi

will depend on the gauge used to described the electromagnetic field.

In the strong field scientific community, it is well known that two gauges are mainly

utilized to describe the interaction of laser with matter, namely: the length gauge and

the velocity gauge. Under the dipole approximation the electromagnetic field of the laser

E(r, t), is considered not space dependent E(r, t) ≈ E(t). This assumption is based on

the fact that the wavelength λ of the laser is larger than the atomic Bohr radius a0

( λa0
� 1) [86]. For instance, when a laser beam is focused on a gas target, usually the

focal spot is about of few µm2. Thus, the spatial electric field which experiments each

atom of the gas is practically constant. In such a condition, the dipole approximation

is a good estimation of the physical process.

The interacting potential in the length, Vi,LG, and velocity, Vi,VG, gauges read:

Vi,LG(t) = r ·E(t), (2.3)

Vi,VG(t) = p ·A(t) +
1

2
A2(t), (2.4)

respectively. E(t) is the laser electric field and its associated vector potential is A(t) =

−
∫ t
dt′E(t′). According to the references [50, 86, 87] the conversion between these two

equations can be easily done it by following the gauge transformation rules:

HLG = QHVGQ
−1 −∇Λ(r, t), (2.5)

|ΨLG(t)〉 = Q|ΨVG(t)〉. (2.6)

The above transformation corresponds to a translation Q = exp (−iΛ) of the wave-

function defined by Λ(r, t) = −r ·A(t). The translation operator Q is unitary. Then,

Eqs. (2.3) is obtained when the function Λ(r, t) is applied to gauge transformation:

from the velocity gauge to the length gauge [50].

Note that the electromagnetic force F = − [ET + v ⊗B] should to be invariant

under any gauge transformation. We know that ET = E(t)−∇V0(r) is the total electric

field experienced by the electron. These fields ET and B(t) (induction magnetic field)

are gauge invariant as well as the electron trajectory r(t) and the kinetic momentum
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π = mev with the electron particle velocity defined by v = dr
dt .

The canonical momentum p is not gauge invariant as it is defined by the vector potential

A(t) and the potential φ [86]. In this thesis we do not perform a rigorous demonstration

of such a gauge invariance of the physics quantities and we invite the readers to look

at, e.g. [50, 86].

In contrast to the wavefunction and the Hamiltonian, which are gauge dependent,

the TDSE is gauge invariant. This means the observables of the system, in general, are

not depending on the gauge choice [50, 88]. Nevertheless, the physical interpretation

might change, i.e., there is no potential barrier in velocity gauge where the electron

tunnels through.

2.1.2 Time evolution operator

The problem of solving the differential equation (2.1) is most often stated as an initial

value problem, i.e., at some reference time t0, the wavefunction is supposed to be known

for the whole space Ψ(r, t0). Thus, we can ask how this initial wavefunction evolves

in time. To this end, an operator that formally solves the problem is introduced [86].

This operator is called the time evolution operator U(t, t0) and evolves the wavefunction

Ψ(r, t0), from the beginning time t0 to the posterior time t according to:

Ψ(r, t) = U(t, t0)Ψ(r, t0). (2.7)

In addition, the differential equation which describes the time evolution of the operator

U(t, t0) reads:

i
∂

∂t
U(t, t0) = H(t)U(t, t0). (2.8)

This is the well known Schrödinger equation for the time-evolution operator. It is

equivalent to the TDSE equation but now the evolution of the system is performed

by the acting of the unknown evolution operator U(t, t0) on the wavefunction of the

system.

The normalization of an arbitrary wavefunction Ψ̃(r, t0) can be done:

Ψ(r, t0) ≡ 1√
N

Ψ̃(r, t0), (2.9)

where, N = 〈Ψ̃(t0)|Ψ̃(t0)〉 =
∫
drΨ̃∗(r, t0)Ψ̃(r, t0) defines the norm of the wavefunction.
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Then, Ψ(r, t) has the following properties:

〈Ψ(t0)|Ψ(t0)〉 = 1, (2.10)

〈Ψ(t)|Ψ(t)〉 = 〈Ψ(t0)|U †(t, t0)U(t, t0)|Ψ(t0)〉,

= 1. (2.11)

Eqs. (2.10) and (2.11) must hold for any choice of Ψ(r, t0). According to Sakurai [86],

we have the property:

U †(t, t0)U(t, t0) = 1, (2.12)

which means that U(t, t0) is an unitary operator. Another feature we require for the U

operator is the composition property:

U(t2, t0) = U(t2, t1)U(t1, t0), (t2 > t1 > t0). (2.13)

The last relation can be used recursively to decompose the total time evolution into

many shorter time steps. For instance, a finite time evolution operator U(t0 + ∆t, t0)

can be constructed from an infinite number of infinitesimal time evolution operators

[89]:

U(t0 + ∆t, t0) = U(t0 + ∆t, t0 + (N − 1)δt) . . . U(t0 + 2δt, t0 + δt)U(t0 + δt, t0), (2.14)

where the infinitesimal δt = ∆t
N limit is obtained as the number of subdivisions N

approaches infinity. Note that the time ordering of the operators must be remain,

otherwise the time evolution will not follow a time sequential. Other property which

can be demonstrated by the Taylor expansion of U(t, t0) around t0, as well as taking

into account Eq. (2.8), is [86]:

U(t0 + dt, t0) = 1− iH(t0)δt. (2.15)

The infinitesimal time evolution operator is unitary as required, since the Hamiltonian

operator is Hermitian and terms of the order (δt)2 can be neglected in the limit δt→ 0.
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2.1.3 Time independent Hamiltonians

In the special case when the Hamiltonian of the system is time independent, H(t) = H0,

the equation (2.14) for the finite time evolution operator can be written:

U(t0 + ∆t, t0) = lim
N→∞

U(t0 +
∆t

N
, t0)N = lim

N→∞
(1− iH0

∆t

N
)N = e−iH0∆t. (2.16)

It is easy to see that such a time evolution operator is unitary as it is expected. Note

that the evolution of the wavefunction Ψ(r, t0) at certain initial time t0 will be defined

by the application of this operator Eq. (2.17). The latter is fulfilled only in case that

the Hamiltonian is time-independent.

2.1.4 Time dependent Hamiltonians

When the Hamiltonian is time dependent, it is unfortunately impossible to obtain a

simple expression for the time evolution operator like in last section 2.1.4. According

to Sakurai [86], if the Hamiltonian of the system commute at different times, the formal

generalization of Eq. (2.17) reads:

U(t1, t0) = e−i
∫ t1
t0
H(t)dt, (2.17)

with, t1 = t0 + ∆t. The above mathematical expression can be easily proved by inte-

grating Eq. (2.1). The application of the operator U(t1, t0) to the initial wavefunction

Ψ(r, t0) makes evolve the wavefunction until the time t1. Thus, if the integration in-

terval is from the initial time t0 to the final time tf (tf > t0), we can split the time

domain [t0, tf ] in N points. Then, applying the property (2.13) the solution for each

tn can be directly obtained. Here, we denote n = 0, ..., N .

Furthermore, a special case emerges when the Hamiltonian of the system does not

commute at different times. For instance, for a spin-magnetic momentum subjected to

a magnetic field where its strength and direction can change in time [86].

In the particular problems addressed throughout this thesis we will restrict ourselves

to systems in which the Hamiltonians commute at different times. Then, Eq. (2.17)

will perfectly describe the time evolution operator and with it the evolution of the

wavefunction.
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2.1.5 Observables in Quantum Mechanics

Let us say that an observable O is described by a Hermitian operator acting on a Hilbert

space. This canonical observable can be understood as the position, momentum, kinetic

energy or potential energy of the system. Then, the expectation value of O is defined

by:

〈O(t)〉 =

∫
drΨ∗(r, t)OΨ(r, t)∫
drΨ∗(r, t)Ψ(r, t)

. (2.18)

Here, Ψ(r, t), describes the space-time wavefunction. The integral in this formula

is a three-dimensional one and, for instance, dr = dx dy dz in cartesian coordinates.

Furthermore, there are others observables such as the position Se(r, t) = |Ψ(r, t)|2

or momentum Se(p, t) = |Ψc(p, t)|2 electron density. We will term Se(p, t) as the

momentum distribution and Pc(p, t) = |Ψc(p, t)|2 dp the momenutm probability to

find the electron with a certain momentum p.

The momentum distribution can then be obtained by two different ways. The first

one is by projecting on the so-called scattering waves and the second one, on plane

waves. In section 2.2.1.8, we will address the definition these electron distribution with

more details. In section 2.2.1.8, we will address in detail how these observables are

numerically calculated.

2.1.6 Strong field approximation

So far we have given the general Physics tools to describe the laser-matter interac-

tion according to the Schrödinger picture. This is the most exact theory to study

the interaction between a strong laser and an atomic or molecular system. However,

the analytical analysis of the solution for such a TDSE is practically impossible if no

approximations are applied to the problem.

In this section, we will address the general description of an approximated model to

describe the strong field laser interaction with matter. This approach is the so-called

Strong Field Approximation. The SFA has been successfully applied to the study of the

photoelectron ionization processes by an ultrashort laser field, amongst other strong

field phenomena [3, 6, 90].

According to Mulser and Bauer [50] if the initial state at the time t0 is in a bound

state |Ψ0〉 of the field-free Hamiltonian H0 (let us say this state is the ground state),

the complex bound-free transition a(p, t) to a final continuum state |Ψp〉 of asymptotic

momentum p reads:
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a(p, t) = 〈Ψp|U(t, t0)|Ψ0〉, (2.19)

where U(t, t0) is the time evolution operator. Thus, our main task is to determine

how this time evolution operator acts on the initial state to bring it to a final state.

The time-evolution operator U(t, t0) = U †(t0, t) fulfils the Eq. (2.8). The TDSE in the

Schrödinger picture reads [86]:

i
∂

∂t
|Ψ(t)〉 = H(t)|Ψ(t)〉, H(t) =

1

2
[p + A(t)]2 + V0(r). (2.20)

Here the Hamiltonian H(t) of the system is given in the velocity gauge. This Hamilto-

nian can be written in several forms, for example:

H(t) = H0 + Vi,VG(t), or H(t) = H(v)(t) + V0(r). (2.21)

In (2.21) the Hamiltonian H0 = p2

2 + V0(r) describes the unperturbed atom and the

Hamiltonian H(v)(t) = p2

2 + Vi,VG(t) the electron interacting with an electromagnetic

field. This H(v) is the so-called Gordon-Volkov Hamiltonian. The potentials V0 and

Vi,VG are defined in section 2.1.1. It is interesting to note that H0 does not depend on

the gauge choice. However, note, that the momentum p it is the canonical momentum

which depends on gauge choise.

2.1.6.1 Volkov states

As it was pointed out in the last Section, the Gordon-Volkov-Hamiltonian H(v)(t)

describes the electron motion under the action of the laser field [91, 92]. The Volkov

state |Ψ(v)
p (t)〉 satisfies in the Schrödinger picture and velocity gauge:

i
∂

∂t
|Ψ(v)

p (t)〉 = H(v)(t)|Ψ(v)
p (t)〉 =

1

2
[p + A(t)]2 |Ψ(v)

p (t)〉. (2.22)

According to [91, 92] in the dipole approximation the Volkov-Hamiltonian is diagonal

in momentum space. Then, the solution of Eq. (2.22) is:

|Ψ(v)
p (t, t0)〉 = exp [−iSp(t, t0)]|p〉, Sp(t, t0) =

1

2

∫ t

t0

dt′
[
p + A(t′)

]2
, (2.23)
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where |p〉 are the momentum states 〈r|p〉 = exp (ip · r)/(2π)3/2. In the last equation we

have dropped out the lower index VG in the state |Ψ(v)
p (t, t0)〉 to simplify our notation.

On the other hand, we name the phase Sp(t, t0) as the Volkov phase. As it is mentioned

above, the transition from the velocity gauge to the length gauge corresponds to a

translation on the momentum, then it is easy to show that the Volkov state |Ψ(v)
p,LG(t, t0)〉

in the length gauge is:

|Ψ(v)
p,LG(t, t0)〉 = exp [−iSp(t, t0)]|p + A(t)〉. (2.24)

For the Volkov states we can call Sp(t, t0) as the action of the system defined in

Eq. (2.23).

2.1.6.2 Complex transition matrix element

Now we continue with the derivation of the SFA transition matrix element a(p, t)

(Eq. 2.19). We stress out that our main task is to find out how the time-evolution

operator U(t, t0) acts on a given initial state. Under the splitting of the Hamiltonian

H(t) = H0 + Vi(t) and by integrating Eq. (2.8), we obtain the integral form for this

partial differential equation [86, 93]:

U(t, t0) = U0(t, t0)− i
∫ t

t0

dt′ U(t, t′)Vi(t
′)U0(t′, t0), (2.25)

= U0(t, t0)− i
∫ t

t0

dt′ U0(t, t′)Vi(t
′)U(t′, t0).

Here U0(t, t0) denotes the evolution operator corresponding to the field-free Hamiltonian

H0. By inserting Eq. (2.25) in the transition matrix element Eq. (2.19) it is easy to

find that:

a(p, t) = −i
∫ t

t0

dt′ 〈Ψp|U(t, t′)Vi(t
′)|Ψ0(t′)〉, (2.26)

where, 〈Ψp|U0(t, t0)|Ψ0〉 = 〈Ψp|Ψ0(t)〉 = 0. This is the case because |Ψp〉 is an eigen-

vector of the Hamiltonian H0 as well as |Ψ0(t)〉 = U(t, t0)|Ψ0〉 = e−iE0(t−t0)|Ψ0〉, where

E0 is the binding energy of the bound state, i.e., the ground state. The state |Ψ0(t′)〉
is obtained by |Ψ0(t′)〉 = U(t′, t0)|Ψ0〉.

Furthermore, under the choice of the Hamiltonian, H(t) = H(v)(t)+V0(r), the evolution
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operator U(t, t0) should satisfy the integral equation [50, 93]:

U(t, t0) = U (v)(t, t0)− i
∫ t

t0

dt′ U (v)(t, t′)V0(r)U(t′, t0), (2.27)

= U (v)(t, t0)− i
∫ t

t0

dt′ U(t, t′)V0(r)U (v)(t′, t0),

where U (v)(t, t0) denotes the time-evolution operator corresponding to the TDSE in

Eq. (2.22) and V0(r) is the electrostatic potential energy of the system without laser

field. Then, by inserting Eq. (2.27) in (2.26) the transition amplitude yields:

a(p, t) = −i[
∫ t

t0

dt′ 〈Ψp|U (v)(t, t′)Vi(t
′)|Ψ0(t′)〉 (2.28)

−i
∫ t

t0

dt′
∫ t

t′
dt′′ 〈Ψp|U (v)(t, t′′)V0(r)U(t′′, t′)Vi(t

′)|Ψ0(t′)〉].

This equation is equivalent to the whole solution of the TDSE for the ionization tran-

sition amplitude mediated by an strong ultrashort IR laser field. This is the case,

because the unknown time-evolution operator U(t′′, t′) remains in the second line. The

first integral term in Eq. (2.28) corresponds to the electrons that can be ionized directly

by the strong field [78, 79, 80]. This is so, because the evolution of the system comes

from an state |Ψ0(t′)〉 to another state which is influence by the interacting potential

energy Vi(r, t
′). Then, the result is evolved by the Volkov-evolution operator U (v)(t, t′)

to a final state |Ψp〉 of asymptotic momentum p. Throughout this “evolution path” the

electron does not explicitly interact with the ion core after been ionized. Nevertheless,

the second double integral term (second line in Eq. (2.28)) means that once the electron

is ionized there is a probability that the electron interacts with the ion core. When

this interaction occurs with the potential without laser, the second term asks to the

system if the final state is promoted to a continuum state |Ψp〉. Thus, the second term

is related to a re-scattering process with the core potential [93].

In addition, the main problems that we will address throughout this thesis does not

take into account the re-scattering process. We can neglect the second line terms in

Eq. (2.28).

The main assumption of the SFA is that the final state U (v)(t, t′)|Ψp〉 corresponds

to a Volkov state when the binding Coulomb potential is neglected as well. This mean

that the final state can easily be described by Eq. (2.23). Thus, the transition complex
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amplitude reads:

a(p, t) = −i
∫ t

t0

dt′ 〈Ψ(v)
p (t′, t)|Vi(t

′)|Ψ0(t′)〉, (2.29)

with,

〈Ψ(v)
p (t′, t)| = 〈Ψ(v)

p |U (v)(t, t′) = 〈p|eiS(t′,t).

In general the Volkov states |Ψ(v)
p (t, t′)〉 and the interacting potential Vi(t

′) will de-

pend on the gauge chosen to describe the interaction process (see Eqs. (2.3)-(2.4)),

namely, the velocity or the length gauge. The election of gauge will be addressed in

the corresponding applications throughout this thesis.

Let us assume that a XUV attosecond pulse with electric field, EX(t−τ), interacts with

the ground state of an atomic system under the SAE approach. If the photoionization

is carried out in the presence of a weak IR laser pulse, e.g. 1010− 1012 W/cm2 of peak

intensity, with vector potential AL(t), the complex transition amplitude, a(p, t), in the

length gauge according to SFA is:

a(p, t) = −i
∫ t

t0

dt′ eiSp(t′,t)〈p + AL(t′)|r ·EX(t′ − τ)|Ψ0(t′)〉, (2.30)

where, τ , will denote the time delay between the maximum envelope of the IR laser and

the XUV attosecond pulse. It is worth to mention that the above equation is suitable

to describe the ionization under the condition that the IR laser field does not ionize

the system or at least the ionization driven by the IR is negligible compared to the

XUV one. In addition we have taken advantage of the Volkov states derived in Section

2.1.6.1 to reach Eq (2.25).

Eq. (2.29) is even more simplified by defining the bound-free dipole transition ma-

trix element d = −〈p + AL(t′)|r|Ψ0〉 and by addition by considering that |Ψ0(t′)〉 =

eiIp(t′−t0)|Ψ0〉 [78, 79, 80, 94]:

a(p, t) = i

∫ t

t0

dt′ei[Ip(t′−t0)− 1
2

∫ t
t′ (p+AL(t′′))2dt′′]EX(t′ − τ) · d(p + AL(t′)), (2.31)

where Ip is the ionization potential of the atomic system. For instance, the length

gauge is utilized to model the ionization from an atomic system mediated by two colors

pulses scheme. One color is a XUV attosecond pulse and the other one is an moderated

ultrashort IR laser field. Then, when the probability amplitude is scanned on the
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time delay between the two colors, the so-called streaking trace is measured [64]. This

picture describes quite satisfactory the experimental results for the attosecond streak

camera [3].

So far we have derived the SFA equation for the ionization of an atom or molecule

carried out by a XUV in the presence of a moderated IR laser field. This derivation will

be later employed in the Chapters 4 and 5 to model the attosecond streaking technique

and the QSPIDER implementation as well.

2.2 Numerical methods

In this Section we detail the numerical method utilized to integrate numerically the

TDSE and the SFA model.

During the recent years we have developed general tools to solve numerically the TDSE

in the 1D, 2D and 3D cartesian coordinates. We have also implemented the numerical

integration of the TDSE in cylindrical and spherical coordinates for problems which

take into account that the laser is linearly polarized. These three integration schemes

are developed under the SAE and dipole approximation.

In addition, numerical routines to compute observables such as the position electronic

density as a function of time, the transition complex amplitude to a continuum state

of a certain asymptotic momentum p, the position and momentum expectation values,

the ionization yield and the asymmetry amplitude for electrons emitted on the left and

right, are implemented.

2.2.1 Schrödinger equation in cartesian coordinates

As it is established in Section 2.1.4 when the Hamiltonian commutes at different times

and the initial wavefunction is known at t0, we can solve the TDSE by Eq. (2.17)

to find the evolution of the wavefunction till t0 + ∆t. If the time step ∆t is “small”

compared to the time scale of the system, i.e., shorter than an optical cycle of the laser

pulses, the integral exponential term of the operator U(t0 + ∆t, t0) in Eq. (2.17) can

be approximated to:

U(t0 + ∆t, t0) = e−i
∫ t0+∆t
t0

H(t)dt ≈ e−iH(t0+ ∆t
2

)∆t, (2.32)

with this, the wavefunction Ψ(r, t0 + ∆t) is found by:
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Ψ(r, t0 + ∆t) ≈ e−iH(t0+ ∆t
2

)∆tΨ(r, t0). (2.33)

Suppose that the atomic or molecular system interacts with a laser pulse on the time

interval [t0, t]. This interval is then divided in Nt point according to tn = t0 + n∆t

with n = 0, ..., Nt − 1. To find the evolution of the wavefunction until the final time

t = t0 + ∆t(Nt − 1), we apply sequentially the evolution operator Eq. (2.32) in the

following way:

Ψ(r, t) = e
−iH(t′Nt−1)∆t × ...× e−iH(t′1)∆te−iH(t′0)∆tΨ(r, t0). (2.34)

Note, that the Hamiltonian H(t) is evaluated at the time middle points t′n = tn + ∆t
2 .

Our main task is to implement numerically the last method, Eq. (2.34), from the t0 to t

and to compute the wavefunction Ψ(r, tn). The latter is needed to calculate observables

at each time tn. It is important to point out that the application order of the evolution

operator in Eq. (2.34) has to be kept.

Several and different numerical methods to solve the TDSE by employing Eq. (2.1)

or (2.34) have been developed. For example, some of those methods are: the second-

order differential [95], the Crank-Nicolson [96, 97], spectral spilt-operator methods

[98], as well as, a mix of their [99]. Furthermore, other methods to solve the time-

independent Schrödinger equation, e.g. Chebyshev [95, 100], the Lanczos [101], and

the time-imaginary propagation method [102] were employed.

In this thesis we will restrict ourselves to use the spectral split-operator and the

Crank-Nicolson methods to numerically integrate the TDSE in different coordinate sys-

tems, i.e. cartesian, cylindrical and spherical coordinates. The spectral split-operator

and Crank-Nicolson methods to solve partial differential equations are stable under any

choice of the time grid ∆t and position grid steps ∆x, ∆y, and ∆z. This is so, while

the relation ∆t ≤ (∆x)2 will be fulfilled [97, 103]. It is also important to point out that

these two methods conserved the norm of the wavefunction. Thus, these time-evolution

schemes are unitary in the sense that the wavefunction does not change its norm at

different times.

2.2.1.1 Split-operator spectral method

Feit et al. in reference [98] has introduced the split-operator spectral method to solve

numerically the TDSE in 2D. This method consists in to split the time evolution opera-
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tor of Eq. (2.33) in three parts, as it is indicated in Eq. (2.35). Mathematically, one can

define the Hamiltonian H(t) = T + V (t) as the sum of the kinetic energy T = − 1
2µ∇

2

and an effective potential energy operators V (t) = V0 + Vi(t). According to [98] we

re-write Eq. (2.33) as:

Ψ(r, t1) = e−iT∆t/2︸ ︷︷ ︸
(iii)

(ii)︷ ︸︸ ︷
e−iV (t′0)∆t e−iT∆t/2︸ ︷︷ ︸

(i)

Ψ(r, t0) +Ord
[
(∆t)3

]
, (2.35)

with,

t1 = t0 + ∆t,

t′0 = t0 +
∆t

2
.

The separation of such an operator e−i[T+V (t)]∆t can be written in other way e−i[T+V (t)]∆t =

e−iV (t)∆t/2 e−iT∆t e−iV (t)∆t/2 + O(∆t3) [104, 105]. As the kinetic operator T is a sec-

ond derivative in the position space, its application can be easily evaluated on the

momentum-spectral domain. By doing a forward Fourier Transform of Ψ(r, t0), the

momentum representation of the wavefunction Ψ(p, t0) = (2π)−η/2
∫

Ψ(r, t0)e−ip·rdr is

computed. Here we define, η, as a parameter which points out the dimension of the

problem. The parameter η takes the value of, η = 1, 2, 3, if the problem is studied

in 1D, 2D, and 3D, respectively. The application of the first (i) exponential factor in

Eq. (2.35) will follow:

Φ(p) = e−i
p2

2
∆t
2 Ψ(p, t0). (2.36)

Then, by employing an inverse Fourier transform on Φ(p), the spatial wavefunction

Φ(r) = (2π)−d/2
∫

Φ(p)eip·rdp is recovered. Thus, the second exponential term (ii) in

Eq. (2.35) can be applied to Φ(r). This allows us to introduce the evolution given by

the effective potential V (t):

ϑ(r) = e−iV (t′0)∆t Φ(r). (2.37)

We do once again a forward FT of ϑ(r) in order to apply the last exponential term

(iii) in Eq. (2.35). The momentum-spectral space of this function is denoted by ϑ(p).
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Then, we follow the same step given by Eq. (2.36) to obtain the function:

Ψ(p, t1) = e−i
p2

2
∆t
2 ϑ(p). (2.38)

Finally, an inverse FT is applied to Ψ(p, t1) in order to find the evolution of the wave-

function Ψ(r) from the time t0 to t1 = t0 + ∆t. Then, by iterating on a “time loop”

the Eq. (2.34) the final wavefunction Ψ(r, t) can be numerically computed.

It is important to note that Eq. (2.35) is only suitable in the case that the interaction

potential Vi(t) is written in the length gauge. For the velocity gauge, it is important

to rewrite the Hamiltonian H = 1
2 [p + A(t)]2 + V0(r). When the velocity gauge is

employed to solve the TDSE, we refer to the effective potential in Eq. (2.35) as V (t) =

V0(r) and the kinetic energy operator T = 1
2 [p + A(t)]2. Under these two conditions,

we can use the set of Eqs. (2.36)-(2.38) to obtain the wavefunction evolution from the

time t0 to t0 + ∆t. In the next Chapter 3, we will address in detail how this split

operator algorithm is implemented in cartesian, cylindrical and spherical coordinates.

2.2.1.2 Position and momentum space: the grids

We define the position and momentum space in cartesian coordinates according to:

r ≡ (x, y, z), and p ≡ (px, py, pz). (2.39)

Here, we denote Gr as the position “grid” in cartesian coordinates and Gp as the

momentum “grid”. Then, if the grid steps for Gr on each directions x, y and z are

denoted by ∆x, ∆y and ∆z, respectively, and the corresponding number of points are

Nx, Ny and Nz, the axes of the numerical Gr read:

xi
¯

= xmin + i
¯

∆x; i
¯

= 0, . . . , Nx − 1, (2.40)

yj
¯

= ymin + j
¯

∆y; j
¯

= 0, . . . , Ny − 1,

zk
¯

= zmin + k
¯

∆z; k
¯

= 0, . . . , Nz − 1,

respectively, where xmin = −Nx
2 ∆x, and with equivalent definitions for ymin and zmin.

The elements xi
¯
, yj

¯
and zk

¯
are computationally implemented in the vector arrays

x = {x0, x1, ..., xNx−1}; y = {y0, y1, ..., yNy−1}; and z = {z0, z1, ..., zNz−1}. This means

that we can represent x =
∑Nx−1

i
¯
=0

xi
¯
ei
¯
, where {e0, e1, ..., eNx−1} is a unit vector of the

vectorial space and xi
¯

the corresponding component [89].

The momentum grid Gp is defined by taking into account the Nyquist critical frequency
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[103]. Its relation with the Gr parameters are as follows: on the one hand the maximum

momentum grid values on each direction, pxmax = π
∆x , pymax = π

∆y , and pzmax = π
∆z ,

and on the other hand, the Gp sampling ∆px = 2π
Nx∆x , ∆py = 2π

Ny∆y , and ∆pz = 2π
Nz∆z .

Thus, the Gp can be written as:

px,i
¯

= −pxmax + i
¯

∆px; i
¯

= 0, . . . , Nx − 1, (2.41)

py,j
¯

= −pymax + j
¯

∆py; j
¯

= 0, . . . , Ny − 1,

pz,k
¯

= −pzmax + k
¯

∆pz; k
¯

= 0, . . . , Nz − 1.

The computational implementation for such a numerical position and momentum space

grids will be addressed in the Chapter 3.

2.2.1.3 Hamiltonian of the Systems

The main interest to perform a simulation model of the interaction between a laser

pulse and an atomic or molecular system, is to access to the time-evolution of the

wavefunction Ψ(r, t). As it is known, full information about the time-evolution of the

observables and structure of the electron system is encoded in such a quantity. This

is the main reason why so much effort has been put on the numerical and analytical

solution of the TISE and TDSE. Thus, our task is devoted to find the initial wavefunc-

tion Ψ0(r) of the system before the interaction with the laser, Ψ(r, t), i.e. its evolution

during the interaction and, finally, Ψ(r, tf ), i.e the wavefunction after the interaction

with the laser is turned off.

Wavefunction

The wavefunction Ψ(r) ≡ Ψ can be numerically represented in a third-order array given

by:

Ψ =
∑
k
¯
, j
¯
, i
¯

Ψk
¯

j
¯

i
¯

ek
¯

j
¯

i
¯
, (2.42)

where,
∑

k
¯
, j
¯
, i
¯

=
∑Nz−1

k
¯

=0

∑Ny−1

j
¯
=0

∑Nx−1
i
¯
=0

, denotes the sum over the three indexes. Here

ek
¯

j
¯

i
¯
≡ ek

¯
⊗ ej

¯
⊗ ei

¯
denotes the basis where the wavefunction has been discretized on

Gr. This basis is created by the tensor product or external product of the ex, ey and ez.

This means that the wavefunction Ψ(r) “live” in a array of third order. Note that in

the 2D case the components of Ψ(r) are represented in a matrix or second-order array

with Ψj
¯
,i
¯

= Ψ(yj
¯
, xi

¯
). In the 1D model the wavefunction Ψ(r) will be represented in a
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vector array with elements Ψi
¯

= Ψ(xi
¯
) or Ψk

¯
= Ψ(zk

¯
).

Hamiltonian

The general Hamiltonian H(t) of the system can be split into two parts: the time-

independent H0 = p2

2 + V0(r), and the time-dependent Vi(t) one as it is pointed out in

Eq. (2.20).

The potential energy functions V0(r) utilized in this thesis to model the atomic

interaction (electron-nucleus) under the SAE approach are: the Hydrogen-like soft-

core Coulomb potential (this is a kind of long-range potential) and the soft-core Yukawa

potential (this a kind of short-range potential):

V0(r) = − Z√
a+ x2 + y2 + z2

Hydrogen−like soft−core Coulomb potential (2.43)

V0(r) = −
Z exp[−

√
a+x2+y2+z2

as
]√

a+ x2 + y2 + z2
Soft−core Yukawa potential (2.44)

where, Z, is an effective charge parameter for the atomic nucleus, a, the soft-core

parameter and, as, the screening length in case of a Yukawa potential.

In case of molecular systems we suppose molecules with the two nuclei centers fixed,

e.g. CO or H+
2 . The potential well for these cases is defined by:

V0(r) = − Z1√
a1 + x2 + y2 + (z + R0

2 )2
− Z2√

a2 + x2 + y2 + (z − R0
2 )2

, (2.45)

where, a1, and, a2, are the soft-core parameters to the two cores which are located at

z = −R0
2 and z = R0

2 , respectively. Here, R0, is the internuclear distance between the

two nuclei. The parameters Z1 and Z2 denote the nuclei charges for each atom.

2.2.1.4 Discrete and continuum spectrum

To compute the initial wavefunction, Ψ0(r), of the system we will take into account the

Hamiltonian H0. Thus, our problem is reduced to compute the TISE for the system

under study, namely:

−1

2
∇2Ψn(r) + V0(r)Ψn(r) = EnΨn(r). (2.46)
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En denotes the eigenenergy value of the corresponding wavefunction or eigenstate Ψn.

It is important to mention that the energy spectrum is divided in: the discrete or bound

spectrum and the continuum spectrum [86, 106]. This classification arises from that

fact the energy En is negative and discrete for the eigenstates Ψn. The set of energy

values En < 0 corresponds to the wavefunctions that are bounded by the potential well.

On the other hand, the continuum spectrum is defined by the wavefunctions, Ψk(r),

with energies Ek > 0. Here, we have changed the notation of En to Ek to point out

that n is a discrete variable and k is a continuum one1.

In order to find out the bound states Ψn(r) for a given potential well V0(r), we

can diagonalize H0 by employing two methods: the Lanczos and the imaginary-time

propagation methods. The Lanczos method is only implemented in 1D.

The continuum spectrum is calculated by the Numerov Method [107] only in 1D,

too. The continuum wavefunction Ψk(r) for 2D and 3D in cartesian coordinates is a

complicated computational task by the diagonalization method. The determination of

the normalization coefficients can be a hard task to do as well. However, this computa-

tion can be made as it is explained in reference [107]. In this thesis we have implemented

only the scattering wave in 1D.

Imaginary time propagation method

A simple numerical method to compute the bound states is the so-called inverse imagi-

nary time propagation [102]. The ground state of a general potential energy well V0(r)

is calculated by solving Eq. (2.17) considering the time-evolution operator given by

Eq. (2.7). Thus, the inverse imaginary time evolution is obtained by using t→ −iτ ′:

Ψ0(r, τ ′ + ∆τ ′) = e−H0∆τ ′Ψg(r). (2.47)

H0, is the field-free Hamiltonian of the system. The propagation scheme is different and

the symbol τ ′ is now a real parameter that can not be confused with a physical time.

It is important to note that the propagator U(τ ′+∆τ ′) = e−H0∆τ ′ , is now non-unitary.

This mean that the norm is no time-conserved and the propagated wavefunction does

not represent the physical state of a particle [89].

The wavefunction Ψg(r) denotes a guess square integrable function, i.e., a gaussian

function. Then, by numerically evolving Eq. 2.47 the ground state of the general

1The momentum, k, will denotes the module wave vector of the wave vector k, and it is the so-called
asymptotic momentum of the particle as well.
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Hamiltonian H0 can be obtained. This is the case because formally we can expand

Ψg(r) as a linear combination of the eigenstates {Φn(r)} of H0. Thus, the guess function

becomes:

Ψ0(r, τ ′ + ∆τ ′) = e−H0∆τ ′Ψg(r),

=
∑
n

e−En∆τ ′cnΦn(r). (2.48)

This equation suggests that the different components of the spectral decomposition

of Ψg(r, τ
′) decay or explode exponentially as τ ′ →∞ increase. If the spectrum contains

negative and positive eigenenergies, the eigenstate corresponding to the component of

less energy (most negative energy) will increase quickly compared to the higher ones.

Eq. (2.48) tell us that the ground state Ψ0(r) of the Hamiltonian H0 can be obtained

when we imaginary evolve or propagate the guess function Ψg(r).

The ground state energy, E0, can be obtained by re-normalizing the wavefunction

Ψ0(r, τ ′) using Eq. (2.9) each iteration time τ ′ = τ ′0, τ
′
0+∆τ ′, τ ′0+2∆τ ′, ... and computing

the expectation value of H0. Thus, the energy Eτ ′ should converge to the ground state

energy when τ ′ → ∞. This means that a criterion to ensure can be defined. This

is by computing the difference |Eτ ′0+∆τ − Eτ ′0 | → 0. We can reach the ground state

wavefunction, namely to compute the ground state energy until convergence [89].

The imaginary time propagation method is successfully applied to compute the ground

state of any Hamiltonian H0. This method also can be employed to compute the first

excited states as well. However, the accuracy of the solution for higher energy states

can be smaller than the one for the ground state [89].

Furthermore, it is important to mention that this method can be easily applied in

1D, 2D and 3D, and in any coordinate system, i.e., cartesian, cylindrical and spherical

coordinates.

Finite difference method or Lanczos matrix in 1D

Another method to compute the set of bound states or continuum states is the diago-

nalization matrix method or the Finite difference method. The full time-independent

Schrödinger equation in 1D for the wavefunction Ψ(z) in the grid discretization can be

written:

Nz−1∑
k
¯

=0

[
− 1

2µ

ek
¯

+1 − 2ek
¯

+ ek
¯
−1

h2
+ V0,k

¯
ek
¯

]
Ψk

¯
= E

Nz−1∑
k
¯

=0

Ψk
¯

ek
¯
, (2.49)
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with h ≡ ∆z. If we multiply (inner product) by ej
¯

we obtain:

Nz−1∑
k
¯

=0

(
− 1

2µ
[D2]k

¯
,j
¯

+ [V0]k
¯
,j
¯

)
Ψk

¯
= E

Nz−1∑
k
¯

=0

[I]k
¯
,j
¯
Ψk

¯
(2.50)

[
−1

2
D2 + (V0 − EI)

]
·Ψ = 0, (2.51)

where, [D2]k
¯
,j
¯

denotes the elements of the matrix representation of the second deriva-

tive. This matrix D2 is a square tridiagonal matrix with dimension N2
z . The main

diagonal elements are − 2
h2 and the upper and lower diagonals, 1

h2 . V0 is a diagonal

matrix with elements V0(zk
¯
). I, denotes the identity matrix which is constructed by

the inner product 〈ek
¯
|ej

¯
〉 = δk

¯
,j
¯
. If we suppose the basis {ek

¯
} is orthonormal [89],

then Eq. (2.51) becomes a standard eigenvectors and eigenvalues problem. Note that

Eq. 2.51 has the form of a Lanczos matrix.

We numerically implement this method to compute all the bound states in 1D.

Thus, we are able to remove the bound states from the final time-propagated wave-

function after the end of the laser pulse.

Numerov method in 1D and scattering waves

We use the Numerov method to compute the solutions of the TISE for the eigen-

wavefunctions, ψk(z), with asymptotic momentum k. This will allow us to obtain the

momentum spectrum of the final wavefunction after the interaction with a laser pulse.

The Numerov method gives the wavefunction at a certain point zk
¯

considering it is

known at two points by following the formula [107]:[
1 +

h2

12
f(zk

¯
+1)

]
ψ(zk

¯
+1) = 2

[
1− 5

h2

12
f(zk

¯
)

]
ψ(zk

¯
) (2.52)

−
[
1 +

h2

12
f(zk

¯
−1)

]
ψ(zk

¯
−1) +Ord(h6),

where, f(z), is given by f(zk
¯
) = 2µ

[
Ek − V0(zk

¯
)
]

with Ek = k2

2µ . To build the nu-

merical solution ψk(z) for a given momentum k, this formula is computationally evalu-

ated. The boundary conditions are: to match the numerical solution to the asymptotic

function with ψk(z) ≈ 1√
2π
eikz+i

Z
k

ln(2kz) (Coulomb wave) or ψk(z) ≈ 1√
2π
eikz (plane

wave) when z → ∞ [108]. Numerically, this means that the two boundary values,

ψk(zNz−1), and ψk(zNz−2), of the wavefunction can be evaluated at the limits of the

grid z, i.e., zNz−1 = (Nz − 1) ∆z and zNz−2 = (Nz − 2) ∆z. Finally, the numerical
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solution {ψ(z0), ..., ψ(zNz−3), ψ(zNz−2), ψ(zNz−1)} is computing by solving Eq. (2.52)

for ψ(zk
¯
−1).

Note that during the process of finding the solution, the normalization of the wave-

function is missing. In order to obtain a scattering waves, Ψk(z), the computed con-

tinuum wavefunctions ψk(z) are supposed to be re-normalized by a factor ck [108]:

Ψk(z) = ckψk(z), (2.53)

where ck is evaluated by considering the scattering wave problem. The boundary

conditions for this problem are illustrated in Fig. 2.1. The approaching incident wave,
1√
2π
eikz, to the scattering center has a positive momentum k > 0. If the incident wave

comes from a far negative position, then, it will be split in two parts. The first part

is the reflected wave, βe−ikz, which is denoted by the black arrow in Fig. 2.1 and the

second is the transmitted wave, αeikz, (pink arrow in Fig. 2.1). The coefficients α and

β are the transmitted and reflected complex amplitudes, respectively.

When z →∞, let us assume that the numerical solution, Ψk(z), can be constructed

by considering a superposition of the incident and the reflected waves:

Ψk(z) = ckψk(z) ≈
1√
2π
eikz + βe−ikz. (2.54)

Our main task is devoted to obtain the coefficient or normalization factor ck by solving

above equation evaluated at z0 = zmin = −Nz
2 ∆z. Eq. (2.54) shows that we have a

single equation with two unknown coefficients ck and β. Then, another equation is

needed. To this end we employ the continuum condition or criterion for the derivative

of the wavefunction:

ckψ̇k(z) = ik

(
1√
2π
eikz − βe−ikz

)
. (2.55)

Here, ψ̇k(z) = d
dzψk(z) denotes the position derivative of the wavefunction.

By solving the system of equations (2.54)-(2.55) for the coefficient ck, we obtain:

ck =
2keikz

kψk(z)− iψ̇k(z)

∣∣∣∣
z=zmin

, (2.56)
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Figure 2.1: Scattering wave in 1D. This diagram represents by “arrows” the incident
wave, 1√

2π
eikz, which arrives to the scattering center (it is denoted by the green circle), the

reflected wave, βe−ikz, and the transmitted wave, αeikz, for a scattering problem of momentum
k > 0.
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where ck is evaluated at the point zmin. It is so, because the superposition of the

incident wave and the reflected wave in Eq. (2.54) is defined for z < 0 (see Fig. 2.1).

We note that the outgoing solution is, αeikz +βe−ikz. It is worth to mention that when

we refer to the asymptotic momentum k, this does not denote the kinetic momentum

of the particle because the momentum k comes form E = k2

2 = π2

2 + V0, which is not

the kinetic momentum |π|.
Furthermore, to compute the scattering waves for negative asymptotic momentum

k < 0, we follow exactly the procedure given in reference [108]. Eq. (2.52) is numerically

solved for ψ(zk
¯

+1) by considering as the boundary values ψ(z0) = 1√
2π
eikz0 and ψ(z1) =

1√
2π
eikz1 . Here, z0 = −Nz

2 ∆z and z1 =
(
−Nz

2 + 1
)

∆z are the initial evaluated points.

The normalization factor, ck, is the same that the one defined in Eq. (2.56) but it is

evaluated at z = zmax.

2.2.1.5 Electric-field of the laser pulses

According to the dipole approximation the spatial dependence of the electric field is

neglected. Then, we only consider the time dependence of the electric field, E(r, t) =

E(t). The electric field, E(t) and the vector potential A(t) will be defined in a temporal

grid t:

tn = tmin + n∆t, {n = 0, ..., Nt}. (2.57)

Here, Nt is the total number of points, tmin denotes the initial time on the grid. ∆t is

the time step or the sampling time. The frequency grid, ω, is defined by:

ωn = ωmin + n∆ω, {n = 0, ..., Nt} (2.58)

where, ωmin = − π
∆t and ∆ω = 2π

Nt∆t
are the Nyquist frequency and the frequency step,

respectively.

The class timeobject.h defines a vector array which will contain the electric field

E(t) ≡ (0, Ey(t), Ez(t)) and the vector potential A(t) ≡ (0, Ay(t), Az(t)) components.

This class also configures the routines of the fftw library [109], to compute the Fourier

spectra of the above defined fields. It will be described with more details in Chapter 3.

If the laser pulse is linearly polarized, E(t) ≡ (0, 0, Ez(t)), then its form reads:
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Ez(t) = E0(t) sin(ωl(t− tc) + ϕ0), (2.59)

where, ϕ0, is the CEP, E0(t), is the envelope and, ωl, is the central or carrier frequency

of the laser pulse. We will use different envelope shapes, e.g. sin2(t/σ), e−
t2

σ2 and

rectangular functions. The first one is the so-called sin2 envelope:

E0(t) =


0, ∀ t < ta

ε0 sin2
[
ωl(t−tc)

2Ncy

]
, ∀ ta ≤ t ≤ tb

0, ∀ t > tb

where, ta = tc − πNcy

ωl
, and tb = tc +

πNcy

ωl
, are constants. Ncy, denotes the number of

cycles and ε0, the peak of the electric field strength. In the second case the envelope is

defined by a gaussian function E0(t) = ε0 exp
[
−(t− tc)2/σ2

]
with σ =

πNcy

ωl
√

ln 2
. Note

that tc denotes the centered time where the maximum of the envelope is located. In

case of an elliptically polarized laser field the form of the pulse is given by:

E(t) = E0(t) [εξ sin(ωl(t− tc) + ϕ0) ey + ξ sin(ωl(t− tc) + ϕ0 + ϕrel)ez] , (2.60)

where, ξ = 1√
1+ε2

is a factor related with the ellipticity, and ε is the ellipticity parameter,

e.g. if ε = 0, the laser is linearly polarized along z-direction, and circularly polarized

when ε = 1 and ϕrel = π
2 (see for instance [94]). ϕrel denotes the relative phases between

the y and the z-direction.

The vector potential of the laser field is computed by:

A(t) = −
∫ t

dt′E(t′). (2.61)

This integral is numerically computed by the fourth-order Runge-Kutta method. We

will give a fast description in Chapter 3 about the schemes to construct the laser

pulses used in our simulations. defined electric field shapes of Eq. (2.59)-(2.60) and the

corresponding vector potentials Eq. (2.61). Theses classes, timegrid.h, timeobject.h

and laser.h, are all included in a library which is termed pulsesmaker [110].

2.2.1.6 Time dependent evolution

Once the initial wavefunction, Ψ0(r, t0), of the system is computed, our main task is

focused in to obtain the time evolution of the wavefunction when the laser is acting on
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the atom or molecule. To this end, we propagate the initial wavefunction on time-steps

by employing Eq. (2.35). The subsequent application of Eq. (2.35) will give us the

wavefunction at each time step {t0, t1, ..., tn, ..., tNt}, where the time-step ∆t or spacing

time in the grid is uniform.

2.2.1.7 Absorbing boundaries

As a result of the laser-matter interaction, it is usual that the launched EWP to the

continuum reaches the boundaries of the numerical box. Then, depending on the

boundary conditions defined for the wavefunction, an “artificial reflections” might take

place and introduce non-physical numerical interferences. This problem is solved by

using absorbers at the boundary of the numerical box [111]. These absorbers are

nothing else but a smooth function that multiplies the wavefunction Ψ(r, t) at the

border of the grid.

Throughout this thesis we have implemented an analytical form for the absorbent

cosq(k0 ·r). Here, q is a parameter that controls the absorber shape. We use q = 1/6 or

1/4 and these parameters have been checked in order to obtain the most appropriate

results. The parameter k0 along the x-direction is defined by kx,0,L = π
2∆xL

and kx,0,R =
π

2∆xR
. Here, ∆xR = xmax − xb is the length where the absorber will “act” on the

wavefunction for all x > 0. xb is a fix point around the border of the grid on the x-axis

in case of x > 0. ∆xL = xa−xmin, denotes the length for x < 0 where the absorber will

be employed. xa defines the starting point of the absorber function in case of x < 0. A

similar analysis is performed for y- and z-directions.

2.2.1.8 Observables

Once the wavefunction is computed at each numerical time {t0, t1, ..., tn, ..., tNt}, we can

obtain the observables required to analyze the problem under study. The observables

that we compute are the expectation value of the position, the kinetic momentum, the

potential energy, the kinetic energy values, amongst others.
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The components for the expectation value of the position (〈x〉, 〈y〉, 〈z〉) are:

〈x〉 =
∆Vr

N

∑
k
¯
, j
¯
, i
¯

Ψ∗(xi
¯
, yj

¯
, zk

¯
, tn)xi

¯
Ψ(xi

¯
, yj

¯
, zk

¯
, tn), (2.62)

〈y〉 =
∆Vr

N

∑
k
¯
, j
¯
, i
¯

Ψ∗(xi
¯
, yj

¯
, zk

¯
, tn) yj

¯
Ψ(xi

¯
, yj

¯
, zk

¯
, tn),

〈z〉 =
∆Vr

N

∑
k
¯
, j
¯
, i
¯

Ψ∗(xi
¯
, yj

¯
, zk

¯
, tn) zk

¯
Ψ(xi

¯
, yj

¯
, zk

¯
, tn),

where, N, denotes the norm of the wavefunction defined by:

N = ∆Vr

∑
k
¯
, j
¯
, i
¯

Ψ∗(xi
¯
, yj

¯
, zk

¯
, tn)Ψ(xi

¯
, yj

¯
, zk

¯
, tn), (2.63)

where, ∆Vr = ∆z∆y∆x, is a finite volume element. It is important to point out

that we implement also the position expectation values on the left and on the right,

e.g. 〈z(L/R)〉 depending on the problem to be addressed. The implemented formula

to compute these expectation values are similar to (2.62). The difference is the index

limits in the sum for the calculated expectation value and the computed left-right norm.

The components of the kinetic momentum expectation values (〈px〉, 〈py〉, 〈pz〉) are

also computed by the same formulas defined in Eqs. (2.62). However, in order to

perform the calculation of these momentum expectation values, we compute the FFT

on Ψ(r, t) to obtain its momentum representation Ψ(p, t). Note we use the finite volume

element in the momentum space defined as ∆Vp = ∆pz ∆py ∆px.

The expectation value of the kinetic energy is computed by a similar way that the

momentum value, but now we write:

〈T 〉 =
∆Vp

Np

∑
k
¯
, j
¯
, i
¯

Ψ∗(pxi
¯
, pyj

¯

, pzk
¯

, tn)Ti
¯
, j
¯
,k
¯

Ψ(pxi
¯
, pyj

¯

, pzk
¯

, tn), (2.64)

with, Ti
¯
, j
¯
,k
¯

= 1
2(p2

xi
¯

+ p2
yj
¯

+ p2
zk
¯

), is the spectral kinetic energy evaluated at the mo-

mentum point (pxi
¯
, pyj

¯

, pzk
¯

).

The expectation value of the potential energy, 〈V 〉, is computed in the position space
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representation of the wavefunction by using:

〈V 〉 =
∆Vr

Np

∑
k
¯
, j
¯
, i
¯

Ψ∗(xi
¯
, yj

¯
, zk

¯
, tn)Vi

¯
,j
¯
,k
¯

Ψ(xi
¯
, yj

¯
zk
¯
, tn), (2.65)

where, Vi
¯
, j
¯
,k
¯

= V (xi
¯
, yj

¯
, zk

¯
), denotes the evaluated effective or potential energy field-

free at the position point (xi
¯
, yj

¯
, zk

¯
).

The expectation value of the total energy, 〈E〉, of the system is the sum of Eq. (2.64)

and (2.65) and can be written as: 〈E〉 = 〈T 〉+ 〈V 〉.
Others interesting observables are the position and momentum distribution (elec-

tronic density). The position distribution can be easily computed and it is only the

absolute square of the wavefunction in the position representation.

To compute the momentum distribution, we will focus ourselves in the continuum

spectrum of the whole wavefunction. Let us say that the wavefunction Ψ(r, t) reads:

Ψ(r, t) = Ψb(r, t) + Ψc(r, t),

Ψ(r, t) =
∑
n,l,m

cn(t)Φn,l,m(r) +
∑
l′,m′

∫
dE a(E, t) ΦE,l′,m′(r), (2.66)

where, n, l and m are the principal quantum number, the total angular momentum

number and the magnetic quantum number, respectively. cn(t), denotes the complex

coefficient of the bound states corresponding to the Hilbert space of the field-free Hamil-

tonian H0. These coefficients correspond to the discrete spectrum {Φn,l,m(r)} of H0.

On the another hand, a(E, t), denotes the complex amplitude transition or coefficient

for the electrons launched to the continuum written in the spectral base {ΦE,l′,m′(r)}
of H0 with eigenenergy E.

Then, to compute numerically the momentum distribution, we can isolate the contin-

uum part, second term on the right hand, in Eq. (2.66) by employing two different

procedures. The first one is by removing out the discrete spectrum {Φn,l,m(r)} and

projecting on plane waves.

In order to remove the bound states we use two methods: (a) to multiply the full

wavefunction Ψ(r, t) by a mask function fMask(r) and (b) to project out the bound

states of the whole wavefunction.

(a) We isolate the continuum part of Eq. (2.66) by using the mask function method,

i.e.

Ψc(r, t) = fMask(r)Ψ(r, t), (2.67)
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with,

fMask(r) =


0, ∀ r < ra

e
− (r−rb)

2

σ2
m , ∀ ra ≤ r ≤ rb

1, ∀ r > rb

where, r =
√
x2 + y2 + z2 denotes the radial position, ra is an inter-radial mask pa-

rameter, rb an outer-radial parameter and σm the length width of the gaussian mask.

Then, an FFT is done on Ψc(r, t) to compute the instantaneous or final momentum

distributions in the plane wave representation as in Eq. (??).

(b) We remove the bound states of the whole wavefunction Ψ(r, t) by projecting

out the discrete states Φn,l,m(r, t):

Ψc(r, t) = Ψ(r, t)−
∑
n,l,m

cn(t)Φn,l,m(r), (2.68)

where the coefficients cn(t) are calculated according to:

cn(t) = 〈Φn,l,m|Ψ(t)〉 =

∫
dr Φ∗n,l,m(r)Ψ(r, t). (2.69)

Then, similarly to the method (a), by projecting the continuum part Ψc(r, t) on plane

waves, the momentum distribution is obtained.

Another method to compute the momentum distribution is projecting on continuum

waves at the end of the simulation, i.e., when the laser field is turned off. This method

is only implemented in 1D by using the scattering waves described in Section 2.2.1.4

and by employing the procedure explained in Eqs. (2.53)-(2.56).

2.2.2 Schrödinger equation in cylindrical coordinates

An interesting numerical approach to solve the TDSE can be found for systems with

cylindrical symmetry. For instance, when a laser pulse under the dipole approximation

is employed to interact with the atomic system, is it known that the final excited states

have a magnetic quantum number m set to zero (m = 0). This is the case where the

initial state of the system has a magnetic quantum number m = 0, too.

Thus, the evolution of the wavefunction can be described by only two coordinates,

namely the radius of the cylinder ρ and the cylinder z-axis. From a computational

point of view, this cylindrical symmetry is important because the number of operations

is drastically reduced compared to a typical 3D system written in cartesian coordinates.
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This advantage allow us to compute faster numerical solutions of the TDSE for Ψ(ρ, z, t)

in cases where the laser pulse is linearly polarized. Furthermore, we can consider that

Ψ(ρ, z, t) is the solution of the TDSE in 3D without missin any effect of the azimuthal

angle φ.

The time-dependent Hamiltonian H(t) in cylindrical coordinates are given by:

Ψ(ρ, z, t0 + ∆t) = e−iH(t0+ ∆t
2

)∆t Ψ(ρ, z, t0), (2.70)

H(t) = Hρ +Hz(t), (2.71)

with,

Hρ = − 1

2ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

2
V0(ρ, z), (2.72)

Hz(t) = −1

2

∂2

∂z2
− iAz(t)

∂

∂z
+

1

2
A2
z(t) +

1

2
V0(ρ, z). (2.73)

We have separeted the Hamiltonian into two parts, Hρ and Hz(t). One is related to

the partial derivative along the ρ-axis and the other to the partial derivative of the

Laplacian operator on the z-axis, respectively.

The Hamiltonian part Hz contains the interaction of the laser field with the atomic

system in the velocity gauge. This equation can be written in the length gauge and the

laser-system coupling term will remain in the Hamiltonian Hz:

Hz(t) = −1

2

∂2

∂z2
+ zE(t) +

1

2
V0(ρ, z). (2.74)

In the Chapter 3 we will explain the computational strategies employed to solve the

TDSE in cylindrical coordinates.

2.2.2.1 Crank-Nicolson methods in cylindrical coordinates

According to the last Eqs. (2.70)-(2.74) and the split of the Hamiltonian H, the time

evolution of the wavefunction can be expressed by:

Ψ(ρ, z, t0 + ∆t) ≈ e−iHρ
∆t
2 e−iHz(t′0)∆t e−iHρ

∆t
2 Ψ(ρ, z, t0), (2.75)

where, t′0 = t′0 + 1
2∆t. Then, considering the Cayley formula for each exponential we

can write:
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Ψ(ρ, z, t0 + ∆t) =

(
1− i∆t

4 Hρ

1 + i∆t
4 Hρ

)
︸ ︷︷ ︸

(iii)

(ii)︷ ︸︸ ︷(
1− i∆t

2 Hz(t
′
0)

1 + i∆t
2 Hz(t′0)

) (
1− i∆t

4 Hρ

1 + i∆t
4 Hρ

)
︸ ︷︷ ︸

(i)

Ψ(ρ, z, t0)

+ Ord(∆t3), (2.76)

and it is possible to evaluate them by using a Crank-Nicolson finite-differences scheme

(see for instance [111]) in the grid points representation. The numerical accuracy of

this Crank-Nicolson method scales with the ∆t3.

Eq. (2.76) is solved step by step in the sense that we obtain the numerical solution

for two intermediate wavefunctions (or auxiliaries) χ(ρ, z) and Υ(ρ, z) and from these

the wavefunction Ψ(ρ, z, t0 + ∆t). We define χ(ρ, z) to compute the first term (i) in

Eq. (2.76) as follows

(
1 +

i∆t

4
Hρ

)
χ(ρ, z) =

(
1− i∆t

4
Hρ

)
Ψ(ρ, z, t0). (2.77)

This equation can be solved independently for each position z. The action of the

Hamiltonian Hρ (Eq. 2.72) on an arbitrary function f = f(ρ, z) can be approximated

with the finite element method by:

Hρj
¯

f(ρj
¯
, zi

¯
) ≈ −1

2

f(ρj
¯
+1, zi

¯
)− 2f(ρj

¯
, zi

¯
) + f(ρj

¯
−1, zi

¯
)

∆ρ2
(2.78)

− 1

4ρj
¯

∆ρ

[
f(ρj

¯
+1, zi

¯
)− f(ρj

¯
−1, zi

¯
)
]

+
1

2
V (ρj

¯
, zi

¯
)f(ρj

¯
, zi

¯
).

The term on the right hand side of Eq. (2.77), specifically the equivalent function

f(ρ, z), is completely known. The unknown wavefunction, χ(ρ, z), can be obtained by

solving a tridiagonal linear system of equations for each zi
¯

with the form:

Mzi
¯
χzi

¯

= bzi
¯
. (2.79)

Where, bzi
¯

= {...,Ψ0(ρj
¯
, zi

¯
) − i∆t

4 Hρj
¯

Ψ0(ρj
¯
, zi

¯
), ...}, is a vector array which contains
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the right hand side of Eq. (2.77) for each zi
¯
. Mzi

¯
is a tridiagonal matrix. The elements

of the main diagonal are dzi
¯

= {..., 1 + i∆t
4

[
1

∆ρ2 + 1
2V (ρj

¯
, zi

¯
)
]
, ...} and the size of this

diagonal is Nρ. d
(up)
zi
¯

= {..., i∆t4

[
− 1

2∆ρ2 − 1
4ρj

¯

∆ρ

]
, ...} denotes the elements of the first

upper diagonal with respect to the main one and the size of this diagonal is Nρ − 1.

Finally, the first lower diagonal is given by: d
(down)
zi
¯

= {..., i∆t4

[
− 1

2∆ρ2 + 1
4ρj

¯

∆ρ

]
, ...}.

Several routines can be implemented to solve Eq. (2.79). We have used the Thomas

algorithm which implements a fast version to compute the solution of such a linear

system of equations [112]. This algorithm has a number of operations of the order O(N)

instead of O(N3) required by the Gaussian elimination method. Then, by employing

the Thomas method, we compute the solution χzi
¯

for each z
i
¯

and with it we obtain

the first part (i) of Eq. (2.76).

Once the wavefunction χ(ρ, z) is calculated, the second term (ii) in Eq. (2.76) can

be obtained by a similar procedure that in case of the term (i). However, in the case

(ii) the Laplace operator is solved along z-direction. Thus, to compute the term (ii)

we define the assistant wavefunction, Υ(ρ, z) as follows:

(
1 +

i∆t

4
Hz(t

′
0)

)
Υ(ρ, z) =

(
1− i∆t

4
Hz(t

′
0)

)
χ(ρ, z). (2.80)

Where the action of the Hamiltonian term Hz(t
′
0) on an arbitrary function f = f(ρ, z)

can be written as:

Hzi
¯
f(ρj

¯
, zi

¯
) ≈ −1

2

f(ρj
¯
, zi

¯
+1)− 2f(ρj

¯
, zi

¯
) + f(ρj

¯
, zi

¯
−1)

∆z2
(2.81)

+
−i Az(t′0)

2∆z

[
f(ρj

¯
, zi

¯
+1)− f(ρj

¯
, zi

¯
−1)
]

+
1

2

[
V (ρj

¯
, zi

¯
) +A2

z(t
′
0)
]
f(ρj

¯
, zi

¯
).

As the wavefunction χ(ρ, z) of Eq. (2.80) is already known, we write Eq. (2.80) in a

system of linear equations for each ρj
¯

as:

Mρj
¯

Υρj
¯

= bρj
¯

, (2.82)

50



Numerical methods

where bρj
¯

= {..., χ(ρj
¯
, zi

¯
) − i∆t

4 Hzi
¯
χ(ρj

¯
, zi

¯
), ...}, is a vector array which contains the

right hand side of Eq. (2.80) for each ρj
¯

and Mρj
¯

is a tridiagonal matrix similar to

the one of Eq. (2.79). The elements of the main diagonal are dρj
¯

= {..., 1 + i∆t
4

[
1

∆z2 +

1
2

(
V (ρj

¯
, zi

¯
) +A2

z(t
′
0)
)]
, ...} and the size of this diagonal vector is Nz.

d
(up)
ρj
¯

= {..., i∆t4

[
− 1

2∆z2 + i
2 ∆zAz(t

′
0)
]
, ...} denotes the elements of the first upper

diagonal with respect to the main one and the size of this diagonal is Nz − 1. Finally,

the first lower diagonal is given by: d
(down)
ρj
¯

= {..., i∆t4

[
− 1

2∆z2 − i
2∆zAz(t

′
0)
]
, ...}. This

diagonal vector d
(down)
ρj
¯

has the same size of d
(up)
ρj
¯

. Thus, Eq. (2.82) can be solved by

employing the same Thomas algorithm for the wavefunction Υρj
¯

at each ρj
¯
.

Finally, to find the wavefunction Ψ(ρ, z, t0 + ∆t) we apply a similar algorithm that in

Eq. (2.77). It is supposed that the wavefunction Υ(ρ, z) is known, thus:(
1 +

i∆t

4
Hρ

)
Ψ(ρ, z, t0 + ∆t) =

(
1− i∆t

4
Hρ

)
Υ(ρ, z). (2.83)

Here we follow the same steps described in Eq. (2.77) to obtain the unknown wavefunc-

tion Ψ(ρ, z, t0 + ∆t).

Furthermore, it is worth to mention that the spectral split operator method to

integrate numerically the TDSE in cylindrical coordinates can be also implemented by

solving:

Ψ(ρ, z, t0 + ∆t) ≈ e−iTc∆t/2 e−iV (t′0)∆t e−iTc∆t/2 Ψ(ρ, z, t0), (2.84)

where, Tc = − 1
2ρ

∂
∂ρ

(
ρ ∂
∂ρ

)
− 1

2
∂2

∂z2 is the kinetic operator in cylindrical coordinates.

This Eq. (2.84) is the same that Eq. (2.35) defined for cartesian coordinates (see Sec-

tion 2.2.1.1), but now in cylindrical coordinates.

2.2.2.2 Numerical aspects in cylindrical coordinates

In this Section we will give a brief description of the numerical implementation of the

TDSE in the cylindrical coordinates from a computational point of view. Similar to

the case of the cartesian coordinates code, here we will define the cylindrical grid and

the corresponding momentum space. We focus our efforts mainly in the description of

the designed structure of the BALAS library [113].

51



NUMERICAL METHODS

Position and momentum space

The position space is defined by a pair of computational vector arrays (ρ, z). Here, the

axis are discretized by following the rule:

zi
¯

= zmin + ∆z i
¯
; i

¯
= 0, ..., Nz − 1,

ρj
¯

= ∆ρ ( j
¯

+ 1/2); j
¯

= 0, ..., Nρ − 1, (2.85)

where, zmin = −Nz
2 ∆z is the starting point in the z-axis, ∆z and Nz denote the

spacing grid and the total number of points along z-direction, respectively. The radial

cylindrical coordinate ρ is uniform in the sense that has a constant grid spacing ∆ρ.

The total number of points along this axis is Nρ. It is important to point out that

this axis has a starting point at ∆ρ/2 and not at zero. This is the case to avoid any

divergence of the potential V0(ρ, z) = − Z√
ρ2+z2

at the origin.

The HT is very well optimized in a radial ρ′-axis which has a nonuniform grid step

[114]. This nonuniform axis is defined within the points corresponding to the zeros

(roots) of the Bessel function J0(x) of the first kind.

Let us denote those root points by αj
¯
. Thus, the strategy that we will follow to

compute the momentum distribution is to interpolate the wavefunction Ψ(ρ, z, t) to

a new nonuniform radial ρ′-axis Ψ(ρ′, z, t). According to Guizar-Sicairos [114] this

nonuniform radial axis reads:

ρ′j
¯

=
αj
¯

αNρ
ρmax; j

¯
= 0, ..., Nρ − 1, (2.86)

where αNρ is the Nρ-th root of the Bessel function J0(x) and ρmax denotes the maximum

of the numerical nonuniform radial grid.

The momentum grid is defined for the two momentum coordinates (pρ, pz). According

to the Nyquist frequency, and similarly to the above defined momentum grid in cartesian

coordinates (see Eq. (2.41), the momentum axis along the z-direction is:

pzi
¯

= pzmin + ∆pz i
¯
; i

¯
= 0, ..., Nz − 1, (2.87)

where pzmin = − π
∆z is the minimum momentum on the grid and ∆pz = 2π

Nz ∆z denotes

the momentum sampling, respectively.

According to reference [114], the radial momentum axis pρ is nonuniform and it is given
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by:

pρj
¯

=
αj
¯

ρmax
; j

¯
= 0, ..., Nρ − 1. (2.88)

We have already described all the numerical requirements to implement the position

and momentum grids in cylindrical coordinates. In the next Section we will define the

time evolution of the system.

Wavefunction, potential and system time evolution

The wavefunction Ψ(ρ, z) of the system is computationally defined in a complex vector

array, ψ of size NT = NρNz.

Similar to the strategy followed in cartesian coordinates to arrange the wavefunction

(see text about Eq. (2.42)), we will put the elements of the wavefunction Ψ(ρ, z) in a

computational vector array ψ. The first row, corresponding to the elements:

{Ψ(ρ0, z0), ...,Ψ(ρ0, zi
¯
), ...,Ψ(ρ0, zNz−1)}, (2.89)

is put on the first Nz− 1 memory positions of the vector ψ. Then, the next row, which

corresponds to the elements {Ψ(ρ1, z0), ...,Ψ(ρ1, zi
¯
), ...,Ψ(ρ1, zNz−1)}, is put between

the Nz and 2Nz − 1 memory positions of ψ. By using this logical sequence all the

remaining elements Ψ(ρj
¯
, zi

¯
) are arranged in ψ.

The field-free potential well V0(ρ, z), which describes the interaction between the

electron and the nucleus core, is also defined as a vector array pot member of the class

waveUniform2D.h. This variable pot[NT] has the same size NT. The elements of the

potential energy well V0(ρj
¯
, zi

¯
) are arranged in the vector array pot by following the

same procedure that the wavefunction Ψ(ρ, z).

Furthermore, to obtain the ground state Ψ0(ρ, z) of a potential under study, we

will use the imaginary time reverse evolution method described in Section 2.2.1.4 and

specified in Eq. (2.47). This calculation can be performed by employing the described

steps in Section 2.2.2.1 and considering that the vector potential of the system is set

to zero, i.e., Az(t) = 0.

The time evolution of the initial wavefunction Ψ0(ρ, z) at the time t0, to the electron

wavefunction Ψ(ρ, z, t) at the time t and considering the action of the laser pulses,

is performed by using the Crank-Nicolson method 2.2.2.1. This propagation of the

wavefunction is supposed to be in real time.

Once the time evolution of the wavefunction of the system is known along the grid time
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{t0, ..., tn, ..., tNt}, we can compute the same observables as those calculated in Section

2.2.1.8 but in cylindrical coordinates. The expectation values of the position (〈ρ〉, 〈z〉)
are computed by:

〈ρ〉 =
1

N

∑
j
¯
, i
¯

ρj
¯

Ψ∗(ρj
¯
, zi

¯
, tn) ρj

¯
Ψ(ρj

¯
, zi

¯
, tn) ∆ρ∆z, (2.90)

〈z〉 =
1

N

∑
j
¯
, i
¯

ρj
¯

Ψ∗(ρj
¯
, zi

¯
, tn) zi

¯
Ψ(ρj

¯
, zi

¯
, tn) ∆ρ∆z. (2.91)

Where the norm N in cylindrical coordinates reads:

N =
∑
j
¯
, i
¯

ρj
¯

Ψ∗(ρj
¯
, zi

¯
, tn) Ψ(ρj

¯
, zi

¯
, tn) ∆ρ∆z.

The expectation value of the kinetic energy 〈Tc〉, corresponding to the operator Tc =
pρ2

2 + pz2

2 , can be computed by the finite element method. Here, we only define the

general form of this expectation value:

〈Tc〉 =
1

N

∑
j
¯
, i
¯

ρj
¯

Ψ∗(ρj
¯
, zi

¯
, tn)Tc(ρj

¯
, zi

¯
) Ψ(ρj

¯
, zi

¯
, tn) ∆ρ∆z, (2.92)

The expectation value of the potential energy 〈V0〉 in cylindrical coordinates has the

same definition that Eq. (2.92). We only need to replace the operator Tc by V0.

Once the kinetic and potential energies expectation values are computed, we can obtain

the total energy expectation value by using 〈E〉 = 〈Tc〉+ 〈V0〉.
Other important observables are the electron position distribution (or electron den-

sity) and the electron momentum distribution. The electron position density is easily

computed by using Se(ρ, z, t) = ρ|Ψ(ρ, z, t)|2.

The momentum distribution of the continuum wavefunction or wavepacket Ψc(ρ, z, t)

will be calculated in cylindrical coordinates into two steps. First of all, we compute the

continuum wavepacket in the position representation Ψc(ρ, z, t) = fMask(ρ, z)Ψ(ρ, z, t)

by filtering out the bound states out of the whole wavefunction Ψ(ρ, z, t). We perform

this filtering process by employing a smooth mask function fMask(ρ, z) around the box

region (0, −zmask) and (ρmask, zmask) where the bound states are located. Here, ρmask

and zmask are positive real numbers. Similar steps are described in Eq. (2.67) for the

cartesian coordinates case.
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Second, once the continuum wavepacket, Ψc(ρ, z, t), is obtained, the momentum distri-

bution or electron density Se(pρ, pz, t) = |Ψc(pρ, pz, t)|2 is computed by projecting on

the corresponding plane wave in cylindrical coordinates. Here, Ψc(pρ, pz, t) denotes the

momentum representation of the complex wavepacket Ψc(ρ, z, t). The mathematical

procedure to obtain Ψc(pρ, pz, t) reads:

Ψc(pρ, pz, t) =
√

2π

∫ ∫
ρ J0(pρ ρ)e−ipzz Ψc(ρ, z, t) dρ dz, (2.93)

where, J0(pρ ρ), is the Bessel function of zero order [114]. It is important to mention

that in our scheme we use the Bessel function of zero order. This is the case because

the laser is linearly polarized along z-axis. This means that the magnetic momentum

m is zero. In the case the laser is circularly polarized, the Bessel function is not only

of zero order and has to be replaced by Jm(pρ ρ).

On the other hand, a FFT of the wavefunction is computed on the cylinder z-axis.

It is so, to obtain the momentum distribution component along such a z-direction.

Note that the integral on ρ-axis denotes a Hankel transform which is defined by:

g(pρ) = 2π

∫
ρ J0(pρ ρ)f(ρ) dρ, (2.94)

where, f(pρ), is the function which will be transform. We do HT of the wavefunction

Ψc(ρ, z) on ρ-direction for each z.

A “fast” implementation of this transform is described in [114]. We have numerically

implemented this fast Hankel transform in two structures classes, namely arrai.h and

HankelMatrix.h. These classes are mentioned and fast explained in Chapter 3.

This numerical implementation of the Hankel transform requires to be computed along

a nonuniform ρ′ radial grid Eq. (2.86). It is so, because the designed Hankel transform is

determined by the evaluation of the Bessel function J0(pρ ρ) at its root points αj
¯
. Then,

we will interpolate the evaluated wavefunction Ψ(ρ, z, t) from the uniform radial ρ grid

to the nonuniform ρ′-axis. Note that the interpolation is exclusively performed along the

radial axis. We take advance of the MKL routines [115] to do this interpolation. Once

the new interpolated wavefunction Ψ(ρ′, z, t) is obtained, we transform it according to

our numerical implementation of the integral in Eq. (2.94) (for detail see [114]).
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2.2.3 Numerical integration: ionization transition amplitude

We will use the Runge-Kutta to integrate numerically the solution of the SFA equation

for the direct ionization mediated by an attosecond pulses in presence of a weak IR

laser field. The ionization of an atom or molecule under the action of a strong laser

pulse is described by the complex transition amplitude Eq. (2.29). Through this thesis

the main goal within the SFA approach is to describe the photoionization led by an

XUV attosecond pulse in the presence of a weak IR laser field. Thus, our main task

is focused into calculate the integral of the Eq. (2.31). The numerical solution of this

integral is by far a no trivial problem. This is the case because of two main aspects: the

first, it is a double nested integral in time (see the phase factor in Eq. (2.31)). Second,

the integrand is highly oscillatory due to the presence of a phase factor [50].

Several approximation methods have been developed to solve this integral, e.g. the

saddle point in time [50, 94] and converting this integral to a differential form. The

latter can be done just by taken the derivative a(p, t) with respect to the time t [116].

This last method simplifies this integral Eq. (2.31) to an ordinary non homogeneous

differential equation given by:

da(p, t)

dt
+ i

(p + AL(t))2

2
a(p, t) = iEX(t− τ) · d(p + AL(t))eiIp(t−t0). (2.95)

Note that this differential equation can be easily integrated by a Runge-Kutta method

of fourth-order. In addition, the momentum p in the complex amplitude a(p, t) is just

a parameter for such an equation. This means that we can be parallelize Eq. (2.95) by

using MPI or OpenMP paradigms to speed up our numerical calculations.

2.2.3.1 Runge-Kutta method

In numerical analysis the fourth-order Runge-Kutta method is employed to solve ordi-

nary differential equations [103]. Let us assume that an initial value problem is specified

by the following conditions:

y′ = f(t, y), y(t0) = y0, (2.96)

where, y(t), denotes the unknown function of time t which we will solve. y′(t) is the

time derivative of y which is a function of t and y. It is important to note that at

the initial time it is supposed that the function y(t0) = y0 is known. The fourth-order
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Runge-Kutta formula are defined according to:

k1 = h f(tn, yn),

k2 = h f(tn +
h

2
, yn +

k1

2
),

k3 = h f(tn +
h

2
, yn +

k2

2
),

k4 = h f(tn + h, yn + k3),

yn+1 = yn +
k1

6
+
k2

3
+
k3

3
+
k4

6
+Ord(h5). (2.97)

Here, h = ∆t denotes the time step and tn = t0 + nh define the total time axis. This

method requires four evaluations of the right-hand side per step h. This method is high

accurate, on the order of Ord(h5). We are interested in employing this Runge-Kutta

method to solve numerically Eq. (2.95). We have also built a library in C/C++ to

implement the SFA complex ionization amplitude.

This problem can be split in three pieces. (i) The calculation of the bound-free

dipole transition matrix element. In the systems which are employed throughout this

thesis, all the dipole matrix element under the SFA approach have closed analytical ex-

pressions. (ii) The electric fields and the vector potentials and (iii) The computation of

the transition complex amplitude ap(t). Our algorithm employs the PULSESMAKER

library [110].

2.2.3.2 Momentum grid definition in SFA

As the complex transition amplitude a(p, t) is parametrized along the momentum axis,

we can define the momentum grid as follows:

px,i
¯

= −pxmax + i
¯

∆px; i
¯

= 0, . . . , Nx − 1, (2.98)

py,j
¯

= −pymax + j
¯

∆py; j
¯

= 0, . . . , Ny − 1,

pz,k
¯

= −pzmax + k
¯

∆pz; k
¯

= 0, . . . , Nz − 1,

where, (pxmax = Nx
2 ∆px, pymax =

Ny
2 ∆py, pzmax = Nz

2 ∆pz) are the maximum momen-

tum for each particular (x, y, z)-direction. Here, (∆px, ∆py, ∆pz) is the grid momen-

tum spacing on each direction.

In this Chapter we have defined all the basic Physical, Mathematical and Numer-

ical tools which will be utilized throughout this thesis. These tools will allow us to
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address the research questions formulated in the introduction and in particular how

it is possible to employ an SPIDER scheme to extract structural information of the

target. Furthermore, we will employ these tools to study the fundamental delay in

photoemission process by utilizing the atttosecond streaking techniques.
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Software design

3.1 Introduction

As described in the previous Chapter 2, the main theoretical tool in this thesis is the

numerical integration of the TDSE. This is made through the use of several simulation

codes.

The numerical effort and the complexity to solve the TDSE on a grid grows ex-

ponential with the number of degrees of freedom. The more degrees of freedom are

included, the more demanding the employed computational resources are. Therefore,

it is necessary to develop codes with the propose of handling the complexity of the

physics problems.

Traditionally, physicists write a specific code to simulate a particular physical phe-

nomenon. When they address a similar problem, commonly a new code is written based

on the previous one. In such a case, two practical difficulties arise.

First, it is hard to scale such a code. As the physical problem becomes more complex,

i.e., involving high dimensionality (3D, 4D, etc.), the simulations are more demanding

and therefore a design is required to deal with computational complexity.

Second, the messy codes are difficult to change and every modification requires a long

time. This huge effort reduces the time that we can be dedicated to the actual physical

problem.

The software development has an important role in this thesis. Beyond the tradi-

tional development of a single code, a designed group of libraries is carried out through

this paper. These libraries are utilized to study a variety of ultrafast and strong field

physics phenomena.

Two important aspects to take into account in the development of an efficient simulation
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program are identified. First, the choice of the algorithms to simulate the physical

problem with accurate results. Second, it is required to build an efficient code or

software to carry out simulations in the facilities with High Performance Computing.

Ruiz and Becker have had a long experience in these kind of simulation strategies

and they have found an approach to handle them. The aim of this method is to develop

a simulation software based on simple design strategies. The first software of this kind

was the SimLab developed in the Max Planck Institute for Complex Systems by Ruiz

and Becker. Ruiz designed and developed QFISHBOWL [117] and ASSAM [118]. The

author of this thesis and De La Calle have grown up these two libraries with new

routines and classes. Following a similar strategy to the ones in QFISHBOWL, the

author of this thesis and Ruiz have developed and designed the BALAS code [113].

Furthermore, the author of this thesis has designed and developed two new codes: the

PULSESMAKER [110] and QSPHERE [119]. All of these libraries or codes have been

implemented with the aim of simulating the physical problems regarding the research

questions mentioned in Section 1.4.

This Chapter is dedicated to present the Design Strategy which is employed to

develop our libraries. The Chapter also describes quickly how these libraries are im-

plemented and can be used as a Simulation Lab.

Throughout the next Sections we will describe the design strategies for the codes, in

particular:

(i) Define the structure of the library based on the physics concepts,

(ii) Separate the numerical algorithms from the library,

(iii) Fast-ideas cycle, from sketches to full scale simulations.

3.1.1 Library structures according to physics concepts

To describe a physical phenomenon, physicists define a set of “objects”, or quanti-

ties, i.e, electron position, electron momentum, electron energy, electromagnetic field,

etc., regarding the particular phenomenon that they are interested to study. We keep

this language in the simulation codes with the motivation to define a correspondence

between the physical “objects” and computational ones.

This design strategy is based on using the logic and the magnitudes of the quantum

theory to guide the construction of a simulation software. The first step towards such a

goal is to identify several structures of the theory as objects, but here in a computational

context.
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The language C++ has a class and object oriented programming paradigm which

enables the construction of classes. We can represent structures made of several vari-

ables and methods (or routines). The main advantage of C++ is the feasibility to

split a computational problem in small classes. A class is a user defined type or data

structure declared with keyword class that has data and routines. The access to those

variables and routines is governed by the three access specifiers private, protected or

public (by default the access to members of a class is private).

As an example, Fig. 3.1 shows an schematic representation of how to implement this

design strategy.

Figure 3.1: Designing code within physics concepts. In this picture, the space
dependence on the wavefunction, potential and evolution (or propagator) operators is split.
Then, this separation allows us to build computational classes in C++ with the features of
these physical concepts.

In Quantum Mechanics, the calculation of the temporal and spatial evolution of the

wavefunctions is one of the main physical problems. This picture Fig. 3.1 identifies the

different physical “components” or in analogy the computational objects, which are

required to compute the evolution of the wavefunction. Five steps to identify physics

objects as computational ones are depicted in Fig. 3.1.
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First, (a), the spatial region where the wavefunction “lives” is required. From

a computational viewpoint, this is described by a grid class which sets the spatial

features of the simulations. The grid class (space: position coordinates and momentum

coordinates) is illustrated by the soft-blue box in the Fig. 3.1.

Second, (b), the wavefunction lives in the defined spatial region. This computational

memory space is described by a wavefunction class. This wavefunction also has the

characteristics of the spatial grid.

Third, (c), the potentials which defines the field-free Hamiltonian are implemented

in a different class which is also defined on the same spatial grid of the simulation.

As a fourth step, (d), the electric field or vector potential of the external laser field

is described in a separated class which defines the parameters of the laser pulse: the

time axis, the envelope, the carrier frequency, the CEP, etc.

The external field is a common class in all the simulations related to ultrafast and strong

field problems. Thus, we will dedicate the Section 3.2 to describe how this library was

built.

Fifth, (e), all of these physical structures or computational classes are required to

compute the evolution of a wavefunction. Therefore, the physics of laser-matter inter-

actions can be simulated. Before, during and after the simulations, some observables

can be recorded to describe the effects of different external fields in the physical system

under study.

The previous analogies give rise to the organization of the code in libraries where

the classes and their methods (routines) are defined. To use them, it is only necessary

to create small programs or “scripts” where the libraries are included.

These small scripts produce a functionality similar to the MATLAB Software. The

scripts use prefabricated routines to compute a specific tasks. For instance, in MAT-

LAB, it is enough to write fft(f) for computing the Discrete Fourier Transform instead

of implementing a new DFT code each time.

The construction of our libraries regarding these physical concepts allows us to include

the logic of the theory in the simulations.

3.1.2 Basic numerical tools splitting

The second designed strategy is referred to the separation of the numerical algorithms

from the libraries or codes.

All the numerical methods such as Crank-Nicolson or split-operator spectral meth-

ods used in these libraries are based on generic numerical tools. Fast Fourier Transform
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(FFT), Linear algebra algorithms (matrix inversion or matrix product), Fast Legendre

Transform, etc., are some examples of generic algorithms.

These algorithms are available as numerical libraries for different architectures.

Our implementation is designed with the aim to prevent unnecessary drastic changes

of the libraries, if a new version of these numerical routines appears as a result of the

fast evolution of the computational technologies. This flexibility can be illustrated by

a flow diagram in Fig. 3.2.

Figure 3.2: Software architecture: flexible design. This flow diagram illustrates the
steps followed by our separation of the basic numerical routines from the library or main code.
In particular, we depict how a library can use the Discrete Fourier Transform (DFT), the Fast
Fourier Transform in the West (FFTW), and the MKL optimization of the FFT, to compute
the split-operator technique described in Section 2.2.1.1.

For instance, if the computational technology achieves a faster FFT on future, than

the nowadays numerical library FFTW, our code can easily be modified to use it.

These procedures can also be done with computational paradigms (parallel pro-

gramming schemes). For instance, different numerical libraries for the linear product

of large matrices are implemented. We can then make use of the speed up coming from

the use of a large number of cores, e.g., in a chip using the OpenMP implementation

or the optimized BLAS routines for the Intel chips in the MKL numerical library. This

means that these libraries can be used for a long time even if new and more efficient

implementations or computational paradigms appear.
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3.1.3 Cycle of Ideas

Another important design strategy is related to speed up the development of ideas.

The concept is to produce quick tests of the physical problems which we can study.

The “cycle” of a particular physical problem or idea can be usually addressed by

testing a reduced version of the problem before trying the actual problem in its full

scale. The cycle of ideas is represented in a diagram in Fig. 3.3.

If	  …	  Idea	   Sketch	   First	  
Results	  

Full	  scale	  
sim.	  

Doesn’t	  	  work	  

Works	  

(i)	
 (ii)	
 (iii)	
 (iv)	


Figure 3.3: Cycle of ideas. The diagram depicts the general way to test a physical idea
from a numerical point of view. (i) A general idea (or research question) about the physical
problem is conceived, (ii) the sketch of how to address it is developed, (iii) the preliminary
results about the research question are obtained and (iv) the scale on dimensionality or scan
on parameters is performed, if the preliminary results demonstrate that the idea works.

Once the computational software in our libraries is completed and tested, the actual

physical problems can be addressed. For instance, if we study the emitted radiation

from the interaction of a strong laser field with an atom, it is important to produce the

first results in a very little amount of time.

Some specific parameters require to be well characterized in order to reach good con-

vergence of our results, e.g. the grid size (length) of the problem, the integration time

step ∆t, the position step ∆z, the positions of the absorbing boundary functions, etc.

Thus, it is suitable to perform a 1D calculation in order to optimize the grid size and to

analyze the fundamental physics of the problem before addressing a high dimensionality
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problem, e.g. in 2D or 3D.

If a long time is required to produce a new code for different physical systems, then

the cycle of ideas becomes too long and not adequate to develop a research program.

Our libraries allow us to test many ideas in a very short amount of time.

These evaluation tests are quite important, because several ideas can quickly address

with a single part of software. This helps us to focus on the physical phenomenon

rather than the code.

As an application of our design strategies, the next Sections will be dedicated to

describe PULSESMAKER (Section 3.2), QFISHBOWL (Section 3.3), BALAS (Sec-

tion 3.4), and QSPHERE (Section 3.5) libraries.

In the following Section 3.2, we will describe how PULSESMAKER library has been

implemented with the purpose to build a single pulse and a delayed train of pulses with

arbitrary feasures in the time domain.

3.2 PULSESMAKER

PULSESMAKER is a library written in C/C++ with a programming structure based

on classes and objects [110]. It is built with the aim of generating laser pulses for

simulation of our physical problems. This library can be used in any of the other

libraries described here, i.e., QFISHBOWL, BALAS and QSPHERE. In addition, the

library might be used as a stand alone library as well.

The library is designed to create numerically single pulses, train of pulses or a set of

pulses with arbitrary characteristics. It is possible to define as many pulses as needed

with different delay, intensity, carrier frequency, time duration, polarization, envelope,

etc. The resulting external field pulse can be used for all kinds of numerical simulations

of laser-matter interaction within the dipole approximation.

The PULSESMAKER library consists of four different classes which are: cartesian.h,

timegrid.h, timeobject.h and laser.h in Fig. 3.4 we illustrate how the design of

PULSESMAKER is done and its relation with the standard C/C++ libraries.

The diagram explains the logical order of the library: first, a constant class, which

contains all the physical constants required along the logical process to solve the TDSE.

This class, defines also all the required standard C/C++ libraries , standard variables

and routines of C/C++. These are, for example, stdio.h, iostream, math, vector,

etc. We also use the the General Public License (GNU) fftw3.h library [109].

Then, the general diagram shows the timegrid.h, the timeobject.h, and finally the

laser.h classes. PULSESMAKER has become one of the main pieces of the QFISH-
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PULSESMAKER	  

constant.h	  	  

3megrid.h	  	  

stdio.h	  

isotream	  

math.h	  

vector	  

complex	  

string	  

3meobject.h	  

laser.h	  	  

QFISHBOWL	   BALAS	   QSPHERE	   ASSAM	  

Figure 3.4: PULSESMAKER general design. A dependence diagram on the standard
C/C++ libraries of the PULSESMAKER library is illustrated. The arrows define the flow
direction
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BOWL, BALAS, QSPHERE, and ASSAM libraries, as a common or basic tool, to

implement the laser pulses in the simulations.

3.2.1 Time grid array

The class timegrid.h is made of a set of member variables and member functions. The

goal of this class is to construct the time and frequency axis.

The dependence diagram on the standard and others libraries is depicted in Fig. 3.5.

It is shown that this class is built under a set of standard C/C++ libraries already

mentioned in Fig. 3.4.

qfishbowld/src/timegrid.cpp

timegrid.h

iostream math.h vector

fftw3.hconstant.h

stdio.h string complex

Figure 3.5: Time grid class. A dependence diagram on the Standard C/C++ libraries of
the timegrid.h class is illustrated.

The time and frequency axis are the main variables of the class: t and ω, which are

defined according to Eq. (2.57)-(2.58).

Other routines to initialize the timegrid.h class can be found in detail in the Web

site1 [120].

3.2.2 Time object class

The class timeobject.h creates a complex vector with the type defined in the FFTW

library. This vector array, f, will contain the time-domain evaluation of the electric

field of the laser pulse or the vector potential.

1http://www.quantumsimlab.es/pulsesmaker/files.html
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Note that timeobject.h inherits all the properties of the class timegrid.h. This

means that the variables and routines used in timegrid.h can be used by the class

timeobject.h.

Furthermore, the implementation of a vector FFTW allows us to compute the forward

and backward FFT of f. Then two routines to compute the forward and backward FFT

are employed from the FFTW library to timeobject.h. This provides direct access to

the spectrum of the electric field immediately.

In this library there are some routines to compute the vector potential by two

different methods: a fourth-order Runge Kutta method and the Fourier method.

3.2.3 Laser class

The laser.h class is implemented with the goal to evaluate an arbitrary number of

pulses Npls. The library creates a single or delayed train of pulses. Each pulse can have

different characteristics, i.e., envelope, FWHM, carrier frequency, intensity and CEP.

The dependence of the laser class in relation to timeobject.h, timegrid.h, fftw3.h,

grid.h, are illustrated in Fig. 3.6. The logical structure of this library is based on

the construction of several objects: the timegrid, and the timeobject and auxiliary

variables complex vector and double variables.

qfishbowld/src/laser.cpp

laser.h

stdlib.h

string

timeobject.h

vector

timegrid.h

constant.h

grid.h

iostream

fftw3.h

math.hstdio.h complex

Figure 3.6: Laser class. A dependence diagram on the standard C/C++ libraries of the
laser.h class is illustrated.

They will help to the implementation of two routines to compute a single or a delayed
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train of pulses. The first routine, laser(Npls), initializes the class as an object. This

means that several variables, such as the peak intensity per pulse, frequency ω, period

T, etc., are initialized with the size number of pulses Npls. The second routine is called

laser pulses(...), and receives four parameters. These parameters are detailed in Web

Site1 [120]. The routine creates the electric field and vector potential.

PULSESMAKER has several other variables which can help at the moment to run

a simulation, i.e., the time at the maximum of the envelope for each pulse and its

corresponding index time, etc. Note that this library enables to choose between four

different kind of pulse envelopes, namely sine-squared, gaussian, rectangular and sech2.

So far, we have given a general description of how the laser pulses are built by utilizing

the design strategies of software in C/C++.

The next Section will be devoted to describe the QFISHBOWL library which makes

use of PULSESMAKER.

3.3 QFISHBOWL

The QFISHBOWL library is a large library written in C/C++ with several different

classes structured within the object oriented programming paradigm. It has been de-

signed with the main goal to integrate numerically the TDSE in cartesian coordinates

by implementing the Split-Operator Spectral method described in Section 2.2.1.

The software allows the simulation of systems in 1D, 2D and 3D and it is possible to

change quickly between them. The kernel of this library can be explained according to

Fig. 3.7. This diagram shows the structure of classes that conform the QFISHBOWL

library.

It starts with a constant class, which contains all the physical constants required to

solve the TDSE. Then the grid class which is a basic ingredient in our library.

The grid.h class contains all the information about the physical region (or com-

putational memory) where the wavefunction “lives”. It is a fundamental piece for the

library because the wavefunction and the hamiltonian classes are created under the

grid class.

Then, cartesian.h class uses all the basic elements defined on top of a grid: the

wavefunction and the hamiltonian, with the aim of building specific routines to perform

the time-space evolution operators.

The diagram shows finally a box with the main file or script written in C/C++

to perform the actual physical simulations by employing all the classes defined above

1http://www.quantumsimlab.es/pulsesmaker/files.html
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grid.h	  

wavefunc0on.h	   hamiltonian.h	  

fullhamiltonian.h	   diagonalize1D.h	  

cartesian.h	  	  

constant.h	  	  

MAIN.CPP	  
(SCRIPT)	  

QFISHBOWL	  

Figure 3.7: QFISHBOWL library scheme. General flow diagram of the QFISHBOWL
library. The arrows denote the direction of the logical flow.

70



QFISHBOWL

together with the class laser.h. This class is a part of PULSESMAKER, described in

Section 3.2.3.

As mentioned above the QFISHBOWL library was developed by Ruiz. This library

has been extended substantially. For example, new versions of the QFISHBOWL have

been developed, where the 1D Numerov Method is implemented to compute the SW,

the design of two new classes, i.e., fullhamiltonian.h and diagonalize1D.h to di-

agonalize the Hamiltonian in 1D (as it is depicted in Fig. 3.7). These classes can be

extended in a future to the 2D and 3D cases.

Another contribution to this library, is the design of dequation.h. This class

computes the ionization transition amplitude according to the SFA for the interaction

of laser pulses with an atomic or molecular potential, in a px-line and in (px, py)-plane.

Throughout this thesis and due to the limitation of time, we will not describe all the

classes fullhamiltonian.h, diagonalize1D.h and dequation.h. However, we invite

the reader to visit the reference1 [120], where more details are described about those

routines. The next Sections, from 3.3.1 to 3.3.4 will be dedicated to describe the main

components of the class which form QFISHBOWL: grid.h, wavefunction.h, etc.

3.3.1 Computational grid class

The described position-momentum coordinates in Section 2.2.1.2 of Chapter 2, are

implemented in the class grid.h. This class depends on a set of standard and own li-

braries of C/C++ programming language. The standard C/C++ libraries are stdio.h,

iostream, math.h, string, vector, etc.

Here, the own library is the class defined by constant.h, this class defines a set of

constants, e.g., the π number, the imaginary number i =
√
−1, the atomic unit speed

of the light c = 137 a.u., the proton mass in atomic unit mp = 1836, etc. Fig. 3.8,

illustrates the required standard C/C++ libraries by the class grid.h.

Three vector arrays are defined to construct the uniform position coordinates x, y

and z. The sizes of these computational arrays are, Nx, Ny and Nz, respectively. Gr

is constructed by following the rules given in 2.40. Note that the position coordinates

conform an uniform grid.

The momentum grid Gp is also implemented in the class grid.h, in the three vector

arrays px, py and pz. The exact arrangement for the momentum components of the

wavefunction FFT[Ψ(r)] [109] are not the same as in Gp (px, py, pz). Then the order

in Eq. 2.41 is changed in the momentum axis, this change is defined in grid.h. For

1http://www.quantumsimlab.es/qfishbowl/files.html
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qfishbowld/src/grid.cpp

grid.h

constant.h

iostream vector

stdlib.h

stdio.h math.h string complex

Figure 3.8: Grid class diagram. A dependence diagram on the standard C/C++ libraries
of the grid.h class is illustrated.

instance, this arrangement of the momentum axis along px is :

px = {0, ∆px, . . . , i
¯

∆px, . . . , (
Nx

2
− 1)∆px, . . . }, with, 0 ≤ i

¯
<
Nx

2
, (3.1)

and,

px = {. . . , −Nx

2
∆px, . . . , (i

¯
− Nx

2
) ∆px, . . . ,−∆px}, with,

Nx

2
≤ i

¯
< Nx, (3.2)

where, ∆px, is defined according to the Nyquist frequency of Eq. 2.41. A similar

procedure is followed to compute the momentum axis py and pz.

Furthermore, it is important to point out that our implementation of the QFISH-

BOWL code supports the 1D and 2D numerical models. In the 1D case, it is easy to

perform an 1D model by fixing Ny = Nz = 1 and ∆y = ∆z = 1 as well. On the other

hand, the 2D model, i.e. the plane (x, y), can be set by fixing Nz = 1 and ∆z = 1.

Finally, some member methods or routines, i.e., set grid(Nx, Ny, Nz, ∆x, ∆y, ∆z),

are defined in this class to compute each axis, position and momentum coordinates,

respectively. Another important basic routines, e.g., index2D(a b), index3D(a, b, c),

etc., needed to transform a third-order dimensional array syntax in an one dimen-

sional vector syntax, are also implemented here. For more detail about these routines

visit1 [120].

1http://www.quantumsimlab.es/qfishbowl/files.html
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3.3.2 Wavefunction class

The described wavefunction in Eq. (2.42) can be computationally implemented in a

class of C/C++: wavefunction.h. The dependence diagram of the wavefunction class

on the standard C/C++ libraries, fftw3.h library [109] and our own grid.h class,

is depicted in Fig 3.9. The dependence on the grid.h is fundamental because the

wavefunction inherits all the properties of the grid class, i.e. all the variables and

routines: vector arrays which contain the position and momentum coordinates, number

of points and spacing grid steps, etc.

The best manipulation of the computer memory is by utilizing a first-order array

or vector, and not a third-order array. This is the reason why the 3D wavefunction

is written as a vector and not as a third-order array. A complex pointer designed to

compute the forward and backward FFT is implemented in the FFTW library [109].

qfishbowld/src/wavefunction.cpp

wavefunction.h

iostream

fftw3.h grid.h

constant.h

vector

stdlib.h

stdio.h math.h string complex

Figure 3.9: Wavefunction class. A dependence diagram on the standard C/C++ libraries
of the wavefunction.h class is illustrated.

It has a particular data complex type. We have designed a pointer array of w[NT ][N ′].

Here, NT denotes the total number of points given by NT = NxNyNz and N ′ = 2

defines the computational memory space for the real and imaginary parts of the complex

wavefunction Ψ(r). In this way this pointer contains the real part of the wavefunction

in w[NT ][0] ≡ Re[Ψ(r)] and the imaginary part, in w[NT ][1] ≡ Im[Ψ(r)].

It is important to point out how the arrangement of the elements Ψk
¯
,j
¯
,i
¯

have been

carried out in the vector array w. The first elements {Ψ0 ,0 ,0, ...,Ψ0 ,0 ,i
¯
, ...,Ψ0 ,0 ,Nz−1},
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when k
¯

= j
¯

= 0, are placed in the first Nx−1 positions of the vector array w. The same

logical process is employed to arrange the next elements when k
¯

= 0, j
¯

= 1, but here

the corresponding elements {Ψ0 ,1 ,0, ...,Ψ0 ,0 ,i
¯
, ...,Ψ0 ,1 ,Nz−1} are placed on the memory

range of points Nx and 2Nx − 1. In the same logical way all the remaining elements of

Ψk
¯
,j
¯
,i
¯
, are arranged on the computational vector array w.

Furthermore, note that this wavefunction class contains member routines, e.g., to

compute: the forward FFT and the backward FFT of the wavefunction w, the norm of

the wavefunction, the position expectation values, the momentum expectation values

and the normalization of the wavefunction. This is the fundamental kernel of the

wavefunction class.

3.3.3 Hamiltonian or potential class

The potentials of the atomic or molecular systems under study in this thesis have

been implemented in a C++ class which is named hamiltonian.h. This class is built

over the position grid.h and contains a set of routines to evaluate Eqs. (2.43)-(2.45).

Fig. 3.11, depicts the dependence on the classes, in particular on the grid.h.

qfishbowld/src/hamiltonian.cpp

hamiltonian.h

iostream

grid.h

constant.h

vector

stdlib.h

stdio.h math.h string complex

Figure 3.10: “Hamiltonian” class. A dependence diagram on the standard C/C++
libraries of the hamiltonian.h, is illustrated.

As the 3D wavefunction Ψ(r) is computationally arranged in a pointer array w, the

potential V0(r) is implemented in a vector array v as well. The vector array dimension

is defined by the total number of points NT. In addition, this vector will contain all
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the elements V0,k
¯
,j
¯
,i
¯

= V0(zk
¯
, yj

¯
, xi

¯
).

The Hamiltonian class also has some routines to evaluate the different potentials,

e.g., set v hlike3D(...), set v hlike2D(...), set v hlike1D(...), which compute the

hydrogen-like soft core potential well. This hamiltonian.h class also evaluates the

potential energy given by Eqs. (2.43)-(2.45).

3.3.4 Evolution operators: cartesian class

Numerically we implement the spectral split operator method at each time tn, by taking

advantage of the FFTW3 library [109]. In particular, we have developed a class named

cartesian.h. This class makes use of all the other classes grid.h, wavefunction.h

and hamiltonian.h, as it is depicted in Fig. 3.11. The aim of this cartesian class con-

sists of implementing the propagator operators related the the split-operator spectral

method.

qfishbowld/src/cartesian.cpp

cartesian.h

iostream

grid.h

constant.h

string

wavefunction.h

fftw3.h

hamiltonian.h omp.h

vector

stdlib.h

stdio.h math.hcomplex

Figure 3.11: Cartesian class. A dependence diagram on the standard C/C++ libraries of
the cartesian.h class, is illustrated.

Several routines have been implemented in the cartesian class to compute some

observables, such as the momentum distribution, the expectation kinetic and potential

energy values, the left-right asymmetry, the routines to compute the scattering waves,

and the projection of the evolved wavefunction on the scattering waves, etc.

Other important routines to compute the evolution of the wavefunction, namely those

pointed out in (i), (ii) and (iii) of Eq. (2.35), are included in the cartesian class.

These routines, prop kinetic(...,∆t) and prop potential(...,∆t), compute the
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action of the kinetic and potential evolution operator (i) and (ii), (without taking into

account the laser pulse), respectively.

The routine to evaluate the kinetic operators (i) and (ii), prop kinetic(...,∆t), utilizes

the parallel version in OpenMP of the forward and backward FFT. It is important

to point out that the algorithm for the FFT implemented in [109] has a number of

operations O(N log N). This means that the computation of the FFT allows us to

obtain faster numerical results than any other algorithm O(N2), such as the Discrete

Fourier Transform.

The terms (i) and (iii) in Eq. (2.35) are calculated by a single routine which is named

prop kinetic(...,∆t). This routine makes a FFT of the wavefunction Ψ(r). Then,

by employing the kinetic evolution phase exp (−ip
2

2 ∆t) on the momentum spectral

representation Ψ(p) of the wavefunction, we evaluate Eq. (2.36).

It is worth of noting that the phase factor in the momentum space has this form,

exp (−ip
2

2 ∆t), when the length gauge is utilized to describe the problem. In the velocity

gauge, this phase factor becomes, exp
[
−i1

2(p + A(t′n))2∆t
]
, with t′n = t0 + (n+ 1

2)∆t.

The denoted terms (i) and (iii) can be evaluated by replacing ∆t→ ∆t/2 in the routine

prop kinetic(...,∆t) (for instance, see Eq. (2.35)).

The term (ii) in Eq. (2.35) is computed in the position space by evaluating numer-

ically the phase factor, exp
(
−iVi

¯
,j
¯
,k
¯

∆t
)

, times the wavefunction. This is implemented

in the routine prop potential(...,∆t). This phase factor also will depend on which

gauge is used to study the problem. We have implemented and employed both the

length and velocity gauges.

In particular, Fig. 3.12 depicts a snapshot of a portion of the code. It shows the

logic of the time evolution of the wavefunction under the action of a laser pulse. The

depicted propagation scheme is equivalent to the one defined by Eq. (2.35).

The QFISHBOWL library will be utilized to perform some of the calculations re-

garding the physics problems addressed in Chapter 4 and 5.
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Figure 3.12: Example code: QFISHBOWL. Example of a code where the
routines related to the time-evolution propagators are employed for the evolution of
the ground wavefunction which interacts with a laser field. The evolution operators,
prop potential length gauge(...) and prop kinetic change(...) are new routines to com-
pute the time evolution of the wavefunction.
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3.4 BALAS

The implementation of the numerical solution of Eq. (2.70) can be performed by using

the split-operator spectral method joint with the Crank-Nicolson method. Both meth-

ods have been computationally implemented in a library written in C/C++. We have

termed this library BALAS [113].

Here we will give a brief review of the BALAS library implemented to solve the

TDSE in cylindrical coordinates. The architecture is explained in the Fig. 3.13. Similar

to the QFISHBOWL, BALAS requires a constant class, tool.h, etc. It is worth to

mention that BALAS has been developed to compute the TDSE under both numerical

schemes: a nonuniform grid scheme, and an uniform grid scheme. This means that the

split-operator spectral method is implemented in the first one, and in the second one,

the Crank-Nicolson technique.

Figure 3.13: BALAS library scheme. This picture depicts the classes which form the
BALAS library. Two propagation or evolution schemes of the wavefunction have been devel-
oped: (i) non-uniform grid and (ii) uniform grid. The first implements the split-operator spec-
tral method. The Crank-Nicolson numerical technique is implemented in the second scheme.
Both of them are connected by an interpolating class which is needed to transform the wavefunc-
tion from the uniform grid to the nonuniform one and vice versa. Furthermore, visualization
tools based on VisIt software [121] were also recently implemented by the author of this thesis.
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The spectral split operator method requires to compute a Hankel transform along

a cylinder of radius ρ and a FFT on its cylinder z-axis. From a computational point

of view, the Hankel transform is not so efficient as it is the FFT. The HT has an

operation number around O(N2) [114]. On the other hand, the Crank-Nicolson method

only requires a computational operation number about O(N) [103] along the radial

coordinate and the same along the z-direction. This means that in case of cylindrical

coordinates the split-operator method will be slower compared to the Crank-Nicolson.

For this reason, we use the Crank-Nicolson method to address our numerical solution

of the TDSE.

In spite of the fact that the split-operator spectral method is implemented in the

BALAS library [113], it is not used through this thesis to handle any physical problem.

The main reason for that is the large total number of operations needed compared to

those required by the Crank-Nicolson method.

Hankel Transform

In addition, note that through this thesis the time-evolution of the wavefunction Ψ(ρ, z, t)

is performed on an uniform position-space grid (ρ, z) (see, Fig. 3.13). Nevertheless,

when we compute the momentum distribution of the continuum wavefunction part

Ψc(ρ, z, t), e.g. projecting on PW, a FFT will be employed along z-axis, but through-

out ρ-axis a HT is required.

The uniform grid position-space defined by Eq. (2.85) is implemented in a general

class in C/C++ which is termed waveUniform2D.h. The nonuniform radial ρ′ grid

Eq. (2.86) is defined in a set arrai.h and HankelMatrix.h. These classes contain

all the needed routines to compute the Fast Hankel Transform which is described in

the reference [114]. It is also implemented another class, interp.h, to perform the

interpolation of the wavefunction from the uniform to the nonuniform radial grid as it

is depicted in Fig. 3.13. Note, that this interpolation is done along the ρ-axis.

Furthermore, the BALAS classes have been implemented under the architecture of

the MKL Intel library [115]. We take advantage of the MKL optimization routines to

compute the interpolation of a function, the FFT, the matrix product and the MKL

variable types. These routines allow us to perform our calculations utilizing the Intel

processors with the maximum possible optimization for each employed routine [115].

The axis described in Eq. (2.87) is implemented in the HankelMatrix.h class [113].

We have already prepared the required position-space and momentum-space grids to

address the problems under the cylindrical symmetry which will be studied throughout

this thesis. For more details about the documentation of the classes regarding the
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BALAS library, visit the Web Site1 [120].

BALAS library is utilized to carry out some of the calculations related to the phys-

ical problem addressed in Chapter 5. In particular, to simulate the attosecond streak

camera under the conditions of an asymmetric molecular potential.

3.5 QSPHERE

One of the interesting physical problems is to model the ATI process driven by linearly

and circularly polarized laser fields or simply the study of the photoelectron momentum

distributions. To perform a computational calculation in a 3D cartesian coordinates, a

large number of points and also operations is required.

QFISHBOWL library and BALAS have been well organized. However, the main

disadvantage is given by the larger number of points needed to simulate a full 3D

calculation. These libraries only can be used in larger clusters.

For this reason, a new library in spherical coordinates, QSPHERE (Quantum sim-

ulations in the SPHERical coordinatEs) [119], was developed.

The aim of this new code is to reduce the large number of grid points by changing the

solution of the TDSE from the cartesian coordinates to the spherical coordinates. The

advantage of this new coordinate system consists of the expansion of the wavefunction

on Spherical Harmonics which deal with the polar and azimuthal coordinates. Few

points will be required to evaluate the evolution of the wavefunction along the polar

and azimuthal coordinates [122, 123, 124].

The main algorithm consists of evaluating the split-spectral reduced radial operator

for the wave equation [122] together with the reduced wavefunction in two different

schemes. The reduced radial kinetic operator (see Eqs. (1)-(2) in reference [122]),

can be evaluated by a Fourier transform based on the sine function, i.e., the sin(krr).

This means that the corresponding evolution operator to the radial coordinate can

be evaluated by a Sine Transform or FFT. Here we have tested both methods, and

for efficiency we chose the Sine Transform. We have taken advantage of the Fast

Trigonometric Transform (FTT) of the MKL Intel library [115], to compute the forward

and backward sine transform of the reduced radial wavefunction. This routine takes

advantage of the OpemMP parallelization paradigm of the FTT implemented in such

MKL.

The angular part of the Laplacian Operator is evaluated by doing a Spherical Har-

monic Transform [125]. By computing a similar phase factor corresponding to the

1http://www.quantumsimlab.es/balas/files.html
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Eq. (4) of reference [122] the angular part of the Laplacian is computed. In particular,

QSPHERE is right now implemented to the case where the laser pulse is linearly po-

larized along z-axis. Thus, we can neglect the dependence of the wavefunction on the

azimuthal coordinates. It is so, because the linearly polarized laser excites only states

of magnetic momentum m = 0. In such a case, only a Legendre Transform is required

to evaluate the angular part of the Laplacian Operator.

The architecture of QSPHERE can be summarized in Fig. 3.14. The logical flow

of the classes is the following, the constant.h class has some constants, grid.h is

a class which builds the radial and polar coordinates. This class is different from

grid.h of QFISHBOWL. QFISHBOWL has used a vector array by using the standard

C++ vector library. However, in QSPHERE the arrays which will contain the axis

coordinates are defined as double pointers.

QSPHERE	  

constant.h	  	  

tools.h	  

fast_legendre_transform.h	  

grid.h	  	  

wavefunc<on.h	  

sca=eringwaves.h	  

	  poten'al.h	  

SpharmonicKit	  

Sine	  Transform	  
MKL	  Intel	  	  

MAIN.CPP	  
(SCRIPT)	  

Figure 3.14: QSPHERE library scheme. This picture depicts the classes which form
the QSPHERE library and its main dependences: SPHARMONICKIT [125] library and MKL
Intel Fast Sine Transform [115]. Furthermore, visualization tools based on the VisIt software
[121] are also implemented recently by the author of this thesis. The arrows denote the direction
of the logical low.

This is quite advantageous, because we are controlling the memory of the computer
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by ourselves and not by some predefined library. This pointer manipulation is a lit-

tle bit more efficient than the predefined vector standard C++ library. The classes

fast legendre transform.h, potential.h, wavefunction.h, scatteringwaves.h

and tools.h form the so-called QSPHERE library and the reader can find more details

in the Web Site1 [120].

Then, in the same way as the QFISHBOWL library application, QSPHERE can

simulate a physical problem by implementing a main.cpp program that has a script-

like structure, similar to the MATLAB script. For instance it is possible to write a

script to compute a FFT or a spline of a function. This code has been used to carry

out the simulation presented in the submitted paper: High harmonic generation

enhanced by coherent population return.

Finally, by making use of the described theoretical tools in Chapter 2, and in the

current Chapter 3, we will study how the main questions regarding the extraction of

structural information about the target and electron dynamics of the photoemission

processes are addressed throughout the Chapters 4, and 5, respectively.

1http://www.quantumsimlab.es/qsphere/files.html
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4

Amplitude and phase retrieval

techniques: theoretical viewpoint

4.1 Introduction

The advent of new XUV sources [126, 127] and in particular the attosecond pulses [3]

has opened new opportunities for imaging atomic and molecular systems with unprece-

dented temporal and spatial resolution [17, 18]. Attosecond pulses have a broadband

spectrum in the XUV range and can ionize an atom or a molecule by a single-photon

absorption leading to the emission of an EWP. This EWP contains information about

both the attosecond pulse [62, 128] and the underlying atomic or molecular system

[17, 66]. The spectrum of the attosecond pulses and the bound-free dipole transition

matrix element are mapped onto the amplitude and phase of the photoelectron spec-

trum.

The dipole transition matrix element contains structural information [5, 65] about

the initial state. Ionization by attosecond pulses and measurements of the electron

spectra provide then access to the absolute value of the dipole transition matrix element

over a broad range of energies, but the phase of this quantity remains largely unknown

and difficult to measure. For a complete characterization of the system, the knowledge

of the electron phase is essential. It provides structural information, but also insight

into the ionization dynamics, i.e., the Wigner time delay.

In this Chapter, we will propose two general techniques for the complete character-

ization of the EWP and the complex dipole transition matrix element. In contrast to

previous works [58, 61, 62] we do not focus on the characterization of the attosecond

pulse itself but rather on the characterization of the dipole transition matrix element.
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We build upon the previous demonstration of the measurement of the EWP phase dif-

ference [66] to propose a general interferometric method for full characterization of the

complex EWP and the dipole transition matrix element.

As a first scheme, we introduce the Quantum Spectral Phase Interferometry for

Direct Electron-wavepacket Reconstruction (QSPIDER) technique [67]. This method

is a variant of the SPIDER [20, 21] approach, but here it is applied to quantum wave-

functions.

The SPIDER technique is an interferometric measurement of the electric field in

short laser pulses. It uses a non-recursive algorithm [129] to extract the phase differences

between the different frequency components of the pulse.

The SPIDER technique can be employed to characterize attosecond pulses as well. As

was demonstrated by Quere and co-workers [58, 62, 61], the spectral phase of such pulses

can be obtained by applying the SPIDER approach to electron wavepackets generated

by photoionization of an atom by the attosecond pulses, assuming a constant transition

dipole. A spectral shear is then introduced by the presence of a moderately strong IR

field. The observable that contains the interferogram is the photoelectron momentum

distribution.

We demonstrate that this technique [62] can be extended to characterize the am-

plitude and phase of the dipole transition matrix element of the ionization step.

In the second technique, we extend QSPIDER to a bi-dimensional momentum plane

in analogy to the optical lateral shearing interferometry method [130, 131]. This optical

method reconstructs the spatial wavefront of the laser beam by a simple interferometry

scheme [130]. In this method two copies is created and then the spatial shearing are

introduced in the two perpendicular directions [132, 133, 134]. From the resulting two

interferograms the two partial derivatives along the perpendicular directions, i.e., ∂φ
∂x

and ∂φ
∂y , are recovered. Thus, by integrating such a phase gradient, the wavefront of

the laser can be recovered. Similar steps can be employed with the electrons.

The organization of this Chapter is as follows. We define two main Sections: the

first one 4.2 will be devoted to study how the complex EWP and its associated dipole

transition matrix element can be reconstructed by making an analogy to the optical

SPIDER technique. We start this Section reviewing the main SPIDER elements. We

describe how these elements can be used with matter waves. We set up the concept

of an EWP in the Section 4.2.1. The next Section 4.2.2 will be focused to show how

two EWP copies can be launched to the continuum by the subsequent application of

an APT of two pulses. In Section 4.2.3, we show how an ultrashort IR laser pulse

introduces a relative spectral or momentum shearing into the EWP. To this end, we
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use the SFA formalism. This is formally equivalent to the spectral shearing introduced

in one of the laser beam copies. Then, we will study the ionization mediated by the

APT in presence of the moderated IR streak laser in Section 4.2.4. The resulting

momentum streaked interferogram will contain full information about the EWP phase

difference. Section 4.2.5 will be dedicated to study how the IR induces an extra phase

in the case of long-range potentials. We describe the QSPIDER implementation in

Section 4.2.6. Then, we will be able to apply the same SPIDER algorithm to extract

the EWP phase and the dipole phase. The test systems and the results will be addressed

in Section 4.2.7 by employing the SFA. Furthermore, we present in Section 4.2.8 the

results of QSPIDER under a reduced 1D-TDSE model.

The second Section 4.3 will be dedicated to extend our 1D approach to charac-

terize the EWP on a bi-dimensional momentum plane. In analogy to the optical

lateral shearing technique, we will construct two perpendicular lateral momentum-

shearing interferograms to reconstruct the EWP phase or the dipole phase. Then,

in Section 4.3.1 we formally introduce the concept of lateral momentum-shearing by

employing the SFA. In addition, we describe the new steps needed for the QSPIDER

lateral momentum-shearing technique in Section 4.3.2. In the next Section 4.3.3 we

employ all the methodology to extract the complex EWP and complex dipole by using

the lateral momentum-shearing technique. We use two general descriptions to compute

the interferograms, namely the SFA and the full 2D-TDSE. Finally, we present our

conclusions in Section 4.4.

4.2 Quantum spectral phase interferometry for direct EWP

reconstruction

In this Section we will give a brief description of the optical SPIDER technique in order

to set its main characteristics and procedures. In addition, we indicate a general way

to the EWP characterization by using the novel available attosecond science tools.

One of the optical techniques to characterize the electric field in an ultrashort pulse

is the so-called SPIDER. This is used to retrieve the spectral amplitude and phase of

the electric field of an ultrashort IR laser pulse.

Let us assume that a single unknown ultrashort pulse with electric field E(t) enters

to a spectrometer. Thus, a broad spectrum S(ω) ∝ |E(ω)|2 will be measured (see

Fig. 4.1a)). We denote the electric field E(ω) on the spectral domain as E(ω) =∫ +∞
−∞ dtE(t)eiωt. But in the detection process of the intensity in the spectral domain

we loss the phase.
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Interferometric techniques have been successfully employed to reconstruct informa-

tion about the spectral phase of a laser pulse [20, 21]. SPIDER is a special kind of

these interferometric techniques applied to retrieve the spectral phase for an ultrafast

electric laser field. According to Anderson et al. [21], the basic concept of SPIDER can

be explained by two general steps.

First, the unknown electric field E(t) is split into two identical copies E(1)(t) =

E(2)(t). Then, these copies are delayed one from the other by an amount τ as it is

pointed out in the left plot of Fig. 4.1b). If these two copies enter to a spectrometer, then

we will measure an spectral interferogram pattern S(ω) = |E(1)(ω) + E(2)(ω)e−iωτ |2.

This interferogram is depicted in the right plot of Fig. 4.1b). Mathematically, this

spectral interferogram losses the original phase of the electric field E(t). Thus, the

fringes are only related with the delay τ between the two laser pulses copies.

Second, a relative frequency shearing ∆ω or shift is introduced into one of the

delayed copies of the pulse. In our scheme depicted in Fig. 4.1c), the relative shearing

is introduced on the second copy E(2) of the original electric field. The measured

interferogram in SPIDER can then be written as S(ω) = |E(1)(ω)+E(2)(ω+∆ω)e−iωτ |2

[20]. A small spectral shift is found between the no-sheared interferogram in Fig. 4.1b)

and the sheared one in Fig. 4.1c). This shift can be observed by the black vertical line.

This SPIDER interferogram now contains full information about the phase difference

between both laser copies.

SPIDER uses a non-recursive algorithm [129] to extract the phase differences be-

tween the different frequency components of the pulse. The spectral phase difference

φ(ω + ∆ω)− φ(ω) between the two signals is encoded in the position of the fringes in

the interferogram. It can be retrieved using a four-step algorithm which consists of a

FFT to a pseudo-temporal domain, a filtering operation to isolate the AC component,

a removal of the extra phase introduced by the delay τ and finally an inverse FFT

[129]. If the shear ∆ω is small, the obtained phase difference approximately yields the

derivative of the spectral phase [129, 135, 136].

On the other hand, it is well known that when a “long pulse”, i.e., picosecond or

femtosecond, in the XUV range [137, 138] interacts with an atom, the bound electron

absorbs a XUV photon promoting it to a continuum state. The ionized photoelectron

energy has a very short spectral energy bandwidth and therefore a very well defined

central energy [138]. This process is very good explained by perturbative theory which

is the basis of the Einstein’s photoelectric effect.

The attosecond science allows us the study of such a process in a broad frequency

range [66, 17]. When a short attosecond pulse interacts with an atom or molecule
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Figure 4.1: Optical SPIDER scheme. The row a) depicts the electric field oscillations
E(t) of a laser pulse as a function of time (left plot) and its intensity spectrum signal (right
plot). b) The two laser copies E(1)(t) and E(2)(t) which are delayed by τ (left plot) and
the corresponding interferogram pattern. c) The same as in b) but here the second pulse
E
′(2)(ω + ∆ω) is relative sheared ∆ω with respect to the first one E(1)(ω) (left). We also

include the SPIDER interferogram which contains full information about the phase difference
between both copies of the original pulse E(t). The black vertical line shows the shift between
the maximum of the interferogram without shearing and the SPIDER interferogram itself.
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the same Einstein’s effect occurs. However, due to the broad frequency spectrum of

an attosecond pulse, the photoelectrons are emitted into the continuum have a broad

electron bandwidth energy as well.

Our motivation is to study if we can construct a good analogy of the SPIDER

technique to the EWP. To this end, we will take use of the attosecond science tools

and mainly the attosecond streak camera concept [3]. As we will demonstrate by the

subsequent application of two attosecond pulses delayed on time, two delayed EWPs

are launched onto the continuum. Due to the same central frequency of both XUV

pulses, the two EWPs will interfere in the momentum space. However, such an ionized

signal does not contain information about the phase difference of the EWPs or the

dipole transition matrix element. Similar to SPIDER, we will need to introduce a

relative shearing between the delayed EWP copies. The attosecond streak effect can

be employed to this end [67].

The next Sections will be devoted to study how an EWP is launched onto the

continuum by a SAP. According to the first order perturbative theory, we will show

that this EWP encodes also information about the bound-free dipole transition matrix

element.

4.2.1 Photoionization by a single attosecond pulse

The quantum treatment of the electron photoionization by a single XUV attosecond

pulse can be done by the first-order perturbation theory [139] and the full numerical

integration of the TDSE. Here we use both theoretical tools to show that an EWP

carries information about the XUV attosecond pulse itself, i.e., its spectral bandwidth,

and the structure of the system, i.e., bound-free the dipole transition matrix element.

We will see that different structural information about the dipole phase is obtained if

the perturbative theory1 or the TDSE is used to describe the emitted EWP by the

XUV radiation.

According to first-order perturbation theory [86], the bound-free complex transi-

tion amplitude a(p) of the emitted EWP by the XUV attosecond pulse EX(t) from a

bound state |Ψ0〉, at the initial time t0, to the continuum state |p〉 of final asymptotic

momentum2, at the final time tf , reads:

1It is in case that the final continuum state is considered a plane wave.
2Note the asymptotic momentum p is the same as k vector wave (in atomic units). For instance,

see scattering waves in Section 2.2.1.4.
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a(p) = i

∫ tf

t0

dt′d(p) ·EX(t′)ei[
1
2
p2(t′−tf )+Ip(t′−t0)]. (4.1)

where Ip is the ionization potential of the initial bound state and d(p) = −〈p|r|Ψ0〉
is the complex dipole transition matrix element bound-free for the atom or molecule.

The electric field of the attosecond XUV source is EX(t) = E0,X(t)Re
[
e−iωXt+iϕX(t)

]
ez,

where E0,X(t) is the pulse envelope, ωX its carrier or central frequency and ϕX(t) the

time dependent phase of the pulse. Note that the XUV attosecond pulse EX(t) is

linearly polarized along the z-axis.

For this attosecond XUV pulse definition, the complex EWP can be written:

a(p) = A(p)eiϕ(p), (4.2)

A(p) =
1

2

∣∣∣d(p) · ẼX(ωp)
∣∣∣ ,

ϕ(p) =
1

2
p2 (ta − tf ) + Ip (ta − t0) +

φd(p) + φX(ωp) +
π

2
.

where A(p) is the EWP amplitude, ϕ(p) the full EWP phase, φd(p) = arg [d(p)] the

dipole phase, |d(p)| the dipole amplitude and φX(ωp) the spectral phase of the XUV

attosecond pulse which may contain, for example, an intrinsic chirp [44] besides of the

XUV constant CEP itself. We define the frequency ωp axis as ωp = p2

2 −
p2

0
2 , with

p2
0
2 =

ωX−Ip. Here we will refer to this dipole phase φd(p) as residual EWP phase or for sim-

plicity EWP phase. In addition, the term, ẼX(ωp) = ez
∫ tf
t0
dt′E0,X(t′)eiϕX(t′)eiωp(t′−ta),

can easily be recognized as the FT of the XUV attosecond pulse envelope times its phase

eiϕX(t) [139]. We note that Eq. (4.2) is derived by splitting the integral (4.1) into two

parts with respect to the time ta, which is the time at the maximum of the XUV at-

tosecond envelope pulse. Generally, this does not mean the electron is ionized at time

ta.

From Eq. (4.2) we can easily identify that the emitted EWP carry information

about the amplitude and phase of the XUV attosecond pulse. Also the structural

dipole transition matrix element is coded into the EWP. Nevertheless, the attosecond

and dipole phases are lost when the EWP momentum or energy distribution is measured

in the lab.

Furthermore, it is important to note that the final continuum wavefunction ψp(r) =
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〈r|p〉 = 1√
2π

exp (ip·r) is given by the PW of momentum p. This often is a good

approximation, i.e., when the photoelectron energy is high, however this is not generally

the case. Then, we emphasize that the calculation of the complex dipole, dz(p), differs

if PWs, ψp = ψ
(PW)
p (r), or scattering waves, ψp = ψ

(SW)
p (r), are used to compute it.

Figure 4.2: Structural dipole transition matrix element. In blue, the amplitude
(left axis) and in green dashed the phase (right axis) of the bound-free dipole transition matrix
element d(p). Panel a) is calculated by projecting on the PW and panel b) on SW, respectively.
In a) the complex dipole is computed for an hydrogen like atom to model the helium ion with
ionization potential of Ip = 2.0 a.u. The same in b) but for a 1D dimensional soft-core potential
V (z).

As an example, Fig. 4.2 shows the bound-free dipole transition matrix element com-

puted via plane waves and scattering waves projections.

For the complex dipole depicted in a) we employ the analytical formula:

dz(p) = i

(
27/2γ5/2

π

)
pz

(γ2 + p2)3
, (4.3)

with γ2 = 2Ip [43, 140], along pz. For simplicity we will denote the momentum pz as p.

We choose the ionization potential Ip = 2.0 a.u., of the helium ion ground state which

has a potential well V0(r) = −Z/r with Z = 2. On the other hand Fig. 4.2 b) depicts

the same complex dipole but for a 1D soft-core Coulomb potential well V0(z) = − Z√
a+z2

.

We find that Z = 2 and a = 0.5 a.u. are the parameters which match the ionization

potential of the He+.

In case of b), we numerically compute the ground state of the soft-core potential

and then compute the complex dipole by projection on our 1D numerical SWs Ψp(z)

(for more detail about the SWs, see Section 2.2.1.4). The z-axis step is ∆z = 0.01
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a.u. with a grid maximum Lz = 2400 a.u. The momentum p-axis parameters are:

∆p = 0.001 a.u., and maximum Lp = 10 a.u.

We find that while both methods yield a similar shape for the dipole amplitude (the

only difference is a factor), the phases are completely different. This is so, because the

scattering wave contains full information about the potential of the system.

We look now at the ionization by a SAP. By integrating the TDSE in 1D, we

compute the full wavefunction Ψ(z, t) and the EWP emitted, a(p) = Ψc(p), to the

continuum by the SAP. The Hamiltonian H(t), which describes the electron interactions

with the laser and the atom, in the velocity gauge, is defined by:

H(t) =
1

2
[pz +AX(t)]2 + V0(z) (4.4)

where AX(t) = −
∫ t
dt′EX(t′) is the vector potential of the XUV electric field EX(t) and

pz = −i ∂∂z denotes the canonical momentum operator. Then, to calculate the momen-

tum distribution, Se(p) = |a(p)|2 = |Ψc(p)|2, we project the total final wavefunction,

Ψ(z, tf ), onto a complete set of the scattering waves Ψp(z) with asymptotic momentum

p. This complex amplitude a(p) reads:

a(p) = 〈Ψp|Ψ(tf )〉. (4.5)

In order to compare the emitted EWP computed by both methods, we depict in Fig.

4.3 the amplitude and phase of the final momentum distributions. The ionization comes

from the ground state of the He+, which has an ionization potential Ip = 2.0 a.u.

The amplitude of the momentum distributions only differs by a factor. However, the

EWP phases are completely different. In case of the TDSE model, the EWP phase is

strongly dependent on the momentum while in the perturbative theory it is not.

Furthermore, we compare the dipole transition matrix element phase φd(p) to the

EWP phase φEWP(p), after removing the time dependent phase φ(p) = 1
2p

2(tf − ta) +

Ip(ta− t0) + φ0,X , with φ0,X , i.e., the XUV pulse carrier envelope phase. We note that

the EWP phase is in very good agreement with the dipole phase.

Both methods demonstrate that the ionized EWP acquires the phase of the dipole

transition matrix element in the photoemission process. This result is well known

theoretically, however traditional observables in the lab do not have access to such

information.

In this Section we have shown that an EWP carries out information about the
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Figure 4.3: Attosecond electron wavepacket. The amplitude (blue line, left axis) and
phase (green circles, right axis) of the final momentum distribution for the emitted EWP by
a single XUV attosecond pulse starting from a helium ion ground state are depicted. Both
methods, i.e., the first-order perturbative theory (a) and the exact numerical solution of the
TDSE (b) are presented. For comparison, in the same plot, the dipole transition matrix element
phase is shown in red dashed line. The XUV attosecond pulse parameters are: central frequency
ωX = 3.5 a.u., and peak intensity IX = 1013 W/cm2. The envelope is a gaussian with FWHM
= 7.02 a.u., (170 as) and the CEP is π

2 .

amplitude and phase of the dipole transition matrix element. In order to extract the

dipole phase, we need a Quantum SPIDER. In the next Section we will show how two

EWPs can easily be created by a train of two attosecond pulses. It will show that

from the electron momentum interferogram fringes, the delay between the EWPs or

the APT is extracted in analogy with the Optical SPIDER.

4.2.2 Photoionization by two delayed attosecond pulses

In the traditional optical SPIDER the information of the phase difference is directly

encoded in the interferogram created by the two delayed copies of the laser pulse which

one desires to characterize. Here, in analogy to the optical SPIDER, we describe how

two delayed EWPs copies are constructed by the subsequent application of two XUV

attosecond pulses.

Let us say that the electromagnetic fields of such two pulses are denoted by E
(1)
X (t)

and E
(2)
X (t− τ). The APT is then EX(t) = E

(1)
X (t) + E

(2)
X (t− τx). Here, τx = t

(2)
a − t(1)

a

denotes the delay between the two XUV pulses with respect to the envelope maxima.

According to the first-order perturbation theory Eq. (4.2), the complex amplitude

transition a(p) for the two coherent emitted EWPs reads:
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a(p, τx) = a1(p) + a2(p, τx), (4.6)

with

a1(p) = A1(p)eiϕ1(p), (4.7)

a2(p, τx) = A2(p)eiϕ2(p,τx), (4.8)

where Aj(p) and ϕj(p) are the EWP amplitudes and phases which are defined according

to the formulae given in Eq. (4.2). Here j = 1, 2 counts the two EWPs. The two

delayed copies will produce an interferogram pattern if the central frequencies ω(j),X of

the XUV pulses are the same or with similar values between them. This interferogram

Se(p, τx) = |a(p, τx)|2 is defined as the square amplitude in Eq. (4.6):

Se(p, τx) = |a1(p) + a2(p, τx)|2,

= |A1(p)|2 + |A2(p)|2 + 2A1(p)A2(p) cos [∆ϕ(p, τx)]. (4.9)

In our notation, ∆ϕ(p, τx) =
(

1
2p2 + Ip

)
τx + π, is the phase difference between both

delayed emitted EWPs. Note that the π phase difference comes from the fact that the

XUV attosecond pulse is in counter-phase.

Note that this simple Eq. (4.9) shows us that the dipole phase difference, ∆φd(p),

as well as the XUV attosecond pulse phase difference, ∆φX(ωp), are missed in the

measurement process of the two EWPs.

As an example, we calculate the two delayed launched EWPs from the He+ by an

APT of two pulses. To show how the interference pattern changes as a function of the

delay τx, two different delays (τx = T0/2 and τx = T0) have been employed. These

calculations are done by the numerical integration of Eq. (4.6) for the same system

described in the last Section. The results are depicted in Fig. 4.4.

The panels a-b) show the time evolution of the momentum distribution when the

attosecond pulses interact with the system. It is clear that the first EWP is emitted

about the middle of E
(1)
X (t) and immediately after, the second EWP is launched to

the continuum by the second attosecond pulse E
(2)
X (t− τx) to the same final momenta.

While the delay τx increases, the distance between two consecutive minima (or maxima)

decreases. From Eq. (4.9) the interferogram minima (or zeros) occur when the phase

difference is ∆ϕ(pn, τx) = π(2n+ 1). Here n = 0, 1, ... denotes the nodes or zeros in the
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Figure 4.4: Attosecond EWPs interferences. Panels a) and b) show the two delayed
EWPs momentum distributions, Se(p, t), (gray color scale, white the lowest and black the
largest ones) as a function of time, the final momentum distribution depicted in blue area and
the APT in violet area for two different time delays, (τx = T0/2 and τx = T0), between each
attosecond pulse. In our notation, T0 = 2.6 fs, is the period cycle of an IR (800 nm) laser field.
We have performed these calculations by integrating the derived Eq. (4.6). The attosecond
pulse parameters are the same as those used in Fig. 4.3, but here the CEP difference is π. The
momentum grid parameters are ∆p = 0.001 a.u., with a maximum grid size Lp =12.5 a.u.

momentum distribution. We can easily verify that for two consecutive momenta, pn

and pn+1, corresponding to the zeros of the final momentum interferogram the phase

difference is:

∆Eτx = 2π, (4.10)

with ∆E = 1
2p

2
n+1− 1

2p
2
n. The numerical results perfectly match the relation written

in Eq. (4.10) for the two different delays illustrated in a) and b).

It is important to point out that this method is suitable for measuring the time

delay τx between two EWPs or attosecond pulses. However, the dipole phase is missed

and an extra analysis has to be employed in order to retrieve it.

The attosecond streak camera has demonstrated that an EWP can be shifted in

momentum or energy distribution. In the next Section, we will describe how a weak

and ultrashort IR laser pulse induces a momentum shift over the whole emitted EWP

by the XUV radiation. Then, we can apply it as a process to induce a spectral or

momentum shearing like the one used in the optical SPIDER technique. The nonlinear

interaction frequency sum introduces a spectral shearing into the frequencies of the
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pulses to be characterized.

4.2.3 Photoionization in presence of an infrared laser

The ionization by an SAP, in the presence of a moderate IR laser pulse, can be de-

scribed by considering the bound-free transition amplitude a(p, τ) = 〈p|U(tf , t0)|Ψ0〉
that describes the transition from the initial state |Ψ0〉 at time t0, before the pulses

arrives, to a final continuum state |p〉 at the detection time tf . The system evolves

according to the operator U(tf , t0). In our notation τ is a parameter that defines the

time delay between the XUV and the IR laser pulses. An approximated treatment of

this transition is obtained by using perturbation theory for the XUV-induced ionization

and the SFA for the coupling to the IR laser field as it was derived in Section 2.1.6.2:

a(p, τ) = i

∫ tf

t0

dt′e
i
[
Ip(t′−t0)− 1

2

∫ tf
t′ (p+AL(t′′))2dt′′

]
EX(t′ − τ) · d(p + AL(t′)). (4.11)

Here AL(t) = −
∫ t

EL(t′)dt′ is the vector potential of the IR field EL(t). We consider

a linearly polarized IR laser pulse and pulses linearly XUV polarized along the same

z-axis. The time delay τ in the Eq. (4.11), between the XUV and IR pulses, is defined

with respect to the maximum of the pulse envelopes. Positive (negative) time delay

means that the IR arrives before (after) that the XUV attosecond pulse. Fig. 4.5) shows

an example where we observe the time delay line between the IR and XUV pulses.

Within the SFA approach, the final momentum |p〉 is approximated by a PW and

the dipole transition matrix element is defined as d(p+AL(t)) = −ez〈p+AL(t)|z|Ψ0〉.
According to Eq. (4.11), the ionization is driven by the XUV pulse only, while the

IR laser pulse contributes to the phase of the EWP and changes its momentum from

p + AL(t) at the time of ionization to pf at the final time.

An alternative way to compute the integral of Eq. (4.11) is its differential formu-

lation [116] described in Eq. (2.95) of Section 2.2.3. This expression appears to be

very advantageous because it can be integrated by using any algorithm for differential

equations, i.e., fourth-order Runge-Kutta, and does not require to deal with the saddle

point approximation. In addition, the calculation can be parallelized easily using the

MPI [141] paradigm or multiple threads using Graphics Processing Units (GPUs) under

CUDA [142].

A convenient approximation can be used when the SAP is much shorter than the

period T0 of the IR pulse. The final momentum-space wave function is a product of an
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amplitude and a phase factor, similar to the derivation presented in Section 4.2.1. For

an SAP centered at τ with respect to the maximum of the IR envelope, we write:

a(p, τ) = A(p, τ)eiφ(p,τ,tf ) (4.12)

with

A(p, τ) =
1

2
|d(p + AL(τ)) ·E0,X(ωp)| (4.13)

φ(p, τ, tf ) = φd(p+AL(τ)) + Ip(τ − t0)

−1

2

∫ tf

τ

[
p + AL(t′′)

]2
dt′′

+φX(ωp) + φLIC(p, τ) +
π

2
. (4.14)

Here d(p + AL(τ)) = ezdz(p + AL(τ)) is the component of the dipole along the polar-

ization z-axis. The expression E0,X(ωp) = |E0,X(ωp)|eiφX(ωp) is the FT of Ẽ0,X(t)eiϕX(t)

as a function of ωp, which is defined by:

ωp =
1

2
[p + AL(τ)]2 − p2

0

2
, (4.15)

where
p2

0
2 = ωX − Ip. In addition, we note that the central energy Ec = 1

2p
2
c at the

maximum of any final momentum distribution (as result of the solution of Eq. (4.11)),

may be easily computed when the argument of the distribution is zero1 ωpc = 0. This

means the electron momentum distribution of the final resulting EWP will be centered

at the momentum pc = p0 − AL(τ), which is the same result commonly obtained via

the streaking effect, i.e., [58, 59]. It is important to point out that this momentum

shift, pc− p0 = −AL(τ), provides a way to introduce the spectral shearing between two

delayed EWPs. As we will see, this is one of the most important parts in the QSPIDER

implementation.

To obtain Eq. (4.13), we have expanded the phase integral in the exponent of

Eq. (4.11) to first order in t′ around τ , with AL(t′) ≈ AL(τ)−EL(τ)(t′−τ). This is well

justified because, according to the stationary phase condition, the main contribution in

Eq. (4.11) will occur around the maximum of the XUV attosecond pulse. In addition,

1 For instance, a gaussian amplitude f(ωp) = f0e
−ω2

p/σ
2

, then the gaussian is centered at ωp =
1
2

[p + AL(τ)]2 − p20
2

= 0.
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we assume that the IR intensity is weak enough and then the IR does not ionize

the system. We further neglect the changes in the dipole due to the expansion and

approximate d(p + AL(t′)) ≈ d(p + AL(τ)).

In the Eq. (4.14) φX(ωp) is the spectral phase of the attosecond pulse as it is mentioned

in Section 4.2.1. The phase φLIC(p, τ) describes the Laser Induced Chirp of the EWP

caused by the variations of the IR field around time τ , that locates the maximum of

the XUV with respect to the IR. Assuming a Gaussian pulse shape Ẽ0,X(t) ∼ e−αt
2
,

this phase is given by:

φLIC(p, τ) = −1

2
arctan

[
Γ(p, τ)

2α

]
+

2Γ(p, τ)

(4α)2 + [2Γ(p, τ)]2

[
1

2
(p + AL(τ))2 − p2

0

2

]2

, (4.16)

with Γ(p) = [p + AL(τ)] ·EL(τ). The LIC phase is responsible for the different widths

of the EWP in the position space and this is a measure of the attosecond pulse duration

with respect to the variations of the vector potential. For short SAPs (< 200 as) and

modest intensity (IX < 1013 W/cm2) the effects of the LIC phase are negligible. This

phase, Eq. (4.16), depends on the value of the electric field at ionization time τ and it

is zero if EL(τ) = 0. A similar phase exists in the case of the optical SPIDER when an

insufficiently chirped ancilla is used [143]. This phase will become relevant for streaking

and interferometric measurements because it can be larger than the dipole phase.

We compute the ionization probability as a function of the delay τ , by numerical

integration of the Eq. (4.11) in order to illustrate the streaking effect. We choose the

same ground state of the He+ system utilized in the Section 4.2.1. The results are

depicted in Fig. 4.5. We compare the emitted EWP by the XUV source in presence

of the moderated IR field for different time delays (see Fig. 4.5b-d) to a single EWP

in the case that only the XUV (see Fig. 4.5a) is acting on the system. We note that

the final EWP momentum distribution is streaked by the IR laser field and this streak

effects follow exactly the negative values of the IR vector potential ∆p = −AL(τ) at

the time delay τ . This so-called streaking effect will occur under two conditions: First,

the XUV attosecond pulse has to be much shorter than one IR laser cycle and second,

the IR intensity (∼1010-1012 W/cm2) requires to be weak enough to not further ionize

the atom.

The streaking trace is the energy or momentum distribution, S(p, τ), for the electrons

ionized by a SAP in presence of a weak IR for all the delays, τ , between the two pulses.
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Figure 4.5: Photoionization in presence of an IR laser. In the panel a) we plot
the XUV attosecond pulse (violet area) and the final momentum distribution (blue line) of the
emitted EWP by the XUV radiation. Black vertical dashed line indicates the momentum p0
at the maximum of the distribution. In the upper plots of the next panels b-d), the two colors
pulses, the XUV and the vector potential of the IR (red line) are shown for three different
time delays τ = −T0/4, τ = 0 and τ = T0/2. The lower plots depict the final photoelectron

momentum distributions, Se(p) = |a(p, τ)|2, (magenta dashed line) for the ionization driven by
the XUV pulse in presence of the weak IR laser field compared to the case where only the XUV
ionizes the system. Black vertical dashed lines show the momentum shift, ∆p = pc − p0 =
−AL(τ) = −AL(ta), induced by the laser IR field. Here, A0, denotes the maxima of the IR
vector potential AL(t). These calculations were done by integrating numerically Eq. (4.11). The
XUV attosecond pulse parameters are the same than those utilized in Fig. 4.3. The IR laser
electromagnetic field frequency is ω0 = 0.057 a.u. (800 nm of wavelength), its peak intensity
I0 = 2.5× 1012 W/cm2, its envelope pulse is a gaussian with FWHM∼ 8.0 fs and its CEP= 0.
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This is the basic mechanism that explains the streak camera which has been successfully

employed in severals attosecond experiments [3, 6, 59].

In conclusion, according to these analytical and numerical results for the streak

effect conditions, we have demonstrated that the photoelectron spectrum generated by

an XUV attosecond pulse in presence of an IR laser, is momentum shifted.

The next Section will be devoted to study how this momentum or spectral shearing

is induced when two EWP copies are emitted to the continuum by the subsequent

application of two delayed XUV attosecond pulses in presence of an weak IR laser field.

4.2.4 Attosecond electron wave packet interferometry

In Section 4.2.2, we described how two delayed copies of the EWP can be launched to

the continuum by two SAPs. However, this method missed the dipole phase difference

between the two emitted EWPs. In this Section, we will show how the induced mo-

mentum shift by the IR laser pulse can introduce the desirable spectral shearing on the

final momentum interferogram.

In order to implement the QSPIDER technique, two delayed copies of the EWP

with a relative shear or momentum shift between them are needed to construct an

interferogram, which will contain the dipole phase difference. To this end, we use an

APT with two pulses centered at τ1 and τ2, respectively in the presence of a weak IR

laser pulse. The two pulses generate two EWPs which are relatively delayed to each

other by the separation of the pulses in the train [62, 144].

The weak IR laser pulse streaks each of the EWPs by the value of the vector poten-

tial at the ionization time [58] to produce a relative streaking ∆AL = AL(τ2)−AL(τ1)

between the two copies. The streaked and delayed copies produce an interferogram in

the final momentum distribution which is conceptually equivalent to the interferogram

of the optical SPIDER technique. According to the SFA, the interferogram is:

|a(p, τ1, τ2)|2 = |A1(p, τ1)e−iφ(p,τ1,tf ) +A2(p, τ2)e−iφ(p,τ2,tf )|2

= A1(p, τ1)2 +A2(p, τ2)2

+2A1(p, τ1)A2(p, τ2) cos (∆φ21) . (4.17)

Here, A1(p, τ1) and A2(p, τ2), are the (real) amplitudes for each of the EWPs. The

interference term in Eq. (4.17) is governed by the relative phase
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∆φ21 = ∆φd(p, τ1, τ2) +
1

2

∫ τ2

τ1

dt′′(p + AL(t′′))2

+Ip∆τ + ∆φX(p, τ1, τ2) + ∆φLIC(p, τ1, τ2). (4.18)

Where, ∆τ = τ2−τ1, is the delay between the two attosecond pulses and ∆φd(p, τ1, τ2) =

φd(p+AL(τ2)) − φd(p+AL(τ1)) is the phase difference of the dipole transition matrix ele-

ment.

In this approximation the interference depends on five terms. The first one, ∆φd(p, τ1, τ2),

is related to the phase of the dipole transition matrix element. The second term is the

Volkov phase related to the different time spent in the continuum by the two EWPs.

The third term is the accumulated phase difference in the initial state before ionization,

which we call atomic phase. The two last terms are related to the spectral phases of

the attosecond pulses, which also contain the carrier envelope phase difference and the

laser-induced chirp, respectively.

The interference between the two streaked EWPs depends on the emission direction.

Assuming a small collection angle around the polarization direction, we can restrict

ourselves to 1D modelling, i.e., we focus on electrons emitted along the polarization

axis and in a defined left and right direction.

As an example, Fig. 4.6 shows a comparison between the time evolution of the mo-

mentum distributions when the two delayed XUV attosecond pulses create two delayed

EWP copies (a), and when the two XUV pulses in presence of a weak IR laser field

launch the two EWP copies to the continuum (b).

We note that the time evolution of the momentum distributions in a) differs from

b). In particular, panel b) shows that the first ionization event by the XUV pulse E
(1)
X ,

is strongly upper shifted, to higher momentum values, and the second one by the E
(2)
X ,

is down shifted, to smaller momentum values, with respect to the case where there is

no IR (see Fig. 4.6a)). These shifted EWPs lead to a final momentum interferogram

which differs from the case when there is no IR field, as it is expected. According to

Eq. (4.18) this disagreement is mainly caused by the relative phase difference induced

by the vector potential of the IR laser field.

We point out that under the SFA model, this final interferogram contains full informa-

tion about the dipole phase difference, LIC phase difference and the attosecond phase

difference if the attosecond pulses are chirped.

We have completed all the required elements for the QSPIDER implementation, namely:

two delayed EWP copies, a relative spectral shearing and a final interferogram.
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Figure 4.6: Attosecond EWP interferometry in presence of an IR laser. In
panel a) we plot the time evolution of the electron momentum distribution (gray scale color)

when two delayed (τx = T0/2) XUV attosecond pulses, E
(1)
X and E

(2)
X (see violet area, in the

lower graphs), ionize the helium ion atom according to the perturbative theory. The final
momentum interferogram is also depicted in the blue area. Panel b) shows the same, but
here the ionization is performed in presence of a weak IR laser field. The XUV attosecond
pulses are centered at, τ1 = −T0/2 and τ2 = 0, with respect to the IR envelope max. The
relative delay τx = τ2 − τ1, between the XUV pulses is τx = T0/2. The maxima of the XUV
envelopes are located at a negative and positive maxima of the IR vector potential AL(t), as it
is indicated by the black dashed vertical lines in b). In the lower plot, the red line depicts the
IR vector potential AL(t), and the APT, too. The attosecond pulse parameters are those used
in Fig. 4.4. We emphasize that APT is Fourier limit, i.e., the attosecond chirp is zero. The IR
central frequency is ω0 = 0.057 a.u., its peak intensity I0 = 2.5× 1012 W/cm2, its envelope is a
guassian function with FWHM∼ 4.0 fs, and its CEP= 0 rad. The momentum grid parameters
are ∆p = 0.001 a.u., and the momentum length Lp =12.5 a.u.
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We emphasize that, so far, our derivation is based on the SFA model. This theo-

retical approach does not take into account the possible phase shift of the continuum

scattering states and the possible IR laser-Coulomb coupling in case of Coulombic po-

tentials. As it was stated before, we will employ the numerical integration of the TDSE

model as well, for our QSPIDER implementation, considering that it is important to

model the phase difference introduced by the Coulomb laser coupling. To this end,

the next Section will be devoted to describe the coupling between the IR laser and the

Coulomb potential by employing the eikonal approach.

4.2.5 Coulomb laser coupling phase

The theory outlined above is suitable only for systems that are well described by the

SFA, i.e., potentials without a Coulomb tail or short-range ones. For Coulombic po-

tentials, the separation of the electron dynamics into the two steps, ionization and

interaction with the laser field, is problematic because the electron interacts with the

laser field and the long-range potential simultaneously. The long-range character is

also reflected in the field-free continuum states that are needed in the dipole transition

matrix elements. For a potential V (z) with asymptotic behavior −Z/|z|, the positive-

momentum component of a continuum state Ψp(z) for the asymptotic momentum p > 0

behaves as:

Ψp(z) ≈ exp [ipz + iZ ln(2pz)/p] for z →∞. (4.19)

We will follow the eikonal approach of Ivanov and coworkers [145] in order to treat the

Coulomb-laser coupled dynamics. For the purpose of calculating the time-evolution of

the eikonal state, we assume an electron trajectory starting at a distance z0 and moving

outwards [146]. One finds that the position representation of the continuum state after

evolving from the time of ionization τ to the final time tf is:

〈z|U(tf , τ)|p+AL(τ)〉 = eipz e
−i

tf∫
τ
dt (p+AL(t))2/2

× e
−i

tf∫
τ
dt V (z0+p(t−τ)+

∫ t
τ dt
′ AL(t′))

× e
− i
p+AL(τ)

z0∫
zref

dl V (l)

(4.20)

where |p〉 denotes the eikonal continuum state with asymptotic momentum p and

102



Electron wave packet interferometry

U(tf , τ) is the approximated time evolution operator. Since we are primarily inter-

ested in the phase correction due to the laser-Coulomb coupling, we have omitted the

amplitude correction of the wave function in Eq. (4.20). In the following, we assume

that the initial position is z0 = 1/ [2(p+AL(τ)] [146] and furthermore we set z0 = zref

in accordance with the boundary condition of Eq. (4.19). Thus, the last phase factor in

Eq. (4.20) is equal to 1. After a substitution s = z0 + p(t− τ) and inserting a Coulomb

potential V (z) = −Z/|z| we obtain, for z > 0, that:

〈z|U(tf , τ)|p+AL(τ)〉 = eipz e
−i

tf∫
τ
dt (p+AL(t))2/2

× e
iZ
p

zf∫
z0

ds
(
s+
∫ τ+(s−z0)/p
τ dt′AL(t′)

)−1

(4.21)

where zf = z0 + p(tf − τ).

We consider two EWPs with the same asymptotic momentum p, but launched at

two different times τ1, τ2. In the limit tf → ∞, we find that the two wave functions

differ by a relative phase given by

∆φVC(p, τ1, τ2) =
1

2

τ2∫
τ1

dt [p+AL(t)]2

+ lim
zf→∞

[φC(p, τ2)− φC(p, τ1)] ,

φC(p, τj) =
Z

p

zf∫
z0,j

ds

s+
∫ τj+(s−z0,j)/p
τj

dt′AL(t′)
(4.22)

where z0,j = 1/2 [p+AL(τj)] for j = 1, 2. We conclude that in the case of Coulombic

potentials, Eq. (4.18) should be replaced by the Coulomb-corrected phase difference

∆φ21 = ∆φd + ∆φVC + Ip∆τ + ∆φX + ∆φLIC. (4.23)

where we have omitted the arguments for simplicity in the notation.

Finally, the next Section will be focused on describing how the QSPIDER technique

is implemented with all the tools explained above.
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4.2.6 QSPIDER implementation

As previously mentioned, QSPIDER is a quantum implementation of the SPIDER tech-

nique. As it was clearly demonstrated in the last Section 4.2.4, the interference of two

delayed EWPs led to an interferogram pattern in the electron momentum distribution,

where the relevant phase difference ∆φ21 is given by Eq. (4.18) or Eq. (4.23).

The technique first measures the phase difference ∆φ21. For metrology applications,

as suggested by Quere et al. [62], the spectral phase of the XUV pulse can be recovered

by reconstructing the temporal shape of the XUV pulse. This is possible if ∆φd and the

Coulomb corrections are known. In [62] it was assumed that these two phases vanish,

which is not the case for a real atom. In contrast, our aim is to retrieve both the

amplitude and phase of the dipole transition matrix element, assuming that the XUV

field is well known. This also requires the knowledge of quantities such as the relative

shear and the delay between the pulses. All of these quantities can be measured and

used as input information for our QSPIDER algorithm.

The scheme for measuring ∆φ21 is depicted in Fig. 4.7. The panel c) shows a

typical momentum spectrum as produced by the applied fields shown in panel a). This

interferogram carries out information on the amplitude and phase of the EWPs.
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Figure 4.7: General idea of the QSPIDER technique. a) Two attosecond pulses
(violet area) in the presence of a weak vector potential of an IR laser (red solid line) produce
two identical EWPs with different central momentum due to the streaking of the IR field.
Panel b) shows two EWPs at a time after the absorption in position space (green area). c) The
momentum distribution of these EWPs is an interferogram (violet area) containing information
about the amplitude and phase difference of the dipole transition matrix elements. d) The FFT
of the momentum distribution consists of a DC central component and two AC components
(blue line), which is spaced by (τ2 − τ1)p0 with respect to the DC component. After isolating
the right AC (red dashed line), the phase difference can be recovered.
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The QSPIDER technique for amplitude and phase retrieval is useful only for a

limited range of delays and relative shears between the copies, similar to the optical

SPIDER [20, 21]. These restrictions come from the conditions under which the retrieval

algorithm can be applied.

Once the interferogram is available we can apply the QSPIDER retrieval algorithm

which consists of five steps, namely:

(i) We compute the FFT of the interferogram, transforming from momentum space

to a pseudo-position space. The resulting signal is depicted in Fig. 4.7(d). It consists

of one central peak, the DC component, and two lateral signals, the AC components.

(ii) By placing a soft mask, the central DC part can be isolated to obtain the square

amplitude of the EWP |A(p, τ1)|2. This simple procedure allows us to retrieve the

amplitude of the EWP as if only one SAP was used.

(iii) To extract the phase difference ∆φ21 it is necessary to use a soft mask (dot-

ted red line in Fig. 4.7d)) to isolate the right AC term. For a better retrieval of this

phase the DC and AC components need to be well separated. This can be controlled

by “adjusting” the time delay τx = τ2 − τ1 between the attosecond pulses, the central

momentum of the EWP and the spectral width of the XUV pulse. For the attosecond

pulses considered here, the best retrievals are obtained for delays around τx ∼ T0, i.e.,

the period of the laser pulse. Smaller delays τx lead to an overlap between the AC and

DC components, which are separated by p0τx, thus ruining the retrieval algorithm. At-

tosecond pulses separated by one IR laser cycle have been obtained in HHG experiment

with two colors (ω, 2ω) [147]. Furthermore, the delay of the two attosecond pulses can

be controlled by means of a segmented mirror [148]. After isolating the AC component,

we compute the inverse FFT to obtain the phase difference ∆φ21.

(iv) In analogy to the optical SPIDER technique, we can remove the known phases in

Eq. (4.18) or Eq. (4.23) to extract the phase difference of the complex dipole transition

matrix ∆φd(p, τ1, τ2). In principle, the phase difference can be obtained regardless of

the value of the relative streaking between the two copies. Nevertheless, if the relative

streaking ∆AL = AL(τ2) − AL(τ1) is sufficiently small, the phase difference gives the

derivative of the phase

∆φd(p, τ1, τ2) ≈ ∂φd
∂p

∆AL. (4.24)

(v) Finally, an integration with respect to momentum yields the phase of the dipole

transition matrix element.
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Figure 4.8: Basic QSPIDER algorithm. Schematic representation of the QSPIDER
algorithm in analogy to the optical SPIDER algorithm.

The optical SPIDER technique is not able to retrieve the linear spectral phase term

which determines the absolute timing of the pulse, and neither the absolute phase [21].

In QSPIDER, the situation is somewhat different: the linear term of the momentum-

dependent dipole phase can be retrieved since all other contributions in Eq. (4.18) can

be computed. Nevertheless, the absolute dipole phase cannot be retrieved. Therefore,

when integrating the retrieved phase derivative to obtain φd, an arbitrary integration

constant may be added. The removal of the Volkov phase

1

2

∫ τ2

τ1

dt′′(p + AL(t′′))2 =
p2

2
τx + p ·

∫ τ2

τ1

AL(t′′)dt′′ +
1

2

∫ τ2

τ1

A2
L(t′′)dt′′ (4.25)

is straightforward if a full characterization of the IR laser pulse is available. The

same holds for the Coulomb-corrected phase of Eq. (4.22). The time delay τx can be

calibrated by measuring the spacing between fringes in the case of ionization by two

attosecond pulses without an IR field. The relative shear between the two copies can

be measured by blocking alternatively one of the attosecond pulses while leaving the

IR laser pulse active and this would result in the momentum distribution streaked by

the value of the vector potential AL(τ1) and AL(τ2) alternatively.
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The spectral phase of the XUV pulse ∆φX must be characterized either by some

other technique available [62, 58] or by an estimation of the intrinsic chirp based on

the HHG process producing the APT. When the XUV and IR pulses are known, we

can also evaluate the contribution ∆φLIC.

So far we have fully described the QSPIDER schemes fundamental elements and the

retrieval algorithm as well. The next Sections will be devoted to test the QSPIDER

technique to retrieve the dipole amplitude and the dipole phase for different atomic

potentials.

First, we will use the SFA formalism described in Section 4.2.3 to compute the final

momentum interferogram for the QSPIDER technique utilizing as a test system the

He+. Second, we will employ the full TDSE calculations to characterize a complex EWP

and from this the complex dipole transition matrix element (for the cases of the long-

and short-range potentials). Assuming a small collection angle, we can restrict ourselves

to a reduced 1D model, i.e., we focus on electrons emitted along the polarization axis.

This is possible by considering the laser is linearly polarized. In case of the SFA,

this means we will take a line of the momentum distribution along the z-axis for our

numerical calculations for the QSPIDER conditions.

4.2.7 Results within Strong Field Approximation

In order to test the QSPIDER within the SFA, we use the ground state |φ1s〉 of the

helium ion with the Ip = 2.0 a.u., and the first excited state |φ2s〉 with Ip = 0.5 a.u.

(13.60 eV).

For the first case, the dipole has a constant phase (see Fig. 4.9a)) due to the plane

waves Ψp(r) = 1
(2π)3/2 e

ip·r used in the SFA matrix elements and the symmetry of the

initial state. Eq. (4.3) shows the analytical formula for this dipole transition matrix

element. This dipole phase helps us to distinguish extra phases occurring in the mea-

surement or in the retrieval algorithm.

In the second case, the dipole phase is constant except for a phase jump of π at a

momentum where the amplitude of the dipole is zero. The analytical form of the dipole

transition matrix element, dz,2s(p) = −〈p|z|ψ2s〉, for the transition 2s-continuum reads:

dz,2s(p) = −i2
9/2γ5/2

π

2γ2 − p2

(γ2 + p2)4
pz (4.26)

where γ2 = 2Ip. Fig. 4.9 shows a cut of the bound-free dipole transition matrix element
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for the 1s and 2s states of the helium ion. The cut is done along the pz-axis and the

analytical expression for the 2s dipole is calculated as in reference [140].

Figure 4.9: Complex dipole structure for the 1s and 2s of He+. In the panels a)
and b) we depict a cut along z-axis of the amplitude (blue line) and phase (green dashed line) of
the bound-free dipole transition matrix element from the 1s and 2s orbitals to the continuum.
These continuum states are PWs. The complex dipoles are analytical expressions calculated
from [140].

Note that the dipole amplitude in case of Fig. 4.9b) is larger compared to the am-

plitude in a). In addition, a different structure is also obtained in case of a 2s dipole.

This is so, due to the different shape of the orbital 2s compared to the 1s. In Fig. 4.9b),

the node at a position about p = 1.4 a.u., gives us information about the structure of

the orbital 2s.

Characterization of the complex dipole for the 1s

In the case of |φ1s〉 state we have used the following pulse parameters to compute

our QSPIDER interferogram. The APT consists of two pulses with central frequency

ωX = 2.845 a.u. (77.4 eV). The pulse envelope is a gaussian for both pulses with

FWHM ∼ 170 as. The intensity of the XUV pulses is IX = 1013 W/cm2. On the

other hand, the parameters of the IR pulse used here are: wavelength λ0 = 800 nm

(ω0 = 0.057 a.u.) and intensity I0 = 5.0× 1011 W/cm2. The time duration of the laser

pulse is around FWHM ∼ 4 fs and the envelope of the field is a gaussian function. The

momentum grid parameters are ∆p = 0.001 a.u., and the momentum maximum value

Lp =12.5 a.u.

We numerically integrate Eq. (2.95) by using a fourth-order Runge-Kutta numerical

method [103] for the above described pulse parameters and scanning the time delay
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τx = τ2 − τ1 between the XUV attosecond pulses. We have fixed the delay τ1 between

the first XUV and the IR laser (see Fig. 4.10a)). Then, the calculated final momentum

interferograms, S(p, τx), are scanned on the time-delay τx. That is equivalent to vary the

time delay τ2 between the second attosecond pulse and the IR. A very good illustration

about this delays, is depicted in Fig. 4.10a).

Fig. 4.10 shows the final momentum interferogram for QSPIDER as a function of

the time delay τx. The range time delay τx is around one cycle of the IR laser field.

Note that this momentum interferogram shows an interference pattern that is de-

pendent on the time delay τx. It is important to mention that we can associate a

momentum relative shearing to each time delay τx given by ∆AL = AL(τ2)−AL(τ1).

Once the final interferogram is obtained we have employed the QSPIDER algorithm

to retrieve, first, the EWP amplitude and phase derivative and second, the amplitude

and the phase of the dipole transition matrix element. This dipole characterization is

done within the spectral bandwidth of the attosecond pulse or EWP.

We have applied the QSPIDER algorithm to the interferogram (see Fig. 4.10) at

each time delay τx. The best delay for the retrieval is close to one cycle of the IR and

the momentum shear ∆AL = 0.04 a.u.

Figures 4.11b) and c) show the retrieved momentum distribution of the EWP for neg-

ative and positive momenta compared to the case of the absorption from a single

attosecond pulse without IR field, respectively. In addition, we depict the retrieved

derivative of the dipole phase. The results show a very good agreement in the region

defined by the spectral momentum width of the EWP. Figures 4.11d-e) show the re-

trieval of the dipole amplitude and the dipole phase, respectively. The amplitude of the

dipole can be found by dividing the retrieved amplitude of the EWP by the XUV am-

plitude |E0,X(ωp)| [139]. The agreement between the retrieved amplitude and the exact

one is very good over all the accessible range. The retrieved dipole phase after inte-

gration is constant which indicates that the algorithm does not add any artificial phase.

Characterization of the complex dipole for the 2s

In the second case, we analyze the first excited state |φ2s〉. The bound-free dipole

transition matrix element has a node around pz = 1.4 a.u. and the phase exhibits a

phase jump by π at this final momentum (see Fig. 4.9b)). This behavior is similar to

that found around the Cooper minimum in photoionization of Argon [149]. The APT

consists of two pulses with ωX = 1.605 a.u. (43.7 eV) and FWHM ∼ 215 as. The IR

field parameters are the same as in the first example.

The final momentum interferogram is also calculated as a function of the time delay τx.
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Figure 4.10: Streaked interferogram in case of 1s of He+: SFA model. The
final momentum interferogram (color scale in arbitrary units) as a function of the time delay
τx between the XUV pulses is depicted in b). The used pulses are two colors: The first color is
the IR laser field. Its vector potential AL(t) is depicted by the solid red line of the plot a). The
second color is the train of two attosecond pulses (solid violet line) delayed between them by
τx. The time delay τ1 between the first (I) attosecond and the vector potential is fixed while
the time delay of the second (II) attosecond τ2 is varied. The time delay τ2 is changed until
τ ′2 which denotes the final time delay of the second attosecond pulse. This pulse is depicted in
dashed violet line.
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Figure 4.11: QSPIDER retrieval for the 1s of He+: SFA model. a) The red solid
line shows the vector potential of the IR laser pulse. The violet area is the field envelope of the
APT. The retrieved momentum distribution of the EWP (blue circles) compared to the exact
momentum distribution (violet solid line) from the interaction with an SAP in absence of the
IR field is plotted in b) and c) for negative and positive momenta, respectively. The retrieved
derivative of the dipole phase is shown in red and green circles respectively in b) and c). The
retrieved squared amplitude (blue circles) and phase (red and green circles) of the dipole matrix
element is compared to the exact squared amplitude (violet solid line) and phase (red and green
solid line) in d) and e).
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The results are shown in Fig. 4.12. The time delay range τx can be understood easily

by analyzing Fig. 4.12a). Similar to the dipole characterization for the |φ1s〉 state, we

have fixed the first attosecond pulse (I) and varied the time delay τ2 of the second one.

The corresponding range to the time delay τx = τ2 − τ1 between the XUV pulses is

τx = T0/2 and 1.4T0.

Fig. 4.12b) clearly shows that while the fixed first EWP does not change its final

momentum, the vector potential of the IR streaks the second emitted EWP when the

second XUV pulse changes its relative time delay τ2. Note, that this streaked delay-

momentum interferogram encodes also information about the IR laser field.

In addition, we find that this momentum interferogram has a clear signature of the

structural dipole node. Note that we are referring to the zero in the EWPs interferogram

as a function of the time delay τx. This zero is clearly streaked by IR vector potential

AL(t) at the time delay τ2. We are not referring to the zero set by one interferogram

at single delay τx.

We have employed the QSPIDER algorithm to each time delay τx to reconstruct

the EWP amplitude and phase difference. The results are shown in Fig. 4.13 a) and

b). It is noted that the EWP is streaked exactly by the negative value of the vector

potential −AL(τ2) at the time delay τ2. On the other hand, we can see that the EWP

phase difference (or dipole phase difference) ∆φd(p, τx) is hardly changing from −π to

π with respect to the time delay axis. This phase difference is similar to the Dirac delta

distribution about τx ∼ T0. The change of the sign in ∆φd(p, τx) is due to the change

momentum shearing ∆AL, which depends on τx.

Note that, this retrieved phase difference is exactly that one we can expect from

the phase difference of the analytical dipole phase depicted in Fig. 4.9b).

After removing the extra momentum shift induced by the IR vector potential and to

integrate the phase difference of Fig. 4.13, we select the best time delay τx or momentum

shearing retrieval and show the results in Fig. 4.14. The plots 4.14b-c) depict the

retrieved momentum distribution of one EWP compared to the case of the absorption

from a single attosecond pulse without IR field. We can also observe that the retrieved

derivative of the phase is in very good agreement with the exact phase derivative.

Figures 4.14d-e) show the phase after the integration with the correct jump around

pz = 1.4 a.u., as expected. The agreement between the retrieved and exact dipole

amplitudes is very good over all the accessible range and for negative and positive

momentum.

In conclusion, the results under SFA model, shows that the QSPIDER technique

is able to fully characterize the EWP and the complex bound-free dipole transition
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Figure 4.12: QSPIDER momentum interferogram for the 2s of He+: SFA
model. a) The APT and the vector potential are depicted in red line and violet solid and
dashed line, respectively. The solid violet line denotes the first APT which has a time delay be-
tween them about τx = T0/2. The dashed violet line denotes the second XUV at a different and
final time delay τx = 1.1T0. In the plot b) we show the final streaked momentum interferogram
(color scale) as a function of the time delay τx between each attosecond pulse.
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Figure 4.13: QSPIDER for the 2s of He+: SFA model. QSPIDER retrieval of the
momentum EWP amplitude a) and phase difference b) (dipole phase) as a function of the time
delay τx between each of the attosecond pulses.

matrix element in an atom, ion or molecule undergoing photoionization. The technique

requires interaction of the system with a train of two attosecond pulses in the presence

of a streaking IR field. QSPIDER can retrieve amplitudes and phases faithfully in a

region defined by the central frequency and spectral width of the attosecond pulses. If

the pulses are well known and the Coulomb-laser coupling is taken into account, the

technique measures the complex bound-free dipole transition matrix element, which

can be used in the future to access structural information of larger systems.

4.2.8 Results within the Time Dependent Schrödinger Equation

In the last Section, we have shown the results of the QSPIDER by employing the SFA.

A more realistic description of the phases of the system can be obtained by using the

numerical solution of the TDSE. Such calculations include all the laser system couplings

exactly.

Definition of the systems

The 1D time independent Hamiltonian H, that describes the interaction of the electron

with the atomic system nucleus, reads:

H =
1

2
p2
z + V0(z). (4.27)
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Figure 4.14: QSPIDER for the 2s of the He+: SFA model. Lines and symbols as in
Fig. 4.11. (a) Laser pulses used in our simulation. (b-c) Retrieval of the amplitude of the EWP
(blue circles) versus the exact amplitude of the EWP (violet solid line) and retrieval of the
derivative of the dipole phase (red and green circles). (d-e) Retrieval of the dipole amplitude
(blue circles) and dipole phase (red and green circles) of the EWP. The QSPIDER retrieval
(red and green circles) versus the analytical (red and green solid line) dipole phase are shown
for negative and positive momentum, respectively.
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where, pz = −i ∂∂z , is the momentum operator and V0(z), is the potential of the sys-

tem. We choose two 1D potentials to solve TISE and TDSE. The short-range Yukawa

potential is:

V0(z) = − Z√
a+ z2

exp−
(√

a+ z2/as

)
(4.28)

where, a, is a soft-core parameter and, as, is the screening charge length of the potential.

On the other hand, we employ a long-range Coulomb potential similar to the one used

in Section 4.2.1.

Figure 4.15: 1D Potentials, bound states, and complex dipoles. Figures (a) and
(b) show the 1D shape potentials (black solid line) and the electron density (blue area) for the
ground states in case of Yukawa potential (a) and He+ (b), respectively. The dipole amplitude
|d(p)| (blue solid line) and dipole phase φd(p) (green dashed line) are depicted for the bound-
free transition of the both cases; Yukawa potential in panel (c) and soft-core Coulomb potential
in (d), respectively. The dipoles were calculated by projecting on scattering waves Ψp(z) of
momentum p corresponding to the short-range Yukawa and long-range Coulomb potentials,
respectively.

We have taken the soft-core parameters in such a way that they match, on one

hand, the ionization potential energy of the ground state, in case of Yukawa potential

116



1D TDSE results

(Z = 1), Ip = 0.5 a.u., and, on the other hand, the ionization potential energy, Ip = 2.0

a.u., of the helium ion, (Z = 2, Coulombic potential). The bound states are calculated

via imaginary time propagation with a step of ∆t = −i× 10−4 a.u., for each case. The

grid parameters are ∆z = 0.01 a.u., and its whole length Lz = 2400 a.u.

Figs. 4.15a-b) depict the Yukawa and soft-core Coulomb potentials with their re-

spective ground states. Furthermore, we have calculated the exact complex dipole

d(p) = −〈ψp|z|ψ0〉 that will be characterized by using the QSPIDER technique.

The dipoles were numerically computed by projecting on the 1D scattering continuum

waves Ψp(z), which will be described in the numerical methods Section.

Figs. 4.15c-d) show the dipole amplitudes and dipole phases in the case of Yukawa

and Coulomb potentials, respectively. Note that the dipole phase depicted in the case

of He+ is the so-called short-range phase or phase-shift of the scattering waves for this

system. These exact dipoles will allow us to compare them to the final amplitude and

phase characterized via the QSPIDER technique.

Short-range Yukawa potential

Here we present the results of the QSPIDER technique to extract the dipole amplitude

and phase by using the full numerical integration of the TDSE for the case of a short-

range potential well.

The TDSE momentum distributions are calculated after the end of the APT and IR

pulse. To this end, the final TDSE wavefunction is projected onto the continuum scat-

tering waves. The potential well parameters used in our simulation were described above

and the momentum spacing used for the momentum distribution is ∆p = 0.001 a.u.

The APT consists of two pulses with ωX = 2.0 a.u. (54.4 eV) and FWHM ∼ 243 as

and the IR field parameters are the same as in the first example, but now the envelope is

a sine squared function. The delay for the QSPIDER retrieval is chosen close to one IR

period, as shown in Fig. 4.16a). The momentum shear is ∆AL = −0.04 a.u., i.e., much

bigger than the momentum spacing ∆p. Figures 4.16b-c) show the excellent agreement

between the retrieved EWP momentum distribution and the case of the absorption

from a single attosecond pulse without IR field. The retrieved derivative of the phase

is in very good agreement with the exact phase derivative within the EWP momentum

bandwidth. Note that the phase derivative would be equal to zero if PWs were used in

the dipole transition matrix elements. Thus, our results show that QSPIDER retrieves

the linear term in the exact dipole phase quite accurately.

As a general rule, the shear ∆AL should not be chosen too small, as it was found in

the optical SPIDER technique [150, 151]. Otherwise small errors in the measured phase
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Figure 4.16: QSPIDER for the ground state of a Yukawa potential: 1D TDSE
model. The IR vector potential (red line) and the APT envelopes (violet area) are depicted
in a). The time delay between the XUV attosecond pulses is τx ∼ T0. The negative (b)
and positive momenta (c) of the retrieved EWP amplitude (blue circles) and the corresponding
derivative of the dipole phase are shown in b). The red and the green circles denote the retrieved
derivative of the dipole phase. The exact EWP amplitude is depicted in violet solid line. Also,
the exact momentum derivatives of the dipole phase for negative and positive momenta are in
red and green solid lines, respectively.
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difference ∆φd will lead to large errors in the retrieved phase derivative ∆φd/∆AL. An

estimation of the required shear can be obtained by measuring first the residual phase

difference ∆φ
(0)
d for vanishing shear in the presence of the IR laser field. The shear

for QSPIDER should then be chosen such that the measured ∆φd is much larger than

∆φ
(0)
d .

Long-range potential

In this Section, we consider the ground state of a model helium ion described by the

soft-core Coulombic potential which was defined in Section 4.2.1.

The photoelectron momentum distribution is obtained from the numerical solution

of the TDSE by projection on the exact scattering continuum waves. Due to the

long-range character of the potential, we require the continuum waves to satisfy the

boundary condition of Eq. (4.19).

The simulation parameters are ∆z = 0.01 a.u., and Nz = 250000 grid points. The

momentum grid step is ∆p = 0.001 and the length Lp = 10 a.u. The attosecond pulse

shape is gaussian for both XUV pulses with FWHM ∼ 170 as and central frequency

ωX =4.0 a.u. Figures 4.17(b-c) show the results.

The retrieved derivative of the phase is in good agreement with the exact phase

derivative within the EWP momentum bandwidth. In this case both the LIC phase

and the Coulomb laser coupling phase are important and contribute to the overall

phase in similar weights. Therefore it is necessary to calculate these contributions with

high precision. Further, as the derivative of the phase is calculated by dividing two

quantities, for small values of relative shear ∆AL we need a great precision for these

two phases which are the most sensitive of all the quantities considered here.

In conclusion, our numerical results of the QSPIDER within SFA and the reduced

1D-TDSE model demonstrated clearly that this quantum interferometry technique

works reasonably well to extract the complex EWP and the complex dipole transi-

tion matrix element. The QSPIDER utilizes an APT of two pulses in presence of a

weak IR-laser field which results in a final EWPs interferogram. This allows us to

extract the complex dipole transition matrix element within the spectral bandwidth

range defined by one of the XUV attosecond pulse copies. It is important to point out

that QSPIDER inherits all the issues of the optical SPIDER to extract the phase, e.g.,

a detector with high spectral resolution is needed in order to recover a very accurate

phase derivative.

We will extend QSPIDER to characterize the EWP and dipoles plane and not only

along the polarization laser axis. The next Section will be studied how to retrieve the
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Figure 4.17: QSPIDER for the ground state of a Coulomb potential: 1D
TDSE model. The IR vector potential (red line) and the APT envelopes (violet area)
are depicted in a). The time delay between the XUV attosecond pulses is τx ∼ T0. The
negative (blue circles) (b) and positive momenta (c) of the retrieved EWP amplitude and the
corresponding derivative of the dipole phase for negative (red circles) and positive (green circles)
momenta are shown in b). The retrieval results are compared to the exact calculation of the
EWP amplitude (magenta solid line) and phase: red solid and green solid lines in case of
negative and positive momenta, respectively.
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dipole or EWP phase in a 2D momentum plane.

4.3 Lateral momentum-shearing EWP interferometry tech-

nique

In the last Section we have shown that the QSPIDER technique works to retrieve the

EWP amplitude and the structural complex dipole transition matrix element within the

spectral region defined by the XUV attosecond pulses. However, this implementation

restricts the motion of the electron wave packet along a 1D line, i.e., we lost the angular

information.

We remind that in the lab a momentum interferogram can be measured in a plane

(px, py) by a velocity map imagining technique. This allows us to assume that an

analogy between the optical lateral shearing interferometry technique to extract the

wavefront of the laser beam can be employed to EWPs interferometry too.

The general purpose of the next Sections is to extend our characterization of the

complex EWPs and complex dipoles to a momentum plane (px, py). To this end, we

will take advantage of the analogy between the optical wavefront characterization and

the quantum determination of the EWP amplitude and phase.

There is a large variety of optical wavefront techniques, i.e., Hartmann-Shack [131],

lateral shearing interferometry [130], Foucault knife-edge test, [132], etc. The lateral

shearing is one of the most simple implementations to reconstruct the laser beam wave-

front. This technique is similar to the optical SPIDER, but here the shearing is induced

in the spatial wavefront of the laser beam and not in the spectral domain. To char-

acterize the space phase profile [152], two partial derivatives need to be implemented

in the measurement process: one on the x and another one on the y direction. Here

we assume that the laser is propagating along the z-axis. Fig. 4.18 depicts a general

scheme about the lateral shearing interferometry technique.

The upper panel a) shows the two copies of the beam, AF,1(x, y + ∆y/2) and

AF,2(x, y−∆y/2), depicted by two different color circles. The copies are lateral shifted

one with respect to the other one along the y-axis by an amount of ∆y. The lower

panel a) shows the same, but the lateral shearing is now along the x-direction.

The two lateral shearings, create two different interferograms in the overlap regions

which contain full information about the phase differences along the x and y-directions.

These interferograms are depicted in the upper (sheared on y) and lower (sheared on

x) panel of Fig. 4.18b). If the lateral shearings, ∆x and ∆y, are small enough, i.e.,

around of the grid spacing order, the phase differences, ∆Φy(x, y) and ∆Φx(x, y), can
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Figure 4.18: Lateral shearing interferometry technique in the Optics. Panel a)
shows the diagrams for the lateral shearing on y (upper plot) and x (lower plot) directions. As
it is denoted by the black and the orange circles, two copies of the laser beam are created that
are lateral sheared one with respect to the other. The lateral shearing are indicated by ∆y and
∆x. The upper and lower panels b) show the interferogram structures for both lateral shearing
beams. In addition, the panel c) depicts the two dimensional Fourier transform (2D-FFT) of
the interferograms shown in the panel b). In c) the white rectangles denote the positive AC
component for the y and x shearing which encode the partial phase derivatives, fy(x, y) and
fx(x, y).
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be approached to the partial derivatives of the phase, ∆Φy(x, y) ≈ ∆y ∂Φ(x,y)
∂y and

∆Φx(x, y) ≈ ∆x∂Φ(x,y)
∂x , on x- and y-directions, respectively [130, 152]. For simplicity,

we denote the derivative of the phase along x and y as fx(x, y) and fy(x, y), respectively.

From a mathematical viewpoint at least these two phase partial derivatives of the

beam AF(x, y) are required to reconstruct the phase Φ(x, y) and therefore the wave-

front is obtained. Then, this is the main reason to work with two different sheared

interferograms.

To extract the partial derivatives from one of the interferograms three steps are

followed: First, the 2D-FFT is employed on one of the interferograms, i.e., see upper

plot in Fig. 4.18 c). Then, the positive-momentum AC component, AC
k

(+)
y

(kx, ky), is

isolated. In the case of the lateral shearing interferogram on y-direction, the momentum

component is about k
(+)
y,0 . After filtering this AC component, it is moved to the zero

momentum along ky [129]. We denote this shifted AC component as AC′
k

(+)
y

(kx, ky).

Second, the two dimensional inverse Fourier transform (2D-IFFT) is done to the shifted

AC component A′F,y(x, y) = IFFT

[
AC′

k
(+)
y

(kx, ky)

]
to return back to the position space

(x, y). The third step is to compute the phase of A′F,y(x, y) that relates the partial

derivative fy(x, y) of the phase along the y-direction. In order to recover the partial

derivative fx(x, y), these three steps are also applied to the interferogram for the lateral

shearing on the x-direction. The only difference is the isolated direction of the AC

component that is now k
(+)
x,0 .

Once the two partial derivatives are extracted, the phase Φ(x, y) for the wavefront can

be retrieved by integrating the gradient which contains fx(x, y) and fy(x, y).

To characterize the EWP, we will use the same APT of two pulses linearly polarized,

but the streaked field will be circularly polarized. The main feature of this circularly

polarized IR laser is that the two EWP copies can be lateral momentum sheared along

both momentum-directions px and py. In the case of the EWPs this effect will depend

on the ionization time and the time delay between the APT and the circular IR laser

field.

For a better understanding of the lateral shearing or lateral streaked EWP, the

Fig. 4.19 depicts the basic idea for the lateral momentum-shearing on y-direction. The

figure shows an APT in presence of a circular IR laser field and the two emitted EWPs

with their final momentum streaked interferogram. The XUV attosecond pulses are

linearly polarized along the x-direction.

When the first XUV laser pulse, E
(1)
X , ionize the atom or molecule, the IR vector

potential, AL,y(t), on the y is maximum while the x component at the same time,
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AL,x(t), is zero. Then, the momentum distribution Sp,1 of EWP is streaked only along

the py-axis (see color map denoted by Sp,1 in Fig. 4.19). The second XUV attosecond

pulse, E
(2)
X , is located at a time delay τx of one IR cycle with respect to the first

XUV. This means that the second momentum distribution of the Sp,2 EWP is created

around a zero of the IR vector potential, AL,x, component and a small value of the

AL,y. This is so, because the IR laser pulse has a ultra-short envelope. This scheme

ensures that only the EWP will be sheared along the y component in order to get the

most cleaning partial momentum phase derivative along the py-axis. Otherwise the

final 2D interferogram will contain a resulting shearing on px and py-directions, which

complicate the extraction of the phase of the partial derivative along the py.

Figure 4.19: Lateral momentum-shearing for the EWPs interferometry
scheme. Graphic representation of the two delayed EWPs denoted by Sp,1 and Sp,2 (color
scale maps) and the final streaked momentum interferogram. The photoionization is driven by

the two delayed attosecond pulses E
(1)
X and E

(2)
X (violet solid line) in presence of a weak IR

laser field (red solid line) which is circularly polarized. The XUV pulses are polarized along
the x-axis. The circular vector potential of the IR is depicted in red solid line. The y-axis
component of the vector potential of the IR laser field AL(t) is shown in green line. In this
case, the EWP is time delayed by τx = T0.

The lateral momentum-shearing on the px-direction can be easily constructed by chang-

ing the CEP of the IR laser pulse or the time delay between the APT an the IR.

So far, we have shown that the lateral momentum-shearing interferometry can be

implemented for the EWP characterization phase in a 2D plane, analogous to the optical

counterpart. However, we note that our implementation will be slightly different than

the optical one. The main difference is that the momentum distribution of the EWP
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is located around a ring and not in a total disk like in the case of the optical wavefront

characterization.

The next Section will be focused on defining the two lateral momentum-shearing

interferograms needed to extract the full EWP partial phase derivatives by employing

the SFA.

4.3.1 Two dimensional electron wave packet interferometry

While in the optical lateral shearing interferometry the shearing is introduced by a

shearing plate [14], in our quantum version the control of the IR laser field polar-

ization induces the desirable lateral momentum-shearing along the two perpendicular

directions.

In order to demonstrate that two lateral shearings on px and py-directions can

be induced in the EWPs, we integrate numerically the differential form of the SFA,

Eq. (2.95), for the ionization complex transition amplitude a(p, τ1, τ2). The attosecond

streaking effect and QSPIDER conditions are taken into account for those calculations.

In addition, we have assumed that the APT of two pulses are polarized along the x-axis

and the IR laser field is circularly polarized in the xy plane.

We chose the 2p state of He+ as an initial example. The orbital is oriented along

the y-direction and therefore the corresponding bound-free dipole transition matrix

element d2p(p) = −〈p|x|Ψ2p〉 reads:

d2p(p) = 1536
Z7/2

π

px py

(Z2 + 4p2)4 , (4.29)

where Z = 2
√

2Ip in the case of the 2p state for the He+ [140]. The ionization potential

of the 2p orbital is about Ip = 0.5 a.u. Note that this bound-free dipole transition matrix

element has two perpendicular nodes, namely one along the x−axis and other on the

y-axis. It is important to mention that the node on the x-direction brings structural

information about the orientation of the 2p orbital. The node on the y-direction brings

information about the coupling between the XUV polarization and the orbital 2p.

The APT parameters are as follows: peak intensity IX = 5 × 1012 W/cm2, central

frequency ωX = 2.0 a.u., and FWHM= 175 and CEP= π/2 for the first XUV pulse

E
(1)
X (t), and the same peak intensity and time duration for the second E

(2)
X (t), but

now the CEP= −π/2. Both attosecond pulses are polarized along the x-axis. As an

example, the time delay τx between the two attosecond pulses is fixed to τx = T0/2. The
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IR laser field is circularly polarized and its parameters are: peak intensity I0 ∼ 1013

W/cm2, central frequency ω0 = 0.057 a.u., FWHM ∼ 7 fs with a sin2 envelope and

CEP = 0.

It is important to mention that the time delay τx is chosen to half IR cycle because

the first EWP will be streaked on the negative (or positive) py-direction and the second

EWP, on the positive (or negative) py-direction, respectively. This momentum streak

will depend on the relative time delays, τ1 and τ2, between the APT and the IR laser

field. Thus, under this scheme, the lateral shearing on py-direction is constructed in

order to get the first interferogram which contains the EWP phase partial derivative

along y. Fig. 4.20 shows the results using SFA under both lateral momentum-shearing

in perpendicular directions.

First of all and for comparison, we have computed the final momentum distribution

for the photoionization driven by a single XUV attosecond pulse (see upper plot in the

Fig. 4.20a)). It is important to note that the momentum bandwidth sets the region

(in this case a ring), where we recover the dipole phase. Width rings of the lateral

momentum-shearing interferograms, which are induced by the circular IR laser field on

both directions, are also compared.

The upper plot in Fig. 4.20b) shows the pulses for the lateral shearing simulation

on the y-direction. The lower plot shows the coherent superposition of the two EWPs

or lateral momentum-shearing interferogram along the y−direction. As it is shown by

the green circle lines, a large streak on each EWP is induced by the y-component of the

circularly polarized IR laser field. For instance, the first EWP is upper momentum-

shifted by an amount ∆py = −AL,y(τ1) = A0.

The second one, on the other hand, is down momentum-shifted by ∆py = −AL,y(τ2) =

−A0. Here, A0 denotes the maximum amplitude of the IR vector potential AL(t). Then,

the total lateral momentum-shearing on y-direction will be defined as the difference

∆AL,y = AL,y(τ2)−AL,y(τ1).

Note that for this lateral momentum-shearing, ∆AL,y, the final interferogram fringes

are limited to the overlap regions between both streaked EWPs. Thus, it is important

to control the lateral momentum-shearing with the purpose to obtain the maximum

momentum overlap region. This will allow us to recover the partial derivative on a

larger region where the EWPs overlap.

The lateral momentum interferogram on the x-axis is depicted in Fig. 4.20c). This

coherent EWPs superposition is obtained by changing the relative time delays, τ1 and

τ2, between the APT and IR laser field to a total amount of T0/4 (see upper plot in

Fig. 4.20c)). In this case, the first EWP is only momentum-shifted to the negative x-
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Figure 4.20: 2D EWPs interferometry. a) The single attosecond pulse EX,x(t) in the
upper plot is depicted in the violet area. In the lower plot the corresponding final momentum
distribution Se(px, py) = |a(p)|2 of the emitted EWP from the 2p orbital of He+. The violet

dashed circle line indicates the radial central photoelectron momentum p0 =
√

2(ωX − Ip).
The circular IR vector potential components on the x-direction (AL,x(t) red line) and on the y-
direction (AL,y(t) green line) are shown in the upper graphs of b) and c), respectively. The APT
fields are also depicted in violet areas. In both graphs b) and c), the time delay τx = τ2−τ1 = T0

2
is fixed. The relative time delays τ1 and τ2 between the APT and the IR are changing as it
is pointed out in b) and c). The final lateral momentum-shearing interferograms on py and
px-directions are shown in the lower plots of b) and c), respectively. The corresponding green
dashed circle lines in b) are centered at the momentum vector (0,±∆py), this is at the points
(0,±A0). A similar behavior is shown in the red dashed circles of c), but here the circles are
centered at (∓∆px, 0). In b) and c), the radius of these circles is the same and it is p0. In all
the lower plots a-c) the black crosses denote the momentum origin (0, 0). These momentum
distributions were calculated by the numerical integration of Eq. (2.95).
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direction, ∆px = −AL,x(τ1) = −A0, and the second EWP one, to the positive, ∆px =

−AL,x(τ2) = A0. This is clearly shown with red dashed circles in Fig. 4.20c). Thus, we

define the lateral momentum-shearing on the x-direction as ∆AL,x = AL,x(τ2)−AL,x(τ1).

Our numerical SFA results suggest that a scheme of two lateral momentum-shearing

interferograms, one on the x- and another one on the y-direction, is essential to extract

the EWP phase gradient and therefore, the dipole phase gradient as well. These two

coherent EWPs interferograms are based on the ionization driven by the APT linearly

polarized in presence of a weak circularly polarized IR laser field.

The next Section will be dedicated to explain the retrieval algorithm and the best

conditions for the implementation of the lateral momentum-shearing interferometry

QSPIDER technique.

4.3.2 QSPIDER and 2D lateral momentum-shearing implementation

One of the steps which deserves special attention in the lateral momentum-shearing

technique is the overlap momentum region. As described before, the lateral momentum-

shearing can be manipulated by controlling the IR laser field, i.e., by changing the IR

peak intensity.

In this Section we review the steps to extract the EWP and dipole phase gradients.

In addition, we define the most convenient IR intensity range in order to build the

interferograms with the maximum possible overlap between the emitted two EWPs.

It is also important to choose the most convenient time delay τx between the two

attosecond pulses in order to well separate the DC and AC components.

As an example, figure 4.21 depicts the SFA calculations for the QSPIDER with

lateral momentum-shearing on the y-direction and the first steps for the EWP ampli-

tude and EWP phase partial derivative reconstructions. The chosen complex dipole

transition matrix element is the same as in the Section 4.3.1 defined in Eq. (4.29).

The top plot shows the x- and y-directional components of the IR vector potential

AL(t) ≡ (AL,x(t), AL,y(t)) and the electric field EX(t) of the APT which are linearly

polarized along x-axis.

The APT parameters (for both XUV pulses) are: central frequency ωX = 2.0 a.u.,

peak intensity IX = 5.0 × 1012 W/cm2, FWHM ∼ 175 and CEP= ±π
2 . For the first

(second) XUV, the sign is positive (negative). As it is denoted on the top of Fig. 4.21,

the time delay between the XUVs is fixed to τx ∼ T0. We have found that this is the

most convenient time delay to separate adequately the AC from DC components, and

most importantly for extracting the EWP partial phase derivative on the y-direction
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Figure 4.21: 2D EWPs lateral momentum-shearing along y-direction. On the
top, the two IR vector potential components AL,x(t) (red line) and AL,y(t) (green line), and
the APT EX,x(t) (in violet areas) which are linearly polarized along x-direction. In a), the final
full lateral momentum-shearing interferogram Se(px, py, τx) along y-direction for the coherent
superposition of the two emitted EWPs in presence of the circularly IR laser field. The insets
show a small region of the interferogram to highlight the fringes. In the plot b) we depict the
absolute value of the IFFT[Se(px, py, τx)] as a function of the pseudo-position domain (x, y).
We also indicate the DC and AC components. c-d) The isolated DC component and positive
AC component for x > 0. The inset in d) shows a zoomed space region.
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(see Fig. 4.21b)). The circularly polarized IR laser parameters are: central frequency

ω0 = 0.057 a.u., peak intensity I0 = 5.0 × 1011 W/cm2, FWHM ∼ 4 fs and CEP = 0.

The envelope of the IR laser pulse is sine-squared.

The maximum overlap between the two streaked EWPs is obtained at the peak IR

intensity I0. Then, the induced lateral momentum-shearing is ∆AL,y(t) = 0.062 a.u.

This relative shearing is small enough to approach the EWP phase different to the

partial derivative of the phase.

The momentum grid parameters on the x-axis are: momentum length Lpx = 10 a.u.,

and momentum step ∆px = 0.004 a.u. The same momentum grid parameters are

chosen for the y-direction.

As it is also mentioned in the QSPIDER technique, the momentum shearing should be

comparable to the momentum grid step. However, ∆AL in general cannot be smaller

than ∆px. Otherwise, the numerical accuracy is not able to ensure a good partial

derivative of the EWP over the defined momentum grid range.

Fig. 4.21a) shows the final interferogram of the coherent superposition of the two emit-

ted EWPs by the above described pulses. The ring of interference fringes shows a very

good overlap of the two EWP copies. The inset plot depicts a small momentum range

(white lines) needed to observe the interference fringes.

Once the interferogram is calculated, we are in the position to apply the QSPI-

DER technique or the lateral momentum-shearing interferometry algorithm. Thus,

Fig. 4.21b) plots the 2D inverse Fourier transform of the full EWPs momentum inter-

ferogram as a function of the pseudo-position space (x, y). Both components DC and

AC are indicated in the picture. As it is noted both the DC and AC components are

very well separated from each other.

Figs. 4.21c-d) depict the isolated DC components and AC positive component for

x > 0 along all the y-range, respectively. In other words, we have chosen the first

and fourth quadrants of the pseudo-position coordinate system for the positive AC

component.

We isolate the AC+ component in order to retrieve the EWP phase derivative of the

structural node on the x-direction. This node comes from the 2p orbital. In this

way, we find that the lateral momentum-shearing algorithm will be different to the

optical technique. The momentum interference fringes of the EWPs exhibit a radial

interferogram behaviour and not a parallel to x- or y-axes like in the Optics.

Furthermore, we have isolated the first and second quadrants as a “positive” AC com-

ponent (for y > 0 and for all x) in order to retrieve the phase gradient along the y-axis.

Thus, we should expect to extract the dipole phase derivative along y-axis. This was not
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the case. However, the best one positive AC momentum range is shown in Fig. 4.21d).

As we will see, this region exhibits a nice derivative retrieval of the node along x-axis,

as it would be easily expected.

To extract the EWP amplitude and the EWP phase derivative along y-axis, we

will go back to the momentum domain. Then, a FT is done on the complex DC

component A(p) = FFT [DC(x, y)] (see Fig. 4.21c)) and on the complex AC component

Aφ(p) = FFT [AC+(x, y)]. Fig. 4.21d) shows these quantities. Then, to extract the full

EWP amplitude as if a single EWP was created, we remove the shift induced by the

IR and divide the resulting amplitude by the spectrum of the a SAP.

The EWP phase difference ∆φd,y(p) ≈ ∆AL,y
∂φd(p)
∂py

is recovered also by removing

the time-dependent phase differences from the phase of Aφ(p). The phases to be

removed are:

(i) The Volkov phase difference, Eq. (4.25),

(ii) The so-called atomic phase difference ∆φa = (τ2 − τ1)Ip = τxIp,

(iii) The LIC phase difference ∆φ(p, τ1, τ2), which can be obtained from Eq. (4.16),

(iv) The XUV attosecond phase difference ∆φX(ωp).

Finally, the same described steps are applied to the lateral momentum-shearing

interferogram on the x-orientation. This interferogram is computed by changing the

time delays τ1 and τ2 of the XUV pulses with respect to the IR laser field but fixing

τx = τ2 − τ1 ∼ T0. This means that the time delays τ1 and τ2 are changed about T0/4,

i.e.:

τ1 → τ1 ±
T0

4
,

τ2 → τ2 ±
T0

4
. (4.30)

This guarantee that the lateral momentum-shearing will be along the x-axis. Another

scheme that can be applied to induce the shearing along the x-direction, would be

to change the CEP of the IR laser field and to fix the time delays between the APT

and the IR laser field. Finally, with this lateral momentum-shearing interferogram on

the x-axis, we are able to extract the EWP phase gradient on the x-direction and by

following similar steps to retrieve the gradient on y-direction. The main difference will

be in the isolated AC component: the region will be now defined by the first and second

quadrants in case of the extracted phase difference analysis for the lateral shearing along

x-axis.

Once we have the two partial derivatives of the phase (∂φd(p)
∂px

, ∂φd(p)
∂py

) the EWP
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phase or dipole phase can be recovered by integrating this gradient.

4.3.3 Results within SFA and TDSE models

In the next Sections we will describe how to apply the lateral momentum-shearing

QSPIDER technique by using the SFA and the TDSE. The SFA works very good for

potentials where the influence of the Coulomb tail in the photo-ionization process,

in presence of a weak IR laser field, is negligible. We will calculate the momentum

distribution of the EWP, by using SFA for the two lateral momentum interferograms

as is described above.

As an example we chose two bound states. These are the 2s and the 2p orbitals of

the He+ ion atom. The dipoles of the problem will be the bound-free transition from

the 2s and 2p states to the continuum described by Eqs. (4.26) and (4.29), respectively.

We will compute the two final lateral momentum-shearing interferograms by em-

ploying our 2D TDSE to the 2p orbital in an atom described by a short-range potential.

4.3.3.1 Lateral momentum-shearing results within SFA

In order to test the QSPIDER lateral momentum-shearing interferometry technique,

two examples are chosen. These are: the bound-free transition given by the equa-

tions (4.26) and (4.29). These dipoles are transitions from the 2s and 2p states to the

continuum. We denote them by d2s(p) and d2p(p), respectively.

These calculations are performed under the assumption that the APT are linearly

polarized on the x-axis. The complex dipoles are depicted in Fig. 4.22.

In particular, the amplitude and phase for d2s are depicted in a) and c), respectively.

The same in b) and d) but here for d2p. In the case of 2s, two different nodes emerge:

the first one is a vertical line at px = 0 along py-axis; the second one is a circular

node which denotes a circle of radius prn = 1.41 a.u. The phase of the dipole d2s

also reflects the structure of the different nodes in the dipole amplitude. The phase

structure exhibits different phase jumps of π which can be seen in Fig. 4.22c). It is

important to point out that the radial node encodes information of the orbital shape for

2s state, meanwhile the vertical node along py-axis carries out information about the

coupling between the XUV and the 2s state. This is so because the XUV is polarized

on the py-axis. Then, information about the attosecond XUV polarization is also given

by this node along the py-orientation.

Figs. 4.22b) and d) show the dipole amplitude and the dipole phase for the transi-

tion 2p-continuum, respectively. The amplitude depicts two perpendicular nodes: one
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Figure 4.22: Complex dipole for the 2s and 2p states. a) And b) depict a 2D
cut on the momentum plane (px, py) of the dipole transition matrix element amplitude for
the transition from the 2s and 2p states to the continuum |p〉, respectively. c-d) show the
corresponding dipole phases.

is along px-axis and the other one on the py-axis. The horizontal node denotes in-

formation about the 2p state. Thus, we can infer that the orbital is oriented along

y-direction. The dipole phase structure also exhibits phase jumps of π between each

one of the quadrants. It is interesting to point out that these phase jumps also encode

information about the structure of the orbital 2p as well as the interaction between the

XUV and the orbital.

QSPIDER momentum-spatial shearing in the 2p

Here we will show the first results of the emitted EWP characterization from the 2p

orbital of the He+ atom as well as its associated complex dipole. The EWP amplitude

and phase retrieval is done by following the steps described in the Section 4.3.2.

In order to compute the lateral momentum-shearing interferograms on the py- and

px-directions we numerically integrate the SFA equation (2.95) for the QSPIDER lateral

shearing conditions. The two attosecond pulses parameters as well as the circularly po-

larized IR laser to build the interferogram calculations are the same as those mentioned

in Section 4.3.2.

In fact, we use the same calculated interferogram for the lateral momentum-shearing

on the y-axis described in the Section 4.3.2. The interferogram on the x-direction is

also computed under the same conditions, but here we have changed the time delay
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parameters τ1 and τ2 according to Eq. (4.30).

Then, we apply the QSPIDER algorithm to extract both the EWP amplitude and

EWP phase. We reconstruct the dipole amplitude, by dividing the recovered EWP

amplitude by the spectrum of a SAP. The dipole phase is just obtained by integrating

the retrieved phase gradient. The QSPIDER lateral momentum-shearing reconstruction

EWP and dipole are depicted in Fig. 4.23.

Figure 4.23: QSPIDER for the lateral momentum-shearing: EWP and 2p-
dipole. Plot a) shows the retrieval momentum distribution EWP amplitude |a(p)|2 (color
scale) from the lateral momentum-shearing interferogram technique. The reconstructed dipole
amplitude |d2p,R(p)| in b) compared to the exact dipole amplitude |d2p(p)| c), both in logarithm
scale. The reconstructed QSPIDER EWP phase or dipole phase partial derivatives along px
and py are shown in d) and e). The integrated gradient of the phase (d-e) is depicted in f).
The white and black dashed circles denote the EWP momentum bandwidth retrieval range.

The momentum grid parameters to perform such calculations are the same as the

ones used in Section 4.3.2 and the lateral momentum-shearing on each directions are:

(∆AL,x = 0.045,∆AL,y = 0.062).

First of all, the EWP amplitude around the retrieval region–range defined by the

two white circles, is shown in a). This amplitude exhibits two perpendicular nodes

which, according to the dipole d2p(p), are expected. Also Fig. 4.23b) draws the recon-
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structed dipole amplitude. This was obtained by dividing the EWP amplitude by the

“momentum” spectra of a single XUV attosecond pulse amplitude. For comparison

the exact dipole amplitude is depicted in c). We find a very good agreement between

the retrieved dipole amplitude and the exact one around the momentum ring defined

by the spectrum of a single XUV attosecond pulse used in our example (see the black

dashed circles of both Figs. 4.23b-c)).

The retrieved partial derivatives of the dipole phase along the px- and py-directions

are also depicted in Fig. 4.23d) and e). These are in very good agreement with the

expected derivative of the dipole phase under the retrieval momentum-range denoted

by the two black dashed circles. It is important to point out that in order to retrieve

the partial derivative of the dipole phase for the region px < 0, we restrict the AC(−)

component for the lateral momentum-shearing analysis to the y-direction. A similar

procedure is followed in case of the lateral momentum-shearing on the x-direction.

The retrieved gradient of the phase has been interpolated in a new momentum grid

with the momentum steps defined by the two perpendicular (∆AL,x, ∆AL,y) lateral

shearing. Then we integrate this phase gradient and reconstruct φd2p(p) utilizing the

algorithm described in [153]. The result is shown in Fig. 4.23e). The retrieved phase is

in very good agreement with the exact one (see Fig. 4.22c)) within the EWP momentum

bandwidth. We note that a small deviation can be observed around the two perpen-

dicular nodes. This may come from small numerical fluctuations of the interpolation

algorithm. This is so, because we have interpolated the retrieval gradient on two new

axis with the step shearing (∆AL,x, ∆AL,y). The most important feature, besides of

this small fluctuation, is that the retrieval has a jump phase on the expected directions.

QSPIDER momentum-spatial shearing in 2s

The second example we present is for the ionization coming from the 2s orbital of

the helium ion. The calculation is done in the same way as in the reconstruction of

the d2p(p) dipole. However, in order to test if this new implementation of QSPIDER

works with circular nodes too, we choose the following APT parameters: XUV central

frequency ωX = 1.65 a.u., FWHM∼ 212 as and peak intensity IX = 5.0× 1012 W/cm2.

Both attosecond pulses are the same but only their CEP is different, namely CEP= ±π
2 .

The IR laser parameters are the same as those used in the calculations presented in

Fig. 4.23. It is also important to point out that the lateral momentum-shearing is the

same as the one shown in the retrieval example for the 2p orbital. We compute the two

lateral momentum-shearing interferograms using the structure for the pulses depicted

in Fig. 4.21. By applying the lateral momentum-shearing algorithm, we reconstruct
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the complex EWP and the complex dipole.

Fig. 4.24 shows the complex EWP and dipole reconstruction of the emission from

the 2s orbital. Fig. 4.24a) depicts a very good retrieval of the EWP amplitude as in the

case that a single XUV attosecond pulse ionizes the system. Note that the two nodes

in the Fig. 4.22a) are observed over the momentum bandwidth denoted by the white

dashed circles.

Figure 4.24: QSPIDER for the lateral momentum-shearing: EWP and 2s-
dipole. This figure shows the retrieval EWP amplitude, the QSPIDER extracted dipole
amplitude, the exact dipole amplitude, the QSPIDER lateral momentum-shearing retrieval
gradient of the dipole phase and the reconstructed dipole phase in plots a), b), c), d) and e),
respectively. The retrieval phase gradient on the perpendicular directions and the integrated
phase is only shown within the first quadrant. White and black dashed circles denote the EWP
momentum range of retrieval. All of these plots are for the ionization coming form the 2s
orbital of the helium ion atom.

The Fig. 4.24b) shows the retrieval dipole amplitude |d2s,R(p)|. We compare this

amplitude with the exact one which is depicted in c). A very good agreement between

the reconstructed dipole amplitude and the exact one is found. As expected the two

nodes are very well retrieval. The momentum-radial node is about the circle with radius

prn = 1.4 a.u. The vertical node is located at px = 0 along py-direction. These two

facts are also in very good agreement with the exact dipole amplitude, too.
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In order to retrieve the dipole phase φd2s(p), first we reconstruct the phase gradient

or the phase partial derivatives along both perpendicular momentum directions (px, py).

The results are depicted in Fig. 4.24d) and e), respectively. A structure close to a radial

Dirac delta distribution is found for both partial derivatives. For simplicity only the

first momentum quadrant has been drawn.

Finally, we numerically integrate these two partial derivatives [153] in order to

recover the dipole phase. The result is depicted in Fig. 4.24e). We find a very good

agreement with the exact one (see Fig. 4.22c)) over the momentum range defined by

the spectrum of a single attosecond pulse.

According to our two examples to retrieve the complex EWP and complex dipole, we

can conclude that the QSPIDER lateral momentum-shearing interferometry technique

works very good. The ionization driven by the two attosecond pulses in presence

of a circularly IR laser can be employed to extract structural information about the

photoionization process.

So far, our retrieval scheme has been based on the SFA. In the next Section we

will apply the same implementation of the retrieval EWP and dipole, but in this case

utilizing a full 2D TDSE.

4.3.3.2 Time dependent Schrödinger equation model

In this Section, we will present our 2D-TDSE numerical calculations for the lateral

momentum-shearing interferometry technique. First of all, we choose the 2p state of

a short-range Yukawa potential as a test system. Our choice is based on the fact that

the PWs are a very good approximation for the continuum states of such a short-range

potential. In particular, this potential can be written:

V0(r) = −Z
exp[− r

as
]

√
a+ r2

, (4.31)

where as is the screening length, a a soft-core parameter and Z the charge of the

potential. The vector r =
√
x2 + y2 is defined in the plane (x, y). We have chosen

Z = 2 in order to match the charge of the helium ion and the other parameters used in

the simulation are: soft-core a = 0.8 a.u. and screening charge as = 2 a.u. We calculate

the 2p on the y-orientation by imaginary time propagation. The complex time-step is

∆t = −i0.05 a.u., and the spatial grid is a square box with the Lx = Ly = 300 a.u.

The grid step in each direction is ∆x = ∆y = 0.3 a.u. For this potential the ionization

potential is found to be Ip ∼ 0.1 a.u. We stress that it is difficult to match the
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ionization potential of the 2p orbital, computed using a Yukawa-like potential, to the

actual experimental data. Here we have chosen this orbital with the aim to describe the

general characterization of an EWP utilizing an exact TDSE calculation. Under this

point of view, we are interested in the mechanisms which are comprised in a short-range

potential more than a high accurate model.

Fig. 4.25 shows the potential and the 2p orbital performed by our numerical calcula-

tions. As it is expected, there is a structural node along x-orientation. This is the node

range that we will address in order to apply the QSPIDER lateral momentum-shearing

interferometry technique under our 2D-TDSE.

Figure 4.25: Yukawa potential and 2p orbital. a) Depicts the short-range Yukawa
potential structure defined by Eq. (4.31) (in gray color scale) as a function of the position
(x, y). b) We draw the calculated 2p orbital oriented along y-axis. This electron density was
calculated by time-imaginary propagation with the parameters described in the text.

Note that (computationally speaking) the calculation of the scattering waves for a

2D plane is arduous. Particularly, in our case where the emitted EWP by the XUV

achieves velocities of around 1.5 or 2.0 a.u. This means that we need a large numerical

grid which translates in a large number of points Nx and Ny.

For this reason, here we will perform our numerical calculations of the dipole phase

utilizing the PW.

Attosecond EWP emission from a short-range potential

A way to compute the exact EWP amplitude and phase is to integrate numerically the

TDSE for the XUV ionization. In order to extract the EWP phase or dipole phase for

the photoemission from the 2p orbital, we show 2D-TDSE calculations.

The XUV parameters used in such calculation are: peak intensity IX = 5.0 × 1012

W/cm2, central frequency ωX = 2.0 a.u., FWHM ∼ 235 as with and gaussian envelope

and CEP= π
2 . The position-grid parameters are: grid lengths Lx = Ly = 300 a.u., with

grid steps ∆x = ∆y = 0.3. Meanwhile, the real time step integration is ∆t = 0.05 a.u.
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Then we numerically solve the 2D TDSE and remove the bound states by employing

a smooth gaussian mask function. Thus, we have obtained the final position-space

EWP. The momentum-space representation of the EWP by making a 2D-FFT of the

continuum wavefunction, is computed. The resulting electron momentum distribution

is depicted in Fig. 4.26a). Two perpendicular nodes are found along the px- and py-

directions. Similar behavior we have observed in the SFA calculations (EWP and dipole

amplitude) for the 2p orbital of the He+.

Figure 4.26: EWP amplitude and phase: exact 2D TDSE calculations. Plot a)
depicts the final momentum EWP amplitude Se(p) = |a(p)|2 for the ionization driven by a single
XUV attosecond pulse from the 2p orbital of a short-range Yukawa potential (see Fig. 4.25b)).
The white dashed circles denote the momentum ring around the EWP bandwidth. In the panel
b) we show the EWP phase. The circular dashed lines denote the EWP range momentum
bandwidth.

The EWP phase or dipole phase is obtained by removing the time-dependent phases

given in Eq. (4.2). Fig. 4.26b) shows the result. The black dashed circles denote the

momentum bandwidth range of the EWP. Within this region we find a phase jump of π,

depending on which quadrants we look at. Thus, we can consider this phase as a exact

reference to be employed for the QSPIDER lateral momentum-shearing interferometry

technique.

Lateral momentum-shearing retrieval from a 2p orbital

We implement the calculation of the lateral momentum-shearing interferograms on the

px- and py-directions. The same pulses scheme for the SFA calculations (see the top

plot in Fig. 4.21) are used but here we employ the 2D TDSE calculations. To this

end, a large position-space grid will be required. This is so, because, when the first

EWP is ionized, it has to be kept inside the calculating position-grid until the second
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EWP is launched to the continuum by the second XUV. Thus, the grid parameters

used in such a calculations were: grid lengths Lx = Ly = 1050 a.u. with grid steps

∆x = ∆y = 0.3 a.u., for each perpendicular axis (x, y). The real time step is fixed to

∆t = 0.05 a.u. The Hamiltonian H of the system which describes the interaction with

the atomic electron with the laser fields, is defined by:

H =
1

2
[−i∇+ AL(t) + AX(t, τ1, τ2)]2 + V0(x, y), (4.32)

where, p = −i∇ = −i
(
ex

∂
∂x + ey

∂
∂y

)
is the momentum operator defined in 2D. The

AL(t) is the vector potential of the circularly polarized IR laser field and AX(t, τ1, τ2) =

A
(1)
X (t− τ1) + A

(2)
X (t− τ2) denotes the vector potential of the APT. The V0(x, y) is the

short-range Yukawa potential defined by Eq. (4.31).

The APT parameters used to perform our numerical calculations are similar for

both pulses, i.e., the XUV central frequency is ωX = 2.0 a.u., XUV peak intensity

IX = 5.0 × 1012 W/cm2, FWHM ∼ 170 as under a gaussian envelope and CEP= ±π
2 .

On the other hand, the IR laser field parameters are: central frequency ω0 = 0.057 a.u.,

IR peak intensity I0 = 5.0×1011 W/cm2, FWHM ∼ 4 fs under a sine-squared envelope.

The time delay between the two XUV pulses is around τx ∼ T0. With these parameters,

we find that the lateral momentum-shearing on the y-direction is ∆AL,y = 0.065 a.u.

Fig. 4.27a) shows the results of the final momentum interferogram with lateral

momentum-shearing along the y-orientation. We find that the two EWPs interfere

around the expected momentum ring, i.e., similar to the behavior shown by the SFA.

However, a large additional signal is found around the central momentum which can

not come from the emission driven by the XUV attosecond pulses. Otherwise the same

signal should be present in Fig. 4.26a). This suggests that the low ionization potential

of this 2p state leads to such an ionization signal. This ionization is caused by the

circularly IR laser field.

This signal can contain information about the CEP of the IR laser field. Then,

this circularly polarized IR laser scheme can be utilized to characterize the CEP of

the IR. Nevertheless, this signal is not of our interest in our QSPIDER technique right

now. For this reason, we isolate the signal coming from the XUVs and remove the IR

ionization. The isolated momentum interferogram signal is depicted in Fig. 4.27b).

We also plot a zoom to show the interference fringes around the nodal range on the

px-direction. We can observe that the node along px is upper shifted with respect to

py = 0. This means that the IR induces appropriately the lateral momentum-shearing
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Figure 4.27: EWPs momentum interferogram: 2D TDSE calculations. Plot a)
shows the calculated full momentum interferogram for the ionization mediated by the APT and
the circularly IR laser fields. b) The isolated interferogram coming from the APT signals. The
inset plot depicts a zoom of the interferogram fringes. In both plots, the white circles denote
the radial momentum p0 =

√
2(ωX − Ip) ≈ 1.9 a.u.

on the py-direction.

Once we have the first interferogram, which is lateral sheared along py-axis, we

calculate the other one, lateral sheared on the px-direction. To do this, we follow the

same steps described in Section 4.3.3.1, i.e., we change the time delays τ1 and τ2. From

the calculated px lateral momentum-sheared interferogram, we isolate the XUVs signal

as in Fig. 4.27.

So far, we have the two lateral momentum-shearing interferograms and with them

we are able to apply the QSPIDER algorithm. The results of the retrieval EWP

amplitude and phase gradient are depicted in Fig. 4.28.

The retrieved EWP amplitude is depicted in Fig. 4.28a) and we find out that this

amplitude is similar to the one presented in Fig. 4.26a). It is important to point out

that an small asymmetry is observed in the full amplitude. This small asymmetry can

be related to the influence of the IR laser field at the ionization time.

The EWP phase partial derivatives along the px and py-directions are plotted in

Fig. 4.28b) and c), respectively. Both partial derivatives exhibit two Dirac delta dis-

tributions along the expected directions. The partial derivate on the py-axis is a little

bit distorted. This is due to the fact that a small deviation around the induced lat-

eral shearing on such py-direction is present. In spite of this small deviation we find a

very good agreement with the possible phase gradient of the “EWP phase” depicted in

Fig. 4.26b).

Finally, our full 2D TDSE numerical results show that the EWP amplitude and

141



CONCLUSIONS: CHAPTER 4

Figure 4.28: QSPIDER for the 2py of a Yukawa potential: 2D TDSE model.
Plot a) shows the reconstructed EWP amplitude |a(p)|2. The QSPIDER retrieval for the dipole

phase partial derivatives (
∂φd2p

∂px
,
∂φd2p

∂py
) are depicted in b) and c), respectively.

EWP phase or dipole phase can be reconstructed by utilizing the QSPIDER in the

extended version of the lateral momentum-shearing interferometry technique.

4.4 Conclusions

In this Chapter we have presented the QSPIDER technique in 1D and its 2D version to

reconstruct the complex EWP and the complex dipole transition matrix element. The

ionization driven by an APT of two pulses in the presence of a weak IR laser, results

in an interferogram pattern.

This interferogram codes full information about the phase difference of a copy of the

original EWP. If the pulses are well characterized, our numerical results under the full

TDSE in 1D and 2D as well as the SFA model show that the EWP amplitude and

phase can be reconstructed. It is demonstrated that this technique is able to extract

the complex dipole within the EWP momentum-bandwidth as well.

QSPIDER inherits most of the known issues of the SPIDER techniques. As a

consequence, high resolution is needed to measure the interferogram. In the case of

QSPIDER this is related to the energy or momentum resolution in the spectrometer.

Several methods have been proposed to overcome these issues for SPIDER which may

be helpful also in the QSPIDER scheme [150, 154].

Note that the two versions of QSPIDER have interesting desirable features from an

experimental viewpoint. First, the subsequent emission of two EWPs by the application

of the two colors, i.e., the attosecond pulse train of two pulses and the IR laser, to the

target, shows that the two versions of QSPIDER are single shot techniques. Second,

142



Conclusions: Chapter 4

the interaction of the two attosecond pulses with the same ground state suggests that

QSPIDER is an auto-referenced technique.

Furthermore, we suggest to apply the QSPIDER technique in future experimental

setups in order to extract dynamical information of the photoemission process. It is,

to study the Wigner time delay without the need of a reference orbital or state.
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5

Delay in photoemission

5.1 Introduction

When the XUV photon energy of a SAP or an APT is larger that the ionization potential

of an atom or a molecule, the electron can be ionized. This process creates a coherent

ultra broadband EWP and the momentum distribution of the ionized electrons maps

both the characteristics of the attosecond pulses and the parent system [61, 62, 67].

Another intriguing property is that this electron is not emitted instantaneously.

Instead, the atom or molecule may have a response time or “delay” in the photoemission

process [68]. This delay is related to the so-called Wigner time [69, 70] which measures

the travel time difference between a free electron and an electron under the influence

of a short-range potential. Formally, the Wigner time is defined as the derivative in

energy of the bound-free dipole transition matrix element1 phase or the phase shift that

takes the EWP in the one-photon ionization process [69, 70, 71].

The response time of the atom or molecule is then encoded in the phase of the

EWP and provides valuable information about the system [67, 68]. Considering this

information is encoded in the phase, traditional observables cannot access it.

Only recently some experiments related to the delay in photoinization have been

carried out, thanks to the now available attoscience tools. Schultze and coworkers [17]

have measured the relative delay in photoemission from the 2s and 2p states of Ne

atoms using the streaking technique [37]. Also recently, the RABBIT technique [38]

has been used to measure the relative time delay between the 3s and 3p states in Ar [18].

Recent works have also theoretically addressed the Wigner time delay in small

1For simplicity, in this Chapter we will refer to the bound-free dipole transition matrix element as
dipole.
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molecules, hydrogen molecules [75, 76], emphasizing the consequences of having two

centers. In reference [76] they have been also studied the dependence of the Wigner

time delay on the internuclear distance. It is also addressed the angular dependence of

the time delay for the hydrogen molecular ion.

These results show that the Wigner time delay also contains information about

the geometrical structure of the molecule. Most importantly, the observable streaking

time delay, can be extracted and compared to the intrinsic Wigner time. However, it

is important to note that the Coulomb-laser coupling can not be removed from the

measurement process.

Also those studies described in the introductory Section 1.4 about the influence of the

IR laser field on the detection of the Wigner time have shown that the CLC plays an

important role in the measurement process.

In this Chapter we study the Wigner time delay, its problematic measurement by

the pump-probe streaking technique and, most importantly, we suggest a new way to

remove the CLC from the streaking measurement process.

We address the open questions about the Wigner time which have been described in

Sections 1.4 and 1.5. To this end, we propose a small asymmetric molecular system

and define an alternative quantity which is named the Stereo Wigner Time Delay. We

will show that by the measurement of two attosecond streaking traces, one on the left

and another one on the right side of the electron emission, and by the comparison of

the extracted streaking time delay, the symmetric CLC influence is removed.

The organization of this Chapter is done in three main Sections 5.2, 5.3 and 5.4.

In the Section 5.2, we introduce the Wigner time delay concept: the quantum picture

and the classical one. In the following Sections 5.2.1 and 5.2.1, we will study how

the Wigner time depends on the potential structures, i.e., the short-range potential

and long-range potential for atomic systems. The classical picture and the quantum

definition are compared to both kinds of potentials. In the next Section 5.2.2, the study

of how the delay in photoemission can be linked to the Wigner time by utilizing the

attosecond streaking technique will be carried out. We will use as test potentials the

Yukawa potential and Coulomb potential. Detail information about how to extract the

delay in photoemission from the streaking traces is also provided.

The next Section 5.3, will be dedicated to propose an alternative small asymmetric

molecular system to study the SWTD, i.e., the CO potential. The definition of the

molecular system, the dipole structure, the Wigner time and the asymmetric in the

Wigner time will be treated with more details in the Sections 5.3.1 and 5.3.2.

The detection method of the Wigner time such as the Stereo Time Of Flight (STOF)
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and its comparison with the left-right energy derivative of the dipole phase will be

defined in Section 5.3.3. More importantly, we will present our complementary method,

i.e., the stereo streaking technique, about how to extract directly for first time the

SWTD in the photoemission process in the Section 5.3.4.

In the Section 5.4, we propose a “simple” asymmetric 3D molecular model to extend

our 1D calculations about the SWTD. In the following Section 5.4.2, we re-define the

stereo time of flight method in the 3D case, as an alternative to obtain the SWTD. The

stereo streaking technique, its problems and solutions to recover the SWTD from the

asymmetric molecule will be studied in the Section 5.4.3.

In the Section 5.4.3.1, we will show that if the streak IR laser field couples two

bound orbitals, the streaking measurement carries out information about the electron

dynamics between the two coherent states.

Finally, we will present our conclusions and outlooks in the Section 5.5.

5.2 Wigner time in atoms

In this Section we introduce the quantum and classical pictures of the Winger time

delay considering that the photoionization of an atomic system is driven by a XUV

SAP.

When an EWP is released as result of the absorption of a SAP by an atomic system,

a time delay in the ionization process takes place. This time delay is defined as the

time elapsed between the arrival of the SAP and the actual time when the EWP is

emitted. It is the so-called delay in photoemission which is close to the Wigner time

delay.

This Wigner time is defined by the energy derivative of the dipole phase or the scattering

wave phase-shift, φ = φl(k), accumulated by the EWP during the ionization process

[17, 69, 72]:

∆tW =
∂φ

∂E
, (5.1)

where φ is the phase-shift of the dipole phase of the emitted EWP with energy E = k2

2

with asymptotic momentum k. In general, the phase-shift will depend on the linear

momentum k and the quantum angular momentum l.

The first interpretation of the energy derivative of the phase shift as a time delay was

proposed by Eisenbud [71] and Wigner [69]. Wigner showed that the time delay between
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an incident wavepacket to a short-range scattering center and the outgoing wavepacket

is related to the energy derivative of the quantum phase-shift. This derivation was

performed in order to address the question if a scattered wave can (or can not) leave

the scatter center before the incident wave reaches it [69] as it is illustrated in Fig. 5.1.

Figure 5.1: Conceptual Wigner Time. Scheme of the delay between the incident wave
of momentum k to a scattering center of radius a and the scattered wave of momentum k′.

In the same paper, Wigner showed that ∆tW > 0 only in the case of attractive potentials

and for a near-resonance energy or ∆tW < 0 for the rest of the energy values (in case

of a short-range potential of radius a) [75].

A classical picture of the Wigner time can also be obtained by the integration of

Newton’s equations for the time of flight that an electron, with “asymptotic momen-

tum” k, spends under the action of a binding potential V0(r) with respect to the free

motion:

∆tCl =

∫ rf

r0

dr

π(r, Ek)
−∆tFree, (5.2)

where1 π(r, Ek) =
√

2(Ek − V0(r)) is the local momentum [68] of the electron as a

function of the electron trajectory r = r(t) and the total energy Ek = k2

2 , r0 and rf are

the initial and final positions, and the ∆tFree =
|rf−r0|

k is the time that a free electron

spends between both positions.

In order to figure out what it is the influence of a short-range or a long-range potentials

in the Wigner time delay, we choose the Yukawa and the soft-core hydrogenic Coulomb

potentials in order to “test” the scattering centers. These scattering centers will allow

us to compare the effects of the short- and long-range potentials in the Wigner time.

1Here, π, also denotes the module or norm of the kinetic momentum π and no the number 3.1416.
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For any arbitrary system in one dimension (under the SAE approximation), it is

easy to compute the phase shift from the bound-free dipole transition matrix element.

This dipole is computed by the described scattering waves in Section 2.2.1.4 of the

Chapter 2.

5.2.1 Wigner time by quantum and classical pictures

The Wigner time is the energy derivate of the dipole phase. This phase is a structural

feature of the atomic or molecular system. This Section is dedicated to the study the

Wigner time in the short- and long-range potential. As test atomic systems, we choose

the Yukawa potential and Coulomb potential.

For simplicity, we restrict ourself to the 1D models. This restriction is well based

on the fact that linearly polarized laser pulses are utilized in our description of the

Wigner time. In such a case, the electron mainly will follow the direction of the laser

polarization. In other words, any magnetic quantum momentum is excited for the

electron wavefunction.

In the next, we introduce the potentials, and compute the structural bound states,

the complex dipoles and the Wigner time delays in case of the quantum and classical

pictures.

Definition of the system

The field-free Hamiltonian H = p2

2 + V0(z) defines the discrete energy spectrum, or

bound states, as well as the continuum spectrum of a particular potential V0(z). To

study the Winger time of an emitted EWP, we use the Yukawa V0,Y(z) and soft-core

Coulomb V0,C(z) potentials:

V0,Y(z) = −Z e
− r
′(z)
as

r′(z)
(5.3)

V0,C(z) = − Z

r′(z)
, (5.4)

where r′(z) is defined by, r′(z) =
√
a+ z2, and, a, is the soft-core parameter, as, the

screening charge parameter and, Z, the total charge. These parameters have been

chosen in such a way to match the ground state energy, E0,H = −0.5 a.u., of the

hydrogen atom. Specifically Z = 1, a = 0.5 and as = 2 a.u., for the Yukawa potential

and Z = 1, a = 2.0 a.u., for the soft-core Coulomb potential, respectively. For simplicity
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we will refer to the soft-core Coulomb as Coulomb potential.

The ground wave functions (Ψ0,Y(z) and Ψ0,C(z)) are calculated by imaginary time

propagation with a time step of ∆t = −0.01i a.u. The grid parameters are ∆z = 0.1

a.u., and with a spatial grid length of 2500 a.u.

Fig. 5.2 depicts the potentials as well as the electron densities,
∣∣Ψ0,Y/C(z)

∣∣2, of the

ground states for the short-range Yukawa and long-range soft-core Coulomb potentials

as a function of the position z, respectively. The comparison between both potentials

shows that the short-range potential goes to zero much faster compared to the long-

range Coulomb potential. In addition, the ground states have different shapes, i.e., the

electron density for the ground state of the Coulomb potential is wider that the Yukawa

potential one.

Figure 5.2: 1D Yukawa, Coulomb potentials and ground states. a-b) The scat-
tering center (green dark lines) for the short-range Yukawa V0,Y(z) and long-range Coulomb

V0,C(z) potentials. The electron densities
∣∣Ψ0,Y/C(z)

∣∣2 of the ground states (blue area) for both
potential systems are also shown.

To extract the exact quantum Wigner time delay related to the ground states of the

Yukawa and Coulomb potentials, we compute the amplitude and phase of the complex

dipole transition matrix element bound-free d(k) = −
∫
dzΨ∗k(z)zΨ0(z). We consider

the continuum state of momentum k as a PW Ψk(z) = 1√
2π
eikz or as a SW Ψk(z)

(explained in the Section 2.2.1.4 of Chapter 2). Then, we evaluate the energy derivative

of the dipole phase ∆tW = 1
k
∂φ(k)
∂k and compare it to the classical Wigner time delay

∆tCl of our 1D models. The momentum grid parameters used are ∆k = 0.005 a.u. and

the momentum grid length 10 a.u.

Fig. 5.3 shows the amplitude |d(k)| and phase φ(k) of the dipole transition matrix

element for the Yukawa and Coulomb potentials by utilizing PWs and SWs.

150



Wigner time in atoms

Besides of the fact that the absolute dipole amplitudes are different, they have similar

structures when both, i.e., plane and scattering waves, are used to compute the complex

dipole and for both systems V0,Y and V0,C. In contrast, the dipole phases are completely

different.

In case of PW, the dipole phase is constant for negative k < 0 or positive momenta

k > 0 just with a phase jump of π at k = 0, but in case of SW the dipole phase is

not constant. Then, we can deduct that the energy derivative of the dipole phase is

zero for the PW (except to k = 0) while in case of the SW it is different from zero in

all the momentum range depicted in Fig. 5.3). This indicates that specific structural

information related to the dipole phase φ(k) is obtained by the SW whereas in the PW

this is not the case.

Figure 5.3: Dipole matrix element structure for Yukawa and Coulomb poten-
tials. a) and b) show the amplitude |d(k)| (blue line) and phase (short-range part) φ(k) of the
dipole as a function of the asymptotic momentum k for 1D Yukawa short-range potential by
projecting on PWs, and SWs, respectively. c-d) The same as in a-b) but for a 1D H Coulomb
potential

The quantum picture of the Wigner time delay is based on the energy derivative of

the short-range dipole phase term or phase-shift [72] and for this reason, the use of SW
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to compute the dipole phase is of mandatory importance for both system.

The dipole phases in the Yukawa and Coulomb potentials are the same when PWs (see

Fig. 5.3a-c)) are used to compute the dipole. However, they strongly differ in case that

SWs are employed in the calculation (see Fig. 5.3b-d)). This reflects also the difference

of the detailed information that the Yukawa and Coulomb potentials encode in the SW

when the complex dipole is computed.

The Fig. 5.4 shows the Wigner time delay obtained by the quantum treatment Eq. (5.1)

and by classical definitions Eq. (5.2). For the classical calculations the initial position

z0 is set to zero and the final one is zf (maximum of the spatial position grid zf =

Nz∆z/2). The quantum and classical time delays are in very good agreement in case

of the Yukawa potential (see Fig. 5.4a)). In clear contrast, the quantum picture differs

strongly from the classical one in the case of the Coulomb potential (see Fig. 5.4b)).

Figure 5.4: Quantum and classical pictures of the Wigner time delay. a-b) The
quantum (blue line) and classical (red line and circles) pictures of the Wigner time delay are
depicted for the short-range Yukawa and long-range Coulomb potentials, respectively. In b) the
violet dashed line with points is the long-range time delay contribution from the Coulomb wave
phase. Green line shows the total time delay ∆tTot which is defined by the sum of Wigner time
delay and the long-range delay ∆tTot = ∆tL.−R. + ∆tW. Inset graph depicts a zoom within a
small energy range which compares the total quantum time delay ∆tTot and the classical one
∆tCl.

This disagreement is due to the quantum definition of the Wigner time delay which takes

into account only the phase-shift, φ(k), (or short-range phase term) energy derivative

of the continuum scattering Coulomb wave [69, 68, 72, 155, 156]. This definition ignores

the long-range phase term, φL.−R.(k) = Z
k ln |2kzf |, of the Coulomb wave [68, 75].

That logarithmic phase is as a function of the final position zf and the asymptotic
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momentum k. In order to obtain the long-range time delay contribution, we compute

the energy derivative ∆tL.−R. =
∂φL.−R.

∂E of the long-range phase term, which can be

written as:

∆tL.−R.(E) =
1√

(2E)3
(1− ln[2

√
2Ezf ]). (5.5)

For an H Coulomb potential, zf is fixed to the electron position at the end of our

numerical spatial grid.

We show in Fig. 5.4b) this long-range time delay term dominates over any short-range

Wigner time delay ∆tW for the Coulomb potential case. We have added up the long-

range time delay contribution ∆tL.−R. to the Wigner time delay ∆tW and we find that

this total time delay, ∆tTot, is in very good agreement with the classical calculations

∆tCl.

A detail analysis about how to link the Wigner time with the delay in photoemission

is provided in Sections A.1-A.4 of Appendix A.

Note that this long-range time delay contribution diverges logarithmically as zf in-

creases and it cannot be ignored. This means that any absolute time delay cannot be

well defined in the sense that there is no convergence limit in ∆tL.−R. when zf → ∞
[68, 157].

In this Section, we have analyzed the quantum and classical pictures of the Wigner

time delay for the short-range Yukawa and long-range Coulomb potentials. Our analysis

shows that quantum definition of the Wigner time delay can be perfectly linked to the

classical one in case of the short-range Yukawa potential. However, in the case of the

long-range Coulomb potential an extra time delay needs to be added up to the Wigner

time delay in order to find a perfect agreement between the quantum and the classical

pictures.

In the next Sections we will address in details the study of how the delay in pho-

toemission can be linked to the Wigner time delay utilizing the attosecond streaking

technique. We will use as test potentials the Yukawa and Coulomb potential systems.

5.2.2 Measurement of Wigner time by streaking techniques

Attosecond streaking has become one of the most important tools of attosecond science.

The attosecond streaking is a variant of a pump-probe technique where a SAP is the

pump which releases an EWP from the system, and a few-cycle IR laser streaks, i.e.,

probes, the EWP when in the continuum [3].
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If the probe laser has a weak intensity and the XUV attosecond time duration is much

shorter than one IR laser cycle T0, the final electron momentum pf is modified according

to the equation:

pf (τ) = p0 −AL(τ), (5.6)

where τ is the time delay between the pump XUV and the probe IR laser fields. AL(τ) is

the vector potential of the IR laser pulse at τ . Here, p0, is the asymptotic momentum

related to the photoelectron energy, E0 =
p2

0
2 , which depends on the central XUV

frequency ωX and the ionization potential1 Ip.. The time delay in photoemission or

Wigner time delay ∆tW is intuitively expected to shift the appearance of the EWP

at the time τ (see Fig. 5.6). According to Nagele et al. [72] the electron motion is

distorted, classically, by the action of the potential, then the modified final momentum

Eq. (5.6) becomes:

pf (τ) ≈ p0 − αAL(τ + ∆tS), (5.7)

where α is a correction factor for the amplitude of the momentum shift induced by the

laser field [158], and ∆tS is the streaking time delay in the photoemission which includes

information about the Wigner time delay of the photoionization process [17, 72].

The sign convention for ∆tS ensures that positive (negative) values correspond to

delayed (advanced) emission with respect to maximum of the XUV envelope centered

at τ as it is illustrated in Fig. 5.5. This positive values of ∆tS means the electron “feels”

the IR vector potential after than τ .

The blue (green) point in Fig. 5.5 marks the value of the vector potential that the

electron will feel if it is ionized before (after) the arrival of the XUV attosecond pulse.

From the attosecond streaking trace, we will recover the streaking time shift ∆tS.

The streaking spectrogram is the construction of the electron momentum distribution as

a function of the time delay between the IR and the XUV laser pulses. The momentum

expectation value, 〈pR〉, is computed as a function of the time delay τ . Thus, the

attosecond streaking time, ∆tS, is extracted by Fourier analysis of this momentum

expectation value. This method will be explained in detail below.

The attosecond streaking trace is numerically computed by solving TDSE un-

1Einstein’s formula for photoelectric effect E0 = ωX − Ip
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Figure 5.5: Advanced and delayed streaking time scheme. The red and violet lines
depict the IR vector potential −AL(t) and the XUV attosecond pulse envelope, respectively.
The delay between the IR and the XUV laser pulses is denoted by τ and it is illustrated by the
time between the red dashed vertical and violet dashed vertical lines. If the electron is ionized
after (before) of the XUV attosecond maximum this corresponds to the delayed (advanced)
emission, which means that ∆tS > 0 (∆tS < 0).

der the streaking conditions. As it is explained above, these conditions have to en-

sure that the time duration of the SAP EX(t − τ) have to be much shorter than

an IR cycle TL and the few-cycle IR laser pulse EL(t) has to have a moderated in-

tensity (I0 = 1011 − 1012 W/cm2). We choose the ground-states of the short-range

Yukawa and long-range Coulomb potentials as the test systems. The Hamiltonian

H = 1
2 [p+AX(t− τ) +AL(t)]2 + V0,Y/C(z) describes the interactions of the system in

the velocity gauge and AL(t) = −
∫ t
EL(t′)dt′ is the vector potential of the IR laser

pulse.

The continuum wave function part, Ψc(z, τ, tf ), of the whole wavefunction Ψ(z, τ, tf ) is

calculated by masking all the possible bound states of Ψ(z, τ, tf ) at the final time

tf . The final momentum electron distribution |Ψc(p, τ, tf )|2 is built by projecting

Ψc(z, τ, tf ) on PW or SW. For simplicity, below we will cite the wave function Ψc(z, τ, tf )

as Ψc(z, τ).

To extract the time delay in photoemission from the streaking trace, we calculate

the momentum expectation value on the right1 〈pR〉 =
∫∞
0 p|Ψc(p,τ)|2dp∫∞
0 |Ψc(p,τ)|2dp as a function of

the XUV-IR time delay τ and then compare it to the IR vector potential −AL(τ). To

do this comparison, we compute a Fourier transform 〈p̃〉 =
∫∞
−∞ dτ〈p(τ)〉e−iωτ of the

momentum expectation value. The spectral phase φ(ω) of 〈p̃〉 is related to the time

shift ∆tS between the vector potential of the IR pulse and the streaking momentum

expectation value.

1In order to simplify our notation we will change 〈pR〉 by 〈p〉.
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Figure 5.6: Fourier analysis for the extraction of the streaking time delay. a)
The vector potential of the IR laser pulse −AL(τ) (red line) and the momentum expectation
value 〈p〉 (blue dashed line) as a function of the time delay τ . b) Spectral amplitude (blue
dashed line) and spectral phase (green line) of 〈p̃〉. The ratio ∆tS,point = φ(ω0)/ω0 or ∆tS,derv =
dφ(ω)
dω

∣∣
ω=ω0

gives the time delay between −AL(τ) and 〈p〉.

Fig. 5.6 illustrates a scheme of the basic procedure to extract the streaking time delay

in photoemission ∆tS. A clear time shift between the vector potential −AL(τ) of the

IR laser and the momentum expectation 〈p〉 is observed in Fig. 5.6a). Furthermore, the

amplitude and phase of 〈p̃〉 is depicted in Fig. 5.6b). The ratio ∆tS,point = φ(ω0)/ω0

or the derivative of the spectral phase evaluated at ω0 (∆tS,derv = dφ(ω)
dω

∣∣
ω=ω0

), gives

the time delay ∆tS between −AL(τ) and 〈p〉, where ω0 is the central frequency of the

vector potential AL(τ).

Figs. 5.7 and 5.8 show the streaking traces calculated by the TDSE and using PW and

SW for the cases of Yukawa and Coulomb potentials. The attosecond streaking traces

calculated by PW and SW are different only for the maxima values of the photoelectron

momentum distributions. The momentum expectation values (PW and SW) depend

whether the short-range Yukawa or the long-range Coulomb potentials are employed.

The momentum expectation value 〈pR〉 as a function of the time delay τ is depicted in

Fig. 5.7 and 5.8a-b) for both potentials and by employing PW and SW.

The same result is obtained for the momentum expectation value computed by PW

or SW projections in case of a Yukawa potential as it is expected. In the Coulomb

potential, on the other hand, the momentum expectation values obtained from PW or

SW are slightly different.

The comparison between the vector potential −AL(τ) and the shifted expectation

value 〈p′R〉 = 〈pR〉−p0 shows a clear time shift ∆tS (see the inset graphs in Fig. 5.7 and

5.8c-d)). We extract this time shift from the momentum expectation value (PW and
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Figure 5.7: Streaking traces and time delay in photoemission: Yukawa po-
tential. Streaking traces by projecting on PW and SW for positive momenta (color scale
in arbitrary units represents the electron density) as a function of the time delay τ between
the XUV and the IR laser pulses. The momentum expectation value 〈pR〉 is depicted inside
of the streaking traces in blue circles. In the same plot the vector potential negative −AL(τ)
is plotted in white lines. c-d) The expectation value 〈p′R〉 = 〈pR〉 − p0 (blue line with circles)
using PW and SW are compared to −AL(τ) (red line). Inset graphs show a clear time shift ∆tS
between the vector potential and the momentum expectation 〈p′R〉 when PW or SW are used
to compute the streaking spectrogram. The attosecond pulse parameters in these simulations
are: frequency ωX = 1.2 a.u., peak intensity 5 × 1012 W/cm2 and CEP = 0. This pulse has
a gaussian envelope shape with FWHM = 22.5 a.u. (544 as). The IR laser pulse frequency is
ωL = 0.057 a.u., peak intensity 2.5× 1012 W/cm2 and CEP= 0. The IR laser pulse envelope is
a sine-squared function with two cycles of time-width.
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SW) by the Fourier analysis methods described above, namely ∆tS,point and ∆tS,derv.

For the short-range Yukawa potential, the method ∆tS,point yields a time delay ∆t
(PW)
S =

∆t
(SW)
S = −0.48 a.u., from PW and SW calculations, respectively.1 This streaking time

delay is in very good agreement with the averaged Wigner time delay2 〈∆tW〉 = −0.47

a.u., within the spectra bandwidth of the emitted EWP.

Figure 5.8: Streaking traces and time delay in photoemission: H Coulomb
potential. Exactly the same as Fig. 5.7 but for a Coulomb potential.

However, in the case of a long-range Coulomb potential the streaking time delay

∆t
(PW)
S = −1.40 and ∆t

(SW)
S = −1.50 a.u., are in disagreement with the exact averaged

Wigner time delay 〈∆tW〉 = 0.20 a.u. A similar contradictory result has been obtained

in the last Section for a long-range Coulomb potential. Thus, it is a clear that there

exists an influence on the attosecond streaking measurement when a long-range poten-

tial is present. The key point is to find out from where this disagreement between the

streaking time measurement and the Wigner time delay would come from.

To estimate a broader range of streaking time delays, we calculate a set of attosecond

1The Fourier method ∆tS,derv gave the same result that ∆tS,point (with a relative difference of less
than 2). For this reason, we choose the Fourier analysis method ∆tS,point = φ(ω0)/ω0 to extract the
streaking time delay.

2For instance, see Eq. (A.10) in Section A.4
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streaking spectrograms and from them we extract the time delay ∆tS. We employ

attosecond XUV pulses with central frequencies between 1.0 − 2.2 a.u., and the same

peak intensity. The CEP and FWHM < 25 a.u., are similar than the ones used in the

examples presented in Fig. 5.7. The IR laser pulse parameters are the same.

The streaking time delay as a function of the photoelectron central energy E0 is

depicted in Fig. 5.9 for the case of short-range and long-range potentials.

Figure 5.9: Streaking time delay in the short-range and long-range potentials.
a) Streaking time delay ∆tS by PW (red circles) and SW (green crosses) as a function of the
photoelectron central energy compared to the exact Wigner time delay ∆tW (blue line) for the
short-range Yukawa potential. b) The same as a) but for the soft-core Coulomb potential. The

CLC ∆t
(I/B)
CLC added up to the Wigner time delay ∆tW is shown in a black dashed line (according

to Ivanov [74]) and in a violet dashed line (according to Burgdörfer [159]).

In Fig. 5.9a) the streaking time delay extracted from PW, ∆t
(PW)
S , and SW, ∆t

(SW)
S ,

are compared to the exact Wigner time delay, ∆tW, in the case of a short-range Yukawa

potential. We find a perfect agreement between the streaking time delay and the exact

one. Both the PW and SW give the same time delay, ∆tS, as expected for a short-range

potential.

For the Coulomb potential the streaking results differ significantly from the Wigner

time delay (see Fig. 5.9b)). This disagreement comes from the long-range behaviour

of the Coulomb potential and it is also related to the so-called CLC [68, 72, 73, 74,

159]. Ivanov and Smirnova have found an analytical expression for this CLC which is

related to the laser frequency and the atomic properties of the system [74]. From the

eikonal-Volkov approach and with the WKB approximation they obtain an analytical

expression, that reads:
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∆tCLC ≈ −
1

p3
0

[
ln

(
2p2

0

ωL

)
− γEuler +

πωL

4p2
0

]
, (5.8)

where γEuler = 0.5772 is Euler’s constant. We evaluate this CLC time delay contri-

bution ∆tCLC and add it up to our 1D calculation of the Wigner time delay ∆tW.

The result is depicted in Fig. 5.9b) and we find a good match between our numerical

streaking time delay calculation and the total time delay ∆tTot = ∆tCLC + ∆tW. For

the low energy range, we find a deviation of the total time delay with respect to our

numerical simulation results. This deviation is likely due to the fact the Eikonal-Volkov

approximation is only correct for high photoelectron energies.

Note that our numerical streaking time delay calculated by using PW is in very good

agreement with the SW. There is only an small difference for low energies. This is

important in the cases where SWs cannot be easily computed. We will use this result

as an argument to compute the streaking trace by PW in 3D and therefore to extract

the Wigner time.

Figure 5.10: Streaking time delay in photoemission for a long-range potential.
a) The attosecond streaking time delay (black circles) ∆tS as a function of the photoelectron
energy compared to the exact Wigner time delay (blue line) ∆tW, and the numerical CLC time

delay ∆t
(N)
CLC in red solid line. b) Detailed analysis of the time delay in photoemission: the

Wigner time delay in blue line, and the CLC time delay ∆tCLC by the numerical calculation
(red line), Ivanov (green dashed line) and Burgdörfer (violet dashed line) approach.

Furthermore, Fig. 5.10a) shows each term of the streaking time delay in photoe-

mission, i.e., the Wigner time delay and the CLC time delay. Fig. 5.10b) depicts

detail information about the different approximations developed by Ivanov [74] and
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Burgdörfer in [159]. The difference between the Ivanov and Burgdörfer approaches

comes from the derivation procedure used in both cases.

It is demonstrated that the streaking time delay ∆tS is not directly related to

the Wigner time delay in the photoemission process for long-range potentials and an

extra analysis need to be performed. The coupling between the laser and the Coulomb

potential distorts the measurement process and it cannot be avoided.

It is probably one of the most important issues in the experiment presented by

Schultze et al. in [17]. As Dahlström and coworkers present in [68] the definition of a

time delay between two EWPs of different energy is difficult, due to different momenta

of the photoelectrons and their logarithmical dependence expressed in Eq. (A.8) (see

Section A.3).

Due to the problematic nature to measure the Wigner time delay in atomic system,

we will address in the next Section an alternative way to extract it from an orientated

asymmetric molecular system. If two EWPs are emitted from the same bound state

of an asymmetric system, the asymptotic long-range phase term difference between

the electron released on the left and on the right will cancel out [75] but a remaining

short-range phase difference will be present.

5.3 Wigner time delay in a small asymmetric molecule

The main difficulty to extract the Wigner time delay from an atomic system is related to

the fact that during the detection process the coupling between the long-range Coulomb

potential and the laser field plays an important role.

In the experiment of Schultze et al. [17], where a measurement of a relative time delay in

photoemission from the 2s and 2p of the Ne atom was presented, one would expect that

the two launched EWPs to the continuum have different final velocities. This implicates

that the contribution of the long-range potential between both channels influences

substantially the photoemission process. Then, the CLC needs to be estimated and

removed from the measurement in order to extract a “clean” relative Wigner time

delay between both orbitals.

An alternative process to avoid this CLC is to compare the emission of two EWPs prop-

agating with the same final energy. Here we will show that by choosing an asymmetric

orientated molecule as CO, this CLC could be removed from the detection process by

measuring the asymmetric left-right time delay.

We introduce a 1D model within the SAE approach which is similar to those used in

the literature for CO [160]. In addition we fix the positions of the nuclei by considering
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their dynamics is much slower than the electron movement. This model allows us

to calculate the exact scattering continuum waves and the complex dipole transition

matrix element, from which the Wigner time delay can be computed directly.

5.3.1 Description of the asymmetric system

In order to mimic a oriented CO molecule in 1D along the laser polarization axis we

choose a soft-core Coulomb potential to model the two nuclei centers:

VCO(z) = − Z1√
a1 + (z −R1)2

− Z2√
a2 + (z −R2)2

, (5.9)

where Z1 and Z2 are the charge of each core, a1 and a2, the soft-core parameters

and R1 and R2, the position of the nuclei. We use for the orientated molecule charge

parameters Z1 = 0.67, Z2 = 1 − Z1 = 0.33, soft-cores a1 = 1.60, a2 = 1.33 and core

positions R1 = −0.6 and R2 = 1.65 a.u. These parameters are chosen such that the

ground-state energy matches the ionization potential energy Ip = 0.5 a.u., and the

internuclear distance is R = 2.25 a.u., which are close to the values prescribed by an

actual CO molecule [161]. The ground-state of the system is calculated by imaginary

time propagation with ∆t = −0.01i a.u.

The asymmetric positions of the cores R1 and R2 are chosen to place the maximum

of the electron density at zero position as it is depicted in Fig. 5.11. This is to avoid

any artificial time delay introduced by the initial electron position with respect to the

maximum of the electron position density. The grid parameters are the same that those

used in Section 5.2.1.

Figure 5.11: 1D Asymmetric model for the carbon monoxide (CO). The po-
tential VCO(z) is depicted in green dark line and the electron density of the ground state (blue
are) associated to this potential.
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Fig. 5.11 shows the structure of the potential and the ground state which model our

one dimensional approach of the CO molecule. The potential VCO(z) shows a small

asymmetry as well as the typical long-range Coulomb behaviour. In order to simplify

our analysis we have chosen a ground state similar to the ground state of the hydrogen

atom.

While this state apparently looks symmetric it is not the case and its structural asym-

metric information will be reflected in the bound-free dipole transition matrix element

and specially in the dipole phase.

In the next Section we will compute the dipole, starting form this bound state, the

dipole phase and the Wigner time delay will then be calculated. The Winger time delay

for an electron with positive and negative momentum will be defined and in addition

the so-called left-right asymmetry.

5.3.2 Dipole structure and stereo Wigner time

To compute the Wigner time delay for the molecular system we follow exactly the

same steps that in Section 5.2.1, i.e., to compute the bound-free dipole transition

matrix element by PW and SW. The Wigner time delay is calculated according to the

definition given by Eq. (5.1).

Fig. 5.12 shows the amplitude |d(k)| and phase φ(k) of the complex dipole transition

matrix element as a function of the momentum k by PW and SW.

Figure 5.12: Asymmetric CO molecular dipole transition matrix element. a)
The amplitude (blue line) and phase (dots-dashed green line) of the bound-free dipole transition
matrix element by considering the continuum state as PW, Ψk(z) = 1√

2π
eikz. b) The same as

a) but with SW, Ψk(z).

As we expect the PW yields different results than SW for the complex dipole. The
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dipole amplitude in case of PW projection is totally symmetric while in the case of

SW it is slightly asymmetric. The dipole phase also differs strongly whether PW or

SW is used to compute it. While the asymmetry occurs in the dipole transition matrix

element amplitude and phase, the asymmetry in the amplitude is small and probably

very difficult to measure. In contrast, the asymmetry in the dipole phase is much larger

and therefore sensitive to the details of the asymmetric potential. Thus, it configures

a more powerful observable to measure the characteristics of the asymmetric molecule

(AM).

We introduce a systematic definition for the asymmetric time delay. We define the

left Wigner time delay as the derivative of the dipole phase with respect to the energy

for electrons with negative momentum ∆t
(L)
W = 1

k
∂φ(k)
∂k

∣∣
k<0

. The right Wigner time

delay, on the other hand, is defined as ∆t
(R)
W = 1

k
∂φ(k)
∂k

∣∣
k>0

for electrons with positive

momentum. Then, the asymmetric time delay or the Stereo Wigner Time Delay is

defined as the difference between these two quantities:

∆t
(LR)
W = ∆t

(L)
W −∆t

(R)
W . (5.10)

Fig. 5.13 shows the calculations for the left-right Wigner time delay and the SWTD

from the dipole phases computed by the PW and SW. The left and right Wigner time

delays are different if PWs or SWs are used to compute them. However, for both

methods, a clear minimum is obtained in the stereo Wigner time delay. It is clear that

different information are obtained for the stereo Wigner time if PWs or SWs are used.

Figure 5.13: Stereo Wigner time delay. a) The left, right and stereo Wigner time delays
by PW calculations are depicted in dots-dashed green, dashed blue and red lines, respectively.
b) The same as a) but for SW calculations.

The SWTD presented in Fig. 5.13 indicates the asymmetric characteristics of the po-
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tential model for the CO molecule which physically means that an emitted EWP to

the left side leaves from the molecule before than an emitted to the right. This is an

important fact because this asymmetry indicates that the orientation of the molecule

plays a special role in the detection process. Thus, it gives information about the nuclei

locations of the molecule.

5.3.3 Photoionization form an asymmetric molecule

In this Section we will describe how to extract the stereo Wigner time delay information

by using a semiclassical analysis to the emitted, to the left or to the right, EWPs

launched from the interaction of a SAP with the oriented CO molecule.

Similarly to Section A.4, we will use the extrapolation method to extract the ab-

solute time delay in photoemission on both sides and from it to compute the stereo

Winger time delay. In addition, we also recover the SWTD by the time of flight [77]

and compare it to the results obtained from the extrapolation method.

Figure 5.14: Scheme for the stereo TOF. Schematic representation of the time of flight

for EWPs emitted on left ∆t
(L)
TOF, right ∆t

(R)
TOF, and the stereo TOF ∆t

(LR)
TOF. The expectation

values on left, 〈zL〉, and right, 〈zR〉, as a function of time are depicted in green and blue lines,
respectively.

We define the TOF method as the time ∆tTOF = td − t0 that an EWP spends in

the continuum from an initial time t0 until the arrival time td, at a certain position zd.

This simple method allows us to extract the asymmetry in the TOF of EWPs released

to the left and to the right.

Fig. 5.14 shows an schematic representation of the stereo TOF method. This consists

to follow the semiclassical electron trajectories on either side, 〈zL/R〉, as a function of
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time. Then, the detection of symmetric positions on the left and right, |〈zL〉| = 〈zR〉,
is fixed to extract the corresponding left ∆t

(L)
TOF and right ∆t

(R)
TOF arrival times. The

difference ∆t
(LR)
TOF = ∆t

(L)
TOF −∆t

(R)
TOF defines the stereo TOF of the emitted EWPs on

both sides.

Implementation of the method

We numerically solve the TDSE to simulate the EWP emissions on either side from

the ground states of an H atom and a CO molecule by a SAP. The left-right 〈zL/R〉
position expectation values for the EWPs released on both sides, are computed as a

function of time and depicted in Fig. 5.15 for an H atom and a CO molecule1.

In case of H, the straight line trajectories, zM,L/R(t), are calculated by evaluating the

instantaneous velocities on the left-right vL/R(td) = ∓1.359 a.u., at the time td = 447.67

a.u., and at the corresponding positions 〈zL/R〉 = ∓611.2 a.u.

In the inset graph of Fig. 5.15a) we show that the black dashed vertical line coincides

exactly with the intersection of the back extrapolation left zM,L(t) and right zM,R(t)

trajectories, to the zero position z = 0. The relative time delays between the maximum

of the XUV envelope (see, red vertical dashed line in inset graph of Fig. 5.15a)) and

the time intersection points at the zero position (see, black vertical dashed line in inset

graph of Fig. 5.15a)) yield ∆t
(L)
DIP = ∆t

(R)
DIP = −2.1 a.u. Then, it is clear that the stereo

time delay in photoemission is zero in case of H.

On the other hand, in case of a CO molecule, the matched straight line trajectories

are calculated by evaluating the instantaneous velocity on the left vL/R = ∓1.358 at

the time-positions (447.67, −612.1) and at (447.67, 609.5) a.u., respectively. The back

extrapolation method shown in the inset graph of Fig. 5.15b) yields different time delays

in photoemission for the emitted EWPs on either side ∆t
(L/R)
DIP .

Table 5.1 shows a comparison of these time delay values, ∆t
(L/R)
DIP and the stereo time

delay, ∆t
(LR)
DIP , to the exact Wigner time delays 〈∆t(L/R)

W 〉 and 〈∆t(LR)
W 〉, respectively.

The left and right averaged Wigner time delays are computed by the definition given

in Eq. (A.10) of the Section A.4. In order to perform these calculations, we have taken

into account the photoelectron energy distributions for the released EWPs on either

side. The stereo time delay in photoemission ∆t
(LR)
TOF by the TOF method is also shown

in the Table 5.1.

We find that while the left-right time delays in photoemission are in disagreement

with the exact Wigner time delays, the stereo time delays by the extrapolation method

∆t
(LR)
DIP and TOF method ∆t

(LR)
TOF, are in very good agreement with the exact averaged

1For more detail, see Sections A.1 and A.2 of Appendix A
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Figure 5.15: Left and right semiclassical trajectories. a-b) The position expectation
values for EWPs emitted (from the H atom and CO molecule) to the left, 〈zL〉, and right,
〈zR〉, as a function of time t are shown in green and blue line, respectively. In dots-dashed
green and dots-dashed blue lines the match trajectories to the left zM,L(t) and to the right
zM,R(t), respectively. The inset graphs depict a zoom around the origin of coordinates and
the extrapolation of trajectories zM,L/R. The time delay in photoemission ∆tDIP by the back
extrapolation method is indicated by the time between the red and the black dashed vertical
lines in case of H (inset graph in a)). The red vertical dashed line defines the time at the

maximum of the XUV envelope. For CO, ∆t
(L)
DIP denotes the time delay in photoemission for

the emitted EWPs to the left and ∆t
(R)
DIP right (inset graph in b)). It is clear that in case of CO

there is an asymmetry ∆t
(LR)
DIP = ∆t

(L)
DIP−∆t

(R)
DIP. The SAP parameters used in these simulations

are: peak intensity IX = 1012 W/cm2, central frequency ωX = 1.5 a.u.. In addition the pulse
has a FWHM= 9.5 a.u. with a gaussian envelope and a CEP = 0.
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〈∆t(L)
W 〉 ∆t

(L)
DIP 〈∆t(R)

W 〉 ∆t
(R)
DIP 〈∆t(LR)

W 〉 ∆t
(LR)
DIP ∆t

(LR)
TOF

-1.60 -3.10 0.47 -1.1 -2.07 -2.00 -1.98

Table 5.1: Delay in photoemission for the asymmetry molecule. Here, atomic units are
used.

of the stereo Wigner time delay 〈∆t(LR)
W 〉. This indicates us a clear asymmetry in the

photoemission time delay for the CO molecule.

We scan the absolute time delays on the left, ∆t
(L)
DIP, and right, ∆t

(R)
DIP, by the

extrapolation method for different position expectation values on both sides1. Then, we

calculate ∆t
(LR)
DIP as a function of the symmetric positions |zL/R|. This method allows us

to remove asymptotically the logarithmic delay term related to the long-range Coulomb

behaviour.

In addition, we estimate the total time delays on the left and on the right defining:

∆t
(L/R)
Tot = ∆t

(L/R)
L.−R. + ∆t

(L/R)
W +

z0

k0
. (5.11)

Then, we evaluate the long-range time delay contributions on either side using:

∆t
(L/R)
L.−R. =

ZTot

k3
0

(
1− ln

∣∣2k0zL/R

∣∣) , (5.12)

and by taking symmetric positions |zL/R|, momentum k0 = |〈kL〉| = 〈kR〉 and the

total charge ZTot = Z1 + Z2 of our CO model. The Wigner time delays ∆t
(L/R)
W are

evaluated on both sides at the momentum ∓k0. The extra time delay contribution z0/k0

is computed by choosing arbitrarily the value z0 such that the time delays ∆t
(L/R)
L.−R. +

∆t
(L/R)
W matches the ∆t

(L/R)
DIP ones. This position |z0| is the same for both sides.

The results for the estimated total left-right time delays and for the numerical stereo

photoemission time delays are depicted in Fig. 5.16. The left and right time delays

in photoemission show a clear logarithmic behaviour (see Fig. 5.16a)) as it can be

expected. We compare the estimated total time delays ∆t
(L/R)
Tot to the photoemission

ones on either side ∆t
(L/R)
DIP in Fig. 5.16a). We find a very good agreement between the

photoemission tiem delays ∆t
(L/R)
DIP and the estimated total time delay ∆t

(L/R)
Tot .

We note that due to the long-range Coulomb tail of the CO potential on either side,

the delays ∆t
(L/R)
DIP do not converge to the well defined time delays as it is expected.

However, as we show in Fig. 5.16b) by taking the difference left-right ∆t
(LR)
DIP , this

logarithmic behavior disappears and a very good convergence to a well defined stereo

1To simplify the notation, we denote 〈zL/R〉 = zL/R.
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Figure 5.16: Extrapolation and TOF methods to extract stereo Wigner time
delay. By the extrapolation method, the absolute time delays for the emitted EWPs to the

left, ∆t
(L)
DIP, (green circles) and to the right, ∆t

(R)
DIP, (blue circles) as a function of the symmetric

positions |〈zL〉| = 〈zR〉 are shown in a). The estimated total exact time delay in photoemission

for either side ∆t
(L/R)
Tot are depicted in black dashed and red dashed lines, respectively. b) The

stereo time delay in photoemission, ∆t
(LR)
DIP , by the extrapolation (red circles) and the TOF

(dots-dashed black line) methods, is compared to the exact stereo total time delay or stereo
Wigner time delay (blue dashed line).

time delay ∆t
(LR)
DIP is obtained. Note that this stereo time delay is in very good agreement

with the asymmetric total time delay ∆t
(LR)
Tot which is equal to the stereo Wigner time

delay ∆t
(LR)
Tot = ∆t

(LR)
W .

The stereo time delay in photoemission ∆t
(LR)
TOF computed by using the stereo TOF

method yields the same results as the stereo photoemission time delay ∆t
(LR)
DIP calculated

by employing the extrapolation method within the whole position range of Fig. 5.16b).

The difference between the TOF and the extrapolation methods is hardly visible, about

0.05 a.u..

We can conclude that both methods are well suited to estimate numerically the

stereo time delay in the photoemission process. For positions close to the nuclei cores,

i. e., z(L/R) = 28 a.u., or less, the stereo time delay ∆t
(LR)
DIP changes slightly. This small

variation is due to the influence of the potential asymmetry around the cores.

In order to prove that the stereo time delay in photoemission can be extracted

within a broad range of photoelectron energy, we calculate the EWPs for a set of

different XUV attosecond pulses with central frequencies between ωX = 1.5− 3.0 a.u.,

and FWHM= 9.5, 7.2, 5.7 and 4.8 a.u., respectively. The peak intensity is the same

and has the value of IX = 1012 w/cm2 and the CEP is set to zero for all the attosecond
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pulses used.

In Fig. 5.17, we show the results for the stereo time delay in photoemission ∆t
(LR)
TOF

compared to the exact stereo Wigner time delay ∆t
(LR)
W which is computed via the

partial derivative of the dipole phase.

Figure 5.17: CO stereo time delay in photoemission. The stereo Wigner time delay

∆t
(LR)
W (in red line) is compared to the stereo time delay in photoemission ∆t

(LR)
TOF (black circles)

by the TOF method as a function of the photoelectron energy.

We find a very good agreement between the stereo time delay in photoemission

extracted via the TOF method with the exact stereo Wigner time delay.

The TDSE numerical results presented in this Section show that the left and right

absolute photoemission time delays for the orientated CO molecule depend strongly

on the detection positions zL/R and have asymptotically the same long-range Coulomb

behaviour as in the case of an H Coulomb potential. In contrast, from the stereo

photoemission time delay for the released EWPs on either side, the long-range Coulomb

term is cancelled out. Then, the stereo photoemission time delay by utilizing the stereo

TOF or extrapolation methods, is well defined and perfectly linked to the stereo Wigner

time delay.

It is important to note that this stereo photoemission time delay can be a powerful

method to remove the so problematic long-range CLC in the measurement process of

the fundamental Wigner time delay and specifically the stereo time delay.

As it is impossible to track on time the expectation position value of an EWP ionized

by an SAP, the method presented in this Section is not suitable as a measurement

scheme in the laboratory. In the next Section we will address how this stereo Wigner

time delay can be measured by employing attosecond science tools.
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5.3.4 Stereo streaking technique in an asymmetric molecule

The attosecond streak camera has demonstrated to be a powerful tool to study the

ultrafast dynamics in atoms and molecules. In this Section we propose a pump-probe

attosecond streaking technique to extract the stereo Wigner time delay in the photoe-

mission process similar to the Section 5.2.2. The main difference is that two streaking

traces, one on the left and another one on the right, will be needed in order to mimic

the measurement of the stereo time delay.

The basic assumption of the streaking technique is that the IR field does not modify

neither the initial state nor the final continuum state except for a momentum shift

AL(τ). However, while the IR laser field effects can be neglected in the initial state, in

the continuum the coupling between the laser field and the Coulomb potential produces

a time delay which needs to be removed from the measured one [72, 74, 159]. Although

this may be possible, the dependence of the CLC on the laser parameters makes this

task complicated.

The SWTD ∆t
(LR)
W removes the CLC from the measurements because it is identical on

the left and on the right [74]. The SWTD avoids the need to estimate this contribution

for each ionization channel, but the SWTD can only be applied to asymmetric systems.

We compute the streaking traces using the TDSE which allows us to simulate the

interaction of a SAP in the presence of a weak IR laser field and record the final electron

momentum density at the end of both pulses. We perform this task for each time delay

τ between the XUV attosecond pulse and the IR laser field. The attosecond pulse

parameters are: peak intensity IX = 5× 1012 W/cm2, central frequency ωX = 1.2 a.u.,

a gaussian envelope with FWHM = 20 a.u., and CEP = 0 rad. The IR laser field

has a typical streaking peak intensity of I0 = 2.5 × 1012 W/cm2, central frequency

ω0 = 0.057 a.u., a sine-squared envelope with two total cycles and a CEP = 0 rad. The

grid parameters are the same as in previous Sections.

Fig. 5.18a-b) show the streaking traces for H and CO, respectively. The electron

momentum distributions are computed by projecting the final wave function on SW for

both the atomic and molecular cases. To extract the stereo time delay in photoemission

from the streaking traces, we compute the momentum expectation values 〈pL〉 and 〈pR〉
as a function of the time delay τ . By the Fourier analysis method (∆t

(L/R)
S = φ(L/R)(ω0)

ω0
)

described in Section 5.2.2 for negative and positive momentum expectation values, the

streaking time delays ∆t
(L/R)
S are extracted. Then, the stereo streaking time delay is

recovered by:

∆t
(LR)
S = ∆t

(L)
S −∆t

(R)
S . (5.13)
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Figure 5.18: Comparison of the streaking traces from H and CO systems. a-b)
The left-right final momentum distributions, by projecting on SW, as a function of the time
delay τ between the IR and XUV and for H and CO, respectively. The momentum expectation
values for electrons with negative, 〈pL〉, and positive, 〈pR〉, momentum in blue circles (right)
and green circles (left). In white line, the vector potential −AL(τ). These expectation values
and the vector potential −AL(τ) for both system are depicted in c) and d). The inset graphs

in c) and d) show the streaking time ∆t
(L/R)
S and the stereo time delay ∆t

(LR)
S , between the IR

vector potential and the expectation momentum values for both systems.

The shifted momentum expectation values 〈p′L〉 = 〈pL〉 + p0 and 〈p′R〉 = 〈pR〉 − p0

are depicted in Fig. 5.18 c-d) for the case of H and CO systems. As the relative time

delays ∆t
(L/R)
S ≈ −1.5 between the vector potential −AL(τ) and 〈pL/R〉 are the same,

the stereo streaking time delay ∆t
(LR)
S yields a value of zero for the H atomic case (see

inset graph in Fig. 5.18c)).

In contrast, our Fourier analysis gives the streaking times on the left and on the

right about ∆t
(L)
S ≈ −2.8 and ∆t

(R)
S ≈ 0.2 a.u., for the CO molecule. Then, the stereo

streaking time delay is not zero and has a value of around ∆t
(LR)
S ≈ −3.0 a.u., as it

shows the inset graph in Fig. 5.18d). We note that this stereo streaking time delay is in

very good agreement with the exact average of the SWTD 〈∆t(LR)
W 〉 = −2.9 a.u. There

is only a small difference which comes from the error of the Fourier analysis, which in
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this case is around 0.1 a.u.

Figure 5.19: Streaking trace by PW and SW projections for the CO molecule.
This figure shows the same as Fig. 5.18 in case of CO but the streaking traces are computed
by the PW and SW projections.

In order to compare if the calculated streaking traces by PW and SW projections

yield the same information about the stereo streaking time delay in the molecular case,

we have computed them. Fig. 5.19a-b) show the comparison between the left-right

streaking traces by projecting on PW and SW for the CO molecule system. As it is

expected the amplitude shapes look similar for both cases but the absolute values differ

each other. However, the shifted momentum expectation values are similar if PWs or

SWs are used to compute these quantities (see Figs. 5.19c-d)). The inset graphs in c)

and d) show a very similar stereo streaking time delay ∆t
(LR)
S ≈ −3.0 a.u., if PWs or

SWs are used to compute the streaking traces.

It is important to indicate that this result does not mean that the PW or SW yields

the same final momentum. This result means that the same stereo streaking time delay

between the left and right is recovered by using both PW and SW projections for the

EWP with central energy E0 = 0.69 a.u.

To test whether the streaking technique works in a broad range of XUV frequencies,
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Figure 5.20: Stereo streaking time delay for the molecular case. The stereo
streaking time delay as a function of the EWP central energy E0 = ωX − Ip by PW (blue

squares) and SW (black circles) are compared to the exact stereo Wigner time delay ∆t
(LR)
W

computed via the derivative of the dipole phase.

we have calculated the streaking traces left-right by PW or SW projections for a set

of XUV central frequencies between 0.90 (24.5 eV) and 3.6 a.u. (97.9 eV). The XUV

attosecond peak intensity is fixed to IX = 5× 1012 W/cm2, the FWHM are between 15

and 22 a.u., and the CEP is zero for all the attosecond pulses.

The results are depicted in Fig. 5.20. We find a very good agreement between

the stereo time delay extracted by our stereo streaking method and the exact SWTD

∆t
(LR)
W as obtained from the exact complex dipole transition matrix element and the

TOF technique defined above.

This shows that the SWTD can be measured experimentally and provides a simple way

to remove the CLC. The technique is very sensitive to the asymmetry of the molecular

potential and is robust to laser parameter changes.

Furthermore, we address to the question how the stereo streaking time delay ∆t
(LR)
S

changes as a function of the XUV attosecond pulse FWHM and the peak amplitude of

the IR electric field compared to the exact averaged SWTD 〈∆t(LR)
W 〉 within the energy

bandwidth of the corresponding EWP.

We have numerically calculated the streaking traces fixing the central frequency

ωX = 1.5 a.u., and the CEP = 0.

The results are shown in Fig. 5.21. We find that the SSTD changes as the FWHM

increases and it is in good agreement with the exact averaged SWTD ∆t
(LR)
W . There is

a deviation for small values of FWHM which are related to numerical errors.

The streaking time as a function of the electric field peak amplitude is shown in Fig. 5.21

and it is constant. This demonstrate that the CLC has been effectively eliminated from
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Figure 5.21: Analysis of the stereo streaking time delay. a) The SSTD (black
circles) as a function of the XUV attosecond FWHM compared to the exact average of the

stereo Wigner time delay 〈∆t(LR)
W 〉 (red squares). b) The SSTD ∆t

(LR)
S (black circles) as a

function of the IR electric field peak amplitude EL,0 compared to the exact average Wigner
time delay (red line).

the measurement process.

For the analysis performed in this Section, we conclude that the stereo Wigner time

delay can be measured by implementing the stereo attosecond streaking technique. We

note that the problematic CLC is cancelled out by the stereo delay detection method

and therefore the fundamental Wigner time delay or delay in photoemission is recov-

ered. Thus, this attosecond stereo streaking method configures a powerful method to

extract dynamical. In addition, structural information regarding the small asymmet-

ric molecule can be recovered as well, i.e., the Wigner time delay dependence on the

internuclear distance.

5.4 Asymmetric molecule in three dimensions

In the last Sections, it was demonstrated that the problematic CLC could be removed

from the measurement process of the stereo time delay by using the stereo attosecond

streaking method.

In the next Sections, we will show how to extend our 1D numerical model to a three

dimensional asymmetric molecular potential formed by two nuclei. We show that the

SWTD can be extracted by the attosecond streak camera in similar way as it was done

in the 1D model.

In addition, we will show how the bound-bound electron dynamics could also play

an important role in the measurement process of the stereo Wigner time delay. The
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induced couplings on the continuum-continuum or bound-bound states created by the

probe IR laser pulse become increasingly important and complicate the detection of the

Wigner time delay or the time delay in photoemission.

It is important to mention that previous theoretical predictions [162] have demon-

strated that the interaction of an IR laser field can easily induce an electron bound-

bound dynamics depending of the energy structure of the molecule. Lötstedt et al. [162],

have studied the ionization of the acetylene induced by an intense IR laser field and

found that the ionization increases drastically when the internuclear distance of the

C-H bond is increased. In addition, they noted that a bound-bound electron dynamics

is induced by the IR laser field during the interaction. Then, this bound-bound electron

dynamics influences the ionization process. It is so due to the fact that the two possible

channels can create a constructive or destructive coherent superposition and then, to

affect the electron detection signal.

As we will see, the 3D model has a structure of orbitals where the energy gap

between the HOMO and the upper excited orbital, is close to the photon energy of

the IR laser field. This fact will show us that the stereo Wigner time delay in the

photoemisson process could be difficult to extract from such a system by utilizing the

streaking technique.

To perform the time evolution of a real 3D molecule, i.e., the CO, including all the

interactions of the system and the electron-electron correlation and nuclear motions,

configures a very challenging problem from a computational viewpoint. For this reason,

we will restrict ourselves to the SAE and we will consider that the nuclear motion

is slower compared to the electronic one during the interaction with the ultrashort

femtosecond and attosecond laser pulses.

Furthermore, we use a linearly polarized laser field along the oriented molecular axis.

This configuration simplifies the problem in the sense that cylindrical symmetry can

be used in order to simulate the interactions of the system, i.e., the effective potential

will depend only on the coordinates (z, ρ) and not on the azimuthal angle ϕ. This

suggests that the time evolution of the electronic full wavefunction will not rely upon

the magnetic quantum number m = 0 and the main propagation of the wavefunction

will be along the coordinates z and ρ, while keeping the 3D nature of the problem. We

will follow the numerical implementation given in the Chapter 2 to integrate the TDSE

in cylindrical coordinates.

In order to test the ideas propose here, through next subsections we will use the

cylindrical symmetry to solve numerically the TISE and TDSE for an orientated molec-

ular system formed by two centers.
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5.4.1 Definition of the system

In this Section, we describe the properties of the asymmetric molecular Coulomb poten-

tial and the calculation of the 5σ orbital, that can be associated to a real CO molecule.

The Hamiltonian H0 =
p2
ρ

2 + p2
z
2 + V0(ρ, z) describes the interactions of the system

without the presentce of laser field in cylindrical coordinates. We choose a Coulomb

potential V0(ρ, z) to mimic an asymmetry molecule with two centers which allow us to

describe the asymptotic coulombic behavior of the real molecular system:

V0(ρ, z) = − Z1√
(z + R

2 )2 + ρ2
− Z2√

(z − R
2 )2 + ρ2

, (5.14)

where Z1 and Z2 are the charges which are located along the z-axis. The coordinate z

denotes the main cylindrical axis and ρ =
√
x2 + y2 the polar radial coordinate in the

plane x and y.

We compute the five first bound states of the asymmetric potential Eq. (5.14) by

solving the TISE via the imaginary time propagation described in Section 2.2.1.4. The

imaginary time step is ∆t = −0.04i and the grid size for z and ρ is Lz = 350 a.u., and

Lρ = 150 a.u., with a spacing ∆z = ∆ρ = 0.2 a.u., respectively.

The charges (Z1, Z2) are chosen such as they match as closely as possible the

ionization potential Ip of the HOMO orbital for a real CO molecule, and the Coulomb

−Z/r (with r =
√
z2 + ρ2) asymptotic r → ∞ behavior of the potential V0(z, ρ).

We have found that the best choice are Z1 = 0.7 and Z2 = 2.3 with a total charge

Z = Z1 + Z2. The internuclear distance is fixed at R = 2.2 a.u. (1.16 Å). With these

parameters we obtain a 5σ orbital with Ip = 0.58 a.u., (15.6 eV). These data, R and Ip

are close to the experimental values [161] for the HOMO of the CO molecule.

Our cylindrical approach allows us to represent the position electron distribution

|Ψ(ρ, z)|2 as a function of the spatial cartesian coordinates (x, y, z). Fig. 5.22 shows

an iso-volumetric visualization of the asymmetric potential, V0(ρ, z) and the HOMO

orbital 5σ. We find that this molecular orbital is asymmetric and has two structural

nodes similar to the real CO [163].

Note that the larger nuclear charge, Z2, is located at z = +R/2 (on the left with

respect to the z = 0) in the asymmetric coulombic potential1. However, the probability

density shows a smaller iso-volume region about Z2 compared to the electronic density

around Z1. This counter-intuitive result means that more electron density is located

1Note that while in Section 5.3 the charge Z1 is larger than Z2, in this Section and in the following
ones, the charge Z2 is larger than Z1. This only changes the nuclei positions for “C” and “O”.
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Figure 5.22: Oriented asymmetric molecular system in 3D. The cartesian 3D
visualization of the asymmetric coulombic potential (blue-red color scale) and the orbital 5σ
(green-sangria color scale) are depicted as a function of the position (x, y, z). Z1 and Z2

denote the location of the nuclei charges for the “C” and “O”, respectively. Red arrow points
out the direction of the static dipole and the larger nucleus charge. The solid iso-volume of the
electron density is shifted along y-axis to distinguish it from the potential. The potential and
orbital iso-volumes are cut around an angle of 120◦ which allow us to view the change of the
asymmetric potential and the electron density for different spatial volumes.
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around the core with less nuclear charge Z1. The static dipole of the system is pointing

out to the larger nuclear charge Z2 as it is indicated in the Fig. 5.22 by a red arrow.

This result is similar to the one obtained in reference [163].

The SW construction for a molecular asymmetric potential in 3D is a very demand-

ing task, computationally speaking. For this reason, the calculation of the complex

bound-free dipole transition matrix element is difficult and, as a consequence, the ex-

act computation of the Wigner time delay. As an alternative way in the next Section

we will compute the SWTD by employing the TOF method.

5.4.2 Stereo TOF: 3D results

We have defined the TOF method to extract the stereo time delay in photoemission by

tracking in time the position expectation value 〈z〉 in 1D, however, in 3D the situation

is rather different. Due to the asymmetric nature of the 5σ orbital and considering the

free EWP is emitted now on all directions, the electron motion is not only restricted

to a line anymore.

Thus, we modify our definition of the semi-classical analysis in 1D to an “averaged”

electron trajectory. We calculate the position expectation value on the left 〈zL〉 and

on the right 〈zR〉 around a small detection cylinder of radius ρd and with respect to a

mean position 〈z5σ〉 of the 5σ orbital:

〈zL/R〉 − 〈z5σ〉 =

∫ ∓∞
∓z0

z dz

∫ ρd

0
ρ|Ψc(ρ, z, t)|2dρ− 〈z5σ〉 (5.15)

where ρd = 1.0 is the radius of the small cylinder, z0 = 0, the initial position to

calculate the expectation value, 〈z5σ〉 = −0.5552 a.u., and Ψc(ρ, z, t) is the field-free

complex wavefunction of the system.

Classically, we assume that the electron appears in the continuum at 〈z5σ〉 and from

this position we track the trajectories on either side. Then, we fix symmetric positions

on the left-right trajectories |〈zL〉| = 〈zR〉 = zd and by interpolating on the time axis

t to each trajectory, we obtain the TOF ∆t
(L)
TOF and ∆t

(R)
TOF that each of the EWPs

spend to reach either position in the same way that was explained in Section 5.3.3.

The difference between both times ∆t
(LR)
TOF = ∆t

(L)
TOF−∆t

(R)
TOF will define the stereo time

delay.

To compute the time-space evolution of the electronic wavefunction Ψc(ρ, z, t), we nu-

merically integrate the 3D TDSE in cylindrical coordinates via the Crank-Nicolson
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algorithm. The Hamiltonian of the system H = 1
2 [pz +AX(t)]2 +

p2
ρ

2 +V0(ρ, z) describes

all the interactions between the XUV attosecond pulse and our oriented asymmetric

molecular model. The vector potential of the XUV pulse is denoted by AX(t) which

is linearly polarized along the z-axis. We have obtained the continuum wave packet

wavefunction Ψc(ρ, z, t) by masking the bound states from Ψ(ρ, z, t).

Figure 5.23: Molecular attosecond XUV electron wavepacket in 3D. a) The
iso-volume of the full electron density for the bound and free wavefucntion as a function of
the position coordinates (x, y, z) after the XUV attosecond interaction with the asymmetric
molecular system. A cut in the position distribution at y = 0 is shown in the plane (x, z).
The inset graph shows the XUV attosecond pulse in violet. b) The final momentum electron
distribution as a function of the momentum coordinates (px, py, pz). The cut at the momentum
py = 0 is depicted as well in the momentum plane (px, pz). The attosecond XUV parameters
are: frequency ωX = 1.8 a.u., peak intensity I0 = 5.0× 1012 W/cm2, CEP= π

2 and its envelope
is a gaussian function with FWHM = 10.6 a.u.

The grid parameters used to solve the TDSE are the same as the ones used in the

last Section 5.4.1. The time step is ∆t = 0.04 a.u.

Fig. 5.23 shows the 3D final position and momentum distributions of the emitted EWP

by a SAP. We find that the iso-volume of the bound |Ψb(x, y, z, t)|2 and electron position

distributions |Ψc(x, y, z, t)|2 are asymmetric in a) as it is expected. Note that the free

electron density has three nodes. These information come from the structural shape

of the orbital 5σ and the coupling made by the XUV attosecond pulse between the

HOMO orbital and the continuum states. We can also appreciate that a cut of the
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position electron density (at y = 0) along the plane (x, z) gives the same information

about the asymmetry and the structural nodes of the molecule.

The 3D visualization of the momentum distribution and its cut along the plane

(px, pz) are shown in Fig. 5.23b). This momentum distribution |Ψc(px, py, pz)|2 is built

by projecting the continuum wave packet on PW. The asymmetry in the momentum

distribution is also visible in the iso-volume. The center momentum of the spherical cap

is at p0 = 1.56 a.u., which indicates that the asymmetry follows the charge distribution.

Figure 5.24: Stereo Winger time delay by using the TOF method: 3D results.
a) The relative expectation position values on the left |z′L| = |〈zL〉 − z5σ| (green line) and right
|z′R| = |〈zR〉 − z5σ| (blue line) as a function of time t of EWPs emitted on either side along
the z-axis. The violet line denotes the XUV attosecond pulse electric field, which has the same
parameters that one shown in Fig. 5.23. The horizontal red dashed line indicates the symmetric
detection position zd = 70 a.u., used to determine the TOF on the left-right and the stereo

photoemission time delay ∆t
(LR)
TOF = 0.67 a.u, which is depicted in the inset plot. b) The stereo

photoemission time delay computed by using the TOF, is drawn as a function of photoelectron
energy E0 = ωX − Ip.

Fig. 5.24a) depicts the absolute value of the position expectation |z′L/R| = |〈zL/R〉−
z5σ| along the z-axis including a small portion of the EWPs emitted on the left and

right according to Eq. (5.15).

The XUV attosecond pulse parameters utilized are the same as the ones we used in

Fig. 5.23. The stereo time delay in photoemission extracted by the TOF method yields

a value of ∆t
(LR)
TOF = 0.67 a.u. This result suggests that the EWP emitted on the right

is born before than the emitted on the left. From a qualitative and classical point of

view an electron which starts its motion on the direction of a deeper potential will

experiment a larger acceleration compared to one that past through a potential which

is not so deep. This is the case of our 3D potential model and consequently the positive

value in the time asymmetry ∆t
(LR)
TOF can be understood.
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The stereo time delay in photoemission as a function of the photoelectron energy

is shown in Fig. 5.24b). The XUV attosecond parameters used in these simulation are,

central frequencies 1.1 − 3.5 a.u., peak intensities are fixed to I0 = 5 × 1012 W/cm2,

CEP = π
2 and the FWHM are between 12− 18 a.u.

The stereo TOF delay shows a dependence with the photoelectron energy which

is not the same as in the 1D model. First of all, the core positions in 1D model are

opposed and secondly the potential well is a soft-core Coulomb one which takes into

account a neutral molecule charge. On the contrary, in the present 3D case the total

nuclear charge corresponds to a molecular ion.

So far our 3D asymmetric molecular study suggests that there is an asymmetry in

the time delay to the EWPs emitted on the z-left direction compared to the emitted on

the right. The Fig. 5.24a) also suggests that EWPs trajectories |z′L/R| are parallel to

each other. Thus, we can conclude that the stereo time delay in photoemission ∆t
(LR)
TOF

is the same for all the fixed detection positions.

As it was indicated in Section 5.3.3 this method is not suitable for an experiment

in the lab. In the next Section we will address how this stereo Wigner time delay can

be measured by employing attosecond science tools.

5.4.3 Stereo streaking technique under the three dimensional TDSE

In this Section we will employ the streaking technique to extract information about the

stereo Wigner time delay in the one-photon ionization process from the HOMO of the

3D asymmetric molecule model as in Section 5.2.2.

The streaking effect to the asymmetric molecule will be obtained by the numerical

solution of the 3D TDSE. Then, we introduce the streaking trace to extract the stereo

streaking time delay in photoemission taking advantage of the momentum expectation

values for electrons emitted on the left and on the right. We will find and point out

important issues related with the measurement process needed to recover the stereo

delay in photoemission from the HOMO orbital by the attosecond streaking technique.

The streaking effect is mainly defined by the momentum shift ∆p that an EWP can

experiment when it is ionized from an atom or molecule by a single XUV attosecond

pulse in presence of a weak IR laser field. According to our previous Section 5.2.2 this

momentum shift ∆pz = −AL(τ) is given by the negative value of the vector potential

AL(τ) along the IR polarization axis at the ionization time delay τ . This time delay τ

is measured with respect to the maximum of the IR laser field and the attosecond pulse

envelopes. Then, the streaking trace is defined by the electron momentum or energy
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distribution as a function of the scanned time delay τ .

In order to obtain the stereo streaking time delay from the attosecond streaking

trace, we solve numerically the TDSE in 3D under the streaking conditions. By taking

the Fourier analysis on the left and right momentum expectation values, we will be able

to obtain the stereo streaking time delay. However, first, we solve the TDSE to show

the 3D streaking effect and to visualize the 3D asymmetry of the EWP momentum

distribution.

The Hamiltonian which describes the interactions of the molecule under the SAE

approach with these two pump-probe pulses, i.e. the XUV attosecond and the IR laser,

reads H =
p2
ρ

2 + 1
2 [pz +AL(t) +AX(t− τ)]2+V0(ρ, z). Here, the AL(t) and AX(t−τ) are

the vector potentials of the IR laser field and the XUV attosecond pulse, respectively.

They are linearly polarized along the z-axis. The time delay τ is the time between the

maximum of the IR laser field and the XUV pulse envelope. Positive (negative) time

delay means the IR laser arrives before (after) than the XUV attosecond pulse.

Fig. 5.25 compares the 3D momentum distribution for a single EWP emitted by a

single XUV attosecond pulse a), to a different EWPs emitted when the XUV arrives at

the zero b) and maximum c) of the IR laser field vector potential AL(t). We find out

that the EWP momentum distribution is not shifted in the case of b) meanwhile in c)

it is along the polarization axis (z) of the IR laser field. Then, our numerical results

show that the EWP is momentum shifted by a small negative value of the IR laser field

vector potential −AL(ti) at the ionization time ti = τ + ∆tS. This is nothing but the

streaking effect. Note that this shifted momentum distribution is strongly asymmetric

and the EWP amplitude is larger along the negative pz-axis (see the iso-volume of

Fig. 5.25c)).

To extract the time delay in photoemission by using the streaking technique, we

compute the streaking traces to the EWPs emitted on either side. We scan on the time

delay τ the 3D final momentum distribution pρ|Ψc(pρ, pz, τ)|2 and then the streaking

trace Se(pz, τ) is calculated by integrating the full 3D momentum distribution about a

small angle of θ0 = 10◦ for electrons emitted with negative and positive momenta along

pz-axis. The angle θ is defined by tan θ =
pρ
pz

, where pρ and pz are the z and ρ axis in

the momentum plane.

Fig. 5.26 shows the streaking traces for electrons emitted with negative and positive

momenta from the 5σ orbital. The attosecond XUV frequency is ωX = 2.0 a.u., its peak

intensity IX = 5.0 × 1012 W/cm2, the FWHM= 9.48 a.u. (229 as), and the CEP= π
2 .

The IR laser field parameters are the same as those used in Fig. 5.25.

The left-right momentum streaking traces Se(pz, τ) show clearly an asymmetry (see the
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Figure 5.25: Attosecond streaking effect obtained by 3D TDSE. 3D momentum
distribution |Ψc(px, py, pz)|2 and its cut along the plane (px, pz) at py = 0, are shown in a
color iso-volume and surface, when an EWP is ionized via a) a single XUV attosecond pulse,
b) and c) the mix of “two colors”, i.e., an XUV and a weak IR laser field. In the case of b) and
c) the instantaneous vector potential AL(ta) (or A(τ)), at the XUV arrival time ta = 74 a.u.
(τ ∼ −T0/4), is zero AL(τ) = AL(ta) = 0, and different than zero AL(ta) 6= 0, at the ta ≈ 110
a.u. (τ = 0), respectively. The electric field envelope EX(t) of the XUV attosecond pulse
(violet area) and the IR laser field vector potential AL(t) (red curve) are depicted on the top
of each corresponding panel. The full momentum distribution in c) shows clearly the streaking
effect: the momentum shift ∆pz = −AL(τ) = AL(ta) ≈ −0.15 a.u. The XUV attosecond pulse
parameters of the simulations are the same as in Fig. 5.23 and the IR laser field peak intensity
is 2.0 × 1012 W/cm2, the CEP= 0, its central frequency ω0 = 0.057 a.u., (800 nm) and time
duration two cycles under a sine-squared envelope.
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Figure 5.26: Streaking traces: 3D TDSE calculations for the HOMO. The graphs
a) and b) show the integrated 3D momentum distributions Se(pz, τ) for the photoelectrons
with negative and positive momentum as a function of the time delay τ . c) The momentum
expectation values left (green dashed line with circles) and right (blue dashed line with circles),
and the negative values of the vector potential AL(τ) of the IR laser field. d) The plot shows

the stereo TOF delay ∆t
(LR)
TOF (blue line with circles), and the corresponding stereo streaking

time delay ∆t
(LR)
S as a function of the photoelectron energy E0.
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Figs. 5.26 a-b)) along the momentum pz-axis. The electron population ionized with

negative momentum is larger than the one with positive momentum, as it is expected.

We note that an strong asymmetry in Se(pz, τ) is found along the time delay τ -axis

in Figs. 5.26 a-b). We could wonder what is the meaning of such an asymmetry?

This question will be addressed after the evaluation of the fact that if the attosecond

streaking technique works to extract the stereo time delay in photoemission.

In order to extract the stereo streaking time delay ∆t
(LR)
S , we follow similar steps

as indicated in Section 5.3.4. The momentum expectation values on the left-right

〈pz, (L/R)〉 are calculated as follows:

〈pz, (L/R)〉 =

∫ ∓pzf
0 dpz pz Se(pz, τ)∫ ∓pzf

0 dpz Se(pz, τ)
, (5.16)

and from the phase Fourier analysis (see Sec. 5.3.4) of those quantities the stereo

streaking time delay ∆t
(LR)
S can be extracted.

We subtract the center momentum p0 to 〈pz, (L/R)〉 and depict the results as a

function of the time delay τ in Fig. 5.26c). We compare those left-right momentum

values to the negative one of the IR laser field vector potential−AL(τ). This comparison

shows a small shift between the left-right momentum expectation values and the IR laser

field vector potential. In addition, we note that these momentum values 〈pz, (L/R)〉± p0

have an “extra oscillation” around a time delay τ > 50 a.u., this is contrast to our 1D

model.

Although such oscillation on the expectation momentum values can distort the

streak time delay, we employ the Fourier analysis to recover it anyways. We ob-

serve that, while the extracted stereo streaking time delay ∆t
(LR)
S from the left-right

momentum expectation values yields −0.98 a.u., the exact stereo TOF delay gives

∆t
(LR)
TOF = 0.56 a.u. Then, we can not find agreement between the streak and TOF

methods.

To test a broader range in the data of the extracted stereo streaking time, we calcu-

late the streaking traces for different XUV attosecond pulses with central frequencies

ωX = 1.2−3.8 a.u. We retrieve the stereo streaking time delay in photoemission ∆t
(LR)
S ,

as a function of the central EWP energy, E0 = ωX − Ip and depict those results on

Fig. 5.26d). We can not find any agreement between the stereo streaking time delay

and the expected stereo TOF delay as it is in the 1D model.

These latest results suggest that something else is happening in our 3D model, in
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particular with the HOMO for the AM, which can not allow us to retrieve the stereo

Wigner delay by using the streaking technique. One can wonder if this stereo streaking

method works or not to extract the stereo time delay and where the distorted time-delay

asymmetry on the momentum distributions (see Figs. 5.26a-b)) is coming from.

To address these questions, first we will change the initial bound state and retrieve

the stereo streaking time related to another state. Second, we will go back to the

HOMO and compute the populations for the first five bound states of our asymmetric

potential as a function of the time while the IR laser field is acting alone on the system.

It is so because we have found that the energy gap between the HOMO and first upper

excited state is close to photon energy of the IR laser field.

A way to prove if the streaking method works for measuring the stereo Wigner time

delay is to change the initial bound HOMO state to another one, such as the HOMO-1,

that has less energy than the 5σ. By solving the 3D-TDSE, we have computed the

streaking traces on the left and right for the HOMO-1.

Figs. 5.27a) and b) show the numerical results for the left and right calculated

streaking traces.

These momentum distributions were computed by integrating the full 3D electron mo-

mentum distribution over a small angle of 10◦ between pρ and pz as in Fig. 5.26. Note

that the population depicted on the streaking trace for electrons emitted on the left is

less than the one for electrons on the right. This result is opposite to the HOMO one

(see Figs. 5.26a-b)) and reflects the different symmetry of the HOMO-1.

Once we obtain the results of both streaking traces, the left and right momentum

expectation values are calculated and compared to the vector potential of the IR laser

field. The results are shown in Fig. 5.27c). It is important to point out that we do

not find the same small extra oscillation on the momentum expectation values as in

Fig. 5.26c) for time delays τ > 0. These left and right momenta show a very well

defined time shift with respect to the vector potential −AL(τ) of the IR laser field.

By the Fourier method, we find that the stereo streaking time delay is ∆t
(LR)
S = −1.3

a.u. We also calculate the stereo time delay by the TOF ∆t
(LR)
TOF method for the HOMO-1

and using the same attosecond pulse as in the streaking traces. We have found that the

value of the stereo TOF delay is ∆t
(LR)
TOF = −1.37 a.u., which is in very good agreement

with the stereo streaking time delay ∆t
(LR)
S . We have extracted the same conclusion

from our 1D model.

From these results we can conclude, first, that the stereo streaking technique works

reasonably well to extract information of the stereo Wigner time delay for the HOMO-

1 and, second, the streaking technique is not able to extract the stereo Wigner time
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Figure 5.27: Streaking traces for the HOMO-1. a-b) Left and right momentum distri-
bution of the continuum EWP as a function of the time delay τ when the ionized photoelectrons
come from the first bound state with less energy than the 5σ orbital (HOMO-1). The color scale
depicts the logarithm of the momentum distribution or electron density. c) Momentum expec-
tation values for electrons emitted on the left (green circles) and right (blue circles), 〈pL/R〉±p0,

where p0 =
√

2(ωX − Ip). Red solid line depicts the vector potential negative −AL(τ) of the
IR laser field. The IR-laser parameters are the same as in Fig. 5.26, and the XUV attosecond
central frequency is ωX = 2.3 a.u., its peak intensity IX = 5 × 1012 W/cm2, its envelope is a
gaussian with FWHM= 250 as, and its CEP=π

2 .
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delay in the case of the HOMO. Furthermore, according to the results for the HOMO-

1, we have verified that our stereo streaking method works very well to extract the

asymmetric time delay in photoemission and that this asymmetry is not an artefact

caused by the dimensionality.

Here, two natural questions arise, namely, i) why the streaking technique is not able

to extract the stereo Wigner time delay in case of the HOMO and it is so in the case

of HOMO-1. ii) Where it is coming from the strong asymmetry along the time delay

τ -axis in the attosecond streaking traces case of HOMO (see Fig. 5.26a) or b)).

To answer these two questions we briefly review what the literature tells us about

the influences of the IR laser field on the measurement process of the Wigner time delay.

The time delay in the photoemission of an EWP extracted via the attosecond streaking

technique can be distorted by the IR laser field due to: (i) the continuum-continuum

coupling, that is commonly known as the CLC [72, 74], (ii) the bound-bound coupling

and (iii) the polarization effects, i.e., the strong distortion of the bound electron cloud

during the laser interaction [164].

Here we will address the influence of the bound-bound coupling induced by the IR

laser field in case of the HOMO. Our assumption is based on the fact that the energy

gap, ∆E10, between the 5σ and the next upper bound orbital is ∆E10 = 0.06807 a.u.,

which is very close to the photon energy of the IR laser field 1.55 eV (ω0 = 0.057 a.u.).

We have calculated the populations of the first five bound states of our asymmetric

molecule potential model while the IR laser pulse is acting on the HOMO. The inten-

sity of the IR laser field is 2 × 1012 W/cm2 and Fig. 5.28 shows the populations of

those firsts five states as a function of time. We find that the IR laser field induces a

coherent superposition of the HOMO and the upper excited orbital (5th state) during

the interaction.

Furthermore, one would wonder if the transferred population to the upper excited

state is given by one photon absorption of the IR laser field and how this transferred

population can distort the stereo Wigner time delay measurements when the peak

intensity of the IR laser field is changing.

We have calculated firstly the final population of the upper excited state with respect

to the HOMO as a function of the peak intensity of the IR laser field. These simulations

take into account the fact that the whole population is located in the HOMO at the

beginning of the laser-molecule interaction. The logarithm of the excited population

versus the peak intensity of the IR laser field in logarithmic scale is depicted in Fig. 5.29.

We find out that behaviour of this curve is a straight line which has a slope of one. This

means that the electron transition to the upper excited state is governed by one-photon
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Figure 5.28: Coherent superposition induced by the IR laser field. The prob-
ability to find the electron in the first five bound states of our AM potential as a function of
the time t when the IR laser field acts on the 5σ molecular orbital. The IR laser electric field
EL(t), is depicted in a red solid line. The laser parameters are the same as in Fig. 5.26.

Figure 5.29: One photon absorption by an asymmetric molecular potential.
Logarithm of the final population (blue circles) for the upper excited state with respect to the
HOMO is shown as a function of he peak intensity of the IR laser field (in logarithmic scale).
The excited population is scanned within a peak intensity range of 1010−2×1012 W/cm2. The
other parameters are the same as in Fig. 5.26. The red dashed line depicts a linear fit to the
simulation data (note that the slope of this line is one).
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absorption from the IR laser field [162].

Secondly, we can expect that while the peak intensity of the IR laser field decreases

the coherent transferred population decrease as well and therefore the stereo Wigner

time delay can be recovered. However, we will find out that this is not the case. We have

performed calculations of the stereo streaking time delays by fixing one photoelectron

energy, i.e., the attosecond XUV frequency ωX = 2.0 a.u., and computing the streaking

traces on the left-right as a function of the intensity of the IR laser.

Figure 5.30: Stereo streaking time delay versus the peak intensity of the
IR laser field. Stereo streaking time delay as a function of the peak intensity of the IR
laser field for the HOMO. The attosecond XUV frequency is ωX = 2.0 a.u., its peak intensity
IX = 5.0× 1012 W/cm2, FWHM= 9.48 a.u. (229 as), and CEP= π

2 for all the intensities of the
IR laser field.

Then, by the Fourier analysis of the left-right momentum expectation values, we have

extracted the stereo streaking time delay. It is found that this delay does not exhibit

an noticeable change. The results are depicted in Fig. 5.30. From this plot we verify

that the stereo streaking time delay only changes about 1.5 as within the three orders

of magnitude considered for the peak intensity of the IR laser field.

Although the transferred population to the excited state is about 10−3 at the small-

est peak intensity of the IR laser field, the stereo streaking traces remain deformed and

therefore the problems to extract the stereo Wigner time delay by our Fourier analysis.

We note that the stereo streaking traces are quite sensitive to the electron coherent

superposition and this means the attosecond streaking camera can be a robust method

to study such a bound electron dynamics process.

According to the 3D results we can conclude that it is problematic to measure the

stereo time delay in case of the HOMO. The electron bound-bound transition dynamics
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induced by the IR laser suggests that when the XUV attosecond pulse ionizes this

system, the left-right launched EWPs are coming from the coherent superposition of

the HOMO and the upper excited state. Then, the left-right streaking traces are easily

distorted and therefore the measuring of the stereo Wigner time delay.

It is important to mention that such a optical transition induced by the IR laser

field is at one photon absorption.

On the other hand, the result for the stereo streaking time delay in case of the

HOMO-1 shows that the stereo streaking technique works reasonably well to retrieve

the stereo Wigner time delay when there is no optical transitions between bound states

induced by the IR laser field.

In addition we point out that the asymmetry along the time delay in the stereo

streaking traces might have rich information about the bound-bound electron dynamics

induced by the IR laser field. As a final point next Section will be dedicated to explore

the time delay asymmetry in the stereo streaking traces.

5.4.3.1 Molecular bound-bound electron dynamics

In the last Section we have shown that the attosecond streaking camera is not able to

directly extract the stereo Wigner time delay in the case that the IR laser field induces

a coherent superposition of two bound states in the medium.

In this Section we will take advantage of the attosecond streak camera and propose

it to prove if the coherent superposition of those two bound states can be extracted.

This temporary coherent superposition is mapped on the streaked EWPs. It is a clear

sign of the encoded information about the bound-bound electronic dynamics.

Let us go back to the question related to the asymmetry on the momentum distri-

bution along the time delay τ -axis between the XUV and the IR laser for the stereo

streaking traces. To this end, we define first the asymmetry Asym(τ):

Asym(τ) =
S

(L)
e (τ)− S

(R)
e (τ)

S
(L)
e (τ) + S

(R)
e (τ)

, (5.17)

where the quantity S
(L/R)
e (τ) =

∫ ∓pzf

0 dpz Se(pz, τ) is the ionized population emitted on

the left-right by the XUV in presence of a weak IR laser field.

The calculated numerical results for the stereo streaking traces are depicted in

Figs. 5.26a-b). We have computed the asymmetry Asym(τ) for the ionized EWPs from

the HOMO. In order to compare the Asym(τ) of the HOMO to a system which does not
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Figure 5.31: Time delay asymmetry on the streaking trace. a-b) Asymmetries
Eq. (5.17), as a function of the time delay τ from the calculated stereo streaking traces from
the ground state of an hydrogen atom (a) (blue dashed line) and the the HOMO of an AM (b)
(blue line with circles) potential, respectively. The vector potential AL(τ) of the IR laser field
is depicted in a red line. For both cases a) and b), the IR laser field parameters are the same
as in Fig. 5.25 and the XUV attosecond pulse has a central frequency of 2.0 a.u., peak intensity
is IX = 5× 1012 W/cm2, its envelope is a gaussian with FWHM= 250 as, and its CEP=π

2 .

allow the bound-bound transition by the IR laser field, the hydrogen atom is chosen.

Then, we numerically computed the stereo streaking traces in the case of the ground

state of H atom by the 3D TDSE. Thus, the asymmetry Asym(τ) is calculated. The

XUV and the IR laser fields used to solve TDSE for the H atom are the same as the

ones used in case of the AM.

Fig. 5.31 shows the results of the asymmetry as a function of the time delay between

the XUV and the weak IR laser field for each system. We find out, on the one hand,

that the asymmetry in the case of an H atom, is initially zero and follows exactly the

vector potential of the IR laser field. On the other hand, in case of the HOMO, there is

a strong asymmetry in the amplitude and oscillations for the time delay τ < 0 compared

to τ > 0. Note, that in case of the HOMO the initial asymmetry is different than zero,

which is totally expected according to the natural asymmetry of the HOMO. However,

the increment of the oscillation amplitude compared to the H, is clear signature that

the asymmetry is a powerful quantity to study the electron bound-bound transitions

induced in a system.

These results point out that the bound-bound electron dynamics is responsible of

a strong oscillation in the asymmetry in the time delay τ > 0, see Fig. 5.31b), and

therefore the difficulties to extract the stereo Wigner time delay by utilizing attosecond

streaking technique.
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Figure 5.32: Asymmetry and scan on the peak intensity of the IR laser field.
Asymmetries, as a function of the time delay and the peak intensity of the IR laser field, are
depicted in different colors. The vector potential AL(τ) of the IR laser field is shown in a red
line.

Now we address the natural question about the relation between the asymmetry

and the transferred population to the upper excited state with respect to the HOMO.

To this end, we test a broad range of asymmetries by using the attosecond streaking

camera and changing the peak intensity of the IR laser field within 1010−1012 W/cm2.

Fig. 5.32 shows such asymmetry as a function of time delay and the peak intensity

of the IR laser field. It is found out that the asymmetry as a function of the time delay

changes by a constant amplitude factor when the intensity is increased.

In addition, we have computed the amplitude of the asymmetry Asym(τ) and plot-

ted such a quantity as a function of the peak intensity of the IR laser field. The results

are depicted in Fig. 5.33a).

We find that the logarithm of the asymmetry amplitude increases linearly with the

logarithm of the peak intensity and the slope of such a line is about 0.53. We also

compare Fig. 5.33a) to b) which depicts the final excited population as a function of

the peak intensity.

These results suggest that within the intensity range of our simulation the final

transferred population to the upper excited electronic state can be measured by the

asymmetric amplitude by utilizing the attosecond streaking technique.

Note that the asymmetry Asym(τ) can be proposed as a suitable quantity to study

the time evolution of the transferred population to upper excited states under the

case of our molecular system. In other works, we find out that the “instantaneous”

amplitude of the complex coefficient is related to the upper excited state and it could

be mapped on the asymmetry at each time delay. This property points out that the
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Figure 5.33: Asymmetry amplitude and excited population. a) Logarithm of the
asymmetry amplitude (blue asterisk) form the stereo streaking trace of the HOMO as a function
of the peak intensity of the IR laser field (in logarithmic scale). b) The logarithm of the final
excited population transferred by the IR laser field from the HOMO to the upper excited state.
The red dashed lines are a fit to a straight line.

attosecond streaking technique configures a very powerful tool to extract electronic

bound dynamics information.

We finish this Section noting that the asymmetry also shows us that stereo streaking

trace is strongly deformed by the induced coherent superposition of different states.

This affects the measurement process of the stereo Wigner time delay when the optical

transition is close to the one photon energy of the IR laser field.

We stress out that our results do not mean that the stereo streaking method does

not work to retrieve the stereo time delay in the photoemission process. But the bound

structure of the studied medium must be taken into account in the measurement process

by the attosecond streak camera.

5.5 Conclusions

In this Chapter we have theoretically investigated the time delay in photoemission and

its relation to the Wigner time delay.

In the first part, our numerical calculations show that EWP emitted by a single

XUV attosecond pulse experiments a time delay in the process. This time delay depends

strongly on the potential of the system. On the one hand, our 1D numerical results

suggest that in case of short-range potentials the time delay in photoemission computed

by utilizing the TOF method is exactly the Wigner time delay. On the other hand, in

the case of long-range potentials the time delay in photoemission can not be directly
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related to the Wigner time delay. It is so because the strong influence the long-range

behaviour of the potential has over the EWP, accelerating it during all its subsequent

motion.

The attosecond streaking technique configures a useful tool to measure the time

delay in photoemission depending on the atomic potential system. In the case of

long-range potentials, the measurement of the time delay in photoemission by the

streaking technique can not be directly related to the Wigner time delay. The coupling

continuum-continuum between the IR laser field and the potential distorts the measure-

ment process and induces an extra time delay which makes the streaking measurement

difficult to correlate with the fundamental Wigner time delay.

Furthermore, in the second part, we propose an alternative way to extract informa-

tion about the Wigner time delay. This approach is based on an asymmetric molecular

system such as the CO and, by taking the left-right emitted EWPs, we define the stereo

time delay in photoemission process as well as the stereo Wigner time delay. For the

1D molecular case, we demonstrate that this stereo TOF delay is exactly the stereo

Wigner time delay and removes out the acceleration induced by the long-range nature

of the Coulomb potential.

We point out that the measurement of the stereo streaking time delay by stereo

streaking traces shows very good agreement to the stereo Wigner time delay. Then, we

demonstrate that this scheme removes out the problematic CLC from the measurement

process of the Wigner time delay.

Finally, in the third part of this Chapter we propose a 3D asymmetric potential

model to confirm our 1D predictions about the stereo Wigner time delay. Our results

suggest that the stereo Wigner time delay can also be measured in the case that there is

no bound electron dynamics induced by the streaking field. In case where bound-bound

electron dynamics are present, i.e., a coherent superposition induced by the IR laser

field, the measurement of the stereo time delay in photoemission could be problematic

by using the streaking technique.

In addition, we find out that the asymmetry as a function of the time delay between

the XUV and IR laser field carry out information related to the molecular electron

bound dynamics. We suggest that streaking technique might configure a very powerful

tool in the study of the bound-bound transition electron dynamics on a system which

has a electron energy gap between their states close to the photon energy of the IR

laser field.
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Conclusions and outlook

We organized the results of this thesis in two large groups. In the first group, the focus

was on developing new techniques to characterize the complex electron wavefunction

based on optical techniques. In the second group, the focus was on how to use the

attosecond pulses to obtain dynamical information of the atomic and small molecular

systems.

Conclusions

The main purpose of the first group of conclusions was regarding the study of different

characterization techniques to reconstruct the amplitude and phase of an EWP and

its corresponding complex bound-free dipole transition matrix element. In the second

group of results the focus was on the study of the delay in photoemission process by the

attosecond streaking technique, mainly a way to remove the so-called Coulomb-laser

coupling.

Electron wavepacket and structural information

We have presented the QSPIDER technique in 1D and its 2D extension to reconstruct

the complex EWP and its corresponding complex bound-free dipole transition matrix

element.

Two different interferometric schemes were presented: the QSPIDER technique and

the lateral momentum-shearing EWPs interferometry technique which is the extension

of the QSPIDER to a 2D momentum plane.

With parameters that can be accessed today experimentally, we have shown that these

techniques were able to recover structural information.

Thus, in Section 4.2 of Chapter 4, it was demonstrated that QSPIDER allows to extract

the complex dipole within the EWP momentum-bandwidth.

197



5. CONCLUSIONS AND OUTLOOK

In addition, the lateral momentum-shearing EWP interferometry technique was based

on a similar to QSPIDER scheme, but in this case the streaked field was a circularly

polarized one. According to our numerical results based on the SFA and 2D TDSE, we

also demonstrated that this technique extracts structural information about the atomic

target, i.e., the complex dipole.

We stress that the subsequent application of the two attosecond pulses in the presence

of the IR laser field (linearly or circularly polarized) to the target demonstrated that

QSPIDER is a single shot technique.

Furthermore, the emission of two EWPs from the same bound state showed that QSPI-

DER is a novel auto-referenced technique.

We concluded that in comparison to the high harmonic spectroscopy method [5, 65]

used to extract structural information, QSPIDER has two desirable advantages: first,

it is a single shot technique and second, an auto-referenced technique is provided.

Finally, the results of the Chapter 4 demonstrated that the concepts of the opti-

cal characterization techniques can be implemented successfully, at least under some

conditions, for the electron wavepacket reconstruction.

Wigner time delay and dynamical information

The second group of results in this thesis was focused on the use of attosecond pulses to

extract dynamical information of the ionization process. In particular, we investigated

the problem of measuring the Wigner time in small asymmetric molecules.

The attosecond streaking technique is a useful tool to measure the delay in photoe-

mission. Depending on the nature of the atomic potential this delay can be measured

accurately.

For long-range potentials, the time delay in photoemission was not directly related to

the Wigner time. The long-range contribution depended on the final position where

the calculation was made and therefore the value was not unique. For short-range

potential, the delay in photoemission and the Wigner time were the same.

In case of the short-range potential, the streaking technique worked very well to

extract the Wigner delay. But for the long-range potentials, the coupling between the
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IR laser and the potential distorted the measurement and induced an extra delay.

In this thesis, we have proposed an alternative way to extract information about the

Wigner delay. This method was based on an asymmetric molecular system such as CO.

By taking the time delay difference between the emitted EWP on the left and right

with respect to the molecular orientation axis, the stereo time delay in photoemission

is defined. According to the described stereo delay in Section 5.3 of Chapter 5, our

numerical results suggested that this stereo time delay in photoemission (stereo time

of flight) was perfectly linked to the stereo Wigner delay. In addition, this asymmetric

delay removed the acceleration induced by the long-range Coulomb tail.

We stress that the measurement of the stereo streaking time delay by two left-right

streaking traces was compared in very good agreement to the stereo Wigner time de-

lay. This viable scheme removed the problematic Coulomb-laser coupling from the

measurement process of the Wigner time delay.

Furthermore, in Chapter 5, we explored a 3D asymmetric potential well model to con-

firm our 1D predictions regarding the stereo Wigner time delay. The results suggested

that the stereo Wigner time delay can also be measured in case that there was no

bound electron dynamics induced by the attosecond streak field. In case that there was

bound-bound electron dynamics, i.e., a coherent superposition induced by the IR laser

field, the measurement of the stereo delay in photoemission might be very hard. This

was the case, if the gap energy between the coupled orbitals was about one photon of

the IR laser.

Outlook

We have confirmed that attosecond science tools can be successfully applied to the

electron structure and electron dynamics.

Our results suggest that the development of applications based on attosecond physics

provided a valuable new perspective of electrons in the matter by accessing to the wave-

function itself.

As an outlook, we propose to extract structural information about the bound-free dipole

transition matrix element on a broader momentum range than QSPIDER. By mixing

the signal of a single XUV attosecond pulse and the ionization led by the IR laser
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field perhaps a full complex dipole reconstruction can be achieved. It would be very

interesting to perform a full tomography reconstruction of the initial wavefunction of

the electron with unprecedented spatial resolution.
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Appendix A

A.1 Semiclassical aspects of the delay in photoemission

While the Wigner definition can be used in a quantum context, it can also be linked

to a classical description. To this end we assign a trajectory to the emitted EWP and

from this we extract the delay in photoemission.

We will explain how the semiclassical trajectory is obtained from the injected EWP

to the continuum by a XUV attosecond pulse. The extrapolation method to extract the

information of the delay in photoemission is defined by considering this electron trajec-

tory. We compare our calculated semiclassical electron trajectory to the corresponding

analytical electron trajectory obtained via the stationary phase method.

We solve numerically the TDSE with Hamiltonian H = 1
2 (pz +AX(t))2 +V0,Y/C(z)

to simulate the full electron wave function, Ψ(z, t), of the systems. Here pz = −i ∂∂z
denotes the momentum operator, AX(t) = −

∫ t
E(t′)dt′, is the vector potential of the

XUV attosecond pulse with, EX(t), its electric field and V0,Y/C(z), are the Yukawa

and Coulomb potentials. The electric field of the XUV radiation is defined EX(t) =

E0,X(t) sin [ωXt+ ϕ0]. Where, E0,X(t), denotes the envelope and ϕ0, the carrier enve-

lope phase of the pulse.

The continuum complex EWP, Ψc(z, t), is computed by masking all the bound states

from the whole wave function Ψ(z, t) in case of V0 Y. That is, Ψc(z, t) = fMask(z)Ψ(z, t),

where, fMask(z), is the mask function explained in the Section 2.2.1.7 of Chapter 2. In

case of V0,C we calculate, Ψc(z, t), by projecting out the first fours bound states of less

energy.

The left, 〈zL〉 and right, 〈zL〉, position expectation values are calculated from the emit-

ted EWP Ψc(z, t):
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〈zL〉 =
1

NL

∫ 0

−∞
z |Ψc(z, t)|2 dz,

〈zR〉 =
1

NR

∫ ∞
0

z |Ψc(z, t)|2 dz. (A.1)

Where NL =
∫ 0
−∞ |Ψc(z, t)|2 dz and NR =

∫∞
0 |Ψc(z, t)|2 dz are the ionized population

to the left and right, respectively.

The EWP momentum distribution is calculated by projecting the continuum com-

plex position EWP on plane and scattering waves Ψc(k, t) =
∫∞
−∞Ψ∗k(z)Ψc(z, t)dz. By

these momentum distributions, we can track in time the left and right momentum

expectation values 〈kL〉 and 〈kR〉, respectively. These are defined by:

〈kL〉 =
1

N
(k)
L

∫ 0

−∞
k |Ψc(k, t)|2 dk,

〈kR〉 =
1

N
(k)
R

∫ ∞
0

k |Ψc(k, t)|2 dk, (A.2)

where N
(k)
L =

∫ 0
−∞ |Ψc(k, t)|2 dk and N

(k)
R =

∫∞
0 |Ψc(k, t)|2 dk are the ionized population

on the left and right, respectively. These simples set of quantities the semiclassical

electron trajectory: the position and momentum expectation values will allow us to

recover the delay in photoemission for both potential systems.

A.2 Extrapolation method

Here we present the extrapolation method as a technique to extract the delay in pho-

toemission.

We define the extrapolation method to extract the delay in photoemission or the

Wigner time for the EWP, by tracking in time the semiclassical electron trajectory, 〈z〉,
which is matched with the straight line zM(t′):

zM(t′) = v(t)(t′ −∆tDIP), (A.3)

where v(t) is the instantaneous electron velocity v(t) = d〈z〉
dt . This velocity coincides

with the EWP group velocity in short-range potential [157]. The quantity ∆tDIP =

ti− ta is the delay in photoemission, where ti is the “ionization time” and ta is time at

the max of the attosecond XUV pulse envelope.
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Figure A.1: Extrapolation method and the delay in photoemission. The blue
line depicts the semiclassical electron trajectory 〈z〉 and the red dashed line with points shows
the straight line trajectory zM, which is matched with the 〈z〉 at a certain time-position point (t,
z). The violet area is the attosecond pulse envelope and the black dashed vertical line indicates
the max of the envelope. The delay in photoemission ∆tDIP is the time duration between the
“ionization time”, ti, (red dashed vertical line) and the time at the max of the attosecond pulse
envelope, ta, (back dashed vertical line).

By fixing the detection time-position point (t, z) and the instantaneous velocity v(t),

the delay ∆tDIP can be extracted via back extrapolation of the straight line zM(t′) to

the z = 0 [157, 165]. This procedure is illustrated in Fig. A.1.

We note that the delay in photoemission is based on the assumption that the electron

appear at the zero position in continuum.

We will employ the extrapolation method to extract the associated delay in the

photoemission for the short-range and long-range potentials.

In the next Section we describe the stationary phase method in order to obtain an

analytical expression to the semiclassical electron trajectory. From this derivation, it

is possible to compare our numerical calculation of the electron trajectory.

A.3 Stationary phase method

The time that an EWP takes to leave from its binding potential is related to the Wigner

time. The ionization of an atomic system by a SAP is described by the complex electron

wave packet Ψc(z, t). After the attosecond pulse when the EWP has been formed, the

complex wave packet is:

Ψc(z, t) =

∫
a(k)Ψk(z) exp[−iEt]dk, (A.4)
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where, a(k) = |a(k)| exp [iφ(k)], is the complex ionization amplitude and Ψk(z) is

the scattering wave function of the continuum spectrum with momentum k [75] and

energy E = k2

2 . The term φ(k) is phase of the ionization complex amplitude a(k).

When the interaction of the scattered wave with the scattering center is defined by

a short-range potential, then Ψk(z) is asymptotically considered (z → ∞) a plane

wave Ψk(z) ≈ 1√
(2π)

eikz. In the asymptotic limit when the EWP is far away from

the scattering center, one may ask, around what value of z the EWP is peaked at the

arrival time t. In this limit, the most favorable contribution of the integral Eq. (A.4)

will occur around k0 where the amplitude |a(k)| is peaked [155]. Then, this momentum

coincides with a point where the phase in the integral Eq. (A.4) is stationary:

z +
∂φ(k)

∂k

∣∣∣∣
k=k0

− k0t = 0. (A.5)

Here φ(k) is the phase-shift of the scattered wave in the short-range center or the phase

of the bound-free dipole transition matrix element [75, 166].

One can ask, what time takes an electron propagating under the action of this

short-range center to arrive the position z with respect to the a free particle when the

motion start at z = 0 and t = 0. From Eq. (A.5) we can derive this time delay:

t(z)− z

k0
=

1

k0

∂φl
∂k

∣∣∣∣
k=k0

, (A.6)

where t(z) is the time that an electron spends until the arrival position z under the

short-range potential action and z/k0 is the time that spends a free particle of the same

momentum k0. Then, for a particle with momentum k this time delay, ∆tW = t(z)− z
k ,

is:

∆tW =
1

k

∂φ(k)

∂k
=
∂φ

∂E
. (A.7)

For brevity, we will refer to this energy derivative of the quantum phase, φ, as the

Wigner time delay ∆tW. Note that the sign convention for, ∆tW, is such that positive

(negative) values correspond to delayed (advanced) emission.

When the potential, V0(z) is a long-range potential at large distances like the

Coulomb potential V0(z) = − Z
|z| , the situation is totally different. The wave function

Ψk(z) is not a plane wave and becomes the scattering Coulomb wave which contains a

phase term that is logarithmic in z. As it is shown in [75] the stationary phase point

is given by the solution of the equation:
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z +

[
− Z
k2

0

ln |2k0z|+
Z

k2
0

+
∂φ

∂k
(k0)

]
− k0t = 0, (A.8)

where, z, describes the electron trajectory in the action long-range Coulomb potential.

In analogy to Eq. (A.6) the time delay between the electron of momentum, k, traveling

under the action of the Coulomb scattering center (with charge Z) and the free particle

is:

t(z)− z

k
=
Z

k3
(1− ln |2kz|) + ∆tW. (A.9)

This time delay has a logarithmic dependency term in z which is cannot be avoided. The

logarithm term, ∆tL.−R. = Z
k3 (1− ln |2kz|), is the long-range time delay contribution

in case of Coulomb potentials. This logarithmic contribution is quite problematic to

define a time delay in the photoionization process from an atomic system with the

long-range Coulomb behaviour [68, 157].

We will evaluate this analytical trajectories Eqs. (A.5) and (A.8) by computing the

momentum phase derivative, ∂φ(k)
∂k

∣∣
k=k0

, at the asymptotic momentum, k0, from our

numeric results for the EWP ionized by an XUV attosecond pulse in case of the short-

range Yukawa potential and the long-range Coulomb potential well. We choose, k0, as

the value around the momentum at max of the momentum electron density [155]. We

note that the, k0, is close to the asymptotic (t→∞) momentum expectation value 〈k〉.

A.4 Photoionization via a single attosecond pulse

In this Section, we show our TDSE numerical results for the photoionization and the

semiclassical analysis by the extrapolation method in order to extract the delay in

photoemission. The emitted EWPs are ionized from the ground states of the short-

range Yukawa and long-range Coulomb potentials. We use also the classical electron

trajectory derived from the stationary phase Eqs. (A.5) and (A.8) method to compare

to our numerical semiclassical trajectory by TDSE.

The TDSE numeric results for the one-photon ionization from ground state of

Yukawa and Coulomb potentials are shown in Figs. A.2 and A.3, respectively. The

XUV attosecond pulse has a central frequency of ωX = 0.95 a.u., a peak intensity

1.0 × 1012 W/cm2, FWHM = 22.5 a.u. (544 as), and CEP = 0 rad. The pulse has a

gaussian envelope shape. The position grid parameters are the same that the utilized

to compute the dipole structure. Fig. A.2a) shows the position expectation value for
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electrons ionized to the right, 〈zR〉, the electron trajectory, zS.−P., by stationary phase

method and the straight line, zM, as a function of time t.

Figure A.2: Delay in photoemission from a short-range Yukawa potential.
a) 1D TDSE calculations for the position expectation value 〈zR〉 for an emitted EWP to the
right (blue line), zM (red line), the match to the straight line Eq. (A.3) and zS.−P. the electron
trajectory (green dashed line) under the stationary phase method. The attosecond pulse and
its envelope are in violet line and violet dashed line, respectively. Inset graph shows the extrap-
olation of zM to z = 0 and how the delay ∆tDIP with respect to t = 0 (red dashed vertical line)
is extracted. b) The expectation momentum value 〈kR〉 by scattering wave (SW red line), plane
wave (PW green dashed line) and the time derivative (blue line) of the electron position 〈zR〉.
c) The delay in photoemission (blue line and circles) as function of the position 〈zR〉 compared
to the average of Wigner time 〈∆tW〉 (red line) within the energy bandwidth of the EWP. d)
The time delay ∆tDIP (green dotted line) for different EWPs of central energy E0 = ωX − Ip,
compared to exact Wigner time ∆tW(E) (blue line).

These trajectories zS.−P. and zM are asymptotically (t→∞) in very good agreement

to the electron trajectory 〈zR〉 calculated by TDSE. The trajectory zS.−P. has been

computed by choosing the stationary momentum k0 ≈ 0.91 a.u.

The straight line zM(t) is computed by evaluating the instantaneous velocity v(td) =
d〈zR〉
dt

∣∣
t=td

= 0.91 a.u., at the time-position (td = 125, zd = 115) a.u. Then, the delay in

photoemission ∆tDIP is recovered by extrapolating zM(t) back to z = 0 (see inset graph

206



in Fig. A.2a)). The delay gave a value about ∆tDIP = −0.84 a.u., for the EWP central

energy E0 = 0.45 a.u. Fig. A.2b) shows the momentum expectation values by plane

and scattering wave projection as well as the time derivative of the position expectation

value (v(td) = d〈zR〉
dt ).

The time derivative of the trajectory 〈zR〉 is compared to the momentum expectation

values using SW and PW. These calculations show a very good convergence to the

constant momentum k0 = 0.91 a.u. by all the methods in case of the short-range

Yukawa potential. The velocity variations shown for t < 50 a.u., are due to the mask

function fMask(z) effects. This variation does not represent any physical meaning.

The delay in photoemission ∆tDIP, extracted by the extrapolation method, as a

function of the tracked electron position 〈zR〉 is depicted in Fig. A.2c). This delay

∆tDIP converges to the value of −0.839 a.u. This is in very good agreement with the

average Wigner time 〈∆tW〉 = −0.834 a.u.

Here we define the average in the Wigner time:

〈∆tW〉 =

∫
dE∆tW(E)|Ψc(E)|2∫

dE|Ψc(E)|2
, (A.10)

where, |Ψc(E)|2, is the energy spectrum of the ionized EWP and ∆tW(E) the Wigner

time delay.

The delay ∆tDIP, for a broader range of EWP energies E0 = ωX − Ip, is shown

in Fig. A.2d) and compared to the exact Wigner time delay. To extract the delay

∆tDIP, we compute the different trajectories zM for all the EWPs. By calculating the

instantaneous velocity, v(t), at the fixed position, 〈zR〉 = 150, the electron trajectories,

zM, are obtained and from them the delay in photoemission, ∆tDIP, is recovered for

the different EWPs. The XUV attosecond frequencies, ωX, are within the range of

0.95-2.15 a.u., the attosecond FWHM, the peak intensity and the CEP are the same

that in the example shown in Fig. A.2a).

We find that the delay in photoemission ∆tDIP is in very good agreement to the

exact Wigner time in case of Yukawa short-range potential. We note that for low

photoelectron energy (E0 = 0.45 a.u.) there is a small different between the exact

Wigner time and the extracted delay in photoemission by the extrapolation method.

This is due to the EWP takes the average Wigner time, 〈∆tW〉, within its energy

bandwidth [165]. These numerical calculations show that the Wigner time delay can

be extracted by the extrapolation method in case of short-range potentials. However,
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in case of hydrogen this delay in photoemission recovered by the present method is not

the same that Wigner time.

Figure A.3: Delay in photoemission from a long-range Coulomb potential. a)
Same as in Fig. A.2a), but for the H Coulomb potential. Inset graph shows a zoom around the
coordinate origin and the difference between the straight line, zM and the trajectory, zS.−P.. b)
The momentum expectation values, 〈kR〉, by SWs (red dashed line), PWs (green dashed line

with points), instantaneous velocity d〈zR〉
dt (blue line) and dzS.−P.

dt (magenta line). c) The delay in
photoemission, ∆tDIP (blue line and circles), average Wigner time (blue line), total time delay,
∆tTot = ∆tW +∆tL.−R. (red line) and the ∆tDIP with respect to the initial position z0 = −0.98
(black squares) as a function of the position, 〈zR〉, (in case of a single emitted EWP). d) The
Wigner time delay ∆tW (blue line), the total time delay, ∆tW + ∆tL.−R., (red line), the delay
in photoemission ∆tDIP (black circles) by the extrapolation method with respect to z0 = 0, and
∆tDIP with respect to z0 (green squares) as a function of the photo-electron energy E0.

The Fig. A.3a) shows similar calculations that in Fig. A.2a) but for an EWP ionized

from the ground state of the H long-range Coulomb potential. The attosecond pulse

parameters are the same that in Yukawa potential. In spite of the semiclassical electron

trajectory 〈zR〉 in Fig. A.3a) apparently follows a asymptotic straight line, its behavior

is logarithmic. According to Eq. (A.8), this logarithmic behabiour is expected. This is a

direct consequence of the long-range potentials, i.e., the Coulomb one [75, 68, 165, 156].
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To calculate the electron trajectory zS.P. from the stationary phase method, the

stationary momentum k0 and z′0 = −( 1
k2

0
+ ∂φ

∂k |k=k0) require to be computed. The

values of the stationary momentum is k0 ≈ 0.91 a.u.

The trajectory, zS.P., is in very good agreement to the numerical one, 〈zR〉, in the

asymptotic limit (t→∞ or z →∞). For the out-going EWP propagation throughout

the Coulomb potential, the instantaneous velocity, v(t) = d〈zR〉
dt , is not constant any

more (see Fig. A.3b)) in the asymptotic limit.

The electron velocity v(t) is time-position dependent and this implicates that the

delay in photoemission extracted by the extrapolation method will depend of the de-

tection time-position (t, 〈zR〉). Fig. A.3b) shows this velocity v(t) as a function of time

t compared to the momentum expectation values by scattering wave and plane wave

as well as the time derivative vS.−P(t) =
dzS.−P.

dt .

The electron velocities vS.−P(t), v(t) and the momentum expectation values, 〈kR〉 by

the PWs, are asymptotically the same. Their time dependency shows that the electron

is accelerated when it is propagating throughout the long-range tail of the Coulomb

potential well.

We note that the scattering waves yield a constant asymptotic momentum, 〈kR〉,
immediately after the end of attosecond pulse while this is no the case for momen-

tum expectation value calculated by plane waves. This indicates that the plane wave

describes the kinetic momentum related to the ionized EWP which is propagating

throughout the Coulomb potential. In addition, if the analytical electron trajectory,

zS.−P., is known the stationary momentum, k0, (which is close to 〈kR〉) can be extracted

by fitting,
dzS.−P.

dt , to momentum expectation value, 〈kR〉, by the plane wave method.

It is important in case that scattering wave shall be unknown.

The instantaneous velocity is computed at the time-position (td = 236, 〈zR〉 = 220)

a.u., and has a value of v(td) = 0.9145 a.u. Using these quantities the straight line zM is

constructed. The time delay in photoemission extracted by the extrapolation method

is ∆tDIP = −4.86 a.u. Insets graph in Fig. A.3a) shows a detail information related to

the extraction of the delay in photoemission.

We have tracked this delay, ∆tDIP, as a function of the position 〈zR〉 between 32

and 220 a.u. (faraway from the core). The results are depicted in Fig. A.3c). We find

that this time delay ∆tDIP depends strongly on the electron position, 〈zR〉, and has a

logarithmic behaviour.

This means that there is no way to demonstrate that in case of long-range potential the

delay in photoemission is well defined in the sense that this delay has a good asymptotic

convergence limit as a function of the position 〈zR〉. The contribution of long-range
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delay is computed by evaluating ∆tL.−R.(zR) as a function of the electron position 〈zR〉
and fixing the momentum to k0. The total delay ∆tTot(zR) = 〈∆tW〉+ ∆tL.−R.(zR) is

compared to the delay in photoemission ∆tDIP and we have again found that there is

no good agreement between the total delay and ∆tDIP (see Fig. A.3c)).

Furthermore, we note that this discrepancy can be solved if the position z = 0

(point with respect to the time delay ∆tDIP is extracted) is changed by z = z0. As it is

depicted in inset Fig. A.3a) the delay in photoemission ∆tDIP can be detected from the

position z0 = −0.98. This position is no arbitrary. It is related to the instantaneous

position of the trajectory zS.−P. at t = 0. Then, if this delay contribution z0/k0 is

added to ∆tDIP we find a perfect agreement between the exact total delay ∆tTot and

the new referenced delay in photoemission ∆tDIP + z0/k0.

The delay in photoemission ∆tDIP as a function of the photo-electron central energy

E0 is shown in Fig. A.3d). To extract the time delay ∆tDIP by the extrapolation

method, we fix the same arrival position 〈zR〉 = 216 a.u.

The comparison between the delay ∆tDIP, the time delay ∆tW and the total time

delay ∆tTot show that there is a disagreement between these quantities. However, a

prefect agreement is found between the delay in photoemission and the total delay when

∆tDIP is measured with respect to a certain position z0 (see Fig. A.3d)). This position

z0 is calculated for each EWP (with stationary momentum k0) by taking the value of

the trajectory zS.−P. at t = 0.

Finally, this semiclassical analysis of the momentum expectation value, 〈kR〉, and

the semiclassical velocity, v = d〈zR〉
dt , shows that the calculation of 〈kR〉 by the plane

wave describes the kinetic momentum of the electron, whereas the calculation of 〈kR〉 by

scattering wave gives the asymptotic momentum which takes into account the kinetic

momentum and the acceleration of the binding potential.

Note this analysis shows us that the Wigner time delay in a long-range potential

wells is difficult to extract by extrapolation method or a simple classical picture. In

addition, any well-defined delay in photoemission can be assigned in the sense that

there is no convergence limit in ∆tDIP for long-range Coulomb potentials. However, in

case of short-range potential system our results show that the delay in photoemission

coincides in perfect agreement with the Wigner time.
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[30] F. Böhle, M. Kretschmar, A. Jullien, et al. Laser Phys. Lett., 11:095401, (2014).

5

[31] U. Keller, G. W. tHooft, W. H. Knox, and J. E. Cunningham. Opt. Lett., 16:1022,

(1991). 5

212



BIBLIOGRAPHY

[32] T. R. Schibli, O. Kuzucu, J.-W. Kim, et al. J. Sel. Topics in Quantum Elec.,

9:1022, (2003). 5

[33] M. Uiberacker, Th. Uphues, M. Schultze, et al. Nature, 446:627, (2007). 5

[34] A. L’Huillier and Ph. Balcou. Phys. Rev. Lett., 70:774, (1993). 5

[35] G. Mainfray and C. Manus. Rep. Prog. Phys., 54:1333, (1991). 5

[36] B. Walker, B. Sheehy, L. F. DiMauro, et al. Phys. Rev. Lett., 73:1228, (1994). 5

[37] M. Hentschel, R. Kienberger, Ch. Spielmann, et al. Nature, 414:509, (2001). 5,

6, 10, 12, 14, 145

[38] P. M. Paul, E. S. Toma, P. Breger, et al. Science, 292:1689, (2001). 5, 6, 10, 11,

12, 15, 145

[39] M. Drescher, M. Hentschel, R. Kienberger, et al. Nature, 419:803, (2002). 6

[40] A. McPherson, G. Gibson, H. Jara, et al. J. Opt. Soc. Am. B, 4:595, (1987). 6

[41] M. Ferray, A. LHuillier, X. F. Li, G. Mainfray, and C. Manus. J. Phys. B, 21:L31,

(1988). 6

[42] P. B. Corkum. Phys. Rev. Lett., 71:1994, (1993). 6

[43] M. Lewenstein, Ph. Balcou, M. Y. Ivanov, A. L’Hullier, and P. B. Corkum. Phys.

Rev. A, 49:2117, (1994). 7, 19, 90

[44] Y. Mairesse, A. de Bohan, D. Bauer, L. J. Frasinski, et al. Science, 302:1540,

(2003). 7, 89

[45] A.-T. Le, T. Morishita, and C. D. Lin. Phys. Rev. A, 78:023814, (2008). 7

[46] A.-T. Le, R Della Picca, P. D. Fainstein, et al. J. Phys. B, 41:081002, (2008). 7

[47] M. Y. Ivanov, T. Brabec, and N. Burnett. Phys. Rev. A, 54:742, (1996). 7

[48] J. Z. Kaminski and F. Ehlotzky. Phys. Rev. A, 54:3678, (1996). 7

[49] M. F. Ciappina, C. C. Chirila, and M. Lein. Phys. Rev. A, 75:043405, (2007). 7

[50] P. Mulser and D. Bauer. High Power Laser-Matter Interaction. Springer Verlag

Berlin Heidelberg, 2010. 9, 22, 23, 26, 29, 56

213



BIBLIOGRAPHY

[51] G. Farkas and C. Toth. Phys. Lett. A, 168:447, (1992). 10

[52] P. B. Corkum, N. H. Burnett, and M. Y. Ivanov. Opt. Lett. A, 19:1870, (1994).

10
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