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Abstract. Social networks have become a large repository of comments which 

can extract multiple information. Twitter is one of the most widespread social 

networks and larger and is therefore an important source for detecting states of 

opinion, events and happenings before even the mainstream media. Topic 

detection is important to discover areas of interest that arise in the tweets. We 

have used classical systems for a similarity matrix and we have used community 

detection techniques. The results have been good and allows us to study new 

possibilities. 
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1 Introduction 

Social networks, blogs, or any online forum internet have become a large repository of 

comments which can extract multiple information [1] as shown by numerous research 

being carried out in recent years 

 

Twitter is one of the most widespread social networks and larger and is therefore an 

important source for detecting states of opinion, events and happenings before even the 

mainstream media [2], [3]. 

 

It can be used to share information and also to describe virtually any daily activity [4], 

because it allows users to express their opinions and interests, abbreviated and highly 

personalized in real time [5]. Its importance is shown where it is present in virtually all 

areas of life (social, economic, education ...) and covers any topic (sports, culture, 

entertainment, industry, science). 
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If we value the importance of this network in quantitative terms, it is necessary to refer 

to the volume of tweets generated every day, in June 2011, about 200 million, a number 

that is increasing- [6]. If assessment in qualitative terms we do need to consider how 

their influence is reflected in the many social events that retrasmiten real time in order 

to gain visibility as well as the large number of original messages that become spread 

(retweets), so you can consider even that Twitter does become niche opinion, since a 

message created by a person (either original or a fragment of another work as a 

newspaper headline or an extract of news) can be retweeted by another or others who 

in turn relay it again causing a diffusion effect in clusters. 

 

It is true that much of the information provided is completely irrelevant tweets, it is also 

necessary to consider that in many cases the messages isolated from their context lose 

value, but also a very rich source of information because it compiles the relevant 

information condensed for users, whether individuals, institutions or companies that are 

the highlights news, opinions or feelings, information would be very difficult to collect 

by other channels and is therefore by analyzing twitter messages is being used as 

feedstock for multiple investigations ranging from the role played by different types of 

users in the dissemination of information [7] a sociological analysis [8], applications to 

classification [6] and information retrieval [5] [9], semantic analysis [10], etc. 

 

In this sense, the monitoring of comments, messages and opinions that are poured into 

Twitter is useful from the point of view of digital reputation people and institutions. 

Early detection of issues and ratings on a particular subject can allow it to react 

appropriately and maintain a positive public image [11]. 

2 Topic detection 

Our group has focused on the topic detection, starting some exploratory work in this 

field. Topic Detection and Tracking (TDT) is an area that began as track in the Text 

Retrieval Conferences (TREC) [12] and this year is celebrated in RepLab2013 [13]. 

However, the application of these techniques is relatively new to Twitter. Some notable 

works are those of [14], who applied clustering techniques, or Petrovic [15], which also 

was an experimental collection of tweets that has been used in other studies, the 

Edinburgh Twitter Corpus [16]. Mathioudakis and  Koudas [17] proposed a system for 

detecting trending topics from a stream of tweets. Also on the detection of trending 

topics have worked Shariffi, Hotton and Kalita [18], like Cheong and Lee [19], although 

they work focuses on the temporal evolution of the trending topics. 

 

The question is therefore how to determine the similarity between all pairs of tweets 

relating to a given entity. The similarity between two documents is one of the central 

problems in information retrieval and can be approached in various ways. One of the 

best known is to consider each document (tweet) as a bag of words and apply a classical 

scheme tf x idf. 

 



The tweets, however, are documents with a number of special features that should be 

taken into account. Anta and colleagues [20] mention several of them. A issues 'classic' 

of using unigrams, bigrams, trigrams, etc. or stemming, in the case of tweets must add 

the emoticons, abbreviations, including a slang that medium itself, and as numerous 

abnormalities ortho-typographic. The brevity of the tweets is another important issue 

to consider [21]. In our specific case, we find texts at least two possible languages: 

English and Spanish. 

 

Finally we will make the graph representation of the tweets of the entities and we apply 

Social Network Analysis to our information [22]. Social Network Analysis is a 

measurement tool allowing knowledge and structural analysis of the interactions 

between the actors of the analyzed network [23]. 

 

There is a wide range of indicators such as density, centrality, centralization, 

betweenness, closeness, etc.. that allow analysis of both network nodes as complete, 

although the detection of communities, groups. cliques, etc.., is a subject of great 

interest. 

 

The strategy adopted in this work has been the application of techniques of Social 

Network Analysis, in particular communities detection techniques. In a social network  

G = (V,E) a community is a subgraph of entities 𝑉𝑐 ⊆ 𝑉 that are associated with 

common elements of interest. The elements that are part of the community can be 

topics, real-life people, places, events, etc. These techniques are based on detecting, in 

a network node groups with strong bonded between them. In our case the tweets would 

be the nodes of the network; a semantic similarity between two tweets mean a link 

between network nodes. 

 

There are many techniques for detecting communities [24] [25-27] as hierarchical 

clustering algorithms, methods based on cliques, grouping cuts, Girvan-Newman 

algorithm, etc. 

One widely used method is the analysis of modularity [28] (the number of links between 

groups is small, within groups is high), highlighting the Louvain algorithm [29]. 

 

One method that is effective is showing the VOS clustering algorithm (visualization of 

similarities) and some jobs are proving more effective compared to other systems, 

especially for better performance than systems based on modularity in detecting small 

clusters [30]. It is a modification of the algorithm based on modularity where the 

weights are maximized differently [31]. 

 

Regarding VOS clustering technique, we can use the mapping to visualization VOS is 

very effective compared to other methods, adding a plus detection systems communities 

[32]. In this map, the colors indicate the density within each community, ranging from 

blue (low density) to red (high density). We can see the most important communities 

and placed in relation to each other. 



3 Our approach 

Since this is the first time we participate in this work, our focus has been simple and 

without too many refinements. We have considered each tweet (within each entity) as 

a document whose basic features are the words it contains, and we have applied after 

heavy classic scheme tf x idf and cosine to construct a similarity matrix [33]. Some 

specific issues applied in our work have been: 

─ we have not made any distinction between languages of the tweets, possibly there 

are notable differences in the treatment applicable according to the language it is one 

or other one [20, 34] but in our case we have performed uniform lexical analysis all 

tweets 

─ we applied a simple s-stemmer 

─ we removed the words with less than 4 characters 

Additionally, we have considered discarded emoticons. We have considered hashtags 

and entities terms particularly interesting. 

 

On the other hand, in numerous tweets appear weblinks, we have considered especially 

interesting, if two tweets have links to the same website we think that dealing with very 

similar issues. Thus, the URL of these links are considered equally as important 

characteristics of terms or the tweets. 

 

Given the small number of terms present in a tweet, the co-occurrence of URLs, 

hashtags and entities are especially significant. Some studies apply techniques designed 

to increase the number of terms per tweet [35], following the links and adding to the 

features of that tweet the words of the website referenced. Anta and colleagues [20], 

however, report the amount of noise that this technique produces. 

 

Other refinements possible, as the use of Wikipedia [36] for additional information and 

produce more accurate results have not been applied by us on this occasion. 

 

Once the network weighted with the weights of the similarity, we proceeded to generate 

individualized networks for each of the entities under study. We obtained the number 

of communities (by VOS Clustering algorithm) of each of the entities, we have 

individualized the communities and thereafter we performed calculation on the density 

of each of the communities. 

 

When we boarded the density term relationships and social networks we refer to a 

widespread concept. This can be defined as the proportion of links in a network relative 

to the total possible links (sparse versus dense networks). Other authors density defined 

as the interface between network members. The density is an indicator of social network 

analysis allows us to measure the extent to which a network is connected. 

We can say further that a dense network nodes have a very close relationship between 

them, confirming the theory that "the performance of a network has a positive 

association with the high density of the network" 



With these data we created two tasks: 

1. reina_1: Topics were assigned to all tweets, depending on the community to which 

they belonged. Topic was assigned to all tweets, even if the community consisted of 

few documents. 

2. reina_2: Filter was performed according to the density of each of the entities. We 

considered only communities with a density greater than 0.5. Topic was assigned 

only tweets belonging to these communities.  

4 Results 

The results of our two task (reina_1 and reina_2) were as follows: 

 

Table 1. Measure F and ratio of processed tweets 

 

RUN Rel. Sen. F Ratio 

re-

plab2013_UNED_ORM_topic_det

ection_2 0.46 0.33 0.32 0.98 

reina_2 0.31 0.43 0.29 0.79 

lia_topic_detection_3 0.22 0.35 0.25 0.99 

lia_topic_detection_2 0.23 0.27 0.24 0.99 

re-

plab2013_UNED_ORM_topic_det

ection_7 0.30 0.22 0.24 0.99 

UAMCLYR_topic_detection_0

7 0.35 0.50 0.24 0.97 

re-

plab2013_UNED_ORM_topic_det

ection_3 0.42 0.21 0.23 0.99 

re-

plab2013_UNED_ORM_topic_det

ection_4 0.42 0.21 0.23 0.99 

re-

plab2013_UNED_ORM_topic_det

ection_5 0.42 .,21 0.23 0.99 

lia_topic_detection_1 0.38 0.17 0.23 0.99 

reina_1 0.16 0.52 0.23 0.99 

 



The result of the measure F[37] (table 1), as we can see has given better results the task 

reina_2 and furthermore their behavior with respect to the rest of the task has been very 

good. Note that the ratio obtained for this task is the lowest of all the set, (density filter). 

This filtering requires a revision in the threshold used to improve the ratio of tweets. 

 

Table 2. Amount of improved systems 

 

SYSTEM 
Amount of improved sys-

tems (UIR>0.2) 

UAMCLYR_topic_detection_07 12 

replab2013_UNED_ORM_topic_detection_2 11 

reina_2 9 

 

Concerning the amount of improved systems (table 2), we can see that again reina_2 

task behavior is better than reina_1 and also offers good results with respect to total 

tasks. 

  



Table 3. System pair, improvements and UIR 

 

System Pair 

Amount of 

cases in which 

A improves B 

for both 

measures 

Amount of 

cases in which 

B improves A 

for both 

measures 

UIR 

lia_topic_detec-

tion_3 

re-

plab2013_UNED_O

RM_topic_detection

_1 

51 0 0.84 

lia_topic_detec-

tion_3 
BASELINE 51 1 0.82 

re-

plab2013_UNED_

ORM_topic_detect

ion_2 

re-

plab2013_UNED_O

RM_topic_detection

_1 

47 0 0.77 

lia_topic_detec-

tion_2 
BASELINE 45 0 0.74 

re-

plab2013_UNED_

ORM_topic_detect

ion_2 

BASELINE 45 0 0.74 

lia_topic_detec-

tion_2 

re-

plab2013_UNED_O

RM_topic_detection

_1 

44 0 0.72 

re-

plab2013_UNED_

ORM_topic_detect

ion_2 

lia_topic_detec-

tion_4 
43 0 0.70 

reina_2 

re-

plab2013_UNED_O

RM_topic_detection

_1 

43 1 0.69 

reina_2 BASELINE 42 1 0.67 

 

In the comparison of the system pairs and UIR [38] (table 3) reina_2 improves to 

reina_1 and continues to maintain good results with respect to total tasks of track. 

 

With the working method we can visualize detected communities for a given entity. 

Show two different views (Fig. 1 and Fig 2)of the entity RL2013D01E002, allowing us 

to obtain a representation of these communities, which eventually become the detection 

of specific topics in the entity. 



This working method allows us to simultaneously perform a complete entity reduction 

in their various communities and establish the relationships between these 

communities, which offers a mechanism for relations between communities, and 

therefore the relationship among topics (Fig. 3). 

 

 

Fig. 1. Density of the communities (VOS mapping). Entity RL2013D01E002 

 

 

 

 

 

 

 

Fig. 2. Detected communities. Entity RL2013D01E002 



 
 

Fig. 3. The most related communities (Topics). Entity RL2013D01E002 

5 Results 

We have raised a system of detection of topics differently but that has given a few good 

enough results. 

 

Mixing basic scheme for generating the similarity matrix, and detection of communities 

promising results. 

 

The use of a filtering network density has better result than without filtering. 

 

The threshold used in filtering lowered the ratio of processed tweets. 

 

In the future we need to try different schemes when generating the similarity matrix, 

try different community detection algorithms and use other filtering techniques. 
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