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Chapter 1

Introduction

One of the most exciting discoveries in the high energy physics of the new
century is the existence of (at least one) deconfined phase of Quantum Chro-
modynamics (QCD) [1, 2]. Roughly speaking, under suitable temperature
and baryon density conditions, quarks and gluons can be extracted from
hadrons to form a new matter state called the Quark-Gluon Plasma (QGP),
where quarks and gluons are the effective degrees of freedom rather than
baryons and mesons [3]. A theoretical description of how quarks and gluons
deconfine and the properties of the QGP would be a very desirable result to
go into a deep understanding of the fundamentals of QCD.

Experimentally, the QGP is produced colliding heavy ion in modern ac-
celerators at high energy. Measures performed after the QGP is formed in
the collisions show that the transition from confinement to the QGP phase
happens in a region where QCD is still strongly coupled [4]. Thus usual tech-
niques based in perturbative approaches to QCD are not useful to understand
the physics involved in. As a consequence, nowadays the deconfinement phe-
nomenon as well as the nature of the QGP are poorly understood.

The crash of the perturbative techniques to analyze the QGP physics
has highlighted the necessity to develop new models constructed in non-
perturbative frameworks to go towards a definitive understanding of the
deconfinement phenomenon. In this PhD Thesis, taking advantage of the
gauge/gravity connection provided by string theory [5, 6, 7], gravitational
duals are used to develop models for the QGP production in high energy col-
lisions. In particular, the critical formation of the QGP in high energy colli-
sions is discussed from gravitational duals consisting in colliding gravitational
shock waves obtained boosting black hole solutions in an AdS background .

Not directly related to the strongly coupled QCD world and the decon-
finement of quarks and gluons, in this PhD Thesis the formulation of gauge
theories in noncommutative geometries is also studied. In general terms, a

1



2 1.1. The Quark-Gluon Plasma

noncommutative space consists in some kind of space where the coordinates
do not commute among themselves [8]. Usually in scientific literature, a field
theory living in a noncommutative space is referred as a Non-Commutative
Field Theory or NCFT. Because of the noncommutativity of the coordinates
causes a lack of locality in NCFTs, the construction of gauge symmetries in
noncommutative geometries must be revised [9, 10, 11, 12, 13, 14]. Here we
discuss in detail the different ways in which this can be done, introducing an
infinite family of realizations interpolating between the two usual construc-
tions of gauge invariance in NCFTs: star-gauge and twist-gauge symmetries.

The goal of this chapter is to put into context the work contained in this
Thesis and give a briefly description of the results obtained. Neither too
many equations nor exhaustive technicalities will be used along it in order to
gain clarity and concision. At the end of the chapter there is a brief section
dedicated to some convections and terminology which will be used in the
next chapters.

1.1 The Quark-Gluon Plasma

As has already been mentioned, the physical interest in the results presented
in the first part of this Thesis rests over the phenomenon called the Quark-
Gluon Plasma. Therefore, a good way to begin the introduction chapter is
giving a brief picture of what the QGP is and how it can be produced.

As a physics phenomenon, the quark-gluon plasma fits in the framework
of Quantum Chromodynamics. Mathematically, QCD is a gauge theory with
gauge group SU(3) [15], constructed for modeling the strong interaction be-
tween hadrons and, in the last microscopic frontier, between quarks and
gluons. Together with the electroweak interaction theory (Yang-Mills theory
with SU(2)×U(1) gauge group) and the spontaneous symmetry breaking, it
composes the most accurate fundamental particle theory written up to date:
the standard model.

Unlike Quantum Electrodynamics (QED), QCD is a nonabelian gauge
theory. Physically that means the gluons couple among themselves, having
vertices of three and four gluons. As a consequence, two relevant phenomena
that do not appear in QED do in QCD: asymptotic freedom and confinement
[16].

• Asymptotic freedom. At low energies, QCD is nonperturbative.
That is, the bare gauge coupling constant is large. On the other hand,
the color charge of the gluons leads to an anti-screening of the quarks.
This phenomenon, after renormalization, results in a negative beta
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function, and therefore the coupling constant of the renormalized the-
ory decreases when the energy scale increases. Thus, although QCD is
strongly coupled at low energy, it becomes weakly coupled for enough
high energy, being tractable through perturbative expansions in Feyn-
man diagrams. In fact, at very high energies the theory approaches
asymptotically a free regime. This behavior of the theory is called
asymptotic freedom.

• Confinement. At low energy it is observed that quarks and gluons
associate forming color singlets (hadrons), in such a way that color
charge is always confined. In other words, at low temperature, free color
does not exist. This is called color confinement. Note that it happens at
strong coupling, and thus perturbative tools are useless to study it: up
to date there is not any full analytical proof for color confinement1. In
four dimensions2 it is believed to be a consequence of the color charge
of gluons rather than a nonperturbative phenomenon [16] (note that
QED does not exhibit confinement even at strong coupling).

In short, asymptotic freedom and color confinement are two rival phenomena
which happen at opposite energy scales. The first one means “free quarks”,
whereas the second one means “confined quarks”. Thus it is not crazy to
hope that at some middle point in the energy scale a confined-deconfined
phase transition (or crossover) could exist, such that, in the deconfined phase,
quarks and gluons would interact without forming color singlets. This new
phase is what is called the Quark-Gluon Plasma.

Following an heuristic reasoning, the deconfinement of quarks and glu-
ons from hadrons must consists in a kind of process where the energy scale
involved is large enough to make hadrons overlap with each other. Experi-
mentally, this can be achieved following two different strategies [3]: heating
up the QCD vacuum or increasing the baryonic density.

• Heating the vacuum. Suppose we heat up the QCD vacuum in some
bounded region. At low temperature colorless particles, i.e. hadrons,
will be excited from the vacuum. However, if we increase enough the
temperature, hadrons will start to overlap at a certain critical tempera-
ture Tc. Above such critical temperature, the mixing process continues,
breaking completely the structure of hadrons. Then hadrons dissolve
into some kind of quarks and gluons foam, the QGP.

1A mechanism for total confinement of quarks was defined by Wilson in [17] using a
discrete lattice in flat space.

2It has been observed that compact abelian gauge theories also can exhibit confinement
in two dimensions [18].
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Figure 1.1: Phase diagram for QCD. The blue curve marks the
confined-deconfined phase transition discussed in the text. The black
and red points in the graph corresponds to the critical point for the
phase transition and nuclear matter respectively. The dashed curve be-
yond the critical point represents that a crossover happens in this region
between confined and deconfined phase. Finally, gray region shows where
the sQGP created at RHIC and LHC is.

• Increasing the baryonic density nb. In a similar way to the first
point, for large enough baryonic density, hadrons overlap and mix.
Then quarks and gluons begin to interact without being associated
in hadrons, forming the QGP.

These two strategies are not exclusive, and both can be combined to achieve
a thermalized QGP from the hadronic phase. Therefore, in a phase diagram
with thermodynamical variables nb and T , the confined-deconfined phase
transition must corresponds to some curve Tc = Tc(nb) dividing the phase
space into two regions. In fig. 1.1 it is showed a sketch of how could be such
QCD phase diagram. Note that the curve Tc = Tc(nb) starts at some critical
point. It is expected that this critical point exits, such that for temperatures
and densities beyond it a sudden change between the hadron phase and the
QGP does not happen, but a crossover [19].

Until date nobody has been successful in giving any analytical proof for
the existence of the QGP beyond the heuristic explanation previously ex-
posed based on a cross over between asymptotic freedom and confinement at
some energy scale. Only lattice computations have had some success showing
(numerically) the existence of the phase transition [20]. Surprisingly, simu-
lations in the lattice has shown that deconfinement could happen in a region
where QCD is still strongly coupled (T ∼ 150 − 200 Mev for low baryonic
densities). In other words, lattice simulations signal that the phase transition
between ordinary baryonic matter and QGP could be nonperturbative. This
would explain the fact that perturbative QCD has not had success in find
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an analytical description of the confined-deconfined QCD phase transition
nowadays.

Of course, theoretical lucubrations and equations in a paper are a beau-
tiful way to understand nature, but physics sinks its roots in experimental
facts. It is necessary to produce the QGP in the laboratory to “play” with
it and measure its properties, beyond the theoretical predictions given by
lattice formulations or other models. From an empirical point of view, the
range of temperatures to produce the QGP predicted by lattice calculations
are almost prohibitive. Note that T ∼ 200 Mev corresponds to 1012K, being
1.5 · 107K the temperature at the core of the Sun. The only known way to
obtain such so elevate temperatures in the Earth is through heavy ion col-
lisions at high energy inside modern accelerators: just after collision, a hot
region called “fireball” is created for a very sort time, being the temperature
large enough to deconfine quarks and gluons form hadrons. Then the fire-
ball expands and cools down, resulting finally in jets of relativistic particles
running away from the collision region (hadronization) [3].

The first efforts in creating a QGP from high energy collisions were done
at the Super Proton Synchrotron (SPS) in the 1980s and 1990s. The results
led CERN to announce indirect evidence of some kind of quark matter, but
without neither details of its production nor data [1]. It was necessary to
wait until 2010 to have a complete evidence for QGP creation in high energy
collisions: experiments colliding heavy ions at the Relativistic Heavy Ion
Collider (RHIC) produced a large elliptic flow and quenching parameter,
which indicate the creation of a plasma fireball after collision by a very short
time [21, 22, 23, 24]. Nowadays, apart from the RHIC experiments, current
experiments at the Large Hadron Collider (LHC) with colliding heavy ions
are also been done for advancing in the understanding of the QGP production
and its nature [25, 26, 27].

Experimental measures at RHIC and LHC are in accordance with the pre-
vious lattice predictions. In particular, measures show the created plasma is
still strongly coupled in spite of being a deconfined phase [4]. This support
the hypothesis that the phase transition could be a nonperturbative phe-
nomenon, such that the created QGP in RHIC and LHC would be near the
phase transition. Usually scientific literature refers to this kind of plasma as
strongly QGP (sQGP). In fig. 1.1 it is shown the zone of the phase diagram
for QCD where the sQGP from RHIC and LHC experiments is being cre-
ated. It is believed, from lattice simulations, that experiments are near to
the critical point. However, the critical point has not been observed yet. In
fact, the exact phase transition curve and the location of the critical point
are currently being actively studied.

Unraveling the QCD phase structure is an important goal in present and
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future theoretical and experimental physics. Understanding the physics be-
hind the QGP nature and the conditions for its creation may be important
for the study of neutron stars and the early Universe. In the first case, it is
supposed that pressure in the core of neutron stars could increase the baryon
density enough to deconfine quarks and gluons from hadrons, even at low
temperatures. On the other hand, temperature and pressure about 10−5s
after the Big Bang could be adequate to form and thermalize a QGP at low
baryon density. Also knowing the details of the phase transition could give
us fundamental information about the confinement mechanism of color and,
in general, of the nonperturbative aspects of QCD.

1.2 The holographic tool

Since the confined-deconfined phase transition happens in a region where the
field theory is still strongly coupled, the phenomenon of deconfinement cannot
be addressed in perturbative QCD. As a consequence, nonperturbative tools,
as lattice QCD (e.g. see [28]) and the gauge/gravity correspondence, must be
used to get some insight inside the phenomenon of sQGP. In this section we
provide a brief review of the holographic principle as well as the AdS/CFT
correspondence, being the latest the framework we shall use in next chapter
to develop model for the sQGP production in high energy collisions. The
reader interested in a detailed study of string theory and the Maldacena
conjecture can satisfy its curiosity in, for example, [6, 7, 29, 30, 31, 32].

The holographic principle was first proposed by Gerard ’t Hooft in 1993,
and latter by Leonard Susskind in 1995, from the original idea of Bekenstein
[33] for the maximum entropy of a region of space. Proposing the Planck scale
as a natural cut-off for any quantum field theory3, Bekenstein proposed that
the maximum entropy of a region of space does not grow with the volume of
the region, but with the area of the boundary surrounding it. Later ’t Hooft
and Susskind proposed a more radical interpretation of Bekenstein’s idea
[34, 35]: given that the entropy measures the number of degrees of freedom
of a configuration, it was proposed that the dynamics of any quantum theory
of gravitation in a bounded region of spacetime must be encoded in some field
theory living at the boundary of the region, with “one bit” of information per
Planck area. In other words, gravity emerges from a lower dimensional field
theory in what could be called a holographic way.

The holographic principle proposes a bridge connecting (quantum) grav-

3Beyond Planck scale the energy density is high enough in order to a micro black hole
forms at each point of space. Then entropy is given by the Bekenstein-Hawking formula
for the black hole entropy at Planck scale.
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ity with a field theory in a lower dimension. This enables the possibility
to handle quantum gravity phenomena from their images in the lower di-
mensional theory (and vice versa). However the holographic principle only
establishes the existence of such connection but it does not explicitly for-
mulate it. In other words, the principle by itself has not any associated
mathematical construction that let us to compute anything. Searching for
an explicit realization of the holographic principle, Susskind highlighted in
1995 that perhaps it could be done inside the framework of string theory since
it is a theory containing quantum gravity [35]. Finally, Maldacena ended the
search in 1998 formulating an explicit realization of the principle which is
called nowadays as the Maldacena conjecture [5].

Maldacena conjecture establishes the existence of a one-to-one map be-
tween Yang Mills field theory with gauge group SU(N) and four supersym-
metries (N = 4 SYM) in flat 4-dimensional space and IIB string theory in4

AdS5 × S5, such that

gs = g2
YM , L2 = α′

√
4πgsN,

∫
S5

F 5 = N, (1.1)

where gs and gYM are the string and gauge coupling constants respectively,
L the scale of AdS5 and radius of S5, α′ the Regge slope parameter and
F 5 the 5-form field strength of the self-dual 4-form of the IIB supergravity.
In addition, given that the conformal boundary of AdS5 is 4-dimensional
Minkowski spacetime, usually the Maldacena conjecture is formulated defin-
ing the N = 4 SYM over the AdS5 boundary.

The connection between the string and gauge worlds proposed by Malda-
cena arises from a detailed study of the D3-brane solution in type IIB string
theory. From the stringy point of view, Dp-branes are the locus where open
strings end, such that the world-volume low energy dynamics (that is α′ → 0)
is given by some gauge theory with g2

YM = gs. In particular, for a stack of N
D3-branes, it is N = 4 SYM field theory with gauge group SU(N). In ad-
dition, the bulk dynamics approaches free SUGRA for low energies, and the
interacting term between bulk and world-volume dynamics vanishes. Thus,
from this point of view, the effective action at low energy for a stack of N
D3-branes is

S = SN=4
SYM︸ ︷︷ ︸

World-Volume

+ S FREE
SUGRA︸ ︷︷ ︸
Bulk

. (1.2)

On the other hand, from the "brany" point of view, a Dp-brane (with p odd)
in the low energy regime is a solution of supergravity (SUGRA) IIB equations.
Taking certain low energy limit in which the bulk dynamics decouples from

4AdSD stands for D-dimensional Anti de Sitter space.
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that of the brane (near horizon limit), closed strings inside the "throat" of the
brane solution decouple from the closed strings living far away of the brane,
in flat space. In addition, the near-horizon geometry becomes AdS5 × S5

with L2 = α′
√

4πgsN and
∫
S5 F

5 = N . Thus, from this point of view, the
dynamics at low energy is given by the action,

S = S IIB
AdS5 × S5︸ ︷︷ ︸
Throat

+ S FREE
SUGRA︸ ︷︷ ︸

Flat space

. (1.3)

Then a direct identification between (1.2) and (1.3) gives the Maldacena
conjecture,

SN=4
SYM

+
��

��S FREE
SUGRA

⇐=====⇒ S IIB
AdS5 × S5

+
��

��S FREE
SUGRA

(1.4)

Note that this is just a heuristic reasoning to sketch out the mechanism
under which the conjecture works. An identification between (1.2) and (1.3)
is not rigorous. The main reason for it is that quantized strings are well
understood in flat space time, but are not in curved spaces, like AdS5 × S5.
In fact, nowadays no analytic proof exist for the Maldacena conjecture.

The main advantage of the Maldacena conjecture is that it relates a theory
containing quantum gravity with a quantum field theory without gravity at
lower dimension. That is one step beyond the original idea of ’t Hooft and
Susskind. However, because it is not known how to formulate string theory
in AdS5×S5, the Maldacena conjecture in its strongest form (1.4) cannot be
fully exploited. Fortunately, there are various highly non trivial limits of the
correspondence that can be useful. In particular, consider the large N -limit
fixing the ’t Hooft coupling constant of the gauge theory, λ = Ng2

YM . Given
that gs = g2

YM , at fixed ’t Hooft coupling, the string coupling scales as 1/N ,
so the large N -limit at fixed ’t Hooft coupling in the SYM side corresponds to
take the tree level in the string side. In this way, the conjecture simplifies, but
the string side is still highly nontrivial to be useful since it remains necessary
to quantize noninteracting strings in AdS5 × S5. The solution comes taking
also the strong ’t Hooft coupling limit (λ � 1) after the large N -limit. In
the string side of the conjecture it corresponds to take the low-energy limit,
since L2/α′ ∼

√
λ. Thus, in the N � 1, λ � 1 regime, the conjecture

identify large N and strongly coupled SYM field theory with IIB SUGRA in
AdS5 × S5:

N � 1, λ� 1
⇓

Large N
Strongly coupled
N = 4 SYM

⇐=====⇒ IIB SUGRA
AdS5 × S5

(1.5)
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Now this connection can be fully exploited: the two theories related in (1.5)
are known and perfectly defined.

The correspondence (1.5) relates a strongly coupled quantum Yang-Mills
theory in four dimensions with a classical theory of gravitation in AdS5×S5,
where “classical” means “nonquantum”. A relevant characteristic that can be
used to roughly justify the connection established in (1.5) is the fact that the
symmetry groups of the two theory involved coincide: on one hand, N = 4
SYM is a Conformal Field Theory (CFT), being SO(2,4) the group of the
conformal symmetry in four dimensions, and on the other hand, SO(2,4) is
also the isometry group in AdS5. In addition, the R-symmetry group for four
supersymmetries in four dimensions is SO(5), which also coincides with the
isometry group of S5.

Note that (1.4) establishes a full equivalence between two theories, some-
thing that can not be proved or tested in any way and, in addition, is not
useful, since IIB strings in AdS5 is an unknown theory. In some sense (1.4)
is oversized for current physics: for all practical purposes it is enough to
conjecture that the equivalence happens in certain limit, being exact just at
the level of (1.5), where the conjecture can be tested and is useful. Rela-
tion (1.4) is referred as the Maldacena conjecture in its strongest form, while
(1.5) is called the weak formulation of the Maldacena conjecture or, accord-
ing to the connection previously discussed between the symmetry groups of
the two theories, the AdS/CFT correspondence. In this PhD Thesis, the
weak version of the conjecture will even be relaxed following the spirit of the
holographic principle for including arbitrary dimensions and products of the
AdS space with arbitrary compact manifolds. Enunciated in a rigorous way,
this extended AdS/CFT correspondence conjectures that there exits a biyec-
tive map between classical gravity in AdSD and observables of some strongly
coupled conformal field theory at the boundary of AdSD.

The explicit form of the AdS/CFT map (or Maldacena diccionary) fol-
lows from (1.5) equaling the partition functions5 of the two theories: given
any supergravity field φ inside AdS space which takes the value φ0 over the
conformal boundary, there is an operator O in the boundary field theory
which couples to φ0 according to〈

e−
∫
O(x)Φ0(x)

〉
CFT

= e−SIIB(φ0), (1.6)

5A Wick rotation to Euclidean time has been done such that the generation functional
of a theory for some field Φ is given by Z[J ] =

∫
DΦ Exp

[
−SE(Φ)−

∫
ddx Φ(x)J(x)

]
,

where SE stands for the Euclidean functional action. In addition, in the semiclassical
limit the functional integral can be evaluated in the saddle point approximation with the
result Exp

[
−SE(Φcl)−

∫
ddx Φcl(x)J(x)

]
, where Φcl(x) is a solution to the classical field

equations of the theory.
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being SIIB the classical (super)gravity action. An example of such connection
(which will be useful in subsequent chapters) is that the graviton in AdS space
couples to the energy-momentum tensor operator in the gauge theory defined
in the conformal boundary of AdS.

By connecting strongly coupled gauge theories to classical (super)gravity,
the AdS/CFT correspondence becomes a powerful tool to perform nonper-
turbative computations in the gauge side of the correspondence from gravi-
tational duals inside the AdS space. In particular, it can be used to study
nonperturbative phenomena in strongly coupled QCD. Of course, QCD is
far away from N = 4 SYM theory: the former is neither supersymmetric
nor conformal. Also, the gauge group of QCD is SU(3). This corresponds
to N = 3 in (1.5), which is not an excessively large number as required.
However, it is expected that, in spirit of the holographic principle, the grav-
itational dynamics in AdSD captures enough physics of QCD in D − 1 flat
dimensions, such that the gravitational duals could be useful to describe at
least qualitatively nonperturbative QCD phenomena.

1.3 Gravitational duals for sQGP production

In the previous section it has been introduced the concept of the gauge/gravi-
ty duality and it has been pointed out that it can be used as a powerful
tool to analyze nonperturbative phenomena in strongly coupled QCD. As an
important application, it can be used to study the properties of the sQGP. In
particular, in this PhD Thesis the AdS/CFT correspondence is used to study
the production of the sQGP in high energy collisions. This section tries to
fix what are the gravitational duals for the sQGP production in high energy
collision and discuss briefly what are the results obtained from they, which
will be exposed in detail in subsequent chapters.

The first question to answer is what is the (super)gravitational dual for a
thermalized plasma. Note that, in gravitational physics, black holes are ther-
mal objects that obey the laws of thermodynamics: given any event horizon,
it has associated a Hawking temperature [36]. Then, following the spirit of
the holographic principle, it is tempting to believe that an event horizon is
described holographically by a thermal quantum field theory living in some
hypersurface surrounding the event horizon. This seems to indicate that AdS
black holes are the gravitational duals for thermal field theories. In fact, the
AdS/CFT correspondence shows that a nonextremal D3-brane solution of su-
pergravity is the gravitational dual of N = 4 SYM at finite temperature [6],
such that the Hawking temperature of the brane coincides with the tempera-
ture of the supersymmetric plasma. This connection between event horizons
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Incoming wave 1 Incoming wave 2

H
olographic coord.

 D-2ℍ

ℝ  1, D-1

Figure 1.2: Schematic picture for the gravitational dual proposed in
the text. The AdS boundary corresponds to the horizontal plane, and
the AdS space spreads from top to down. The arrows signal the colliding
gravitational shock waves inside the AdS space. The dashed “trumpet”
around the colliding shock waves represents the Penrose trapped surface,
which forms before the collision happens.

and finite temperature field theory has been used successfully to study the
hydrodynamics of strongly coupled Yang-Mills plasmas [37, 38, 39, 40, 41].

From the connection between black holes and thermalized plasmas, it
follows that the gravitational dual for plasma thermalization after a high
energy collision must be some dynamical process inside the AdS space which
yields to the creation of an event horizon. Inspired from the generation of
horizons after the collision of gravitational waves in flat spacetime, it has
been proposed in [42, 43] that the gravitational dual for colliding relativistic
energy lumps in the boundary of AdS space must be colliding gravitational
shock waves inside AdS space, such that the appearance of an event horizon
after the collision is signaling the thermalization of a plasma in the boundary
theory (see fig. 1.2). In this way, it is possible to study the production of
thermalized strongly coupled Yang-Mills plasma after high energy collisions
from solving colliding gravitational shock waves, a problem that, although is
not trivial, is much more feasible than the original, where perturbative tools
cannot be used.

The concepts and details in gravitational waves and shock waves will be
given in Chaps. 2 and 3. From the time being, it will be enough to have
an intuitive picture of the issue. Roughly speaking, a gravitational wave is
any geometrical ripple which propagates at the speed of light in some sta-
tionary background. Usually gravitational waves are referred to perturbative
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solutions in the weak field approximation over a stationary vacuum solution.
Gravitational shock waves are a special case in this sense since they are not
approximate solutions to Einstein equations, but exact. In addition, grav-
itational shock waves are “finite”; they begin and end at some point, such
that before and after the wave passes the spacetime recovers the background
geometry. As an example, the gravitational field of a relativistic particle is
infinitely Lorentz-contracted in the direction of motion until it is confined in
the transverse plane to the particle propagation, traveling with the particle
and forming a gravitational shock wave.

As we have explained, the production of a thermalized plasma in the
boundary theory is given by the creation of a even horizon in the future light
cone of the collision of two gravitational waves inside AdS space. However, to
solve the causal structure of the spacetime after a gravitational wave collision
is a complicated task since, unlike electromagnetic waves, gravitational waves
cannot generally be superposed linearly6. In general terms, at the instant of
collision the two waves pass through one another, and nonlinearly interact
by shearing and focusing. The analytical solution after such highly nonlinear
process is only known in a few cases with high degree of symmetry and in flat
spacetime [44]. In fact, for colliding gravitational shock waves no analytical
solution for the metric in the future light cone of the collision is known until
date, even in flat background (see [45] for some important progress in AdS
space), which results in an impossibility to use the holographic approach to
study the production of thermalized plasma in the boundary field theory.
A possibility to circumvent this inconvenient is to search for the so called
Penrose trapped surface, a marginally outer trapped surface defined over
the past light cone of the collision [46], and to take the appearance of this
trapped surface as signaling an eventual horizon formation in the future light
cone of the collision7 [47, 48, 49, 50]. In this way, the appearance of such
trapped surface in the collision of two gravitational shock waves is taken as
the gravitational dual for plasma thermalization in the boundary theory [51].

The holographic model explained above for studying the sQGP produc-
tion in high energy collisions has been tested with relative success. It was
first time used in [51, 52, 53], taking the gravitational shock waves produced
by ultrarelativistic particles in AdS5 as the gravitational dual for modeling

6Except in the weak field limit, or outside the future light cone of the collision of two
shock waves

7Note that it has been not proved in general terms the existence of a marginally outer
trapped surface in a spacetime implies the eventual evolution of the geometry to a event
horizon. Only in highly controlled environments (asymptotically flat and static spacetimes
in 4 dimensions) it has been proved. However, it seems a reasonable conjecture to assume
the generalization to any globally hyperbolic spacetime from a physical point of view.
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two colliding energy lumps in the boundary theory. These shock waves are
achieved by performing an infinite boost over the AdS-Schwarzschild black
hole with a suitable scaling of the mass, following a procedure first time fixed
by Aichelburg and Sexl in flat spacetime [54]. With this type of shock waves,
[51] analyzed the central collision, whereas in [53] the collision with small
impact parameter parallel to the boundary was studied (in the boundary
theory, this corresponds to a collision with the a small impact parameter
between the two energy lumps). In both cases, it was found that a Penrose
trapped surface appears in the collision, which can be interpreted as signaling
an eventual thermalization after collision in the boundary theory.

From a physical point of view, it is intuitive to believe that for off-center
collisions, two colliding energy lumps in a gauge theory must no longer re-
sult in a thermalized plasma once a critical value of the impact parameter
is reached. In addition, this maximum impact parameter for plasma ther-
malization must depend on the energy collision. For the gravitational dual,
this phenomenon must translate in an absence of a Penrose trapped surface8

in the shock wave collision beyond the maximum impact parameter. This
critical behavior of the impact parameter in AdS5 was found in [52] using
a numerical spectral method to compute the Penrose trapped surface in the
collision of two shock waves obtained form the AdS-Schwarzschild black hole
following the procedure previously described9.

Following with the gravitational dual developed in [51, 52, 53], in Chap-
ter 4 it is presented a detailed study of the dependence of the critical impact
parameter with the dimension of the AdS space and the energy of the col-
lision [55]. Using a numerical method based on finite differences [56], the
gravitational shock wave collision with a non zero impact parameter parallel
to the boundary is numerically solved for dimensions 4, 5, 6, 7 and 8 for
several values of the impact parameter and energy collision. The obtained
results yields a simple scaling relating the critical impact parameter bc and
the energy of the collision µ:

bc
L
∼
(
GDµ

LD−3

) 1
D−2

. (1.7)

8Note that, as it has been already explained, the absence of the Penrose trapped surface
does not guarantee the eventual evolution of an event horizon after the collision. It is a
good conjecture to suppose it happens in this way while there are not a better model.
But, however, it is possible that, although the Penrose trapped surface does not appear
in a collision, other trapped surface does it in the future light cone of the collision, which
may yields to an eventual event horizon.

9 In [53] the authors did not find any critical behaviour with the impact parameter
because of the collision was solved perturbatively in the impact parameter. The results of
[53] and [52] coincide at low impact parameters.
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As we have pointed out in the previous section, the isometry group of
AdS space and the group of conformal symmetry of the boundary theory is
identified via the AdS/CFT correspondence. Following this connection, a
suitable rotation of the collision scenario with non zero impact parameter
inside the AdS space leads to a central collision in the boundary theory
between two energy lumps of different size. As we will show in Chapter 4, the
criticality in the impact parameter is then transported to a critical relation
between the size of two colliding energy lumps to produce a thermalized
plasma [55]: when the difference of size is large enough, the energy lumps
pass through one another without interaction, since the smallest energy lump
does not see enough degrees of freedom in the biggest one to thermalize.
Intuitively this is an expected result which, together with the existence of a
critical impact parameter, helps to legitimize the use of colliding gravitational
shock waves as gravitational duals for modeling the strongly coupled plasma
production in high energy collisions.

According to the Bekenstein-Hawking formula relating the black hole en-
tropy to the event horizon area and the holographic principle, in [51, 52] the
area of the Penrose trapped surface has been used to compute the entropy
production in the collision between energy lumps in the boundary theory,
giving an estimate to the entropy production in heavy ion collisions at high
energy when a sQGP is produced. From central collisions, it is obtained a
scaling of the entropy S of the collision with the energy µ given by

S ∼ µ2/3. (1.8)

However the behavior observed in heavy ion collisions at RHIC gives a scal-
ing S ∼ µ1/2. There are several factors for the discordance between (1.8) and
the experimental results. The first one is that the AdS-Schwarzschild solu-
tion, from which the model is constructed, is dual to thermal N = 4 SYM,
far away from real QCD. Mainly, N = 4 SYM has a conformal symmetry
and thus it cannot exhibit confinement. It is expected that confinement in
real QCD decreases the production of entropy in sQGP creation, since, until
deconfinement happens in the early stages of the collision, the number of
degrees of freedom are negligible compared to the number of degrees of free-
dom of the sQGP, a fact that is not taken into account by the gravitational
dual. In [53] it is proposed to introduce an infrared cut-off in the model to
take into account confinement in QCD and improved the entropy prediction,
together with a ultraviolet cut-off to avoid the asymptotic freedom of QCD.
According with the connection between energy scale in the boundary theory
and deep inside the AdS space, these cut-offs correspond to eliminate the
internal and external shells of the AdS space or computing the area of the
Penrose surface. By this method, it is achieved an scaling S ∼ µ1/3 for large
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µ, a better prediction than the previous one, but still far away from real
QCD.

Other reason for the excessive entropy production predicted by the model
so far discussed is that point-sourced gravitational shock waves are not very
suitable to describe heavy-ions. In fact, the energy-momentum tensor for the
boundary theory (or holographic stress tensor) extracted form the gravita-
tional shock waves used to get (1.8) results in a Lorentzian potential, very
different from the expected Woods-Saxon potential. Also there are large
freedom in choosing the source for the gravitational shock waves. In general,
any source invariant under rotations around the collision axis gives the same
energy-momentum tensor in the boundary gauge theory. Taking advantage
of this fact, in [57] it is proposed to spread the sources of the gravitational
shock waves in the transverse space to the collision, substituting point-like
sources by transverse energy densities. Introducing such “fat waves” it is pos-
sible to increase the energy without changing the entropy production if the
energy is sufficiently diffused [51]. However, following this strategy one runs
the risk of generating a shock wave which is a solution of Einstein equations
but not a supergravity solution, as required by the AdS/CFT correspon-
dence. In fact, in [57] it is analyzed the central collision of fat shock waves
and it is found that there is a critical dependence in the size of the sources:
for enough diffused fat waves, the Penrose trapped surface does not form in
the collision. However, since the holographic energy-momentum tensor is the
same for all the sources invariant under rotations around the collision axis,
it is not found any reason for this critical behavior in the thermalization of
the plasma in the boundary theory. Together with the fact that conserved
currents are not the same in the bulk and the boundary, it seems to indicate
that fat waves are not in general a supergravity solutions by themselves such
that we need to consider additional supergravity fields which would couple
to global background charges in the boundary [58].

As an additional effort to improve the gravitational dual model so far
discussed, it is possible to consider the collision between gravitational shock
waves constructed from other AdS black hole solutions different from the
AdS-Schwarzschild black hole, following the mechanism developed by Aichel-
burg and Sexl in [54]. In particular, the Reissner-Nordström solution has the
advantage that it can be extended to a supergravity solution, and perhaps
the novel features in the shock wave metric introduced by the presence of
charge can improved the model. Intuitively, the presence of charge could
reduce the Penrose trapped surface [59], decreasing the expected entropy
production in the collision. However, this effect is excessively strong, and in
Chapter 4 it is shown how the presence of charge fully prevents the formation
of the Penrose trapped surface, even for small charge [60]. Naively we would
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expect that searching for topologies with non zero genus solves the problem,
since a “hole” in the Penrose surface around the collision could isolate the
influence of the charge. However, even taking into account this possibility it
is not possible to find a Penrose surface. This same situation is found in flat
spacetime. At this point, it is important to remember that the absence of
Penrose trapped surface does not exclude the possibility of an eventual hori-
zon formation after the collision happens. Indeed, in [61] a trapped surface
is found, similar to the Penrose one, over the future light cone of the collision
for the head-on collisions of gravitational shock waves constructed from the
Reissner-Nordström solution in flat spacetime.

1.4 Gauge symmetries in noncommutative spa-
ces

The second part of this Thesis will deal with the physics of noncommutative
spacetimes. Although this is an issue not directly related to holography or
its applications to the study of the sQGP, field theories in noncommutative
spaces incorporate nonlocallity to interactions, which eventually could be
useful to describe gravity at some level between string theory and general
relativity. Nevertheless, in the second part of this Thesis, we will focus on
the construction of gauge invariance in this kind of spaces and not over the
importance of noncommutative field theories as a rude approach to quantum
gravity.

In general terms, a noncommutative space is a topological space where
the ordinary coordinates have been substituted by operators satisfying some
noncommutative algebra. Here, “coordinates” means the generators of the
(noncommutative) algebra of continuous complex functions10 over the non-
commutative space that we are considering. Note that this notion of coor-
dinates as the generators of the algebra of functions over the space is not so
different from the one we have in ordinary spaces. For example, in Rn the
coordinates {x1, . . . xn} are the generators for the (commutative) algebra of
continuous complex functions over Rn vanishing at infinity.

At the end, the change from ordinary spaces to noncommutative ones
reduces to considering noncommutative algebras of functions instead of com-
mutative ones. For practical purposes, this translates in substituting the
ordinary commutative product by a noncommutative one. Of course, the
explicit way in which the noncommutative product is implemented depends
on the noncommutative space that we are considering. In Chapter 5 we

10If the space is locally compact but no compact, the algebra generated by the coordi-
nates is the one of continuous complex functions vanishing at infinity.
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work over the most direct generalization of the commutative space Rd: the
noncommutative space Rd

θ, defined as the noncommutative space where the
coordinate operators satisfy the algebra

[x̂µ, x̂ν ] = iθµν , (1.9)

θµν being some d×d real antisymmetric matrix. The noncommutative prod-
uct which follows from this algebra is the so called Moyal product or star
product.

Surprisingly, once a noncommutative geometry has been established, the
original construction of field theory can be followed with few changes. In Rd

θ,
the ordinary commutative product is substituted by the Moyal one in the
Lagrangian formalism, and the (noncommutative) quantum field theory is
constructed from it in the usual way [62, 63, 64]. Basically, the novel features
of the NCFTs constructed in this way are nonlocality, because of the existence
of Heisenberg inequalities between coordinates, and the breaking of Lorentz
invariance, since only the subgroup of the Lorentz group keeping invariant
the noncommutative algebra of coordinates is allowed. In addition, the lack
of locality leads to a mixing of scales (IR/UV mixing) in the quantum theory
[65].

Because of the breakdown of Lorentz invariance, NCFT has been relegated
to a second place in the theoretical physics of the last century11. However,
the formal development of noncommutative geometry by Alain Connes [67]
together with the renewed interest in NCFT as a particular low-energy limit
of open-string theory [9] around the end of 20th century revived the interest
in noncommutative theories. From a physical point of view, NCFT may be
useful to formulate effective theories of gravitation at Planck scale halfway
between string theory and classical Einstein gravitation.

Either looking NCFT as an alternative framework to develop effective
theories of quantum gravity or as a pure mathematical deformation of the
ordinary field theory, it is obvious that introducing gauge symmetries in
noncommutative geometries is an interesting task. On the one hand, gauge
symmetries are intrinsically local in ordinary field theory and it is not clear
the way in which local transformations can be constructed in noncommuta-
tive geometries where locality is lost. On the other, gauge symmetries are
the cornerstone of the standard model, and thus they must be kept in mind
in any effort to go beyond the standard model.

Basically there are two ways in which gauge transformations can be de-
fined in field theories over Rd

θ: star-gauge transformations [10, 11, 12] or

11As early as 1947, Snyder considered the possibility to construct field theories in spaces
where the coordinates do not commute [66].
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twist-gauge [13, 14, 68] transformations. The first one solves the implemen-
tation of gauge invariance by introducing the star product in the local action
of the gauge group over the field algebra. The second one keeps the ordinary
product for the action of the gauge group over the fields, but modifies the
Leibniz rule to be compatible with the noncommutative structure of the field
algebra. At this level, the two ways to build gauge transformations in Rd

θ are
equivalent.

Despite of star- and twist-gauge transformations are conceptually differ-
ent, both are symmetries of the noncommutative Yang-Mills action12, and
necessarily they coexist [69]. Thus both invariances compete to be the phys-
ical symmetry (the one with real physical meaning) of the noncommutative
gauge theories. The problem is to decide what of them is the true symmetry,
or if the two may have real physical relevance.

Basically there are two reason to think that star-gauge invariance is the
only one with relevant physical meaning in noncommutative Yang-Mills the-
ories. First, it has been argued in [70] that Noether currents do not follow
from the twist-gauge invariance by means of the standard procedure, but
from the star-gauge one. Second, the star-gauge symmetry appears in the
low energy Seiberg-Witten limit of string theory [71]. Thus, it seems that
the star-gauge symmetry is the true physical symmetry of noncommutative
Yang Mills theories, whereas the twist-gauge invariance plays an accidental
role, watched over by the star-gauge one.

In Chapter 5 we show it can be constructed an infinite family of twisted
invariances interpolating continuously between twist- and star-gauge symme-
tries [72]. All of these invariances are conceptually equivalent to the original
twist-gauge invariance (in the sense that the Leibniz rule is modified in all
of them), and all are watched over by the star-gauge symmetry. From this
point of view, the twist-gauge invariance is a particular case of an infinite
family of accidental symmetries and thus there is no reason to consider it
as a real symmetry with physical meaning, reinforcing the idea of the star-
gauge symmetry as the true physical symmetry supervising all the twisted
invariances. Also, as a particular case of the family of twisted symmetries, it
appears a spurious symmetry for the ordinary Yang-Mills theory.

12The noncommutative Yang-Mills action functional is constructed from the commu-
tative one by substituting the commutative product by the Moyal one in the ordinary
Yang-Mills Lagrangian.
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1.5 A note about conventions
In the next three chapters (as well as the related appendices) we shall work
with different coordinate systems in several spaces. Thus it is convenient to
fix a priori some generalities about the index notation that we will use in
Chapters 2, 3 and 4. Coordinates in the D-dimensional AdS space will be in-
dexed by lowercase Latin letters a, b, c . . ., while coordinates in the conformal
boundary of it will be denoted by Greek indices µ, ν, σ, . . .. Moreover, the
D-dimensional AdS spacetime (which we will denote as AdSD) can be viewed
as a D-dimensional hyperboloid embedded in a flat background with D + 1
dimensions. In general it will be used capital letters A,B,C . . . to refer to
the coordinates in this flat space. Respect to the collision scheme, lowercase
Latin letters i, j, k . . . will refer to the transverse space to the shock wave
propagation without including the Poincaré coordinate z. Summarizing:

A,B,C . . . ∈ {0, 1 . . . D},
a, b, c . . . ∈ {0, 1 . . . D − 1},
µ, ν, σ . . . ∈ {0, 1 . . . D − 2},
i, j, k . . . ∈ {1, 2 . . . D − 3}.

(1.10)

Also we will use Greek indices in the general discussions of the Chapter
2 to describe gravitational waves in arbitrary spacetimes as well as in flat
spacetime, and in Chapter 5 to construct gauge symmetries in Rd

θ.
To avoid an excessively cumbersome jargon, we shall resort to abbrevi-

ations commonly used in scientific literature, as GR for General Relativity
or AdS for Anti-de Sitter, as well as “AdS-Sch shock waves” and “AdS-RN
shock waves” to refer to the gravitational shock waves obtained boosting the
AdS-Schwarzschild and AdS-Reissner-Nordström solutions respectively.

At the end of the text there are included several mathematical appendices
in order to complement the physical discussions of the main text. Those read-
ers not familiar with AdS coordinate systems are advised to read Appendices
A and B before proceeding to Chapters 2, 3 and 4. Likewise, in Appendix
C there are the demonstration of some equations that are widely used along
the text.

Finally, all the equations are written in unities where ~ = c = 1, being
GD the Newton constant in D dimensions, and we take the Minkowski metric
with signature ηµν = (−,+,+, . . . ,+).
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Chapter 2

Gravitational waves

Gravitational waves are a central topic in General Relativity. Usually the
concept refers to solutions to linearized gravity representing a weak gravita-
tional disturbance propagating in some spacetime, i.e. gravitational radia-
tion. Sources of gravitational radiation are supposed to be physical systems
where the geometric configuration changes in time as in binary stars or su-
pernovae events1. In any case, gravitational radiation is an approximate solu-
tion to Einstein equations where the amplitude of the gravitational waves are
treated as a weak perturbation over a stationary background configuration.
For this reason, we shall refer to gravitational radiation as weak gravitational
waves.

Together with the weak gravitational waves previously mentioned, there
are also exact solutions to Einstein equations which are nonstationary and
represent geometric ripples propagating in some background. We shall call
exact gravitational waves to these solutions. A particular example of this
kind of gravitational waves are shock waves. In contrast to weak gravitational
waves, exact gravitational waves describe, for example, the gravitational field
associated to a particle or an electromagnetic pulse traveling through the
spacetime.

The aim of this Chapter is to introduce the general concept of gravi-
tational waves, paying special attention to gravitational shock waves. In
Section 2.1 we briefly discuss the issue of gravitational radiation in general
backgrounds, showed here for completeness and as a counterpoint to exact
gravitational waves. The Section 2.2 are entirely dedicated to define exact

1To date no direct measure of gravitational radiation has been yet achieved. The
observation of the orbital decay of some binary pulsars is the only evidence of gravitational
radiation as predicted by Einstein field equations up to date [73, 74]. On the other hand,
recent claims of primordial gravitational wave detection through their imprints on the
CMB have turned out to be premature [75, 76].

21
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gravitational waves and gravitational shock waves in flat background. In Sec-
tion 2.3 it is discussed how this type of waves can be constructed from black
hole solutions by means of a suitable ultrarelativistic limit first time intro-
duced by Aichelburg and Sexl [54]. The generalization of exact gravitational
waves and, in particular, gravitational shock waves to the AdS space is stud-
ied in Section 2.4. Finally, in Section 2.5 the collision of two gravitational
shock waves in AdS background is set out.

2.1 Weak gravitational waves
As we have already mentioned, gravitational radiation is the propagation of a
weak gravitational disturbance over some stationary solution to the Einstein
equations. Here we are interested in obtaining the equation which governs
such evolution through spacetime. Classically it has been obtained from a
perturbative treatment designed for linearizing the Einstein field equations.
Usually this weak gravitational waves are presented on a flat background,
but here we will follow a general derivation on some arbitrary stationary
background. A more exhaustive study of weak gravitational waves can be
found in classical texts such as [77, 78, 79, 80].

Let g(0)
µ,ν be the metric of some stationary solution to D-dimensional Ein-

stein equations, with a possible nonvanishing cosmological constant Λ and
energy-momentum tensor T (0)

µν ,

R(0)
µν −

1

2
g(0)
µν

(
R(0) − 2Λ

)
= 8πGDT

(0)
µν . (2.1)

where the (0) superindex refers to the metric g(0) and GD is the Newton
constant in D dimensions. Now, consider a weak disturbance over g(0)

µν such
that the disturbed metric is

gµν = g(0)
µν + hµν , (2.2)

where hµν is a symmetric 2-covariant tensor such that there exists a coor-
dinate system where |hµν | � 1. This condition ensures it is possible to ap-
proximate the geometry to first order in hµν . In this way, the contravariant
metric gµν will be given by

gµν = g(0)µν − hµν +O(h2). (2.3)

The indices of hµν are lowered and raised with g(0)
µν to first order in h. Also, it

is possible to perform a series expansion of the Ricci curvature to first order
in h,

Rµν

(
g(0) + h

)
= R(0)

µν +R(1)
µν (h) +O(h2). (2.4)
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Therefore, in the approximation linear in h, the metric g(0)
µν acts as a back-

ground metric where a tensor field hµν propagates.
Note that an infinitesimal coordinate change

xµ → xµ + ξµ(x) (2.5)

will not affect the condition |hµν | � 1. Under such coordinate transforma-
tion, the spacetime metric changes as g → g + Lξg, where Lξ is the Lie
derivative with respect the vector field generating the coordinate transfor-
mation. Thus, the transformation of hµν under (2.5) is given by

hµν → hµν +∇µξν +∇νξµ +O(h2), (2.6)

where we have lowered the index of ξµ with g
(0)
µν . Therefore the equation

(2.6) gives a gauge freedom for hµν . In particular, we can choose the so-
called transverse-traceless gauge,

g(0)µνhµν = 0, ∇(0)µhµν = 0. (2.7)

The computation of (2.4) is rather long and is beyond the purposes of
this Section. In the gauge (2.7) it takes the form [78]

Rµν = R(0)
µν −

1

2
4(0)hµν +O(h2). (2.8)

where 4(0) is the Laplace-Beltrami operator for the background metric.
Then, substituting in the Einstein equation, we have

4(0) hµν − g(0)
µν h

ρσR(0)
ρσ + hµνR

(0) − 2Λhµν = −16πGDtαβ, (2.9)

where we have used (2.1) and tµν is a possible perturbation over the energy-
momentum tensor T (0)

µν which sources the weak perturbation hµν over the
background metric g(0)

µν (for example, tµν could refers to one oscillating mode
of a variable star). This is the evolution equation, or wave equation, which
we are looking for.

In the special case where the background metric is flat, (2.9) reduces to

4(0) hµν = −16πGDtαβ. (2.10)

This is the equation for the graviton field in linearized gravity. Consider the
more special case in which we have a perturbation of the flat vacuum sourced
by tuu = δ(u)ρ(~x), such that the spacetime metric is

(ηµν + hµν)dx
µdxν = −dudv + d~x2 + δ(u)Φ (~x) du2, (2.11)
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where u and v are lightlike coordinates. Such metric represent an infinitely
thin gravitational wave with support at u = 0 propagating at the speed of
light. The tensor hµν has only one component huu = Φ(~x)δ(u), and obviously
satisfies the gauge (2.7). Then the wave equation (2.10) is reduced to

4(0) Φ(~x) = −16πGDρ(~x). (2.12)

Note that, because the distributional nature of hµν , (2.12) is an exact solution
to the equations of General Relativity, since quadratic terms in the delta
function are identically zero. Thus (2.11) is an exact gravitational wave. In
fact, as we will see in the next Section, the gravitational field of a massless
particle in flat background is given by a line element of the form (2.11).

2.2 Exact gravitational waves in flat backgro-
und

The weak gravitational waves we have described in the previous section are
not exact gravitational solutions, since they only satisfies the Einstein equa-
tion to first order in h. However, as we have already mentioned, we are
interested in exact solutions representing a geometrical disturbances in the
spacetime that propagate at the speed of light.

2.2.1 Flat pp-waves

A very important type of exact gravitational waves in flat background are the
plane-fronted parallel waves or pp-waves. A pp-wave is defined as a spacetime
which admits a null vector field kµ satisfying [81, 82]

∇νk
µ = 0, (2.13)

that is, it is covariantly constant. In this a way, the integral curves of kµ can
be interpreted as (parallels) rays along which the wave propagates, justifying
the name of pp-waves.

The previous definition has the advantage it does not depend on coordi-
nates. However, it is too abstract. Alternatively, a pp-wave spacetime can
be defined as the one whose line element takes the form

ds2 = −dudv + d~x 2
⊥ +H(u, ~x⊥)du2, (2.14)

in some suitable coordinate system {u, v, ~x⊥}, where {u, v} are lightlike back-
ground coordinates and (xi) ≡ ~x⊥ span the transverse space to the wave
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propagation. Nowadays (2.14) is known as the Brinkmann form of a pp-wave
metric2. It is interesting to show that the coordinate-dependent definition
(2.14) is equivalent to the covariant definition (2.13): the Christoffel symbols
for (2.14) are

Γvuu = −∂uH, Γvuxi = −∂iH,

Γx
i

uu = −1

2
∂iH,

(2.15)

and thus kµ = ∂µu is covariantly constant: (2.14) represent the lightlike
propagation of a disturbance with amplitude given by H(u, ~x⊥) and parallel
rays of propagation along v direction.

Note that neither the definition (2.13) nor the definition (2.14) make any
mention of any field equation. They are entirely independent of Physics. In
this sense, a pp-wave is an entirely mathematical notion. For obtaining a
wave equation we have to introduce (2.14) in the Einstein field equations.
The only no-vanishing component of the Einstein tensor of (2.14) is

Guu = −1

2
4⊥ H, (2.16)

where 4⊥ ≡
∑

i ∂
2
i is the Laplacian in transverse space. Thus the Einstein

field equation is reduced to the Poisson equation over the profile wave func-
tion H(u, ~x):

4⊥ H = −16πGDTuu (2.17)

The equation (2.17) is a partial differential equation which involves only
the transverse coordinates ~x⊥. Thus any wave packet extension in the null
coordinate u can be chosen. In fact, given a family of solutions H0(ξ, ~x⊥) to
(2.17) and some integrable function h(ξ, u) we can construct a pp-wave as

H(u, ~x⊥) =

∫ ∞
−∞

dξh(ξ, u)H0(ξ, ~x⊥). (2.18)

Physically this means that the lineal superposition of two pp-waves propa-
gating in the same direction is also a pp-wave. Obviously, in the case where
the pp-waves propagate in secant trajectories, the result is not true since, as
we will see in Section 2.5, the wavefronts will interact in an highly nonlinear
way at the collision point [44].

Asymptotically flat solutions to (2.17) are of particular interest. In gen-
eral, a solution to (2.17) does not have to be asymptotically flat, even in

2Brinkmann was the first in study (2.14) as an exact solution to Einstein equations in
1925.
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absence of sources. For example, consider the vacuum solution in D = 4
dimensions

ds2 = −dudv + dx2 + dy2 + θ(u)(x2 + y2)du2. (2.19)

The uu component has an infinite extension without dumping its strength,
and so (2.19) is nonasymptotically flat. In general, any asymptotically flat
pp-wave admits a multipolar expansion,

H(~x⊥) =
∑
n

∑
Ω

Un(r)YΩ(θi), lim
r→∞

Un(r) = 0 (2.20)

where r and θi are the usual radial and angular coordinates for the trans-
verse space to the propagation of the pp-wave and Yω(θi) are the spherical
harmonics over SD−3. In the special case of an asymptotically flat vacuum
solution, this multipolar expansion must satisfy (2.17) for Tuu = 0. Then,
since Un(r) and Y Ω(θi) are linearly independent functions, equation (2.17)
splits into radial and angular equations for each component,

d

dr

(
rD−3 d

dr
Un(r)

)
= n(n+D − 4)rD−5Un(r),

4SD−3YΩ(θi) = −n(n+D − 4)YΩ(θi).

(2.21)

where n = 0, 1, 2, . . .. Solution to the radial equation is,

Un(r) = Arn +Br−(D−5)−n. (2.22)

being A and B integration constants. Since asymptotic flatness implies
Un(r) → 0 for large enough r, it must be A = 0. Thus B 6== 0 and
there is a singularity at r = 0 sourcing the pp-wave. In other words, any
asymptotically flat pp-wave must be sourced.

Spacetimes containing pp-waves can be classified according to their sym-
metries. The most symmetric (no trivial) pp-waves are the plane waves. They
are defined as any pp-wave spacetime which admitsD+1 Killing vector fields,
including the covariantly constant field kµ, or alternatively as the pp-wave
spacetime whose curvature tensor components are constant over each wave
surface. In the coordinates of (2.14), a pp-wave is a plane wave if and only
if H(u, ~x⊥) depends quadratically in xi,

ds2 = −dudv + hij(u)xixjdu2 + d~x2
⊥ (2.23)

From this follows that a plane pp-wave cannot be asymptotically flat.
If a pp-wave spacetime has only two Killing vectors, it is said to be an

axisymmetric pp-wave. Because of the reduced symmetry with respect to
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plane waves, axisymmetric waves admit asymptotic flatness and point-like
sources. In Brinkmann form, the metric is

ds2 = −dudv + F (u, r)du2 + d~x2
⊥, (2.24)

where r is some radial coordinate in the transverse space to wave propa-
gation. The two Killing fields are the covariantly constant ~k = ∂v, whose
integral curves give the propagation rays of the pp-wave, and the generator
of rotations around the propagation axis.

2.2.2 Shock waves in flat background

A very special case of axisymmetric pp-waves are the gravitational shock
waves in flat background. They are axisymmetric waves for which the func-
tion F (u, r) in equation (2.24) depends on u through a delta function,

ds2 = −dudv + δ(u)Φ(r)du2 + d~x2
⊥, (2.25)

where , r = ~x2
⊥. Note that the wave has a zero measure support, u = 0,

forming an infinitely thin wavefront. Also, before and after the wavefront
passes the space time is flat. The function Φ(r) is called the shock wave pro-
file. Introducing (2.25) in the wave equation for pp-waves (2.17) (H(u, ~x⊥) =
δ(u)Φ(r)), we find that shock waves are generated by energy-momentum ten-
sors of the form

Tuu = ρ(r)δ(u), (2.26)

such that the shock wave profile satisfies the Poisson equation

4⊥ Φ(r) = −16πGDρ(r), (2.27)

ρ(r) being some isotropic energy distribution in the transverse space to the
wave propagation. Note that this is just the wave equation reproduced in
(2.12).

Because of the distributional nature of (2.25), the null geodesics across
the wavefront of a gravitational shock wave are discontinuous [83]. To see
such jump of the null geodesics rigorously is hard. Here we use a simplified
argument which nevertheless gives the right answer. Let us consider a null
geodesic with constant lightlike coordinate v0 intersecting the wavefront lo-
cated at u = 0 with constant values of the transverse coordinates, ~x⊥0 . After
the geodesics crosses the wavefront it enters again in flat spacetime with con-
stant v′0. The question is whether v0 and v′0 are or not the same. To see it let
us consider the line element across the geodesic just in the intersection with
the wavefront,

ds2 = du [−dv + Φ(r0)δ(u)du] , (2.28)
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For a null geodesic ds2 = 0. Thus

dv = Φ(r0)δ(u)du. (2.29)

Integrating now u between −ε and +ε gives the jump on the v coordinate,

∆v ≡ v′0 − v0 = Φ(r0)

∫ ε

−ε
duδ(u) = Φ(r0). (2.30)

In the case of a generic null geodesic for which ~x⊥ is not constant we find
the same result but with r0 substituted by the value of r when the geodesic
crosses the wavefront at u = 0.

The discontinuity of the null geodesic through the wavefront may add
difficulties to the study of the causal structure of spacetimes containing grav-
itational shock waves. Thus it would be adequate finding a way in which to
avoid this obstacle. As we have seen, the jump in the null geodesics comes
from the presence of distributional terms in the metric. Thus a change of
coordinates which results in the removal of these distributional terms is the
way to proceed . In this way, we define new coordinates, represented by
capital letters, as

u = U,

v = V + Φ( ~X⊥)θ(U) +
1

4
Uθ(U)

[
~∇Φ( ~X⊥)

]2

,

~x⊥ = ~X⊥ +
1

2
Uθ(U)~∇Φ( ~X⊥).

(2.31)

Note that for U < 0, the new and older coordinates coincide. To carry out
the change of coordinates over the metric (2.25) we compute

du = dU,

dv = dV +

[
δ(U)

4
Φ(~∇Φ)2

]
dU + θ(U)

[
∂iΦ +

U

2
∂jΦ∂i∂jΦ

]
dX i,

dxi = dX i +
θ(U)

2
∂iΦdU +

U

2
θ(U)∂∂iΦdXj.

(2.32)

On the other hand, because of the properties of the Dirac delta function,

Φ(~x⊥) = Φ

(
~X⊥ +

1

2
Uθ(U)∇Φ

)
δ(U) = Φ( ~X⊥)δ(U). (2.33)

Then from this equality and (2.32), after a bit of algebra, we find the shock
wave metric to be in the new coordinates

ds2 = −dUdV +HikH
d
jkX

idXj, (2.34)
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where summation over repeated indexes are understood, being Hij(U, ~x⊥)
given by,

Hij(U, ~x⊥) = δij +
1

2
Uθ(U)∂i∂jΦ(~x⊥). (2.35)

The line element (2.34), without distributional terms, but continuous null
geodesics crossing the wavefront, is the so called Rosen form of a gravitational
shock wave.

2.3 Aichelburg-Sexl boost
In the previous Section we have introduced gravitational shock waves as little
more than a mathematical concept, since we have not given any information
about what is their physical origin. The delta function appearing in (2.26)
reveals that (2.25) is the line element created by a transverse energy density
ρ(r) moving at the speed of light in flat background. In [54], Aichelburg and
Sexl showed that point-like sourced (that means ρ(r) ∼ δ(r) in (2.26)) shock
waves can be obtained from black hole solutions and, in particular, from the
Schwarzschild solution, by means of a suitable ultrarelativistic limit. Such
mechanism to generate gravitational shock waves will be adapted to an AdS
background in the next Chapter. As a warming up exercise, here we are going
to briefly reproduce the original Aichelburg-Sexl boost in four-dimensional
flat spacetime.

The asymptotically flat Schwarzschild solution is given by,

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
2, (2.36)

where,

f(r) = 1− 2G4m

r
, (2.37)

m being the mass of the solution. A boost over (2.36) will result in some
asymptotically-flat spacetime metric describing a particle with mass m mov-
ing at certain velocity. In the infinite boost limit, because of Lorentz con-
traction, its gravitational field will appear squeezed in the orthogonal plane
to movement, forming a gravitational shock wave. However, the limit must
be done taking care of a correct scaling of the mass m and the boost velocity
to avoid an infinite relativistic energy γm.

Before to perform any boost, we have to change to some isotropic coor-
dinates in which all the spatial components of the line element are treated
equally to ensure that no direction is preferred. In this way, we define the
isotropic coordinate r̄ as [84],

r ≡ r̄
(

1 +
G4m

r̄
+
G2

4m
2

4r̄2

)
. (2.38)



30 2.3. Aichelburg-Sexl boost

Then,

dr2 =
(

1− G2
4m

2

4r̄2

)2

dr̄2, (2.39)

and the line-element (2.36) after introducing r̄ is

ds2 = −f (r(r̄)) dt2 + g(r̄)
[
dr̄2 + r̄2dΩ2

2

]
, (2.40)

where

g(r̄) =

(
1 +

G4m

r̄
+
G2

4m
2

4r̄2

)2

.

Written in this way, (2.40) admits asymptotically Cartesian coordinates {x,
y, z}, defined as

r̄2 = x2 + y2 + z2. (2.41)

Once Cartesian coordinates has been defined in an isotropic way, boosts
can be performed in any direction since all spatial coordinates are equivalent.
For example, boosting in the x direction,

t = γ(t′ + βx′), y = y′,

x = γ(βt′ + x′), z = z′,
(2.42)

the components of (2.40) transform as,

gt′t′ = γ2
[
− f(r(r̄)) + β2g(r̄)

]
,

gx′x′ = γ2
[
− βf(r(r̄)) + g(r̄)

]
,

gt′x′ = γ2β
[
− f(r(r̄)) + g(r̄)

]
,

gy′y′ = g(r̄),

gz′z′ = g(r̄),

(2.43)

r̄ being now
r̄2 = γ2(x′ + βt′)2 + y′2 + z′2. (2.44)

Note that the relation between r and r̄ gives awkward expressions in (2.43)
through f (r(r̄)). However, we eventually will perform the γ →∞ limit, and

lim
γ→∞

r(r̄) = lim
γ→∞

r̄
(

1 +
G4m

r̄
+
G2

4m
2

4r̄2

)
= lim

γ→∞
r̄,

so we can substitute r(r̄) by r̄ in (2.43), providing simplicity ab initio. Also,
to perform the limit it is advisable to rewrite the components gt′t′ , gx′x′ and
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gt′x′ in terms of light-cone coordinates u′ = t′ + x′ and v′ = t′ − x′:

gu′u′ =
γ2(1 + β)2

4

[
g(r̄)− f(r̄)

]
gv′v′ =

γ2(1− β)2

4

[
g(r̄)− f(r̄)

]
gu′v′ = −1

4

[
g(r̄) + f(r̄)

]
.

(2.45)

The infinite boost for the component gu′v′ in (2.45) is easy to compute:

lim
γ→∞

gu′v′ = −1

4
lim
γ→∞

[
2 +

3G2
4m

2

2r̄
+
G3

4m
3

2r̄3
+
G4

4m
4

16r̄2

]
= −1

2
.

(2.46)

In a similar way,
lim
γ→∞

gy′y′ = 1, lim
γ→∞

gz′z′ = 1.

The limit for the components gu′u′ and gv′v′ is trickier. Naively, since gu′u′
and gv′v′ both are functions of γ2(x′ + βt′)2 through r̄ in (2.44), we can use
the relation (A detailed proof can be found in Section C.1 of Appendix C)

lim
γ→∞

γχ
(
γ2(x′ + βt′)2

)
= δ(u′)

∫ ∞
−∞

dw χ(w2) (2.47)

to compute the infinite boost limit over the components gu′u′ and gv′v′ . How-
ever there are an additional γ factor in (2.45) which diverges. In order to
keep finite the limit, we define µ ≡ γm and take the limit γ → ∞ together
with m → 0 such that µ remains fixed. In other words, we take the limit
ε→ 0 with the scaling

γ ∼ ε−1, m ∼ ε, (2.48)

such that the first order in m in (2.45) gives a finite result, while the O(m2)
terms vanish. Thus, expanding (2.45) as:

gu′u′ = γ(1 + β)2G4µ

r̄
+O

(
µ2

γ

)
,

gv′v′ = γ(1− β)2G4µ

r̄
+O

(
µ2

γ

)
,

(2.49)

the limit for the gv′v′ component is

lim
γ→∞

gv′v′ = lim
γ→∞

(1− β)2

(1 + β)2
gu′u′ = 0, (2.50)
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since the factor (1− β) vanishes when γ → ∞, while the limit for the com-
ponent gu′u′ gives

lim
γ→∞

gu′u′ = 4G4µδ(u
′)

∫ ∞
−∞

dw

(w2 + ρ2)1/2
, (2.51)

where we have defined ρ2 = y′2 + z′2.
It remains to compute the explicit form of integral in (2.51). However,

(w2 + ρ2)−1/2 is not integrable in (−∞,∞), and thus the integral cannot be
formally evaluated. Indeed the relation (2.47) is not even applicable. So we
need to compute the limit

lim
γ→∞

γ(1 + β)2G4µ

r̄
= lim

γ→∞

γ(1 + β)2G4µ[
γ2(x′ + βt′)2 + ρ2

]1/2 (2.52)

without the help of the relation (2.47). This problem is solved calculating
the limit for a primitive of (2.52) and then differentiating the result [84]. A
previous “renormalization step” is necessary, adding and subtracting

γ(1 + β)2G4µ[γ2(x′ + βt′)2 + 1]−1/2 (2.53)

to (2.52). In this way, we compute the limit

lim
γ→∞

[
γ(1+β)2G4µ[

γ2(x′+βt′)2+ρ2
]1/2 − γ(1+β)2G4µ[

γ2(x′+βt′)2+1
]1/2 + γ(1+β)2G4µ[

γ2(x′+βt′)2+1
]1/2
]

= 4G4µ lim
γ→∞

[
γ[

γ2(x′+βt′)2+ρ2
]1/2 − γ[

γ2(x′+βt′
]2

+1)1/2

]
+

4G4µ

|u′|

(2.54)

instead of (2.52). Now, following the previous recipe, we integrate the ex-
pression within the brackets in the last line. It yields∫ x′

−∞

[
γ[

γ2(x+ βt′)2 + ρ2
]1/2 − γ[

γ2(x+ βt′
)2

+ 1)1/2

]
dx

= log

[
γ2(x′ + βt′) + γ

√
γ2(x′ + βt′)2 + ρ2

γ2(x′ + βt′) + γ
√
γ2(x′ + βt′)2 + 1

]
≡ Fγ.

(2.55)

The γ →∞ limit for it gives

lim
γ→∞

Fγ =



lim
γ→∞

log
[
γ2(x′+βt′)−γ2(x′+βt′)−ρ2/(x′+βt′)
γ2(x′+βt′)−γ2(x′+βt′)−1/(x′+βt′)

]
= log ρ2 for x′ + t′ < 0

lim
γ→∞

log
[

2γ2(x′+βt′)+ρ2/(x′+βt′)
2γ2(x′+βt′)+1/(x′+βt′)

]
= log 1 = 0 for x′ + t′ > 0.
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Or, in a more compact notation,

lim
γ→∞

Fγ = θ(−u′) log ρ2. (2.56)

Finally, taking the derivative and plugging the result together with (2.52)
and (2.54), we obtain

lim
γ→∞

γ(1 + β)2G4µ

r̄
= −4G4µ δ(u

′) log ρ2 + 4
G4µ

|u′|
. (2.57)

Note that the second term is not integrable, which conflicts with the dis-
tributional nature of the first term. Fortunately, the second term can be
eliminated from limγ→∞ gu′u′ by the transformation

du′ → du′dv′ → dv′ − 4µ

|u′|
du′, (2.58)

solving the inconvenience.
At the end of the day, doing the infinite boost limit with the scaling (2.48)

we have obtained the line element

ds2 = −dudv + dy2 + dz2 − 4G4µδ(u) log(ρ2)du2, (2.59)

where we have reverted to unprimed notation for clarity. This is the metric
for a gravitational shock wave with wave profile

Φ(ρ) = −4G4µ log(ρ2), (2.60)

as has been defined in (2.25). We have obtained it as the metric describing a
massless particle of energy µ moving in 4-dimensional flat background. The
same procedure can be done starting from other flat black hole solution,
obtaining the shock wave metric describing massless particles with other
parameters besides the relativistic energy µ [84, 85].

2.4 Exact gravitational waves in the AdS space
So far we have studied exact gravitational waves in flat background. Here we
generalize them to AdS background and give definitions for AdS pp-waves
and, in particular, AdS shock waves. Our interest in this task resides in
the holographic connection between AdS spacetime and lower-dimensional
conformal field theories.

Before discussing the generalization of pp-waves and, in particular, grav-
itational shock waves to an AdS background, we have to introduce some
coordinate systems in the AdS spacetime. For the reader not familiarized
with the AdS space, a more detailed exposition can be found in Appendix A.
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2.4.1 Basics on coordinates in the AdS space

The most distinctive feature of the D-dimensional AdS spacetime is that
it posses a timelike conformal boundary, which can be identified with the
Minkowski space in D − 1 dimensions. This fact turns out to be of great
importance to formulate the AdS/CFT correspondence. The timelike nature
of the conformal boundary is explicit in the so called Poincaré coordinates
{z, xµ}, in which the line element of AdSD is

ds2 =
L2

z2

(
dz2 + ηµνdx

µdxν
)
, µ, ν = 0, . . . D − 2. (2.61)

The set {xµ} can be taken as a (flat) coordinate map covering the whole
conformal boundary of the AdS spacetime, while z measures the depth to-
wards the interior of the AdS space, such that the conformal boundary is
located at z = 0. Thus we shall refer to {xµ} as the boundary coordinates
and to z as the depth (or holographic) coordinate. The restriction z > 0 de-
fine the Poincaré patch, where gravitational shock waves shall we considered.
Note that, in this coordinate system, the AdS space can be obtained from
a conformal transformation of the Minkowski space with conformal factor
Ω2 = L2/z2, with L fixing the “size” of the AdS space. Moreover, in Poincaré
coordinates the line element of the AdS spacetime is explicitly invariant under
coordinate reescaling. That is, defining new coordinates

z′ = kz, x′
µ

= kxµ, k ∈ R+ (2.62)

the metric (2.61) remains unchanged.
A dimensionless coordinate that will be extremely useful for our purposes

is the chordal one, q. From Poincaré coordinates, it is defined as

q =
1

4z0z

[
(z − z0)2 + ηµνx

µxν
]
, (2.63)

where z0 is an arbitrary positive real number. The usefulness of this coor-
dinate is that it is invariant under the whole Lorentz group SO(1, D − 2)
acting on the boundary coordinates {xµ}. Taking angular coordinates to
parametrize the spatial sections of the conformal boundary, the metric of
AdSD in terms of the chordal coordinate is

ds2 = −(2q + 1)2dt2 +
L2

q(q + 1)
dq2 + 4L2q(q + 1)dΩ2

D−2. (2.64)

The “origin” of the coordinate q is located at z = z0 > 0, xµ = 0. By means
of the scale invariance in Poincaré coordinates (2.62) z0 can be changed to
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any value, an thus it is an arbitrary election. The freedom in choosing z0 is
just the freedom in choosing a depth inside AdSD to fix the origin of the q
coordinate.

The D-dimensional AdS space can also be globally defined from the em-
bedding of the D-dimensional hyperboloid

Z2
0 + Z2

D −
D−1∑
i=1

Z2
i = L2 (2.65)

in flat space with line element ds2 = −dZ2
0 − dZ2

D +
∑D−1

i=1 dZ2
i . Defining,

Zµ =
L

z
xµ ,

ZD−1 =
z

2

[
−1 +

L2 − ηµνxµxν

z2

]
,

ZD =
z

2

[
1 +

L2 + ηµνx
µxν

z2

]
,

(2.66)

we recover the AdSD metric in Poincaré coordinates. Although {Z0, . . . ZD}
are not true coordinates in AdSD because of the constraint (2.65), we can
use them to parametrize tensors in AdSD. This will be specially useful in
Chapter 3. One advantage of viewing AdSD as a hyperboloid embedded in
flat spacetime is that SO(2, D−1) is directly identified as the isometry group
of AdSD, which is not obvious from (2.61) or (2.64).

Eventually we are going to study collisions between gravitational shock
waves inside the AdS space, the interaction point being located at u = t +
xD−2 = 0 and v = t − xD−2 = 0. Therefore the sections u = v = cte
of AdSD become relevant for our work. With the induced metric, these
sections coincide with the hyperbolic space in D−2 dimensions, HD−2. Since
the components guu and gvv of the AdS metric are zero, HD−2 is also the
transverse space to the propagation of gravitational shock waves in AdSD.
Similar to the AdS space, the hyperbolic space HD−2 can be obtained as the
embedding of the hyperboloid

− ηABY AY B = L2, A,B ∈ {0, . . . D − 2} (2.67)

in (D − 1)-dimensional Minkowski space ds2 = ηABdY
AdY B, such that the
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(induced) Poincaré coordinates in HD−2 are related to Y A as

Y 0 =
z

2

[
1 +

L2 + ~x2
T

z2

]
,

Y i =
L

z
xi , i = 1, . . . D − 3,

Y D−2 =
z

2

[
−1 +

L2 − ~x2
T

z2

]
,

(2.68)

where ~xT = (x1, . . . xD−3). Finally, the (induced) chordal coordinate q in
HD−2 is given by

q =
1

4zz0

[
(z − z0)2 + ~x2

T

]
, (2.69)

being invariant under the group of rotations3 SO(D − 3) acting over ~xT .

2.4.2 Conformal pp-waves

Let us begin with the generalization of pp-waves to the D-dimensional AdS
spacetime. Since the metric (2.61) is conformally flat with a conformal factor
L2/z2, we generalize the concept of pp-waves in flat background to AdS
background in the most intuitive way: such spacetimes whose Brinkmann
form of the metric in Poincaré coordinates is given by

ds2 =
L2

z2

[
−dudv + dz2 + d~xT +H(u, z, ~xT )du2

]
. (2.70)

That is, we generalize the pp-wave concept to an AdS background by just a
conformal transformation of (2.14) with a conformal factor L2/z2.

The metric (2.70) represent an exact gravitational wave propagating in
the D-dimensional AdS spacetime along the coordinate xD−2, u = t + xD−2

and v = t− xD−2 being the light-cone coordinates. The transverse space to
the propagation of the wave is now spanned by coordinates {z, (xi) ≡ ~xT}.
Note that (2.70) is not a pp-wave spacetime as defined in (2.13) since there is
not a covariantly constant vector field. In particular the Christoffel symbols
for (2.70) are

Γµµz = −1

z
, Γvuµ = −∂µH, Γvuz = −∂zH

Γµuu =
z2

2
∂µ
H

z2
, Γzuu =

z2

2
∂z
H

z2

(2.71)

3Note that SO(D− 3) is just a subgroup of the isometry group SO(1, D− 2) of HD−2,
which is explicit in (2.67).
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where index a runs here over (z, ~xT ). Thus kµ = ∂µu is not covariantly
conserved:

(∇uk)z = −Γuuz =
1

z
6= 0 (2.72)

We will refer to any spacetime with line element (2.70) as a conformal pp-
wave spacetime.

As in the case of pp-waves in flat spacetime, a wave equation for the func-
tion H(u, z, ~xT ) can be obtained introducing (2.70) in the Einstein equation.
Only the uu component of the right-hand side of Einstein equation gives a
no-vanishing result,

Ruu −
1

2
Rguu + Λguu = − L

2z

[
4HD−2

− D − 2

L2

]
H̄(u, z, ~xT ), (2.73)

where the cosmological constant Λ is related to the AdSD scale L as

Λ = −(D − 1)(D − 2)

2L2
, (2.74)

4HD−2
is the Beltrami-Laplace operator in the hyperbolic space HD−2, and

H̄ = L
z
H. Thus the Einstein equation reduces to[

4HD−2
− D − 2

L2

]
H̄(u, z, ~xT ) = −16πGD

z

L
Tuu. (2.75)

where Tuu = ρ(u, z, ~xT ) is some energy density which is assumed to be the
source of the wave. This is the analog to (2.17). Note that here HD−2 appears
as the transverse space to the propagation of the wave.

2.4.3 AdS gravitational shock waves

In a similar way to the extrapolation of flat pp-waves to AdS background,
flat gravitational shock waves can be generalized to asymptotically AdS shock
waves: naively AdS gravitational shock waves are defined from a conformal
transformation over (2.25),

ds2 =
L2

z2

[
−dudv + dz2 + d~xT + φ(z, ~xT )δ(u)du2

]
. (2.76)

In flat background gravitational shock waves are defined as axisymmetric
waves. In that follows we will demand axial symmetry for shock waves in
AdS background too. This implies that the function φ(z, ~xT ) must factorize
as

φ(z, ~xT ) =
z

L
Φ(q), (2.77)
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where q is the chordal coordinate defined in (2.69). The z
L
factor in front of

the wave profile function Φ(q) is introduced to guarantee the invariance of the
metric under rotations around the propagation axis. This might be difficult
to see, since the isometry group of the AdS space has not an easy realization
in Poincaré coordinates. However, from (2.66), we can write L

z
δ(u) in global

coordinates,
L

z
Φ(q)δ(u) = φ(q)δ(Z0 + ZD−2), (2.78)

showing explicitly the invariance around xD−2 = L
z
ZD−2.

Analogously to gravitational shock waves in flat space, (2.76) physically
represents the gravitational field associated to a transverse and isotropic en-
ergy distribution traveling at the speed of light. This can be shown substi-
tuting H̄(u, z, ~xT ) = Φ(q)δ(u) in (2.75), giving a source energy-momentum
tensor,

Tuu =
L

z
ρ̄(q)δ(u), (2.79)

where ρ̄(q)δ(u) = uaξbTab stands for the transverse energy density as mea-
sured by a static observer ua = ξa/(−ξbξb)1/2|P located at the shock wave
event P , ~ξ = ∂t being the timelike Killing vector of the AdS spacetime. In
AdS background this is different4 from the transverse energy density as it
was measured by an observer at the conformal boundary of the spacetime,
ρ(z, ~xT )δ(u) = ξaξbTab . Since ρ̄(q) has O(D − 2) symmetry around q = 0
(note that ρ(z, ~xT ) has not such symmetry in general), (2.76) gives the grav-
itational field of some lightlike energy distribution traveling at depth z = z0

inside the AdS space.
As in the case of gravitational shock waves in flat background, the null

geodesics are not continuous at the wavefront. Following a similar construc-
tion that the one to derive (2.30), we can see that crossing the wavefront,
located at u = 0, causes a shift ∆v in any null geodesic given by

∆v =
zp
L

Φ(qp)

∫ ε

−ε
duδ(u) =

zp
L

Φ(qp), (2.80)

(zp, qp) being the point where the geodesic intersects the wavefront. This
jump of the null geodesics is a consequence of the distributional term ap-
pearing in (2.76). Following the example of flat space, we define “capital”

4 The energy densities ρ̄ and ρ coincide in flat background since the redshift factor is
1 in flat spacetime.
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coordinates {U, V, Z, ~XT} to avoid this shift:

u = U,

v = V + φ( ~XT )θ(U) +
1

4
Uθ(U)

[
~∇φ( ~XT )

]2

,

z = Z +
1

2
Uθ(U)∂Zφ(Z, ~XT ),

~xT = ~XT +
1

2
Uθ(U)~∇φ( ~XT ),

(2.81)

where φ stands for z
L

Φ. After the change of coordinates, the metric results
in

ds2 = L2−dUdV +HikHjkdX
idXj[

Z + 1
2
Uθ(U)∂Zφ

]2 (2.82)

where
Hij = δij +

1

2
Uθ(U)∂i∂jφ(Z, ~XT ). (2.83)

This line element is the Rosen form for a gravitational shock wave propagat-
ing in the AdSD spacetime.

2.5 Colliding gravitational shock waves in AdS
background

In general, spacetimes containing more than one gravitational shock wave
are awkward to study because the nonlinearity inherent to the Einstein equa-
tions. For the special case of two colliding gravitational shock waves, which
propagate in opposite direction, the line element in the spacetime region be-
fore the collision takes place can be written as a sort of linear superposition
of the lines element for each shock wave. However, the challenge is to unrav-
eling the causal structure after the collision happens and, in particular, to
study the possibility of generate some kind of horizon in the collision. From
now on we shall restrict our attention to colliding shock waves propagating
in opposite direction.

The collision of gravitational shock waves in flat background have been
thoroughly considered in scientific literature in order to compute, for exam-
ple, the scattering cross section to generate back holes [42, 44, 50, 56, 61, 84,
85, 86]. However, here we shall focus our attention on the collision in AdS
background [45, 51, 52]. From a mathematical point of view, the interest to
study gravitational collisions in the AdS spacetime resides in the challenge of
extrapolating the GR phenomenology from asymptotically flat to nonasymp-
totically spacetimes and understand the differences. On the other hand, from
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a physical point of view, our interest lies in the holographic connection be-
tween gravitational physics in AdS background and conformal field theories
in a lower dimensional flat spacetime. This will be the subject of Chapter 4.

2.5.1 Setup

Consider two general shock waves propagating in opposite directions inside
AdSD, the first having support at u = 0 and propagating from v → −∞,
while the wavefront of the second wave is located at v = 0 and propagates
from u → ∞. Both collide at u = v = 0, defining a (D − 2)-dimensional
achronal set which we will call from now on the collision surface. With the
induced metric, the collision surface identifies with the hyperbolic spaceHD−2

briefly exposed in Section 2.4.1.
According to its causal relation with the collision surface, the spacetime

is divided in a natural way into four regions by the hypersurfaces u = 0 and
v = 0, as it is sketched in fig. 2.1:

• Regions I and III: They are the set of all events such that there is no
causal connection between them and the collision, that is, the events
satisfying u < 0, v > 0 (region I) and u > 0, v < 0 (region III).

• Region II: It is the chronological past of the collision surface, i.e. for
each event in region II there exist at least one timelike future-directed
curve which connect it to the collision surface. It is given by the events
satisfying u < 0, v < 0.

• Region IV: It is the chronological future of the collision surface. That
is, each event in region IV can be reached from the collision surface
following a timelike future-directed curve. It is given by the events
satisfying u > 0, v > 0.

2.5.2 Regions I, II and III

Since gravitational waves propagate at the speed of light, the two shock waves
can not see each other until the collision happens. That is, there is no inter-
action between the shock waves in regions I, II and III. Therefore the metric
in Poincaré coordinates is obtained from the simple linear superposition of
two line elements like the one written in (2.76),

ds2 =
L2

z2

[
−dudv + dz2 + (d~xT )2 +

z

L
Φ+(q+)δ(u)du2

+
z

L
Φ−(q−)δ(v)dv2

] (2.84)
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Figure 2.1: An spacetime containing two colliding shock waves. It is
divided into four regions by the hypersurfaces u = 0 and v = 0 (red lines).
The black point in the center corresponds to the (D − 2)-dimensional
collision surface, whose geometry is that of the hyperbolic space HD−2.
The region IV (u, v > 0) is just the future of the collision.

where

q± =
1

4zz±

(z − z±)2 +

(
~xT ±

~b

2

)2
 , (2.85)

are the chordal coordinate (2.63) measured from the propagation axis of the
shock waves, being ~b the impact parameter parallel to the AdSD boundary,
and ∆z = |z+ − z−| the impact parameter directed along the z coordinate
(see fig. 2.2).

Our final goal is to study the causal structure of the whole spacetime
containing the two shock waves. Therefore it is is convenient to write (2.84)
in its Rosen form. This is achieved by just applying the coordinate change to
“capital” coordinates (2.81) simultaneously for the two profile functions Φ±,

u = U + φ−(Z, ~XT )θ(V ) +
1

4
V θ(V )

[
~∇φ−(Z, ~XT )

]2

,

v = V + φ+(Z, ~XT )θ(U) +
1

4
Uθ(U)

[
~∇φ+(Z, ~XT )

]2

,

z = Z +
1

2
Uθ(U)∂Zφ+(Z, ~XT ) +

1

2
V θ(V )∂Zφ−(Z, ~XT ),

~xT = ~XT +
1

2
Uθ(U)~∇φ+(Z, ~XT ) +

1

2
V θ(V )~∇φ−(Z, ~XT ),

(2.86)
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Figure 2.2: Schematic picture for two colliding gravitational shock
waves in the AdS space with impact parameters ∆z = |z+ − z−| (mea-
sured to the interior of the AdS space) and ~b (parallel to the boundary
of AdS space).

where φ± stands for z
L

Φ±. The Rosen form of the metric (2.84) is then given
by

ds2 = L2
−dUdV +

[
H+
ikH

+
jk +H−ikH

−
jk − δij

]
dX idXj[

Z + 1
2
Uθ(U)∂Zφ+ + 1

2
V θ(V )∂Zφ−

]2 (2.87)

where

H+
ij = δij +

1

2
Uθ(U)∂i∂jφ

+(Z, ~XT ),

H−ij = δij +
1

2
V θ(V )∂i∂jφ

−(Z, ~XT ).
(2.88)

Note that in regions I, II and III, outside of the wavefronts, the spacetime is
AdSD. Of course this is not true in region IV, where the two shock waves in-
teract among them after the collision takes place, giving rise to an interesting
causal structure.

2.5.3 Region IV

Solving the causal structure of region IV from the line element (2.84) is an
extremely hard task. In fact an exact solution remains elusive up to date5.

5For important progress in this way, see for example [45], where a perturbative approach
for short times after the collision has been proposed.
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Here we are going to try to shed some light into region IV through the brief
study of a collision in flat background between simpler gravitational waves
which is known to admit an exact solution in region IV.

Basically, the causal structure after the collision of two gravitational shock
waves is hard to compute because, even in flat background, shock waves have
not enough symmetry to allow an analytical solution be found in region IV.
With this idea in mind, instead of the colliding shock waves given by (2.84),
we consider the collision between two plane pp-waves in D = 4 dimensions
with line element,

ds2 =− dudv + dx2 + dy2 + δ(u)(x2 − y2)du2

+ δ(v)(x2 − y2)dv2,
(2.89)

in regions I, II and III. The symmetry of this collision (plane symmetry)
is noticeably enhanced respect to the one of (2.84) (axial symmetry) and,
indeed, it admits an analytical solution in region IV.

Before writing down the metric in region IV, we have to avoid the dis-
tributional terms in (2.89) by changing to the Rosen form: defining new
coordinates,

u = U + θ(V )(X2 − Y 2) + V θ(V )(X2 + Y 2),

v = V + θ(U)(X2 − Y 2) + Uθ(U)(X2 + Y 2),

x = X + Uθ(U)X + V θ(V )X,

y = Y − Uθ(U)Y − V θ(V )Y,

(2.90)

the metric in regions I, II and III becomes

U < 0, V > 0 : ds2 = −dUdV + (1 + V )2dX2 + (1− V )2dY 2,

U < 0, V < 0 : ds2 = −dUdV + dX2 + dY 2,

U > 0, V < 0 : ds2 = −dUdV + (1 + U)2dX2 + (1− U)2dY 2,

(2.91)

Note that the metric is singular in the hypersurfaces V = 1 (region I) and
U = 1 (region III). Actually these are not curvature singularities, since the
curvature tensor on them is zero, but they are more than merely coordinate
singularities because of null geodesics focalize over them. Indeed no analytic
continuation of null geodesics can be done through them. In [44] they are
refereed as “fold” singularities.

In region IV, the line element is given by the so called Khan-Penrose
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Figure 2.3: Sketch for Khan-Penrose solution (2.92). In region IV a
curvature singularity appears in U2 + V 2 = 1. It matches with the fold
singularities U = 1 and V = 1 in regions I and III (blue lines).

solution [86]:

ds2 =− (1− U2 − V 2)3/2

√
1− U2

√
1− V 2

(
UV +

√
1− U2

√
1− V 2

)2dUdV

+ (1− U2 − V 2)

[
1 + U

√
1− V 2 + V

√
1− U2

1− U
√

1− V 2 − V
√

1− U2
dX2

+
1− U

√
1− V 2 − V

√
1− U2

1 + U
√

1− V 2 + V
√

1− U2
dY 2

]
.

(2.92)

Added to the fold singularities U = 1 and V = 1, we now have a singularity
at U2 + V 2 = 1 too: all components of the metric become unbounded over
this hypersurface. In this case it is a true curvature singularity, which joins
with the fold singularities in regions I and III. This is shown in fig. 2.3.

The Khan-Penrose solution shows a case in which a curvature singularity
appears after the collision. That is a curvature singularity that eventually
“happens” to the observer at the collision point. After the curvature singular-
ity appears there is no event horizon, and it seems that an observer could go
around the collision event, enter into region IV after the U2 + V 2 = 1 hyper-
surface, and see a naked singularity, just breaking down the cosmic censor-
ship. However, such observer would have to cross one of the fold singularities
at U = 1 and V = 1, which prevents this type of spacetime trajectory.
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The structure of the Khan-Penrose solution is common to most colliding
plane pp-waves: in almost all cases a curvature singularity develops in region
IV6. Roughly speaking, each wave surface focuses the null geodesics crossing
it, and thus the waves mutually focus each other until a singularity happens.
Also the topological fold singularities in regions I and III are a general fea-
ture of all colliding plane waves, preventing in this way the existence of any
observer which could see a naked singularity after the collision. The following
step is to inquire whether or not the symmetry of colliding waves is a decisive
factor for this phenomenology.

We are specially interested in collisions between gravitational waves with-
out plane symmetry. In general terms, one would expect that the focusing
of congruences happens in some way whatever the symmetry of the colliding
waves is. That is, curvature singularities are possible after collisions even be-
tween no-plane pp-waves. In addition, the lack of symmetry respect to plane
waves could affect drastically the formation of fold singularities protecting
the existence of naked singularities, and then the development of an event
horizon after the collision would be necessary. Therefore, it seems plausible
to assume that collisions between pp-waves without plane symmetry could
lead to the formation of an even horizon in region IV.

Note that the later is an heuristic reasoning, and the development of an
event horizon after some collision will depend speficically on the character-
istic of the colliding waves and the collision configuration. For example, in
the collision of axisymmetric waves, like shock waves, because of the pres-
ence of sources, we have to take into account the dependence of the collision
on physical magnitudes like impact parameter and energy. One could ex-
pect that the horizon production in axisymmetric collisions, if it really takes
place, depends on such magnitudes. In particular, critical behavior with re-
spects to these parameters could appear. Concerning colliding gravitational
shock waves in anti-de Sitter space, given that they are constructed from its
flat cousins through conformal transformations, it is expected that a similar
causal dynamics appears in AdS space.

2.5.4 Penrose trapped surface

As we have exposed in the last section, to solve the spacetime structure in
region IV from (2.84) is hard because of the lack of symmetry. An alternative
approach for studying the horizon appearance after collision is to look for
the formation of the Penrose trapped surface before the collision takes place.
That is a marginally outer trapped surface (a spacelike D− 2 surface whose

6 There is a set of exceptional solutions in which the singularity is replaced by a Cauchy
horizon.
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outer null normals have zero convergence) located, in the coordinates (2.86),
at U = 0, V ≤ 0 and U ≤ 0, V = 0, i.e. inside the support of the two shock
waves before the collision [46]. Actually there is not any result which links
the trapped surface formation before the collision to eventual appearance of
horizons in region IV. However, as was already exposed in the introduction
chapter, it is a reasonable assumption from a physical point of view. Taking
this premise as our starting-point, we could look for Penrose trapped surface
production as an indicative for eventual horizon formation in region IV.

In [50] an analytical procedure is developed to compute Penrose trapped
surface in flat background. We reproduce it here for the AdS colliding gravi-
tational shock waves (2.84) [51, 53, 57]. First let us split the trapped surface
S we are looking for into two pieces, S+ and S−, defined as

S+ =
{

(U, V, Z, ~XT ) : U = 0, V + ψ+(Z, ~XT ) = 0, ψ+(Z, ~XT ) ≥ 0
}
,

S− =
{

(U, V, Z, ~XT ) : U + ψ−(Z, ~XT ) = 0, V = 0, ψ−(Z, ~XT ) ≥ 0
}
,

where ~XT = (X1, . . . XD−3). The functions ψ±(Z, ~XT ) parametrize the
trapped surface. The intersection C = S+ ∩ S−, with equation U = V = 0,
is a (D − 3)-submanifold of the transverse space to collision, HD−2. By
construction the functions ψ±(Z, ~XT ) in C must satisfy

ψ±(Z, ~XT )
∣∣∣
C

= 0. (2.93)

Our goal is to find a vanishing outer normal null vector field to S±. We
begin writing two vectors

(
n

(±)
a

)
≡ (n

(±)
U , n

(±)
V , n

(±)
Z , ~n

(±)
T ) and

(
m

(±)
a

)
≡

(m
(±)
U ,m

(±)
V ,m

(±)
Z , ~m

(±)
T ) spanning the orthogonal space to S±:

(
n(+)
a

)
=


1
0
0
0

 ,
(
m(+)
a

)
=


0
1

∂Zψ+

~∇Tψ+


(
n(−)
a

)
=


0
1
0
0

 ,
(
m(−)
a

)
=


1
0

∂Zψ−
~∇Tψ−


(2.94)

Thus, in general, a normal field N (±)
a to S± is given by

(
N (+)
a

)
=


α
β

β∂Zψ±
β~∇Tψ±

 ,
(
N (−)
a

)
=


β
α

β∂Zψ±
β~∇Tψ±

 , (2.95)
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where α, β are some constants. We now impose the null condition, i.e.
gabN

(±)
a N

(±)
b = 0, with gab the metric (2.87) (in the hypersurfaces U = 0

and V = 0) . It results in the equation

4αβ − β2
[
(∂Zψ±)2 + (~∇Tψ±)2

]
= 0, (2.96)

which has two solutions:

4α = β
[
(∂Zψ±)2 + (~∇Tψ±)2

]
,

β = 0
(2.97)

In correspondence with these two solutions there are two null vector fields,
N±

a and M±a, orthogonal to each piece of S±. For S+ these vector fields are

(
Ma

+

)
= α

Z2

L2


0
−2
0
~0

 ,

(
Na

+

)
= β

Z2

L2


−2

−1
2

[
(∂Zψ+)2 + (~∇Tψ+)2

]
∂Zψ+

~∇Tψ+

 .

(2.98)

Where we have raised indexes using the metric (2.87). For S− the null vectors
are

(
Ma
−
)

= α
Z2

L2


−2
0
0
~0

 ,

(
Na
−
)

= β
Z2

L2


−1

2

[
(∂Zψ−)2 + (~∇Tψ−)2

]
−2
∂Zψ−
~∇Tψ−

 .

(2.99)

Finally we need to impose both vector fields are future directed. It implies
that α and β should be negative. In particular, we choose

α = − L2

2Z2
, β = −1, (2.100)

to have the normalization Na
±M

b
±gab = −1.
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The next step is to impose that vector fields (2.98) and (2.99) with nor-
malization (2.100) have zero expansion. It is obvious the expansion θ± of
the vector fields Ma

± vanishes. For vector fields Na
± we obtain after a bit of

algebra,

θ± = ∇aN
a
± =

[
Z2

L2
4T +

Z2

L2
∂2
Z −

D − 2

L

Z

L
∂Z

](
Z

L
Φ± − ψ±

)
, (2.101)

where 4T is the flat Laplacian in the coordinates {X1, . . . XD−3}. Defining
now Ψ± as

Ψ±(Z, ~XT ) ≡ Z

L
ψ±(Z, ~XT ), (2.102)

we can reassemble the equation (2.101) as

θ± =

(
4HD−2

− D − 2

L2

)
(Φ± −Ψ±), (2.103)

where 4HD−2
is the Beltrami-Laplace operator in HD−2. So S = S+

⋃
S− is

a surface with zero null expansion if the functions Ψ± satisfy(
4HD−2

− D − 2

L2

)
(Φ± −Ψ±) = 0. (2.104)

It remains to study the match between the outer normals Na
+ and Na

− in
C = S+

⋂
S−. From (2.98) and (2.99) we get the necessary conditions:[

(∂Zψ±)2 + (~∇Tψ±)2
]∣∣∣
C

= 4,

∂Zψ+|C = ∂Zψ−|C ,
~∇Tψ+

∣∣∣
C

= ~∇Tψ−

∣∣∣
C
.

(2.105)

In terms of Ψ± we can write them in the more compact form

gab∂aΨ±∂bΨ±
∣∣
C = 4,

∂aΨ+|C = ∂aΨ−|C .
(2.106)

These equations imply the necessary condition over C

gab∂aΨ+∂bΨ−
∣∣
C = 4, (2.107)

which is also a sufficient condition to ensure (2.105) and, therefore, the match
between the two vectors Na

± in C.
Summarizing, a Penrose trapped surface is produced in shock wave colli-

sions if and only if exist a (D−3)-submanifold of C in HD−2 and two (positive)
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functions Ψ± (which we shall call Penrose functions from now on) inside C
such that the unusual boundary problem(

∇2
HD−2

− D − 2

L2

)
(Φ± −Ψ±) = 0

gab∂aΨ+∂bΨ−
∣∣
C = 4,

Ψ±|C = 0.

(2.108)

is satisfied.
The solution of (2.108) can become an extremely hard task for general

collisions. In fact, it has been possible to find an analytical solution only
for central collisions, where Φ+ = Φ−, of certain kind of gravitational shock
waves [51]. In general, numerical techniques are required required to solve
it, as we will see in Chapter 4.



50 2.5. Colliding gravitational shock waves in AdS background



Chapter 3

Reissner-Nordström and Fat
shock waves in AdSD

In the previous chapter we have introduced the concept of gravitational waves
and, in particular, we have focused on gravitational shock waves in both
flat and AdS backgrounds. In flat background we showed how certain type
of gravitational shock waves can be obtained from a suitable boost of the
Schwarzschild solution. Following the way paved by Aichelburg and Sexl,
several authors have directed their efforts to find other gravitational shock
waves in flat background boosting asymptotically flat GR solutions other
than the Schwarzschild one (see [84, 85] for some examples).

We can distinguish between two different ways of constructing gravita-
tional shock waves: boosting a previously known GR solution, as in Section
2.3, or introducing by hand an arbitrary energy density in the wave equation
(2.27) (flat background) or (2.75) (AdS background). The main difference
between the two paths is that the first results in shock waves which we can
interpret physically as the contracted gravitational field generated by cer-
tain objects boosted infinitely, while the second results in shock waves whose
physical interpretation depends on one existing for the source chosen. In-
deed, the source of an arbitrary “handmade” gravitational shock wave could
not be physically acceptable in the sense that the energy-momentum tensor
could not be obtained from any solution to the matter equations of the the-
ory. This is specially of importance in supersymmetric theories where the
matter content is entirely fixed.

In this chapter we are going to define and compute Reissner-Norstrom
and fat gravitational shock waves in AdSD. The first ones, which we denote
as AdS-RN waves, are obtained adapting the original Aichelburg Sexl boost
to the Reissner-Norstrom solution in AdS background [59]. The second ones
follow from any point-like gravitational shock wave in AdS spacetime by

51



52 3.1. AdS-RN shock waves

spreading the source [57], and they are handmade gravitational shock waves
in the sense previously mentioned. We will call these latter type of waves
“fat shock waves”.

The chapter is divided into three sections. The first Section 3.1 is dedi-
cated to compute the geometry and energy-momentum tensor of the AdS-RN
shock waves, while Section 3.2 introduces and discusses the gravitational fat
shock waves. Because the AdS/CFT correspondence, colliding AdS shock
waves can be regarded as the gravitational dual for colliding energy lumps
in the boundary field theory. This connection is studied in detail in Section
3.3, including a comparison with the boosted Woods-Saxon potential which
is supposed describes the energy profile of ultrarelativist heavy ions. The
reader not familiarized with the AdS-RN solution can find a brief review of
the issue in Appendix B.

3.1 AdS-RN shock waves

We are interested in both the line element of the gravitational shock wave re-
sulting from boosting the AdS-RN metric, and the energy-momentum tensor
which sources the shock wave. Naively, since the AdS-RN solution describes
an spherically symmetric configuration of coupled gravitational and electric
fields, it is expected that, once boosted the AdS-RN line element, the gravi-
tational shock wave describes a sort of lightlike particle with certain energy
coming from the mass and electric charge of the AdS-RN solution. Com-
puting the boosted energy-momentum tensor will help us to enlighten this
point.

3.1.1 Shock wave metric computation

In AdS-spherical coordinates, the AdS-RN solution is given by

ds2 = −f(r)dτ 2 + f−1(r)dr2 + r2dΩ2
D−2, (3.1)

with

f(r) = 1 +
r2

L2
− 2M

rD−3
+

Q2

r2(D−3)
. (3.2)

The only nonvanishing component of the gauge potential is

Aτ =

√
D − 2

2(D − 3)

Q

rD−3
. (3.3)
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This solution describes the gravitational field generated by a charged particle
with mass m and charge q

m =
(D − 2)ΩD−2

8πGD

M, q2 =
(D − 2)(D − 3)

8πGD

Q2. (3.4)

To obtain a shock wave from the AdS-RN solution we are going to proceed
in the same way than in Section 2.3: first we do a boost and after it we
will take the the appropriate infinite-boost limit. Remember that in the
original Aichelburg-Sexl boost over the Schwarzschild black hole we had to
take the ultrarelativistic limit following a suitable scaling relation between
the Schwarzschild mass m and the boost parameter γ to get a finite result.
Here we will be forced to take a similar scaling relating M , Q2 and γ to
guarantee a finite result after doing the infinite boost limit.

Eventually we are going to send M and Q2 to zero. Thus it is convenient
to begin doing a series expansion of the AdS-RN metric inM and Q2, keeping
only the leading order:

ds2 = ds2
0 + ds2

p +O(M2) +O(Q4) (3.5)

where

ds2
p =

( 2M

rD−3
− Q2

r2(D−3)

)
dt2 +

1

1 + r2/L2

( 2M

rD−3
− Q2

r2(D−3)

)
dr2, (3.6)

and ds2
0 stands for the metric of AdSD. We perform a boost over Poincaré

coordinates {t, z, xi},

t = γ
(
t′ + βxD−2′

)
, z = z′

xD−2 = γ
(
βt′ + xD−2′

)
, ~xT = ~x′T ,

(3.7)

where ~xT stands for the remaining coordinates besides t, z and xD−2. Under
this transformation, ds2

0 does not change, so we only have to worry about how
ds2

p does. Of course we could choose any other coordinates. However, note
that a boost over Poincaré coordinates describes a boost in the conformal
boundary. Thus it is the appropriate coordinate system to boost since the
goal is to describe relativistic energy lumps in the field theory at the boundary
of AdSD.

The line element (3.6) takes a very cumbersome form in Poincaré co-
ordinates and, as a consequence, performing the boost (3.7) over it results
technically involved. To circunvent the difficulty notice that, from (2.66), the
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boost (3.7) is equivalent to1

Z0 = γ (Z0
′ + βZD−2

′) , Zi = Zi
′, i = 1, . . . , D − 3,

ZD−2 = γ (βZ0
′ + ZD−2

′) ,
(3.8)

Given that it is easier to write ds2
p in the embedding space coordinates

{Z0, Zi, ZD−2} than in Poincaré ones, we will apply (3.8) instead of (3.7).
Using the inverse relation of (A.9),

r =
√
Z2

0 + Z2
D − L2,

τ = L arctan

(
Z0

ZD

)
,

(3.9)

dr and dt are expressed in terms of the coordinates {Z0, Zi, ZD−2} as

dr =
1

(Z2
0 + Z2

D − L2)1/2
[Z0dZ0 + ZDdZD] ,

dτ =
L

Z2
0 + Z2

D

[ZDdZ0 − Z0dZD] .

(3.10)

Thus we have for ds2
p = GABdZ

AdZB,

ds2
p = G00dZ

2
0 +GDDdZ

2
D + 2G0DdZ0dZD, (3.11)

where GAB = ζ(Z2
0 + Z2

D,M,Q2)hAB, with

h00 = Z2
D

(
Z2

0 + Z2
D − L2

)
+ L2Z2

0 ,

h0D = −Z0ZD
(
Z2

0 + Z2
D − 2L2

)
,

hDD = Z2
0

(
Z2

0 + Z2
D − L2

)
+ L2Z2

D,

(3.12)

and ζ (Z2
0 + Z2

D,M,Q2) is the function

ζ
(
Z2

0 + Z2
D,M,Q2

)
=

L2

(Z2
0 + Z2

D)
2

×
[

2M

(Z2
0 + Z2

D − L2)(D−1)/2
− Q2

(Z2
0 + Z2

D − L2)(D−2)

]
.

(3.13)

1In order to avoid a heavy notation, here and in the next we will lower the coordinate
index in the coordinates {Z0, Zi, ZD−2}, i.e. ZA → ZA . But note that we are not using
any metric to do it. Is just for getting a nicer reading of the equations whenever it will we
necessary.
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After the boost (3.8) we get the components,

GZ′0Z
′
0

= γ2G00, GZ′0Z
′
D−2

= γ2βG00,

GZ′0Z
′
D

= γG0D, GZ′D−2Z
′
D−2

= γ2β2G00,

GZ′D−2Z
′
D

= γβG0D, GZ′DZ
′
D

= GDD.

(3.14)

In light-cone coordinates U ′ = Z ′0 + Z ′D−2 and V ′ = Z ′0 − Z ′D−2,

GU ′U ′ =
1

4
γ2(1 + β)2G00, GU ′V ′ =

1

4
γ2(β2 − 1)G00

GV ′V ′ =
1

4
γ2(1− β)2G00.

(3.15)

As in the original Aichelburg-Sexl boost explained in Section 2.3, we are
forced to take the infinite boost limit of (3.15) with care in order to get a
finite result. Keeping this in mind, we introduce two new parameters, p

M

and pQ, defined as,
p
M
≡ γM, p2

Q ≡ γQ2, (3.16)
and take the limit such that p

M
and p2

Q remain finite. Note that this implies
sending M and Q2 to zero while γ →∞, which legitimizes keeping only the
leading order in (3.5). Once we have introduce these parameters in GU ′U ′ ,

GU ′U ′ =
(1 + β)2

4
γζ
(
γ2(Z ′0 + βZ ′D−2)2, Z ′D

2
, p

M
, p2

Q

)
×
[
Z ′D

2
(
γ2(Z ′0 + βZ ′D−2)2 + Z ′D

2 − L2
)

+ L2γ2(Z ′0 + βZ ′D−2)2
]
,

(3.17)

we can compute the infinite boost limit using the equation demonstrated in
Section C.1 of Appendix C,

lim
γ→∞

γ χ
(
γ2
(
Z ′0 + βZ ′D−2

))
= δ(U ′)

∫ ∞
−∞

χ(w2)dw, (3.18)

In this way, the limit (3.17) results in the integral expression

lim
γ→∞

GU ′U ′ =2p
M
L2δ(U ′)

∫ ∞
−∞

dx
Z ′D

2(x2 + Z ′D
2 − L2) + x2L2

(x2 + Z ′D
2 − L2)(D−1)/2(Z ′D

2 + x2)2

− p2
QL

2δ(U ′)

∫ ∞
−∞

dx
Z ′D

2(x2 + Z ′D
2 − L2) + x2L2

(x2 + Z ′D
2 − L2)D−2(Z ′D

2 + x2)2
.

(3.19)

These integrals are computed in detail in Section C.2 of Appendix C . They
result in Gauss hypergeometric functions,∫ ∞

−∞
dx

Z ′D
2(x2 + Z ′D

2 − L2) + x2L2

(x2 + Z ′D
2 − L2)B(Z ′D

2 + x2)2
=

Γ(3/2)Γ(B + 1/2)

Γ(B + 1)
×

22(1−B)

(Lq)2B−1 2F1 (2B − 1, B + 1/2; 2B + 1;−1/q) ,

(3.20)
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where q is the chordal coordinate defined in (2.63). Substituting in (3.19) we
get

lim
γ→∞

GU ′U ′ = 2p
M
δ(U ′)

Γ(3
2
)Γ(D

2
)

Γ(D+1
2

)

23−D

LD−4qD−2 2F1

(
D − 2,

D

2
;D;−1

q

)
− p2

Qδ(U
′)

Γ(3
2
)Γ(2D−3

2
)

Γ(D − 1)

22(3−D)

L2D−7q2D−5 2F1

(
2D − 5,

2D − 3

2
; 2D − 3;−1

q

)
.

In a similar way we can compute the infinite-boost limit for GV ′V ′ and GU ′V ′

in (3.15). However, since they are proportional to (1−β)2 and (β2−1), both
result in zero,

lim
γ→∞

GV ′V ′ = (. . .)× lim
β→1

(1− β)2 = 0,

lim
γ→∞

GU ′V ′ = (. . .)× lim
β→1

(β2 − 1) = 0.
(3.21)

At the end of the day, after the infinite-boost limit is taken, we have
obtained that ds2

p in (3.5) only retains the U ′U ′ component. Defining

Φ(RN)(p
M
, p2

Q; q) = lim
γ→∞

GU ′U ′ , (3.22)

the metric after the infinite boost takes the form

ds2 = ds2
0 + Φ(RN)(p

M
, p2

Q; q)δ(U ′)dU ′
2
, (3.23)

In Poincaré coordinates, U ′ = L
z
(t′ + x′) = L

z
u′. Therefore,

δ(U ′)dU ′
2

=
z

L
δ(u′)

(
L

z
du′ − L

z2
udz

)2

=
L

z
δ(u′)du′

2
. (3.24)

So we finally arrive at the line element of the AdS-RN shock wave spacetime
in Poincaré coordinates to be,

ds2 =
L2

z2

(
−dudv + dz2 + d~x2

T +
z

L
Φ(RN)(p

M
, p2

Q; q)δ(u)du2
)
, (3.25)

where we have changed the primed coordinates by unprimed ones for clarity,
and

Φ(RN)(p
M
, p2

Q; q) =

2p
M

Γ(3
2
)Γ(D

2
)

Γ(D+1
2

)

23−D

LD−4qD−2 2F1

(
D − 2,

D

2
;D;−1

q

)
− p2

Q

Γ(3
2
)Γ(2D−3

2
)

(D − 2)!

22(3−D)

L2D−7q2D−5 2F1

(
2D − 5, D − 3

2
; 2D − 3;−1

q

)
.

(3.26)
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An important remark must be done here. Notice that the dependence in
dimension of the second term of (3.26) is the same as for the first term but
with an effective value of the dimension 2D−3. That is, the electromagnetic
contribution to the shock wave (3.25) in D dimensions is equal to the one for
a particle in dimension D′ = 2D− 3 and weighted by

p2Q
2p
M
. This observation

is the starting point in [59] to compute the line element of the AdS-RN shock
wave without explicitly computing the integral (3.20).

3.1.2 Electromagnetic field and energy-momentum ten-
sor

The shock wave (2.59) obtained from the original Aichelburg-Sexl boost can
be seen as the gravitational field of a massless particle in flat spacetime.
Naively we could interpret (3.25) as the gravitational field sourced by some
sort of “charged” massless particle traveling in AdS spacetime at the speed of
light. However, note that the wave profile (3.26) depends on two parameter,
p
M

and pQ, in contrast with (2.59), which only depends on one parameter, µ.
Thus, it is not clear the kind of lightlike source which generates an AdS-RN
gravitational shock wave. In particular, it is not clear how we can identify
the relativistic energy of the AdS-RN shock wave spacetime, as well as the
role of charge after the ultrarelativistic boost is done.

Before the boost, the AdS-RN spacetime has a singularity at r = 0, which
corresponds to the position of a charged particle sourcing the gravitational
and electromagnetic field. In Poincaré coordinates such charged particle is
located at

z = z0

√
1 +

(
t

z0

)2

, ~x = 0, (3.27)

where we have defined z0 = L/k for k > 0 arbitrary to take into account
the scale invariance of the spacetime2 (2.62). For an asymptotic observer at
the boundary of the AdS-RN spacetime the singularity undergoes some sort
of motion approaching and leaving the spacetime boundary. However, after
the infinite-boost limit, such approaching-and-leaving motion is frozen: from

2 Actually the scale invariance (2.62) is not a symmetry of the AdS-RN spacetime, but of
the empty AdS spacetime. However we are interested in symmetry transformations of the
conformal boundary of the spacetime. From this point of view, the scale transformations
(2.62) could be viewed as a technique to generate solutions, such that we are working
with a entire family of spacetimes obtained from AdS-RN by means of the symmetry
transformations of the conformal boundary.
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(3.7),

z′ = z0

√
1 +

(
t′

γz0

)2

, xD−2′ = −t′, ~x′T = 0. (3.28)

which approaches z0 when γ → ∞. Therefore after the infinite boost limit,
the particle-like singularity sourcing the AdS-RN gravitational shock wave
follows a lightlike trajectory along the xD−2 coordinate and at constant depth
z = z0 inside the AdS spacetime. Note that the depth of the trajectory can
be chosen freely since z0 in (2.66) is a free parameter.

The functional action for the AdS-RN solution is the one given in (B.4)
of Appendix B. That is Einstein gravity coupled to Maxwell field plus a
cosmological term Λ = −(D− 1)(D− 2)/(2L2). It also will be the action for
the AdS-RN gravitational shock wave (3.25). However, since switching off the
electromagnetic field the AdS-RN shock wave spacetime would correspond
to the gravitational field sourced by a lightlike particle, we have to add a
lightlike particle term to the action (B.4) to describe the physics of the AdS-
RN gravitational shock wave. Such term is given by

SP =

∫
dDx

∫
dη

1

2e

dxa

dη

dxb

dη
gabδ

(D) (x− x(η)) , (3.29)

x(η) being the worldline of the particle after the boost and e the einbein
over it. Therefore the energy-momentum tensor sourcing the AdS-RN grav-
itational shock wave have two contributions, Tab = TEMab + T Pab, the first one
coming from the electromagnetic field and the second one coming from the
particle contribution (3.29),

TEMab =
1

4πGD

lim
γ→∞

[
FacF

c
b −

1

4
gabFcdF

cd

]
,

T Pab =

∫
dη

1

e
√
−g

dxa
dη

dxb
dη

δ(D) (x− x(η)) .

(3.30)

We are going to compute this two pieces separately: first we will compute the
electromagnetic contribution for the AdS-RN solution, without boost, and
then the infinite boost limit over it. Second, we will evaluate the lightlike
particle piece, without the necessity of any subsequent boost.

From (3.30), the no-vanishing components of the energy-momentum ten-
sor of the AdS-RN solution are

TEMtt =
1

8πGD

(D − 2)(D − 3)

2

Q2

r2(D−2)
f(r),

TEMrr = − 1

8πGD

(D − 2)(D − 3)

2

Q2

r2(D−2)
f−1(r),

TEMθiθi =
1

8πGD

(D − 2)(D − 3)

2

Q2

r2(D−2)
gθiθi ,

(3.31)
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where gθiθi stands for the angular components of the metric in (3.1). Note
that the function f(r) defined in (3.2) contains a term proportional to Q2.
After the infinite boost limit is taken, only the terms linear in Q2 will survive
because of the scaling taken in order to give a finite line element describing the
gravitational shock wave in (3.25). Thus, to gain simplicity, it is convenient
to perform a series expansion of (3.31) in Q2

r2(D−2) keeping only the leading
order,

TEMtt =
1

8πGD

(D − 2)(D − 3)

2

Q2

r2(D−2)

(
1 +

r2

L2

)
,

TEMrr = − 1

8πGD

(D − 2)(D − 3)

2

Q2

r2(D−2)

L2

L2 + r2
,

TEMθiθi =
1

8πGD

(D − 2)(D − 3)

2

Q2

r2(D−2)
gθiθi .

(3.32)

From (A.9) of Appendix A we can parametrize (3.32) in terms of {Z0, Zi, ZD}
as TEMAB = ξ(Z2

0 + Z2
D;Q2)tAB, ξ(Z2

0 + Z2
D;Q2) being the function

ξ(Z2
0 + Z2

D;Q2) =
1

8πGD

(D − 2)(D − 3)

2

Q2

(Z2
0 + Z2

D − L2)D−1
. (3.33)

In light-cone coordinates U = Z0+ZD−2 and V = Z0−ZD−2, the no vanishing
components of tAB are

tUU =
1

2

(
Z2
D − L2

)
, tUD = −Z0ZD,

tV V =
1

2

(
Z2
D − L2

)
, tV D = Z0ZD,

tUV = −Z
2
0

2
, tZlZl = Z2

0 + Z2
D − L2,

(3.34)

where l = 1, . . . D − 3, D − 1.
The boost (3.8) in coordinates U, V takes the form

U = γ(1 + β)U ′, V = γ(1− β)V. (3.35)

Thus, after the boost, we have the following components of tAB,

tU ′U ′ = γ2(1 + β)2 tUU , tU ′Z′D = γ(1 + β) tUZD ,

tV ′V ′ = γ2(1− β)2 tV V , tV ′Z′D = γ(1− β) tV ZD ,

tU ′V ′ = tUV , tZ′DZ′D = tZDZD ,

tZ′lZ′l = tZlZl .

(3.36)
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The infinite-boost limit for any component only results in something different
form zero if the component is linear in γ2, since we need a power in γ to define
p2
Q = γQ2 and another to perform the limit over γξ(Z2

0 + Z2
D; p2

Q). Also, the
components which have a factor (1 − β) give a vanishing limit. Therefore
only the component TEMU ′U ′ yields to a non vanishing result: using equation
(3.18), we have

lim
γ→∞

TEMU ′U ′ = lim
γ→∞

(1 + β)2

2
γξ
(
γ2(Z ′0 + βZ ′1)2 + Z ′D

2
; p2

Q

)
×
(
Z ′D

2 − L2
)

=p2
Q

(D − 2)(D − 3)

8πGD

(
Z ′D

2 − L2
)
δ(U ′)

×
∫ ∞
−∞

dx[
x2 + Z ′D

2 − L2
]D−1

.

(3.37)

The improper integral is computed in Section C.2 of Appendix C. It results
in

lim
γ→∞

TEMU ′U ′ = p2
Q

Γ(D − 3/2)
√
π

8πGD(D − 4)!

δ(U ′)

(Z ′D
2 − L2)D−5/2

. (3.38)

In Poincaré coordinates we would get a priori components TEMu′u′ , TEMu′z′ and
TEMz′z′ , since U ′ =

L
z
u′, but the latter two are linear in u′ and thus they are zero

because the δ(u′) factor. Thus, in Poincaré coordinates, the u′u′ component is
the only no-vanishing term of the energy-momentum tensor after the infinite
boost limit,

lim
γ→∞

TEMu′u′ = p2
Q

Γ(D − 3/2)
√
π

8πGD(D − 4)!

L

z

(2qL)5−2dδ(u′)(
1 + 1

q

)D−5/2
, (3.39)

where q is the chordal coordinate (2.63).
The particle contribution is simpler to compute than the electromagnetic

one, since the particle piece in (3.30) is applicable to a lightlike particle, and
thus the computation can be done directly without taking any infinite boost
limit. First note that, choosing v = t − xD−2 to parametrize the particle
worldline and integrating in (3.30), the Lagrangian describing the particle
dynamics is

L =
1

2e
ẋa(v)ẋb(v)gab, (3.40)

where dot denotes derivative of the worldline coordinates with respect to v.
Thus the particle momentum is given by

pa =
∂L

∂ẋa(v)
=

1

e
gabẋ

b(v), (3.41)
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Substituting it in (3.30) the particle energy-momentum tensor takes the form

T Pab =
e√
−g

δ(D−1)(x− x(v))papb. (3.42)

On the other hand, the worldline equations in Poincaré coordinates are

u = 0, z = z0, ~xT = 0. (3.43)

Thus the particle momentum pa only has the component pu different from
zero. Defining µ̄ as the energy of the massless particle measured by and static
observer located “next to” the particle3, such component takes the form

pu = −L
z0

µ̄. (3.44)

Thus, from (3.41), the einbein is

e =
L

2µ̄z0

. (3.45)

Substituting in (3.42), only the T Puu component is different from zero,

T Puu = µ̄
(z0

L

)D−3

δ(u)δ(D−3)(~xT )δ(z − z0). (3.46)

Putting (3.39) and (3.46) together we get finally the energy-momentum
tensor which sources the AdS-RN gravitational shock wave,

Tuu =µ̄
(z0

L

)D−3

δ(u)δ(D−3)(~xT )δ(z − z0)

+ p2
Q

Γ(D − 3/2)
√
π

8πGD(D − 4)!

L

z

(2qL)5−2dδ(u)(
1 + 1

q

)D−5/2
.

(3.47)

From the point of view of a static observer, ~u = ~ξ/(−ξaξa)1/2 with ~ξ = ∂t the
timelike Killing vector field of the AdS background, that energy-momentum
tensor corresponds to an isotropic transverse energy density ρ̄(q) = uaξbTab
which decomposes into two pieces, ρ̄(q) = ρ̄P (q) + ρ̄EM(q), corresponding to
the particle and electromagnetic contributions,

ρ̄P (q) = µ̄
(z0

L

)D−2

δ(u)δ(D−3)(~xT )δ(z − z0)

ρ̄EM(q) = p2
Q

Γ(D − 3/2)
√
π

8πGD(D − 4)!

(2qL)5−2Dδ(u)(
1 + 1

q

)D−5/2
.

(3.48)

3For a static observer at an event P , ~u = ~ξ/V (p), with V = (−ξaξa)1/2 the redshift
factor and ~ξ the timelike Killing vector field of the spacetime. Then µ̄ = −uapa|P is the
energy of a particle with momentum pa as determined by the observer ~u who is present at
the event P on the wordline of the particle at which the energy is measured.
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Figure 3.1: Graph for the electromagnetic contribution to the en-
ergy ρ̄EM density versus the chordal coordinate q for dimensions D = 4
(black), D = 5 (blue) and D = 6 (red). This contribution forms a ener-
getic halo around the solid particle-like nucleus, located at q = 0. Note
that ρ̄EM (q) diverges at the origin, such that the contribution of ρ̄EM (q)
to the total energy of the shock wave’s source is infinite.

As we see, the electromagnetic energy-momentum tensor of the AdS-RN
solution contains, after the infinite boost limit, a halo of energy weighted by
p2
Q. Thus the source of the AdS-RN shock wave computed here is a sort of

energetic halo surrounding a relativistic massless “nucleus” of energy µ̄. In
addition, although the energetic halo vanishes for q → ∞, its contribution
to the total energy of the shock wave’s source is infinite,∫ ∞

0

dq ρ̄EM(q)→∞, (3.49)

because of ρ̄EM(q) diverges at q → 0 as q5−2D (see fig. 3.1).

3.1.3 Some remarks

The wave profile of the AdS-RN shock wave computed here, equation (3.25),
depends on two parameters pM and p2

Q related respectively to the mass and
charge of the AdS-RN solution. However we have not related them to physical
observables.

The physical meaning of p2
M can be elucidated by fixing p2

Q = 0 and
substituting the wave profile (3.25) and energy-momentum tensor (3.47) in
the wave equation (2.75) (H̄(u, z, ~xT ) = Φ(RN)(p

M
, p2

Q; q)δ(u)). After a bit of
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algebra we obtain the equation

µ̄ =
2(D − 2)π

D−1
2

8πGDΓ
(
D−1

2

)pM . (3.50)

Through (3.4), this is equivalent to µ̄ = γm, being m the mass of the AdS-
RN solution, in such a way that µ̄ remains fixed while the infinite boost limit
is taken. This enforced the definition of µ̄ given in (3.44) as the relativistic
mass of the particle contribution to the AdS-RN shock wave measured by a
static observed present at the worldline followed by the massless nucleus of
(3.48). It is also interesting to introduce the relativistic energy µ as measured
from the conformal boundary of AdSD,

µ = ξapa =
L

z0

µ̄. (3.51)

This can be also viewed as the energy measured respect to the coordinate time
t of the background, while µ̄ is the energy as measured with respect to the
proper time of a static observer at the particle wordline. This is the energy
defined and used in [45, 51, 53, 55, 60] and related works as the energy of AdS
gravitational shock waves. Once we have established its physical meaning by
relating it to µ̄, we shall used µ instead of µ̄ in the subsequent equations.

By analogy with (3.50), from the charge parameter p2
Q we can define a

sort of electrostatic energy e2 as

e2 =
(D − 2)(D − 3)

8πGD

p2
Q. (3.52)

However, although p2
Q derives from the charge of the AdS-RN solution, e2

is no more associated to any charge. Indeed, the source of the AdS-RN
shock wave have not any charge. We can see it from computing the infinite
boost limit over the Maxwell field of the AdS-RN solution. Note that the
electromagnetic field is computed as usual, i.e. Fab = ∂aAb − ∂bAa, since
F = dA and thus the connection does not influence in its computation.
Then, from (3.1), we have only one component,

Fτr =

(
(D − 2)(D − 3)

2

)1/2
Q

rD−2
. (3.53)

In coordinates {Z0, Zi, ZD} this is

F0D =

(
(D − 2)(D − 3)

2

)1/2
Q

LrD−3
. (3.54)
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It results in an expression lineal in Q and without possibility to include
positive powers of γ after doing a boost. Thus, according to the scaling taken
for the shock wave metric computation, the electromagnetic strength tensor
vanishes after the infinite boost limit. In other words,the AdS-RN shock
wave does not act as source for any electromagnetic field [61, 84]. Although
e2 is related to the electrostatic charge of the AdS-RN solution, it has not any
electromagnetic nature. We conclude that (3.39) is just a residual energetic
contribution inherited from the original electromagnetic nature of the AdS-
RN solution which is not associated to any electromagnetic charge. This
contribution to the energy-momentum tensor appears because it depends
quadratically in the electromagnetic field strength F and thus quadratically
in Q. In addition, such contribution spreads the energy sourcing the AdS-RN
shock wave.

In terms of µ and e2, the wave equation (2.70) takes the form[
4HD−2

− D − 2

L2

]
Φ(RN)(q) =

− 16π

(
GDµ

LD−3

)
zD−1

0

L2
δ(z − z0)δ(D−3)(~x⊥)

− 16π
Γ(D − 3/2)

√
π

22D−5(D − 2)!

(
GDe

2

L2(D−3)

)
L

(q2 + q)D−5/2
,

(3.55)

where GDµ/L
D−3 and GDe

2/L2(D−3) are dimensionless parameters. The so-
lution to this equation is given by equation (3.26),

Φ(RN)(µ, e2; q) = 16π
Γ
(
D−2

2

)
2D−1(D − 1)π

D−2
2

(
GDµ

LD−3

)
z0

qD−2

× 2F1

(
D − 2,

D

2
;D;−1/q

)
− 16π

22(2−D)
√
π Γ

(
2D−3

2

)
(D − 2)2(D − 3)!

(
GDe

2

L2(D−3)

)
× L

q2D−5 2F1

(
2D − 5,

2D − 3

2
; 2D − 3;−1/q

)
.

(3.56)

Note that for e = 0 we have the gravitational shock wave obtained from the
AdS-Schwarzschild solution by means of the infinite boost limit done here,
which we call AdS-Sch shock waves, with wave profile

Φ(Sch)(µ; q) = Φ(RN)(µ, e2 = 0; q). (3.57)

Until now we have not specified anything about the relation between the
charge and mass of the AdS-RN we started with. That is, whether it should
be extremal (M = Q), subextremal (M > Q) or superextremal (M < Q)
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(see Appendix B), i.e. we have not established any difference in the final
gravitational shock wave depending on performing the infinite boost limit
over a AdS-RN black hole or over a naked singularity. In fact, the character
of the initial black hole is immaterial. Note that we have taken the limit with
the scaling

γ ∼ 1/ε2, M ∼ ε2, Q ∼ ε, with ε→ 0, (3.58)

such that p
M

= γM and p2
Q = γQ2 (or equivalently µ and e2) remain fixed

while the infinite boost limit is taken. On the other hand, for large enough
Q2 with respect to M2 the AdS-RN solution becomes super-extremal. This
condition, whatever the initial values ofM and Q2 are, is reached after a large
enough boost taken with the scaling (3.58). Thus the gravitational shock
wave (3.56) always arises from a super-extremal AdS-RN solution whatever
the values of µ and e2 are.

3.2 Fat gravitational shock waves

The AdS-RN shock waves are generated by a point-like source of energy µ
surrounded by an energetic halo weighted by e2. Being ambitious, we can
generalize them by spreading the source. That is, by considering gravita-
tional shock waves generated from a no point-like transverse energy density
traveling at the speed of light in AdS spacetime. We shall refer to these
gravitational shock waves as fat shock waves [57].

Because we are interested in preserve the O(D−2) symmetry of the shock
waves, we restrict to energy densities (as measured by an static observer, see
discussion about equation (2.79)) depending only in the chordal coordinate
q. Since Tuu = L

z
ρ̄(q)δ(u), the Einstein equations for the shock wave (2.75)

is reduced to the ordinary differential equation

q(q+1)Φ′′(q)+
D − 2

2
(2q+1)Φ′(q)− (D−2)Φ(q) = −16πGDL

2ρ̄(q), (3.59)

where we have used that (see metric (A.26))

4HD−2
=
q(q + 1)

L2
∂2
q +

(D − 2)(2q + 1)

2L2
∂q +

1

4L2q(q + 1)
4SD−3 (3.60)

in chordal coordinate, and H̄(u, z, ~xT ) = Φ(q)δ(u). Solving Φ(q) is not any
trivial task, even though the axial symmetry allows to reduce the wave equa-
tion to a one-dimensional linear differential equation.
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The general solution to the latter differential equation is given in terms
of the Green’s function4 of the differential operator 4HD−2

− (D−2)/L2 with
O(D − 2) symmetry,

Φ(q) =

∫
dq′
√
|g|q′ G(q, q′)(−16πGDL

2 ρ̄(q′))

=

∫ ∞
0

dq′ [q′(q′ + 1)]
D−4
2 Ḡ(q, q′)ρ̄(q′),

(3.61)

where we have integrated out the angular coordinates over the sphere SD−3

and include them in Ḡ(q, q′) = −8πGDL
2(2L)D−2ΩD−3G(q, q′), such that

Ḡ(q, q′) satisfies

q(q + 1)Ḡ′′(q, q′) +
D − 2

2
(2q + 1)Ḡ′(q, q′)− (D − 2)Ḡ(q, q′)

= −16πGDL
2 δ(q − q′)
[q(q + 1)]

D−4
2

.
(3.62)

To find the function Ḡ(q, q′) we follow the construction of [51, 57]. We begin
solving the associated homogeneous equation. It has two linearly indepen-
dent solutions, f1(q) and f2(q), which are divergent at q → 0 and q → ∞
respectively,

f1(q) =
1

qD−2 2F1

(
D − 2,

D

2
;D;−1

q

)
, f2(q) = 2q + 1. (3.63)

Then we choose for Ḡ(q, q′) a linear combination of f1(q) and f2(q) weighted
by Heaviside step functions to integrate the delta function. Since f1(q) di-
verges at q → 0, it must be weighted by θ(q − q′), while f2(q) must be
weighted by θ(q′ − q). Thus we propose the ansatz

Ḡ(q, q′) = C1(q′)f1(q)θ(q − q′) + C2(q′)f2(q)θ(q′ − q), (3.64)

for unknown functions of q′, C1(q′) and C2(q′). However, since the Green’s
function must be symmetric under the interchange between q and q′,

C1(q′)f1(q) = C2(q)f2(q′) ∀q, q′ ∈ (0,∞). (3.65)

Thus C1(q′) = αf2(q′) and C2(q′) = αf1(q′), and

Ḡ(q, q′) = α [f2(q′)f1(q)θ(q − q′) + f1(q′)f2(q)θ(q′ − q)] , (3.66)
4Given some differential equation D̂F (xa) = f(xa), where D̂ is any differential op-

erator in a d-dimensional smooth Riemannian manifold (M, g), the solution is given by
F (xa) =

∫
ddx′

√
|g|x′G(xa, x′

a
)f(x′

a
), being G(xa, x′

a
) the Green’s function for D̂, i.e.

D̂G(xa, x′
a
) = 1√

|g|
δ(d)(xa − x′a).
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being α ∈ R some constant to be determined by substituting in the differen-
tial equation (3.62). Since

Ḡ′(q, q′) =α [f2(q′)f ′1(q)θ(q − q′) + f1(q′)f ′2(q)θ(q′ − q)]
+ α [f2(q′)f1(q)− f1(q′)f2(q)] δ(q − q′)

(3.67)

and, deriving a second time5,

Ḡ′′(q, q′) =α [f2(q′)f ′′1 (q)θ(q − q′) + f1(q′)f ′′2 (q)θ(q′ − q)]
+ α [f2(q′)f ′1(q)− f1(q′)f ′2(q)] δ(q − q′),

(3.68)

the differential equation (3.62) gives an algebraic equation for α,

α q(q + 1) [f2(q′)f ′1(q)− f1(q′)f ′2(q)] δ(q − q′) + α
D − 2

2
(2q + 1)

× [f2(q′)f1(q)− f1(q′)f2(q)] δ(q − q′) =
−16πGDL

2

[q(q + 1)]
D−4
2

.
(3.69)

Then, integrating over q both sides and substituting f2(q) = 2q + 1,

α [2f1(q′)− (2q′ + 1)f ′1(q′)] =
16πGDL

2

[q′(q′ + 1)]
D−2
2

. (3.70)

Because of the difficulty inherent to compute with the Gauss hypergeometric
function, evaluation of the right-hand side of this equation requires the use
of the hypergeometric differential equation. Then, it follows that W (q′) =
2f1(q′)− (2q′ + 1)f ′1(q′) satisfies the differential equation

q′(q′ + 1)

2q′ + 1
W ′(q′) = −D − 2

2
W (q′), (3.71)

which solution is W (q′) = C[q(q+ 1)]D−22. Since at large q′ we have f1(q′) ∼
q′2−D and, moreover,

W (q′) = 2f1(q′)− (2q′ + 1)f ′1(q′) ∼ 2(D − 1)q′
2−D

, (3.72)

the integration constant must be C = 2(D − 1). This fixes the value of α in
equation (3.70) to be

α =
8πGDL

2

D − 1
, (3.73)

5The derivative in a distributional sense of the Dirac delta is defined as
∫
dx δ′(x −

x0)f(x) = −
∫
dx δ(x− x0)f ′(x) = −f ′(x0). Therefore δ′(x− x0)f(x) ≡ −δ(x− x0)f ′(x)
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and thus

Ḡ(q, q′) =
8πGDL

2

D − 1


2q+1

q′D−2 2F1 (D − 2, D/2;D;−1/q′) q < q′,

2q′+1
qD−2 2F1 (D − 2, D/2;D;−1/q) q > q′.

(3.74)

The knowledge of the Green’s function lets us to determine the large
q behavior of the fat shock waves profile Φ(q) when the transverse density
ρ̄(q) has compact support. Since q � q′, from (3.61) Φ(q) only receives
contribution from the piece of Ḡ(q, q′) for q > q′. Thus the large q behavior
of Φ(q) is given by

Φ(q) ∼ 8πGDL
2

D − 1
f1(q)

∫ ∞
0

dq′(2q′ + 1) [q′(q′ + 1)]
D−4
2 ρ̄(q′), (3.75)

where the compactness of the support of ρ̄(q) let us extend the integral to
q′ →∞. Since (see (A.19))∫

dD−2x
√
g|HD−2

(2q + 1)

=
1

2
(2L)D−2 ΩD−3

∫ ∞
0

dq [q(q + 1)]
D−4
2 (2q + 1),

(3.76)

we can rewrite (3.75) as

Φ(q) ∼ 16πGD

2D−2LD−4(D − 1)ΩD−3

f1(q)

∫
dD−2x′

√
g|HD−2

(2q′ + 1)ρ̄(q′)

=
16π

2D−2(D − 1)ΩD−3

(
GDĒ

LD−3

)
Lf1(q),

(3.77)

where
Ē =

∫
dD−2x′

√
g|HD−2

(2q′ + 1)ρ̄(q′) (3.78)

could be understood as the total energy of the transverse distribution sourc-
ing the fat shock wave as measured by a set of static observers located
along the wavefront. Indeed, substituting here the energy distribution which
sources an AdS-Sch shock wave, expressed in chordal coordinate as

ρ̄(q) =
2µ̄

(2L)D−2ΩD−3

δ(q)

[q(q + 1)]
D−4
2

, (3.79)

we obtain Ē = µ̄ = z0
L
µ, and

Φ(q) ∼ 16π
Γ
(
D−2

2

)
2D−1(D − 1)π

D−2
2

(
GDµ̄

LD−3

)
Lf1(q) = Φ(Sch)(µ̄; q) (3.80)
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as it was expected. Here we have used the volume of the n-sphere,

Ωn =
2π

n+1
2

Γ
(
n+1

2

) . (3.81)

In what follow, we are interested in describing the gravitational shock
wave sourced by a (extremely) boosted extended source. That is equivalent
to consider transverse energy densities for which Ē is finite. Thus we restrict
fat shock waves to whose with transverse density [57]

ρ̄(q) =
2Ē

(2L)D−2ΩD−3

F (ω, q)

[q(q + 1)]
D−4
2

, (3.82)

with ω being a parameter which measures the width of the energy density,
i.e. how much the energy density is spread, and the shape function F (ω, q)
satisfies the normalization condition∫ ∞

0

dq(2q + 1)F (ω, q) = 1 (3.83)

for all ω. Note that F (ω, q) has not necessarily compact support. However,
equation (3.77) remains valid as long as F (ω, q) goes to zero quickly enough,
which is forced by this condition.

Fat waves are interesting because they arise from widespread sources and
thus, in fat waves collisions, the width of sources is an additional element
we have to take into account. It could play some role in the formation
of the Penrose surface. Indeed, the authors of [57] showed that there is a
critical behavior with the size of the source for the production of the Penrose
trapped surface. In addition, although this must be analyzed for each case
in particular, i.e. for each shape function F (ω, q) in equation (3.82), this
critical behavior depends strongly with the background dimension. For the
general case of shape functions regularizing a delta function, i.e. satisfying6

lim
ω→0+

F (ω, q) = δ(q), (3.84)

in [57] it was found that forD = 4 andD = 5 dimensions, the formation of the
Penrose trapped surface exhibits a critical behavior with ω. For D = 4, the
collision below the critical situation results in two Penrose surfaces, one inside
the other, and we consider only the outermost surface. As counterpoint, for

6In particular, this implies F (ω, q = 0) 6= 0. In some sense we are doing a rude
expansion of the point-like sources of the Ads-Sch shock waves, being ω a kind of diluting
parameter.
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D = 5 we have only a trapped surface below the critical point. Near the
critical value, the size q0 of the trapped surface decreases as ω approaches ωc
following laws

q0 − qc ∼ (ωc − ω)γD , (3.85)

where the critical exponents are γ4 = 1/2 and γ5 = 1, and qc is the size of
the Penrose surface at the critical point. For D = 5, qc = 0, while for D = 4
it has a finite value. Finally, for D > 6 there is no critical behavior and the
Penrose surface always appears.

3.3 Holography for AdS-RN and fat gravita-
tional shock waves

As we have already discussed in the introduction, the AdS/CFT conjecture
builds a bridge between (super)gravity inside the AdS space and a strongly
coupled gauge theory in the conformal boundary of AdS. In the framework
of this correspondence, colliding gravitational shock waves in AdS are the
gravitational dual for colliding energy lumps in the boundary theory. Here
we discuss in some detail this issue and, in particular, compute the energy
density of the holographic lumps corresponding to AdS-RN and fat shock
waves.

3.3.1 Holographic stress tensor

In accordance with the holographic principle, the gravitational dynamics
in the AdS space must contain the information to determine the energy-
momentum vacuum expectation value of the boundary theory. From a series
expansion of the Dirac-Born-Infield action for the D3-brane it can be shown
that gravitons in the bulk with polarizations parallel to the brane couple
to the world-volume stress tensor [87, 88]. Thus the vacuum expectation
value of the holographic energy-momentum tensor must be encoded in some
way inside the metric giving the gravitational field in the AdS background.
There are different approaches for extracting the holographic stress tensor
from the line element [89]. Here we choose to compute it from the quasilocal
gravitational energy defined by Brown and York [90].

In [91], Brown and York gave a construction (based on a Hamilton-Jacobi
analysis) which allows to define a lower-dimensional energy-momentum ten-
sor including both gravitational and matter dynamics inside a bounded region
of spacetime. For indices µ, ν on the timelike7 boundary B of the spacetime

7Brown and York define a surface stress tensor in both timelike and spacelike bound-
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region being considered, the surface stress tensor at B of York and Brown is
given by

τµν =
2√
−γ

(
π(sol)
µν − π(0)

µν

)
, (3.86)

where γµν is the induced metric at B, and πµν is the gravitational momentum
conjugated to the surface metric,

πµν =
1

16πGD

√
−γ (Kµν −Kγµν) , (3.87)

with Kµν the extrinsic curvature of B. The labels (sol) and (0) in (3.86) refer
to the background geometry respect to which the gravitational momentum is
computed: (sol) stands for the gravitational momentum computed from the
extrinsic curvature of B as embedded in the spacetime that is been consid-
ered, while (0) stands for the gravitational momentum as if the boundary B
was embedded in a reference spacetime such that the metric at B coincides
with the induced metric γµν . Such reference spacetime is included in order
to get a finite result when B encloses the entire spacetime (see [90] for a
detailed discussion).

For our purposes, the spacetime region to be considered lies inside some
(asymptotically AdS) spacetime. The spacetime metric in Poincaré coordi-
nates is

ds2 =
L2

z2

[
dz2 + gµν(z, x)dxµdxν

]
, (3.88)

such that gµν(z, x) admits a series expansion8 in powers of z,

gµν(x, z) = ηµν + g(D−1)
µν (x)zD−1 + . . . (3.89)

We choose the region bounded by the hypersurface of constant Poincaré
coordinate z, i.e. B = {(t, z, ~x) / z = z0 ∈ R+. Note that, in this way, the
limit z0 → 0 encloses the entire spacetime and gives the Brown-York stress
tensor of all the spacetime. The normalized vector field orthogonal to the
hypersurface z = z0 is

nµdx
µ =

L

z
dz, (3.90)

being the induced metric in B

γµν =
L2

z2

(
ηµν + g(D−1)zD−1 + . . .

)
(3.91)

aries. However, for our purposes it shall be enough to consider the case of a timelike
boundary.

8 Lower orders in z in the series expansion (3.89) will introduce additional terms to
(3.98) related to conformal anomalies of the boundary field theory [92].
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Then, a straightforward computation of the second fundamental form yields
to

K(sol)
µν = −L

z0

ηµν +
D − 3

2
Lg(D−1)

µν zD−3 + . . . , K(sol) = −D − 1

L
+ . . . (3.92)

where the ellipsis stands for higher order terms in z0 which are not relevant for
the calculation we are developing here, and K(sol) ≡ γµνK

(sol)
µν . Substituting

in (3.86), the contribution from the spacetime geometry to the surface stress
tensor at B is

τ (sol)
µν =

1

8πGD

[
(D − 2)L

z2
0

ηµν +
(3D − 5)L

2
zD−3

0 g(D−1)
µν + . . .

]
. (3.93)

Notice that there is a negative power of z0 which gives a divergent behavior at
the spacetime boundary. We must choose the reference geometry such that
its contribution to (3.86) cancels this term. With this in mind, we choose
this reference spacetime to be

(ds2)(0) =
L2

z2

[
dz2 +

(
ηµν + g(D−1)

µν zD−1
0

)
dxµdxν

]
. (3.94)

For this reference geometry we have,

K(0)
µν = − L

z2
0

ηµν − Lg(D−1)
µν zD−3

0 , K(0) = −D − 1

L
. (3.95)

Thus, its contribution to the Brown-York stress tensor is

τ (0)
µν =

(D − 2)L

z2
0

ηµν + (D − 2)Lg(D−1)
µν zD−3

0 . (3.96)

Subtracting equation (3.93) and the latter we get finally the “renormalized”
stress tensor, i.e. without negative power in z0 and, therefore, finite at z0 → 0,

τµν = τ (sol)
µν − τ (0)

µν =
(D − 1)L

16πGD

g(0)
µν z

D−3
0 + . . . (3.97)

It remains to compute the vacuum expectation value of the holographic
energy-momentum tensor. Naively we could be tempted to think that, in
the spirit of the holographic principle in general and the AdS/CFT connec-
tion in particular, it is the Brown-York surface stress tensor at the boundary
of the entire spacetime, i.e. taking the limit z0 → 0 in the last equation.
However, although the subtraction respect to the reference geometry has
removed the negative power in z0 appearing at (3.93), the resultant “renor-
malized” Brown-York stress tensor is zero for z0 → 0 . The reason for this
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discordance is that the holographic field theory lives in the conformal bound-
ary of AdSD, not at the boundary of AdSD, and that means we have to kill
the conformal dependence of (3.97) before to take the z0 → 0 limit. In order
to do it, from the definition of τµν , note that

√
−γγµντµν is invariant under a

rescaling of z0. Thus, an additional factor (L/z0)D−3 needs to be introduced
before taking the z0 → 0 limit. In this way, the holographic energy tensor is
finally founded to be

〈Tµν〉CFT = lim
z0→0

(
L

z0

)D−3 [
(D − 1)L

16πGD

g(D−1)
µν zD−3

0 + . . .

]
=

(D − 1)LD−2

16πGD

g(D−1)
µν .

(3.98)

It is interesting to realize that only the (D− 1) order in the series expansion
of gµν(z, x) contributes to the holographic energy-momentum tensor.

The expression we have obtained can be applied to any asymptotically
AdS spacetime of the form (3.88) as the recipe to extract the vacuum expec-
tation value of the holographic stress tensor. In particular it can be applied
to AdS gravitational shock waves. Since the chordal coordinate q near the
boundary of the hyperbolic space HD−2 scales with z as

q =
1

4zz0

[
(z − z2

0) + (~xT )2
]

=⇒ q ' z2
0 + ~x2

T

4z0

1

z
, (3.99)

for a gravitational shock wave in AdS background, ds2 = L2/z2[−dudv +
dz2 + d~x2

T + z
L

Φ(q)δ(u)du2], we find

g(D−1)
uu =

δ(u)

L
Φ(q)|zD−2 , (3.100)

where

Φ(q)|zD−2 =
1

(D − 2)!

(
4z0

z2
0 + ~x2

T

)D−2
dD−2

dwD−2
Φ(w−1)

∣∣∣∣
w→0

(3.101)

is the D− 2 order in a series expansion of Φ(q) in powers of the depth coor-
dinate z. Applied to the case of two colliding gravitational shock waves with
impact parameter (∆z = |z+ − z−|,~b), line element (2.84), the expectation
value of the holographic stress tensor results in

〈Tuu〉CFT =
(D − 1)LD−3

16πGD

δ(u) Φ+(q+)|zD−2 ,

〈Tvv〉CFT =
(D − 1)LD−3

16πGD

δ(v) Φ−(q−)|zD−2 ,

(3.102)
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with all the other components vanishing. That corresponds with two colliding
ultrarelativistic energy lumps with energy distributions given by the D − 2
order in z of the wave profiles Φ±(q±). Thus colliding AdS shock waves are
the gravitational dual for colliding energy lumps at the boundary field theory.

3.3.2 Holographic dual for colliding shock waves

Naively, we would expect that differently sourced AdS gravitational shock
waves result in different energy distributions of the colliding energy lumps in
the holographic theory. Therefore, we would be able construct improved con-
figurations to model thermalized sQGP production from high energy heavy
ion collisions by tuning in an suitable way the energy distribution ρ̄(q) in
(2.79). However, as we shall see now, both AdS-RN shock waves and AdS-
Sch or fat shock waves give rise to the same holographic energy distributions.

Let us begin considering AdS-RN shock waves. Then, equation (3.101)
gives

Φ
(RN)
± (q±)

∣∣∣
zD−2

=
25−DΓ

(
D−2

2

)
(D − 1)π

D−4
2

(
GDµ

LD−3

)
z±

 4z±

z2
± +

(
~xT ±

~b
2

)2


D−2

(3.103)
where we have used the definition of the hypergeometric function as a power
series,

2F1(a, b; c;w) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

wn

n!

=⇒ d

dw
2F1(a, b; c;w) =

ab

c
2F1(a+ 1, b+ 1; c+ 1;w).

(3.104)

Thus the holographic stress tensor for two (identical) colliding AdS-RN shock
waves is

〈Tuu〉CFT =µ
2D−3Γ

(
D−2

2

)
π
D−2
2

zD−1
+[

z2
+ +

(
~xT −

~b
2

)2
]D−2

δ(u),

〈Tvv〉CFT =µ
2D−3Γ

(
D−2

2

)
π
D−2
2

zD−1
−[

z2
− +

(
~xT −

~b
2

)2
]D−2

δ(v),

(3.105)

This corresponds to two colliding energy lumps with transverse energy den-
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b� 2- b� 2

x 1

Ρ ±

Figure 3.2: Plot for the energy densities (3.106) for z+ = z− versus
the x1 coordinate, which we choose along the impact parameter parallel
to the boundary of the AdS spacetime, ~b. The maximums are located at
x1 = ±b/2.

sities

ρ±

(
~xT ±

~b

2

)
= µ

2D−3Γ
(
D−2

2

)
π
D−2
2

zD−1
±[

z2
± +

(
~xT ±

~b
2

)2
]D−2

, (3.106)

confined to the transverse space to the direction of propagation because of
the Lorentz contraction. Note that these energy densities have polynomial
fall-offs, approaching 0 at (~xT ±~b/)2 →∞. In addition, they have maximum
at ~xT = ±~b/2 (see fig. 3.2)). Thus, the impact parameter parallel to the
boundary of the AdS spacetime, ~b, translates into the holographic theory
as the impact parameter in the collision between the energy lumps, while
the impact parameter along the holographic coordinate, ∆z = |z+ − z−|, is
not observable in this sense. Instead of that, z± appears as the parameter
controlling the width of the energy profiles of the lumps. In addition, notice
that the parameter e2, related to the charge of the AdS-RN solution, does not
appear in (3.106) and the energy densities of the lumps depend only on the
energy (as measured from the boundary) µ of the colliding waves. Therefore,
from the point of view of the holographic field theory, before the collision
there are no difference between colliding AdS-RN shock waves or the more
simple AdS-Sch shock waves (3.57).

The previous analysis can be also extended to fat shock waves. Since
q ∼ 1/z, q → ∞ near the spacetime boundary. Thus, in the case we have a
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fat shock wave with compact support, q ∈ (0, q0), equation (3.75) gives

Φ(q)|zD−2 =
8πGDL

2

(D − 1)!

(
4z0

z2
0 + ~x2

T

)D−2
dD−2

dwD−2
f1(w−1)

∣∣∣∣
w→0

×
∫ q0

0

dq′(2q′ + 1) [q′(q′ + 1)]
D−4
2 ρ̄(q′)

=
25−DΓ

(
D−2

2

)
(D − 1)π

D−4
2

(
GDĒ

LD−3

)
L

(
4z0

z2
0 + ~x2

T

)D−2

(3.107)

which coincides with (3.103) for z0 = z±, ~b = 0 and µ = L/z0Ē. Thus,
from the point of view of the holographic stress tensor, fat shock waves
with compact support are indistinguishable from AdS-Sch shock waves. This
is counter-intuitive since one would expect that an extended gravitational
source had caused some change in the shape or width of the holographic
stress tensor. Naively we could think that this surprise is because of the
compactness of the energy density sourcing the fat shock wave, since the
gravitational field of fat shock waves with compact support behaves in the
same way than the gravitational field of AdS-Sch shock waves when the
spacetime’s boundary is reached. However the situation does not change
notably if we consider fat shock waves sourced by a transverse energy density
with no compact support. In this case we have an additional contribution
to Φ(q)|zD−2 coming from the piece of the Green’s function (3.74) for q < q′.
Defining

ξ(q) = f2(q)

∫ ∞
q

dq′ [q′(q′ + 1)]
D−4
2 f1(q′)ρ̄(q′)

= q
D−2
2 f2(q)

∫ ∞
1

dv [v(qv + 1)]
D−4
2 f1(qv)ρ̄(qv),

(3.108)

being f1(q) and f2(q) the functions of (3.63), the contribution to Φ(q)|zD−2

for q < q′ is given by

8πGDL
2

(D − 1)
ξ(q)|zD−2 =

8πGDL
2

(D − 1)!

(
4z0

z2
0 + ~x2

T

)D−2
dD−2

dwD−2
ξ(w−1)

∣∣∣∣
w→0

=
25−DΓ

(
D−2

2

)
(D − 1)!π

D−4
2

(
GDĒ

LD−3

)
L

(
4z0

z2
0 + ~x2

T

)D−2
dD−2

dwD−2

[
2 + w

w2

×
∫ ∞

1

dvf1

( v
w

)
F
(
u,
v

w

)]∣∣∣∣
w→0

,

(3.109)

where we have used the parametrization of the energy density ρ̄(q) showed
in (3.82). Since

f1 (v/w) ∼
(w
v

)D−2

+ . . . (3.110)
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near w → 0, the (D − 2)-th derivative of the previous expression would we
no zero if and only if

F (u, v/w) ∼ F0(u)
(w
v

)2

+ . . . (3.111)

when w → 0. Then
8πGDL

2

(D − 1)
ξ(q)|zD−2 =

25−DΓ
(
D−2

2

)
(D − 1)!π

D−4
2

(
GDĒ

LD−3

)
L

(
4z0

z2
0 + ~x2

T

)D−2

× F0(u)
dD−2

dwD−2

[
2wD−2

∫ ∞
1

dv

vD−2
+O(wD−1)

]∣∣∣∣
w→0

=
26−DΓ

(
D−2

2

)
(D − 1)π

D−4
2

(
GDĒ

LD−3

)
LF0(u)

D − 3

(
4z0

z2
0 + ~x2

T

)D−2

.

(3.112)

Thus, when this condition is satisfied, the additional contribution coming
from values q < q′ resumes in a redefinition of Ē in (3.107) given by

Ē → Ē +
2F0(u)

D − 3
Ē. (3.113)

However, note that the scaling (3.111) contradicts the finite-energy condition
(3.83).

We conclude that, before any collision, the size of the holographic en-
ergy lumps does not depend in the width of the gravitational shock waves
propagating in the AdS spacetime, but only on the value of the holographic
coordinate of the center of the source. Moreover, the shape of the holo-
graphic energy lumps, i.e. how they decay with the transverse coordinates
from the center of each lump, can not be tuned in any way (they are always of
Lorentzian type). Note that the functional dependence ∼ [z0/(z

2
0 +~x2

T )]D−2 is
consequence of the exclusive q dependence of the shock waves, which is fixed
by the O(D − 2) symmetry of the solution. This means that we would have
to sacrifice the O(D − 2) symmetry of the shock waves if we want to obtain
changes in the shape of the holographic energy lumps. However, although
the width of two colliding shock waves does not have any consequence in the
shape of the energy lumps before the collision, this does not mean that it
do not have observable consequences when the collision takes place. As we
shall see in the next chapter, the trapped surface formation in the gravita-
tional collision (and thus the thermalization of the plasma produced after
the energy lump collision) is drastically affected by the charge parameter e2

in the case of Reissner-Nordström shock wave collisions [60] or the width of
the waves in the more general case of fat shock waves collision [57]. That
is not any intricate jigsaw puzzle, since it indicates the dependence of the
holographic collision with the expectation vacuum value of some boundary
field which has not been specified.
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3.3.3 Comparison with boosted Woods-Saxon potential

Our final motivation to study AdS shock wave collisions is modeling ther-
malization in heavy-ion collisions via the gauge/gravity connection. Obvi-
ously, the more precise the holographic energy-momentum tensor describing
a boosted heavy-ion is, the more accurate the model will be. That means
we should tune µ and z0 = z± in (3.106) such that the holographic energy
lumps resemble as much as possible highly boosted heavy nuclei.

For a heavy nucleus at rest, the energy density can be read off the Woods-
Saxon number density [51], and thus the energy-momentum tensor is

〈T00〉WS
(r) =

ρ0

1 + e
r−R
a

, (3.114)

where a is a length scale measuring the “surface thickness” of the nucleus, and
R = r0A

1/3 is the nuclear radius, with r0 = 1.25fm and A the mass number.
After a boost x→ γ(x+βt), the stress tensor components describing a heavy
nucleus are

〈Tuu〉WS
=
γ2(1 + β)2

4
〈T00〉WS

(r′), 〈Tvv〉WS
=
γ2(1− β)2

4
〈T00〉WS

(r′),

(3.115)
where r′ = γ2(x+βt)2 + ~xT

2. Keeping ρ̄0 ≡ γρ0 fixed we can take the infinite
boost limit. Then, using the lemma (2.47), the vv component vanishes,
whereas the uu components results in a transverse energy density,

〈Tuu〉WS
= ρ

WS
( ~xT )δ(u), (3.116)

where

ρ
WS

(~xT ) = 2ρ̄0

∫ ∞
0

dω

1 + e

√
ω2+~x2

T
−R

a

. (3.117)

Unfortunately, this expression cannot be integrated. We can recast it in an
integral expression with finite limits instead,

ρ
WS

(~xT ) = 2ρ̄0 |~xT |
∫ π/2

0

dθ

cos2 θ
(

1 + e
|~xT |
a cos θ

−R
a

) , (3.118)

which is more suitable for numerical computations.
There are two quantities we can use to characterize an energy density,

which, by means of direct comparison with the infinitely boosted nuclei we
have obtained, can be used to tune µ and z0 in (3.106). Such quantities
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are the expectation value of the energy, 〈E〉
WS

, and the transverse energy-
weighted mean squared size, 〈~x2

T 〉WS
. For the energy density of a boosted

nucleus (3.117), the first one is given by

〈E〉
WS

= ρ̄0

∞∫
−∞

∫
RD−3

dω dD−3xT

1 + e

√
ω2+~x2

T
−R

a

. (3.119)

Note that {ω, ~xT} covers the entire Euclidean space RD−2. Defining u2 =
(ω2 + ~x2

T )/a2 and integrating over the volume of the (D − 3)-sphere,

〈E〉
WS

= ρ̄0 a
D−2ΩD−3

∫ ∞
0

uD−3du

1 + eu−
R
a

= ρ̄0 a
D−2ΩD−3Γ(D − 2)FD−3

(
R

a

)
,

(3.120)

where Fs(x) is the complete Fermi-Dirac integral,

Fs(x) =
1

Γ(s+ 1)

∫ ∞
0

ts

1 + et−x
, (3.121)

related to the polylogarithm by Fs(x) = −Lis+1(−ex). Therefore, for a
boosted heavy ion in D − 1 flat dimensions,

〈E〉
WS

= −ρ0 a
D−2 2π

D−2
2 Γ(D − 2)

Γ
(
D−2

2

) LiD−2

(
−e

R
a

)
. (3.122)

In a similar way, we can compute the transverse energy-weighted mean
squared size 〈~x2

T 〉WS
. Note that transverse lengths are not affected by the

boost. Thus we can compute 〈~x2
T 〉WS

directly from (3.114). It is given by

〈~x2
T 〉WS

=
D − 3

D − 2
〈r2〉

WS
=
D − 3

D − 2

∫
dD−2x

r2

1 + e
r−R
a∫

dD−2x
1

1 + e
r−R
a

, (3.123)

since, supposing heavy ions at rest are isotropic, 〈r2〉
WS

= (D− 2)〈x2
i 〉WS

for
any coordinate xi. Integrating over the angular coordinates, we are left with

〈~x2
T 〉WS

= a2D − 3

D − 2

∫ ∞
0

uD−1du

1 + eu−R/a∫ ∞
0

uD−3du

1 + eu−R/a

= a2 (D − 3)Γ(D)

Γ(D − 1)

FD−1

(
R
a

)
FD−3

(
R
a

) . (3.124)
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In terms of polylogarithms, that is

〈~x2
T 〉WS

= a2(D − 1)(D − 3)
LiD

(
−eRa

)
LiD−2

(
−eRa

) . (3.125)

Equations (3.122) and (3.125) characterize physically the transverse energy
density describing an infinitely boosted heavy nuclei.

The same computation can be carried out for the holographic energy
lumps (3.106). Omitting the impact parameter b and defining z0 = z±, the
expectation value 〈E〉

CFT
is

〈E〉
CFT

=

∫
dD−3xT ρCFT (~xT ), (3.126)

where

ρ
CFT

(~xT ) = µ
2D−3Γ

(
D−2

2

)
π
D−2
2

zD−1
0

(z2
0 + ~x2

T )
D−2

. (3.127)

Integrating over the volume of the (D − 4)-sphere,

〈E〉
CFT

= µ
2D−2Γ

(
D−2

2

)
π1/2Γ

(
D−3

2

) ∫ ∞
0

uD−4du

(1 + u2)D−2
. (3.128)

This integral results in Gaussian hypergeometric functions,∫ ∞
0

uD−4du

(1 + u2)D−2
= lim

u→∞

[
uD−3

(D − 3)
2F1

(
D − 3

2
, D;

D − 1

2
;−u2

)
+

2uD−1

(D − 1)
2F1

(
D − 1

2
, D;

D + 1

2
;−u2

)
+

uD+1

(D + 1)
2F1

(
D + 1

2
, D;

D + 3

2
;−u2

)]
.

(3.129)

After a bit of algebra and using the first Pfaff transformation for hypergeo-
metric functions to compute the limit (see equation (C.26) of Appendix C),
the result is ∫ ∞

0

uD−4du

(1 + u2)D−2
=

Γ
(
D−3

2

)
Γ
(
D−1

2

)
2(D − 3)!

. (3.130)

Thus, substituting in (3.128)

〈E〉
CFT

= µ. (3.131)

Therefore, the energy of the gravitational shock waves, as measured from the
boundary of the AdS spacetime, corresponds in the boundary conformal field
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theory to the expectation value of the energy of the lumps. In addition, notice
that the result does not depend on the dimension where the gravitational
model is constructed. In a similar way, the energy-weighted mean squared
size 〈~x2

T 〉CFT for each energy lump is given by

〈~x2
T 〉CFT =

∫
dD−3xT ~x

2
TρCFT∫

dD−3xT ρCFT

=
z2

0

〈E〉
CFT

2D−2Γ
(
D−2

2

)
π1/2Γ

(
D−3

2

) ∫ ∞
0

uD−2du

(1 + u2)D−2
.

(3.132)

The integral here results, once more, in hypergeometric functions, such that∫ ∞
0

uD−2du

(1 + u2)D−2
=

4(D − 2)

(D − 1)(D − 3)
lim
u→∞

uD−1

(1 + u2)D−1

× 2F1

(
1−D

2
, 1;

D + 1

2
;−u2

)
.

(3.133)

After applying the first Pfaff transformation and a bit of algebra, we get∫ ∞
0

uD−2du

(1 + u2)D−2
=

2(D − 2)

D − 3

Γ
(
D−1

2

)
Γ
(
D+1

2

)
Γ(D)

. (3.134)

Substituting in (3.132) we have finally,

〈~x2
T 〉CFT = z2

0 . (3.135)

Therefore the value of the holographic coordinate of the source of the shock
waves inside the AdS fixes the energy-weighted size of the holographic lumps.

Matching the expectation values of energy and energy-weighted transverse
size for both boosted heavy nuclei and holographic energy lumps, we can tune
µ and z0 in (3.106). Fixing D = 5 in (3.122) and (3.125),

〈E〉
WS

= −8π ρ0 a
3Li3

(
−e

R
a

)
,

〈~x2
T 〉WS

= 8a2
Li5

(
−eRa

)
Li3

(
−eRa

) . (3.136)

Then, assuming a nucleus with A ' 197 (Gold) and a nuclear surface thick-
ness a ' 0.535 fm (typical value),

〈~x2
T 〉WS

' 23.80 fm2 (3.137)
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Figure 3.3: Plot for the energy densities (3.117) (blue) and (3.127)
(red) with the values of z0, ρ̄0 and µ estimated in (3.138), (3.139) and
(3.140). The plot for (3.117) has been done using a Montecarlo method
for numerically calculating the integral expression (3.118).

and the equality 〈~x2
T 〉CFT = 〈~x2

T 〉WS
gives

z0 ' 4.88 fm. (3.138)

The value for the energy density 〈E〉
WS

can be estimated from heavy ion
collisions at the LHC. Thus, taking a center of mass energy 1150 TeV for
heavy-ion collisions, 〈E〉

WS
' 575 TeV , which leads to

ρ̄0 ' 0.34 TeV/fm3, (3.139)

and, from 〈E〉
CFT

= 〈E〉
WS

,

µ ' 575 TeV (3.140)

In fig. 3.3 the two transverse energy densities, equation (3.127) and equation
(3.117), are showed with these values for z0 and µ. As we see, whereas the
transverse energy density obtained from the Woods-Saxon potential flattens,
the transverse density of the holographic energy lumps has a definite peak,
with a higher central density, such that it is not possible to tune the free
parameters in the holographic theory to fit in any way the energy distribution
of boosted heavy ions. However, that does not mean the results obtained
from modeling the heavy-ion high-energy collision with holographic energy-
lumps from gravitational colliding shock waves in the AdS spacetime cannot
be interpreted as describing some features of the collisions of heavy ions, at
least qualitatively.



Chapter 4

Critical phenomena in collisions
of AdS gravitational shock waves

In the previous chapter we have computed the line element for AdS-RN and
fat shock waves, as well as the energy-momentum tensor sourcing them, and
showed that they are the gravitational dual for energy lumps propagating
in the boundary field theory proposed by the AdS/CFT conjecture. In this
chapter we go one step beyond and study the formation of Penrose trapped
surfaces in the collisions of AdS-Sch and AdS-RN shock waves. As we argued
in the introductory chapter, the formation of the Penrose trapped surface
could be taken as signaling an eventual horizon formation after the collision
and, therefore, as an indicative for plasma thermalization in the holographic
boundary theory.

As it was expected, the formation of a Penrose trapped surface in a col-
lision depends on the parameters determining the collision (energy, impact
parameter, size, dimension, . . . ), such that for each set of collision parameters
there is a critical energy below of that there is no possibility to produce any
Penrose trapped surface after the collision. That translates in the holographic
theory as a critical behavior for strongly coupled plasma themalization de-
pending on the collision parameters as well as some vacuum expectation
values [51, 55, 57, 60]. That can be taken as a first approximation model to
sQGP production in high-energy heavy-ion collisions [52, 53].

Besides its physical interest because of the holographic connection be-
tween Penrose trapped surface formation and boundary plasma thermaliza-
tion, the study of the critical formation of Penrose trapped surface has also a
great mathematical interest. On one side, to analyze the purely mathemati-
cal problem in flat backgrounds teaches us more about how causal structure
could evolve in asymptotically flat spacetimes [50, 56, 61]. On the other
hand, the mathematical challenge of generalizing to spaces which are not

83
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asymptotically flat, dS or AdS [45, 59, 93], would show where the difference
between flat and nonflat backgrounds is respect to causal structure evolution.

This chapter is divided into three section. In the Section 4.1 we study
the collision between AdS-Sch gravitational shock waves with nonzero im-
pact parameter parallel to the boundary of the AdS background by means of
numerical techniques. The case in which the AdS-Sch shock waves collision
takes place with an impact parameter directed along the holographic coor-
dinate, ∆z = |z+ − z−|, is considered in Section 4.2. Because the connection
between the value of the holographic coordinate inside AdS spacetime and
energy redshift in the boundary, both cases have different holographic inter-
pretations. Finally in Section 4.3 we examine the formation of the critical
Penrose trapped surface for AdS-RN shock waves collision.

4.1 AdS-Sch shock wave collision
Let us begin with a brief and clear exposition of the setup. We have two
AdS-Sch shock waves which propagate in opposite directions, i.e. they have
support in u = 0 and v = 0 respectively. Both waves are supposed to have
the same energy µ0 as it was measured from the boundary. They are disposed
such that they collide with some impact parameter~b parallel to the boundary
of the spacetime and zero impact parameter in the holographic coordinate.
As discussed in Section 2.5.1, the line element before the collision is

ds2 =
L2

z2

(
−dudv + dz2 + d~x2

T +
z

L
Φ

(Sch)
+ (q+)δ(u)du2

+
z

L
Φ

(Sch)
− (q−)δ(v)dv2

)
,

(4.1)

where the wave profiles Φ
(Sch)
± (q±) ≡ Φ

(RN)
± (µ0, e

2 = 0; q±) are solutions to
the partial differential equation[

4HD−2
− D − 2

L2

]
Φ(Sch)(q±) =

− 16π

(
GDµ±
LD−3

)
zD−1

0

L2
δ(z − z0)δ(D−3)

(
~xT ±

~b

2

)
,

(4.2)

with boundary condition limq±→∞Φ± = 0 and µ± = µ0. Without lost of gen-
erality, we take the impact parameter ~b directed along the x ≡ x1 coordinate,
and

q± =
1

4zz0

[
(z − z0)2 +

(
x± b

2

)2

+ ~y2

]
, (4.3)
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where ~xT = (x, ~y). The result of the collision will be independent of this
election because of the SO(D−3) symmetry of the {x1, . . . xD−3} coordinates.
The head-on collision corresponds to b = 0. The energy-momentum tensor
sourcing the two waves is given by the particle contribution (3.46), having
one component for each incoming shock wave,

Tuu = µ0

( z
L

)D−2

δ(u)δ(D−4)(~y)δ

(
x+

b

2

)
δ(z − z0),

Tvv = µ0

( z
L

)D−2

δ(v)δ(D−4)(~y)δ

(
x− b

2

)
δ(z − z0),

(4.4)

Finding the Penrose trapped surface supposes to solve an unusual bound-
ary problem in HD−2, introduced in Section 2.5.4,(

∇2
HD−2

− D − 2

L2

)(
Φ

(Sch)
± (q±)−Ψ±(q±)

)
= 0

gab∂aΨ+(q+)∂bΨ−(q−)
∣∣
C = 4,

Ψ±(q±)|C = 0.

(4.5)

C being the intersection of the Penrose trapped surface with HD−2. Solving
this boundary problem is not exclusively reduced to compute the Penrose
functions Ψ±, but also the submanifold C must be found. Since the energy-
momentum tensor is the one for two colliding particles of certain energy
without any other characteristic, we shall assume a topology SD−3 for C.

4.1.1 head-on collision

Despite the complexity of (4.5), the boundary problem simplifies for head-on
collisions enough to allow an analytical approach [51].

Since b = 0 for head-on collisions and the two sources in (4.4) have the
same relativistic energy µ0,

q+ = q− = q, =⇒ Φ
(Sch)
± (q) ≡ Φ(Sch)(q), Ψ±(q) ≡ Ψ(q). (4.6)

So the number of involved functions in (4.5) is drastically reduced1. More-
over, the whole system depends only on q and thus the collision symmetry
SO(D − 3) of (4.1) enhances to SO(D − 2) rotation symmetry around the
propagation axis of the shock waves. As a consequence the submanifold C
must be a sphere determined by some chordal radius q0.

1As we will see in next section, b = 0 also implies z0 = L.
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Writing the metric of HD−2 in chordal coordinate q plus some angular
coordinates in SD−3 (see Appendix A),

ds2
HD−2

=
L2

q(q + 1)
dq2 + 4L2q(q + 1)dΩ2

D−3, (4.7)

the boundary conditions in (4.5) are reduced to

q0(q0 + 1) (Ψ′(q0))
2

= 4L2, Ψ(q0) = 0. (4.8)

Since Ψ(q) > 0 inside C implies Ψ′(q0) ≤ 0, the first order differential con-
dition can be simplified even more taking the negative branch of its square
root,

Ψ′(q0) = − 2L√
q0(q0 + 1)

. (4.9)

On the other hand, Φ(Sch)(q) satisfies the equation (4.2). The homogeneous
partial differential equation associated to (4.2) coincides with the one satisfied
by Φ(Sch)(q)−Ψ(q) in the boundary problem. Thus the Penrose function Ψ(q)
must obey also the wave equation of the AdS-Sch shock waves. Computing
the Beltrami-Laplace operator 4HD−2

from (4.7),

4HD−2
=

1
√
g
∂a
(√

ggab∂b
)

=
q(q + 1)

L2
∂2
q +

D − 2

2L2
(2q + 1)∂q +

1

4L2q(q + 1))
4SD−3 ,

(4.10)

the differential equation satisfied by the Penrose function is

q(q + 1)

L2
Ψ′′(q) +

D − 2

2L2
(2q + 1)Ψ′(q)− D − 2

L2
Ψ(q) =

− 16π

(
GDµ0

LD−3

)
23−Dz0

L2 [q(q + 1)]
D−4
2 ΩD−3

δ(q),
(4.11)

where ΩD−3 is the volume of SD−3 and we have used the identity

δ(z − z0)δ(D−3)(~xT ) =

(
L

z0

)D−2
23−Dδ(q)

LD−2 [q(q + 1)]
D−4
2 ΩD−3

(4.12)

to write the right-hand side in function of q. At this point, finding the
Penrose trapped surface is reduced from computing two Penrose functions
Ψ±(q±) and the shape of C satisfying (4.5) to find only one Penrose function
Ψ(q) and a value of the chordal radius q0 satisfying the ordinary differential



4. Critical phenomena in collisions of AdS gravitational shock
waves 87

0 2 4 6 8 10
0

50

100

150

200

q 0

D=4 , 5 , 6 and 7

Figure 4.1: Left-hand side of (4.17) for D = 4 (black), D = 5 (blue),
D = 6 (Red) and D = 7 (grey).

equation (4.11) with boundary conditions (4.8). In addition we will require
that the Penrose function is regular at q = 0 for µ0 = 0 (i.e. when we have
no source).

The solution to the differential equation (4.11) is given by the sum of a
particular solution and the general solution to the associated homogeneous
equation. The wave profile function Φ(Sch)(q) can be taken as the particular
solution, whereas the general solution to the associated homogeneous equa-
tion is C1f1(q)+C2f2(q), where C1,2 are some arbitrary constants and f1,2(q)
are given in (3.63). Thus, the solution to (4.11) can we written as

Ψ(q) = Φ(Sch)(q) + C1f1(q) + C2f2(q). (4.13)

The constants C1,2 are then fixed by the initial conditions (4.8). The constant
C1 must be taken equal to zero since we have fixed the regularity of Ψ(q) at
q = 0 for µ0 = 0 as a requirement and f1(q) does not satisfy it. Thus, since
f2(q) = 2q + 1, C2 is determined from the second condition in (4.8) to be

C2 = −Φ(Sch)(q0)

2q0 + 1
. (4.14)

Substituting in (4.13), we have for the Penrose function

Ψ(q) = Φ(Sch)(q)− Φ(Sch)(q0)
2q + 1

2q0 + 1
. (4.15)

It remains to compute q0 in order to complete the solution to (4.5) for
head-on collisions. This is done by substituting (4.15) in (4.9). In this way
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we obtain an algebraic equation for q0,

Φ′
(Sch)

(q0)− Φ(Sch)(q0)
2

2q0 + 1
= − 2L√

q0(q0 + 1)
, (4.16)

which, after substituting the expression for Φ(Sch)(q) and doing some manip-
ulations, is reduced to

16π

2D−2ΩD−3

(
GDµ0

LD−3

)
= (2q0 + 1) [q0(q0 + 1)]

D−3
2 . (4.17)

As long as this equation has a solution for some q0, we find that a Penrose
trapped surface has been formed in the head-on collision. Notice that the
right-hand side of this equation is a monotonically increasing function of q0

in [0,∞), being zero for q0 = 0, and thus the equation has always one unique
solution (see fig. 4.1 and 4.2). In other words, a Penrose trapped surface
is always formed in a head-on collision of two AdS-Sch gravitational shock
waves, being unique and with chordal radius q0 such that q0 = 0 for µ0 = 0.
For practical purposes, the transcendental equation (4.17) must be solved nu-
merically by means of some algorithm as, for example, the Newton–Raphson
method. In fig. 4.2 the solution for q0 is showed for some values of D and
GDµ0/L

D−3.
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Figure 4.2: Numerical solution to (4.17). Left panel. q0 versus
D for energies GDµ0/L

D−3 = 1 (black), GDµ0/L
D−3 = 5 (blue) and

GDµ0/L
D−3 = 10 (red). Right panel. q0 versus GDµ/LD−3 for dimen-

sions D = 4 (black), D = 5, (blue), D = 6 (red), D = 7 (gray) and
D = 8 (purple).

4.1.2 Off-center collision

Whereas the head-on collision admits an analytical approach to solve the
shape of the submanifold C and the Penrose trapped surface, the case with
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nonzero impact parameter requires numerical techniques to face with the
unusual boundary problem (4.5). The off-center collision for D = 5 is con-
sidered in [52] by means of a spectral method to solve for C. On the other
hand, we have solved the problem for D = 4, 5, 6, 7 and 8 in [55] using the
finite difference discretization that we reproduce here. In both studies a crit-
ical value of the impact parameter depending on the energy of the sources
has been found, such that no Penrose trapped surface is created beyond this
critical value. Criticality in the impact parameter has also been observed in
collisions in flat spacetime [56]. In addition, in [55] we found a scaling of the
critical impact parameter with the energy depending on the dimension of the
background.

Symmetries for off-center collisions are reduced respect to head-on col-
lisions from SO(D − 2) to SO(D − 3), since only rotations keeping fixed
the direction along the impact parameter are allowed. We define spherical
coordinates in HD−2 as (see Appendix A)

Y 0 =
√
r2 + L2, Y 1 = r cos θ,

Y i = rϑi sin θ,
D−2∑
i=2

(ϑi)2 = 1,
(4.18)

The angular coordinates are chosen such that the sources (4.4) are located
at

r0 =
Lb

2z0

, θ+ = 0, θ− = π, (4.19)

or equivalently, at Y 0
± = L (1 + β2)

1/2, Y 1
± = ±Lβ and Y i

± = 0 for i =
2, . . . D − 2, where β = r0/L. As a consequence of the way we have defined
the angular coordinates, and the requirement Y D−2

± = 0, the holographic
coordinate of the sources and the impact parameter are not independent
from one another. They are related by

z0 =
L

(1 + β2)
1
2

, b =
2Lβ

(1 + β2)
1
2

. (4.20)

This corresponds to colliding shock waves whose holographic coordinate chan-
ges with its impact parameter, which is not a desirable property. Fortunately,
since scale transformations are isometries of both AdS and hyperbolic spaces,
we can use them to fix z0 independent of b. Redefining Poincaré coordinates
as

z → z

(1 + β2)
1
2

, xµ → xµ

(1 + β2)
1
2

. (4.21)

the collision happens at z0 = L, with impact parameter b = 2βL. Also
r0 = b/2, keeping Y 1

± = ±b/2 and Y D−2
± = 0. However, this transformation
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changes the right-hand side of the partial differential equation for the wave
profiles, equation (4.2). To keep its form we have to scale also the energy of
the incoming waves µ0 to a new value µ given by

µ =
µ0

(1 + β2)
1
2

. (4.22)

In this way, we conserve the boundary problem for the Penrose surface up
to scale transformations in the sense that the differential equations in (4.5)
are the same before and after scale transformations. That is, to solve the
Penrose surface for a collision with energy µ0 and sources at z0 = L/(1+β2)1/2

is equivalent to solve it for a collision at depth L and energy µ. Therefore,
if the Penrose surface exists for the first, it also does for the second. Since
collisions at a fixed holographic coordinate L are easier to analyze, we shall
consider it to solve the Penrose trapped surface. Thus, in the following,

q± =
1

4zL

[
(z − L)2 + (x1 ± b/2)2 + ~y2

]
. (4.23)

The metric of the HD−2 space in spherical coordinates is

ds2
HD−2

=
L2

L2 + r2
dr2 + r2dθ2 + r2 sin2 θdΩ2

D−4. (4.24)

The symmetry under SO(D − 3) transformations is explicit in this coordi-
nates, leaving invariant the unitary sphere SD−4. Thus the boundary problem
we have to solve must only involve coordinates {r, θ}. That is,

Φ
(Sch)
± (q±) = Φ

(Sch)
± (r, θ), Ψ±(q±) = Ψ±(r, θ). (4.25)

In addition, the coordinate θ can be used to parametrize C as the set of points
satisfying

r = LG(θ), (4.26)

for some function G(θ) under the condition G(0) = G(2π). At this point
we have transformed (4.5) in a two-dimensional boundary problem in the
plane Y 1-Y D−2 with {r, θ} the polar coordinates at this plane. In addition,
the invariance with respect to rotations around the Y 1 axis implies reflexion
symmetry respect to Y 1. Thus,

Φ
(Sch)
± (r, θ) = Φ

(Sch)
± (r,−θ), G(θ) = G(−θ),

Ψ±(r, θ) = Ψ±(r,−θ).
(4.27)

Also, because of the sources having the same energy µ, we have an additional
reflexion symmetry respect to the Y D−2 axis,

Φ
(Sch)
± (r, θ) = Φ

(Sch)
∓ (r, π − θ), G(θ) = G(π − θ),

Ψ±(r, θ) = Ψ∓(r, π − θ).
(4.28)
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Thanks to this symmetry it is only necessary to solve for one of the functions
Ψ±, and only one of the profile functions Φ

(Sch)
± must be taken into account.

In this way, we halve the number of functions implied in the unusual problem
we have to solve. Furthermore, (4.27) allows us solving only for θ ∈ [0, π],
since the periodicity of G(θ) is lowered from 2π to π. These simplifications
leads to a drastic simplification of the original problem, that now can be
handled by numerical methods.

From the metric (4.24), the Beltrami-Laplace operator in HD−2 in spher-
ical coordinates is

4HD−2
=

1
√
g
∂a
(√

ggab∂b
)

=

(
1 +

r2

L2

)
∂2
r +

1

r2
∂2
θ

+
(D − 3)L2 + (D − 2)r2

rL2
∂r +

(D − 4)

r2 tan θ
∂θ +

1

r2 sin2 θ
4SD−4 .

(4.29)

Defining H(r, θ) = Φ+(r, θ) − Ψ+(r, θ), the partial differential equation in
(4.5) reads now

[(
1 +

r2

L2

)
∂2
r +

(D − 3)L2 + (D − 2)r2

rL2
∂r +

1

r2
∂2
θ

+
D − 4

r2 tan θ
∂θ −

D − 2

L2

]
H = 0,

(4.30)

where we have omitted the equation for Ψ− according to the previous dis-
cussion. This two-dimensional partial differential equation has to be solved
inside the contour r = LG(θ) with the boundary conditions specified in (4.5).
However, G(θ) is unknown and, from a technical point of view, it is tremen-
dously difficult to built an algorithm solving a partial differential equation
inside an unknown boundary. At this point, we define a new radial coordinate
ρ as

ρ =
r

LG(θ)
. (4.31)

In terms of this new radial coordinate, the submanifold C in the plane Y 1-
Y D−2 is given by the curve ρ = 1, i.e. a circumference with radius 1, whatever
the explicit form of G(θ) is, avoiding the technical difficulty of solving an
equation inside an unknown boundary by numerical methods. In coordinates
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{ρ, θ}, the differential equation (4.30) is{[
1 +G2ρ2 +

(
G′

G

)2
]
∂2
ρ +

1

ρ2
∂2
θ −

2

ρ

G′

G
∂ρ∂θ +

1

ρ

[
2

(
G′

G

)2

−G
′′

G
− D − 4

tan θ

(
G′′

G

)
+ (D − 3) + (D − 2)G2ρ2

]
∂ρ

+
D − 4

ρ2 tan θ
∂θ − (D − 2)G2

}
H(ρ, θ) = 0,

(4.32)

which now can be solved numerically inside the circumference ρ = 1.
The boundary conditions for the last differential equations are the ones

in (4.5). In coordinates {ρ, θ}, they read

H(ρ = 1, θ) = Φ+(r = LG(θ), θ) (4.33)[
1 +

G′

G
+G2

]
∂ρΨ+(ρ = 1, θ)∂ρΨ+(ρ = 1, π − θ) = 4G(θ). (4.34)

where we have taken into account that Ψ−(r, θ) = Ψ+(r, π − θ) and the fact
that, from Ψ±|C = 0,

∂θΨ±(ρ = 1, θ) = 0. (4.35)

The equation (4.33) is a Dirichlet boundary condition for H over the circum-
ference ρ = 1. However, as we have discussed previously, it is not necessary
to solve the problem in the whole circle, being enough to do it inside the half
circle ρ = 1, θ ∈ [0, π]. This requires an additional boundary condition over
the θ = 0, π diameter (see fig. 4.3). This can be read from (4.27):

∂θH|θ=0 = 0, ∂θH|θ=π = 0, (4.36)

which is a Neumann boundary condition for H over the θ = 0, π diameter.
To tackle numerically the problem we use a finite difference method com-

bined with a trial-and-correction loop [55, 56] as follow: Given values for the
energy µ and the impact parameter b, we begin with some arbitrary ansatz
G0(θ) for the shape of C and solve (4.32) inside ρ = 1, θ ∈ [0, π] with the
Dirichlet condition (4.33) over ρ = 1 and the Neumann boundary condition
over the θ = 0, π diameter. To do it we use a finite difference method over
a 50 × 100(angular × radial) lattice and solve until a precision δ ∼ 10−4 is
reached. Then, from the solution obtained in this way, (Ψ+)0 = H0 + Ψ

(Sch)
+ ,

we compute

T0(θ) ≡[
1 +

G′0
G0

+G2
0

]
∂ρ(Ψ+)0(ρ = 1, θ)∂ρ(Ψ+)0(ρ = 1, π − θ)− 4G0(θ).

(4.37)
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Figure 4.3: Region where (4.32) has to be solved, with boundary
conditions (4.33) and (4.36). We construct a lattice inside it (red lines)
and solve numerically using a finite difference method.

The function T0(θ) measures the deviation of G0(θ) to satisfy the boundary
condition (4.34). Form it we construct a new sampling shape for C, G1(θ),
as

G1(θ) = G0(θ) + εT0(θ), (4.38)

where ε� 1, and repeat the procedure, computing a corrected solution H1,
computing a new correction function T1(θ) and so on. After a sufficient
number of iterations (typically 105 with ε ∼= 10−4), the correction function
Ti(θ) converges to zero with the desired precision and the corrected function
Gi(θ), approaches the shape of C which is the exact solution to (4.5) for the
given energy µ and impact parameter b. In the case the method described
here does not converge, it is supposed there is no Penrose trapped surface for
the values of the impact parameter and energy chosen. That is detected when
the minimal value of the function Ti(θ) begins to oscillate at random. Usually
this implies that the iteration of the code exceed 107 times, since convergence
normally happens below 106 iterations. In fig. 4.4 and simplified scheme of
the code is showed.

The solutions for C with the previous algorithm for several impact pa-
rameters and energy GDµ/L

D−3 = 1 in dimensions D = 4, 5, 6, 7 and 8 are
showed in fig. 4.5. The most internal curve in each graph corresponds to the
solution for a critical value of the impact parameter depending on the energy
, bc(µ), such that no any Penrose trapped surface is formed for impact param-
eters above this value [52, 55]. Our results show that for large enough impact
parameter at fixed energy, both shock waves collide without enough interac-
tion to create any Penrose trapped surface. A more detailed and exhaustive
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Figure 4.4: Simplified flux diagram for the code solving numerically
the unusual boundary problem (4.32), (4.33) and (4.34). We apply this
scheme in a sequential way from zero impact parameter until the critical
value is reached. The initial function G0(θ) is equaled to one when we
are at low impact parameter. However, to get a quicker code, when
we are close to the critical impact parameter we use the solution of the
previous case solved to propose the initial G0(θ).

numerical analysis in [55] shows that critical impact parameter grows with
energy following the law

bc(µ)

L
∼
(
GDµ

LD−3

) 1
D−2

, (4.39)

where the proportionality constant is of order one. In fig. 4.6 it is shown the
numerical data are well fitted by this scaling.

The scaling (4.39) is measured with respect to the AdS radius L. That
is because the collision we have solved numerically is at a value z = L of the
holographic coordinate, and the value of z determines, as we saw in Section
3.3, the size of the energy lumps in the boundary theory. Thus the scaling
(4.39) gives the dependence with energy of the critical impact parameter
measured in units of the size of the energy lumps. That seems physically
reasonable since it is expected that the critical impact parameter depends
on the size of the colliding energy lumps. Indeed, since scale transformations
can bring us from collisions at z = L to collisions at any other value of z, we
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Figure 4.5: Numerical solutions for the shape of the submanifold C in
the plane Y 1-Y D−2 for various values of the impact parameter b, energy
EGN

LD−3 = 1 and dimensions D = 4, 5, 6, 7 and 8 (from left to right, from
top to bottom). The outer curve corresponds to the head-on collision,
while the inner one corresponds to the critical impact parameter. The
successive points over the Y 1 axis mark the location of the shock wave
sources at the collision moment.

can rewrite the previous scaling for arbitrary size of the energy lumps: from
(4.21) and (4.22),

bc(µ0)

z0

∼
(
GDµ0

zD−3
0

) 1
D−2

. (4.40)

One consequence of scaling (4.39) is that the dependence of the critical
impact parameter with the energy flattens when the dimensions increases.
In the limit D → ∞ this seems to indicate that the critical behavior with
impact parameter decouples from the energy. This scaling is valid when
GDµ/L

D−3 & 1. In this case the physics is sensitive to the large-scale ge-
ometry of AdSD. On the other hand, when GDµ/L

D−3 � 1 the collision
effectively sees a flat space. Thus in this region (not plotted in the graphs
presented here) the flat space behavior is recovered. On dimensional grounds,
the scaling in flat background must be

bc ∼ µ
1

D−3 . (4.41)

Thus we should see a soft transition from scaling (4.39) to scaling (4.41)
for GDµ/L

D−3 � 1. Finally, in [53] the off-center collision in AdS5 has
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Figure 4.6: Plot for the critical impact parameter bc
L as a function of

GDµ
LD−3 . The points corresponds to the numerical results. The plot of the
right correspond to the fit of the results using scaling (4.39). The curves
correspond, from top to bottom, to D = 4, 5, 6, 7 and 8.

also been studied, but this time in a perturbative way, without finding any
critical value of the critical impact parameter for the formation of the Penrose
trapped surface. However, the authors of this reference works in a regime
where GDµ/L

D−3 � 1 while keeping fixed the impact parameter. As a
consequence, the results of [53] are always in a regime where the impact
parameter is much smaller than the critical value given by scaling (4.39), and
a critical behavior of the Penrose trapped surface with the impact parameter
cannot be detected.

4.1.3 Holographic interpretation

From the energy densities (3.106), the line element of two colliding AdS-Sch
shock waves is the gravitational dual for two energy lumps which collide with
impact parameter ~b and relativistic energy µ. After the collision happens, it
is physically acceptable to suppose that the formation of the Penrose trapped
surface evolves into an event horizon. Then, the holographic connection be-
tween horizons and finite temperature plasmas in the boundary field theory
can be used to fix the formation of the Penrose trapped surface as indica-
tive that a plasma themalization has happened in the boundary theory after
the collision of the relativistic energy lumps. Thus, in this framework, our
numerical computation shows that:

• The head-on collision of extremely boosted energy lumps always results
in a thermalized plasma. This coincides with the phenomena observed
in [56] for collisions of shock waves in flat space and [52] for collisions
in AdS5.
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• For off-center collisions, the result depends on the impact parameter as
well as on the energy collision in such a way that plasma thermalization
does not happen for too high impact parameter. This seems to be in
accordance with naive expectations.

From the boundary field theory point of view, the scaling (4.39) shows
how the critical impact parameter grows with the energy of the lumps that
collide in flat (D−1)-dimensional spacetime. Note that, since on the gravity
side of the duality we are in a regime where gravity is still classic (i.e. it obey
classic GR), the thermalized plasma produced at the boundary is strongly
coupled. Therefore, for D = 5, colliding AdS-Sch shock waves could be
understood as a gravitational toy model for sQGP production in high energy
collisions of heavy ions at laboratory. Regarding this, it is important to take
into account two important points of disagree:

• Even in the case in which the characteristics of the collision prevent
the formation of the Penrose trapped surface, it does not mean that no
event horizon is formed in the future light-cone. Other trapped surfaces
different form the Penrose one could appear and evolve eventually into
a horizon. For example, in [61] it was showed the formation of a trapped
surface over the future light-cone in flat RN shock wave collision, while
in [60] we showed that charge prevents the formation of any trapped
surface over the past light-cone.

• The holographic energy density (3.106) does not reproduce the energy
distribution of a extremely boosted heavy ion given in (3.114). This
does not means that the existence of a critical impact parameter for
themalization is void, but perhaps the scaling (4.39) must include some
kind of form factor correction.

In any case, these are technical difficulties in the sense that improved mod-
els could correct them. For example, the use of gravitational shock waves
without SO(D − 2) symmetry could help to achieve more accurate energy
densities for describing extremely boosted heavy ions.

In addition to the previous technical issues, be have to add the fact
that QCD is not a conformal theory but, however, the boundary theory
is. Thus the boundary theory has not a confined phase and we are not col-
liding hadrons to form sQGP, but “drops” of sQGP to form a thermalized
sQGP. An improved model must break in some way conformal symmetry to
give a more realistic description of sQGP creation in heavy ion collisions [53].
While this limitation can affect aspects of the model related to the number of
degrees of freedom, as entropy production, it seem reasonably to expect that
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AdS/CFT does not introduce severe departures with the conditions to ther-
malization in nonconformal scenarios. From this point of view, the existence
of a critical impact parameter, and maybe also the scaling (4.39), should be
approximately valid for nonconformal theories as QCD.

4.2 Gravitational dual of nonequal sized energy
lumps

In Section 3.3 of the previous chapter we showed that the energy-weighted
size of the colliding holographic energy lumps corresponds to the the value of
the holographic coordinate z0 of the colliding gravitational shock waves in the
AdS spacetime. Thus, by considering the collision of two shock waves propa-
gating at z+ and z− (z+ 6= z−) we have a gravitational dual to study collisions
between non-equal sized energy lumps in the boundary theory. Naively we
shall expect some kind of critical behavior for the formation of the Penrose
trapped surface on ∆z = |z+ − z−| since it seems physically acceptable that
enough different sized energy lumps may not thermalize.

Since we are interested in analyzing the effects of relative size, we collide
pure AdS-Sch gravitational waves. For zero impact parameter parallel to
the boundary, ~b, and a nonvanishing holographic impact parameter ∆z, the
components of the stress tensor before the collision are

Tuu = µ+

( z
L

)D−2

δ(u)δ(D−3)(~xT )δ(z − z+),

Tvv = µ−

( z
L

)D−2

δ(v)δ(D−3)(~xT )δ(z − z−).

(4.42)

and the chordal coordinates relative to each source are

q± =
1

4zz±

[
(z − z±)2 + ~x2

T

]
. (4.43)

In addition, to gain generality we shall not suppose the energies µ± sourcing
each shock wave are equal.

To find the Penrose trapped surface for this collision by solving again the
boundary problem (4.5) become, at least, repetitive and boring. One more
time it requires to run the numeric method exposed in the previous section,
this time for ∆z 6= 0 and ~b = 0, and it means a long computing time. On
the other hand, we are interested mainly in analyzing the possible existence
of a critical behavior for thermalization depending on the difference in the
sizes of the colliding lumps, not the Penrose surface itself. Fortunately the
isometries of the AdS spacetime can be exploited satisfactorily to link the
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collision numerically analyzed in the previous section (∆z = 0, ~b 6= 0) with
the one we want to solve now, ∆z 6= 0 and~b = 0, avoiding the numerical work
[55]. As in Section 4.1.2, we choose ~b directed along the x1 ≡ x coordinate,
and ~xT splitting as ~xT = (x, ~y).

In the analysis of the off-center collision of the previous section, we chose
spherical coordinates in HD−2 such that the sources of the colliding waves
were located at some r0 = Lβ and θ± = 0, π, with β > 0. In this way
the collision problem was reduced to the plane Y 1-Y D−2 where {r, θ} played
the role of ordinary polar coordinates. In the present case, there are not
impact parameter parallel to the spacetime boundary and therefore Y 1

± = 0.
In addition, we choose Y i

± = 0 for i = 2, . . . D − 3. Thus Y D−2
± = ±r0, and

the sources are located at

r0 = Lβ, β > 0 θ± = ±π
2
. (4.44)

Since, from (2.68), z = L2/(Y 0 + Y D−2) and x ≡ x1 = Y 1L/z,

z± =
L

(1 + β2)1/2 ± β
, x± = 0, (4.45)

and
∆z = |z+ − z−| = 2βL, b = |x+ − x−| = 0. (4.46)

The problem is one more time effectively restricted to the plane Y 1-Y D−2,
with {r, θ} polar coordinates again. Thus a rotation θ → θ+π/2 in this plane
should relate this situation with the one numerically solved in the previous
section, where b = 2βL and ∆z = 0 (see fig. 4.7). That corresponds to the
action of the SO(2) subgroup of the group SO(D− 2) of isometries of HD−2,

Y ′1 = Y 1 cosα + Y D−2 sinα

Y ′D−2 = −Y 1 sinα + Y D−2 cosα
(4.47)

for α = π/2. Under this rotation, z± and x± transform as,

z′±(α) =
L

(1 + β2)1/2 ± β cosα
, x′± = ± Lβ sinα

(1 + β2)1/2 ± β cosα
. (4.48)

Thus, after the rotation, the impact parameters are

∆z′ =
2Lβ cosα

1 + β2 sinα
, b′(α) =

2Lβ(1 + β2)1/2 sinα

1 + β2 sin2 α
. (4.49)

Because of the presence of sources in the collision problem, the action of
the subgroup SO(2) which rotates the plane Y 1-Y D−2 is no longer a sym-
metry of the solution. This becomes explicit when we carry on the transfor-
mation of the partial differential equation for the shock wave profiles under
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Figure 4.7: Schematic representation of the O(2) rotation over HD−2
to bring a collision with impact parameter only in the holographic co-
ordinate (b = 0, ∆z 6= 0) into a collision with purely boundary impact
parameter (b′ 6= 0, ∆z′ = 0).

(4.47). The left-hand side remains unchanged, whereas the transformation
of the right-hand side implies the energies of the sources are not preserved.
They change as2

µ′±(α) = µ±
(1 + β2)

1/2 ± β cosα

(1 + β2)1/2 ± β
. (4.50)

Providing this energy transformation, the line element before the collision
is preserved. From this point of view we are using the SO(2) underlying
symmetry as a solution generating technique, since the transformation of
a solution to the Einstein equations -the collision with impact parameter
directed along z- is again a solution but with other orientation of the impact
parameter and different energies.

Using the transformation discussed above, we have mapped the collision
problem with impact parameter along the holographic coordinate z into a
collision with impact parameter but where both sources have the same value
of z. However we have paid the price of transforming the energies of the
shock waves, in a way that one increases the energy whereas the second one
decreases it. This is a simple consequence of the UV/IR connection of the

2Note that the measure 1√
|g|
δD(xµ) in any D-dimensional metric manifold remains

invariant under isometries.
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AdS/CFT correspondence [94, 95]. The two energies can be balanced by
means of a longitudinal boost,

ū = λu′, v̄ = λ−1v′, λ > 0 (4.51)

which belong to the group of isometries SO(2, D−1) of the AdSD spacetime.
However, the entire line element of the spacetime is not preserved under
longitudinal boost, since the guu and gvv components of the metric in (4.1)
include a λ±1 factor after longitudinal boosts. This is compensated by a
simultaneous rescaling of the wave profiles by

Φ̄
(Sch)
± (q′±) = λ∓1Φ

(Sch)
± (q′±). (4.52)

This is understood as a change of the shock-waves energies,

µ̄±(α) = λ∓1µ′±(α) (4.53)

Equivalently, the transformation of the stress-energy tensor (4.42) under a
longitudinal boost gives (4.53). For our purposes, we take

λ2(α) =

(
µ+

µ−

)(
(1 + β2)

1/2 − β
(1 + β2)1/2 + β

)(
(1 + β2)

1/2
+ β cosα

(1 + β2)1/2 − β cosα

)
. (4.54)

Then, the energy µ̄(α) of the shock waves after this longitudinal boost is

µ̄(α) =
[
µ+µ−(1 + β2 sinα)

]1/2
. (4.55)

By applying the SO(2)-rotation previously discussed for α = π/2 followed
by the longitudinal boost we arrive at a collision symmetric in energies, which
happens at a constant value of the holographic coordinate and nonvanishing
impact parameter given by

z0 = z′±(α = π/2) =
L

(1 + β2)1/2
, b′(α = π/2) =

2Lβ

(1 + β2)1/2
(4.56)

At this point we are with the off-center collision (4.20) for an energy

µ0 =
√
µ+µ−(1 + β2). (4.57)

In addition, the scaling transformation (4.21) leave us with a collision which
happens at depth z′′ = L, impact parameter b′′ = 2Lβ and energy µ′′ =√
µ+µ−. Of course, the transformations can be applied in reverse order

and so the path we have traced is bijective. Thus we have constructed a
link between the off-center collisions analyzed in the previous section, which
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project as collisions with impact parameter in the CFT, and collisions having
holographic impact parameter, corresponding to collisions between nonequal
sized lumps in the CFT.

The consecutive application of the transformations previously described
can be used to construct a map to obtain the Penrose trapped surfaces for
the problem at hand form the Penrose trapped surfaces previously computed
by means of numerical techniques for off-center collision. In terms of the
Poincaré coordinates in HD−2, the inverse transformations are:

• Inverse SO(2) rotation:

z(α) =
L2z′

L2 cos2 α
2

+ (z′2 + ~x′
2

T ) sin2 α
2

+ Lx′ sinα
,

x(α) =
2L2x′ cos(α)− L

(
L2 − z′2 − ~x′

2

T

)
sin(α)

2L2 cos2 α
2

+ 2(z′2 + ~x′
2

T ) sin2 α
2

+ 2Lx′ sin(α)
,

~y(α) =
L2~y′

L2 cos2 α
2

+ (z′2 + ~x′
2

T ) sin2 α
2

+ Lx′ sin(α)

(4.58)

and we take α = π/2.

• Inverse longitudinal boost: the longitudinal boost (4.51) does not affect
to the Poincaré coordinates in HD−2.

• Inverse rescaling:

z′ =
z′′

(1 + β2)1/2
, ~x′T =

~x′′T
(1 + β2)1/2

. (4.59)

The Penrose trapped surfaces obtained from the numerical results for off-
center collisions by applying these inverse transformations are showed in fig.
4.2.

Since the off-center collision shows the existence of a critical value of
the impact parameter, b′′c = 2Lβc, that means the collision with impact
parameter directed along the z coordinate also shows such a critical behavior,
i.e. beyond a critical value (∆z)c = 2Lβc the Penrose surface does not appear
at the collision. From (4.40),

(∆z)c
L
∼
(
GD
√
µ+µ−

LD−3

) 1
D−2

(4.60)

This leads to the conclusion that there is a critical value for the size difference
|z+ − z−| in the CFT below which no trapped surface is formed. Physically
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Figure 4.8: Left panel. Sections of the Penrose trapped surfaces in
Poincaré coordinates {x′, z′} of equation (4.59). From outer inwards, the
curves correspond to the b/L = 0.0, b/L = 0.3, b/L = 0.6, b/L = 0.8 and
the critical value bc/L, with energy GDµ0/L

D−3 = 1 and D = 5. Right
panel. Section of the same Penrose surfaces after the inverse rotation
(4.58) for α = π/2. In both plot, the horizontal axis z′ = z = 0 represents
the boundary of H3.

this can be interpreted as indicating that, at a fixed energy, a too small energy
lump does not have enough degrees of freedom to induce thermalization after
a collision with a big one. In D = 5 and large size difference, the collision of
the lumps in the CFT could be used as a model to thermalization of sQGP
in hadron-nucleus collisions. Note that here we have considered the case of
head-on scattering but, however, we can get collisions with both spatial and
holographic impact parameter by an arbitrary angle 0 < α < π/2 in (4.48),
which corresponds to collisions of unequal objects with nonvanishing impact
parameter in the boundary theory. In this case note that, in the gravitational
dual, the quantities

Q0 = µ′+(α)µ′−(α)z′+(α)z′−(α) = µ+µ−,

Q± = µ′±(α)

[
1 +

z′±(α)2 + x′±(α)2

L2

]
= 2µ±L

(1 + β2)1/2

(1 + β2)1/2 ± β
,

(4.61)

are independent of the angle α and thus invariant under the SO(2) rotations.
It would be interesting to see if these invariants have any relevance in the
phenomenological description of hadron-nucleus collisions at strong coupling.
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4.3 Improving the model: Colliding AdS-RN
shock waves

AdS-Sch shock waves are the simplest we can collide to develop a model for
the the formation of thermalized plasmas in the boundary theory using the
AdS/CFT connection. This is a first step towards a concrete holographic
model of the sQGP production in heavy-ion high energy collisions. However
it has the problem that we can play with a limited set of parameters. Thus
it seems acceptable that the next step is to collide shock waves with a richer
structure, as for example fat shock waves or AdS-RN shock waves, such that
we have extra parameters to tune in order to get accurate models to reality.

As exposed in 3.2, in [57] the collision of fat shock waves was studied show-
ing that, in four and five dimensions, the formation of the Penrose trapped
surface depends on the diluting parameter ω. However there is no way to
understand this critical behavior from the boundary theory since the diluting
parameter ω has no influence over the expectation value of the holographic
stress tensor. This could be because the fat shock waves does not correspond
to any SUGRA solution or because the extension of the wave couples to
the vacuum expectation value of some unknown field in the boundary field
theory.

Unlike fat shock waves, AdS-RN shock waves come from a boost over
a well known GR solution, the Reissner-Nordström black hole. In [96] it
was showed that the Reissner-Nordström solution is indeed re-interpretable
as a solution to complete SUGRA IIB equations, whose holographic dual
is discussed in [97, 98]. Thus, AdS-RN sock waves can be extended to full
SUGRA solutions without the potential pitfalls mentioned in the case of fat
waves. By this reason we choose to study the collision of AdS-RN shock
waves to get an improved holographic model to plasma thermalization.

A simple computation shows that the size of the Reissner-Nordström
black hole horizon decreases with charge. In general terms, the horizon of
the Reissner-Nordström solution is located where

f(r) = 1 +
r2

L2
− 2M

rD−3
+

Q2

r2(D−3)
= 0. (4.62)

Since the charge term is always positive that means that, for fixed mass, there
is a maximum charge which cannot be exceeded in order to avoid a naked
singularity. In some sense it seems that electrical charge works against the
formation of horizons (for a more elaborated discussion see Section B.2).
The physical picture behind such behavior is not fully understood up to date
beyond the mathematical formalism, but one could think naively that it is a
consequence of the repulsive feature of electrical forces. As we will show later,
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colliding AdS-RN shock waves indicate that this, at least form the point of
view of the Penrose trapped surface, is not a good explanation.

This being said, here we are going to search for both Penrose surfaces
with topologies SD−2 and S1 × SD−3 [60]. The reason for the second one is
that the Penrose function Ψ(q) solving the differential equation with SD−2

topology shows a zero inside the integration region C. On the other hand, a
torus topology could isolate the harmful effects of the electromagnetic energy
density to form horizons. That idea is partly supported by the computation
at [61], where a trapped surface with internal and external radii was found
for colliding RN-shock waves in flat background.

Setting aside collisions with nonzero impact parameter, which would drag
out the analysis, we are going to center the study over head-on collisions. The
discussion must be particularized for each topology of the Penrose surface:

SD−2 topology. Because of the SO(D − 2) symmetry of the head-on colli-
sion, the intersection of the Penrose surface with the colliding surface,
C ⊆ HD−2, have constant chordal coordinate q0. Following the proce-
dure at Section 4.1, the differential equation satisfied by the Penrose
surface is (see equation (4.7) et sqq.),[

q(q + 1)
d2

dq2
+
D − 2

2
(2q + 1)

d

dq
− (D − 2)

] [
Φ−Ψ(RN)

]
= 0,

(4.63)

being the solution

Ψ(q) = Φ(RN)(q) + C1f1(q) + C2f2(q), (4.64)

where f1,2(q) are the functions given at (3.63). Since the function f1(q)
diverges at q = 0 and Ψ(q) must be finite inside C, we fix C1 = 0. In
addition, the solution must satisfy the boundary conditions

Ψ(q0) = 0, Ψ′(q0) = − 2L√
q0(q0 + 1)

. (4.65)

From the first one,

Ψ(q) = Φ(RN)(q)− 2q + 1

2q0 + 1
Ψ(RN)(q0). (4.66)

Finally, the second boundary condition introduced in (4.64) gives the
consistency equation for q0,

Φ(RN)′(q0)− 2

2q0 + 1
Φ(RN)(q0) +

2L√
q0(q0 + 1)

= 0. (4.67)
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Figure 4.9: Plot of the function Ψ(q) for D = 4 (left panel) and
D = 5 (right panel) for head-on collisions with energy GDµ/L

D−3 =
5. From top to bottom, the curves corresponds to charge parameters√
GDe/L

D−3 = 0.5, 0.75 and 1.0.

This algebraic equation cannot be solved analytically, and a numerical
approach is necesary to obtain the size of the Penrose surface, q0, for
each value of the parameters µ and e2, and dimension D.

The obstruction to the existence of trapped surfaces of the Penrose
type with topology SD−2 becomes clear when we fix our attention on
(4.66). The charge-dependent term in Φ(RN)(q) in (3.56) diverges to
minus infinity as q → 0+. Thus the function Ψ(RN)(q) in (4.66) has
a zero below q0, which contradicts the assumed SD−2 topology. This
is showed in fig. 4.3 in D = 4, 5 dimensions. The conclusions is that
there are no trapped surfaces of the Penrose type with topology SD−2

produced in the head-on collision of two RN-AdS shock waves.

S1 × SD−3 topology. The zero of Ψ(q) inside C in equation (4.66) strongly
suggest to search for a toroidal topology of the Penrose surface.

For a toroidal topology, C splits into two pieces,

C = Cin ∪ Cout. (4.68)

Because of the O(D − 2) symmetry, both components Cin and Cout
are SD−3 spheres defined by constant chordal coordinates q = qin and
q = qout. As a consequence, the equation (4.63) must be solved this
time in the region qin ≤ q ≤ qout, and the boundary conditions in (4.65)
are duplicated. The first boundary condition splits into

Ψ(qin) = 0, Ψ(qout) = 0. (4.69)
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while for the second one in (2.108) we have

Ψ′(qin) =
2L√

qin(qin + 1)
,

Ψ′(qout) = − 2L√
qout(qout + 1)

.

(4.70)

Note that the first equation have positive sign since Ψ(q) grows from 0
when q increases from qin.

The solution to (4.63) with the previous boundary conditions is still
given by (4.64), but now, because of q = 0 is not inside C, the function
f1(q), which is singular at the origin, enters in the solution. Thus
C1 6= 0, and both C1 and C2 are determined by the boundary conditions
(4.69),

C1f1(qin) + C2f2(qin) = −Φ(RN)(qin),

C1f1(qout) + C2f2(qout) = −Φ(RN)(qout).
(4.71)

Once these constants are solved in terms of qin and qout, we impose
the conditions at (4.70). This provides two algebraic equations that, in
principle, are enough to determine the values of qin and qout. However,
as can be seen in fig. 4.3, there is no simultaneous solution to the two
equations at (4.70) once the constants C1 and C2 have been fixed in
function of qin and qout. Thus we conclude that there is no Penrose
surface formation with toroidal topology.

Summarizing, although AdS-RN shock waves seemed to be promising
because of their relation to a well known SUGRA IIB solution, the collision
does not produce any Penrose surface. This does not mean that other trapped
surface could form after the collision happens but, in any way, is a negative
indication against the horizon formation in the collision. Considering the
CFT dual to Einstein- Maxwell theory, this indicate that thermalization after
head-on collision of energy lumps could not be possible. The physical reason
for that is not fully clear: the AdS-RN solution corresponds to the grand
canonical ensemble of the boundary CFT with the electromagnetic potential
a chemical potential coupled to the charge as measured from the boundary
[97, 98]. However, after the infinite boost limit to obtain the AdS-RN shock
waves there is no direct physical interpretation. In any case, the absence of
the Penrsoe surface in collisions of AdS-RN shock waves that we probe here
corrects the error in [59] where these trapped surfaces were computed despite
the function Ψ(q) takes negative values.
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Figure 4.10: Locus of the points in the plane (qout, qin) - D = 5
and GDe

2/L4 = 1 (left panel), GDe2/L4 = 0.5 (right panel)- where
the equations (4.70) are satisfied once the constants C1 and C2 are fixed
solving (4.71). The red curve corresponds to the first boundary condition
in (4.70), while the blue curve corresponds to the second one. The curves
approach each other near the origin, but never cross. The dashed lines
indicates the points where qin = qout, showing that the curves always
are in the region where qin < qout.

The absence of the Penrose trapped surface, beyond its holographic inter-
pretantion, seems to be in accordance with the idea that charge prevents the
formation of horizons, which follows from the solution to (4.62). However,
this idea must be revised since, although it seems physically acceptable, the
charge of the AdS-RN shock waves is zero, the same as the electromagnetic
field, as we discussed at the end of Section 3.1.



Chapter 5

Gauge symmetries in
noncommutative geometry

In this chapter we will deal with the second topic contained in the Thesis:
field theories on noncommutative spacetimes.

There are several reasons to be interested in noncommutative field the-
ories or NCFTs. The first one is that, near Planck scale, the spacetime
structure may be something like a foam of black holes, and it is expected
that below the Planck energy this situation can be effectively described by
means of noncommutative geometries, where locality is lost because of the
uncertainty relations between coordinates. Also NCFTs arise as a certain
low-energy limit of string theory, reinforcing the idea of NCFTs as a good
framework to develop effective theories of quantum gravity halfway between
string theory and classical Einstein gravity. Finally, NCFT can be viewed
form a purely mathematical point of view as a noncommutative deformation
of ordinary field theory, being interesting to study the mathematical behavior
resulting from incorporate a noncommutative feature to the spacetime.

In the contemporary Physics, gauge symmetries are one of the corner-
stones of the standard model, which is constructed as a local field theory.
Thus, seeing NCFTs either as a possible framework to go beyond stan-
dard model or as a purely mathematical deformation of the ordinary the-
ory, searching for a formulation of Yang-Mills symmetries in NCFTs is an
interesting task.

In this chapter we discuss a new type of gauge-like invariances that can
be defined in noncommutative gauge theories. Section 5.1 is dedicated to
a brief introduction to NCFT. In sections Section 5.2 and Section 5.3 we
introduce two different ways in which gauge invariance can be defined in
noncommutative spaces: star-gauge invariance and twist-gauge invariance.
In Section 5.4 we discuss about the physical relevance of these invariances,

109



110 5.1. Basics on nonconmutative field theory

i.e. the possibility to obtain conserved currents from them. Finally, in Section
5.5 we define an infinite family of star-twisted gauge invariances interpolating
continuously between star-gauge and twist-gauge invariances.

5.1 Basics on nonconmutative field theory
The goal of this section is to provide the basics tools on noncommutative
field theories to understand the followings sections, not to give a complete
exposition of the subject. The reader really interested in NCFT can find
detailed reviews in [8, 62, 63, 64, 65].

5.1.1 Noncommutative geometry and noncommutative
flat space

As it was sketched in the introductory chapter (Section 1.4), a noncommuta-
tive space is a space with noncommutative coordinates instead of commuta-
tive ones. More precisely, a noncommutative space is a manifoldM endowed
with a set of noncommutative coordinates, which can be represented as a set
of self-adjoint operators, {x̂1, x̂2 . . . x̂n}, over some Hilbert space H. We call
{x̂1, x̂2 . . . x̂n} the coordinate operators inM.

Taking into account that coordinates in any spaceM are the generators
of the algebra of continuous complex functions over the space, noncommuta-
tive spaces correspond to noncommutative algebras of continuous functions
over them. Strictly speaking, the connection between algebras of functions
and (Hausdorff) topological spaces is established by the Gel’fand-Naimark
theorem. It states the equivalence between commutative spaces and com-
mutative algebras, in such a way that to any Hausdorff topological space
locally compactM corresponds a commutative algebra C, being the connec-
tion a one-to-one map and C ' C0(M), the algebra of complex continuous
functions on M vanishing at infinity1. Extending the theorem to noncom-
mutative algebras gives the definition of noncommutative spaces as those
in one-to-one correspondence with noncommutative algebras, isomorphic to
the noncommutative algebras of continuous complex functions vanishing at
infinity,

noncommutative
spaceM ←−−−−−−−→ noncommutative

algebra ' C0(M)
(5.1)

1The restriction to functions vanishing at infinity is only necessary for locally compact
but no compact spaces. The algebras corresponding to compact spaces can include func-
tions with finite values at their boundaries. At the end, this traduces in the fact that
compact spaces are related to unitary algebras, whereas no compact spaces corresponds
to no unitary algebras.
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Summarizing, defining a noncommutative spaceM is equivalent to spec-
ifying the noncommutative algebra of continuous complex functions over it
vanishing at infinity, C0(M), which is completely determined by means of
the commutation relations between the generators of the algebra, that is, the
commutation relations between the coordinate operators {x̂1, x̂2 . . . x̂n}.

A simple example of noncommutative space is the fuzzy sphere of radius
R. It is defined as the noncommutative space with coordinate operators
{x̂1, x̂2, x̂3} satisfying

x̂2
1 + x̂2

2 + x̂2
3 = R2I, (5.2)

I being the identity in the noncommutative algebra generated by {x̂i}. A
solution to equation (5.2) is given by

x̂i =
R√

j(j + 1)
Ji, i = 1, 2, 3 (5.3)

being Ji the generators of the Lie algebra of SU(2) in a irreducible represen-
tation of spin j, with spectrum {−j,−j+ 1 . . . j− 1, j}. Thus the coordinate
operators {x̂i} generate the algebra

[x̂i, x̂j] =
iR√

j(j + 1)

3∑
k=1

εijkx̂k, (5.4)

which determines completely the fuzzy sphere of radius R.
From now on we shall work in the noncommutative space Rd

θ, defined as
the noncommutative space with coordinate operators {x̂µ}dµ=0 satisfying the
noncommutative algebra Aθ ' C0(Rd

θ) given by,

[x̂µ, x̂ν ] = iθµν , (5.5)

where θµν is an antisymmetric d× d matrix of real numbers and rank p not
necessarily2 equals to d. In addition, each coordinate operator has spectrum
R. Note that, from a purely mathematical point of view, Rd

θ is the simplest
noncommutative generalization of the commutative space Rd.

5.1.2 Weyl correspondence and Moyal product

Fields over Rd
θ are elements of the abstract algebra Aθ. For later use, it is

convenient to construct a representation of Aθ in the Hilbert space of contin-
uous complex functions vanishing at infinity over Rd. That means defining a

2Indeed, unitarity of any quantum field theory over Rdθ requires θ0i = 0, where 0 labels
the temporal direction and i the spatial ones [99].



112 5.1. Basics on nonconmutative field theory

noncommutative product ? between functions in Rd and an isomorphism of
algebras W such that [62, 63, 100]

W [f̂ ĝ](x) = W [f̂ ](x) ? W [ĝ](x), (5.6)

for any two elements f̂ , ĝ of Aθ.
Given a basis3 {Ôkµ} of Aθ, for any complex function f(x) ∈ C0(Rd) and

its Fourier transform f̃(kµ), we define the symbol of f(x) in the basis {Ôkµ}
as the element of Aθ given by

f̂Ô ≡
∫

ddk

(2π)d
f̃(kµ)Ôkµ . (5.7)

Any element of Aθ can be obtained as the symbol of some function f(xµ) ∈
C0(Rd). Furthermore, if {Ôkµ} is an orthonormal basis, in the sense that

Tr
(
ÔkµÔqµ

)
= δ(d)(kµ + qµ), (5.8)

Tr() being the trace operator in Aθ, equation (5.7) can be inverted,

f̃(kµ) ≡ Tr
(
Ôkµ f̂Ô

)
. (5.9)

In this way we associate to any element â of the abstract algebra Aθ the
Fourier transform of some function f(x) ∈ C0(Rd), such that â = f̂Ô, the
symbol of f(x) in the basis {Ôkµ} of Aθ . This defines a map in the sense
explained in the previous paragraph.

To particularize the map given by (5.9), we need to specify a basis of Aθ.
A specially useful basis is the one given by the set {eikµx̂µ ∀kµ ∈ Rd}, where
eikµx̂

µ are the elements of Aθ defined by the formal series

eikµx̂
µ ≡

∞∑
n=0

1

n!
(ikµx̂

µ)n. (5.10)

Normalizing the trace in Aθ such that

Tr
(
eikµx̂

µ)
= δ(d)(kµ), (5.11)

this basis is orthonormal in the sense of (5.8), and the equation (5.9) takes
the specially simple form,

f̃(kµ) = Tr
(
eikµx̂

µ

f̂
)
. (5.12)

3Since the spectrum of the coordinate operators x̂µ is Rd, each element of a basis of
Aθ must be labeled by a parameter kµ ∈ Rd.
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Then, the inverse Fourier transform of f̃(kµ) defines the bijective map given
by (5.9) in the basis {eikµx̂µ}. In the notation of (5.6),

W [f̂ ](x) ≡
∫
ddk Tr

(
eikµ(xµ−x̂µ)f̂

)
= f(x). (5.13)

This one-to-one map between functions of C0(Rd) and elements of Aθ is called
the Weyl correspondence or Weyl map [63].

From the definition (5.13) we can compute the noncommutative prod-
uct appearing in (5.6) so that the Weyl correspondence be an isomorphism.
First, note that, by construction of the Weyl map, plane waves are in corre-
spondence with “noncommutative plane waves”. That is,

W
[
eipµx̂

µ]
(x) = eipµx

µ

. (5.14)

On the other hand,

eipµx̂
µ

e−iqµx̂
µ

= e
i
2
p×qei(pµ−qµ)x̂µ , (5.15)

where we have used the Baker-Campbell-Hausdorff formula and

p× q = pµqνθ
µν . (5.16)

Therefore, from the property (5.14), the noncommutative product between
functions of C0(Rd) must be such that, for two plane waves,

W [eipµx̂
µ

e−iqµx̂
µ

] ≡ eipµx̂
µ

? e−iqµx
µ

= e
i
2
p×qei(pµ−qµ)xµ . (5.17)

From this equation, the explicit form for the noncommutative product of two
functions f(x), g(x) ∈ C0(Rd) is found using the Fourier transform of each
them. It results in

f(x) ? g(x) ≡ f(x) e
i
2

←−
∂ µθµν

−→
∂ ν g(x), (5.18)

where the arrows over the partial derivatives stand for derivation over previ-
ous (back arrow, ←) or later (forward arrow, →) functions in the equation,
i.e., expanding the exponential function in a power series,

f(x) ? g(x) =
∞∑
n=0

(i/2)n

n!
θµ1ν1 . . . θµnνn(∂µ1 . . . ∂µnf)(∂ν1 . . . ∂νng). (5.19)

This differential representation of the noncommutative product between or-
dinary functions corresponding to the Weyl map is called the Moyal product
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or star product [62]. With it, the Weyl map is an isomorphism between the
algebras Aθ and (C0(Rd), ?) as specified by (5.6).

Note that the Moyal product can be seen as a smooth deformation of
the ordinary commutative product between functions: in the limit θµν → 0,
equation (5.19) reduces to the usual product between functions, being this
limit smooth in the sense that it involves positive powers of θµν . From this
point of view, the space Rd

θ is just a smooth noncommutative deformation
of the commutative space Rd, constructed substituting the ordinary prod-
uct between functions by the Moyal product. Another important feature of
the Moyal product is its highly nonlocal nature since it involves an infinite
number of partial derivatives.

An relevant property of the Moyal product is that, inside an integral, it
is always possible to substitute one Moyal product by one ordinary product
without change the value of the integral,∫

ddxf(x) ? g(x) =

∫
ddxf(x)g(x). (5.20)

This property can be seen substituting each function in the right-hand side
by its Fourier transform,∫

ddxf(x) ? g(x) =

∫
ddx

∫
ddp

∫
ddq f̃(p)g̃(q)e−

i
2
p×qei(p+q)µx

µ

(5.21)

The integration with respect to xµ of the factor ei(p+q)µxµ gives a Dirac delta
δ(d)(p+ q). Using the the convolution theorem we arrive at∫

ddxf(x) ? g(x) =

∫
ddx

∫
ddp

∫
ddq f̃(p)g̃(q)ei(p+q)µx

µ

=

∫
ddxf(x)g(x).

(5.22)

As a corollary, the Moyal product inside an integral have the cyclic property,∫
ddxf(x) ? g(x) ? h(x) =

∫
ddxg(x) ? h(x) ? f(x) =

=

∫
ddxh(x) ? f(x) ? g(x).

(5.23)

These two properties will be used profusely in the next subsection.

5.1.3 Non-commutative functional actions

Defining field theories on noncommutative geometries reduces to construct
action functionals over such geometries. Then the field equations are obtained
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in the usual way as the conditions for the extremalization of the action we
are are considering.

Action functionals for field theories over Rd
θ are constructed using the

Weyl correspondence. Since fields over Rd
θ are elements of the algebra Aθ, for

each field theory over the commutative space Rd with action S[ϕ] we can con-
struct at least one functional action over Rd

θ, S?[ϕ], substituting commutative
products by star products in the commutative action S[ϕ]. For example, the
noncommutative version of the λΦ4 theory over Rd

θ is given by the functional
action

S?[Φ] =

∫
ddx

(
1

2
∂µΦ ? ∂µΦ− 1

2
m2Φ ? Φ− λ

4!
Φ ? Φ ? Φ ? Φ

)
. (5.24)

Constructed in this fashion, noncommutative field theories are smooth de-
formations of the commutative ones at the classical level, so that ordinary
theories are recovered smoothly in the commutative limit θµν → 0. How-
ever, note that noncommutative field theories constructed in this way are
not in one-to-one correspondence with commutative theories. It may exist
order ambiguities which leads to different noncommutative actions from the
same commutative theory. For example, for an interaction term ϕiϕiϕ

jϕj
in the commutative action, we have two not equivalents noncommutative
possibilities: ∫

ddx ϕiϕiϕ
jϕj =⇒


∫
ddx ϕi ? ϕi ? ϕ

j ? ϕj
∦∫

ddx φi ? ϕj ? ϕ
i ? ϕj

(5.25)

Thus, several not equivalent noncommutative field theories can have the same
commutative limit θµν → 0.

Given some noncommutative action, the field equations follow from it by
searching for the solution which extremizes the action. As an example, let
us consider a variation of the field Φ for the λΦ4 theory,

Φ→ Φ + δΦ, (5.26)

which satisfies the Leibniz rule with respect to the Moyal product of fields,

δ(Φ1 ? Φ2) = (δΦ1) ? Φ2 + Φ1 ? (δΦ2). (5.27)

Then, the variation of the noncommutative action (5.24) induced by (5.26)
is

δS? =

∫
ddx

[
1

2
(∂µΦ ? ∂µδΦ + ∂µδΦ ? ∂µΦ)

− 1

2
m2 (δΦ ? Φ + Φ ? δΦ)− λ

4!
(δΦ ? Φ ? Φ ? Φ

+ Φ ? δΦ ? Φ ? Φ + Φ ? Φ ? δΦ ? Φ + Φ ? Φ ? Φ ? δΦ)] .

(5.28)
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Using the cyclicity of the Moyal product under the integral symbol, this can
be written in the shorter form

δS? =

∫
ddx

(
−∂µ∂µΦ−m2Φ− λ

3!
Φ ? Φ ? Φ

)
? δΦ

+ Boundary Terms,
(5.29)

where we have also integrated out total derivatives. If the variation in (5.26)
vanish at infinity, the equations of motion associated with the action (5.24)
is

∂µ∂
µΦ +m2Φ +

λ

3!
Φ ? Φ ? Φ = 0. (5.30)

In general, this procedure cannot be generalized to arbitrary noncommu-
tative Lagrangian densities in order to obtain the noncommutative version
to the Euler-Lagrange equations. Naively, the noncommutative alter ego
of the Euler-Lagrange equations for a noncommutative Lagrangian density
L?(ϕi, ∂µϕi, xµ) should be

∂L?
∂ϕi
− ∂µ

(
∂L?

∂(∂µϕi)

)
= 0. (5.31)

However, the derivative of the star product of fields is not defined a priori.
Therefore, for each action functional the field equations must be obtained by
hand: computing the variation of the action and looking for a field solution
giving zero variation.

Because of one Moyal product can be removed inside an integral, qua-
dratic terms in noncommutative actions are formally equivalent to the ones
of in ordinary fields theories. Thus the kinetic and mass terms are identical
to those in the corresponding commutative one. In particular, they preserve
Lorentz invariance. However, interaction terms involve more that one star
product, and not all star products can be integrated out. Due to the presence
of θµν in the interaction terms, only the subgroup of the Lorentz group leaving
invariant θµν remains a symmetry for terms with n > 2 fields. In other
words, Lorentz symmetry is broken in interacting noncommutative theories.
For example, in four dimensions, for a noncommutativity given by

(θµν) =


0 0 0 0
0 0 0 0
0 0 0 θ
0 0 −θ 0

 (5.32)

the Lorentz symmetry is broken in SO(1, 1) × SO(2) ⊆ SO(1, 3) for any
interacting theory.
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Besides the break of Lorentz symmetry at the classical level, another fea-
ture of noncommutative field theories is the mixing of scales in the perturba-
tive quantum dynamics because of noncommutativity [65, 101]. Naively, it is
expected that the ultraviolet behavior of quantum field theories in noncom-
mutative spaces be better than in commutative ones, since noncommutativity
implies Heisenberg inequalities between coordinates,

∆xµ∆xν ≥ 1

2
|θµν |, (5.33)

and thus |θµν |1/2 seems to be a natural ultraviolet cut-off rendering the theory
finite. However, against intuition, planar diagrams in perturbative quantum
dynamics do not see the noncommutativity of space, while nonplanar dia-
grams substitute the ultraviolet divergences by infrared divergences. In this
way, noncommutativity introduces UV/IR mixing phenomena in quantum
perturbative dynamics, which is at the origin of interesting physical effects
[102, 103].

5.1.4 Non-commutative Yang-Mills theories

Following the prescription given in the previous subsection, the noncommu-
tative Yang-Mills Lagrangian density over Rd

θ follows from the commutative
one substituting dot products by star products,

LNCYM = iψ̄ ? /Dψ −mψ̄ ? ψ − 1

2
Tr (Fµν ? F

µν) , (5.34)

where we have coupled to a Dirac field ψ, with

Dµ = ∂µ − iλAµ? (5.35)

the covariant derivative and λ the gauge coupling constant. In addition, the
field strength tensor Fµν is defined as

Fµν =
i

λ
[Dµ, Dν ]? = ∂µAν − ∂νAµ − iλ[Aµ, Aν ]?, (5.36)

where [A,B]? = A ? B − B ? A. Note that the last equation goes one step
beyond the naive recipe given in the previous subsection to construct noncom-
mutative actions, since we also use the Moyal product to construct the field
strength tensor from the covariant derivative [14, 103]. As a consequence,
Fµν cannot be Lie algebra valued since, expanding (5.36),

Fµν = ∂µAν − ∂νAµ −
iλ

2
{Aaµ, Abν}?[Ta, Tb]−

iλ

2
[Aaµ, A

b
ν ]?{Ta, Tb}, (5.37)
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being Ta ( with a ∈ {1, 2, . . . dimRG}) the generators of the gauge group G.
We see that there is an extra term proportional to {Ta, Tb} because of the
noncommutativity of the star product, which forces us to consider that the
field strength Fµν takes values in the universal enveloping algebra of the Lie
algebra of G,

Fµν = F (0)
µν I + F a

µνTa + F a1a2
µν Ta1Ta2 + F a1a2a3

µν Ta1Ta2Ta3 + . . . (5.38)

with I the unity in the universal enveloping algebra. We shall denote by g the
Lie algebra of the gauge group G, and U(g) its universal enveloping algebra.

The field equations for (5.34) are obtained by imposing zero variation of
the functional action under variations of the fields over extremal solutions.
For a pure Yang-Mills theory (without Dirac field), the field equations result
in,

∂µF
µν − iλ[Aµ, F

µν ]? = 0, (5.39)

as we had naively expected from the prescription of changing dot products
by Moyal products. Since the field strength Fµν takes values in the universal
enveloping algebra U(g) and not in the Lie algebra g, this field equation
forces us to consider also that the gauge field Aµ takes values in U(g). Thus
consistency of the field equation yields to consider an infinite number of gauge
bosons A(0)

µ , Aaµ, A
a1a2
µ , Aa1a2a3µ , . . . associated with the infinite generators of

U(g),

Aµν = A(0)
µ 1 + Aa

µTa + Aa1a2
µ Ta1Ta2 + Aa1a2a3

µ Ta1Ta2Ta3 + . . . (5.40)

So, it seems that noncommutative Yang-Mills theories has infinite gauge
degrees of freedom. However, this may not be true at all: in [71] it has been
proposed the existence of a map between commutative and noncommutative
Yang-Mills theories in a way that commutative and noncommutative gauge
orbits are in one-to-one correspondence. In this way, the so called Seiberg-
Witten map allows to relate gauge degrees of freedom of the commutative
and noncommutative worlds. Thus, form this point of view, the number of
gauge degrees of freedom of any noncommutative Yang-Mills theory may be
finite, since the infinite sequence of gauge fields appearing in (5.40) could be
expressed, in principle4, in terms of the finite gauge fields of the commutative
theory though the Seiberg-Witten map. Indeed, for unitary but not special
gauge groups, U(N), the anticommutator of any two generators of the group

4Up to date, there is no any exact analytical solution to the Seiberg-Witten map. It
has been explicitly computed only perturbatively in powers of θµν at low orders. Thus the
possibility of relate the apparently infinite gauge degrees of freedom of a noncommutative
Yang-Mills theory with the finite gauge degrees of freedom in the commutative limit is,
nowadays, only a conjecture.
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is inside the Lie algebra of the gauge group (taken as a vectorial space),
u(N), and thus the gauge degrees of freedom are finite for U(N) gauge groups
without any need to make use of the Seiberg-Witten map.

Beyond the fact that the gauge fields of noncommutative Yang-Mills the-
ories take values in U(g), noncommutativity introduces a richer dynamics
than the one in commutative theories. This is specially glaring in noncom-
mutative QED. In this case, in spite of the gauge group being Abelian, there
are interaction terms between (noncommutative) photons because of the star-
commutator in (5.36). In this way, quantum noncommutative QED includes
vertices with three and four photons depending on θµν ,

λψ̄ ? γµAµ ? ψ ∼ 1,

λ2∂µAν ? [Aµ, Aν ]? ∼ sin θ,

λ2[Aµ, Aν ]? ? [Aµ, Aν ]? ∼ sin2 θ,

with θ the noncommutative parameter as in (5.32). In a similar way, vertices
in nonAbelian Yang Mills theories in Rd

θ present a more complicated dynam-
ics than in their commutative limit. Obviously, this new dynamics does not
appear in nature, neither for QED nor weak and strong interactions. To-
gether with the breaking of Lorentz invariance and the UV/IR phenomena
discussed in the previous subsection, this not observed new dynamics yields
to an extremely poor phenomenological perspective for noncommutative field
theories and, in particular, for noncommutative Yang-Mills theories5.

From a purely conceptual point of view, the main problem of noncommu-
tative Yang-Mills theories is that they are not invariant under ordinary gauge
transformations. This can be seen even for the quadratic term ψ̄ ? ψ: given
some local element of the gauge group G in the fundamental representation,

U(x) = eiω
a(x)Ta , (5.41)

5Strictly speaking the absence of vertices with three and four photons in the experimen-
tal data obtained up to date only establishes an upper bound for the noncommutativity
scale of flat spacetime in accordance with observations. On the other hand, the UV/IR
mixing can be kept under control by including a cut-off Λ in the theory. Then the UV range
is completed with a supersymmetric theory as N = 4 SYM. However this leads to pho-
tons with mass and birefringence. Keeping these new phenomena under the experimental
bound requires a specific fine tuning of the breaking of supersymmetry [103].
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with Ta the generators of G in the fundamental representation and ωa(x) real
functions, the associated gauge transformation of ψ̄ ? ψ is

ψ̄(x) ? ψ(x)→
(
ψ̄(x)U †(x)

)
? (U(x)ψ(x)) 6= ψ̄(x) ? ψ(x), (5.42)

since the star product also acts over the dependence on x of the gauge trans-
formation, and therefore the Lagrangian density (5.34) is not invariant under
ordinary gauge transformations. In physical terms, the local nature of gauge
transformations is a priori incompatible with the highly nonlocal nature of
the Moyal product. In this way, noncommutative Yang-Mills theories lose
the ordinary gauge invariance as the symmetry which justifies them: in com-
mutative theories, invariance under local gauge transformations yields to the
introduction of gauge fields but, however, we lose this construction in non-
commutative geometries and thus (5.34) has no mathematical justification.
Although conceptual, this is a serious problem, since now we have not a
symmetry fixing the dynamics of noncommutative Yang-Mills theories.

Note that the not invariance of (5.42) is based on two assumption:

• The gauge group locally acts in the usual way (through the standard
product) over fields. That is, we suppose that, even in noncommutative
geometry, local gauge transformation of a field in a representation R of
the gauge group G is given by

ΨR → URΨR. (5.43)

• It acts over the star product of fields in an ordinary way. That is,
transformation of the first field star-times the transformation of the
second field,

ΨR1 ?ΨR2 →
(
UR1ΨR1

)
?
(
UR2ΨR2

)
. (5.44)

Equations (5.43) and (5.44) define the standard way in which the gauge
group locally acts over the field algebra. While the action defined in this way
results in an invariance of the Yang-Mills theory for θµν → 0, it is not for a
finite value of θµν . Changing one of these two equations (or the two at the
same time) can help us to define adapted local gauge transformations to a
noncommutative geometry in a way that the action associated with (5.34) be
invariant under them. In other words, we have to redefine the way in which
the gauge group acts over the field algebra in order to define an invariance
for finite θµν . Thus, noncommutative geometry does not only change the
product of the field algebra, but also deforms the way in which the local
symmetries act over such algebra. In the following sections we see how.



5. Gauge symmetries in noncommutative geometry 121

5.2 Star-gauge invariance

Star-gauge transformations arise when we deform the ordinary group action
over the fields (5.43) by replacing the ordinary product by the Moyal one.
In this way we construct “star”-representations of the gauge group which
are compatible with the highly nonlocal feature of the field algebra over Rd

θ

and, as a consequence, the noncommutative Yang-Mills Lagrangian density
remains invariant under the so called star-gauge transformations [10, 71].

Let us begin defining the infinitesimal star-gauge transformation of a field
ΨR in some representation R of the gauge group G as

δ?ωΨR(x) = iωa(x)Ta ?ΨR(x), (5.45)

Ta being the generators of G in the representation R. The difference with
the ordinary infinitesimal gauge transformations is the inclusion of the star
product before the field ΨR. This infinitesimal “star-action” of the gauge
group extends to the algebra of fields by means of the ordinary Leibniz rule,

δ?ω
(
ΨR1 ?ΨR2

)
= δ?ω

(
ΨR1

)
?ΨR2 + ΨR1 ? δ?ω

(
ΨR2

)
, (5.46)

for any two fields ΨR1 and ΨR2 transforming in representations R1 and R2

of G. Finite transformations are obtained by exponentiation of (5.45) and
(5.46),

ΨR(x) −→ UR
? (x) ?ΨR(x)

ΨR1 ?ΨR2 −→
(
UR1
? ?ΨR1

)
?
(
UR2
? ?ΨR2 ,

) (5.47)

where

UR
? (x) =

∞∑
n=0

in

n!
ωa1(x) ? . . . ? ωan(x)Ta1 . . . Tan . (5.48)

Defined in this way, the operators UR
? (x) satisfy the group law with respect

to the star product. In particular, for a star-gauge transformation in the
fundamental representation, U?(x),

U? ? U
†
? = U †? ? U? = 1, (5.49)

where we have assumed the existence of unitary representations for the gauge
group G (that is always true for U(N)). This leads directly to the star-gauge
invariance of the quadratic term,

ψ̄ ? ψ −→ ψ̄ ? U †? ? U? ? ψ = ψ̄ ? ψ. (5.50)
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In general, the Moyal product of any two objects transforming in the anti-
fundamental and fundamental representation of the gauge group is invariant
under star-gauge transformations.

Since ψ̄ ? ψ does not change under star-gauge transformations, the whole
noncommutative Yang-Mills action can become invariant under star-gauge
transformations if we give a suitable transformation law for the gauge field
Aµ. For this, the gauge group G must act over Aµ such that Dµψ transforms
covariantly in the fundamental representation,

Dµψ −→ U? ? Dµψ. (5.51)

In this way, we would get the invariance of the term iψ̄ ? /Dψ. This is done
by imposing the following transformation of Aµ:

Aµ −→ U? ? Aµ ? U
†
? −

i

λ
(∂µU?) ? U

†
? . (5.52)

Note that this is essentially the ordinary gauge transformation of Aµ sub-
stituting ordinary products by star ones. Finally it remains to check the
invariance of the trace term in (5.34) to prove the invariance of the whole
noncommutative Yang-Mills action under star-gauge transformations. From
the previous transformation of Aµ and the definition of Fµν in (5.36),

Fµν −→ U? ? Fµν ? U
†
? . (5.53)

Then, by the cyclicity of the Moyal product under the integral symbol (5.23),∫
ddxTr (Fµν ? F

µν) −→
∫
ddxTr

(
U? ? Fµν ? F

µν ? U †?
)

=

∫
ddxTr (Fµν ? F

µν) ,

(5.54)

which, together with (5.50) and (5.51), proves the invariance of the noncom-
mutative Yang-Mills action under star-gauge transformations. Notice that in
the case of noncommutative QED, the field strength is not gauge invariant,
but transforms in the “star-adjoint representation” (see below) of U(1), which
is nontrivial.

Until now we have worked with matter fields in the fundamental and an-
tifundamental representation of the gauge group G. Naively we could expect
the star-gauge invariance to be compatible with matter fields in any other
representation of G, as it occurs in ordinary field theory. Unfortunately,
this is only possible for fields in the trivial, fundamental, antifundamental
and adjoint representations [104, 105]. The reason is that only for fields in
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these representations we can construct covariant derivatives under star-gauge
transformations, i.e. such that

DR
µΨR −→ UR

? ? D
R
µΨR. (5.55)

Explicitly, these covariant derivatives are,

Singlet: D0
µφ = ∂µφ,

Fundamental: Dµψ = ∂µψ − iλAµ ? ψ,
Antifund. : Dµψ̄ = ∂µψ̄ + iλψ̄ ? Aµ,

Adjoint: D(Adj)
µ Φ = ∂µΦ− iλ[Aµ,Φ]?.

(5.56)

This restrict drastically the models we can build with star-gauge invariance.
An important feature of star-gauge invariance is that the transformation

of the gauge field goes outside the Lie algebra g of the gauge group G: for an
infinitesimal star-gauge transformation, we have

δ?ωAµ = i[ωaTa, Aµ]? +
1

λ
∂µω

aTa. (5.57)

This can be expanded as

δ?ωAµ =
i

2
{ωa, Abµ, }?[Ta, Tb] +

i

2
[ωa, Abµ, ]?{Ta, Tb}+

1

λ
∂µω

aTa, (5.58)

and the anticommutator {Ta, Tb} is, in general, outside the Lie algebra g.
Therefore we have to consider enveloped valued gauge fields or, alternatively,
restrict our attention to U(N) gauge groups [10, 11]. However, remember
that we found this same constrain when we considered the field equations
for noncommutative Yang-Mills theories (see Section 5.1.4). Thus, strictly
speaking, star-gauge transformations do not impose any additional condition
in this sense.

5.3 Twist-gauge invariance

A manifest shortcoming of star-gauge invariance from the point of view of
model building is that it cannot be implemented for gauge groups different
from U(N) and for fields in arbitrary representations of the gauge group.
Luckily, we can formulate gauge transformations in Rd

θ by either deforming
the way in which the gauge group locally acts on the fields (star-gauge trans-
formations) or deforming the action of the gauge group on the Moyal product
of fields. Since this last option does not modify the ordinary local action of
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the gauge groups over the fields, but over their Moyal product, it allows mat-
ter fields in any representation of the gauge group. These are the so called
twist-gauge transformations [13, 14, 68].

In the end, infinitesimal gauge transformations are given by the action of
the Lie algebra g of the gauge group G over the algebra of fields or, being
pragmatic, the action of the universal enveloped algebra of g, U(g), over
the field algebra. In order to define the infinitesimal transformation of the
product of fields, the enveloped algebra must be equipped with a coproduct6
∆ : U(g) −→ U(g) ⊗ U(g). For example, in the case of commutative Yang-
Mills theory and ordinary gauge transformations, the coproduct is

∆(ω) = ω ⊗ 1 + 1⊗ ω, (5.59)

for all ω ∈ U(g), and the infinitesimal gauge transformation of any product
of fields is defined as 7

δω(ΨR1ΨR2) ≡ µ
[
i∆R1×R2(ω)(ΨR1 ⊗ΨR2)

]
, (5.60)

with µ(a ⊗ b) = ab the (commutative) product in the field algebra. Acting
with the the coproduct on the fields this gives the Leibniz rule for infinitesimal
gauge transformations,

δω(ΨR1ΨR2) = (δωΨR1)ΨR2 + ΨR1(δωΨR2). (5.61)

Finally, by exponentiation we get the ordinary finite gauge transformation of
the product of fields,

ΨR1ΨR2 −→
(
UR1ΨR1

) (
UR2ΨR2

)
. (5.62)

In mathematical terms, the coproduct give us the rule to transform elements
in the product (Kronecker) representation R1 × R2 from the transformation
of elements in the representations R1 and R2 of the gauge group.

In the case of the noncommutative field theory over Rd
θ, the Moyal product

can be written in the previous notation as

Ψ1 ?Ψ2 = µ
(
F−1Ψ1 ⊗Ψ2

)
, (5.63)

with F the twist operator, defined as the bilinear operator

F =
∞∑
n=0

−i/2
n!

θµ1ν1 . . . θµnνn∂µ1 . . . ∂µn ⊗ ∂ν1 . . . ∂νn = e
−i
2
θµν∂µ⊗∂ν . (5.64)

6For a general overview of Hopf algebras see [106] and Appendix A of [70].
7We define ∆R(ω) as the coproduct of ω ∈ U(g) acting over fields in the representation

R of the gauge group G.
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Then, we define the twist-gauge transformations as the ones which act in the
ordinary way over individual fields,

δtωΨR ≡ iωaTaΨ
R, (5.65)

but such that the infinitesimal transformation of the Moyal product of two
fields is

δtω
(
ΨR1 ?ΨR2

)
≡ µ

[
i∆R1×R2(ω)F−1ΨR1 ⊗ΨR2

]
, (5.66)

with µ the ordinary (commutative) product and ∆(ω) the ordinary coproduct
(5.59).

However, we can as well use a “twisted” coporduct

∆F(ω) ≡ F∆(ω)F−1, (5.67)

such that

δtω
(
ΨR1 ?ΨR2

)
≡ µ

[
F−1i∆R1×R2

F (ω)ΨR1 ⊗ΨR2
]
, (5.68)

which, taking as a reference (5.60), can be identified as a modified Leibniz
rule for the star-product, thus twisting the ordinary coproduct (5.59) by the
twist operator (5.64). Finally, by exponentiation of (5.66) we get the finite
twist-gauge transformation of a star-product of fields,

ΨR1 ?ΨR2 → µ
[
(UR1 ⊗ UR2)F−1ΨR1 ⊗ΨR2

]
. (5.69)

Manipulating (5.66), the modified Leibniz rule for twist-gauge transfor-
mations takes the form

δtω(ΨR1 ?ΨR2) = µ
[
i∆(ω)F−1ΨR1 ⊗ΨR2

]
= i

∞∑
n=0

(i/2)n

n!
θµ1ν1 . . . θµnνnµ

[
∆(ω)∂µ1 . . . ∂µnΨR1 ⊗ ∂ν1 . . . ∂νnΨR2

]
= i

∞∑
n=0

(i/2)n

n!
θµ1ν1 . . . θµnνnµ

[
ωaTa∂µ1 . . . ∂µnΨR1 ⊗ ∂ν1 . . . ∂νnΨR2

+∂µ1 . . . ∂µnΨR1 ⊗ ωaTa∂ν1 . . . ∂νnΨR2
]
,

(5.70)

which, taking into account the definition of the Moyal product (5.19) can be
recast into the more compact equation

δtω(ΨR1 ?ΨR2) = iωa
[
(Taψ

R1) ?ΨR2 + ΨR1 ? (TaΨ
R2)
]
. (5.71)
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This last equation can be used to show the star-product of fields in the
fundamental and antifundamental representations of G is invariant under
twist-gauge transformations,

δtω(ψ̄ ? ψ) = iωa
[
−
(
ψ̄Ta

)
? ψ + ψ̄ ? (Taψ)

]
= 0 (5.72)

In a similar way, the star-product Tr(Fµν?F µν) is invariant under twist-gauge
transformations. In this case, for an adjoint field Φ we have,

δtωΦ = iωa[Ta,Φ], (5.73)

with Ta the generators of the gauge group acting over the fundamental rep-
resentation. Thus, the star-product Fµν ? F µν transforms as

δtω (Fµν ? F
µν) = iωa ([Ta, Fµν ] ? F

µν + Fµν ? [Ta, F
µν ])

= iωa[Ta, Fµν ? F
µν ].

(5.74)

Therefore Tr(Fµν ? F µν) is invariant under twist-gauge transformations,

δtωTr(Fµν ? F
µν) = Tr

[
δtω(Fµν ? F

µν)
]

= 0. (5.75)

Equations (5.72) and (5.75) prove the invariance under twist-gauge trans-
formations of the fermion mass and F 2 terms of the noncommutative Yang-
Mills Lagrangian (5.34). For the term including the covariant derivative, we
have

δtω(Dµψ) = ∂µδ
t
ωψ − iλδtω(Aµ ? ψ). (5.76)

Using the notation of [107], we define

Aµ =

(
Aµ
1

)
,

R(ωa) =

(
ωa − i

λ
∂µω

a

0 0

)
,

R(T a) =

(
Adj T a 0

0 T a

)
,

(5.77)

the infinitesimal gauge transformation of Aµ, δtω = iωa[Ta, Aµ] + 1
λ
∂µω

aTa,
can be written as

δtωAµ = iR(ωa)R(Ta)Aµ, (5.78)

with (Adj Ta)Aµ = [Ta, Aµ]. Written in this way, Aµ seems to transform in
some “representation” of the gauge group. Thus, from (5.71), the variation
of Aµ ? ψ must be given by

δtω(Aµ ? ψ) = iR(ωa) [R(Ta)Aµ ? ψ] + iωa [Aµ ? (Taψ)] . (5.79)
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The first component of this equation gives us the transformation of the star-
product (Aµ ? ψ),

δtω(Aµ ? ψ) = iωaTa(Aµ ? ψ) +
1

λ
(∂µω

a)Taψ. (5.80)

Substituting in (5.76), we get finally the transformation of the covariant
derivative Dµψ,

δtω(Dµψ) = ∂µ(iωaTaψ) + λωaTa(Aµ ? ψ)− i(∂µωa)Taψ
= iωaTaDµψ,

(5.81)

i.e., Dµψ transform as a field in the fundamental representation of the gauge
group. Thus δtω(ψ̄ ? /Dψ) = 0, and the term of the covariant derivative in
(5.34) remains unchanged under twist-gauge transformations. Together with
equations (5.72) and (5.75) this proves the invariance of the whole noncom-
mutative Yang-Mills Lagrangian (5.34) under twist-gauge transformations.

5.4 Star- and twist-gauge invariances as true
symmetries

So far we have considered star- and twist-gauge transformations as invari-
ances of the noncommutative Yang-Mills theory without elevating them to
the category of true physical symmetries, this means, associated with con-
served currents.

Mathematically, the extra terms appearing in the twisted Leibniz rule for
twist-gauge transformations can be understood as due to a transformation of
the star-product itself under gauge transformations [70] and thus, from this
point of view, they are not standard, bona-fide transformations since they
involve not only the transformation of fields but of the product operation as
well. This prevents the standard procedures to obtain Noether currents and
Ward identities from the twist-gauge invariance. On the other hand, any
theory with twist-gauge invariance is also invariant under the corresponding
star-gauge transformations. The latter can be considered a standard invari-
ance of the theory in the sense that it acts only on fields. In this way, in [70]
it was argued that star-gauge transformations play a custodial rôle in guar-
anteeing the existence of conserved current and Ward identities, and thus
the invariance under star-gauge transformations is the true symmetry of the
theory. This point of view was further supported in [69], where it was argued
that the consistency of the twisted gauge theory requires the presence of the
custodian star-gauge symmetry.
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Let us begin considering twist-gauge transformations. Note that we can
write equation (5.69) in the form

ΨR1 ?ΨR2 →

µ
[
(UR1 ⊗ UR2)F−1(UR1

−1 ⊗ UR2
−1

)(UR1ΨR1 ⊗ UR2ΨR2)
]
.

(5.82)

This could be interpreted as some ordinary gauge transformation where the
twist operator F also transforms,

F → (UR1 ⊗ UR2)F−1(UR1
−1 ⊗ UR2

−1
). (5.83)

This can be interpreted as a transformation of the star product itself with
respect to gauge transformations [70, 72]. Infinitesimally, from (5.83), such
transformation are given by

ΨR1(δtω?)Ψ
R2 ≡ µ

[
(δtωF−1)ΨR1 ⊗ΨR2

]
, (5.84)

where
δtωF−1 = e

i
2

[(δtω∂µ)⊗∂ν+∂µ⊗(δtω∂ν)]
∣∣∣
ω
, (5.85)

with δtω∂µ the linear term in UR∂µU
R−1 when we expand in powers of ω ≡

ωaTa, (
eiω∂µe

−iω)ΨR = (∂µ + iω∂µ − i∂µω + . . .) ΨR

=⇒ δtω∂µ = −[∂µ, ω].
(5.86)

Substituting in (5.85),

δtωF−1 =

F−1 i

∞∑
n=1

(−i/2)n

n!
θµ1ν1 . . . θµnνn {[∂µ1 , [. . . , [∂µn , ω] . . .]]⊗ ∂ν1 . . . ∂νn

+ ∂µ1 . . . ∂µn ⊗ [∂ν1 , [. . . , [∂νn , ω] . . .]]}

(5.87)

where we have used the standard Leibniz rule over the tensorial product
θµν∂µ ⊗ ∂ν ,

δtω(θµν∂µ ⊗ ∂ν) = −θµν ([∂µ, ω]⊗ ∂ν + ∂µ ⊗ [∂ν , ω]) , (5.88)

together with the well-known formula

eA+δA
∣∣
δA

= eA
∞∑
n=1

(−1)n

n!
[A, [A, . . . [A, δA] . . .]]. (5.89)
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In this way, from (5.87), we get an analytical expression for (5.84),

ΨR1(δtω?)Ψ
R2 =

= i
∞∑
n=1

(−i/2)n

n!
θµ1ν1 . . . θµnνn

{
[∂µ1 , [. . . , [∂µn , ω] . . .]]ΨR1

? ∂ν1 . . . ∂νnΨR2 + ∂µ1 . . . ∂µnΨR1 ? [∂ν1 , [. . . , [∂νn , ω] . . .]]ΨR2
}
.

(5.90)

On the other hand, using the Hadamard formula,

eA B e−A = B +
∞∑
n=1

1

n!
[A, [A, . . . [A,B] . . .]], (5.91)

the twisted coproduct we defined in (5.67) can be expanded as

∆F(ω) = ∆(ω)

+
∞∑
n=1

(−i/2)n

n!
θµ1ν1 . . . θµnνn {[∂µ1 , [. . . , [∂µn , ω] . . .]]

⊗ ∂ν1 . . . ∂νn + ∂µ1 . . . ∂µn ⊗ [∂ν1 , [. . . , [∂νn , ω] . . .]]} ,

(5.92)

which, once we substitute into equation (5.68), gives

δtω(ΨR1 ?ΨR2) = (δtωΨR1) ?ΨR2 + ΨR1 ? (δtωΨR2)

+ i
∞∑
n=1

(−i/2)n

n!
θµ1ν1 . . . θµnνn

{
[∂µ1 , [. . . , [∂µn , ω] . . .]]ΨR1

? ∂ν1 . . . ∂νnΨR2 + ∂µ1 . . . ∂µnΨR1 ? [∂ν1 , [. . . , [∂νn , ω] . . .]]ΨR2
}
.

(5.93)

The last term in this equation coincides with (5.90). Therefore, assuming the
transformation of the Moyal product itself given in (5.84), we can write the
infinitesimal change under twist-gauge transformations of the star-product
of fields in a extremely compact form:

δtω(ΨR1 ?ΨR2) = (δtωΨR1) ?ΨR2 + ΨR1 ? (δtωΨR2) + ΨR1(δtω?)Ψ
R2 . (5.94)

That is, the modified Leibniz rule for twist-gauge transformations we define
in the previous section can be viewed as an ordinary Leibniz rule where the
Moyal product also transforms itself [70]. In some sense this is a weird result,
since the Moyal product is a feature of the theory related with its underlying
geometrical structure which, a priori, is no related to the gauge degrees of
freedom of the theory. Thus, this could be regarded as a first indication
that twist-gauge invariance cannot be consider as the true gauge symmetry
in noncommutative Yang-Mills theories.
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In principle, since star-gauge invariance does not imply modifying the
coproduct in the enveloping universal algebra of the gauge group, it is a bet-
ter candidate to true gauge symmetry than twist-gauge invariance. Indeed,
following the standard Noether construction, star-gauge invariance leads to
conserved currents: let us consider a point-to-point “global” star-gauge trans-
formation8 over a solution to the gauge field equations,

δ(?)
ω Aµ ≡ i[ω,Aµ]?. (5.95)

Since ω depends on the coordinates, there are terms depending on derivatives
of ω in the variation of the strength field Fµν under this transformation,

δ(?)
ω Fµν = ∂µδ

(?)
ω Aν − ∂νδ(?)

ω Aµ − iλ[δ(?)
ω Aµ, Aν ]− iλ[Aµ, δ

(?)
ω Aν ]

= i[ω, Fµν ]? + i {[∂µω,Aν ]? − [∂νω,Aµ]?} .
(5.96)

Considering a pure Yang-Mills theory (i.e. without matter fields), the addi-
tional terms depending on ∂µω generate a variation of the action functional
given by

δ(?)
ω S = −2i

∫
ddxTr [(Aν ? Fµν − F µν ? Aν) ? ∂µω] . (5.97)

Integrating by parts and dropping global derivatives, we finally obtain

δ(?)
ω S = 2i

∫
ddxTr {∂µ[Aν , F

µν ]?Ta} ? ωa + Boundary Terms. (5.98)

Since (5.95) is a variation over a solution to field equations, we must have
δ

(?)
ω S = 0, which leads to a conserved current jµ given by [70]

jµ = [Aν , F
µν ]?. (5.99)

Thus star-gauge invariance leads to a conserved current in noncommutative
Yang-Mills theory. We could try to develop the same procedure from equa-
tions (5.95) to (5.99) for twist-gauge invariance. However, the existence of a
term in the modified Leibniz rule (5.94) for the transformation of the star-
product itself under twist-gauge transformations would introduce terms in
(5.96) depending on the variation of the star-product which would prevent
eliminating the boundary terms in (5.98), so a conserved current does not re-
sult. This fact, together with the unusual and, in some sense, weird variation
of the star-product itself with twist-gauge transformations, seems to indicate
that the star-gauge invariance is the true gauge symmetry,the one physically
relevant for noncommutative Yang-Mills in Rd

θ, twist-gauge transformations
being just an accidental invariance.

8That means a global transformation such that ω depends in coordinates. Note that
this is different from local star-gauge transformation, for which we have δ?ωAµ = i[ω,Aµ]?+
1/λ ∂µω.
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5.5 Star-twisted gauge invariances

We have discussed in detail how gauge invariance admits two deformations
on noncommutative spacetimes: either by means of a star-action of the gauge
group over the field algebra (star-gauge) or a modification of the Leibniz rule
(twist-gauge), showing that the first method seems to give the true gauge
symmetry in noncommutative geometry. In addition to this, we will show
how there is a third possibility consisting of a simultaneous star-action and a
twisted-gauge transformation with different deformation parameters. These
we call star-twisted gauge transformations, and define an infinite family of
invariances interpolating continuously between star-gauge and twist-gauge
invariance [72].

The key ingredient of twist-gauge transformations is the use of a product
for the action of the gauge group (the conmmutative one) different from the
Moyal product operating in the field algebra. Star-twisted transformations
generalize this idea considering that the gauge group acts through a star-
product with a noncommutativity parameter θ′µν different from the non-
commutativity parameter θµν operating in the field algebra. That is, the
infinitesimal gauge transformation of a field ΨR in a representation R of the
gauge group is given by

δθ
′

ω ΨR ≡ iω ?θ′ Ψ
R, (5.100)

where ω = ωa(x)Ta and ?θ′ states for the star-product with noncommutativity
parameter θ′µν ,

A ?θ′ B ≡ µ(F−1
θ′ A⊗B). (5.101)

Here, Fθ is the twist operator with noncommutativity parameter θµν ,

Fθ =
∞∑
n=0

−i/2
n!

θµ1ν1 . . . θµnνn∂µ1 . . . ∂µn ⊗ ∂ν1 . . . ∂νn = e−
i
2
θµν∂µ⊗∂ν . (5.102)

Note that, defined in this way, twist operators with different noncommuta-
tivity parameters satisfy,

FθFθ′ = Fθ+θ′ , F−1
θ = F−θ. (5.103)

Simultaneously to the star-prime action (5.100), star-twisted gauge trans-
formation include a twist in the Leibniz rule depending on the difference
(θ − θ′)µν to guarantee the compatibility with the underlying noncommuta-
tivity with parameter θµν . In the notation of (5.66), this new Leibniz rule
is

δθ
′

ω (ΨR1 ?θ ΨR2) ≡ µ
[
F−1
θ Fθ−θ′∆(δθ

′

ω )F−1
θ−θ′Ψ

R1 ⊗ΨR2

]
. (5.104)
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which is a direct generalization of (5.68) with a coproduct twisted with re-
spect to the difference between the two star-product that we have now in the
theory,

δθ
′

ω (ΨR1 ?θ ΨR2) = µ
[
F−1
θ ∆θ−θ′(δ

θ′

ω ) ΨR1 ⊗ΨR2

]
, (5.105)

with
∆θ−θ′(ω) = Fθ−θ′∆(ω)F−1

θ−θ′ . (5.106)

Using the law (5.103) we find F−1
θ Fθ−θ′∆(ω)F−1

θ−θ′ = F−1
θ′ ∆ωF−1

θ−θ′ . Then,
expanding the last twist operator, we obtain

δθ
′

ω (ΨR1 ?θ ΨR2) =
∞∑
n=0

(−i/2)n

n!
(θ − θ′)µ1ν1 . . . (θ − θ′)µnνn

×
{(
δθ
′

ω ∂µ1 . . . ∂µnΨR1

)
?θ′
(
∂ν1 . . . ∂νnΨR2

)
+
(
∂µ1 . . . ∂µnΨR1

)
?θ′
(
δθ
′

ω ∂ν1 . . . ∂νnΨR2

)}
,

(5.107)

which is a generalization of equation (5.70). Written in this way, we see that
star-twisted transformations are in a sense halfway between star- and twist-
gauge transformations, such that twist-gauge transformations are recovered
for θ′µν = 0 (equation (5.71)), while star-gauge transformations are recovered
for θ′µν = θµν (equation (5.46)). From this point of view, θ′µν is a parameter
interpolating from star-gauge to twist-gauge transformations.

Following the the same reasoning that for twist-gauge transformations,
the Leibniz rule for star-twisted transformations can be seen as an ordinary
Leibniz rule where the Moyal product is also transformed. Using equation
(5.92) we can expand the coproduct ∆θ−θ′(ω) in (5.105) to give

δθ
′

ω (ΨR1 ?θ ΨR2) = (δθ
′

ω ΨR1) ?θ ΨR2 + ΨR1 ?θ (δθ
′

ω ΨR2)

+
∞∑
n=1

(−i/2)n

n!
(θ − θ′)µ1ν1 . . . (θ − θ′)µnνn

×
{(

[∂µ1 , . . . [∂µn , δ
θ′

ω ] . . .]ΨR1

)
?θ
(
∂ν1 . . . ∂νnΨR2

)
+
(
∂µ1 . . . ∂µnΨR1

)
?θ

(
[∂ν1 , . . . [∂νn , δ

θ′

ω ] . . .]ΨR2

)}
.

(5.108)

The last term, similar to (5.90), can be reinterpreted as the θ′-gauge variation
of the θ-star product, ΨR1(δθ

′
ω ?θ)Ψ

R2 , to write

δθ
′

ω (ΨR1 ?θΨR2) = (δθ
′

ω ΨR1)?θΨR2 +ΨR1 ?θ (δθ
′

ω ΨR2)+ΨR1(δθ
′

ω ?θ)Ψ
R2 . (5.109)
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Obviously the last term vanishes for θ′µν = θµν , that is, for star-gauge trans-
formations. This seems to indicate that any twist of the gauge action in-
evitably leads to a variation of the star-product under gauge transformations,
operating from the shadows of the theory.

Surprisingly, the same as star-gauge and twist-gauge transformations are
invariances of the noncommutative Yang-Mills action, star-twisted transfor-
mation are too. From equation (5.107) we can check the invariance of the
quadratic term ψ̄ ?θ ψ. Since

δθ
′

ω ψ = iωa ?θ′ (Taψ), (5.110)

and
δθ
′

ω ψ̄ = −i(ψ̄Ta) ?θ′ ωa, (5.111)

with Ta the generators of the gauge algebra in the fundamental representa-
tion,

δθ
′

ω (ψ̄ ?θ ψ) = i
∞∑
n=0

(−i/2)n

n!
(θ − θ′)µ1ν1 . . . (θ − θ′)µnνn

×
{
−
(
∂µ1 . . . ∂µnψ̄Ta

)
?θ′ ω

a ?θ′ (∂ν1 . . . ∂νnψ)

+
(
∂µ1 . . . ∂µnψ̄

)
?θ′ ω

a ?θ′ (Ta∂ν1 . . . ∂νnψ)
}

= 0.

(5.112)

In a similar way, we can check that the covariant derivative Dµψ transforms
in the fundamental representation of the gauge group, i.e.

δθ
′

ωDµψ = iωaTa ?θ′ Dµψ. (5.113)

In this case, we have

δθ
′

ω (Dµψ) = i∂µ [ωa ?θ′ (Taψ)]− iλδθ′ω (Aµ ?θ ψ). (5.114)

For the last terms, following the notation of (5.79), we find

δθ
′

ω (Aµ ?θ ψ) = i

∞∑
n=0

(−i/2)n

n!
(θ − θ′)µ1ν1 . . . (θ − θ′)µnνn

× {R(ω) ?θ′ ∂µ1 . . . ∂µnAµ ?θ′ (∂ν1 . . . ∂νnψ)

+ (∂µ1 . . . ∂µnAµ) ?θ′ ω
a ?θ′ (Ta∂ν1 . . . ∂νnψ)} .

(5.115)

Then, the first component of this equation gives

δθ
′

ω (Aµ ?θ ψ) =
1

λ
∂µω

a ?θ′ (Taψ)

+ i

∞∑
n=0

(−i/2)n

n!
(θ − θ′)µ1ν1 . . . (θ − θ′)µnνn

× ωa ?θ′ (Ta∂µ1 . . . ∂µnAµ) ?θ′ (∂ν1 . . . ∂νnψ) .

(5.116)
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Using the formula

f ?θ g =
∞∑
n=0

(−i/2)n

n!
(θ′µ1ν1 − θµ1ν1) . . . (θ′µnνn − θµnνn)

× (∂µ1 . . . ∂µnf) ?θ′ (∂ν1 . . . ∂νng),

(5.117)

valid for all functions f and g, (5.116) can be finally simplified to

δθ
′

ω (Aµ ?θ ψ) =
1

λ
∂µω

a ?θ′ (Taψ) + iωaTa ?θ′ (Aµ ?θ ψ), (5.118)

and thus, substituting in (5.114),

δθ
′

ωDµψ = iωaTa ?θ′ Dµψ. (5.119)

Finally it rests to prove the invariance of the F 2 term in (5.34). Form the
definition of the gauge field strength tensor,

δθ
′

ω Fµν = i[ω, ∂µAν − ∂νAµ]θ′ + i[∂µω,Aν ]θ′

− i[∂νω,Aµ]θ′ − iλδθ
′

ω (Aµ ?θ Aν − Aν ?θ Aµ).
(5.120)

To compute the last term, we carry out similar algebraic manipulations to
the ones used in the computation of (5.118). It results in

δθ
′

ω (Aµ ?θ Aν) = i[ω,Aµ ?θ Aν ]θ′ + (∂µω) ?θ′ Aν + Aµ ?θ′ (∂νω). (5.121)

Thus, substituting in (5.120),

δθ
′

ω Fµν =
[
iω, ∂µAν − ∂νAµ − iλ [Aµ, Aν ]θ

]
θ′

= [iω, Fµν ]θ′ , (5.122)

and we conclude that Fµν transforms in the adjoint representation of the
gauge group. The same happens when we compute δθ′ω (Fµν ?θ F

µν). In this
case, from (5.108) we have

δθ
′

ω (Fαβ ?θ F
αβ) =

∞∑
n=0

(−i/2)n

n!
(θ − θ′)µ1ν1 . . . (θ − θ′)µnνn

×
{(

[∂µ1 , . . . [∂µn , δ
θ′

ω ] . . .]Fαβ

)
?θ
(
∂ν1 . . . ∂νnF

αβ
)

+ (∂µ1 . . . ∂µnFαβ) ?θ

(
[∂ν1 , . . . [∂νn , δ

θ′

ω ] . . .]Fαβ
)}

.

(5.123)

Using manipulations similar to the ones applied above, this can be recast
into

δθ
′

ω (Fµν ?θ F
µν) = [iω, Fµν ?θ F

µν ]θ′ . (5.124)
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Thus Fµν ?θ F µν transforms in the adjoint representation of the gauge group
too. Therefore, the pure Yang-Mills action satisfies,

δθ
′

ω S = −1

2

∫
ddxTr [iω ?θ′ (Fµν ?θ F

µν)− i(Fµν ?θ F µν) ?θ′ ω] = 0, (5.125)

where we have used the cyclicity property of the Moyal product under the
integral symbol. Together with equations (5.112) and (5.119), this proves the
invariance of the entire Yang-Mills action under star-twisted gauge transfor-
mations.

Star-twisted gauge transformations form a continuous family of invari-
ances of the Yang-Mills action at which ends the star-gauge and twist-gauge
are [72]. Since in all cases we have a modified Leibniz rule except for star-
gauge invariance, following the reasoning of the previous section (impossibil-
ity to obtain Noether currents from a modified Leibniz rule) we can conclude
that all the twisted invariances are not true symmetries, but accidental in-
variances. On the other hand, form star-gauge invariance we can obtain
Noether currents. In this sense, star-gauge symmetry seems to be the true
symmetry of the theory, fixing the gauge coupling to fields in the Lagrangian,
and thus any other twisted gauge invariance comes from it accidentally. In
other words, star-gauge symmetry has a custodial role over the entire family
of star-twisted gauge invariances.
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Chapter 6

Conclusions and outlook

In this Thesis we have exposed two different topics: in one side, we have
studied the generation of the Penrose trapped surface in collisions of grav-
itational shock waves in AdSD, proposing this phenomenon as a signal of
thermalization in the boundary theory after a collision of two energy lumps.
On the other hand, we have faced the construction of gauge invariances for
noncommutative Yang-Mills theories, defining a continuous family of twisted
gauge invariances. This final chapter collects the results and discuss them in
some detail.

6.1 Collisions of gravitational shock waves and
plasma thermalization

The use of the collision of gravitational shock waves as a gravitational dual
for colliding energy lumps lies in the fact that the expectation value of the
holographic stress tensor corresponding to a gravitational shock wave, prop-
agating at constant holographic coordinate z0, is the one describing an en-
ergy lump traveling through the boundary of AdS at the speed of light. In
this picture, z0 translates into the boundary theory as the energy-weighted
size of the lump, while the energy µ of the shock wave as measured from
the boundary coincides with the energy of the lump at the boundary. In
this way, colliding gravitational shock waves correspond to colliding energy
lumps, whose energy and size can be tuned. The appearance of the Penrose
trapped surface in the collision has been taken as a signal for event horizon
formation after collision and thus, in the spirit of the AdS/CFT connection,
for thermal equilibrium in the boundary theory.

The first collision we have analyzed is the one of two AdS-Sch shock waves.
The search of the Penrose trapped surface has shown that it always appears
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when the collision has no impact parameter. i.e. for head-on collisions.
However, when the collision happens with a nonvanishing impact parameter,
the formation of the Penrose trapped surface depends strongly in the value
of this impact parameter for a fixed energy. In particular, beyond a critical
value, for a given energy there is no possible formation of the Penrose trapped
surface [55]. For the case of an impact parameter b parallel to the AdS
boundary, our numerical work has shown the scaling

bc
z0

∼
(
GDµ0

LD−3

) 1
D−2

(6.1)

of the critical impact parameter bc with the energy µ of the colliding waves
and the dimension D of the AdS background. From the boundary theory
point of view, since in this case both waves collide with the same holographic
coordinate, this corresponds to the collision of two energy lumps of the same
size with certain impact parameter b. Thus the existence of this critical
value is taken as an indicative that thermalization in the boundary after the
collision does not happen for large enough impact parameter.

The case where the impact parameter is directed along the holographic
coordinate z has been considered apart because its different holographic in-
terpretation. This time, since both shock waves collide at different values of
the holographic coordinate, z+ and z−, they corresponds to the head-on col-
lision of two energy lumps of different sizes. Fortunately, it is not necessary
to carry out a separate numerical analysis of this case, since the isometries
of the AdS space-time can be combined in a suitable way to relate collisions
with purely holographic impact parameter ∆z = |z+ − z−| to collisions with
impact parameter parallel to the AdS boundary b. In this way, we have ob-
tained a critical value of the holographic impact parameter (∆z)c beyond of
which no Penrose trapped surface is produced. The scaling for the critical
value of the holographic impact parameter is given by

(∆z)c
L
∼
(
GD
√
µ+µ−

LD−3

) 1
D−2

, (6.2)

with µ± the energy of the shock waves as measured from the boundary. The
existence of this critical behavior in the creation of the Penrose trapped
surface indicates that for enough difference in size, the head-on collision of
two energy lumps in the boundary theory could not thermalize.

In D = 5 these results can be used as a first model to thermalization
of sQGP in off-center collisions and frontal collisions between unequal sized
objects. In addition, our approach can be generalized to the case in which
we have both impact parameter and unequal objects by O(2) rotations. In
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this case we have showed that there are two quantities invariant under O(2)
rotations inside the AdS space, and thus they have the same value for a large
class of related collisions. These are

Q0 = µ′+(α)µ′−(α)z′+(α)z′−(α) = µ+µ−,

Q± = µ′±(α)

[
1 +

z′±(α)2 + x′±(α)2

L2

]
= 2µ±L

(1 + β2)1/2

(1 + β2)1/2 ± β
.

(6.3)

Whereas off-center collisions in D = 5 are physically interpretable as
heavy-ion collisions with nonvanishing impact parameter, the frontal collision
of two gauge theory energy lumps with large size difference could be used
as a model for head-on hadron-nucleus collisions at strong coupling. Off-
center hadron-nucleus collisions can be studied as well by performing O(2)
rotations over the numerical solutions we have obtained. In this case, It
would be interesting to see if the invariants (6.3) have any relevance in the
phenomenological description of this type of collisions.

The model we have constructed based on collisions of AdS-Sch shock
waves is a first approximation to the real problem of sQGP production. Al-
though the results are physically acceptable (mainly the existence of critical
values for impact parameter, difference of sizes and their growth with energy
seem to go in the right direction), obviously it would be desirable to develop
more elaborate models to get a more accurate descriptions of real high-energy
collisions. In this sense, there are three paths we can follow to progress:

• Breakdown of conformal invariance. Quantum field dynamics aris-
ing from gravitational physics in AdS spacetime is, necessarily, con-
formal. However real QCD are far away to be conformal. Although
the confined-deconfined phase transition in QCD seems to be related
mainly to the non-Abelian nature of SU(3) instead of the running of
the coupling constant with the energy scale, conformal invariance could
have a significant effect in the scaling of the critical values of the im-
pact parameters we have observed. Therefore, collisions of gravitational
shock waves in non-AdS spacetimes would be more appropriate gravi-
tational duals for sQGP formation in high-energy collisions.

• Search of other trapped surfaces. Strictly speaking, thermalization in
the boundary field theory is related to the formation of an event horizon
after the collision, in region IV in fig. 2.1. We have used the formation
of the Penrose trapped surface, which lies over the past light cone, as
the signal for an eventual horizon after the collision. Although this
assumption seems in accordance with the laws of physics, up to date
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there is no hard proof of it. For example, it could be that, in a col-
lision where the Penrose surface was not found, other trapped surface
appeared, guaranteeing the existence of an event horizon after the col-
lision. In this sense, the search for other trapped surfaces besides the
Penrose surface could improve the estimation for plasma thermaliza-
tion, maybe even beyond critical configurations. A first example can
be found in [61], where a trapped surface over the future light cone is
computed for collisions between RN shock waves in flat background. In
addition, the lost of energy by gravitational radiation after the collision
could have implications in the eventual formation of an event horizon
[108, 109, 110, 111].

• Collision of shock waves with richer structure. AdS-Sch shock waves
have no physical parameters apart from their energy, in the sense that
the energies of the sources are the only free quantities, together with
impact parameters, that we can tune in a collision of two AdS-Sch
shock waves. Since the holographic energy distribution comes from the
shock wave profiles, we have no room to incorporate new features to the
holographic lumps, and to get, in this way, a more realistic description
for extremely boosted heavy-ions. It would be interesting to search
for new critical behavior respect to other magnitudes than energy and
impact parameter/difference of size, even in head-on collisions.

The last point has lead us to consider collisions between fat and AdS-
RN shock waves. The first ones, studied in [57], yields to a dependence of
the Penrose trapped surface with the diluting parameter ω, such that, in
D = 4 and D = 5 dimensions, there is a critical value ωc for the formation
of the Penrose surface. However the absence of any trail of the diluting
parameter in the vacuum expectation value of the holographic stress tensor
has as consequence a poor understanding of the holographic dual for the
collision of these shock waves. One reason for this result could be that fat
waves couple to some unknown boundary field or, even, they can not be
considered as a SUGRA IIB solution.

The AdS-RN shock waves do not suffer from the doubt about their validity
as SUGRA IIB phenomena since the AdS-RN solution can be reinterpreted as
a complete SUGRA IIB solution. Thus they are a good candidate to improve
the model constructed over AdS-Sch shock waves. Naively we expected that
the addition of an extra parameter (the chrage parameter e2) to the collision
problem could help to get an accurate description of real sQGP production in
heavy-ion collisions at high energy. However, as we have show, the effect of
the charge parameter, even for small values, prevents totally the formation
of a Penrose surface in the collision [60]. This result holds for both SD−2
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and S1 × SD−3 topologies of the Penrose trapped surface. The reason to
search for the second topology is that the solution to the function Ψ(q) which
parametrizes the Penrose surface with SD−2 topology takes negative values
(this is the reason because the Penrose surface is not possible), thus indicating
a nontrivial topology of the marginal surface.

The holographic consequences of the absence of the Penrose trapped sur-
face for colliding AdS-RN shock waves are not clear. First, although the
holographic dual of the AdS-RN solution is fully understood, the one for
AdS-RN has no direct interpretation. The reason is that in the AdS-RN
solution, charge corresponds to a chemical potential in the boundary theory
[97, 98], describing a grand canonical ensemble, although the charge and the
electromagnetic field vanish after the infinite boost limit that leads to the
AdS-RN shock waves.

Finally we have shown that, independently of the gravitational nature, i.e.
AdS-Sch, AdS-RN or fat shock waves, all the gravitational shock waves give
rise to the same holographic stress tensor. That suggests that the form of the
holographic potential is related to the O(D − 2) symmetry of the colliding
waves and not to the concrete mathematical form of their profile functions.
In addition, the boosted Woods-Saxon energy distribution is not well fitted
by the vacuum expectation value of the holographic stress-tensor. Therefore
collision of fat and AdS-RN shock waves will not help to get better approx-
imations to the energy distribution of real extremely boosted heavy-ions.
Shock waves with a reduced symmetry could give better energy distribution
for fitting the boosted Wood-Saxon potential. However this does not mean
the effort of studying collision of fat and AdS-RN shock waves is futile. For
example, estimations as entropy production from the area of the Penrose
surface could be improved [51, 53].

6.2 Gauge invariances in noncommutative Yang-
Mills theories

In the Chapter 5 we have discussed the construction of gauge invariances in
noncommutative Yang-Mills theories. Typically, in the scientific literature
there existed two ways to define the action of the gauge group over a non-
commutative algebra of fields constructed with the Moyal product:

• Star-gauge transformations. These transformations use a star-action to
acts over fields. That is, the gauge transformation includes the Moyal
product while the Leibniz rule remains in its standard form [10, 71].

• Twist-gauge transformations. This time the gauge group acts over fields
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using the standard commutative product, but the Leibniz rule becomes
twisted to force a transformation law compatible with the star product
of fields [13, 14, 68].

These two transformations are invariances of the noncommutative Yang-Mills
action, although their implementations force to consider only unitary gauge
groups, or gauge fields taking values over the universal enveloping algebra of
the gauge group.

The coincidence of two radically different invariances for the noncommu-
tative Yang-Mills action gives rise to the question of what of them is the true
symmetry of the theory. Because of the twist-gauge transformations operate
through a twisted Leibniz rule, the derivation of Noether currents and/or
Ward identities is not possible from the twist-gauge invariance. On the other
hand, star-gauge invariance, with a standard Leibniz rule, does not have this
problem. In this way star-gauge invariance is taken as the true symmetry
of the theory, playing a custodial role over twist-gauge invariance, which ap-
pears accidentally. In addition, the Leibniz rule can be reinterpreted as an
unhealthy variation of the star product under gauge transformations [70, 72].

In this Thesis we have shown that a third class of star-twisted invariances
of the noncommutative Yang-Mills action can be constructed. In this case
the gauge group acts through a star product over the fields algebra but with
a noncommutative parameter θ′µν different for the one operating in the fields
algebra, θµν . As a consequence, the Leibniz rule has to be twisted. In this way
we have constructed a continuous family of twisted invariances, depending on
the noncommutative parameter θ′µν , which interpolates between star-gauge
symmetry (θ′µν = θµν) and twist-gauge invariance (θ′µν = 0). The direct
consequence of the existence of this family of invariance is that twist-gauge
invariance is no more a particular twisted invariance, but it is part of a large
family of invariances with a twisted Leibniz rule.

The loss of any special status by the twist-gauge invariance in the sense
here explained reinforces itself the idea of the twist as a mechanism giving
accidental invariances and not true symmetries as well. Another point in
favour of this statement is the fact that for θµν = 0 and θ′µν 6= 0 we have a
twisted gauge invariance for the ordinary Yang-Mills action which, obviously,
does not play any physical role in the standard theory [72].



Appendix A

Anti-de Sitter space

This Appendix is written to those reader which are not familiarized with the
Anti-de Sitter space and/or coordinates on it. Here we introduce the Anti-de
Sitter spacetime and develop in detail the different coordinate system that
are used along the main text.

From a purelly mathematical point of view, D-dimensional Anti-de Sit-
ter space, AdSD, is defined as the maximally symmetric space with negative
constant curvature and Lorentz signature. Maximally symmetric (in D di-
mensions) means it admits D(D + 1)/2 Killing vectors. Equivalently, the
metric gµν of any maximally symmetric space satisfies,

Rµνρσ = K (gµρgνσ − gµσgνρ) , (A.1)

where greek letters here run from 1 toD, with the constantK the curvature of
the space and Rµνρσ the Riemann curvature tensor. AdSD is the space which
satisfies (A.1) with K < 0 and Lorentz signature [78, 79, 80, 81, 82, 112].

The definition of AdS space given above is not very useful for physical
purposes. Alternatively, AdSD can be defined as the embedding of the D-
dimensional hyperboloid with equation

(Z0)2 + (ZD)2 −
D−1∑
i=1

(Zi)2 = L2, (A.2)

in the (D + 1)-dimensional flat space with metric

ds2 = −(dZ0)2 − (dZD)2 +
D−1∑
i=1

(dZi)2. (A.3)

Note that (A.3) has two timelike coordinates, Z0 and ZD. The constant L
fixes the scale of AdSD, and is related to the curvature K in (A.1) by K =
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−1/L2. Defined in this way, AdSD is explicitly invariant under SO(2, D −
1), the isometry group of the hyperboloid (A.2). This is generated by the
D(D + 1)/2 Killing vector fields required by a maximally symmetric space.

Of course, since the AdS space has Lorentz signature,it is a solution of GR.
Indeed it can be shown that AdSD arises as the (conformally flat) vacuum
solution to Einstein equations with negative cosmological constant Λ related
to the AdS scale L as

Λ = −(D − 1)(D − 2)

2L2
. (A.4)

A section of AdS4 is obtained as a solution to the Friedman equation for
vanishing density, negative spatial curvature and negative cosmological con-
stant. In any case, cosmological observations show the existence of a positive
cosmological constant, so AdS is of little cosmological interest.

Concerning coordinates in AdSD, obviously we can use the set {Z0, . . .
ZD} as a sort of “overdetermined” coordinates. This is specially useful in
Chapter 3, where we computed the Aichelburg-Sexl boost over the Reissner-
Nordström solution in AdS space from these coordinates. Leaving them aside,
other set of global coordinates covering the whole hyperboloid (A.2) can be
also defined. A useful set of global coordinates {T,R, ϕi} is defined from
{Z0, . . . ZD} as

Z0 = L coshR sin
T

L
,

Zi = Lϕi sinhR,

ZD = L sinhR sin
T

L
,

(A.5)

where R ∈ [0,∞), T ∈ [0, 2π) and ϕi are angular coordinates satisfying∑D−1
i=1 (ϕi)2 = 1. The AdSD metric in these coordinates is

ds2 = − cosh2RdT 2 + L2
(
dR2 + sinh2RdΩ2

D−2

)
. (A.6)

Note that, for constant R, the temporal coordinates Z0 and ZD are para-
metrized by a single time coordinate T which is periodic. Thus, in these
coordinates we see explicitly the AdS space has topology S1×R3 with closed
timelike curves. For overcoming this unphysical feature, it is usual to work
with the universal covering space of the AdS space by taking T ∈ (−∞,∞)
and unwrapping S1 to R. In the picture of the AdS space as an embbeded
hyperboloid in flat space, this corresponds to an infinite number of turns
around the hyperboloid.

This set of coordinates is useful to study the causal structure of AdS
space. A conformal coordinate χ can be introduced by setting

tanχ = sinhR. (A.7)
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Figure A.1: Penrose diagram for the whole anti-de Sitter space (taken
from [112]). Space-like (t = const.) and timelike (z = const.) geodesics
in Poincaré coordinates are also drawn. The diagram is divided into
three regions depending on the sign of z, each of them separated form
the others by Cauchy horizons (dashed lines). Thus AdSD has not global
hyperbolicity. The Poincaré patch corresponds to the region with z > 0.

Defining also ψ = T/L, the metric takes the form

ds2 =
L2

cos2 χ

(
−dψ2 + dχ2 + sin2 ξdΩ2

D−2

)
. (A.8)

Thus the whole AdS space is conformal to the region χ ∈ [0, π/2) of the
Einstein static universe with conformal factor L/ cosχ and radius L. The
conformal boundary of the AdS space is reached at χ = π/2, when the
conformal factor diverges. In addition, it is timelike with topology R×SD−2.

Drawing the region 0 ≤ χ < π/2 of the Einstein static universe we get
the Penrose conformal diagram of the whole AdS space, sketched in fig. A.1.
In contrast to Minkowski space, there is only one conformal infinity I, where
null geodesics end, which also coincides with the spatial infinity i0 and the
boundary of the space. Note that no timelike geodesic can reach I. In
addition, I is timelike. As a consequence, there exists no complete Cauchy
surface in AdSD since any initial data in the boundary I would propagate
inside AdS space. Thus the anti-de Sitter space has no global hyperbolicity:
no initial data set over a spacelike hypersurface exists such that it determines
the evolution of physical phenomena inside AdSD. In this sense, the whole
anti-de Sitter space is unphysical.

Another set of global coordinates {τ, r, θi} in AdSD is the one given from
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{Z0, . . . ZD} as

Z0 =
√
r2 + L2 sin

τ

L
,

Zi = rθi,

ZD =
√
r2 + L2 cos

τ

L
,

(A.9)

where τ ∈ (0, 2π), r ∈ (0,∞) and
∑D−1

i=1 (θi)2 = 1. Similarly to (A.5),
demanding τ to take values in (−∞,∞) we have the universal covering space
of AdSD. We will refer to these global coordinates as the AdS-spherical ones.
The reason for the nomenclature is that, in these coordinates, the line element
of AdSD is

ds2 = −
(

1 +
r2

L2

)
dτ 2 +

(
1 +

r2

L2

)−1

dr2 + r2dΩ2
D−2. (A.10)

which, when L → ∞, reduces to the flat metric in the usual spherical coor-
dinates.

Other very useful coordinates in AdSD are the Poincaré ones. From
{Z0, . . . ZD}, Poincaré coordinates {z, t ≡ x0, x1, . . . xD−2} are defined by

Zµ =
L

z
xµ , µ = 0, . . . D − 2,

ZD−1 =
z

2

[
−1 +

L2 + t2 − ~x2

z2

]
,

ZD =
z

2

[
1 +

L2 − t2 + ~x2

z2

]
.

(A.11)

where ~x 2 stands for
∑D−2

i=1 (xi)2. The line element of AdS spacetime is spe-
cially simple in Poincaré coordinates,

ds2 =
L2

z2

(
dz2 + ηµνdx

µdxν
)
, (A.12)

The main feature of Poincaré coordinates is that they show explicitly the scale
invariance of the AdS spacetime, since the line element remains unchanged
under

t→ kt, z → kz, xi → kxi. (A.13)

for k > 0 arbitrary. This explicit invariance was specially useful in Chapter
4.

Poincaré coordinates divide the AdS space into three regions according
to the sign of z, such that each of these regions are separated from the others
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by Cauchy horizons. The region corresponding to z > 0, where there are
not closed timelike curves and global hyperbolicity is recovered, is called
the Poincaré patch. Usually the physics in the AdS space is restricted to
the Poincaré patch since causal structure is nice in this region1 (see fig.
A.1). On the other hand, the conformal boundary of AdSD is located at
z → 0. Note that the flatness of the conformal boundary and, in general,
of any hypersurface z = constant is explicit in Poincaré coordinates. The
set {xµ} are Cartesian coordinates in the hypersurfaces of z constant, while
z is a coordinate labeling these flat hypersurfaces, running until it reaches
the conformal boundary at z → 0. As a consequence, in the context of the
AdS/CFT correspondence, we refer to {xµ} as the boundary coordinates,
and to z as the holographic or Poincaré coordinate. Finally, the AdS metric
in Poincaré coordinates is manifestly conformally flat with conformal factor
L/z. Indeed, defining a new coordinate z̄ as

z̄ = z − L, (A.14)

and taking the limit L → ∞, z → ∞ such that z̄ � L, we recover the flat
metric in Cartesian coordinates from the line element (A.12). We shall refer
to this connection as the flat limit of the AdS space.

In addition to the coordinates introduced so far, it is possible to define also
a dimensionless coordinate q using the chordal distance between a point of
the hyperboloid (A.2) to its "top point" Zµ = ZD−1 = 0, ZD = L measured
with the flat metric (A.3). If d stands for this chordal distance, q is defined
as

q ≡ d2

4L2
=

1

4L2

[
−(ZD − L)2 + (ZD−1)2 + ηµνZ

µZν
]
. (A.15)

We call q the chordal coordinate. Equations (A.11) allow us to relate the
chordal coordinate q to Poincaré coordinates as

q =
ZD

2L
− 1

2
=

1

4zL

[
(z − L)2 + ηµνx

µxν
]
. (A.16)

The origin of the chordal coordinates, i.e. q = 0, is located at z = L and
xµ = 0 and thus, from the point of view of Poincaré coordinates, the position
of the origin of q is fixed by the scale of the AdS spacetime . However,
thanks to the scale invariance (A.13), it is possible to set the origin of chordal
coordinates at arbitrary values of the holographic coordinate z0,

q =
1

4zz0

[
(z − z0)2 + ηµνx

µxν
]

(A.17)

1Indeed the collisions of shock waves studied in this Thesis are restricted to the region
z > 0.
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In addition, translational symmetry under ~x→ ~x+~b let us to move the origin
point of q to an arbitrary boundary spatial coordinate.

From (A.9) and equation (A.16) or equivalently (A.17) we get a relation
between the chordal coordinate q and the spherical coordinate r,

r = 2L
√
q(q + 1). (A.18)

This enables us to write the metric of AdSD in coordinates {q, θi} from (A.10),

ds2 = −(2q + 1)2dt2 +
L2

q(q + 1)
dq2 + 4L2q(q + 1)dΩ2

D−2. (A.19)

The chordal coordinate is specially useful in colliding wave scenarios since it
is invariant under rotations around the collision axis in head-on collision.

It is convenient to define also the hyperbolic space H(D−2). In a similar
way to AdSD, it is defined as the embedding of an hyperboloid in flat space.
In this case, we have the (D − 2)-dimensional hyperboloid

(Y 0)2 − (Y D−2)2 −
D−3∑
i=1

(Y i)2 = L2, (A.20)

embedded in a (D − 1)-dimensional space with metric

ds2 = −(dY 0)2 + (dY D−2)2 +
D−3∑
i=1

(dY i)2. (A.21)

As for the AdS space, Poincaré coordinates can be introduced to cover the
hyperbolic space HD−2. We define them as

Y 0 =
z

2

[
1 +

L2 + ~x2

z2

]
,

Y i =
L

z
xi , i = 1, . . . D − 3,

Y D−2 =
z

2

[
− 1 +

L2 − ~x2

z2

]
,

(A.22)

where ~x2 =
∑

i(x
i)2. The metric in Poincaré coordinates takes the form

ds2 =
L2

z2

[
dz2 + d~x 2

]
. (A.23)

Similarly to the AdS case, these coordinates divide the hyperbolic space
according to the sign of z. The condition z > 0 restrict us to the region of
HD−2 where Y 0 > 0, which is the Poincaré patch of HD−2.
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Apart form Poincaré coordinates, spherical (global) coordinates can be
defined in HD−2. Similar to (A.9), we define

Y 0 =
√
r2 + L2, Y i = rϑi, (A.24)

such that
∑D−2

i=1 (ϑi)2 = 1. In this coordinates, the metric of HD−2 takes the
form

ds2
HD−2

=

(
1 +

r2

L2

)−1

dr2 + r2dΩ2
D−3. (A.25)

Analogously, the metric of HD−2 can be written in terms of the chordal
coordinate q,

ds2
HD−2

=
L2

q(q + 1)
dq2 + 4L2q(q + 1)dΩ2

D−3, (A.26)

which results from (A.24) taking r = 2L
√
q(q + 1).

The hyperbolic space HD−2 can be obtaining slicing AdSD. By the iden-
tification

ZD ≡ Y 0, ZD−1 ≡ Y D−2, Zi ≡ Y i, (A.27)

the hyperbolic space (A.20) arises as the slice Z0 = ZD−2 = 0 of AdSD. In
Poincaré coordinates such slicing is t = xD−2 = 0, or u, v = 0 if we take
light cone coordinates. This corresponds to the collision surface of (2.84)
in the collision scheme presented in Section 2.5, as well as the transverse
space to the propagation of the shock waves, since the metric (2.84) is both
singular in u and v. This is the reason the hyperbolic space HD−2 appears
in equations governing the propagation and collision of gravitational shock
waves in AdSD.
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Appendix B

Anti-de Sitter
Reissner-Nordström solution

In classical texts of General Relativity, the Reissner-Nordström spacetime
is the one static, spherically symmetric and asymptotically flat solving the
Einstein equations coupled to the Maxwell electromagnetic field. It describes
the spacetime geometry sourced by an electrically charged point-like particle
in flat background. The generalization to AdS background is what we call
Anti-de Sitter Reissner-Nordström (AdS-RN) solution.

B.1 Line element, equations of motion and ac-
tion

In the AdS-spherical coordinates defined in (A.9), the AdS-RN metric and
electromagnetic potential are

ds2 = −f(r)dτ 2 + f−1(r)dr2 + r2dΩ2
D−2,

Aτ =

√
D − 2

2(D − 3)

Q

rD−3
,

(B.1)

with

f(r) = 1 +
r2

L2
− 2M

rD−3
+

Q2

r2(D−3)
. (B.2)

Notice that (B.1) depends in two constants of integration, M and Q. These
parameters give the strength of the gravitational and electrostatic fields and
thus they must be related in some way to the mass and electric charge of the
AdS-RN solution. In addition, (B.2) is singular at r = 0 and we recover the
AdS Schwarzschild solution by setting Q = 0.
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The AdS-RN metric solves the Einstein-Maxwell equations with negative
cosmological constant Λ = − (D−1)(D−2)

2L2 ,

Rab −
1

2
gab (R− 2Λ) = 8πGDT

(EM)
ab ,

∇bF
ab = αja,

(B.3)

with ja = 0, where α is a constant which depends on the units used, and
T

(EM)
ab the electromagnetic energy-momentum tensor. These equations follow

from the Einstein-Hilbert action with cosmological constant term coupled to
the Maxwell action,

S =
1

16πGD

∫
M

dDx
√
−g
(
R− 2Λ− FabF ab + 4αAaj

a
)

+
1

8πGD

∫
∂M

dD−1y
√
|γ| ε(K −K0).

(B.4)

The electromagnetic energy-momentum tensor follows from this action as the
variation of the Maxwell part with respect to the metric,

T
(EM)
ab =

2√
−g

δSM
δgab

. (B.5)

For zero currents, ja = 0, it is

T
(EM)
ab =

1

4πGD

(
FacF

c
b −

1

4
gabFcdF

cd

)
. (B.6)

This energy-momentum tensor is the generalization of the Belinfante tensor
to curved spaces. In addition, it appears a global factor 1/4πGD which
depends on the normalization of the charge we use. It appears here because
we have chosen to including the 1/16πGD factor in the Maxwell action as
in the Einstein-Hilbert action we do. From the equations of motions point
of view, there are no difference between include or not this factor. However
the dimensions in which we measure the electric charge become affected, or
equivalently, the constant α is obeyed to include a GD factor.

Notice that in the action (B.4) we have also included a boundary term
proportional to the extrinsic curvature K of the boundary of the spacetime,
∂M , and a function K0 defined on it. This term is included because the AdS
spacetime has a (timelike) boundary and we have to guarantee the vanishing
of the variation of the action over the boundary to obtain the Einstein equa-
tions in the bulk [113]. In addition, the function K0 is introduced in order
the action over the background spacetime (the AdS spacetime in our case)
be finite. It is taken as the extrinsic curvature of the boundary as embedded
in a reference spacetime [114].
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B.2 Horizons

The AdS-RN solution has an interesting horizon structure. Because of the
presence of charge, the equation f(r) = 0 can have either more than one
solution, one double solution or no solution at all depending on the ratio
between M and Q. This way the AdS-RN solution classifies in three phases:

• Sub-extremal phase (AdS-RN black hole): The values of M and Q2

allow two different solutions r± for the equation f(r) = 0. This way
we have two horizons in this phase: an external event horizon and an
internal Cauchy horizon. Solving f(r) = 0 for D = 4 and large enough
L, they are located at

r± =M ±
√
M2 −Q2 ± 2M2 −Q2 ± 2M

√
M2 −Q2

2
√
M2 −Q2

1

L2

+O

(
1

L4

)
.

(B.7)

• Extremal phase: The values of M and Q2 allow only one (double)
solution to the equation f(r) = 0. The two horizons are degenerated
forming and unique horizon surface. In the approximation of (B.7) this
happens when M2 = Q2.

• Super-extremal phase: The function f(r) is positive everywhere be-
cause of the relative values of M and Q2. There are neither event hori-
zon nor Cauchy horizon, and we have a naked singularity. Although
there is no analytical solution to f(r) = 0, in general f(r) > 0 is satis-
fied everywhere for enough high value of Q2 with respect to M2. Thus
the condition Q2 �M2 guarantees we have a super-extremal AdS-RN
solution.

For arbitrary dimension D and scale L, we cannot write an analytical
solution to the equation f(r) = 0. Approximations like (B.7) for particular
values of the dimension D, together with numerical methods to solve non-
linear algebraic equations, are the only possibilities to faced the equation
f(r) = 0 and describe the phase diagram of the AdS-RN solution. In fig. B.1
the equation f(r) = 0 is numerically solved for D = 5 for finite L (AdS-RN)
and compared with the case for L = 0 (flat Reissner-Nordström solution).
In general we can conclude that the presence of charge tends to prevent the
horizon formation, since for large enough Q2 with respect to M2 we enters
inside the super-extremal phase.
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Figure B.1: Phase diagram in D = 5 for flat- and AdS-Reissner-
Nordström solution. The solid curve represent the extremal, asymptoti-
cally AdS5 solution, whereas dashed curve corresponds to flat extremal
solution. In AdS5 spacetime, above the solid curve we have a naked sin-
gularity, and under it there are two values r+ and r− solving f(r) = 0.

B.3 Mass and charge

We have begun this appendix defining the AdS-RN solution as the only static,
spherically symmetric and asymptotically AdS solution to the Einstein-Max-
well equations, and we have argued that the integration constants M and
Q in (B.2) must be related to the mass m and charge q of the spacetime.
However we have not computed them yet.

In General Relativity, there are various definitions of mass. In general
terms it is understood as the total “gravitational energy” sourcing the space-
time curvature. However there is no well-defined notion of energy density
of the gravitational field. Any effort in constructing a gravitational energy-
momentum tensor is sterile since no tensor other than the metric itself can
be constructed locally from only the metric components and its first deriva-
tives. To circumvent the problem, several definitions of the total mass of
a given spacetime have been proposed, avoiding the necessity to define any
local gravitational energy density. In the case of asymptotically AdS space-
times it is convenient to use the Brown and York approach to compute the
gravitational mass [91].

Given a timelike hypersurface B bounding a region of some spacetime,
(M, gab), the Brown and York approach defines a surface energy-momentum
tensor τµν , where µ, ν runs over coordinates yµ in B, from a Hamilton-Jacobi
analysis of the classical action Scl, i.e. the gravitational action evaluated
at the classical solution (M, gab). Notice that the classical action depends
on the boundary data in B, and thus it can be viewed as a functional of
the induced metric γµν at B. Brown and York define the surface energy-
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momentum tensor τµν at B as the variation of the classical action Scl with
respect to the induced metric γµν ,

τµν =
2√
−γ

δSsol
δγµν

=
2√
−γ

(
π(sol)
µν − π(0)

µν

)
, (B.8)

where πµν is the momentum conjugated to γµν at B,

πµν =
1

16πGD

√
−γ (Kµν −Kγµν) , (B.9)

and Kµν the extrinsic curvature of B. The upper labels (cl) and (0) refer
to the metric with respect to the extrinsic curvature of B is computed: the
label (cl) means the gravitational momentum is evaluated from the spacetime
metric gab inM with the induced boundary metric in B, γµν , while (0) means
the gravitational momentum is evaluated using a reference metric g(0)

ab in M
such that it makes the classical action finite (last term in (B.4) proportional
to K0) and coincides with the induced boundary metric γµν at B. Without
this term, the surface stress tensor would diverge when the surface B is
extended to enclose the whole spacetime (M, g), i.e. it regularizes the stress
tensor of the whole spacetime to a finite value.

From the Einstein equations in (M, gab) the surface energy-momentum
tensor (B.8) satisfies the relationship

Dµτ
µν = −T nν , (B.10)

where Dµ the induced covariant derivative at B, and

T nν = T µαnµγ
ν
α, (B.11)

with nµ is the normal to B. In the case we are in an empty spacetime or,
equivalently, T nν vanishes over B, and the spacetime posses a no-vanishing
Killing vector field ξa at B,

Dµ (ξντ
µν) = 0, (B.12)

which defines a conserved surface current associated to ξa and B. Now, let
Bt0 be a closed spacelike hypersurface of B with unitary normal vector field
uµ. Note that uµ defines a freely falling observer at B with proper time t
defined as uµdyµ = dt such that Bt0 is a hypersurface of B of constant t = t0.
Then we can define the conserved surface charge Qξ(t0) associated to the
Killing vector field ξa and measured by the observer given by uµ at B and
proper time t0 as

Qξ(t0) =

∮
Bt0

uµτ
µνξν . (B.13)
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For the case (M, gab be some region of a stationary spacetime and ξa the
associated timelike Killing vector, Qξ is independent of t0 and it is understand
as the total gravitational energy enclosed by B as measured by the observer
defined by uµ at B. When B bounds the whole spacetime, Qξ is identified
with the total gravitational mass of the spacetime.

Equation (B.13) can be particularized for the case of a spherically sym-
metric and static spacetime with metric

ds2 = −N2(r)dt2 + h2(r)dr2 + r2dΩ2
D−2, (B.14)

where the spacetime is not necessarily flat, that is

N(r) ' N0(r), h(r) ' h0(r) (B.15)

for large enough r. The timelike Killing vector field is entirely directed along
t, with ξt = 1. Taking B as the timelike hypersurface for constant r = R,
the unit normal vector field at B has only t component, ut = N−1(R), and
Bt0 is any D − 2 sphere of constant r = R and t = t0 coordinates. Thus,
choosing the reference metric g(0)

ab as

g
(0)
ab dx

adxb = −N
2(R)

N2
0 (R)

N2
0 (r)dt2 + h0(r)dr2 + r2dΩ2

D−2, (B.16)

the associated conserved surface charge at B (gravitational energy bounded
by Bt0 as measured by the observer ~u at B) computed from (B.13) is given
by

E(R) =
(D − 2)ΩD−2

8πGD

RD−3N(R)

h0(R)

(
1− h0(R)

h(R)

)
. (B.17)

The gravitational mass of a spacetime with metric (B.14) is then m =
limR→∞E(R). For the special case of the AdS-RN solution,

N2(r) = h−2(r) = 1 +
r2

L2
− 2M

rD−3
+

Q2

r2(D−3)
. (B.18)

Substituting in (B.17) and after taking the limit R→∞ we get the mass of
the AdS-RN solution,

m =
(D − 2)ΩD−2

8πGD

M. (B.19)

Surprisingly, it coincides with the mass of the flat Schwarzschild solution,
being immune to the AdS scale L.

In [90] an alternative approach is proposed for asymptotically AdS space-
times. From the AdS/CFT connection, the divergence of the stress tensor
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when B is moved to the boundary of the spacetime is identified with the stan-
dard ultraviolet divergences of the holographic quantum field theory. Thus it
can be removed by adding a finite number of local counterterms to the action
depending only in the intrinsic geometry of B. In addition, the counterterms
are well defined and can be computed once for all spacetimes. Following this
procedure the authors of [90] has found a shift of the mass (B.19) for D = 5,
given by

m0 =
3πL2

32G5

. (B.20)

for all asymptotically AdS5 spacetimes. Surprisingly it does not depends on
M and introduces a no vanishing mass for the empty AdS5 spacetime because
of the cosmological constant. This term is not derived form the Brown and
York procedure since the reference geometry taken to regularize the stress
tensor is also asymptotically AdS. Physically that is full of significance, since
m0 coincides with the Casimir energy of the holographic dual to AdS5 × S5,
i.e. N = 4 SYM living at the boundary of AdS5, which has topology R×S3.
In any case, it supposes a shift over the zero energy point, and thus it is not
relevant to study gravitational shock wave collisions and their the boundary
images. On the other hand, anyone living inside AdS5 would not see this
shift of the mass, just measuring (B.19) for the mass of the AdS-RN black
hole, so we can take (B.19) as the physical mass of the AdS-RN black hole.
Therefore we shall forget (B.20) conveniently.

The charge of the Reissner-Nordström solution is a much more accessible
issue than the mass. In general, given some stationary spacetime, we can
define a stationary observer at p as ua = ξa/V (p), where ξ is the timelike
Killing vector field of the spacetime and V (p) = (−ξaξa)1/2(p) is the red-
shift factor at p. The existence of a Killing field enables us to do a 3 + 1
decomposition which folliates the spacetime (M, gab) in a continuous family
of spatial hypersurfaces Σt. Then the electric and magnetic fields measured
by this observer are defined from the Maxwell tensor Fab as

Ea = Fabu
b, Ba4...aD = u

√
|g|
2

εabca4...aDF
abuc. (B.21)

From the definition it follows that both the electric and magnetic field are
spacelike, since uaEa = 0 = uaiBa4...aD . Also Ea and Ba4...aD collect all the
information contained in Fab. In a similar way, the current can be decomposed
in charge density ρ and spatial current Ja as

ja = ρua + Ja, (B.22)

such that Jaua = 0. Carrying this same 3+1 decomposition over the Maxwell
equation at (B.3) gives an equation for the evolution of the magnetic field
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Ba4...aD (which we are not interested in) plus an equation for the sources of
the electric field Ea. The last is given by

DµE
µ + εµνµ3...µD−1

ωµνBµ3...µD−1 = αρ, (B.23)

where Dµ is the covariant derivative in the hypersurface Σt0 containing p and
ωµν = D[µuν] the vorticity of the congruence uµ. In the special case of static
spacetimes, the congruence ua is surface forming and thus have zero vorticity.
Then, the equation takes the more usually form

Dµu
µ = αρ. (B.24)

For the special case of the AdS-RN solution, this equation can be integrated
inside a closed hypersurface of constant r = R radius. Then the right-hand
side gives the total charge enclosed by the hypersurface, and relates it to the
electric field. For an suitable election of the arbitrary constant α we gets

q2 =
(D − 2)(D − 3)

8πGD

Q2, (B.25)

which is the charge of the AdS-RN solution. Note that the scale L of the
AdS space does not contributes in any way to the measure of the charge.
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Mathematical suplement

In this Appendix we collect the details of some calculations that are outlined
in the main text.

C.1 A useful lema
In this section we give the details of the proof of the equation

lim
β→1

1√
1− β2

χ
((x+ βt)2

1− β2

)
= δ(x+ t)

∫ ∞
−∞

χ(y2)dy, (C.1)

where χ(x2) is an integrable function in R. This identity has been used in
Sections2.3 and 3.1.

To probe (C.1) we shall proceed by computing a primitive for the left-
hand side of the equation, then taking the β → 1 limit and finally arriving
at the result after differentiation. Let us begin by computing

Fβ(z) =

∫ z

−∞
χ

(
(x+ βt)2

1− β2

)
dx. (C.2)

Changing variables to y = x+βt√
1−β2

we have

Fβ(z) =
√

1− β2

∫ z+βt√
1−β2

−∞
χ
(
y2
)
dy. (C.3)

Thus the limit β → 1 of the left-hand side of (C.1) is

lim
β→1

1√
1− β2

Fβ(z) = lim
β→1

∫ z+βt√
1−β2

−∞
χ
(
y2
)
dy. (C.4)
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Now notice that according to the sign of z + t we have:

z + t < 0 =⇒ lim
β→1

z + βt√
1− β2

= −∞,

z + t < 0 =⇒ lim
β→1

z + βt√
1− β2

=∞.
(C.5)

Therefore substituting in (C.4),

lim
β→1

1√
1− β2

Fβ(z) = θ(z + t)

∫ ∞
−∞

χ
(
y2
)
dy. (C.6)

Finally taking a derivative with respect to z and evaluating in x gives the
final result:

lim
β→1

1√
1− β2

χ

(
(x+ βt)2

1− β2

)
=

(
d

dz
θ(z + t)

) ∣∣∣∣∣
z=x

∫ ∞
−∞

χ(y2)dy

= δ(x+ t)

∫ ∞
−∞

χ(y2)dy.

(C.7)

C.2 Computation of some improper integrals

This section is dedicated to the detailed computation of the integrals (3.20)
and (3.37).

The integral (3.20),

I ≡
∫ ∞
−∞

dx
Z ′D

2(x2 + Z ′D
2 − L2) + x2L2

(x2 + Z ′D
2 − L2)B(Z ′D

2 + x2)2
, (C.8)

can be solved by hand in terms of the Appell series F(a; b1, b2; c, z1, z2) as

I =
x

Z2
D (Z2

D − L2)
B

[(
L2 + Z2

D

)
F

(
1

2
;B, 1;

3

2
;

x2

L2 − Z2
D

,− x2

Z2
D

)
− 2L2 F

(
1

2
; 2, B;

3

2
;− x2

Z2
D

,
x2

L2 − Z2
D

)]∣∣∣∣∞
−∞

.

(C.9)

The Appell series is a two variables generalization of the hypergeometric
series. An integral representation is given by

F(a; b1, b2; c, z1, z2) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1(1− t)−b1(1− tz2)−b2dt.
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To study its asymptotic behavior we use the linear transformation

F(a; b1, b2; c, z1, z2) = (1− z2)−a

× F

(
a; b1, c− b1 − b2; c,

z2 − z1

z2 − 1
,

z2

z2 − 1

)
,

(C.10)

togetherwith the following expression in terms of the Gaussian hypergeomet-
ric function

F(a; b1, b2; c, z1, 1) = 2F1 (a, b2; c; 1) 2F1 (a, b1; c− b2; z1) . (C.11)

This enables us to compute the first Appell series in (C.9) for x2 � Z2
D:

F

(
1

2
;B, 1;

3

2
;

x2

L2 − Z2
D

,− x2

Z2
D

)
' ZD√

Z2
D + x2

Γ(3
2
)Γ
(

2B+1
2

)
Γ(B + 1)

× 2F1

(
1

2
, B;B + 1;

L2

L2 − Z2
D

)
,

(C.12)

where we have used the value

2F1(a, b; c; 1) =
Γ(c) Γ(c− a− b)
Γ(c− a) Γ(c− b)

(C.13)

to evaluate the first Gaussian hypergeometric function in (C.11). With a
previous use of the reflexivity condition

F(a; b1, b2; c, z1, z2) = F(a; b2, b1; c, z2, z1), (C.14)

which follows from integral representation (C.10), we can follow the same
procedure to compute the asymptotic value for the second Appell series in
(C.9) when x2 � Z2

D. It results in

F

(
1

2
; 2, B;

3

2
;− x2

Z2
D

,
x2

L2 − Z2
D

)
' ZD√

Z2
D + x2

Γ(3
2
)Γ
(

2B+3
2

)
Γ(B + 2)

× 2F1

(
1

2
, B;B + 2;

L2

L2 − Z2
D

)
.

(C.15)

Substituting (C.12) and (C.15) into (C.9) we express the integral in terms of
Gaussian hypergeometric series:

I =
2

ZD
√
Z2
D − L2

Γ( 3
2 )Γ

(
2B+1

2

)
Γ(B + 1)

[(
L2 + Z2

D

)
2F1

(
1

2
, B;B + 1;

L2

L2 − Z2
D

)
−L2 2B + 1

B + 1
2F1

(
1

2
, B;B + 2;

L2

L2 − Z2
D

)]
.

(C.16)
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On the other hand, the chordal coordinate is related to Z2
D by ZD = L(2q+1).

Thus
L2

L2 − Z2
D

= − 1

q(4q + 4)
. (C.17)

Then we can use the quadratic transformation of the Gaussian hypergeomet-
ric series,

2F1(a, b; 2b, u) = (1− u)−
a
2 2F1

(
a

2
, b− a

2
; b+

1

2
,

u2

4u− 4

)
, (C.18)

with u = −1/q, to manipulate the first hypergeometric series in (C.16). It
gives

2F1

(
1

2
, B;B + 1;

L2

L2 − Z2
D

)
=

(
1 +

1

q

)1/2

2F1

(
1, B +

1

2
; 2B + 1;−1

q

)
. (C.19)

The second hypergeometric series in (C.16) can not be directly transformed
using (C.18). Previously we have to use the contiguous relation,

2F1(a, b; c; z) =
c− 1

c− b− 1
2F1(a, b; c− 1; z)− b

c− b− 1
2F1(a, b+ 1; c; z). (C.20)

In this way,

2F1

(
1

2
, B;B + 2;

L2

L2 − Z2
D

)
=(B + 1) 2F1

(
1

2
, B;B + 1;

L2

L2 − Z2
D

)
−B 2F1

(
1

2
, B + 1;B + 2;

L2

L2 − Z2
D

)
.

(C.21)

After application of (C.18) and the change to chordal coordinate, it reads

2F1

(
1

2
, B;B + 2;

L2

L2 − Z2
D

)
=(B + 1)

√
1 +

1

q
2F1

(
1, B +

1

2
; 2B + 1;−1

q

)
−B

√
1 +

1

q
2F1

(
1, B +

3

2
; 2B + 3;−1

q

)
.

(C.22)

Substituting this into (C.16), together with (C.19), we get

I =
21−2B

L2B−1(2q + 1)q2B

Γ
(

3
2

)
Γ
(
B + 1

2

)
Γ(B + 1)

(
1 +

1

q

) 1−2B
2

×
{[

4q2

(
1 +

1

q

)
− (2B − 1)

]
2F1

(
1, B +

1

2
; 2B + 1;−1

q

)
+
B(2B + 1)

B + 1
2F1

(
1, B +

3

2
; 2B + 3;−1

q

)}
.

(C.23)
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Finally, consecutive applications of Gauss contiguous relations1 allows the
recast the term inside the brackets in terms of just one hypergeometric series:

I =
Γ(3/2)Γ(B + 1/2)

Γ(B + 1)

22(1−B)

(Lq)2B−1 2F1 (2B − 1, B + 1/2; 2B + 1;−1/q) , (C.24)

which gives (3.20).
The improper integral appearing in (3.37) can be expressed as

J ≡
∫ ∞
−∞

dy[
y2 + ρ2

]B =
y

ρ2B 2F1

(
1

2
, B;

3

2
;−y

2

ρ2

)∣∣∣∣∞
−∞

. (C.25)

To evaluate the limits over the hypergeometric function we use the first Pfaff
transformation, which states that

2F1(a, b; c; z) = (1− z)−a 2F1

(
a, c− b; c; z

z − 1

)
. (C.26)

Thus

lim
y→±∞

x 2F1

(
1

2
, B;

3

2
;−y

2

ρ2

)
= 2F1

(
1

2
,
3

2
−B;

3

2
; 1

)
× lim

x→±∞
x

(
1 +

x2

ρ2

)− 1
2

= ±ρ
√
π Γ

(
B − 1

2

)
2 Γ(B)

,

(C.27)

where we have applied (C.13). Substituting in (C.25) we finally get

J =
1

ρ2B−1

√
π

Γ
(
B − 1

2

)
2 Γ(B)

, (C.28)

which is the result quoted in (3.38).

1A complete list can be found in page 558 of [115].
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