
DEPARTAMENTO DE INFORMÁTICA Y AUTOMÁTICA
FACULTAD DE CIENCIAS

Intelligence in Formal Machines

Septiembre 2015

PhD Thesis
TESIS DOCTORAL

Paulo Alexandre Andrade Vieira

Informática y Automática
Universidad de Salamanca

Director
Dr. Juan Manuel Corchado Rodrı́guez

Dr. Sigeru Omatu

.

The PhD thesis entitled “Intelligence in Formal”Machines that is presented
by Paulo Alexandre Andrade Vieira with the aim to obtain the degree of “Doc-
tor en Informática y Automática por la Universidad de Salamanca” was pre-
pared under the direction of Professor Dr. Juan Manuel Corchado Rodriguez,
professor at the Department of ”Informática y Automática de la Universidad
de Salamanca” and the Professor Dr. Sigeru Omatu Professor at the Depart-
ment of Electronics, Information and Communication, Faculty of Engineering,
Osaka Institute of Technology.

Salamanca, Septiembre de 2015

Los directores El doctorando

Fdo: Dr. Juan Manuel Corchado Rodrı́guez Fdo: Paulo Alexandre Andrade Vieira
Profesor Titular de Universidad Assistente do 2º triénio (equiparado)
Informática y Automática Institute Polytechnic of Guarda, Portugal
Universidad de Salamanca

Fdo: Dr. Sigeru Omatu
Professor of at the Department of Electronics,
Information and Communication
Faculty of Engineering
Osaka Institute of Technology

.

To my son Diogo and my wife Fatima with love

.

Abstract

The aim of this work is to find a way to define and measure Intelligence
in computational formal systems. In order to do this I made several types
of considerations: first, the concept of “being Intelligent” assumes clear
notions and is measured of acceptable way only in human beings; second,
there is a growing and savage use of the concept “being Intelligent” for
classify the behavior of other biological beings; third, nowadays the word
”intelligence” is often used to classify the behavior of non biological beings
such as, machines, environments and so on. All of these entities have one
thing in common, they are computational systems; fourth, the computa-
tional systems are computational formal systems, consequently they can
be described using mathematical formalism; fifth, there are a lot of com-
putational formal systems known and there are mathematical theories for
working with them that allow to establish relations among them; sixth, the
problem of defining and measuring intelligence in formal machines is a
problem in the context of following fields: artificial intelligence, theory of
computation, complexity theory and category theory; and finally the sev-
enth, in human beings, there is a measure called Intelligence Quotient (IQ)
to measure their intelligence.

I gathered all of these considerations and I created a new formalism
that is a new formal computational system. I called it Formal Machine
(FM). The objective was that all computational formal systems would be
rewritten in the new formalism and that in that process they would not
lose their mathematical structure. Thus, to satisfy that requirement was
necessary to study in depth several computational systems. After, I used
the Category Theory and I defined what means to rewrite a computational
system to a FMs without lose their mathematical structure. Then I selected
the behaviors in humans that are considered intelligent and I used them for
doing analogies with Formal Machines. Those analogies served to define
andmeasure ”Intelligence” in the new formalism. By doing this for Formal
Machines I did this for all computational systems. Thus I created a quo-
tient to measure intelligence in machines, The Machine Intelligent Quo-
tient (MIQ). The MIQ is an analogy of the IQ in humans.

To transform the computational formal systems to the new formalism
I created the notion of drives. I wrote algorithms to transform computa-
tional formal system to the new formalism. I wrote algorithms for Turing
Machines, Push-down Automata, Finite Automata, Neural Networks and
other computational systems. I called ”drives” to the implementation of
these algorithms. I built drives for Finite Automata and Neural Networks.

I also built a software to simulate formal computational systems. This
software is called Generator of Universes and Simulator of Formal Ma-
chines (GU SFM). In the moment, in the software is only possible to sim-
ulate the behavior of Turing Machines, Push-down Automata and Finite
Automata.

To use the new formalism in computation I wrote three APIs that will
be used by developers, one for developing in desktops, other for develop-
ing with micro-controllers and another for developing in google cloud. I
implemented two games, the tic-tac-toe and the four in line game, in each
one of the games one the players is the new formalism and the other is a

i

human being. In both implementations it was possible to verify that the
new formalism is a good computational formal system to solve engineering
problems. I also developed an electronic board and an information system
that is able to smell environments. In this information system can be found
an implementation of the new formalism in the google cloud.

To validate the MIQ measures I made a statistical study that involved
1000 back-propagation neural networks and a drive projected for them.

ii

Resumen

El objetivo de este trabajo es encontrar una forma de definir y medir la in-
teligencia en los sistemas formales computacionales. Para hacer esto yo hice
varios tipos de consideraciones: en primer lugar, el concepto de “ ser inteli-
gente ” asume nociones claras y se mide de manera aceptable sólo en el ser
humano; segundo, hay una creciendo y salvaje uso del concepto “ ser inteli-
gente ” para el comportamiento de otros seres biológicos; tercero, hoy en dı́a
la palabra ”inteligencia” a menudo se utiliza para clasificar el comportami-
ento de los seres no biológicos tales como, máquinas, ambientes, etc. Todas
ellas entidades que pueden ser representadas como sistemas computacionales;
cuarto, los sistemas computacionales son sistemas formales computacionales
y en consecuencia pueden ser descritos con formalismo matemático; quinto,
hay una gran cantidad de sistemas formales computacionales conocidos y hay
teorı́as matemáticas para trabajar con ellos y establecer relaciones entre ellos;
sexto, el problema de definir y medir la inteligencia en máquinas formales es
un problema en el contexto de estas teorı́as, de la inteligencia artificial, de la
teorı́a de la computación, de la teorı́a de la complejidad y de la teorı́a de las
categorı́as; y séptimo y por último, en el ser humano hay una medida, un co-
ciente, llamado cociente de inteligencia para medir la inteligencia, en ingles IQ
(Intelligent Quotient).

Reunı́ todas estas consideraciones y he creado un nuevo formalismo, un
nuevo sistema computacional, que llamé Máquinas Formales (FMs). Lo que
se pretendı́a es que todos los sistemas formales computacionales se puedan
reescribir en el nuevo formalismo y que en ese proceso no pierden su estruc-
tura matemática. Por lo tanto y para satisfacer ese requisito fue necesario estu-
diar en profundidad una gran cantidad de sistemas formales y recurrir a la
teorı́a de las categorı́as. Definido el nuevo formalismo yo he seleccionado los
comportamientos en los seres humanos que se consideran comportamientos
inteligentes y los he utilizado para hacer analogı́as con Máquinas formales y
partiendo de ellos he definido y medido los mismos conceptos en Máquinas
Formales y en consecuencia en los sistemas formales computacionales. Estas
analogı́as han servido para definir y medir la ”inteligencia” en el nuevo form-
alismo. Ası́ he creado un cociente para medir inteligencia en máquinas, el
Cociente de Inteligencia de la Máquina, MIQ (en inglés Machine Intelligent
Quotient). El MIQ es una analogı́a al coeficiente de inteligencia en los seres
humanos, en inglés IQ (Intelligent Quotient).

Para transformar los sistemas formales computacionales para el nuevo form-
alismo he creado la noción de drive. Yo he diseñado algoritmos que permiten
transformar cada sistema computacional formal para el nuevo formalismo. Yo
he proyectado algoritmos paraMáquinas de Turing, Automata de Pila, Autómatas
finitos, Redes Neuronales etc. La implementación de estés algoritmos llamo
drive. Yo he implementado drives para Máquinas de Turing, Automata Finitos
y (en inglés) Back Propagation Neural Networks.

Yo también he construido un software para simular sistemas computacionales
formales. Este software es llamado, en inglés, Generator of Universes and Sim-

iii

ulator of Formal Machines (GU SFM). En el momento, en lo software, sólo
es posible simular el comportamiento de las máquinas de Turing, Push-down
Autómatas y Autómatas finitos.

Para utilizar el nuevo formalismo en computación escribı́ tres APIs que
serán usadas por los desarrolladores, una para el desarrollo en ordenadores
desktop, otra para desarrollo con microcontroladores y otra para desarrollo
en la google cloud. He también implementado dos juegos, el juego tres en
raya y el cuatro en lı́nea. En cada uno de los juegos uno de los jugadores es
una implementación del nuevo formalismo y el otro es un ser humano. En
ambas implementaciones ha sido posible verificar que el nuevo formalismo es
un buen sistema formal computacional para resolver problemas de ingenierı́a.
También desarrollé una placa electrónica y un sistema de información que es
capaz de oler entornos. En este sistema de información se puede encontrar una
implementación del nuevo formalismo en el google cloud.

Para validar las medidas MIQ hice un estudio estadı́stico en que he usado
1000 redes neuronales “con back propagation” y una drive que he proyectado
para ellos.

iv

Acknowledgements

This work was only possible due to a considerable personal effort and the
help of a group of people. I thank them citing them here.

I thank to professor Corchado and to the professor Omatu for all the sup-
port they gave me throughout this work.

I thank to the professor Adérito Alcaso and to the professor Carlos Carreto,
of the Polytechnic Institute of Guarda, by their monitoring in my PhD doctoral
instance in School of Management and Technology of the Polytechnic Institute
of Guarda.

I thank to professor Noel Lopes of the Polytechnic Institute of Guarda, by
their help in the area of Machine Learning.

I thank to the director of the School of Management and Technology of the
Polytechnic Institute of Guarda for allowing me to realize my doctoral instance
the School of Management and Technology.

I thank to BISITE team, for their support in the phase of the delivery of this
work.

I thank everyone in general who directly or indirectly helped me in this
work.

v

.

Contents

1 Introduction. A problem and its solution 1
1.1 Assumptions and Objectives . 1
1.2 Motivation . 1
1.3 Methodology and work plan . 2
1.4 Structure of the PhD Thesis . 2
1.5 A problem and its solution . 2

2 Preliminary Mathematical Concepts; Introduction 7
2.1 Short History about Formal Computational Systems 7
2.2 Mathematical Concepts . 10

2.2.1 Mathematical Concepts about Words 10
2.2.2 Category Theory . 12

3 Formal Machines 14
3.1 Definition of a Formal Machine 14

3.1.1 Generic approach to Formal Machines 14
3.1.2 Defining a Formal Machine 14
3.1.3 Computation on Formal Machines 19

3.2 The Computational Model . 21
3.3 How to conceive a problem in FMs 28

4 Building Technology 30
4.1 Formal Machine in a Database . 30

4.1.1 Data Structure to support Formal Machines 30
4.1.2 Constants, Variables and Arrays of integers 31
4.1.3 The extension and understanding methods 31
4.1.4 Meta-objects of a FM . 33
4.1.5 On CompMB . 35
4.1.6 On CompMR . 36
4.1.7 On the machine configurations Conf M , Conf Mi , Conf Mf 39
4.1.8 On InstM . 40

4.2 The FCSs are FMs . 41
4.2.1 Some of the current FCSs 42
4.2.2 Proving the Theorem 4.1 44
4.2.3 Proving the Theorem 4.2 54
4.2.4 Tasks and performed Languages of the FCSs 55

4.3 A Software for Simulate Formal Computational Systems 57
4.4 Games and Formal Machines . 64

4.4.1 Tic Tac Toe Game . 64
4.4.2 Four In Line Game . 71

vii

5 Mathematics and FMs 83
5.1 Mathematical Results in the Computational Model 83

5.1.1 Formal Machines and Dynamical Systems 83
5.1.2 Formal Machines and Algebra 83

5.2 Mathematical Results in Formal Machines 86
5.3 Formal Machines and Category Theory 89

6 Measures of the Intelligence of a FM 92
6.1 System of Units of a Formal Machine 93

6.1.1 Fundamental Constitution Units of a Machine 93
6.1.2 Behavior Fundamental Units (BFU) 93

6.2 PCC and ECC . 94
6.2.1 PCC, Potential Computational Capacity 94
6.2.2 ECC, Effective Computational Capacity 98
6.2.3 Factorial analysis of the measures 102

6.3 ECC and PCC in Current Formal Computational Systems 103
6.4 Concrete Automata . 105
6.5 Calculation of the PCC and ECC for concrete Automata 107
6.6 Intelligent measures for Formal Machines 108

7 Validating some FormalMachinesMeasures usingMachine Learning112
7.1 An information system . 113
7.2 Obtaining a FMs from a Back-Propagation of Neural Network

Machine . 116
7.3 BPNNs and FMs measures . 118

8 Analyzing a Microcontroller 123

9 Conclusion and Future Work 124

10 Appendix 132
10.1 Figure . 132
10.2 Data Structure of FA FMs . 132
10.3 Report about the PhD instance . 134

10.3.1 The iGases . 135
10.4 Terms and Abbreviations . 148

viii

List of Tables

1 Table about inputs and outputs of the motives, cycle of execu-
tion k . 26

2 excerpt from above Table, cycle of execution k 26
3 FM Structure: Constants, Variables and Arrays 32
4 The table of the DB of fM(A3) after the use of the extension

method to create the object Q. pk-primary key. 33
5 The table of the DB of fM(A3) after the use of the understanding

method to create the object TI . pk- primary key. 33
6 Type of configurations of an FM 34
7 Table of the set CompMB. 36
8 Table on CompMR. Define the different data types of the kind

productU. pk - primary key. 38
9 Table on CompMR. pk-primary key. 38
10 The table of the DB of A3 after the use of the extension method

to create the object CompMR. pk-primary key. 38
11 Table of the conf, cj = (mj , ccj) with mj ∈ {00,01,10,11} and mj is

the classification of the ccj ∈ Conf M 39

12 Table of fM(A3) to define the set conf. pk-primary key. 40
13 Table on InstM , cP = {cP1 , ..., cPt }. pk-primary key. 41
14 Table of fM(A3) to define the instruction I ∈ InstM . pk-primary

key. 41
15 moves of the game illustrated, in figures 46, 47, 48, from the

page 77 . 79
16 The generic constitution of the FM 80
17 Set of data collected for a game matrix 4 × 4. Legend: D-draw,

FM - wins the FM, HB-wins the Human Being 80
18 values calculated from the sample 81
19 Fundamental Constitution Units of a Machine (FUAP) 93
20 Behavior Fundamental Units . 94
21 Calculation the PCC(A) . 107
22 Calculation the ECCCglobal (τ) . 108
23 Calculation the ECClocal (τ) . 108
24 Concepts Associated with the Idea of Intelligence 109
25 Table of sensors used . 113
27 Measures of the MLs . 116
26 Evaluation of All possible results of a ML 116
28 Relations among RMS, Movements and Spaces 120
29 Relations among Time, MIQDK 121
30 gas sensors used in the e-nose . 143
31 FM Technology: Table of output values of the FM 144
32 FM Technology: Temporal diagram of the Spreadsheets on cloud 147

ix

.

x

List of Figures

1 PhD Thesis schematic . 6
2 Physical state of the machine fM, psmfM 22
3 A is a submatrix of the psmfM matrix 23
4 graphical representation of the automaton AfM 23
5 Automaton of the Computation Operator, ⊢. 25
6 UML diagram of the CSFM version 0.03 27
7 FM serial procedure . 27
8 FM parallel procedure . 28
9 The Automaton A3 and the fM(A3) 31
10 The interface of the Generator of Universes and Simulator of

Formal Machines (GU SFM) . 58
11 The tab of file of the GU SFM . 58
12 The Configurations tab of the GU SFM, the alphabet 59
13 The Configurations tab of the GU SFM, the Limit<21 59
14 The Configurations tab of the GU SFM, browse a path 60
15 The Configurations tab of the GU SFM, choosing a folder 60
16 The Partial Orders tab of the GU SFM, Propositional Logic . . . 61
17 The HELP tab of the GU SFM . 61
18 In the file tab the GU SFM, choosing a computational model . . 62
19 The computational model, of the GU SFM, chosen a Finite Auto-

mata . 62
20 The Finite Automata interface, in the GU SFM, if you clik in

button SET you obtain an explanation of the parameters 63
21 Introducing the parameter Q, in the GU SFM, of the Finite Auto-

mata interface . 63
22 In the file tab of the GU SFM, choosing a FM 64
23 In the file tab of the GU SFM, the FM interface 64
24 The folder of the Tic Tac Toe game (TTT game) 65
25 Opening the TTTgame folder . 65
26 Opening the lib subfolder of the TTT game 65
27 The interface of the TTT game . 66
28 The About tab of the TTT game 67
29 The subtab Authors of the About tab 67
30 The subtab FM Technology of the About tab 68
31 The dialog box of the subtab FM Technology of the About tab . . 68
32 Choosing the first player, the Human Being, and start the game . 69
33 Choosing the first player, the Formal Machine, and start the game 69
34 The Human Being plays is first move and the FMmakes its move

in answer . 69
35 A sequence of moves, the red is the FM, the gray is the Human

Being moves . 70
36 The moves in the TTT game continue and the thoughts of the

machine can be read in the right interface 70
37 The moves in the TTT game continue 70

38 More moves in the TTT game . 71
39 The game is over . 71
40 The interface of the Four In Line Game 72
41 What are the elements presented in file tab 73
42 Choose the number of rows of the table, among 4 to 10 74
43 Choose the number of columns of the table, among 4 to 10 . . . 74
44 Choosing the first player; the FM 75
45 The FM is playing . 76
46 The FM did a move to the square 10 77
47 The game between the FM and the Human player in ongoing . . 77
48 The FM made a move to the square 10 78
49 A4 . 106
50 A5 . 106
51 A6 . 106
52 A7 . 106
53 A8 . 107
54 A9 . 107
55 A10 . 107
56 (left) Excel file about the data collection of the five sensors. (Right)

features of the data) . 114
57 Excel file about the data collection of the five sensors 114
58 features of the data . 115
59 A Back-Propagation Neural Network Machine Architecture, 59-

3-1 . 117
60 Normalized FMs measures, Space, Movements, ECC. Normal-

ized ML measure: A cc . 119
61 Back-Propagation Neural Network Machine Architecture 119
62 FM Tecnhology: Design of the iGases System 136
63 FM Tecnhology: The e-nose board 136
64 FM Tecnhology: Google cloud. An interface to introduce values

in no automatic way. https://goo.gl/oqk51o 137
65 Google cloud: Input Spreadsheet Day (ISD) of the sensors val-

ues. https://goo.gl/z2TJZ1 . 137
66 Google cloud: Example of an Output Spreadsheet Day (OSD) of

the sensors values. https://goo.gl/90JWv6 138
67 FM Technology: bottle stoppers serves as a socket to gas sensors 139
68 FM Technology: the MQ135 gas sensor 139
69 FM Technology: MQ135 smelling alcohol, experience 140
70 FM Technology: reading values from MQ135 140
71 FM Technology: the first e-nose circuit, draft 141
72 FM Technology: working in the laboratory 141
73 FM Technology: the first e-nose board 141
80 FM Technology: Architecture of the System implemented in the

FM . 144
81 FM Technology: alert sent about high values collected by the

sensors. script function alertSensorValues(). 145

xii

82 FM Technology: Alert sent about the state of the sensors and the
board. script function alertDamage(). 145

84 FM Technology: Architecture System about the FM implement-
ation . 146

xiii

.

Intelligence in Formal Machines
Paulo Alexandre Andrade Vieira,

vieirapaulo927@gmail.com

1 Introduction. A problem and its solution

This section is divided in 5 subsections; assumptions and objectives, motiva-
tion, methodology and work plan, structure of the PhD thesis and a problem
and its solution. In assumptions and objectives is indicated the aim of the
this work and its assumptions. In motivations is described what motivated the
work, in methodology and work plan is described the methodology used. In
the subsection structure of the PhD thesis is described how the thesis is struc-
tured and by last the subsection a problem and its solution is described what
is the problem that are motivated this work and how it was find a solution.

1.1 Assumptions and Objectives

The aim of this work is to define and measure intelligence in computational
systems. I considered the solution in the fields of medicine, artificial intelli-
gence, computation theory, complexity theory and category theory. This work
presents a solution in these areas.

1.2 Motivation

When I was a student of mathematics at the University of Oporto I studied two
disciplines that would mark my future. One of them in third year, Algebraic
Theory of Automata, and the other at fourth, Category Theory. The algebraic
theory of automata is a mix of Algebra, Computation Theory and Complexity
Theory. The Category Theory is, a meta-mathematical theory, about mathem-
atical structures.

In my master degree in the University of Lisbon, I studied a course called
Automata Theory, in which among other things was established the connection
between the Automata Theory and the Category Theory.

In 2004 I participated in a robotics course at the University of Coimbra and
I heard talk about fuzzy mathematics, fuzzy logic and fuzzy control

When I began my doctoral studies in University of Salamanca, in one of
the courses I studied a Zadeh’s article, about the fuzzy area, in which he wrote
about a concept of intelligence to devices, the MIQ (Machine Intelligent Quo-
tient).

When I began my doctoral studies at the University of Salamanca, in one of
the courses I studied an article by a Zadeh, on fuzzy area, in which he wrote
about a concept of intelligence to devices, the MIQ (Machine Intelligent Quo-
tient).

This work is the consequence of this route. In this route is all mymotivation
and interest. Gradually grew inme the concept of the problem that existed and
what should be done to find a solution.

1

1.3 Methodology and work plan

In General, the methodology used consisted of intense studies, on computa-
tional systems and on the notion of intelligence in humans, and in technology
implementation for testing the theoretical solutions created. The intense study
of computational systems led me to create a new computational system, that I
called Formal Machine (FM). To show that the new formalism was implement-
able, it was implemented as a player in two games and as manager of alerts
in the cloud. The definition and the way to measure intelligence in FMs was
built from the intense study that was done of the concepts that, in a human,
are considered as intelligence. In order to test some of these measures created
to FMs, a statistical study of measures known for machine learning was done,
and relations were established between the measures of the two computational
systems.

1.4 Structure of the PhD Thesis

The thesis is composed of nine sections and one appendix. The section 1 con-
tains references to the goals and motivations of the work. The problem to solve
is identified and is explained how it was resolved. In section 2 is described a
short history of computation systems and are given the definitions of the math-
ematical concepts that will be used in this work. In the section 3 is defined the
new formalism, their computation model and is described how it should be
designed a problem in the new formalism. The section 4 is a section where is
built the data structure of the new formalism, is presented a software that I
developed to simulate computational systems, and are described two games in
which the players are FMs. In section 5 are presented several theorems about
how is possible to build new FMs from others FMs. In section 6 are created sev-
eral intelligence measures in FMs, the MIQs. In section 7 is presented a work
that relates measures of the Machine Learning with measures of the FMs. In
section 8 is analyzed the why MCUs can be seen as FMs. In section 9 is presen-
ted the conclusion of the work and is described the work to be made in the
future. In the appendix is presented the report about my work, in the doctoral
instance, elapsed in Guarda Portugal.

1.5 A problem and its solution

In this sub section I present the problem solved and how the solution was
found and built.

A Problem: The word intelligence is nowadays used for classify a lot of
behaviors. Many of these behaviors are or can be carried out by Formal Com-
putational Systems (FCS)1. The problem that was identified and solved in this
work was how to define, measure, quantify and compare intelligence in FCSs.

1Turing Machines, Pushdown Automata, Transducers, Finite Automata, k-Unbounded Register
Machines and Neural Recurrent Networks and so on.

2

The solution: To solve this problem, I created a new formalism, called the
Formal Machine (FM), which makes it possible to rewrite numerous FCSs, in
Formal Machines (FMs), without losing their structure. I developed a mathem-
atical notion about what it means to preserve the structure of an FCS. This no-
tion was defined in the Category Theory and makes use of the functor concept,
wherein the FCSs and the FMs are written as categories. There should be an
embedded functor between these categories, from the FCS category to the FM
category. The embedded functor is a concept defined by me and makes it pos-
sible to embed one category in another category; this embedding is made by
preserving the structure of the FCS. Hence the FCSs are, in fact, FMs with the
FCS structure preserved. I present how to construct the Automata, Pushdown
Automata, Turing Machines and FMs as categories. As an example of an em-
bedded functor I present an embed functor between a generic Finite Automata
defined as a category to a FM also defined as a category. In fact, I present how
to embed any Finite Automaton in a FM. I use the word drives to designate the
implementation of the algorithms that make it possible to obtain an FM from
an FCS.

Without using the Category Theory, I also algebraically rewrote different
types of FCSs such as Automata, URMMachines, Pushdown Automata, Turing
Machines, Neural Networks, in FMs. This serves to prove that these FCSs are
FMs. For each one of these proofs, although they have not been done, is easy to
construct the respective embed functor between each FCS and FM. Hence, the
FMs obtained from the FCSs preserve the original structure of the FCSs. The
proofs of these theorems are algebraic and constructive, they can be used to
construct drives for FMs. The drives make it possible to translate an FCS into
an FM and to store the new FM in a Database of FMs. For that, to build drives
is necessary to know the DataStructure of the FM (page 30). I, also, defined
the Data Structure (DS) of a FM2 which, in turn, maked it possible to build:
FM Databases (DBs), FCSs3 drives, and an interface between the world and the
FMs. This interface is a class (in Software Engineering) that implements the DS
of a FM. Thus, given an engineering problem to solve, this interface can be used
to translate the problem for a FM problem and then it can be solved through
FM Technology. Thus, the drives allow that everything which is defined in FMs

2The class that implements the DS of a Finite Automata as a FM can be downloaded from http:

//www.ipg.pt/user/˜pavieira/private/SW/index.html (Download the class DS FA FM.jar)
and the documentation of it can be download from http://www.ipg.pt/user/˜pavieira/

private/SW/javadoc_ds_fa_fm/index.html
3The drive of a Finite Automata for FM, denoted by FA FM, http://www.ipg.pt/user/

˜pavieira/private/SW/index.html(Download class FA FM).
The documentation of the SW structure of the drive FA FM, public methods and constructors, can
be consulted in http://www.ipg.pt/user/˜pavieira/private/SW/javadoc_fa_fm/index.html.
An explanation about how to use the drive FA FM can be found in http://www.ipg.pt/user/

˜pavieira/private/SW/Use_class_FA_FM.pdf

The DB of a FM that was written in a FM through of the use of the drive FA FM and stored in a DB
can be read in http://www.ipg.pt/user/˜pavieira/private/SW/Database_FM_SQL.pdf

An example of transformation of a FA for a FM, through of the use of the drive FA FM,
and its storage in a DB can be found in http://www.ipg.pt/user/˜pavieira/private/SW/

exampleClassFA_FM.pdf

3

to be naturally applied in all FCSs. I built a drive for Finite Automata (page
30). Thus any Finite Automaton can be translated and stored as a FM.

From an intense study about the concepts that in the human beings are con-
sidered concepts associated with intelligence and from the nature of the FMs
I defined several measures of intelligence for FMs. Because of that, and given
what a drive allows to transform a FCS in a FM, these measures are therefore
naturally applied for all FCSs. I also built a software that simulates the beha-
vior of several FCSs while they performing the tasks. The implementation of
the measures referred is ongoing in the mentioned software.

As already mentioned, the way found to define intelligence in FMs was to
define it through of many concepts associated with the idea of intelligence.
These concepts were selected according to the strong association they have
with the analogous idea of intelligence in human beings. To define Intelligence
in this way, I made an anthropomorphic analysis of the FMs and built two sys-
tems of units: the (FUAP) Fundamental Constitution Units of a Machine and
the (FBU) Fundamental Behavior Units. The FUAP is associated with the prop-
erties that the machine has with regard to their “anatomy” and “physiology”.
The FBU is a system of units related to the behavior of the machine. Using
this system of units, I constructed two measures to define the capacity of the
machine to the computation. One of the measures is their potential compu-
tational capacity, and the other is their effective computational capacity. The
first is associated with the “anatomy” and “physiology” of the machine and the
second is associated with their behavior.

The anatomy of a machine is related with its architecture, its constituents,
with answers to the following questions: How is the machine? and, Which are
the constituents of the machine?

The physiology of the machines is related with questions as the following,
How to work, with each other, the components of a formal machines? The
behavior of the machine is related with the tasks that are carried out by the
machine. The first analysis made using these types of measurements is an ana-
lysis based on Occam’s razor, whereby the capacity of the machine is linked
with the presentation of easy solutions to simple problems, in machine lan-
guage is linked to inputs associated with outputs. The outputs are words with
short length([Lothaire, 2002]). As result of this was necessary to do a second
type of analysis, an analysis to know the capacity of the machine to solve com-
plex tasks. This second analysis of the machine’s capacity uses techniques of
Complexity Theory such as the small “o”, the big “O” and Ω.

After, I defined concepts that are related to the idea of intelligence. These
concepts are measured in Formal Machines and are concepts about; their Ad-
aptation to the environment, their Creativity, the Depth and Level of Know-
ledge that it possesses, the capacity that it presents to communicate using a
Language, its capacity to Learn, the capacity which the machine has to store
information in their Memory, their Motivation, their capacity to Perceive the
Environment, and their capacity to Reason. For each one I called the Machine
Intelligence Quotient (MIQ); of the Adaption, MIQA, the MIQC to measure
the creativity of the machine, the MIQL to measure its capacity to learn and

4

so on. Thus, to measure the Intelligence of a FM is measuring the different
concepts that are associated with intelligence. In Human Beings is used the
Quotient of Intelligence (QI) as a measure of intelligence, in FMs there is the
Machine Intelligence Quotient (MIQ). However, in machines the MIQ is a ded-
icated measure for each one of the ideas associated with intelligence.

In this work I defined what the computational structure of a FM is, and I
implemented it in software. I called this software the Computational Structure
of a FM (CSFM), it is on current version 0.03. CSFM is a software composed of
interfaces, abstract classes, classes, methods and variables that should be over-
written and then they are used as an implementation of a FM. The CSFM is to
be used by developers who want to solve certain problem(s) using FMs. The
developers can find the CSFM in software (SW) and hardware (HW), I imple-
mented both. To the hardware implementation, of the CSFM, I built a library
for to be used in the Arduino Technology4 and in consequence in the Micro
controllers (MCUs) implemented in Arduino platforms. This implementation
allows that a CSFM can be embedded in the chip, by upload, through of the
overwritten of the CSFM’s classes and methods. This transforms the chip into
an FM that will be able to solve a set of problems. As I can have chips with
CSFMs, I am now working on implementing one of them as a player of the
Four-In-Line game (FIL game). I already have, in a CSFM, implemented this
game as a SW desktop implementation. I have two desktop implementation
of two games: the FIL game and the Tic-Tac-Toe game, both through an IDE5.
Thus, after to constructed the CSFM for SW and HW I am working on writ-
ing applications that use the CSFM in HW and in SW, to serve as examples for
developers.

In addition I demonstrated several mathematical theorems to construct
FMs from FMs, through of the use of operators6. All these theorems are con-
structive theorems because one of the principal aims of them is allow their
implementation. Thus, it will be possible to build FMs automatically. I also
demonstrated that FMs with the adequate operators are known mathematical
structures.

To validate the FM measures I developed an work with Machine Learning
(MLs), more concretely Back Propagation Neural Networks (BPNN). I com-
pared some of FMs measures with the measures that are usually used in MLs
and using a statistical and inductive reasoning I conjectured several results.
From a sample of 1000 BPNNs and using a drive7 I conjectured some rela-
tions between MLs measures and FMs measures. The work to transform the
conjecture on a mathematical theorem was left for future work.

As part of my PhD work and with the aim of to obtain the PhD with inter-
national mention I was in a PhD instance in Portugal during more than three
months in the School of Management and Technology of the Polytechnic In-

4www.arduino.cc
5I use the NetBeans and Java Language
6∪, ∩, , ∗ and so on
7The drive transforms a BPNN in a FM

5

stitute of Guarda. In the PhD instance work I built an electronic board, that I
called an e-Nose, and the information system that allows to collected smells,
store the data values in a database in the cloud and to treat the information
obtained. From the information treated the information system is able to send
alerts. The system sends two different types of alerts, sensor alerts and dia-
gnostic alerts. The sensor alerts are alerts related with the readings given by
the sensors. This alerts are sent when certain reading values, given by the
sensors, are exceeded. The diagnostic alerts are alerts about the state of the
sensors and about the state of the electronic board. They are sent if the values
of the data collected can be indicating that the sensors or someone of them are
no calibrated or are damaged or that the board can be damaged. The system of
alerts is managed by a FM.

Figure 1: PhD Thesis schematic

6

2 PreliminaryMathematical Concepts; Introduction

This section consists of two sections. One of them presents a short story about
the formal computational systems and the other presents mathematical con-
cepts used in the work.

2.1 Short History about Formal Computational Systems

Now, I will describe briefly the history of formal computational systems
In 1900/02 ([HiD02]) Hilbert published a list of 23 unsolved problems

which were at that moment the most important mathematical problems. I
would like to focus on two of the 23 problems, the 2nd and the 10th. There is no
consensus about whether the 2nd is solved or not; however, the 10th problem is
regarded as being solved. Despite the different point of views, the attempts to
solve both problems showed that they were seminal problems. In fact both led
to the development of a considerable quantity of new concepts, new ideas and
new mathematical results associated with the idea of finite sequential meth-
ods. Essentially, both are associated with the idea of algorithms. These finite
sequential methods are FCSs and each one of the FCSs is as a classification of a
certain kind of algorithms. In this work I constructed a new formalism called
Formal Machine (FM) that makes it possible to transform all the FCSs into
Formal Machines (FMs) without losing their structure. In the past there were
many kinds of FCSs that are equivalent to each other. The difference between
the FMs and this past experience is that the FM obtained from a Formal Com-
putational System (FCS) is a FMwith the structure of the FCS. The FCSs do not
lose their mathematical structure. This is consequence of the use of Category
Theory. The idea of working with FCSs in Category Theory was introduced by
Samuel Eilenberg in 1974 [Eil74] where he rewrote some of the FCSs as cat-
egories. In this work is made an innovative use of the Category Theory in the
FCSs, and is defined a new concept, an embed functor. I defined what it means
to preserve the structure of a FCS, and I showed that it happens in fact, through
of the construction of an embed functor between each one of the FCSs and the
corresponding FMs, both seen as categories.(See section 2.2.2, page 12).

There is a school that regards the 2nd problem as a problem for which it
is necessary to obtain constructive proof about the consistence of Piano Arith-
metic Axioms, a proof that is currently considered to be an algorithm ([CaWi07]).
The 10th problem, is about finding an algorithm to determine whether a given
polynomial Diophantine equation with integer coefficients has an integer solu-
tion. Today this problem is solved. It is known that there is not such algorithm.
([CaWi07]) This is a consequence of Matiyasevich’s theorem. The 2th and the
10th problems were the trigger of the known Entscheidungsproblem8. Thus
both problems, the 2nd at least for a certain school, are problems about finding
algorithms. Both can be implemented or described in FCSs and both are the
trigger for the emergence and development of many FCSs.

8The Entscheidungsproblem is a logical problem that consist in to know if it exists a generic
algorithm to determine whether any first order logic sentence can be demonstrated.

7

In 1931 ([RaPa14]), in the attempt to solve the 2th Hilbert problem, Godel
demonstrated the two incompleteness theorems and showed, in the first the-
orem, that in a system that contains the Piano Arithmetic there are preposi-
tions involving natural numbers that are undecidable. With the second the-
orem he also showed that it is impossible within this system to demonstrate
their consistency. In the proof of the incompleteness theorems he defined a
new class of functions, the Primitive Recursive Functions. All values of a func-
tion that belong to this class of functions are obtained using a finite recursive
mechanical method. The functions are defined by recursion, but it was ob-
served that there are functions obtained by this method that are not in the class
defined. Thus, in order to solve this difficulty, in the spring of the 1934, during
his visit to the Institute for Advanced Study in Princeton, Godel proposed a
class of functions that he called the General Recursive Functions.

([ChAl36a]), ([ChAl36b]) In 1936 Alonzo Church presented notes about the
Entscheidungsproblem. His reflections about it allowed him to create a type of
computation, Turing called (([TAM36]) effective computability, the λ−calculus
([ChAl85]).

in 1936, in only one paper ([TAM36]), Turing gave a new notion of compu-
tation, called computability, presented a new model of computation, referred
today as Turing Machines (TMs), and showed the equivalence between com-
putability and the effective computation. He built too a Turing Machine (TM)
that is able to compute all the TMs called, referred today, as the Universal Tur-
ing Machine (UTM). From the work of Church and Turing arose the Thesis of
Church Turing9. This thesis is a not demonstrated result but it is accepted by
the scientific community. This kind of things are, in mathematics, called prin-
ciples. Thus, the this result is also called the Principle of Church Turing. A
lot of people that work in Computer Science consider the TMs and UMTs to be
the theoretical concept of programs (computer programs) and the computers
(the machines that performed the programs) respectively. In 1944 the con-
struction of the first computer, the ENIAC, began; it was concluded in 1946.
In the ENIAC conception the emphasis was placed on solving the mechanical
problems and not in the conception logic and theoretical. Thus, during the
construction of the ENIAC, it became clear that a new computer, the EDVAC,
should be constructed. In 1945 the mathematician Von Neumann published
his famous document “First Draft of a Report on the EDVAC” ([Neu45]) where
he describes this new computer.

The conception of the EDVAC is similar of the today’s computers. It was
a binary computer with a storage zone (the memory) where the data and the
instructions are stored. Nowadays the Microcontrollers (MCUs) are divided
into MCUs with Von Neumann Architecture (the architecture similar to the
EDVAC) and MCUs with Harvard Architecture10.

9In slight language means that all what is performed by an artifact (a device) can be computed
by a Turing Machine
10In the Von Neumann Architecture the Data Memory and the Program Memory, such as the

Data Bus and the Program Bus, are the same physical component in the MCU, and in the Harvard
Architecture they are distinct physical components

8

The three methods, the recursive method (created by Godel), the λ-calculus
(created by Church) and the Turing Machines (created by Turing) makes it
possible to define the same class of functions. Thus arose a new science, the
Computation Theory, and the formal concept of grammar and with themmany
computational models and grammars. In 1956 Chomsky ([ChNo56]) described
three models to characterize a formal language. In 1959 ([ChNo59]) Chomsky
presented a classification of formal languages, today known as Chomsky Hier-
archy, which organizes formal languages and formal grammars in a hierarchy.

The description mentioned until this point is the description that origin-
ated the appearance of the FCSs as consequence of the Hilbert’s problems.
The FCSs and the hilbert’s problems, created synergies among themselves and
made people associate the idea of FCS with the idea of computing and the
idea of computing with the idea of a machine running. Thus, the FCSs that
are finite sequential methods are also finite sequential mechanical methods.
From the beginning they have been associated with the idea of formalizing;
mechanisms, procedures or tasks done by machines, or with the idea of form-
alizing the machines themselves. During the development of the computation
arose several new computational methods. For example the methods of paral-
lel computing, which represent the formalization of a computational process,
here also associated with the idea of FCSs.

The idea of reproducing neural systems as a computational systems came
from the field of biological, where people are studying neural systems. A lot
of this reproduction was done by construction of computational methods and
the FCSs appear as a computational system to simulate neural systems. Thus,
the Artificial Neural Networks (ANNs) were created inspired on the central
nervous systems of biological beings, principally on the brains. Going further
back to describe the relationship between ANNs and computation, I would say
that in 1943 Warren McCulloch and Walter Pitts ([WMWP98]) created a com-
putational model for neural networks as an analogy of the functioning of the
brain. In the late 1940s Donald Hebb ([HeDO49]) created the hypothesis of
learning based on the mechanism of this model, today called Hebbian learn-
ing. In the early 1950s Belmont Farley and Wesley Clark ([KPPK]) developed
the first digital computer based on artificial neural network. In 1958, Frank
Rosenblatt ([RoF58]) created the perceptron, which is an algorithm for pat-
terns recognition based on a two-layer learning computer network. Once cre-
ated the perceptron there was the attempt to put it to process circuits. It was
possible to process the circuits that correspond to simple addition and simple
subtractions. However, It was found a simple circuit, the or- exclusive, that the
perceptron was not able to process. This situation was a problem that origin-
ated some disbelief in the capabilities of this computational system.

Next, the research in Neural Networks stagnated for a time after the Mar-
vin Minsky and Seymour Papert publication ([MiPa69]), in 1969 about ma-
chine learning. They discovered two important issues about Neural Networks:
one was that single layer networks were not able to process an or-exclusive
circuit; and the other was that, at the moment, computers were no able to
process neural networks. This last issue caused a setback of the research in

9

neural networks. It was only after a significant increased of the computational
power of the computers that the research in neuronal networks was meaning-
fully increased. In 1974 Paul Werbos ([Wer74]) ([Wer94]) created the back-
propagation and this algorithm allowed computing the exclusive-or circuit.

In 1986 ([RuMc86a]), ([RuMc86b]) David E. Rumelhart and James McCle-
lland wrote a text where they described how to use parallel distributed pro-
cessing to simulate neural processes, a method called connectionism. In the
1990s the statistical learning theory ([Vap95a]), ([Vap95b]) increased in im-
portance and as consequence neural networks were overtaken in popularity.
All of this led to a rise in support vector machines ([BSS99]), linear classifiers
([DHS01]) and other similar models. In the 2000s a renewed interest in neural
nets arose with the advent of deep learning([YuB09]). Thus, I conclud the brief
history of the FCSs.

There are two ways of doing things in computation: through the use of a
computational model or ad-hoc. The use of computational models in solving
engineering problems has many advantages since many mathematical mech-
anisms are available for use in the solutions. That is important at the moment
that the problem is to be solved, because a many things are known about the
formalism chosen and it is possible to use them. It is also important after the
problem have been solved, because other researchers can easily add new func-
tionalities/improvements to the solution found once the computational model
is known by the scientific community and by the developers.

2.2 Mathematical Concepts

2.2.1 Mathematical Concepts about Words

In this sub subsection some concepts and notations that I will use throughout
the PhD thesis are defined, including the alphabet as a finite and non-empty
set. To denote alphabets it is, preferable to use A, Γ, O. The elements of an
alphabet are called letters. When a, γ , o, are used alone or with indexes, it is
understood that they are letters, respectively, of the alphabets A, Γ, O. A finite,
and not empty, sequence of letters of an alphabet is called a word. The set of
all words of an alphabet, A, is denoted by A+.

Operations in words
Then [Lot97], I define some operations in words: the concatenation, the

operation +, ∗ and ω (omega). For u = a0a1...an and v = b0b1...bm, where ai , bj ∈
A with 0 ≤ i ≤ n and 0 ≤ j ≤m,

concatenation, ·, u · v = a0a1...anb0b1...bm, abbreviated as uv

The concatenation is an associative operation. From the concatenation it is
possible to define a new word ǫ, called empty word, ǫ, as follows

∀x ∈ A+,xǫ = ǫx = x.

Then the operations +, ∗ and ω (omega) are defined as

10

iteration operator, +, u+ = {un : n ∈ N} with un = u · ... ·u =

n times
︷︸︸︷

u...u
star operator, ∗, u∗ = {ǫ} ∪ {un : n ∈ N}

omega operator, ω, uω = uuuu...uuu.... (u is repeated indefinitely)

I also denoted u(i) = ai and a function | | : A∗→P (N), wherein m ∈ | |(w) if w is
decomposed in m letters of A. By abuse of notation, |w| replaced the notation
| |(w). Thus, for example, |ǫ| = 0. I define m ∈ |w|B, with B ⊆ A, if w is decom-
posed in m letters of B(See Example 2.1).

Examples 2.1 A = {0,10,100} i) |100| = {1,2}, 100 is decomposed in 10, 0 and in
100.
ii) |100|{0,1,10} = {2,3} , 100 is decomposed by 0 and 10 in {0,1,10} and by two
0’s and 1 in {0,1,10}. |100|{10,100} = 1, 100 is decomposed by 100 in {10,100}.
|100|{10} = 0, 100 have not any decomposition in {10}.
iii) |10|{0,10} = 1, the word 10 is decomposed by 10 in {0,10}.
iv) |100|{0} = 0, the word 100 have not any decomposition {0}. By abuse of notation,
instead of |100|{0} = 0, is possible to write |100|0 = 0.
v) |000| = 3, the word 000 is decomposed by three 0’s.�

Operations in sets
The operations above can be generalized and applied to sets. The following

sets can be constructed from the alphabet A.

the set A+, A+ = {a0a1...an : n ∈ N0, ai ∈ A,0 ≤ i ≤ n},
the set A∗, A∗ = A+ ∪ {ǫ},

the omega set, of A, Aw, Aw = {aw : a ∈ A}.

The concatenation of two sets of words L1 ⊆ A∗ and L2 ⊆ A∗ can also be defined
as

L1 ·L2 = {u · v : u ∈ L1 e v ∈ L2}
For sets, for example a set D, |D| denotes the cardinal of D, that is the quantity
of elements that D possesses.

Let S1,S2,,SN be sets, S = S1×S2×...×SN and aN-tuple s = (s1, ..., si , ..., sN) ∈
S . si is denoted (respectively, Si) as s(Si) or s(i) (respectively, S(si) or S(i)). Then
si = s(Si) = s(i) (respectively, Si = S(si) = S(i)). (See Example 2.2)

Examples 2.2 S1 = N, S2 = Z, S3 = Q, S4 = {1,2}, S5 = N. Let S = S1 × S2 ×
S3 × S4 × S5 and s = (s1, s2, s3, s4, s5) = (2,−1, 13 ,2,5). Then s(S2) = −1, s(S3) = 1

3 ,
s(S4) = 2 and S(s1) = N, S(s2) = Z, S(s4) = {1,2}.�

The power set (respectively, finite subsets) of a set D is written as P (D) = {E :
E ⊆D} (respectively, Pf (D) = {E ⊆D : |E| <∞})

11

Codes
A subset of A+, X, is said to be a code [BDR10] if, for all x0,x1, ...,xn ∈ X,

y0, y1, ..., ym ∈ X such that x0x1...xn = y0y1...ym, implies n = m and (xi = yi , for
all 0 ≤ i ≤ n). In this case,

X∗ = ⊕
n≥0X

n = X0∪̇X∪̇X2∪̇... = {ǫ}∪̇X∪̇X2∪̇... (disjoint union)
When the alphabet A is a code, |u| is denoted by |u⌋ (Example 2.3). If A is

a code, each u ∈ A+ has only one decomposition in A. Therefore, |u⌋=length of
the word u in A and |u⌋B=length of the word u in B whenever B ⊆ A and u ∈ B.

Examples 2.3 A = {0,1} is a code, |100⌋ = 3, |100⌋0 = 2, |100⌋1 = 1.�

2.2.2 Category Theory

A category, C, is a 2-tuple C = (ObjC ,MorfC) where ObjC is a set, called the
objects of C, and MorfC is a family of sets MorfC(X,Y) with X,Y ∈ ObjC , called
the morphisms of C. The category C has the following properties:
i) There is an operator of composition, ◦C , such that for all X,Y ,Z ∈ObjC ,

◦C :MorfC(X,Y)×MorfC(Y,Z) −→MorfC(X,Z) is a function,

ii) ◦C is associative, for all f ∈ MorfC(X,Y), g ∈ MorfC(Y,Z), h ∈ MorfC(X,Z),
(f ◦C g) ◦C h = f ◦C (g ◦C h), and
iii) If X = Y . Then exists a 1X ∈MorfC(X,X) such that for all f ∈MorfC(X,Z)
and g ∈MorfC(Z,X), 1X ◦C f = f and g ◦C 1X = g

When there’s not ambiguity the composition operator is only denoted by ◦.
A category D is called a subcategory of C if:
i) ObjD ⊆ObjC ,
ii) for all X ∈ObjD, 1X , the identity in X, in D is also the identity of X in C,
iii) MorfD(X,Y) ⊆MorfC(X,Y) for all X,Y ∈ObjD, and
iv) ◦C |MorfD(X,Y)×MorfD(Y,Z) = ◦D |MorfD(X,Y)×MorfD(Y,Z) for all X,Y ,Z ∈ObjD.

Next, another mathematical object, called a functor can be defined. A func-
tor is a correspondence between two categories, C for D, that preserves the
composition operator, ◦C , of the category C in the category D through of the
use of the composition operator ◦D. Formally, a functor F is a 2-tuple corres-
pondence F = (FObj ,FMorf) such that
i) FObj :ObjC −→ObjD is such that for all X ∈ObjC ,

FObj : X −→FObj (X) is a function

ii) FMorf :MorfC −→MorfD is such that for all X,Y ∈ObjC ,

FMorf (X,Y) :MorfC(X,Y) −→MorfD(FObj (X),FObj (Y)) is a function wherein:

ii.1) for all X ∈ObjC , FMorf (X,X)(1X) = 1FObj (X)

ii.2) for all f ∈MorfC(X,Y), g ∈MorfC(Y,Z);

12

FMorf (X,Z)(f ◦C g) = FMorf (f)(X,Y) ◦D FMorf (g)(Y,Z).

The functor F is called injective if the functions FMorf (X,Y) for all X,Y ∈
ObjC are injectives. This case also indicates which FMorf is injective. An in-
jective functor is called a faithful functor. I refer to the functor F as embedded
functor if it is a faithful functor where FObj : X −→ FObj (X) for all X ∈ ObjC is
injective. If F is an embedded functor then category C is said that is embedded
in category D, and C is isomorphic to a subcategory of D, F (C), which is the
same category as C. In slight language, the relations that the morphisms of
C have among themselves are the same relations that, with respect to the cor-
respondence of the objects and morphisms, exist among the morphisms of the
F (C). When there is no ambiguity, I use FMorf instead of FMorf (X,Y).

The formal definition of FM, presented in the following section, was, also,
built from a careful analysis of several FCSs [Hop08][Cut97] and based on the
knowledge about how microcontrollers [Atm13] and the processors operate.
Some of the analysis done can be observed in the proofs of the two theorems,
theorems 4.1 and 4.2 on page 42, which establishes that set out that a number
of FCSs are FMs.

13

3 Formal Machines

In this section I present the definition of a new formalism, the Formal Ma-
chine (FM). I present a finite automaton, that recognizes gmail addresses, and
a Pushdown Automaton, that verify the corrections of the parenthesis in a syn-
tax of a programming language. For the two automata are showed their trans-
lation to FMs. Thus, these two FMs are the first two FMs, that I present here,
that are able to solve concrete problems. In this sections I also presented the
computational model of a FM, their implementation in serial and in parallel.
For last I present how should be conceived a problem in FMs.

3.1 Definition of a Formal Machine

The process of construction of this formalism in which the FCSs are instanti-
ated without modifying their structures or their nature is resulted of consider-
able reflection and analysis. In this process I analyzed a number of mathemat-
ical entities that are considered FCSs. This new formalism will allow to define
measures, mathematical entities, and to obtain results about these measures
and entities that can be directly applied to FCSs. From the analysis and reflec-
tion referred, arose the conviction that the characteristics of a FM, should be
as follows.

3.1.1 Generic approach to Formal Machines

The definition of a Formal Machine should include:
i) a declaration on its components, which should be finite in number, and

the causal relations or connections among them;
ii) the meaning of the configuration of the machine. The concept must

make it possible to know, at any moment, the configuration of the machine.
All the components of themachine should be in the configuration and knowing
the configuration should tell you the state of each one of the components;

iii) the primitive instructions of the machine. Each instruction is a k-partial
operation in the set of the machine configurations. The machine instructions
operate in the space of these configurations using the connection that exists
among the components. A program is a finite sequence of instructions.

iv) an algorithm that describes how the machine works. That algorithm is
called the Von Neumann’s Algorithm, VNAlg .

3.1.2 Defining a Formal Machine

Next I am going to define a FM. Examples of FMs can be seen in Example 3.1
page 17. A FM, fM, is a 7-tuple

fM = (CompMB,CompMR,Conf M,Conf Mi ,Conf Mf , InstM,VNAlg),

14

wherein:

i)
- the set CompMB is called the set of the basic machine components. CompMB is
a finite set,

CompMB = {C1, ...,Cn}.

The set CompMB has the following property:

∀i ∈ {1,2, ...,n}∃Ai , ∅ : |Ai | < +∞,Ai is a code and Ci ⊆ (Ai)
∗

Ai is designated the alphabet of the component Ci and is also written as A(Ci),
A(Ci) = Ai . The existence of the alphabet of the component, without loss of
generality, Ai = A(Ci), allows to the machine to have a unique factorization on
Ai for the operation of concatenation on A+

i at each component Ci .

- the set CompMR, is called the set of the inner relations of the machine or
simply the set of the relations of the machine,

CompMR = {R1, ...,Rm}.

The set CompMR has the following properties:

(∀Ri ∈ CompR)(∃ti ∈ N) : Ri ⊆ ×tij=1C ′j
with C ′j ∈ CompMB. The relations R ∈ CompMR can be seen as providing

streaming channels between components.

ii) Conf M ⊆ ×ni=1Ci is the set of configurations of the machine. A config-
uration c ∈ Conf M is an n-tuple c = (c1, ..., cn). Thus, c(Ci) = ci . Is possible to
build, naturally, a code that is the Cartesian product of codes, A(C1)×...×A(Cn),
whereupon can be written the configurations of the machine. In that code,
|c⌋ =∑n

i=1 |ci⌋, with |ci⌋ = length of the word ci in A(Ci).
Conf Mi ⊆ Conf M is the set of the initial configurations of the machine. The

initial configurations are the configurations that allow to start the work of the
machine.

Conf Mf ⊆ Conf M is the set of the final configurations of the machine. A
configuration that makes it impossible, in any circumstance, for the machine
to shift its configuration is called a stop configuration. The final configurations
are stop configurations.

iii) InstM = {I1, I2, ..., Ir } ∪ {NOP} is a finite set, the set of primitive instruc-
tions. Each instruction Ij ,NOP is such that,

Ij : ×kl=1(Conf M \Conf Mf) −→ Pf (Conf M), with k ∈ N,
Pf (Conf M) = {D ∈ Conf M : |D| <∞}

15

and cP ={c1, .., ct} ⊆ Conf M , cP = I(~c) with ~c = (c1, c2, ..., ck)∈×kl=1Conf M . For
each ci = (ci1, ..., cin) ∈ cP , and civ with 1 ≤ v ≤ n (therefore ci (Cv) = civ and
Cv ∈ CompMB), either
a)11 ∃1 ≤ j ≤ k: civ = cj (Cv) or
b)12 (∃1 ≤ j ≤ k) (∃1 ≤ rciv , sciv ≤ n) (∃Rciv ∈ CompMR)

(∃t1 < ... < trciv
with c

j
t1
∈ Ct1(c

j), ..., c
j
trciv
∈ Ctrciv

(cj))

(∃w1 < ... < wsciv
with ciw1

∈ Cw1
(ci), ..., ciwsciv

∈ Cwsciv
(ci))

∃wl ∈ {w1, ...,wsciv
} such that

civ = ciwl
, u = (c

j
t1
, ..., c

j
trciv

, ciw1
, ..., ciwl

︸︷︷︸

civ

, ..., ciwsciv
) ∈ Rciv , Rciv (rciv + l) = Cv (See

section 10.1, page 132).
Ij is called a k-instruction or simply an instruction of the machine. The in-

structions of the machine operate on subsets of a finite Cartesian product of
the set of configurations, (Conf M)k . When there is a subset of configurations
obtained from the application of an instruction and this subset has new config-
urations, is because the instruction uses connections among the components.
Each one of those connections are elements of a relation. That relation is a
subset of a finite Cartesian product of several components of the machine and
is an element of the set CompMR.

NOP is the following instruction:

NOP:P (N)→P (P (N)) wherein
NOP(cP)={c′P : c′P ⊆ cP }.

When c′P ∈NOP(cP) I use a notation more slight and I write NOP(cP) = c′P .
iv) Von Neumann’s Algorithm (VNAlg) is an algorithm with a certain structure
consisting of the description of how the FM works. The VNAlg is divided in
3 zones; the Definition Zone, the Setting Zone and the Execution Zone. The
Definition Zone is the place in the algorithmwhere the constants, the variables,
and all kinds of objects that are used in the algorithm are defined. The meta-
objects required to the running of the algorithm are also defined here. In the
Setting Zone the initial state of the machine is set. That initial state can be the
first perception of the environment, acquired from out, or an input introduced.
The Execution Zone is also called the Von Neumann’s Cycle (VNC). The VNC is
a loop with or without a stopping condition. Each execution of the VNC is
called a cycle of machine13. Let’s see the overall structure of the VNAlg .

11civ is the vth component of some configuration cj ∈ Conf M which is in ~c
12The component of ci , civ , is obtained from I ∈ InstM . ci ∈ I(~c) and there is a relation Riv and a

u ∈ Riv such that the first elements of u, u1,...,urciv
are elements of some configuration cj of ~c and

the other elements urciv+1
,..., urciv +sciv

are elements of ci . One of the elements urciv+1
,..., urciv +sciv

,

at least one, suppose urciv+l
is civ with Riv (urciv+l

) = Cv .
13Looking at the datasheet of a MCU, an important measure for an instructions is the number of

cycles of machine that are necessary to their execution.

16

Algorithm 1 Von Neumann’s Algorithm

/*
// Definition Zone
....
*/
setup()
{
// Setting Zone
.....
}
loop(with or without a stopping condition)
{
// Execution Zone. Cycle of Von Neumann
......
}

The VNAlg can be viewed as a universal mechanism of how the instanti-
ated formal system works. For example, in the case of the FM obtained from
a Finite Automaton, the VNAlg will be, in slight language, the universal mech-
anism of how any Finite Automaton works. This universality allows to clas-
sify the new formalisms from the VNAlg and through of the operation mod

VNAlg
14(See section 3.1.3 page 19). Any program performed by the machine

is always performed, at a low level, by the program that implements the Von
Neumann’s algorithm of the machine. The characterization of the type of com-
putation that a machine makes must be observed in the VNAlg .�

Examples 3.1 i) The FM fM1 (page 18), recognizes an e-mail address of the gmail.
This FM is obtained from a Finite Automaton A1

ii) The FM fM2 (page 19), recognizes the brackets well formed. This FM is obtained
from a Pushdown Automaton PA1 .�

In the following figures can be seen the Automaton A1, the Pushdown
Automaton PA1 and the FMs fM1 and fM2. fM1 is the FM built from A1 and
fM2 is the FM built from PA1. An algorithm to transforms a Finite Automata to
FMs and Pushdown Automata to FMs can be seen in sub subsection 4.2.2(page
44) and is announced by the theorem 4.1 (page 42).

14The definition of the relation mod can be seen at the end of the section 3.1.3

17

Example 3.1 i)
Automaton Formal Machine, fM1

A1 → CompB = {Q,TI ,pI }:
Q = {q0, q1, q2}, TI = A∗♭ω, pI = N
→ CompR = {Rδ}:
(q0,uw1v♭

ω, |u⌋+1, q1, |u⌋+2),
(q1,uw1v♭

ω, |u⌋+1, q1, |u⌋+2)

(q1,u @gmail.com ♭ω, |u⌋+1, q2, |u⌋+11),

→ Conf M =Q ×A∗♭ω ×N
Conf Mi : (q0,w1 v♭

ω,1)
Conf Mf : (q2,u♭

ω, |u⌋+1)
→ Instructions: I(c•) = c•δ
c1 = (q0,uw1v♭

ω, |u⌋+1), c1δ = (q1,uw1v♭
ω, |u⌋+2)

c2 = (q1,uw2v♭
ω, |u⌋+1), c2δ = (q3,uw2v♭

ω, |u⌋+2)
A = A1 ∪A2 ∪A3 is a code c3 = (q1,@gmail.com♭ω , |u⌋+1)
A1 = {a,A, ..., z,Z} c3δ = (q2,@gmail.com♭ω , |u⌋+11)
A2 = {1, ...,9}
A3 = {@gmail.com}
δ(q0,w1) = q1,w1 ∈ A1

δ(q1,w2) = q2,w2 ∈ A1 ∪A2 with u,v ∈ A∗
δ(q2,@gmail.com) = q3 with w1 ∈ A1,w2 ∈ A1 ∪A2

18

Example 3.1 ii)
Pushdown Automaton Formal Machine, fM2

PA1 = (Q,I,F,A,Γ,Z0,δAS1) u,v ∈ A∗
PA1 → CompB = {Q,TI ,pI }:

TI = A∗♭ω,pI = N,P = Z0(Γ −Z0)
∗

→ CompMR = {Rδ}
(q0,uav♭

ω, |u⌋+1,Z0, q0, |u⌋+2,Z0)
(q0,u{v♭ω, |u⌋+1,Z0, q1, |u⌋+2,Z0)
(q1,uav♭

ω, |u⌋+1,Z0, q1, |u⌋+2,Z0)
(q1,uav♭

ω, |u⌋+1,Z0α0X,q1, |u⌋+2,Z0α0X)
(q1,u{v♭ω, |u⌋+1,Z0, q1, |u⌋+2,Z0X)
(q1,u{v♭ω, |u⌋+1,Z0α0X,q1, |u⌋+2,Z0α0XX)
(q1,u}v♭ω, |u⌋+1,Z0α0X,q1, |u⌋+2,Z0α0)
(q1,u}♭ω, |u⌋+1,Z0, q2, |u⌋+2,Z0)
→ Conf M =Q ×A∗♭ω ×N× (Z0(Γ −Z0)

∗ ∪ {ǫ})
Conf Mi : (q0,u♭

ω,1,Z0)
Conf Mf : (q2,u♭

ω, |u⌋+1,α), α ∈ Z0(Γ −Z0)
∗ ∪ {ǫ}

→ Instructions: I(c•) = c•δ
c1 = (q0,uav♭

ω, |u⌋+1,Z0); c1δ = (q0,uav♭
ω, |u⌋+2,Z0)

Q = {q0, q1, q2} c2 = (q0,u{v♭ω, |u⌋+1,Z0); c2δ = (q1,u{v♭ω, |u⌋+2,Z0)
I = {q0}, the arrow pointing inwards c3 = (q1,uav♭

ω, |u⌋+1,Z0); c3δ = (q1,uav♭
ω, |u⌋+2,Z0)

F = {q2}, the arrow points out c4 = (q1,uav♭
ω, |u|+1,Z0α0X);

A = ASCII and a ∈ ASCII − {“{”,“}”}, A
is a code

c4δ = (q1,uav♭
ω , |u⌋+2,Z0α0X)

Γ = {Z0,X} c5 = (q1,u{v♭ω, |u⌋ + 1,Z0); c5δ = (q1,u{v♭ω, |u⌋ +
2,Z0X)

δ(q0, a,Z0) = (q0,Z0), δ(q0, {,Z0) =
(q1,Z0)

c6 = (q1,u{v♭ω, |u⌋+1,Z0α0X)

δ(q1, a,Z0) = (q1,Z0), δ(q1, a,X) =
(q1,X)

c6δ = (q1,u{v♭ω, |u⌋+2,Z0α0XX)

δ(q1, {,Z0) = (q1,Z0X) c7 = (q1,u}v♭ω, |u⌋+1,Z0α0X);
δ(q1, {,X) = (q1,XX) c7δ = (q1,u}v♭ω, |u⌋+2,Z0α0)
δ(q1, },X) = (q1,ǫ), δ(q1, },Z0) = (q2,Z0) c8 = (q1,u}v♭ω, |u⌋+1,Z0); c8δ = (q2,u}v♭ω, |u⌋+2,Z0)

One of the common features among today’s different FCSs is the fact that
all of them can be represented through directed graphs. A directed graph
[BoM82] is an entity G that is an ordered pair of sets G = (V ,E), where the
set V is called the vertex set, and the set E = {uv : u,v ∈ V } is called the edges set.
The set V can be seen as a code if necessary rewriting it. The V can be thought
as the set of the components of the graph. E can be seen as a binary relation
in V . These are clear reasons to justify the inclusion of the sets CompMB (set
of the components of a FM) and CompMR (set of the relations of causalities or
connections among the components of a FM) in the definition of FM.

3.1.3 Computation on Formal Machines

In this sub subsection I am going to define what is a program of a FM, the com-
putation operator of a FM and a task performed by a FM.

A program of the fM15 is a finite and ordered sequence of instructions of the

15Note that fM is a FM, look the definition of the FM.

19

machine (α0,α1, ...,αk), wherein k ∈ N0,αj ∈ InstM,0 ≤ j ≤ k. The set of all pro-
grams is denoted by progM , progM = {(α0,α1, ...,αk) : k ∈ N0,αj ∈ InstM,0 ≤
j ≤ k}.

The binary operator ⊢, called computational operator, is defined in the set of
all subsets of configurations of the fM,

P (Conf M) = {A : A is a set of configurations of the fM}.

An element of P (Conf M) is denoted by cP
16. For two sets of configurations

cP , c
′
P ∈ P (Conf M), cP ⊢ c′P is defined as follows

cP ⊢ c′P iff (∃c′′P ⊆ cP)(∃Ij ∈ InstM − {NOP}(k-instruction))(∃{c1, ..., ck} ⊆ cP) :
c′P = c′′P ∪ c′′′P ,~c = (c1, ..., ck) e c

′′′
P = Ij (~c) or (making use of NOP) c′P ⊆ cP

and is said that the instruction Ij transforms cP in c′P . The operator ⊢ occurs
only inside of the VNC. A sequence

e = c(0,P) ⊢ c(1,P) ⊢ ... ⊢ c(n,P), where c(i,P) ∈ P (Conf M) for i = 0,1, ...,n

is called an execution of the fM, and the sets of configurations c(0,P), c(1,P), ...,
c(n,P) are designated the set of configuration of e,

Conf MP (e) = {c(i,P) : 0 ≤ i ≤ n}.

Examples 3.2 A computation of the fM1 (See page 18) to recognize the mail ad-
dress paulo@gmail.com. The computation of the task referred is:
(q0,paulo@gmail.com♭ω ,1)⊢ (q1,paulo@gmail.com♭ω ,2)⊢ ...
⊢ (q1,paulo@gmail.com♭ω ,6)⊢(q6,paulo@gmail.com♭ω ,16) .�

The close transitive of the operator ⊢ is denoted by ⊢∗. For each execution
exists always a program of the machine, which is the sequence of instruction
that was used. However, the relation is not one-to-one, since can happen two
distinct programs carried out the same execution. This is dependent of the
computational structure of the FM. The computation operator, ⊢, makes FMs
formal systems in which are difficult to do practices of Reverse Engineering.
Thus, they are good systems to implement security solutions.

Examples 3.3 The 6-tuple (I , I , I , I , I , I) is the program of the fM1 (See page 18)
for recognize paulo@gmail.com and renato@gmail.com. The same program that
works and allows to recognize two distinct tasks. .�

The pair τ = (cP , c
′
P), where cP ⊆ Conf Mi and c′P ⊆ Conf Mf such that

cP ⊢∗ c′P is called a task performed by the fM. If τ = (cP , c
′
P) then cP and c′P are de-

noted, respectively, by τI and τO. Therefore, τI = cP and τO = c′P . |τ⌋ is defined
16When the set cP is such that |cP | = 1, cP contains only one configuration, c, cP = {c}. In this

case is written, by abuse of notation, cP = c

20

as |τ⌋ =∑

c∈τI |c⌋+
∑

c∈τO |c⌋.

The set of the tasks performed by the fM, L(fM), is called the Language
performed (or recognized) by the fM.

L(fM) = {(cP , c′P) : cP ⊆ Conf Mi , c
′
P ⊆ Conf Mf and cP ⊢∗ c′P }

Examples 3.4 L(fM1)={(cP , c′P) : cP ⊆ (q0,u♭
ω,1) : u ∈ A1(A1 ∪A2)

∗A3,
c′P ⊆ {(q2,u♭ω, |u⌋+1) : (q0,u♭

ω,1) ∈ cP }} .�

The class of all FMs is called the class Zeus, Zeus = {fM : fM is a FM}.

The VNAlg of each FM is part of the own FM. Let fM be a FM. fM has a cer-
tain VNAlg , P1, and a language performed by it, L(fM). Thus, fMP1 is a notation
to the fM referred. For each VNAlg , P , is possible to take the fM referred and
change its VNAlg to another algorithm P . Then, the fMP obtained is not fM it
is a new FM. Hence, for each fM a new FM can be obtained from the VNAlg .

Now, I can define the relation mod in the set of all VNAlg . Let P1 and P2 be
a VNAlg . I say that P1modP2 if and only if for any FM, fM, L(fMP1) = L(fMP2).

Is easy to demonstrate that the relationmod is an equivalent relation. There-
fore, I can make a partition of all VNAlg . Thus, is obtained a classification of
FMs through of the VNAlg , the set Zeus/mod.

3.2 The Computational Model

The Computational Structure of a Formal Machine (CSFM) is a computational
implementation of a FM. I am describing the CSFM in its version 0.03. A CSFM
is a 3-tuple CSFM=(VNAlg ,psm,A,⊢) where: VNAlg is the Von Neumann’s Al-
gorithm of the machine, psm is the Physical State of the Machine, A is a Finite
Automaton, and ⊢ is the Computational Operator of the FM and it is defined
by an algorithm called Computational Operator Algorithm (COA)17.

The psm is a matrix with rows and columns (See figure 2). Each column
is an element of Conf M × {0,1}. A column ci can be seen as a pair ci = (c1i , c

2
i)

where c1i ∈ Conf M is a configuration of the FM and c2i ∈ {0,1}. When c2i = 1

means that the configuration c1i is active and when c2i = 0 means that the con-

figuration c1i is not active. The rows of the psm matrix are split in two types
of entries. The firsts rows of the psm, C1,C2,,Cn, are the components of
the FM (elements of CompMB) and the last row, denoted by σP , is an element
of the Cartesian product {0,1}|Conf M |. σP represents, by signalization with the

17An implementation of this can be download in http://www.ipg.pt/user/˜pavieira/

private/SW/FM_OpComp_v002/FM_OpComp.jar

21

number one, the set of configurations that are active. The Finite Automaton re-
ferred, in the previous paragraph, is the computational model where the InstM
is represented. (See figure 4) The Algorithm of the operator ⊢ is a step of com-
putation of the FM and the VNAlg describes how the FM works (See figure 5),
here I describe the version 0.03.

The Von Neumann’s Algorithm, VNAlg

The Von Neumann’s Algorithm, VNAlg , such as already was referred previ-
ously, is an algorithm that obeys to a structure that is divided in three spaces,
three zones. A definition zone, a setting zone and an execution zone (page 16).
The execution zone is also called the Von Neumman’s Cycle (VNC). The oper-
ator of computation ⊢ is used only in the VNC.

Physical State Machine of the fM, psmfM
P The table psm can be seen as a matrix where the rows are labeled with the
components of the fM and with an element σP that allows to label the active
configurations. The columns are the configurations of the fM and their state is
active or not.

c11 c12 c13 c14 c15 c16 c17 c18 c19 ...

c21 c22 c23 c24 c25 c26 c27 c28 c29 ...

c31 c32 c33 c34 c35 c36 c37 c38 c39 ...

c41 c42 c43 c44 c45 c46 c47 c48 c49 ...

...

cn1 cn2 cn3 cn4 cn5 cn6 cn7 cn8 cn9 ...

d1 d2 d3 d4 d5 d6 d7 d8 d9 ...

c1 c2 c3 c4 c5 c6 c7 c8 c9 ...

C1

C2

C3

C4

...

Cn

σP

Figure 2: Physical state of the machine fM, psmfM

wherein:
i) Ci ∈ CompMB with i = 1,2, ...,n, n = |CompMB|,
ii) ci = (c1i , c

2
i), c

1
i = (c1i , ..., cni) ∈ Conf M with i = 1,2, ...,n, c2i = di and

iii) σP ∈ {0,1}|Conf M |.

The behavior of the fM can be studied throughout of iterations or time. For
that I define a function, called behavior function, b(t) = psm(A,σP (t)) where
σP (t) label the active configurations at the iteration or moment of time t and A
is an invariant matrix

22

c11 c12 c13 c14 c15 c16 c17 c18 c19 ...

c21 c22 c23 c24 c25 c26 c27 c28 c29 ...

c31 c32 c33 c34 c35 c36 c37 c38 c39 ...

c41 c42 c43 c44 c45 c46 c47 c48 c49 ...

...

cn1 cn2 cn3 cn4 cn5 cn6 cn7 cn8 cn9 ...

c11 c12 c13 c14 c15 c16 c17 c18 c19 ...

C1

C2

C3

C4

...

Cn

Figure 3: A is a submatrix of the psmfM matrix

In the theoretical construction of the psm, the set of configurations Conf M
can be partitioned in two sets. The set c0P = {ci ∈ Conf M : and σP (i) = di = 0}
and c1P = {ci ∈ Conf M : and σP (i) = di = 1}

Finite Automaton of the fM, AfM = (Q,I,F,A,∆) with ∆ ⊆Q × A×Q

The set of states, Q, of this Finite Automaton is the power set of the set
of configurations, Conf M , of the fM, P (Conf M). Q = P (Conf M) and A =
InstM ∪ {NOP}. The operation NOP is defined in the following way. Sup-
pose cP ⊆ Conf M , from NOP you can obtain any c′P ⊆ Conf M where c′P ⊆ cP .
Therefore, (cP ,NOP, c′P) ∈ ∆. Thus, there are a reason, through of the operator
NOP, for the fact cP ⊢ c′P , in slight notation NOP(cP) = c′P . I = P (Conf Mi) and
F = P (Conf Mf). The set of transitions, ∆, is:

∆ = {(cP ,NOP,c′P) : c
′
P ⊆ cP } ∪ {(cP , inst, c′P): (inst ∈ InstM − {NOP} is a k-

partial function18) (∃c1, ..., ck ∈ cP):~c = (c1, ..., ck) inst(~c) = c′P }

cP1 cP2 cP3 cP4 cP5 cP6 cP7

NOP

NOP inst

Figure 4: graphical representation of the automaton AfM

wherein:
i) cP1 is an initial state of the AfM
ii) cP2 is a loop. It is carried out by the instruction NOP. A loop in one state, as
in the figure, is always carried out by the instruction NOP.
iii) cP3 ⊇ cP4 , because the edge between cP3 and cP4 is labeled by the instruction

18f : X −→ Y is a partial function if f |domain(f) : domain(f) −→ Y is a function, the domain(f) =

{x ∈ X |∃y ∈ Y : f (x) = y}(X. If exist a set Z such that X = Zk (f is called a k-partial function). If f
is such that domain(f) = X, f is called a total function

23

NOP.
iv) There is an edge, inst, between cP5 and cP6 . Suppose inst is a k-partial func-
tion and that cP5 ⊆ dom(inst). Then exists c1, ..., ck ∈ cP5 such that inst(~c) = cP6
with ~c = (c1, ..., ck).
v) cP7 is a final state of the AfM

Computation Operator Algorithm (COA) of the fM, ⊢

This algorithm shows, by the existence of the “choices” and by the imple-
mentation of the “motives” that the FMs are highly versatile and for this they
have high capacity to be a good model for particular engineering problems.
The first “motive” is the motive0 this motive serves to introduce in the FMs the
number total of configuration of the machine. Now I am going to describe the
COA.

// Start the processing The description of the step of computation cP ⊢ c′P19
(state q0) 0. Choose a set of configurations, cP0 such that cP0 ∈ Conf Mi (motive1).
If cP0 ∈ Conf Mf go to state 9 if not state 1.
(state q1) 1. Put σP ← null. Update psm, putting cP0 in the row σP , σP ← cP0 .
Go to state 2
(state q2) 2. counter← 0. Go to state 3
// A step of computation ⊢. From here begins the processing of the operator ⊢.
This is a loop between the step 3 up to 9.
(state q3) 3. Read the σP (the active configurations) from the psm, cPi ← σP . Go
to state 4
(state q4) 4. Are you going to use an instruction? (motive2) If yes go to instruc-
tion if not { cPr = ∅ and state 5}.
(state q5) 5. Are you going to use a NOP? (motive3) If yes go to NOP if not {
cPj = ∅ and go to state 6}
(state q6) 6. counter← counter +1 and build cPi = cPr ∪ cPj . Go to state 7

(state q7) 7. Update psm. Go to state 8
(state q8) 8. If cPi ∩ Conf Mf , cPi (motive4) {go to state 3 } if not {(motive9)}
and go to state 9}
// end the processing
(state q9) 9. c

′
P ← cPi (motive10). End

instruction:
(state q4.i) i) Choose an instruction inst ∈ InstM . Suppose without loss of gen-
erality that inst is a k-partial function (motive5). Go to state 4.ii)
(state q4.ii) ii) Choose k configurations that are elements of cPi , c1, .., ck ∈ cPi ,
~c = (c1, .., ck) (motive6). Go to state 4.iii)
(state q4.iii) iii) Apply I(~c) = cPr (motive7). End instruction.

NOP:

19The motive0 has cP in its arguments

24

(state q5.i) i) Choose a set of configuration, cPj , such that cPj ⊆ cPi (motive8). Go

to step 5.ii)
(state q5.ii) ii) End NOP

In the algorithm there are eleven subroutines calledmotives (motive0, motive1,
motive2, motive3, motive4, motive5, motive6, motive7, motive8, motive9 and
motive10). The “motives” are software, abstract classes that are overwrite in
the CSFM implemented (See figure 6). The COA algorithm is an algorithm
wildly indeterministic. The implementation of the “motives” make the COA
a deterministic algorithm. This implementation should be consequence of the
problem that you need solve. For a developer that wants to solve some problem
using FMs it needs to create the psm table of the problem, give the instructions
of the machine and implement the “motives”.

q0

q9

q1 q2

q3

q4 q4.i

q4.ii

q4.iiiq5

q6

q5.iq5.ii

q7

q8

0 1

2

3
Yes

i)

ii)

iii)

No

No

Yesi)

ii)

6

7

cP * Conf Mf

cP ⊆ Conf Mf

cP ⊆ Conf Mf

Figure 5: Automaton of the Computation Operator, ⊢.

Thus, as fM is a FM, I denoted the Computational Structure of the fM as
a 4-tuple, CSFMfM=(psmfM, FAfM, ⊢fM,VNAlgfM) where psmfM is a psm of
the fM, FAfM is a Finite Automaton of the fM, and ⊢fM is the computational
operator of the fM, and VNAlg is the Von Neumann’s Algorithm, in agreement
with the previous definition of CSFM in page 27.

The following table shows for each “motive” its arguments (inputs) and the
outputs. The table is constructed in the supposition that the system is in the
cycle of iteration, or order, k.

The first raw is labeled by I (inputs introduced in the FM from the external
world), C (is the number of the cycle), and by cP0 , cPi , cPj , cPr , inst, NOP and

O. The cP0 , cPi , cPj , cPr , inst and NOP are as described in COA Algorithm, O is

the output of each “motive”. In the column labeled by I (input column) there
are variables confgL and envir. confgL is the total number of configurations and

25

Table 1: Table about inputs and outputs of the motives, cycle of execution k

I C cP0 C cPi C cPj C cPr C inst C NOP O

motive0 confgL 1
motive1 envir 1 cP0
motive2 1

√
< k

√
< k

√
< k

√
< k

√
< k

√
boolean

motive3 1
√ ≤ k

√
< k

√ ≤ k
√ ≤ k

√
< k

√
boolean

motive4 1
√ ≤ k

√ ≤ k
√ ≤ k

√ ≤ k
√ ≤ k

√
boolean

motive5 1
√ ≤ k

√
< k

√
< k

√
< k

√
< k

√
InstM

motive6 1
√ ≤ k

√
< k

√
< k

√ ≤ k
√

< k
√

cPi
motive7 1

√ ≤ k
√

< k
√

< k
√ ≤ k

√
< k

√
cPr

motive8 1
√ ≤ k

√
< k

√ ≤ k
√ ≤ k

√
< k

√
cPj

motive9 1
√ ≤ k

√ ≤ k
√ ≤ k

√ ≤ k
√ ≤ k

√
answer

motive10 1
√ ≤ k

√ ≤ k
√ ≤ k

√ ≤ k
√ ≤ k

√
cPi

envir is a the set of the environment’s data. When the table is

Table 2: excerpt from above Table, cycle of execution k

.... C cPi
motivel ≤ k

√
... ...

motiveg ¡ k
√

... ...

motiveh cPi

In table 2 the first row of the column (C,cPi) is (≤ k,
√
). (≤ k,

√
) means which

in the argument of the motivel it is possible to have the set of configurations
cPi that are generated until the cycle (or iteration) k. The second row of the
column (C,cPi) is (< k,

√
). This means that in the argument of the motiveg is

possible to have the cPi that are generated until the cycle or iteration less than
k. In the motiveh in column O is the output. This output is an element of
P (Conf M), in this case the set of configuration cPi .

26

Figure 6: UML diagram of the CSFM version 0.03

The FMs have two distinct ways of work. They process the tasks through of
a serial procedure or a parallel procedure

Figure 7: FM serial procedure

27

Figure 8: FM parallel procedure

serial procedure: In a FM serial procedure the input is obtained from the
environment and/or from an agent. The input, in the machine, is translated
to the language of the machine, a set of configuration cT . In the machine,
the processing of cT is put in a set of configuration cP ∈ Conf M . After to
introduce the input, that was written, the FM runs the CSFM and processes
the cP and produces the output set of configurations c′P . The c′P is translated
to the environment language and is sent to the environment. Thus, is made a
new computation.

parallel procedure: The FM with a parallel procedure receives the input
from the environment or agents. This input is translated in the language of
the machine, cP . After that, the machine, nside itself, trigger several threads
(suppose k threads) and cP is translated for each one of the threads. Each one of
the threads is a FM Serial procedure. The cP translation in thread i is ciP . Thus,

c1P , c
2
P , ..., c

k
P are the inputs respectively of the thread 1,2, ..., k. Then I have in the

FM parallel procedure the output of threads c
′1
P , c

′2
P , ..., c

′k
P . The c

′ i
P is obtained

from the thread i ciP .
After this is necessary to produce only one output, c′P , that is obtained from

the output’s threads. For last, the c′P is translated in the language of the envir-
onment.

3.3 How to conceive a problem in FMs

To write a problem in FMs you should have in count the following:
- The components of the FM are the components of the problem
- The instructions of the FM are actions to carried out to solve the problem
- In the psm should be possible to appear any possible state of the problem
- NOP is an operator that serves to restrict the number
of active configurations of the machine or to provoke delays in the system with

28

the machine without make any processing
- In the definition of the operator ⊢ is necessary to do some “choices” and im-
plemented the “motives”. This should be done having in attention the problem
that is being solving

Examples of problems:
- i) Tic Tac Toe game (TTTGame). In this example the FM appears as one of
the players of the game, and the components of the TTTgame are similar to the
components of the FIL Game (See Table 16 page 80).
- ii) Four In Line game (FILGame). In this example the FM appears as one of
the players of the game (See Table 16 page 80).
- iii) Checker game. A FM that is a Checker player can be projected as follows.
The components of the FM are the following components: C1 is the moves of
the white checkers, C2 is the moves of the black checkers, C3 is a lot of com-
plete games, each one indexed by the number of defeats to the white checkers,
C4 is a lot of complete games each one indexed by the number of defeats to the
black checkers.

The inside thought of the machine is made in 4 loops in the COA of the FM.
In each loop, in the COA Algorithm, are generated all or almost the possible
moves. In the final of the first loop the possible moves generated are divided
equally in four threads. From the first loop in each one of the threads are gen-
erated the possible moves alternating between the FM and the Human Being,
one time playing the FM another playing the Human Being. After all of this
are chosen the best moves that the machine should make.

29

4 Building Technology

4.1 Formal Machine in a Database

This section is divided in 4 sub sections: Formal Machine in a Databases, The
FCss and FMs, A software for simulate formal computational systems, games
and formal machines. In the subsection Formal Machine in a Databases is
presented the data structure of a FM and the structure of a Database of FMs.
The presentation is accompanied by examples of a FM obtained from a drive
FA FM. In the subsection The FCSs and FMs are presented theorems that show
that several FCSs are FMs, in the follows sub section is presented a software
that I developed and that allows to simulate several FCSs. For last I presented
two games where the FM are one of the players.

4.1.1 Data Structure to support Formal Machines

For all, what is done in this section, fM is a FM. Whenever fM is obtained
from a FCS, A, fM(A) denoted the FM obtained from the FCS A. The math-
ematical construction of how to transform FCSs, a lot of them, in FMs can be
seen in the proof of Theorem 4.1 page 4220. I begin this section by giving
two acronyms, the DA FA FM and the FA FM, that are respectively DataStruc-
ture Finite Automata Formal Machine and Finite Automata Formal Machine.
The DS FA FM 21 is a software class with variables and methods that allows to
define the DataStructure (DS) of a FM which is built from a Finite Automaton
(FA). The FA FM 22 is a software class supported pn the DS FA FM (See Ap-
pendix, section 10.2) that transforms any FA in a FM and store it in a Databases
(DB) of FMs. The FA FM is a drive for Finite Automata (FAs). For a FA, A, the
FA FM class allows to store the fM(A) in a BD 23 of FMs.

The DB is defined in agreement with the DS of a FM. The aim of this section
is to give the DS of a FM.

The description of the DS, here presented, is written in pseudocode close
to Java Language[Sha11] [Laf03]. The description of the DS for a FM will be
accompanied by several examples of how it is implemented in FA FM and how
to use its implementation to create the DB of the fM(A3) for the AutomatonA3

(See page 31).
This subsection (Formal Machine in a Database) is divided in seven sub

subsections. Since the sub subsection 4.1.2 up 4.1.4 are referred the objects
that are necessary to build the DS of a FM. In the sub subsection 4.1.5 up 4.1.8
is showed how to use the DS to build the DBs of FMs. All the text of this section
is filled of Examples, that, as in all the thesis has a end mark, a square. For a
more easy read of this subsection (Formal Machine in a Database) only here,

20The proof begins in subsection 4.2.2 page 44
21http://www.ipg.pt/user/˜pavieira/private/SW/javadoc_ds_fa_fm/index.html�
22http://www.ipg.pt/user/˜pavieira/private/SW/javadoc_fa_fm/index.html,

http://www.ipg.pt/user/˜pavieira/private/SW/exampleClassFA_FM.pdf�
23http://www.ipg.pt/user/˜pavieira/private/SW/Database_FM_SQL.pdf�

30

[H]

Figure 9: The Automaton A3 and the fM(A3)

Automaton A3 Formal Machine, fM(A3)
A3 → CompB = {Q,TI ,pI }:

Q = {q0, q1, q2, q3, q4}, TI = A∗♭ω, pI = N
→ CompR = {Rδ}:
(q0,u0v♭

ω, |u⌋+1, q1, |u⌋+2),
(q1,u0v♭

ω, |u⌋+1, q3, |u⌋+2)
(q1,u1v♭

ω, |u⌋+1, q2, |u⌋+2)
(q2,u0v♭

ω, |u⌋+1, q1, |u⌋+2),
(q3,u0v♭

ω, |u⌋+1, q4, |u⌋+2)
(q4,u1v♭

ω, |u⌋+1, q4, |u⌋+2)
→ Conf M =Q ×A∗♭ω ×N
Conf Mi : (q0,0u♭

ω ,1)
Conf Mf : (q4,u♭

ω, |u⌋+1)
→ Instructions: I(c•) = c•δ
c1 = (q0,u0v♭

ω, |u⌋+1), c1δ = (q1,u0v♭
ω, |u⌋+2)

c2 = (q1,u0v♭
ω, |u⌋+1), c2δ = (q3,u0v♭

ω, |u⌋+2)
A = {0,1} is a code c3 = (q1,u1v♭

ω, |u⌋+1), c3δ = (q2,u1v♭
ω, |u⌋+2)

δ(q0,0) = q1 c4 = (q2,u0v♭
ω, |u⌋+1), c4δ = (q1,u0v♭

ω, |u⌋+2)
δ(q1,1) = q2 c5 = (q1,u0v♭

ω, |u⌋+1), c5δ = (q3,u0v♭
ω, |u⌋+2)

δ(q2,0) = q1 c6 = (q3,u0v♭
ω, |u⌋+1), c6δ = (q4,u0v♭

ω, |u⌋+2)
δ(q1,0) = q3 c7 = (q4,u1v♭

ω, |u⌋+1), c7δ = (q4,u1v♭
ω, |u⌋+2)

δ(q3,0) = q4, δ(q4,1) = q4 with u,v ∈ A∗

the Meta-objects, tables and footnotes are also ended with a square. The DB is
represented in tables. From now, I am going to define the DS of a FM.

4.1.2 Constants, Variables and Arrays of integers

In this subsections I present the constants and variables necessary to build the
FMs.

Examples 4.1 In FA FMs the parameters have always the following values:
|CompMB| = ncomponents = 3, |CompMR| = nrelations = 1 and |InstM | = ninstructions =
1. The other parameters do not have fixed values, the components[i] with 0 ≤ i ≤ 2,
the relation[0] and the instructions[0].�

4.1.3 The extension and understanding methods

The objects that constitute a FM can be defined by extension, using what I call
the extensionmethods, or by understanding, using what I call the understanding
methods. Thus, any DB of FMs can be built through of these two types of
methods. Suppose, without loss of generality, that you have an object, Oobj , of
a FM that is a set where U is, in a certain sense, the universe of Oobj .

When the object, Oobj , is defined by extension, U is the universe of Oobj in
the sense that U is a set and Oobj ⊆ U . When the object Oobj is created in the
DB by the use of the extension method, the element Oobj is described in the

31

Table 3: FM Structure: Constants, Variables and Arrays

Constants, Variables
and Arrays of integers Description
final INFINITE=231 − 1

final int ncomponents number of components of the fM,
|CompMB| = ncomponents

int[] components = new int[ncomponents] if Ci ∈ CompMB is finite, components[i] = |Ci |,
otherwise components[i] =INFINITE

final int nrelations number of relations of the fM,
|CompMR| = nrelations

int[] relations = new int[nrelations] if Ri ∈ CompMR is finite, relations[i] = |Ri |,
otherwise relations[i] =INFINITE

final int ninstructions number of instructions of the fM
|InstM | = ninstructions

int[] instructions = new int[ninstructions] if DIi (domain of Ii) is finite, Ii ∈ InstM ,
instructions[i] = |DIi |,

otherwise instructions[i] = INFINITE .�

DB by the storage, in the DB, of all elements that belong to Oobj . Thus, Oobj
is, through of an extension method, completely defined by the elements that
belong to it (See Example 4.2).

Examples 4.2 In fM(A3) I can define the object Q ∈ CompMB through the exten-
sion method24 of the FA FMs. The universe U of Q is the data type string. Thus,
U is the set of all strings. Therefore, using Set Theory notation, Q ⊆ string (See
Table 4).�

24The extensionmethod that implementedQ ∈ CompMB of the fM(A3) has the following expres-
sion, extensionMB(“A3”,“Q”,“string”,“ q0;q1;q2;q3;q4

︸ ︷︷ ︸

See Appendix 10.2

”).�

32

Table 4: The table of the DB of fM(A3) after the use of the extension method to
create the object Q. pk-primary key.

(pk) (pk) (pk)
FM Counting NCi

Ui Elements/p(x) Method
A3 1 Q string q0 extension
A3 2 Q string q1 extension
A3 3 Q string q2 extension
A3 4 Q string q3 extension
A3 5 Q string q4 extension

�

When the object Oobj is defined by understanding in the DB not exist ex-
plicitly the elements of Oobj but a well formed formula(wff) of a Propositional
Logic (PL), First Order Logic (FOL) or a High Order Logic (HOL). The Logic in
use, of PL, FOL or HOL, is denoted by U . Thus, in the use of the understanding
method, U is the universe of Oobj in the sense that U is one of following logics:
a PL, a FOL, or a HOL and Oobj is a wff of it. When an understanding method
is in use, there is a set Uvar that is: i) a set of all propositions of U if U is a PL
or ii) is a set of constants, variables and terms of U if U is a FOL or a HOL (See
Example 4.3).

Examples 4.3 An example of the use of the understanding method can be seen in
the definition, in fM(A3), of the object TI ∈ CompMB

25. The component U of the
object TI is a 2-tuple ({0,1, ♭ω}; {ǫ, ·,+,+ ,∗ }) and the expression 0(10)∗001∗♭ω is a wff
of U[CoE11] (See Table 5).�

Table 5: The table of the DB of fM(A3) after the use of the understanding
method to create the object TI . pk- primary key.

(pk) (pk) (pk) Elements
FM Counting NCi

Ui or p(x) Method
A3 6 TI {0,1, ♭ω}; {ǫ, ·,+,+ ,∗ } 0(10)∗001∗♭ω understanding

�

4.1.4 Meta-objects of a FM

Now, I am going to define the Meta-objects of a FM. These objects are divided
into atomic and derivedMeta-objects. The atomic Meta-objects are data types,
modifiers and identifiers.

25The understanding method of the class FA FM that implemen-
ted TI ∈ CompMB of the fM(A3) has the following expression,
understandingMB(“A3”,“TI ”,“({0,1, ♭ω}; {ǫ, ·,+,+ ,∗ })”,“0(10)∗001∗♭ω”).�

33

Meta-object 1 Atomic Meta-objects of the FMs
data type=byte|short|int|long|float|double|char|string|boolean|conf
modifier={public, private, protected}
identifier=(letters)(letters + digits)∗

letters= , A,..., Z, a,..., z (the underscore is taken as a letter)
digits=0,1,...,9

(End of Meta-object 1)�

The data type conf, is not a primitive data type of a programming language.
Thus, is necessary to define it. The data type conf is a finite Cartesian product
as follows.

conf={00,01,10,11} × (

∈Conf M
︷ ︸︸ ︷

C1 × ...×Cncomponents
),

where 00 (respectively, 01,10,11) corresponds to a configuration that is neither
initial nor final (respectively, is not initial and is final, is initial and not final,
and is initial and final). The type of the configurations of an FM is as follows:

Table 6: Type of configurations of an FM

00 the configuration is not initial neither final
01 the configuration is not initial and is final
10 the configuration is initial and isn’t final
11 the configuration is initial and final

The data type conf is implemented as a class, the class conf (See Meta-
object 2)(See Example 4.4)

Meta-object 2 data type conf
public class conf{

public conf(String C0,data type C1,...,data type Cn){
// where C0 ∈ {00,01,10,11}

publ ic i=C0.charAt(0);
public f=C0.charAt(1);

/*
Eventually build the objects C1, ..., Cn

for use of the methods extension and/or understanding
*/

...................... }

} (End of Meta-object 2)�

34

Examples 4.4 An example of the definition of the class conf can be seen in FA FM
(See Example 4.5). Examples of objects with the data type conf in fM(A3) are:
(10
︸︷︷︸

Table 6

, q0,0u♭
ω,1

︸ ︷︷ ︸

See A3

), (00, q1,u0v♭
ω, |u⌋+1

︸ ︷︷ ︸

c2, See A3

), (01
︸︷︷︸

Table 6

, q4,u♭
ω, |u⌋+1

︸ ︷︷ ︸

See A3

).�

Examples 4.5 Implementation of the data type conf in FA FM
public void conf{

public conf(String m, String q, String u, String n){
// m ∈ {00,01,10,11};
// q is one of these q0, q1, q2,q3, q4;
// n is or represent an element of N;
public i=m.charAt(0);
public f=m.charAt(1);
... } })�

After defining the Atomic Meta-objects of the FM, I build derivative Meta-
objects such as, for example, the data types that are finite Cartesian products
of data types, the class timesType (SeeMeta-object 3). A particular kind of this
Meta-object is used to define the data type of the elements of CompMR(See
Meta-object 4).

Meta-object 3 // Finite Cartesian product of data types
modifier class timesType{

modifier multiType(data type T1,...,data type Tn){
...................... } } (End of Meta-object 3) �

4.1.5 On CompMB

The elements of CompMB, CompMB = {C1,C2, ...,Cn}, are defined through the
methods:

extension(FM,NCi
,Ui , {v1, ..., vcomponents[i]}) or

understanding(FM,NCi
,Ui ,p(x)),

wherein Ui and NCi
are, respectively, the universe and the alias of Ci . NCi

is an identifier.
In the use of the extension method Ui is a data type, seen as the set of all

instantiations of its data type. Thus, Ci ⊆ Ui . The extension method can only
be used if mathematically |Ci | <∞. The construction for extension, mathemat-
ically, represents the set Ci , Ci = {v1, ..., vcomponents[i]}.

In the use of the understanding method Ui is a PL, a FOL or a HOL and
p(x) is a wff of Ui . Mathematically understanding(FM,NCi

,Ui ,p(x)) is the set
{x ∈Ui,var : p(x)}. Thus, understanding(FM,NCi

,Ui ,p(x)) = {x ∈Ui,var : p(x)}.

35

The set CompMB in a DB, it will appear as in Table 726. The extension and
understanding methods, in CompMB, act on the table and write there. The
extension method adds new rows to the table, one for each element vi . The
understanding method puts the logic Ui and a wff p(x) of the Ui into the table.
This allows to an element, x, of the Ui;var that it belongs to the set Ci if it veri-
fies the wff p(x) (See Table 7).

Table 7: Table of the set CompMB.

FM Counting NCi
Ui Elements/p(x) Method

FM 1 Ci ... v1 extension
FM 2 Ci extension
FM ncomponents Ci ... vncomponents

extension

FM ncomponents +1 Cj ... p(x) understanding
FM

�

Examples of the implementations of extension and understanding methods
on elements of the set CompMB, can be seen in the Examples 4.2, 4.3.

4.1.6 On CompMR

I begin this sub subsection by defining a new object. This object is an array of
distinct data types, the object productU (See Meta-object 4). An example of
achievement of that object in FA FM is the Example 4.7.

Meta-object 4 data type of the elements CompMR
public class productU{

public productU(data type U(i,1),...,data type U(i,t)){
...................... }

}
productU U(i,1) × ...×U(i,t) = new productU(U(i,1), ...,U(i,t))
(End of Meta-object 4)�

The Meta-object 5 is a particular case of the Meta-object 4 but as the Meta-
object 5 is only to define the data type of the elements of CompMR. These

26In the following document is presented, the schema of the tables, 4 tables, for FA FMs (Formal
Machines obtained from Finite Automata).This tables constitute the DB of a FA FM http://www.

ipg.pt/user/˜pavieira/private/SW/Database_FM_SQL.pdf

36

objects are very important in FMs, I should define these Meta-objects separ-
ately(See Example 4.6).

Examples 4.6 The class productU should be built to allow to define the elements
of CompMR. In FA FM, |CompMR| = 1. Thus, for FA FM, it is only necessary to
build one class productU(See Example 4.7).�

Examples 4.7 data type of the elements CompMR of a FA FM
public class productU{

public productU(string Q1, string TI , int pI1, string Q2, int pI2){
...................... } }(See Example 4.8).�

Examples 4.8 After obtaining the class productU, one of its elements is instanti-
ated to define the universe of the relationRδ of a FA FM. This universe is an universe
in the sense that is used in an extension method. So the universe of Rδ is prodR

productU prodR;
prodR27=new productU(string Q1, string TI , int pI1, string Q2, int pI2);

�

The elements of CompMR, CompMR = {R1,R2, ...,Rm}, can be defined by:

extension(FM,NRi
,U(i,1) × ...×U(i,t), {v1, ..., vrelations[i]}) or

understanding(FM,NRi
,U(i,1) × ...×U(i,t),p(x)),

wherein
U(i,1) × ... × U(i,t) and NRi

are, respectively, the universe and the alias of the
relation Ri . The (U(i,1) × ... ×U(i,t))var = U(i,1),var × ... ×U(i,t),var . In the use of
the extension method each vj ∈ U(i,1) × ... ×U(i,t). In the definition by exten-
sion, mathematically, the relation Ri corresponds to Ri = {v1, ..., vrelations[i]}. In
the definition by understanding, understanding(NRi

,U(i,1) × ... ×U(i,t),p(x)) is
mathematically the set Ri = {x ∈ (U(i,1) × ... ×U(i,t))var : p(x)} and in the use of
the understanding method, it is necessary to define a logic where p(x) is a wff.

understanding(NRi
,U(i,1) × ...×U(i,t),p(x)) = {x ∈ (U(i,1) × ...×U(i,t))var : p(x)},

Ri ⊆U(i,1) × ...×U(i,t) and p(x) is a wff in U(i,1) × ...×U(i,t).

For DBs on CompMR two tables can be created, as in Table 8 and Table
9. The extension and understanding methods, in CompMR, act on Table 9.

27prodR = Q1× T I × p I1× Q2× p I2.�

37

In some applications, as in FA FM, Table 8 has only one entry. Thus, is only
necessary to use only one table, the Table 9(See Example 4.9).

Table 8: Table on CompMR. Define the different data types of the kind pro-
ductU. pk - primary key.

(pk)
productU definition U1 ... Ut Ri

p1
...

�

Table 9: Table on CompMR. pk-primary key.

(pk) (pk) (pk)
FM Counting NRi

productU Relation Method
FM pi v extension
FM pj p(x) with x ∈ pj,var understanding
FM pj

�

Examples 4.9 In Table 10 the set CompMR of fM(A3) is implemented. In this
implementation only the extension method (See Table 10) is used. It is used as
follows:
extensionMR(A3,Rδ,string, (q1,u0v♭

ω, |u⌋+1, q3, |u⌋+2);(q1,u1v♭ω, |u⌋+1, q3, |u⌋+
2); (q2,u0v♭

ω, |u⌋+1, q1, |u⌋+2);(q3,u0v♭ω , |u⌋+1, q4, |u⌋+2);(q4,u1v♭ω, |u⌋+1, q4,
|u⌋+2)).�

Table 10: The table of the DB of A3 after the use of the extension method to
create the object CompMR. pk-primary key.

(pk) (pk) (pk)
FM Counting NRi

productU Relation Method
A3 1 Rδ prodR (q0,u0v♭

ω, |u⌋+1, q1, |u⌋+2) extension
A3 3 Rδ prodR (q1,u0v♭

ω, |u⌋+1, q3, |u⌋+2) extension
A3 4 Rδ prodR (q1,u1v♭

ω, |u⌋+1, q3, |u⌋+2) extension
A3 5 Rδ prodR (q2,u0v♭

ω, |u⌋+1, q1, |u⌋+2) extension
A3 6 Rδ prodR (q3,u0v♭

ω, |u⌋+1, q4, |u⌋+2) extension
A3 7 Rδ prodR (q4,u1v♭

ω, |u⌋+1, q4, |u⌋+2) extension

�

38

4.1.7 On the machine configurations Conf M , Conf Mi , Conf Mf

The implementation of the set of configurations of a FM, Conf M , is done us-
ing the data type conf. The data type conf will be also treated as a set, the set
conf28 and its elements will be called configurations29.

extension(FM,

alias of the configurations
︷ ︸︸ ︷

N c1;N c2;,N ck ,

elements of the data type conf
︷ ︸︸ ︷

c1;c2; ...;ck),

understanding(FM,U,p(x)),

wherein cj = (mj ,

element of Conf M
︷ ︸︸ ︷

cj1, cj2, ..., cjncomponents
) ∈ conf, mj ∈ {00,01,10,11}, Ncj is an

alias of a configuration cj and cj (i) = cji ∈ Ci for 1 ≤ j ≤ k.
In the definition of the understanding method, understanding(FM,U,p(x))

with Uvar = conf is, mathematically, the set understanding(FM,U,p(x)) = {x ∈
conf : p(x)}.

In tables, the storage of the conf in the DB can be seen in Table 11. The
extension and the understanding methods, in conf, act on the table. The ex-
tension method creates rows in the table putting element of Conf M and its
classification in each row (See Table 11). The understanding method puts, in
the table, the property that the elements of conf need to verify. In a config-
uration, an element of conf, is a pair where the 2nd element of the pair is an
elements of Conf M and the 1st is its classification(See Example 4.10).

Table 11: Table of the conf, cj = (mj , ccj) with mj ∈ {00,01,10,11} and mj is the

classification of the ccj ∈ Conf M .

FM NC m c1 ... cncomponents
Method

FM cj 00 cj1 ... cjncomponents
extension

�

Examples 4.10 For fM(A3) the storage of the set Conf M in DBs is done only
through the extension method30 (See Table 12).�

28As set, conf={00,01,10,11} ×Conf M .�
29This can cause some ambiguity with the elements of Conf M , also called configuration, but it

will be solved by the context.�
30The extension method in fM(A3) to define the set Conf M is:

extensionConf (FM,“c1;c2;c3;c4;c5;c6;c7”,“(00, q0,u0v♭
ω , |u⌋+1)”;“(00, q1,u0v♭

ω , |u⌋+
1); (00, q2,u1v♭

ω , |u⌋+1); (00, q2,u0v♭
ω , |u⌋+1); (00, q1,u0v♭

ω , |u⌋+1); (00, q3,u0v♭
ω , |u⌋+

1); (00, q4,u1v♭
ω , |u⌋+1)”).�

39

Table 12: Table of fM(A3) to define the set conf. pk-primary key.

(pk) (pk)
FM NC m Q TI pI Method
A3 c1 00 q0 u0v♭ω |u⌋+1 extension
A3 c2 00 q1 u0v♭ω |u⌋+1 extension
A3 c3 00 q2 u1v♭ω |u⌋+1 extension
A3 c4 00 q2 u0v♭ω |u⌋+1 extension
A3 c5 00 q1 u0v♭ω |u⌋+1 extension
A3 c6 00 q3 u0v♭ω |u⌋+1 extension
A3 c7 00 q4 u1v♭ω |u⌋+1 extension

�

4.1.8 On InstM

I start, this sub subsection, by defining an object, confK, to build arrays of k-
tuples of configurations, k-tuples of data types conf.

Meta-object 5 The class of a k-tuples of configurations, confK
public class confK{

public confK(conf c1,...,conf ck){
...................... } }(End of Meta-object 5).�

The methods used to create instructions are:

extension(FM ; I ,~c, cP) (See Example 4.11)

understanding(FM,I ,U,dI , I(~c)),

wherein I ∈ InstM is an instruction of the FM, ~c is a k-tuple of configura-
tions and cP is a set of configurations that is obtained after using the instruc-
tion I over the k-tuple of configurations ~c. U is the universe of the instruction
I , in the sense of an understanding method. So, U is a LP, FOL, HOL and

Uvar = confk . dI is a wff of U necessary to define the domain of I, domain of
I= {~c ∈Uvar : dI (~c)} and I(~c) is a function in U .

The extension and understanding methods, in InstM , act on the table as
the Table 13.

40

Table 13: Table on InstM , cP = {cP1 , ..., cPt }. pk-primary key.

(pk) (pk) (pk)
FM Counting NI U domain k-tuple of configurations cP Method
FM ... I1 ~c cP1 extension
FM ... I1 ~c cP2 extension
FM ... I1 ~c
FM ... I1 ~c cPt extension
FM ... I ~c I(~c) understanding
FM

�

Examples 4.11 In A3 the definition of an instruction I ∈ InstM is done only
through the extension method31 (See Table 14).�

Table 14: Table of fM(A3) to define the instruction I ∈ InstM . pk-primary key.

(pk) (pk) (pk)
FM Counting NI m I Q I T I I p I I m F Q F T I F p I F Method
A3 1 I 00 q0 u0v♭ω |u⌋+1 00 q1 u0v♭ω |u⌋+2 extension
A3 2 I 00 q1 u0v♭ω |u⌋+1 00 q3 u0v♭ω |u⌋+2 extension
A3 3 I 00 q1 u1v♭ω |u⌋+1 00 q2 u1v♭ω |u⌋+2 extension
A3 4 I 00 q2 u0v♭ω |u⌋+1 00 q1 u0v♭ω |u⌋+2 extension
A3 5 I 00 q1 u0v♭ω |u⌋+1 00 q3 u0v♭ω |u⌋+2 extension
A3 6 I 00 q3 u0v♭ω |u⌋+1 00 q4 u0v♭ω |u⌋+2 extension
A3 7 I 00 q4 u1v♭ω |u⌋+1 00 q4 u1v♭ω |u⌋+2 extension

4.2 The FCSs are FMs

This subsection is divided in four sub subsections, the first three of them are
dedicated to demonstrate the theorems 4.1 and 4.2. The fourth subsections is
a subsection where for several FCSs I say how to relate the tasks and languages
performed and recognized by them with the tasks and languages performed
and recognized by the FM obtained from the respectives FCSs. The 1st , 2nd , 3rd

and 4th subsection are respectively called: Some of the current FCSs, Proving
Theorem 4.1, Proving Theorem 4.2 and Tasks and performed Languages of the
FCSs.

In this subsection, in the following two theorems, I claim that a number
of FCSs [Hop08] [Sip13] such as deterministic machines: k-Turing Machines,
Pushdown Automata, Transducers, Finite Automata, [Cut97] k-unbounded Re-
gister Machines; and [SiS94] Recurrent Neural Network, are FMs. Both th

31The method used is the extension method. It defines the instruction I ∈ InstM , I(c) for each
configuration c. We leave here one example, in FA FM, of the use of the method for A3.

extensionInst(“A3”,“Inst”,“(00, q0,u0vb
w , |u⌋+1)”,”(00, q1,u0vb

w , |u⌋+2)”)

41

proofs presented are algebraic and constructive and are made in the sub sub-
sections that are follow. Then the proofs can be used as algorithms with the
aim to implement in software these transformations.

Theorem 4.1 Deterministic machines: k-TuringMachines, Transducers, Pushdown
Automata, Finite Automata and k-unbounded Register Machines are FMs.

Theorem 4.2 Recurrent Neural Networks are FMs.

4.2.1 Some of the current FCSs

In this sub subsection I present the definitions of several FCSs as they are
defined in Mathematics and Computer Sciences [ArB09], [Cut97], [Hop08],
[Sip13]32.

Definition of deterministic; k-Turing Machine, Pushdown Automaton,
Transducer, Finite Automaton, unbounded Register Machine

i) definition of a k-Turing Machine T Mk
A k-Turing Machine, T Mk , is an 8-tuple,

T Mk = (Q,A,Γ,O,δT ,µT , I ,F),

wherein
- Q is a finite set, called the set of the states of T Mk ,
- A is a finite set, called the input alphabet of T Mk ,
- Γ is a finite set, called the processing alphabet of T Mk ,
- O is a finite set, called the output alphabet of T Mk ,
- δT M : (Q−F)× (A∪{♭})× (Γ∪{♭})k →Q×Γk ×{L,R,S}K+1, is a partial function,
called the transition function of T Mk
- µT Mk

: (Q−F)× (A∪{♭}× (Γ∪{♭})k →O×{R,S} is a partial function, called the
output function of T Mk
- I ⊆Q and |I | = 1, I is called the set of the initial states of T Mk
- F ⊆Q, F is called the set of the final states of T Mk ,
- ♭ < I ∪ Γ∪O, ı̂ < I ∪ Γ∪O.

Note 4.1 i) A T Mk has k processing tapes, a tape for input and another for output.
Sometimes I denote the k-Turing Machine only as T M. That happens, in general,
when it is not important the number of processing tapes of the machine or it is clear
by the context how many processing tapes the machine has.
ii) k ∈ N0.
ii) A Turing Machine, as defined here, does not do any processing from the final
states.

32Although I am referred several traditional books on Computation Theory, the definitions
presented here of deterministic machines: k-Turing Machines, Pushdown Automata, Transducers,
Finite Automata and k-unbounded Register Machines do not follow any in particular. They are
essentially equivalent definitions of those presented in the books referred.

42

ii) Definition of a Pushdown Automaton AS
A Pushdown Automaton, AS , is a 7-tuple

AS = (Q,I,F,A,Γ,Z0,δAS),

wherein
- Q is a finite set, called the set of the states of AS ,
- I is a subset of Q and |I | = 1, called the set of initial states of AS ,
- F is a subset of Q, called the set of final states of AS ,
- A is a finite set, called the input alphabet of AS ,
- Γ is a finite set, called the stack alphabet of AS ,
- O is a finite set, called the output alphabet of AS ,
- Z0 is a letter, the letter that is in the back of the stack, called the initial symbol
of the stack of AS . Z0 ∈ Γ and Z0 only occurs at the start, in the base, of the
stack
- δAS :Q×(A∪{♭})×Γ→Q×Γ∗ is a partial function, called the transition function
of AS

iii) definition of a Transducers, AT
A transducer, AT , is a 7-tuple,

AT = (Q,I,F,A,O,δAT ,µAT)

wherein:
- Q is a finite set, called the set of the states of AT ,
- I is a subset of Q and |I | = 1, called the set of the initial states of AT ,
- F is a subset of Q, called the set of final states of AT ,
- A is a finite set, called the input alphabet of AT ,
- O is a finite set, called the output alphabet of AT ,
- δAT : Q × (A∪ {♭})→ Q, is a partial function, called the transition function of
AT
- µAT :Q× (A∪{♭})→O, is partial function, called the function of output ofAT

iv) definition of a Finite Automaton A
A Finite Automaton, A, is a 5-tuple,

A = (Q,I,F,A,δA),

wherein
- Q is a finite set, called the set of the states of A,
- I is a subset of Q and |I | = 1, called the set of initial states of A,
- F is a subset of Q, called the set of final states of A,
- A is a finite set, called the input alphabet of A,
- δA :Q × (A∪ {♭})→Q is a partial function, called the transition function of A

v) definition of a k-unbounded Register Machine RMk
A k-unbounded Register Machine is a k+3-tuple

43

RMk = (I ,pI ,R0,R1, ...,Rk
︸ ︷︷ ︸

registers

),

wherein
- for all 1 ≤ i ≤ k, the Ri is called the register i of the machine and Ri = N,
- ri denotes the content of the register Ri
- I is the input tape. The input tape is where the program that will be executed
by the machine is stored.
- pI = N, is the pointer of the input tape. The content of the pointer pI , is
denoted by rI , and indicates the instruction of the program that is active.
- R0 is the the Accumulator Register, R0 = N3. The register R0 consists of 3
parts: the high part R00, the middle part R10 and the low part R20. The content
of each one of the parts of the register R0 is denoted, respectively, by r00, r10, r20,
(r00, r10, r20). A k-unbounded Register Machine has four instructions, Z,S,C
and J , which will appear in the program through α(rI), α(rI) = Z , α(rI) = S ,
α(rI) = C or α(rI) = J .

The instruction Z is a 1-partial function, Z : N −→ N, where Z(n), with
n = r20. If n , 0 then, Rn←− 0 and pI ←− rI +1, else R20←− 0 and pI ←− rI +1 .

The instruction S is a 1-partial function, S : N −→ N, where S(n), with n =
r20. If n , 0, then Rn ←− rn + 1 and pI ←− rI + 1, else R20 ←− r20 + 1 and
pI ←− rI +1 .

The instruction C is a 2-partial function, C : N×N −→ N, where C(n,m) such
that n = r10 andm = r20. C(n,m). If n = r10 , 0 then, Rr10 ← rr20 and pI ←− pI+1,
else, If n = r10 = 0 then, R20← rr20 and pI ←− pI +1.

The instruction J is a 3-partial function, J : N×N×N −→ N, where J(l,n,m)
such that l = r00, n = r10 and m = r20. J(l,n,m) compares the content of the re-
gisters Rn = R10 with Rm = R20 if r10 = r20 then, pI ←− r00 else pI ←− pI +1. The
content of the register R00, r00 indicates the number of the instruction, in the
sequence of instructions of the program which, in the case of rn = rm, should
be the next instruction to be carried out.

4.2.2 Proving the Theorem 4.1

The proof of the theorem 4.1 will be given from the instantiation of each one of
FCSs to FMs. The mathematical definitions of the FCSs, that are instantiated
here as FMs, are in the previous section. To prove the theorem I begin to taking
one FCS, without loss of generality, for each one of different kinds of FCSs that
are defined above and rewrite it as a FM.

The proof of Theorem 4.1 is a constructive proof and is divided in five lem-
mas. Lemma 4.1, Lemma 4.2, 4.3, 4.4, 4.5 where respectively, and for each
one of the FCSs enunciated in the Theorem 4.1, CompMB, CompMR, Conf M ,
InstM , VNAlg are instantiated.

Lemma 4.1 The component CompMB is instantiated for each one of the FCSs in
Theorem 4.1.

44

Proof 4.1 I start by instantiating the set CompMB for the FCSs under study.

i) The set of components of the k-Turing Machine is a set with 2k+5 elements,

CompMB(T) = {Q,TI ,T1, ...,Tk ,TO,pI ,p1, ...,pk ,pO},
wherein
- Q is the set of the states
- TI is the input tape, T1, ...,Tk are the processing tapes respectively the 1th, 2nd , ...,
kth, TO is the output tape. Each tape consists of a concatenated sequence, infinite
and countable, of squares (cells) from a first square.
- pI is the pointer in the input tape TI , and p1, ...,pk are pointers, respectively, of the
tapes T1, ...,Tk . pO is the pointer of the output tape TO. Each pointer indicates the
active square, which is the state of the component on the respective tape.
Each one of the components is the following set, TI = A∗♭w, T1 = ... = Tk = Γ

∗♭w,
TO =O∗♭w and pI = p1 = ... = pk = pO = N.

ii) The set of the components of the Pushdown Automaton is a set with 4 ele-
ments,

CompMB(AS) = {Q,TI ,pI ,P},
wherein
- Q is the set of the states
- TI is the input tape. The tape consist of a concatenated sequence, infinite and nu-
merable, of squares from the first square.
- pI the pointer of the input tape TI indicates which is the active square and which
is the state of the component TI .
- P is called the stack. P is a temporary storage space. The capacity of storage, in
storable characters, is infinite and countable.

Each one of the components is the following set, TI = A∗♭w, pI = N and P =
Z0(Γ −Z0)

∗.

iii) The set of the components of the Transducer is a set with 4 elements,

CompMB(AT) = {Q,TI ,TO,pI ,pO},
wherein
- Q is the set of the states
- TI is the input tape and TO is the output tape. Each tape consists of a concatenated
sequence, infinite and countable, of squares from a first square.
- pI ,pO are, respectively, the pointers of the input tape TI and of the output tape
TO and indicates, for each one of the respectively tapes, which is the active square,
which is the state of component, respectively, TI and TO.

Each one of the components is the following set, TI = A∗♭w, TO = O∗♭w and
pI = pO = N.

45

iv) The set of the components of the Finite Automaton is a set of 3 elements,

CompMB(A) = {Q,TI ,pI },

wherein
- Q is the set of the states
- TI is the input tape. The tape consists of a concatenated sequence, infinite and
countable, of squares from the first square.
- pI is the pointer of the input tape TI and indicates which is the active square, which
is the state of component TI .

Each one of the components is the following set, TI = A∗♭w and pI = N.

v) The components of the k-unbounded Register Machine33, RMk , is a set with
k+3 elements

CompMB(RMk) = {I ,pI ,R0,R1,R2, ...,Rk}

each one of the components is the following set, I = {S,Z, J ,C}∗.♭w, pI = N, R0 = N3,
R1... = Rk = N.�

Then, for the same machines, I will instantiate the set CompMR. The ele-
ments that belong to the set CompMR are relations among the components of
the FM. An element that belongs to CompMR establishes a concrete causal re-
lation, inside the relation, among the components of the FM.

Lemma 4.2 The component CompMR is instantiated for each one of the FCSs in
Theorem 4.1.

Proof 4.2 i) The set CompMR of the k-Turing Machine
CompMR = {RδT M ,RµT M }

the relation RδT M is a subset of the set

(Q −F)×A∗♭w × (Γ∗♭w)k ×N×Nk ×Q × (Γ∗♭w)k ×N×Nk .

An element of RδT M is a tuple
(q,u1au

′
1♭

w, (α1γ1α
′
1♭

w, ...,αkγkα
′
k♭

w),nI , (n1, ...,nk),
q′ , (α1γ

′
1α
′
1♭

w, ...,αkγ
′
kα
′
k♭

w),n′I , (n
′
1, ...,n

′
k)) ∈

(Q −F)×A∗♭w × (Γ∗♭w)k ×N×Nk ×Q × (Γ∗♭w)k ×N×Nk ,
wherein nI = |u1a⌋, a ∈ A∪{♭} (when a = ♭, then u′1 = ǫ) and ni = |αiγi⌋, γi ∈ Γ∪{♭}
(when γi = ♭, then α′i = ǫ).

(q′ , (γ ′1, ...,γ
′
k), rI , (r1, ..., rk)) ∈

δ(q, (u1au
′
1♭

w)(nI), ((α1γ1α
′
1♭

w)(n1), ..., (αkγkα
′
k♭

w)(nk)),

33This is an unbounded Register Machine of k registers.

46

with q′ ∈Q, γ ′i ∈ Γ∪ {♭}.
For rI = R, rI = S and rI = L we have, respectively, n′I = nI + 1, n′I = nI and

n′I = nI − 1. In the case of each 1 ≤ i ≤ k, wherein ri = R,ri = S and ri = L, we have,
respectively, n′i = ni +1, n′i = ni and n′i = ni − 1.

The relation RµT M is a subset of

(Q −F)×A∗♭w × (Γ∗♭w)k ×N×Nk ×O∗♭w ×N.

An element of RµT M is a tuple

(q,u1au
′
1♭

w, (α1γ1α
′
1♭

w, ...,αkγkα
′
k♭

w),nI , (n1, ...,nk),αOo♭
w,n′O) ∈

(Q −F)×A∗♭w × (Γ∗♭w)k ×N×Nk ×N×O∗♭w ×N

where αO ∈O∗, o ∈O∪ {♭} and by convention |♭|=0.

(ΘO , rO) ∈ µ(q, (u♭w)(nI), ((α1γ1α
′
1♭

w)(n1), ..., (αkγkα
′
k♭

w)(nk)))

if o = ♭ (respectively, o , ♭), then n′O = |αO⌋ + 1 and rO = S (respectively, n′O =
|αOo⌋+1 rO = R).

ii) The set CompMR of the Pushdown Automaton
CompMR = {RδAS }

The relation RδAS is a subset of

Q ×A∗bw ×N× Γ∗ ×Q ×N× Γ∗

An element of RδAS is a tuple

(q,u1au
′
1♭

w,nI ,Z0α0γ,q
′ ,nI +1,Z0α0β), with

(q′ ,β) ∈ δAS (q, (u1au′1♭w)(nI),α),

wherein β ∈ Γ∗ and nI = |u1a⌋ (if a = ♭, then u′1 = ǫ). If Z0α0γ = Z0, then we have
Z0α0γ = Z0 = ǫ,Z0α0γ = Z0 or Z0α0γ = Z0(Γ −Z0)

+.
iii) The set CompMR of the Transducer
CompMR = {RδAT ,RµAT }

The relation RδAT is a subset of

Q ×A∗bw ×N×Q ×N

An element of RδAT is a tuple

(q,u1au
′
1♭

w,nI , q
′ ,nI +1)

wherein nI = |u1a⌋, q′ ∈ δ(q, (u1au′1♭w)(nI)) (if a = ♭, then u′1 = ǫ).

The relation RµAT is a subset of

Q ×A∗bw ×N×O∗♭w ×N

An element of RµAT is a tuple

47

(q,u1au
′
1♭

w,nI , vo♭
w,n′O),

wherein nI = |u1a⌋, nO = |vb⌋, n′O = nO + 1 and o ∈ µ(q, (u1au′1♭w)(nI)) (if a = ♭,
then u′1 = ǫ).

iv) The set CompMR of the Finite Automaton

CompMR = {RδA },
RδA = {(q,u1au′1♭w,nI , q′ ,nI +1) ∈Q×A∗♭w×N×Q×N : q′ ∈ δA(q, (u1au′1♭w)(nI))},
if a = ♭, we have u′1 = ǫ.

v) The set CompMR of a k-unbounded Register Machine

CompMR = {RS ,RZ ,RC ,RJ }
The relation RS is a subset of 2

I ×N× (N)3 ×Nk × I ×N×N3 ×Nk

An element of RS is a tuple

(α,rI , (r00, r10, r20), (r1, ..., rk),α, r
′
I , (r00, r10, r

′
20), (r

′
1, ..., r

′
k)),

wherein α(rI) = S , S(r20), r
′
I = rI + 1. For 1 ≤ i ≤ k, if i = r20, we have r

′
i = ri + 1

and, if i , r20, then r ′i = ri . For the case where r20 = 0, we have r ′20 = r20 +1 and, if
r20 , 0, then r ′20 = r20.

The relation RZ is a subset of

I ×N× (N)3 ×Nk × I ×N×N3 ×Nk

An element of RZ is a tuple

(α,rI , (r00, r10, r20), (r1, ..., rk),α, r
′
I , (r00, r10, r

′
20), (r

′
1, ..., r

′
k)),

wherein α(rI) = Z , Z(r20), r
′
I = rI +1. For 1 ≤ i ≤ k, if i = r20, we have r

′
i = 0 and, if

i , r20, then r ′i = ri . For the case where r20 = 0, we have r ′20 = 0 and, if r20 , 0, then
r ′20 = r20.

The relation RC is a subset of

I ×N× (N)3 ×Nk × I ×N×N3 ×Nk

An element of RC is a tuple

(α,rI , (r00, r10, r20), (r1, ..., rk),α, r
′
I , (r00, r10, r

′
20), (r

′
1, ..., r

′
k)),

wherein α(rI) = C, C(r10, r20), r
′
I = rI +1. For 1 ≤ i ≤ k, if i = r10, we have r

′
i = rr20

and, if i , r10, then r ′i = ri . For the case where r10 = 0, we have r ′20 = rr20 and, if
r10 , 0, then r ′20 = r20.

The relation RJ is a subset of

2r0 = (r00, r10, r20)

48

I ×N× (N)3 ×Nk × I ×N×N3 ×Nk

An element of RJ is a tuple

(α,rI , (r00, r10, r20), (r1, ..., rk),α, r
′
I , (r
′
00, r10, r20), (r1, ..., rk)),

wherein α(rI) = J , J(r00, r10, r20). Se rr10 = rr20 , then r ′I = r00 and if rr10 , rr20 , then
r ′I = rI +1.�

Lemma 4.3 The component Conf M is instantiated for each one of the FCSs in
Theorem 4.1.

Proof 4.3 The idea that should be associated to a configuration of a machine is that
it must indicate the state of each one of its components.

i) The set of configurations of machine of the k-Turing Machine is a subset of the
set

Q ×A∗♭w × (Γ∗♭w)k ×O∗♭w ×N× (N)k ×N
A configuration of machine is an element

(q,u♭w, (α1♭
w, ...,αk♭

w), v♭w,nI , (n1, ...,nk), |v|+1)

initial configurations: (q,u♭w, (α1♭
w, ...,αk♭

w), v♭w,1, (1, ...,1),1) com q ∈ I
final configurations: (q,u♭w, (α1♭

w, ...,αk♭
w), v♭w, |u|+1, (n1, ...,nk),nO) com q ∈ F

ii) The set of configurations of machine of the Pushdown Automaton is a subset
of the set

Q ×A∗♭w ×N×Z0(Γ − {Z0})∗

A configuration of machine is an element

(q,u♭w,n0,Z0αP)

with αP ∈ (Γ − {Z0})∗.
initial configurations: (q,u♭w,1,Z0) with q ∈ I
final configurations: (q,u♭w, |u|+1,Z0αP) with q ∈ F, v ∈ Γ∗

iii) The set of configurations of machine of the Transducer is a subset of

Q ×A∗♭w ×O∗♭w ×N×N.
A configuration of machine is an element

(q,u♭w, v♭w,nI ,nO)

initial configurations: (q,u♭w, v♭w,1,1) com q ∈ I
final configurations: (q,u♭w, v♭w, |u|+1, |v|+1) com q ∈ F

iv) The set of configurations of machine of the Finite Automaton is a subset of

49

Q ×A∗♭w ×N
A configuration of machine is an element,

(q,u♭w,n)

initial configurations: (q,u♭w,1) com q ∈ I
final configurations: (q,u♭w, |u|+1) com q ∈ F

v) The set of configurations of machine of the k-unbounded Register Machine is
a subset of

I ×N×N3 ×Nk

A configuration of machine is an element

(α,rI , (r00, r10, r20), (r1, ..., rk))

initial configurations: (α,rI , (r00, r10, r20), (r1, ..., rk)) with rI = 1
final configurations: (α,rI , (r00, r10, r20), (r1, ..., rk)) with α(rI) = ‘.’ �

Lemma 4.4 The component InstM is instantiated for each one of the FCSs in The-
orem 4.1.

Proof 4.4 i) Instructions of the k-Turing Machine
Iδ : Conf M − Conf Mf −→ Conf M , c 7−→ cδ = Iδ(c) such that cδ(TI) = c(TI),
cδ(TO) = c(TO), cδ(pO) = c(pO) and

(c(Q), c(TI), c(T1), ..., c(Tk), c(pI), c(p1), ..., c(pk),
cδ(Q), cδ(T1), ..., cδ(Tk), cδ(pI), cδ(p1), ..., cδ(pk)) ∈ RδT M

Iµ : Conf M −Conf Mf −→ Conf M , c 7−→ cµ = Iµ(c) such that cµ(Q) = c(Q),
cµ(TI) = c(TI), cµ(pI) = c(pI), cµ(pO) = c(pO), and for 1 ≤ i ≤ k cµ(Ti) = c(Ti),
cµ(pi) = c(pi) and

(c(Q), c(TI), c(T1), ..., c(Tk), c(pI), c(p1), ..., c(pk),
cµ(TO), cµ(pO)) ∈ RµT M

I : Conf M −Conf Mf ×Conf M −→ Conf M , (cδ, cµ) 7−→ I(cδ, cµ) = c′ ,

wherein c′(Q) = cδ(Q), c′(TI) = cδ(TI), for all 1 ≤ i ≤ k c′(Ti) = cδ(Ti), c
′(pi) =

cδ(pi), c
′(TO) = cµ(TO) and c′(pO) = cµ(pO).

ii) Instruction of the Pushdown Automaton
Iδ : Conf M −Conf Mf −→ Conf M , c 7−→ cδ = Iδ(c) such that cδ(TI) = c(TI) and

(c(Q), c(TI), c(pI), c(P), cδ(Q), cδ(pI), cδ(P)) ∈ RδAS

iii) Instructions of the Transducer
Iδ : Conf M − Conf Mf −→ Conf M , c 7−→ cδ = Iδ(c) such that cδ(TI) = c(TI),
cδ(TO) = c(TO), cδ(pO) = c(pO) and

50

(c(Q), c(TI), c(pI), cδ(Q), cδ(pI)) ∈ RδAT

Iµ : Conf M − Conf Mf −→ Conf M , c 7−→ cµ ∈ Iµ(c) such that cµ(Q) = c(Q),
cµ(pI) = c(pI), cµ(TI) = c(TI) and

(c(Q), c(TI), c(pI), cµ(TO), cµ(pO)) ∈ RµAT

I : Conf M −Conf Mf ×Conf M −→ Conf M , (cδ, cµ) 7−→ I(cδ, cµ) = c′

such that c′(Q) = cδ(Q), c′(TI) = cδ(TI), c
′(pI) = cδ(pI), c

′(TO) = cµ(TO) and c
′(pO) =

cµ(pO).
iv) Instructions of the Finite Automata

Iδ : Conf M −Conf Mf −→ Conf M , c 7−→ cδ = Iδ(c) such that cδ(TI) = c(TI)

(c(Q), c(TI), c(pI), cδ(Q), cδ(pI)) ∈ RδA

v) Instructions of the k-unbounded Register Machines

The instructions of the machine for the k-unbounded Register Machine are:
- S(n) increments a value at the content of the register, Rn, Rn ← rn + 1, and the
pointer of the input tape goes to the right. When n = 0, the operation is carried out
in the accumulator R0, in the part R20, R20← r20 +1 of the register.
- Z(n) puts the value 0, Rn← 0, in the register Rn and the pointer of the input tape
goes to the right. When n = 0, the operation is carried out in the accumulator R0, in
the part R20, R20← 0 of the register.
- C(n,m) copies the content of the register Rm for the register Rn, Rn← rm, and the
pointer of the input tape goes to the right. When n = 0, the content of the register
Rm is copied for the accumulator R0, for the part R20, R20← rm of the register.
- J(l,n,m), if the content of the register Rn is equal to the content of the register
Rm (rn = rm), then the pointer of the input tape should be put at the position l in
the sequence of instructions. Otherwise it should be put at the following instruction.

The instructions of the FCS considered are 4, IS ,IZ ,IC and IJ . For a configuration
c,

c = (α,rI , (r00, r10, r20), (r1, ..., rk)),

wherein, if α(rI) = S (respectively, α(rI) = Z , α(rI) = C, α(rI) = J), S(r20) (re-
spectively, Z(r20), C(r10, r20), J(l, r10, r20)), then IS (c) = cS (respectively, IZ (c) = cZ ,
IC (c) = cC , IJ (c) = cJ)

34. cS = S(r20) (respectively, cZ = Z(r20), cC = C(r10, r20),
cJ = J(r00, r10, r20)).�.

Next I am going to describe Von Neumann’s Algorithm, although only parts
2 and 3, which, by abuse of language, I still call Von Neumann’s Algorithm, for
each one of the machines under discussion.35

34α(rI) with α = I1I2...It and Ij ∈ {Z0,S,C, J , ‘.’} indicates that α(1) = i1,α(2) = i2,...,α(t) = it
35The Cycles of Von Neumann, CVNs, described here are only the CNV for deterministic ma-

chines. By ordination of the symbols involved in the definition 7 of a FM, it is possible to create
a partial relation order, the quasi lexicographic order, and to use that to create Von Neumann al-
gorithms for machines that are not deterministic. However, that is outside of the scope of this
article and will be presented in a later paper.

51

Lemma 4.5 The VNAlg can be described for each one of the FCSs in Theorem 4.1.

Proof 4.5 The proof of this Lemma consists in giving the CVN for each one of the
FCSs.

Algorithm 2 CVN.i) The CVN of a deterministic k-Turing Machine

i.0) do
i.1) while(τinput == empty) // waiting to receive an input task, τinput , to
perform
i.2) load the input task, τinput , on the input tape
i.3) set the machine on the adequate initial configuration, c0, c← c0.
i.4) do
i.5) read the state of the machine and obtain the configuration, c, that is active.
i.6) carry out the instruction Iδ(c) to obtain the configuration cδ
i.7) carry out the instruction Iµ(c) to obtain the configuration cµ
i.8) carry out the instruction I(cδ, cµ) to obtain the configuration c′

i.9) put the configuration c′ in the place of the configuration c, c← c′

i.10) while(not(c(Q) ∈ F and c(TI)(pI) == ♭))

From the previous Von Neumann algorithm, in the case of k-Turing Machines,
the cycle of Von Neumann is translated in terms of the execution of tasks in the
following steps of computation.

c ⊢ cδ ⊢ {cδ, cµ} ⊢ c′ , where cδ, cµ ∈ Conf M : cδ ∈ Iδ(c), cµ ∈ Iµ(c) e c′ ∈ I(cδ, cµ)

Algorithm3CVN.ii) CVN of a deterministic PushdownAutomaton recognized
by final states

ii.0) do
ii.1) while(τinput == empty) // waiting to receive an input task, τinput , to
perform
ii.2) load the input task, τinput , on the input tape
ii.3) set the machine on the adequate initial configuration, c0, c← c0.
ii.4) do
ii.5) read the state of the machine and obtain the configuration, c, that is
active.
ii.6) carry out the instruction Iδ(c) to obtain the configuration cδ
ii.7) c←− cδ
ii.8) while(not(c(Q) ∈ F and c(TI)(pI) == ♭))

In the case of the Pushdown Automata, the execution of CVN is described in the
above steps. Additionally,

c ⊢ c′ if and only if c′ ∈ Iδ(c)

52

Algorithm 4 CVN.iii) CVN of a deterministic Transducer

iii.0) do
iii.1) while(τinput == empty) // waiting to receive an input task, τinput , to
perform
iii.2) load the input task, τinput , on the input tape
iii.3) set the machine on the adequate initial configuration, c0, c← c0.
iii.4) do
iii.5) read the state of the machine and obtain the configuration, c, that is
active.
iii.6) carry out the instruction Iδ(c) to obtain the configuration cδ
iii.7) carry out the instruction Iµ(c) to obtain the configuration cµ
iii.8) carry out the instruction I(cδ, cµ) to obtain the configuration c′

iii.9) put the configuration c′ in the place of the configuration c, c← c′

iii.10) while(not(c(Q) ∈ F and c(TI)(pI) == ♭))

In the case of the transducers, the execution of the CVN is translated in the
following computational steps:

c ⊢ cδ ⊢ {cδ, cµ} ⊢ c′ , where cδ, cµ ∈ Conf M such that
cδ ∈ Iδ(c), cµ ∈ Iµ(c) e c′ ∈ I(cδ, cµ)

Algorithm 5 CVN.iv) CVN of a Finite Automaton

iv.0) do
iv.1) while(τinput == empty) // waiting to receive an input task, τinput , to
perform
iv.2) load the input task, τinput , on the input tape
iv.3) put the machine on the adequate initial configuration, c0, c← c0.
iv.4) do
iv.5) read the state of the machine and obtain the configuration, c, that is
active.
iv.6) carry out the instruction Iδ(c) to obtain the configuration cδ
iv.7) c← cδ
iv.8) while(not(c(Q) ∈ F and c(TI)(pI) == ♭))

In the case of Finite Automata, the execution of CVN is translated in the fol-
lowing computation steps:

c ⊢ c′ if and only if c′ ∈ Iδ(c)

53

Algorithm 6 CVN.v) CVN of an k-unbounded Register Machine

v.0) do
v.1) while(program == empty) // waiting to receive an input task,
program = I1I2...Ik where each Ij is an instruction of the machine
v.2) load the program, τinput , on the input tape
v.3) put the machine on the adequate initial configuration, c0, c← c0.
v.4) do
v.5) read the state of the machine and obtain the configuration, c, that is active.
c = (program,rI , r0, r1, ..., rk)
v.6) carry out the instruction of the machine that is pointed in the input tape,
program(rI), for the accumulator register r20
v.7) decode the execution of an instruction of the machine program(rI)
v.8) carry out the instruction of machine program(rI) and obtain a new
configuration c′ , c′ = (program(r ′I), r

′
0, r
′
1, ..., r

′
k)

v.9) c←− c′
v.10) while(program(rI)! = “.”)

In the case of the Register Machines, c ⊢ c′ results from an execution of one of
the instructions S,Z,C and J .�.

Theorem4.1 The deterministic machines: k-TuringMachines, Transducers, Push-
down Automata, Finite Automata and k-unbounded Register Machines are FMs.�.

Proof 4.6 Proof of the Theorem 4.1 Of the Lemmas 1, 2, 3, 4 and 5 it is proved
that the FCSs referred to are FMs.�

4.2.3 Proving the Theorem 4.2

Theorem 4.2 Recurrent Neural Networks are FMs
Proof of the Theorem 4.2

Proof 4.7 Let N be as defined in [SiS94], a Recurrent Neuronal Network. Let N
be instantiate as a FM. InN neurons, Neu, are defined as

Neu = {→n= (n1, ...,nN) : ni ∈ R},

a family of vectors of input, U , where each one has M components,

U = {
→
u(t) = (u1(t),u2(t), ...,uM (t)) : e t ∈ N,ui (t) ∈ R},

and a component T = N that is seen as the interaction

————–

CompMB = {
→
U,Neu,T }

54

————–

CompMR = {RU ,RNeu} such that

RU = {(→u ,→n, t,
→
u′ , t +1) :

→
u=

→
u(t),

→
u′=

→
u′(t +1)∈U and

→
n∈Neu,t ∈ T },

RU ⊆U ×Neu ×T ×U ×T

RNeu = {(→u ,→n, t,
→
n′) :

→
u=

→
u(t)∈U,

→
n,
→
n′= (n′1, ...,n

′
M) ∈Neu},

RNeu ⊆U ×Neu ×T ×Neu

————–

Conf M = {(
→
u(t),

→
n, t) :

→
u(t)∈U,

→
n∈Neu,t ∈ T } ⊆U ×Neu ×T

Conf Mi = {(
→
u(t),

→
n,0) :

→
u(0)∈U,

→
n∈Neu}

Conf Mf = {(
→
u(t),

→
n, tf) :

→
u(tf)∈U,

→
n∈Neu}, for some tf ∈ T

————–

(
→

u(t +1),
→
n′ , t +1) ∈ Inst(

→
u(t),

→
n, t), such that

→
n′= (n′1, ...,n

′
N) with n′i = c(

∑N
i=1 aijnj +

∑M
j=1 biju(t) + ci) and such that

σ(x) =

0 if x < 0,
x if x ≤ 0 ≤ 1,
1 if x > 1.

�.

4.2.4 Tasks and performed Languages of the FCSs

After to prove in Theorem 4.1, that the FCSs are FMs, I seek a description of
the tasks and the language performed for each one of the FCSs seen as FMs.
To do that, I establish a relation between the notion of the language performed
by each one of the FCSs, seen only as FCSs, and the notion of the language
performed by a FM.

i) A task carried out, τ, for the k-Turing Machine, is a pair τ = (c, c′), such
that

c = (q,u♭w,α1♭
w, ...,αk♭

w, ♭w,1,1, ...,1,1), and
c′ = (q′ ,u♭w,α′1♭

w, ...,α′k♭
w, v♭w,n′I ,n

′
1, ...,n

′
k ,n
′
O); n

′
I = |u⌋+1, n′O = |v⌋+1,

55

with c ∈ Conf Mi and c′ ∈ Conf Mf . To simplify the notation, in the formalism
presented, I denote the task above by the notation (u,v). That simplification is
possible because I am able to define a correspondence φ : L(T M) −→ A∗ ×O∗
where, for each (c, c′) such as denoted above, φ(c, c′) = (u,v) and, because this
correspondence, in deterministic Turing Machines, φ is injective. The simpli-
fication of the notation allows to use the usual notation of a word recognized
by k-Turing Machines as a task performed in FMs.

ii) The task carried out, τ, for Pushdown Automata, is a pair τ = (c, c′), such
that

c = (q,u♭w,1,Z0), and
c′ = (q′ ,u♭w,n′0,Z0α

′
P), n

′
0 = |u⌋+1

with α′P ∈ (Γ−Z0)
∗ and c ∈ Conf Mi and c′ ∈ Conf Mf . To simplify the notation,

in the formalism presented, I denote the task referred to above by the notation
u. This simplification is possible because I am able to define a correspond-
ence φ : L(AS) −→ Z0A

∗, wherein for (c, c′) such as denoted above, φ(c, c′) = u
because this correspondence, in deterministic Pushdown Automata, φ is in-
jective. The simplification of the notation allows to use the usual notation of a
word recognized by Pushdown Automata as a task performed in FMs.

iii) The task carried out, τ, by a Transducer, is a pair τ = (c, c′), such that:

c = (q,u♭w, ♭w,1,1), and
c′ = (q′ ,u♭w, v♭w,n′I ,n

′
O); n

′
I = |u⌋+1, n′O = |v⌋+1

with c ∈ Conf Mi and c′ ∈ Conf Mf . To simplify the notation, in the formal-
ism presented, I denote the task above by the notation (u,v). The simplifica-
tion of the notation is possible because I am able to define a correspondence
φ : L(T) −→ A∗×O∗ such that for (c, c′) as denoted above, φ(c, c′) = (u,v) because
this correspondence, in deterministic Machines, φ is injective. The simplific-
ation of the notation allows to use the usual notation of a word recognized by
Transducers as a task performed in FMs.

iv) A task carried out, τ, for the Finite Automaton is a pair τ = (c, c′), such
that

c = (q,u♭w,1), and
c′ = (q′ ,u♭w,n′); n′ = |u⌋+1,

with c ∈ Conf Mi and c′ ∈ Conf Mf . To simplify, I use the notation u. This
simplification is possible because we are able to define a correspondence φ :
L(T) −→ A∗ such that, for (c, c′) such as denoted above, φ(c, c′) = u and because
this correspondence, in deterministic Machines, φ is injective. The simplific-
ation of the notation allows to use the usual notation of a word recognized by
Finite Automaton as a task performed in FMs.

56

v) A task carried out, τ, for the k-unbounded Register Machine, is a pair
τ = (c, c′), such that

c = (α,1, (r00, r10, r20), (r1, ..., rk)), and
c′ = (α,r ′I , (r

′
00, r

′
10, r

′
20), (r

′
1, ..., r

′
k)),

such that α(r ′I) = “.”

4.3 A Software for Simulate Formal Computational Systems

In this subsection I present the software that I developed and that allows to
generate universes and simulate computational systems.

The generation of universes consists in to define an alphabet, the letters,
and the work words. That words are all the words, of an alphabet, with a
length inferior at a certain n (See figure 12).

The simulation of the behavior of a computational system consisr in the
computational system recognize the words that are generated by the generator
of universes (See figure 11). This software is denoted by GU SFM as an ac-
ronym of Generator of Universes and Simulator of Formal Machines. Now, I
am going to describe the interface of the GU SFM36.

The interface has 4 tabs; file tab, configurations tab, Partial Orders tab and
Help tab. In following I describe each one of them (See figure 10). In the
interface can be found three file text boxes that are setting in the configuration
and in Partial Order tabs, after to click the button SET. After all of this, it is
possible to generate all the words of the universe, respecting the ordination
given by the partial order. This generation is made in finite mode, it generates
all the words of the universe and the process ends, or in continuous mode,
making a continuous cycle that goes from the simplest words of the universe
to the words of greater length and returning from these to the simplest. If the
option is to develop the universe in finite generation is possible yet to compare
two words of the universe. The software says between two words which one is
the smallest and which is the largest.

36download it from www.ipg.pt\user\˜pavieira\private\sw\GU_SFM

57

Figure 10: The interface of the Generator of Universes and Sim-
ulator of Formal Machines (GU SFM)

The file tab has two subtabs called Computational Models and Exit. In the
computational system subtab is possible to choose one of the following several
computational models, six of it, namely Turing Machines, Pushdown Auto-
mata, Transducer, Finite Automata, Unbounded Register Machine and Formal
Machines (FMs). The Exit subtab is a subtab to close the software.

Figure 11: The tab of file of the GU SFM

Now in the next four figures (figures 12, 13, 14, 15) can be seen the different
uses of the configuration tab. In the figure 12 can be seen where is setting the
letters of the alphabet, in figure 13 is where is set the size of the universe up to
20. The size of the universe is the maximum length possible that a word of the

58

universe can have. In the subtab folder, figure 14 and figure 15, is for browse
the path of the files with which the software works.

Figure 12: The Configurations tab of the GU SFM, the alphabet

Figure 13: The Configurations tab of the GU SFM, the
Limit<21

59

Figure 14: The Configurations tab of the GU SFM, browse a
path

Figure 15: The Configurations tab of the GU SFM, choosing a
folder

Now I talk about the Partial Orders tab. In this tab is possible to choose
several partial orders such that, a quasi lexicographic and co-lexicographic or-
ders. For alphabets with two elements respectively the qlexicographicM2 and
Co-lexicographicM2, and for alphabets with more two elements respectively
qlexicographic and Co-qlexicographic. Another partial order that is possible to
choose is one whose the words are propositions of a logic whose atomic terms

60

are the letters of the alphabet. In this partial order called Propositional Logic is
possible to choose between an universe where the propositions (the words) are
in Formal Normal Conjunctive, FNC, or in Formal Normal Disjunctive, FND.
This can be seen in figure 16.

Figure 16: The Partial Orders tab of the GU SFM, Propositional
Logic

The next figure is the Help tab. This tab has 3 subtabs, the subtab About,
License and How To . In subtab About can be seen the authors of the software,
in subtab License can be seen what type of license is associated with the soft-
ware and in the subtab HOW TO can be consulted an help for to know how to
use the software

Figure 17: The HELP tab of the GU SFM

61

In the following four next figures, the figures 18, 19, 20 and 21, are showed
the different necessary steps to choose a Finite Automaton as computational
model. The figure 18 shows the subtab where is possible to choose one of
the computational models, the figure 19 is showed the computational model
chosen, the Finite Automata. In figures 20 and 21 it can be seen respectively
the explanation of the parameters of the Finite Automata and the interface of
one of the computational systems.

Figure 18: In the file tab the GU SFM, choosing a computa-
tional model

Figure 19: The computational model, of the GU SFM, chosen a
Finite Automata

62

Figure 20: The Finite Automata interface, in the GU SFM, if
you clik in button SET you obtain an explanation of the para-
meters

Figure 21: Introducing the parameter Q, in the GU SFM, of the
Finite Automata interface

In the figure 22 and 23 are showed the choices of the subtab called Formal
Machine in the file tab, file>Formal Machine. This subtab allows to open the
interface that allows to setting a FM, it is showed in figure 22. In the figure 23
is showed the interface of the FM.

63

Figure 22: In the file tab of the GU SFM, choosing a FM

Figure 23: In the file tab of the GU SFM, the FM interface

4.4 Games and Formal Machines

4.4.1 Tic Tac Toe Game

Now I present the first game that I developed to implement a FM as a player of
a game. I chosen the Tic Tac Toe game because it is a natural game for prepare
an implementation of the Four In Line (FIL) game and the FIL game is a nat-
ural game where, for play it, is necessary to use concepts associated with the
following idea, what is a behavior “being intelligent”. Any player of the Four
In Line game needs to use a lot of skills and this is important when it is being
planned to use the machines in the context of Artificial Intelligence concepts.

64

Any medium player of the Four In Line game needs to have a considerable
Intelligence.

In the firsts three figures 24, 25, 26, I show the folder of the Tic Tac Toe
(TTT) game in 24, the folder of the TTT game and, in figure 25 I show the
folder open. It can be seen that the folder has inside a folder lib. The folder
contents is showed in the figure 26.

Figure 24: The folder of the Tic Tac Toe game (TTT game)

Figure 25: Opening the TTTgame folder

Figure 26: Opening the lib subfolder of the TTT game

In the next five figures I show the interface of the TTT game, figure 27, and
the elements of the file tab, figures 28, 30, each one of the subtabs of the file

65

tab, figures 29, 31. In the figure 29 is showed the About subtab of the About
tab. In it I show the About subtab where it can be seen who are the authors
of this implementation. In figure 30 is marked the FM Technology subtab. In
figure 31 is showed the content of the FM Technology subtab.

Figure 27: The interface of the TTT game

66

Figure 28: The About tab of the TTT game

Figure 29: The subtab Authors of the About tab

67

Figure 30: The subtab FM Technology of the About tab

Figure 31: The dialog box of the subtab FM Technology of the
About tab

The figures 32 and 33 show the two different ways of start the TTT game.
The game can start with the FM doing the first move, figure 33, or with an
Human Being preparing the first move, figure 32.

68

Figure 32: Choosing the first player, the Human Being, and
start the game

Figure 33: Choosing the first player, the Formal Machine, and
start the game

In the following figures is presented all the moves of a complete game. Is
possible to see the first move made by a Human Being player and the answer
of the FM with its thoughts, figure 34. The sequence of moves alternating
between the FM player and the Human Being player is in figures 35,36, 37, 38.
For last, in figure 39 is showed, the resulted of the game.

Figure 34: The Human Being plays is first move and the FM
makes its move in answer

69

Figure 35: A sequence of moves, the red is the FM, the gray is
the Human Being moves

Figure 36: The moves in the TTT game continue and the
thoughts of the machine can be read in the right interface

Figure 37: The moves in the TTT game continue

70

Figure 38: More moves in the TTT game

Figure 39: The game is over

4.4.2 Four In Line Game

The Four In Line game is a known game37, the game38 is constituted by a table
that is a n×m matrix, with n rows and m columns. This n×m rectangle is as a
matrix of n×m squares. I implemented a game whose table of the game can be
setting among a matrix 4× 4 and a matrix 10× 10. This game is a game that is
played between two players, in my implementation one of the players is a FM.
The versatility of the FM allows to say that it is a good computational model
to write and solve engineering problems with formal methods. I think in two
types of algorithms to implement a FM. One of it is a serial FM implementa-
tion and the other is a parallel FM implementation. This sub subsection has
the following structure. It is divided in four parts:
- The interface of the game, where is described the interface of the game;
- Playing the game, where is described how the game is run;
- Designing the FIL game as a FM, where is described the design of the FM
player;

37A lot of references of this game can be found in internet
38http://www.ipg.pt/user/˜pavieira/private/SW/FILGame5x5.jar, verify the working en-

vironment of the game, if you not did this the game can not be run http://www.ipg.pt/user/

˜pavieira/private/SW/index.html

71

- Results, where is presented a statistical study about the results of 100 com-
pleted games played between human beings and the FM player.

The Interface of the Game

In this section I describe the interface of the Four in Line implementation.
For to do this I am putting nine figures of the interface, some of them with the
game to be configured and others with it in running. I also comment each one
of the figure and I say what it represent in the game.

The figure 40 and the figure 41 shows the interface of the game.

Figure 40: The interface of the Four In Line Game

For a better understanding I divided the layout of the interface of the figure
40 in a left part and a right part. In the left there is the table game, for default
is a matrix 4×4. In the right part there are two blocks of buttons each one with
two buttons. One of them has the buttons called FM and Man to choose who
made the first move, who is the first player. The other block has the buttons
called start (to start the game) and restore (to reset the game).

72

Figure 41: What are the elements presented in file tab

In the figure 41 is showed the tab file. In that tab is possible to obtain
information about who developed the game, about the state of the art of the
FM Technology and about this implementation of the FIL Game.

73

Figure 42: Choose the number of rows of the table, among 4 to
10

Figure 43: Choose the number of columns of the table, among
4 to 10

74

In figure 42 and figure 43 are represented the possible choices for the table
of the game. Is possible to choose a table among a 4 × 4 matrix and a 10 × 10
matrix, some of them is not yet implemented. In the implementation already
done, the table can be a matrix 4× 4, 4× 5, 5× 4 or 5× 5. The algorithm imple-
mented is the FM serial procedure. In all of them the FM behaves as a serial
player. In the tables of the games, whose matrices are a range from 5× 6, 6× 5
to 10× 10, the FM behaves as a parallel player and yet is not implemented.

Figure 44: Choosing the first player; the FM

75

Figure 45: The FM is playing

In the figure 44 is chosen who does the first move. The option in the figure
is the FM. The figure 45 shows a typical FM moves. The interface of the game
announced that the FM is “thinking” in its move.

76

Figure 46: The FM did a move to the square 10

Figure 47: The game between the FM and the Human player in
ongoing

The figure 46 shows a move of the FM player, its first move. The figure 47

77

shows the state of the table game after several moves. The red moves repres-
enting the moves done by the Human Player and the blue moves are the moves
done by the FM.

Figure 48: The FM made a move to the square 10

The figure 48 represents a result, with higher probability, if you play against
this FM player, the FM wins.

78

Table 15: moves of the game illustrated, in figures 46, 47, 48, from the page 77

Moves FM: FM Human comment about
Being (HB) the FM move

First random move
player, FM 10 of the FM
HB 10 4

obstruction of
FM 10,3 4 the HB’s played
HB 10,3 4,7

tentative of
the FM do a

FM 10,3,2 4,7 vertical alignment
HB 10,3,2 4,7,5

obstruction
made by the FM to
the HB’s tentative to
made an horizontal

FM 10,3,2,6 4,7,5 alignment
bad move

HB 10,3,2,6 4,7,5,11 mabe by the FM
FM 10,3,2,6,14 4,7,5,11 The FM is the winner

Playing the Game
Now let’s go to talk about the game. The way as the FM sees the game

depends of the initial environment of the game. This environment is a table,
that is set as matrix, where the game is run. If the table is a matrix 4× 4, 4× 5,
5 × 4 or 5 × 5 the FM implemented makes serial processing, and I say that the
FM has a serial procedure. If the table implemented is from of the matrices
referred until a matrix 10× 10 the FM does parallel processing, figure 7, 8.

Designing a FIL game player as a FM
To design a FM as a player of a FIL game have in attention what is in the

page 28 to know how to transform an engineering problem in a FM problem.
Now, I transport the idea referred to the FIL game.
i) In the FIL game first is necessary to setting the table game.
ii) The set of the game consists in to choose the size of the table where the game
is running. What is the size of the matrix which will run the game?,
iii) After the game is setting who starts the game?
iv) The moves consist in click in the buttons (the squares) of the matrix.

Thus, the constitution of the FM is generically:

79

Table 16: The generic constitution of the FM

- components i) C1 - the moves, in the game,
of the FM made by the two players

ii) C2 - the moves, in the game,
made by the Human Being (HB)
iii) C3 - the moves, in the game,
made by the FM.

- instructions The only action is to use the buttons,
of the FM clicking in it, for move.

Thus the instruction that
the FM possesses is only one.

- ⊢ Defined through of the COA

Results
Here I present a statistical study about this FIL game implementation. I use

inference statistic. For doing this I collect a set of data that are the results of
play the game, one hundred times. In 50’% of the games played the first move
is made by the FM and in the others 50% of the first moves are made by the
human being that play the game against the FM. I gathered a sample of 100
results of plays, from ten different human players. The players are chosen in
random way, that is a way to guarantee the representation of the sample.

Table 17: Set of data collected for a game matrix 4 × 4. Legend: D-draw, FM -
wins the FM, HB-wins the Human Being

Matrix table
4× 4

First player

FM HB
FM FM D D D FM D D FM D

D D D D D D D FM D FM

D FM D FM FM D D D D D

D FM FM FM D D FM D D FM

D D D FM D D FM D D FM

FM D D D D D D D D FM

FM FN FM FM FM D FM D FM D

FM D D FM FM D FM FM FM D

D D FM FM FM D FM FM FM D

FM D FM FM D D D D FM FM

I define a random variable XPFM (respectively, XPHB
, XPD) as “the proportion

of victories that the FM obtains” (respectively, “the proportion of victories that
the HB obtains”, “the proportion of draws in the game”). I know, by the the-
ory of statistic inference, that XPFM has Bernoulli distribution with parameter
p, XPFM ∼ B(p) (respectively, XPHB

∼ B(p), XPD ∼ B(p)). This random variable
possesses Bernoulli distribution and, as the sample has more than 30 elements
the theory and practical say that, it can be approximated through of a normal

distribution with average pFM and variance
pFM qFM

n . Thus,
XPFM

−pFM
√

pFM qFM
n

∼ N (0,1)

(respectively,
XPHB

−pHB
√

pHB qHB
n

∼N (0,1),
XPD
−pD

√

pD qD
n

∼N (0,1)) with qFM = 1−pFM (respect-

80

ively, qHB = 1− pHB, qD = 1− pD). From this the results can be extrapolated for
the population through of the use of the confidence interval with 95 percent of
confidence.

pFM ∈ [ˆpFM − zα/2K, ˆpFM + zα/2K] with confidence of 100 (1−α) %
(respectively, pHB ∈ [ˆpHB − zα/2K, ˆpHB + zα/2K] with confidence of 100 (1−α)%,

pD ∈ [p̂D − zα/2K, p̂D + zα/2K] with confidence of 100 (1−α)%)

and K =

√

ˆpFM ˆqFM
n (respectively, K =

√

ˆpHB ˆqHB
n , K =

√

ˆpD ˆqD
n)

Table 18: values calculated from the sample

Matrix table
4× 4

symbols values
α 0,05
α
2 0,025
z α
2

1,959963985

p̂FM 0,43
q̂FM 0,57

K =

√

p̂FM q̂FM
n 0,049507575

p̂FM − zα/2K, p̂FM 0,332966936
p̂FM + zα/2K, p̂FM 0,527033064
p̂HB 0
q̂HB 1

K =

√

p̂HB q̂HB
n 0

p̂HB − zα/2K, p̂HB 0
p̂HB + zα/2K, p̂HB 0
p̂D 0,57
q̂D 0,43

K =

√

p̂D q̂D
n 0,049507575

p̂D − zα/2K, p̂D 0,472966936
p̂D + zα/2K, p̂D 0,667033064

Analyzing data I can say with a confidence of 95% that the FMwins between
33% to 52% of the games played, that they draw between 47% to 68% of the
games played and that the wins of the Human Being are residual and haven’t
expression. This shows that the algorithm implemented, the FM player, is a
good algorithm to implement the Artificial Intelligence necessary to play this
game.

The FIL game was chosen to implement a FM, as a player of the game,
for three reasons. One of it because the game is a game playing between two
players, the second because one of the players is an human being and the third

81

because for play it is necessary some admixture of properties that normally are
associated with intelligence and presupposes the exercise of some skills. Thus,
the FM player is in competition against a Human Being. At the moment that I
write this thesis I have implemented the FM serial procedure not the parallel
FM procedure (this is ongoing). Thus, now is possible to play the game in
tables whose matrix are 4 × 4, 4 × 5, 5 × 4 and 5 × 5. The implementation of
tables that are matrices from 5× 6, 6× 5 until 10× 10 are ongoing and follows
the algorithm illustrated in figure 8, the parallel FM procedure. For measure
the skills of the FM player I did a statistical study when the table game is a
matrix of 4×4. The results of the measures presented show that the FM player
has a considerable skill to play this game. In the future I am going to do similar
analysis for the others environments possibles.

82

5 Mathematics and FMs

This section is divided in three subsections called: Mathematical results in
computational models, Mathematical results in Formal Machines and Formal
Machines and Category Theory. In the subsection 5.1 are defined; arithmetic,
algebraic and logic operations in the CSFMs; are constructed some mathem-
atical structures for CSFMs; and are presented theorems that allow to con-
struct new CSFMs from the use of these operations. In second subsection, sub-
section 5.2, are defined operations in languages recognized by FMs and from
these are constructed new languages, and are presented theorems that allow to
construct the FMs that recognize the new languages constructed. In the third
subsections, subsection 5.3, is showed how to write several FCSs and FMs in
categories and how to embed the FCSs, written as categories, in FMs.

5.1 Mathematical Results in the Computational Model

In this subsection I define several properties in CSFM, the computational model
of a FM as alreadywas referred, the CSFM, is a 4-tuple CSFM=(VNAlg ,psm,A,⊢).
The operations here defined for the CSFM are all about the psm. I define arith-
metic, algebraic and logic properties of the psm and I establish theorems that
from that properties allow to create CSFMs.

5.1.1 Formal Machines and Dynamical Systems

b(t) = psm(A,σP (t)) denotes the active configurations on the iteration or time t.
This allows to study the evolution of a FM through of a sequence of iterations
or through of the time.

5.1.2 Formal Machines and Algebra

Arithmetic operations at the psm
Let A and B be matrices and psm(A,σPA), psm(B,σPB) are the psm’s of the FMs
respectively f1M and f2M.
i) addiction:
psm(A,σPA) + psm(B,σPB) = psm(A+B,×mi=1min{σPA (i),σPB (i)}), where:
InstM=Inst1M ∪ Inst2M, A,B ∈Matrix(n,m)
ii) subtraction:
psm(A,σPA)− psm(B,σPB) = psm(A−B,×mi=1min{σPA (i),σPB (i)}), where:
InstM=Inst1M ∪ Inst2M, A,B ∈Matrix(n,m)(R)
iii) multiplication:
psm(A,σPA)psm(B,σPB) = psm(AB,σPB), where:
InstM=Inst1M ∪ Inst2M, A ∈Matrix(n,m)(R) and B ∈Matrix(m,k)(R)
iv) inverse:
psm(A,σPA)

−1 = psm(A−1,σPA) where:
A is an invertible matrix, InstM=Inst1M, A ∈Matrix(n,n)(R)

83

v) Let α ∈ R be such that α < 0, αpsm(A,σPA) = psm(αA,1−σPA)
vi) Let α ∈ R be such that α ≥ 0, αpsm(A,σPA) = psm(αA,σPA)

Theorem 5.1 Let F be the following set
F = {psm(A,σPA): A ∈M(m,n)(R), σPA ∈ {0,1}|Conf M |},
psm(0,σP0) where 0 is the null matrix, σP0 = {0}|Conf M | and psm(In,σPIn) where

σPIn = {1}|Conf M |
i) For each psm(A,σP0) exist only one psm(−A,1−σP0) such that
psm(A,σP0) + psm(−A,1−σP0) = psm(0,σP0)
ii) The set (F ,+) is a commutative group with neutral element psm(0,σP0)
iii) The set (F ,+) is a monoid with element one psm(In,σPIn)
iv) (F ,+,R, .) is a vector space.

Proof 5.4: The proof of the different results can be obtained through of algeb-
raic manipulations. The proof is left to the readers �

Operators configurations-components:
Concatenation (·), Transpose (T), Left Shift (LS), Right Shift (RS)
i) Concatenation:

psm(A,σP1) · psm(B,σP2) = psm(

∈Matrix(n,m+k)
︷︸︸︷

A ·B ,σP1 ·σP2),
InstM=∪ (Inst1 · Inst2)(σP1 ,σP2) = inst1(σP1)inst2(σP2) and σP = σP1 · σP2 , with
A ∈Matrix(n,m), B ∈Matrix(n,k)
ii) Transpose:
T(psm(A,σP)) = psm(transpose(A),×ni=10)
InstMT=∅, 0 ∈Matrix(m,n) and A ∈Matrix(n,m)
iii) Right Shift, RS:

RS(psm(A,σP1),psm(B,σP2))=(psm(

∈Matrix(n,k)
︷ ︸︸ ︷

A(Im|B) ,σPRS)
with σPRS = σP1 ·σP2 , A ∈Matrix(n,m), B ∈Matrix(m,k), I ∈Matrix(m,m) (Im is
the identity matrix of order m). A(Im|B) = (A|AB)
iv) Left Shift, LS:
LS(psm(A,σP1),psm(B,σP2))=psm((A|I)B

︸︷︷︸

∈Matrix(n,k)

,σP2)

with A ∈ Matrix(n,k), I ∈ Matrix(m,m) (I is the identity matrix of order m),
B ∈Matrix(k +m,k)

Theorem 5.2 i) {(psm(A,σP1)psm(B,σP2)}(psm(C,σP3)
= (psm(A,σP1){psm(B,σP2)(psm(C,σP3)}
with A ∈Matrix(n,m), B ∈Matrix(m,k) and C ∈Matrix(k, r)
ii) (psm(A,σP1){psm(B,σP2) + psm(C,σP3)}

84

= psm(A,σP1)psm(B,σP2) + psm(A,σP1)psm(C,σP3)
with A ∈Matrix(n,m), B ∈Matrix(n,m) and C ∈Matrix(m,k)
iii) {psm(A,σP1) + psm(B,σP2)}(psm(C,σP3)}
= psm(A,σP1)psm(C,σP3) + (psm(B,σP2)psm(C,σP3)
with A ∈Matrix(n,m), B ∈Matrix(n,m) and C ∈Matrix(m,k)
iv) T (psm(A,σP1)psm(B,σP2))
= T (psm(A,σP1))T (psm(B,σP2))
with A ∈Matrix(n,m) and B ∈Matrix(m,k)
v) T (psm(A,σP1) + psm(B,σP2))
= T (psm(A,σP1)) +T (psm(B,σP2))
with A ∈Matrix(n,m) and B ∈Matrix(n,m)
vi) T (α(psm(A,σP1)psm(B,σP2)))
= (αT (psm(A,σP1)))T (psm(B,σP2))
with α ∈ R, A ∈Matrix(n,m) and B ∈Matrix(m,k)
vii) RS(psm(A,σP1),psm(A−1B,σP2))
= psm((A|B),σP1 ·σP2)
with A ∈Matrix(n,n) and B ∈Matrix(n,k)

Proof 5.6: The proof of the different results can be obtained through algebraic
manipulations. The proof is left to the reader. �

Propositional Logic operators: ¬,∧,∨,→
Let A be a matrix, A ∈Matrix(n,m)
i) negation:
¬psm(A,σP) = psm(A,¬σP) = psm(A,×mi=1(1−σP (i)))
ii) conjunction:
∧: psm(A,σP1)∧ psm(A,σP2)
= psm(A,×mi=1(σP1(i)σP2(i)))
iii) disjunction:
∨: psm(A,σP1)∨ psm(A,σP2)
= psm(A,×mi=1max{σP1(i),σP1(i)})
iv) implication,→: psm(A,σP1)→ psm(A,σP2)
= psm(A,×mi=1max{1−σP1(i),σP2(i)})

Theorem 5.3 Let {psm(A,σP1), psm(A,σP2), psm(A,σP3) be psm’s of certain FMs.
i) ¬¬psm(A,σP1) = psm(A,σP1)
ii) psm(A,σP1)∧ psm(A,σP2)
= psm(A,σP2)∧ psm(A,σP1)
iii) psm(A,σP1)∨ psm(A,σP2)
= psm(A,σP2)∨ psm(A,σP1)
iv) psm(A,σP)∧ psm(A,σP) = psm(A,σP)
v) psm(A,σP)∨ psm(A,σP) = psm(A,σP)
vi) {psm(A,σP1)∧ psm(A,σP2)} ∧ psm(A,σP3)
= psm(A,σP2)∧ {psm(A,σP1)∧ psm(A,σP3)}
vii) {psm(A,σP1)∨ psm(A,σP2)} ∨ psm(A,σP3)

85

= psm(A,σP2)∨ {psm(A,σP1)∨ psm(A,σP3)}
viii) {psm(A,σP1)∧ psm(A,σP2)} ∨ psm(A,σP3)
= {psm(A,σP1)∨ {psm(A,σP3)} ∧ {psm(A,σP2)∨ psm(A,σP3)}
ix) {psm(A,σP1)∨ psm(A,σP2)} ∧ psm(A,σP3)
= {psm(A,σP1)∧ {psm(A,σP3)} ∨ {psm(A,σP2)∧ psm(A,σP3)}
x) psm(A,σP1)∧ {psm(A,σP1)∨ psm(A,σP3)} = psm(A,σP1)
xi) psm(A,σP1)∨ {psm(A,σP1)∧ psm(A,σP3)} = psm(A,σP1)

xii) Let A be an element of Matrix(n,m). The set {psm(A,σP) : σP ∈ {0,1}|Conf M |}
is a reticulated with ∧ and ∨.

Proof 5.3: The proof of the different results can be obtained through of algeb-
raic manipulations. The proof is left to the reader �

5.2 Mathematical Results in Formal Machines

In this sections is demonstrated generic proprieties for FMs, all the proofs are
constructive and allow to build new FMs from other(s) that perform new lan-
guages obtained from some known operators. How to build FMs from per-
formed languages that result of the intersection ∩, union ∪, concatenation ·,
difference \ of two languages each one performed by a FM. For last is built the
FM that performs the star language (results of apply in a language the operator
∗) and the iteration language (results of apply in a language the operator +) of
a language performed by a FM.

Theorem 5.4 Let fM be a FM. Then:
i) A(C1)×A(C2)××A(Cn) is an alphabet of the Conf M and is a code.
ii) ∀Ci ∈ CompMB : |Ci | ≤ |Q|
iii) ∀Ci ∈ CompMB : | ×ni=1 Ci | ≤ |Q|
iv) ∀Ci ∈ CompMB: (Ci , ·) is a semigroup with · the concatenation operator. If
ǫ ∈ Ci , then (Ci , ·) is a monoide
v) (CompMB, ·) is a semigroup wherein · is the following operation,
c · c′ = (c1, ..., cn)(c

′
1, ..., c

′
n) = (c1 · c1, ..., cn · c′n).

If ∀i ∈ {1, ...,n} : ǫ ∈ Ci , then (Conf M, ·) is a monoide.

Proof 5.4
The proof can be made through algebraic manipulations. The proof is left to
the reader. �

Theorem 5.5 Let f
1
M, f

2
M be a FMs such that:

f
k
M=(Comp

k
MB,Comp

k
MR,ConfkM,Conf

k
Mi ,ConfkMf , InstkM,VNAlg)with k =

1,2.
i) Exists a f∩M,
f∩M=(Comp∩MB,Comp∩MR,Conf∩M,Conf∩Mi ,Conf∩Mf , Inst∩M,VNAlg), such
that:
L(f∩M) = L(f

1
M)∩L(f

2
M)

86

ii) Exists a projection function Φ and a f∪M,
f∪M=(Comp∪MB,Comp∪MR,Conf∪M,Conf∪Mi ,Conf∪Mf , Inst∪M,VNAlg), such
that:
Φ(L(f∪M)) = L(f1M)∪L(f2M)
iii) Exists a f·M,
f·M=(Comp·MB,Comp·MR,Conf ·M,Conf ·Mi ,Conf ·Mf , Inst ·M,VNAlg), such that:
L(f·M) = L(f1M) ·L(f2M)
iv) Exists a f\M,

f\M=(Comp\MB,Comp\MR,Conf \M,Conf \Mi ,Conf \Mf , Inst\M,VNAlg), such
that:
L(f\M) = L(f1M)\L(f2M)

Proof 5.6

i) Just take,
Comp∩MB = {C1

1 ∩C2
1 , ...,C

1
n ∩C2

n },
Comp∩MR = {R1

i ×R2
j : R

1
i ∈ Comp

1
MR,R

2
j ∈ Comp

2
MR},

Conf∩M = ×ni=1(C1
i ×C2

i)
Conf∩Mi = Conf

1
Mi ∩Conf2Mi

Conf∩Mf = Conf
1
Mf ∩Conf2Mf

For each I1 : (Conf 1
M)k1 −→ P (Conf

1
M) and I2 : (Conf 2

M)k2 −→ P (Conf
2
M)

I build the instruction I∩ : (Conf M)k1+k2 −→ P (Conf M) such that for each
~c = (~c1,~c2) with ~c1 ∈ Conf 1

M and ~c2 ∈ Conf 2
M , then I∩(~c) = I1(~c1)∩ I2(~c2).

ii) In this case is supposed that the FMs f
1
M and f

2
M have the follow-

ing properties: Comp
1
MB ∩ Comp

2
MB = ∅, Comp

1
MR ∩ Comp

2
MR = ∅ and

Inst
1
M ∩ Inst

2
M = ∅. Thus, in this situation, Just take,

Comp∪MB = {C∪} ∪Comp
1
MB ∪Comp

2
MB with C∪ = {1,2,3,4,5,6},

Comp∪MR = C∪ ×Comp
1
MR ×Comp

2
MR},

Conf∪M = C∪ ×Conf 1
M ×Conf

2

Conf∪Mi = {1} ×Conf1Mi ×Conf2M ∪ {2} × (Conf1M ×Conf2Mi)
Conf∪Mf = {5} ×Conf

1
Mf ×Conf2M ∪ {6} × (Conf1M ×Conf2Mf)

For each I1 : (Conf 1
M)k1 −→ P (Conf

1
M) and I2 : (Conf 2

M)k2 −→ P (Conf
2
M)

I build the instruction I∩ : (Conf M)k1+k2 −→ P (Conf M) such that for each
~c = (~c1,~c2) with ~c1 ∈ Conf 1

M and ~c2 ∈ Conf 2
M , then I∩(~c) = I1(~c1)∩ I2(~c2).

The language performed by the f∪M is:
L(f∪M) = {{1} ×π1(L(f1M))×Conf

2
M} × {{5} ×π2(L(f1M))×Conf

2
M)}⋃

{{2} ×Conf
1
M ×π1(L(f2M))} × {{6} ×Conf

1
M ×π2(L(f2M))}. If in the language

performed you apply a partial function, Φ, Φ(L(f∪M)), where Φ : (Conf
∪
Mi ×

Conf
∪
Mf) −→ Conf

1
M

⋃

Conf
2
M such that for each ~c = (~c1,~c2) ∈ (Conf∪Mi ×

Conf
∪
Mf)

⋂

L(f∪M) there are two exclusive situations:

1st) ~c1 = (1,~c11,~c12) and ~c2 = (5,~c21,~c22), or
2nd) ~c1 = (2,~c11,~c12) and ~c2 = (6,~c21,~c22),

87

for the 1st situation Φ(~c) = (~c11,~c12) and for the 2nd Φ(~c) = (~c21,~c22). Thus,
Φ(L(f∪M)) = L(f

1
M)∪L(f

2
M).

iii) Just take,
CompMB = {C1

1 ×C2
1 , ...,C

1
n ×C2

n },
CompMR = {R1 ×R2 : Ri ∈ Comp

k
MR, k = 1,2},

Conf M = ×nk=1(C1
k ×C2

k),

Conf Mi = {×k=1n(c1kXc2k) : ×ni=1c
j
k ∈ Conf j

Mi , with j = 1,2},
Conf Mf = {×k=1n(c1kXc2k) : ×ni=1c

j
k ∈ Conf j

Mf , with j = 1,2},
for each I1 ∈ InstM1

, I2 ∈ InstM2
, I build an instruction I that is denoted by

I1 · I2, I = I1 · I2. Thus, for each ~cj = ((~c1j ,~c
2
j)j=1,2,...,n) = (~c1,~c2, ...,~cn) ∈ Conf Mk

such that Domain(I1) ⊆ Conf Mk1 , Domain(I2) ⊆ Conf Mk2 and k =max{k1, k2},
~cj = ((c11j , c

2
1j), ..., (c

1
nj , c

2
nj)) = (c11j , ..., c

1
nj

︸ ︷︷ ︸

~c1

) · · · (c21j , ..., c2nj
︸ ︷︷ ︸

~c2

).

Then I(~c) = I1(~c1) · I2(~c2)

iv) just take,
CompM\B

= Comp1MB

CompM\R
= Comp1MR

Conf \M = Conf1M
Conf \Mi = Conf1Mi
Conf \Mf = Conf1M Conf1Mf
InstM = Inst1M
VNAlg = VNAlg1
The elements, instructions, of the set Inst1M are all total functions. Thus, from
each instruction I ∈ Inst1M I construct an instruction I \(~c) = ∅ if ~c < domain(I)
and I \(~c) = I(~c) when ~c ∈ domain(I) �

Lemma 5.1 Let f
1
M be a FM such that:

f
1
M=(Comp

1
MB,Comp

1
MR,Conf1M,Conf

1
Mi ,Conf1Mf , Inst1M,VNAlg).

Exist a FM, fM, such that L(fM) = L(f
1
M)∪ {ǫ}.

Proof 5.1 Just take,
C̄i = Ci ∪̇{λ} with i = 1, ...,n Ci ∈ CompMB
CompMB = {C̄i : C̄i = Ci ∪̇{λ},Ci ∈ CompMB} CompM

+R = Comp1MR
Conf

+
M = Conf1M

Conf
+
Mi = Conf1Mi∪̇{(λ,λ, ...,λ)}

Conf
+
Mf = Conf1Mf ∪̇{(λ,λ, ...,λ)}

InstM = InstM
VNAlg = VNAlg1
L(fM) = L(f

1
M)∪ {ǫ}.

�.

88

Theorem 5.6 i) Exists a f∗M,
f∗M=(Comp∗MB,Comp∗MR,Conf ∗M,Conf ∗Mi ,Conf ∗Mf , Inst∗M,VNAlg), such
that:
L(f∗M) = L(f1M)∗

ii) Exists a f
+
M,

f
+
M=(Comp

+
MB,Comp

+
MR,Conf +

M,Conf
+
Mi ,Conf +

Mf , Inst+M,VNAlg), such
that:
L(f

+
M) = (L(f1M))+

Proof 5.6

i) just take,
CompM

+B = Comp1MB
CompM

+R = Comp1MR
Conf

+
M = Conf1M

Conf
+
Mi = Conf1Mi

Conf
+
Mf = Conf1Mf

VNAlg = VNAlg1
I construct the instructions, I

+
, of the FM

+
from each one of I ∈ Inst1M . I

+
(~c) =

I(~c) if I(~c)* Conf Mf and I
+
(~c) = I(~c)∪Conf Mi if I(~c) ⊆ Conf Mf .

ii) In i) I show that is possible to build a FM, called f
+
M, that recognize the

language L(f
+
M) = L(f1M)+. Thus, using the Lemma 5.1 is possible to build a

FM, f∗M, such that L(f∗M) = L(f1M)+ ∪ {ǫ} = L(f1M)∗ �.

5.3 Formal Machines and Category Theory

In this subsection I define, with several examples, the meaning of the notion
to preserve a structure in a FM. In the tradition of Eilenberg ([Eil74]) I define
Automata as a category. Thus a Finite Automaton (FA) is a 4-tuple

A = (Q,A,E, I ,F)

with E ⊆ (Q ×A)×Q, and it can be described as a category CA where ObjA =Q
and the morphisms between q and q′ is the setMorf (q,q′) = {(q,a,q′) : (q,a,q′) ∈
E}.
A Pushdown Automaton (PA) is a 5-tuple

PA = (Q,A,E, I ,F,Z0,Γ)

with E ⊆ (Q × A × Γ) × (Q × Γ∗), can be described as a category CPA where
ObjPA =Q × Γ and the morphisms between (q,γ1) and (q′ ,γ ′1) is the set
Morf PA((q,γ1), ((q′ ,γ

′
1))) = {(q,a,γ1, q′ ,γ) ∈ E : γ ∈ Γ∗γ ′1}.

Following this tradition I construct a FM, fM, as a category, C
fM

, wherein

Obj
fM

= P (Conf M) = {σP : σP ⊆ Conf M}. The morphisms between σP ,σ
′
P ∈

89

P (Conf M) is the set FMfM(σP ,σ
′
P)={(σP ,~c, I ,σ ′P) : σP ,σ ′P ∈ P (Conf M), is a k -

partial instruction, ~c = (c1, ..., ck) ∈ (Conf M)k , with c1, ..., ck ∈ σP and I(~c) = σ ′P }.
if σ ′P * σP , then MorffM(σP ,σ

′
P) = FMfM(σP ,σ

′
P). When σ ′P ⊆ σP , then

Morf fM(σP ,σ
′
P) = {(σP ,NOP,σ ′P)} ∪FMfM(σP ,σ

′
P).

Let C and D be categories and F a functor between C and D, F : C −→ D.
Is said that a category, C, preserves a structure in a FM if exist a FM, fM, as
category CfM, F is an embed functor and F (C) = CfM. Now I give an example
of a functor that preserve the structure of a FA in a FM.

Let F be an example of a functor that preserve the structure of a Finite
Automaton in a FM. F : CA −→ CfM FObj : ObjA −→ ObjfM, where FObj (q) =
{q} ×A∗♭ω ×N FMorf :Morf (q,q′) −→Morf (F (q),F (q′)), where F ((q,a,q′))(c) =
c′ , with c = (q,u1au2♭

ω, |u1| + 1) and c′ = (q′ ,u1au2♭ω, |u1| + 2) and u1,u2 ∈ A∗,
a ∈ A. It is easy to prove that this functor is a faithful functor.

The FCSs can be represented, in Category Theory, in terms of categories. In
page 91 you can see how to define a Finite Automata, a Pushdown Automata,
a Turing Machines and a FMs as a category.

90

Machines ObjC Identity MorfC Composition
A = (Q,I,F,A,δA) Q 1q = (q,ǫ,q) MorfC(q,q′) = {(q,a,q′) : q′ ∈ δA(q,a)} (q1, a,q2)(q2, b,q3)

= (q1, ab,q3)
AS = (Q,I,F,A,Γ, Q × Γ 1(q,γ) MorfC((q,γ), (q′ ,γ ′)) = ((q1,γ1), a, (q2,γ2))
Z0,δAS) = ((q,γ),ǫ, (q,γ)) = {((q,γ), a, (q′ ,γ ′)) : ∃α ∈ Γ∗ : .((q2,γ2), b, (q3,γ3))

(q′ ,αγ) ∈ δAS (q,γ)} = ((q1,γ1), ab, (q3,γ3))
T M = (Q,A,Γ,O, Q × (Γ∪ {♭})k 1(q,γ,o,r) MorfC((q,γ), (q′ ,γ ′) ((q1,γ1), a, (q2,γ2))·
δT ,µT , I ,F) = ((q,γ,o, r),ǫ, (q,γ,o, r)) = {((q,γ), a, (q,γ ′)) : ((q2,γ2), b, (q3,γ3))

∃r ∈ {R,L,S}(k+1), o ∈O : = ((q1,γ1), ab, (q3,γ3))
(q′ ,γ ′ , o, r) ∈ δ(q,a,γ ′)}

MF P (Conf M) 1σP = (σP ,NOP,σP) FM(σP ,σ
′
P) = f ∈Morf (σP ,σ

′
P), g ∈Morf (σ ′P ,σ

′′
P)

= {(σP ,~c, I ,σ ′P) : σ ′P ∈ I(~c)} f : σP → σ ′P = (σP ,~cf , If ,σ
′
P)

I is a k-partial function, g : σ ′P → σ ′′P = (σ ′P ,~cg , Ig ,σ
′′
P)

~c = (c1, ..., ck) ∈ Conf Mk , f g =def

c1, ..., ck ∈ σP and =def (σP ,~cf , If ,σ
′
P)(σ

′
P ,~cg , Ig ,σ

′′
P)

I(~c) = σ ′P =def (σP ,~cf ◦~cg , Ig ◦ If ,σ ′′P)
~cf ◦~cg =def ~cg ⊆ If (~cf)

If σP * σ ′P then
Morf (σP ,σ

′
P) = FM(σP ,σ

′
P)

If σP ⊆ σ ′P then
Morf (σP ,σ

′
P) =

{(σP ,NOP,σ ′P)} ∪FM(σP ,σ
′
P)

9
1

6 Measures of the Intelligence of a FM

This section is divided in six subsections called respectively:
- System of units of a Formal Machine. In this subsection is established a systems
of unities that allows to measure, in FMs, several of the concepts associated to
intelligence,
- PCC and ECC, are measures created for measure respectively the potential
and effective (in execution) computational capacity of the machine
- PCC and ECC in current Formal Computational Systems. In this subsection are
established the PCC and ECC expressions for several FCSs
- Concrete Automata. Here is presented a theorem with dedicated expressions
under a relation ρ for Finite Automata and are presented concrete Finite Auto-
mata, A4, ..., A10.
- Calculation of the PCC and ECC for concrete Automata. Here is calculated the
PCC and ECC for some tasks of the Finite Automata whose design is in the
previous section and
- Intelligent measures for Formal Machines. In this subsection are defined for
FMs several concepts that are associated with the idea of intelligence.

Now, I am going to define the function −. Let c be a configuration of a FM,
c ∈ Conf M . The set of configurations wherein is possible to put the machine
from a computation c is called the set of the computations from c and is denoted
by cpos, cpos = ∪{cP−{c} ∈ P (Conf M) : c ⊢ cP }. The set of the configurations from
which the machine can be put in the configuration c is called the set of compu-
tations to c and denoted by cprior , cprior = ∪{cP ∈ P (Conf M) : ∃c′P ∈ P (Conf M) :
c ∈ c′P , c < cP and cP ⊢ c′P }.

A step of computation cP ⊢ c′P is called a self-contained computing step if
c′P ⊆ cP .

Let Ci ∈ CompMB, u,v ∈ Ci ,α1, a,b,α2,β ∈ A(Ci) with a , b. I define a func-
tion, “-”,

− : Ci ×Ci −→ ((A(Ci)∪ {ǫ})− (A(Ci)∪ {ǫ}))∪ {0}

of the following manner :
i) u = α1aα2, v = α1bβ; u − v = a− b,
ii) u = α1, v = α1bβ; u − v = ǫ − b,
iii) u = α1aα2, v = α1; u − v = a− ǫ,
iv) u = v; u − v = ǫ − ǫ = 0.

Let c1, c2 ∈ Conf M be, two configurations, with c1 = (c11, ..., c1n) and c2 =
(c21, ..., c2n). The −(c1, c2) (by abuse of notation is denoted by c1 − c2) is defined
by

c1 − c2 = (c11 − c21, ..., c1n − c2n)

92

6.1 System of Units of a Formal Machine

6.1.1 Fundamental Constitution Units of a Machine

In this section is presented the system of units of a FM. With the aim of obtain
an intuitive introduction for the system of units, here present, I treat the formal
machines in an anthropomorphic way. So, I am going to start by presenting
the fundamental units that serve to measure concepts that are created from, in
anthropomorphic context, from the anatomy and physiology of the machine.
Here I define the fundamental units that are considered relatedwith the consti-
tution, architecture of the machine and with the relations that the components,
of the machine, have with each others. The Fundamental Units are related with
the Anatomy and Physiology (FUAP) of the machine.

Table 19: Fundamental Constitution Units of a Machine (FUAP)

Elements FM notation Components

Components CompMB C1, ...,Cn A(Ci)
Relations CompMR R1, ...,Rm ×i∈Rj

C ′i
Configurations Conf M ci = (ci1, ..., cin)
Instructions InstM I ∈ InstM − {NOP},NOP I(cP)
Von Neumann’s Algorithm algorithm operation Pi

Of the FUAP makes part, the anatomic units of the machine, CompMB,
CompMR, Conf M and the physiologic units of the machine, InstM and the al-
gorithm machine operation, AlgVN . The unities referred as anatomic are asso-
ciated with the structure and constitution of the machine, the unities referred
as physiologic are related with the basic operation of the machine.

6.1.2 Behavior Fundamental Units (BFU)

Now I am going to seek the fundamental units to measure the behavior of a
FM. Continuing in the anthropomorphic perspective for FMs, I describe what
are the Fundamental Behavioral Units (FBU). In the following I show in a table
the unities that characterize the behavior of a formal machine. The FBU are:

93

Table 20: Behavior Fundamental Units

FBU Distinct Total

Occupied space Space SpaceT
Spent time T ime = T imeT
Symbols used Symbols SymbolsT
Written carried Write WriteT
Readings taken Read ReadT
Used instructions Inst InstT
Changes in settings Movements MovementsT
Language recognize L(fM)

Through of this two types of fundamental units is possible to build a great
variety of derived measures. From these fundamental units I build two meas-
ures of computational capacity, for formal machines, denoted PCC and ECC.
Many other measures can be built based in these fundamental units, depend-
ing always about what is intended to measure in a formal machine.

6.2 PCC and ECC

In this section are referred two types of computational measures in FMs, the
Potential Computational Capacity, shortening PCC, and the Effective Computa-
tional Capacity shortening ECC. The PCC is a measure that intends measure,
quantifying, the computational resources which belong to the machine and is
because of this which it depends of the structure of the machine. The ECC
intends to measure the type and the quantity of the tasks executed, the re-
sources involved and the efficiency of the executions. The ECC consists in the
measurement of the computational process related with the execution of the
tasks.

6.2.1 PCC, Potential Computational Capacity

The PCC has into account the structure of the machine, their components and
the connections among them, and consists in the counts of those elements. The
structure of the machine and the configurations of the machine are divided, for
effect of the calculus of the PCC, in part finite and no finite:

1) The set of the components, CompMB, is a finite set of sets, CompMB =
{C1,C2, ...,Cn}39. For effect of PCC calculation the set CompMB is divided in
two disjoint parts, CompMAf = {Cj ∈ CompMB : |Cj | < ∞} and CompMA∞ =
{Cj ∈ CompMB : Cj < CompMAf }. I build the sets Af (the Cartesian product of
the finite components) and A∞ (the Cartesian of the infinite components) as
follows.

Af = ×{A ∈ CompMB : A ∈ CompMAf }, and
39The sets Cj ∈ CompMB can or not to be finite

94

A∞ = ×{A ∈ CompMB : A < Af }.

The division, for effect of construction of the measure, of the components
of the machine between the components that are finite sets and the compon-
ents that are not, is taken in attention because the existence, in a machine, of
components that have an infinite quantity of elements has significant influence
in their potential computational capacities.

2) Now I analyze the connection among the components. The connection
among the components is established by the elements, Ri , of the set CompMR.
The existence of connections determines the possibilities to build different in-
structions. The processing cP ⊢ c′P depends of the instructions that the machine
possesses. The relation ρ that is defined below is a relation involved in the pro-
cessing of computation and it allows to group the configurations taking into
account its participation in a computation process.

The relation, ρ, is a relation of the set of configurations, Conf M , and it is
defined in the followingway. The set of configurations of themachine, Conf M ,
is for definition a subset of Cartesian product, finite, of the components of the
machine, Conf M ⊆ C1 ×C2 × ... ×Cn. With the purpose of know the cardinal
of each one of the delta’s sets, ∆, I am going to begin for define a relation, ρ, in
the set of the configurations, of the machine, Conf M .

Let c, c′ be such that c, c′ ∈ Conf M , cρc′ if and only if:
i) (cpos , ∅ and c′pos , ∅) or (cpos = c′pos = ∅ and cprior , ∅ and c′prior , ∅) or
(cpos = cprior = c′pos = c′prior = ∅), and
ii) for cpos , ∅ and c′pos , ∅, then cpos − c = c′pos − c′ , and
iii) for cpos = c′pos = ∅ and cprior , ∅ and c′prior , ∅, then c − cprior = c′ − c′prior , and
iv) for cpos = cprior = c′pos = c′prior = ∅, then c = c′ .

Theorem 6.1 40

ρ is an equivalence relation

By the previous theorem and the definition of the relation, ρ, in slight lan-
guage, exists a partition of the set Conf M related with the execution process
of the tasks by the machine.

The set ∆1 = {[c]ρ : c ∈ Conf Mi }, ∆2 = {[c]ρ : c ∈ Conf Mf } and ∆3 = {[c]ρ :
∃I ∈ InstM,π(~u,i), c

′ ∈ Conf M : c , c′ , c ∈ Conf M e c′ ∈ I ◦π(~u,i)(c)}, wherein

π(~u,i) : Conf M −→ (Conf M)k , c 7→ π(~u,i)(c), with
π(~u,i)(c) = (u1, ...,ui−1, c,ui+1, ...,un)

and ~u = u1, ...,ui−1,ui+1, ...,un.
Each one of the sets ∆, ∆i with i = 1,2,3, is decomposed in finite parts,

∆if with i = 1,2,3, and infinite part, ∆i∞ with i = 1,2,3. When |∆i | < ℵ0, then
∆if = ∆i and ∆i∞ = 0.5 (for convention). When |∆i | ≥ ℵ0, then ∆if = 0.5 (for

40The proof of the theorem consists of algebraic manipulations and is left to the reader

95

convention) and ∆i∞ = ∆i
41.

The delta’s sets are doing a classification of the components based in the be-
havior that the configurations have in the computational process. That delta’s
sets are built through of the relation ρ that is an equivalent relation. In that
sense, the elements of ∆1, ∆2 and ∆3 are sets in Conf M modρ.

Thus, the counting of the elements of distinct initial configurations, |∆1|, of
the distinct final configurations, |∆2|, and of the distinct configurations from
which is allowed to effect changes of configuration, |∆3| are made modρ.

The ∆1, ∆2 are important because communication with the outer is import-
ant. In ∆1 there are the initial configurationsmodρ and in ∆2 there are the final
configurations modρ. ∆1 is related with the capacity to listen the outer, ∆2 is
related with the capacity to action over the outer. ∆3 is important because it
is related with the capacity of make processing. In ∆3 there are the configura-
tions that allow to give a step of computation. An execution is a process that is
carried out step by step.

The importance of the delta’s sets are the following. In the case of ∆1 and
∆2, they are important because communication is important, the channels of
communication, which the machine possesses for communicate with the outer
are important. The importance of the distinct configurations modρ is that ∆3

allows to continue and end a computation. Thus, ∆3 allows to process tasks.
The PCC is defined as,

PCCf = log6(2
|Af | × 3∇f), with ∇f = |∆1f | × |∆2f | × |∆3f |

PCC∞ = |A∞|+∇∞, with ∇∞ = |∆1∞ | × |∆2∞ | × |∆3∞ | 42
PCC = (PCCf ,PCC∞)

Note 6.1 The PCC is a measure constituted by two parts, a finite part, PCCf , and
an infinite part PCC∞.

The PCCf allows to measure the potential capacity and it is obtained through of
the finite components of the machine. Af consists in the entirety of configurations,
with the finite components of the machine, which the machine can withstand. ∇f
consists entirely of distinct configurations modρ and is taken into account the type
of configuration which the machine has. The PCCf is an algorithmic measure, the
use of log6 has the only aim to lowering the values of Af and ∇f in magnitude. To
|Af | and |A∞| are assigned different weights in the measure.

41The chooses for convention of the value 0,5 is made because is necessary to penalize the fact
of certain ∆ have not elements and this penalization should be done without which that provoke
the annulment of (∇• = ∆1• ×∆2• ×∆3•).

In a care observation of the sets ∆ can be seen which the delta’s sets have elements in common.
That fact can originate duplicated counts for a certain ρ-class. Can occur, for example, that a
configuration is classified at the same time in ∆1 and in ∆2. That occur because it is intended to
give importance to that type of configurations
42Can occur that the value of PCC∞ let be a transfinite cardinal number, ℵ0,ℵ1,ℵ2, and so on

... The sum that occur in PCC∞ is calculated in transfinite arithmetic. For a more comfortable
manipulation of the measures, the exposed theory includes the Set Theory of Zermelo-Fraenkel,
ZF, with the countinuum hypothesis as true, CH, ZFC=ZF+CH.

96

The PCC∞ measures the potential capacity obtained through of the infinite com-
ponents. The infinite part is the part more important of the potential capacity and
that is taken into attention in the definition of the partial order ≤PCC presented
later.

Definition 6.1 The constant p =
log6(3)
log6(2)

≈ 1,340574 is called the potential con-

stant and is denoted by p.

The potential constant allows to determine and to quantify, what means the
relative importance between |Af | and ∇f . |Af | has an importance of 1,3 higher
than the ∇f .

Theorem 6.2 43

i) If |Af | = ∇f , then PCCf = (∇f)2
ii) PCCf = |Af | log6(2) +∇f log6(3)
iii) ∇f = 0,63093 |Af | (approximate)
iv) If ∆1∞ = ∆2∞ = ∆3∞ = ∅, then PCC∞ = |A∞|+0,125
v) PCC∞ ≥ ℵ0 or PCC∞ = 0,125
vi) If A∞ = ∅, then PCC∞ = ∇∞
vii) If A∞ = ∆1∞ = ∆2∞ = ∆3∞ = ∅, then PCC∞ = 0,125

In the set or class of all FMs, which is denoted by Zeus, I define an order
relation, ≤PCC that easily can be proved to be a partial order. Let fM1 and fM2

be two FMs.

fM1 ≤PCC fM2 if
(PCC∞(fM1) ≤ PCC∞(fM2)) or

(PCC∞(fM1) = PCC∞(fM2) and PCCf (fM1) ≤ PCCf (fM2))

I define

fM1 <PCC fM2 if
PCC(fM1) ≤ PCC(fM2) and PCC(fM1) , PCC(fM2)

It is said that the machine fM2 has more (respectively equal) potential
computation capacity than fM1 if fM1 <PCC fM2 (respectively PCC∞(fM1) =
PCC∞(fM2) and PCCf (fM1) = PCCf (fM2)).

The measure PCC in its infinite component, PCC∞, serves to define Ma-
chine with Super Resources (MSR)44. Thus, the definition of MSR is a definition
in potential sense. AMSR is a FMwherein PCC∞ ≥ ℵ1. An example of a type of
formal machine that is a Supermachine is the recurrent neural networks such
as defined by Siegelmann and Sontag [SiS94]. Sielgelmann and Sontage proved
which those computational models are more potent than Turing Machines.

43The prove of the theorem results of simple algebraic manipulations
44It is used, sometimes, the expression Supermachine as designated Machine with Super Re-

sources

97

Theorem 6.3 The recurrent neural networks (RNN) are Supermachines
Proof: It is proved in Theorem 4.2, page 42, that the RNNs are FMs. Can be seen in

page 54 that the RNN as a FM has the set of components CompMB = { ~U,Neu,T }

where Neu =
︷ ︸︸ ︷

R× ...×R
N times

. Thus, |Neu| = ℵ1. Then PCC∞ ≥ ℵ1.

6.2.2 ECC, Effective Computational Capacity

For the construction of the ECC as a measure of computational performance,
it is necessary to know what kind of resources are involved in the computing
process. To do this I start to define a function χ : N0 −→ {0,1}, χ(0) = 0 and for
n ≥ 1,χ(n) = 1.

The ECC is ameasure of computational power of themachine in the amount
and complexity (in the length of the words, that are tasks, |τ⌋) of tasks which
the machine carries out and also it allows to know how the machine carries out
them. The ECC is measured globally and locally, respectively ECCglobal and
ECClocal . The ECC global measurement consists on to measure, for each task
that is carried out, the total amount of different resources, of the machine, that
are used. The ECC local measurement consists on tomeasure, for each task that
is carried out, the total amount of machine resources used per machine cycle.
Without to lose generality, I take the execution, e = c(0,P) ⊢ c(1,P) ⊢ ... ⊢ c(r,P),
with ci,P ∈ Conf M , of a task, τ = (c(0,P), c(r,P)). The resource involved are:

i)- the space occupied, Space(τ,e), while is running, e, the task τ

Space(τ,e) =
∑n

i=1max{|u⌋|∃c ∈ ∪Conf M(e) : u = c(Ci) and (u ∈ (A(Ci))
+ or u = ǫ)} 45

ii)- the time spent, T ime(τ,e), while is running, e, the task τ.

T ime(τ,e) = quantity of the Von Neumann’s Cycle, VNC, in the execution e, of
the task τ

iii)- the total quantity of distinct symbols used, Symbols(τ,e), while is run-
ning, e, the task τ.

Symbols(τ,e) = |{a : (∃1 ≤ i ≤ n)(∃cP ∈ Conf M(e))(∃~c = (c1, ..., cn) ∈ Conf M)|a ∈
A(Ci), c ∈ cP and χ(|ci⌋a) = 1}|

iv)- the quantity of distinct changes in the configurations,Movements(τ,e),
while is running, e, the task τ.

Ind(τ,e) = {(c, c′) ∈ Conf M ×Conf M |∃(cP , c′P) ∈ Conf M(e)×Conf M(e) : c ∈
cP , c

′ ∈ c′P , c < c′P , ’̧ < cP , and cP ⊢ c′P in e}
Movements(τ,e) =

∑

(c,c′)∈Ind(τ,e)
∑n

i=1χ(|ci − c′i |)
45The alphabet of the component Ci is the code A(Ci), the counts of |u⌋ is carried out in A(Ci)

98

v)- the quantity of distinct reads of the state of the machine, Read(τ,e),
while is running, e, the task τ.

Read(τ,e) = |c(0,P) ∪ (∪r−1i=0(c(i+1,P) − c(i,P)))|,

is considered to exist a read in a step of computation if cP ⊢ c′P and c′P − cP , ∅

vi)- the quantity of distinct instructions and distinct applications of the
instructions of the program, Inst(τ,e), while is running, e, the task τ.

Inst(τ,e) = |{(~c, I , c′P) ∈ (Conf M)k × InstM ×Conf M(e)|∃cP ∈ Conf M(e) : ~c =
(c1, ..., cn), ci ∈ cP (for i = 1, ...,n), c′P = I(~c) and cP ⊢ c′P }|

vii)- the quantity of distinct written of the state of the machine,Write(τ,e),
while is running, e, the task τ.

Write(τ,e) = | ∪ri=1 (c(i,P))|,

From the T ime(τ,e) (respectively, Space(τ,e), Symbols(τ,e),Movements(τ,e),
Read(τ,e), Inst(τ,e)), Write(τ,e). I construct T (τ,e) (respectively and in ana-
log form, Sp(τ,e), S(τ,e),M(τ,e), R(τ,e), Inst(τ,e),Write(τ,e)) of the following
way

T (τ,e) =

1
T ime(τ,e) if 0 < T ime(τ,e) < ℵ0,

2 if T ime(τ,e) = 0,
0 if T ime(τ,e) ≥ ℵ0

In slight language the ECCglobal (τ,e) is the sum of the inverse quantity of 46

each one of the different resources used during the execution process, e, of
the task τ, multiplied by the inverse of the factorial of the length of τ. Thus,
in ECCglobal (τ,e) are measured the resources involved during the execution
process, e, of the task τ.

ECCglobal (τ,e) =
1
|τ⌋! (T (τ,e)+Sp(τ,e)+S(τ,e)+M(τ,e)+R(τ,e)+I(τ,e)+W (τ,e)).

Then I am going to define what is ECCglobal (τ). The way as it will be
defined, allows for assign to ECCglobal (τ) the value of ECCglobal (τ,e) wherein
the execution, e, that carries out the task τ is the most efficient. Thus the
value of ECCglobal (τ) is the value of the most efficiency task, τ, carried out.
This efficiency is measure through of the use of the least machine resources. In
comparison, between two formal machines, the largest ECC(τ) indicates which
one is the machine that carries out the task with more efficiency, and it is one
that uses fewer resources. The ECCglobal (τ) has into attention how the machine
carries out τ.

46note which in general T (τ,e) = 1
T ime(τ,e) and analogously for the other measures

99

ECCglobal (τ) =max{ECCglobal (τ,e) : e is an execution of τ},

the way as ECCglobal (τ) is defined allows to choose for value of the measure,
among different executions of the task τ, one that uses fewer resources.

ECCglobal =
∑

τ∈LECCglobal (τ)

This allows which for the characteristics already referred of the ECCglobal it can
be added the amount and complexity (in terms of length of task, |τ⌋) of tasks
that the machine is able of carry out. This measure assigns more importance to
the execution of simple tasks, and the machine that has more high value of the
ECCglobal is that one which carries out the more simple task and that carries
out that in the most efficient way. Is because of this which must be done a
factor analysis of this measure (section 6.2.3)47.

The ECCglobal for some formal machine is designated as the global Effective
Computational Capacity of the machine and is a measure for all tasks that the
machine is able to carry out, in their construction are chosen the executions
that use fewer resources.

Now, I am going to define the local measure of ECC, the ECClocal . In the
ECClocal only are taken in consideration the process of execution, e, of tasks τ
wherein 0 < T ime(τ) < ℵ0.

In the execution, e, of a task, τ, the resources of local nature that should be
consider are:

i)- the total quantity of the symbols, SymbolsT (τ,e), used while is running,

e, the task τ. SymbolsVN (τ,e) = SymbolsT (τ,e)
T ime(τ,e)

SymbolsT (τ,e) =
∑

c∈∪Conf M(e)
∑n

i=1 |ci⌋

ii)- the total quantity of shifts in the configurations,MovementsT (τ,e), used

while is running, e, the task τ. MovementsVN (τ,e) = MovementsT (τ,e)
T ime(τ,e)

MovementsT (τ,e) =
∑n

j=1
∑

(c,c′)∈c(j−1,P)×c(j,P)
∑n

i=1χ(|c′i − ci |)

iii)- the total quantity of reads of the state of the machine, ReadT (τ,e), used

while is running, e, the task τ. ReadVN (τ,e) = ReadT (τ,e)
T ime(τ,e)

ReadT (τ,e) = |c(0,P)|+
∑n−1

i=0 |c(i+1,P) − c(i,P)|

iv)- the total quantity of program instructions, InstT (τ,e), used while is

running, e, the task τ. InstVN (τ,e) = InstT (τ,e)
T ime(τ,e)

InstT (τ,e) = |e|⊢ = quantity of occurrences on e of the symbol ⊢
47The ECC value the realization of simply tasks and is necessary an evaluation for the capacity

to perform complex tasks

100

The set Conf M∪{⊢} can be taken as the alphabet of the execution processes, e,
of the tasks. Thus, |e|⊢ is measured on Conf M ∪ {⊢}.

From the SymbolsVN (τ,e) (respectively, MovementsVN (τ,e), ReadVN (τ,e),
InstVN (τ,e)) is constructed SVN (τ,e) (respectively and in analog form,MVN (τ,e),
RVN (τ,e), IVN (τ,e)) of the following way

SVN (τ,e) =

1
SymbolsVN (τ,e) if 0 < SymbolsVN (τ,e) < ℵ0,
0,5 ∗T (τ,e) if SymbolsVN (τ,e) = 0,

0 if SymbolsVN (τ,e) ≥ ℵ0

Thus, ECClocal (τ,e), is

ECClocal (τ,e) =
1
|τ⌋! (SVN (τ,e) +MVN (τ,e) +RVN (τ,e) + IVN (τ,e))

The ECClocal measures the total amount of resources used by the Von Neu-
mann’s Cycle multiplied by the inverse of the factorial of τ. ECClocal is defined
as:

ECClocal (τ) =max{ECClocal (τ,e) : e is an execution of τ}.

The CEElocal (τ) as is defined allows to take for value of the measure the value
obtained in the running, e, of the task τ that use less resources in the Von
Neumann’s Cycle.

Now, the ECClocal is defined as:

ECClocal =
∑

τ∈LECClocal (τ)

As the ECClocal is the sum of ECClocal (τ) for all τ carried out by the machine
it has in consideration the quantity of the tasks that the machine carries out.
The ECClocal of a FM is designated as local Effective Computational Capacity of
the machine.

Theorem 6.4 48

i) ECCglobal (τ) ≤ 12
|τ⌋!

ii) ECClocal (τ) ≤ 8
|τ⌋!T ime(τ,e), for an execution process e of the task τ such that

0 < T ime(τ,e) < ℵ0
iii) If A1,A2, ...,An are finite and r = |A1 ×A2 × ...×An| com Ai = A(Ci), then
- ECCglobal ≤

∑∞
n=012

rn
n! ≤ 12er

- ECClocal ≤
∑∞

n=08
T ime(τ,e)rn

n! , for an execution process e of the task τ such that
0 < T ime(τ,e) < ℵ0.

48The prove of the theorem results of simple algebraic manipulations

101

In Zeus, I define two order partial relations related with the ECC, ≤ECClocal

and ≤ECCglobal
. Let fM1, fM2 be FMs.

I define ≤ECCglobal
as,

fM1 ≤ECCglobal
fM2 if

ECCglobal (fM1) ≤ECC ECCglobal (fM2)

and I define ≤ECClocal
as,

fM1 ≤ECClocal
fM2 if

ECClocal (fM1) ≤ECC ECClocal (fM2)

In this situation is said that fM2 has global Effective Computational Capacity
higher than fM1. fM2 (respectively fM1) is more (respectively less) globally
enable that fM1 (respectively fM2).

I define <ECClocal
as,

fM1 <ECClocal
fM2 if

fM1 ≤ECClocal
fM2 and ECClocal (fM1) , ECClocal (fM2)

In this situation is said that fM2 has local Effective Computational Capacity higher
than fM1. fM2 (respectively fM1) is more (respectively less) locally enable than
fM1 (respectively fM2).

Thus, in Zeus was defined an order partial relation, ≤PCC , ≤ECC local
and

≤ECCglobal
. Those relations allow to a classification through of the ordination

of the formal formal machines by, respectively, Potential Computational Capa-
city, local and global Effective Computational Capacity.

6.2.3 Factorial analysis of the measures

To define the notions that allows to effect a factorial analysis I am going to use,
in ECC, the known operators “big O”, “big Ω” and “little o”. This way of
proceed, is similar that one used in the Theory of Complexity. These operators
which can be generalized to measures which there are or will be created in
FMs. Let fM be a FM.

Let G : N −→ R be, with G(N) ⊆ [0,+∞[, a total function and

ECCglobal (n) = {EECglobal (τ) : |τ⌋ = n and τ ∈ Conf Mi ×Conf Mf and τ ∈
L(fM)}

(respectively,
ECClocal (n) = {EEClocal (τ) : |τ⌋ = n and τ ∈ Conf Mi ×Conf Mf and τ ∈ L(fM)}).

It is said that fM has a ECCglobal (respectively ECClocal) with magnitude order
of G, denoted ECCglobal (n) = o(G(n)) (respectively, ECClocal (n) = o(G(n))), if

limn→∞
ECCglobal (n)

G(n) = k with k ∈]0,+∞[.

(respectively, limn→∞
ECClocal (n)

G(n) = k with k ∈]0,+∞[.)

102

It is said that fM has ECCglobal (respectively, ECClocal) with inferior mag-
nitude toG, denoted ECCglobal (n) =O(G(n)) (respectively, ECClocal (n) =O(G(n)),
if

limn→∞
ECCglobal (n)

G(n) = 0 (respectively, limn→∞
ECClocal (n)

G(n) = 0)

It is said that fM has ECCglobal (respectively, ECClocal) with higher mag-
nitude toG, denoted ECCglobal (n) =Ω(G(n)) (respectively, ECClocal (n) =Ω(G(n)),
if

limn→∞
ECCglobal (n)

Ω(G(n)) = +∞ (respectively, limn→∞
ECClocal (n)
Ω(G(n)) = +∞).

The FMs can sorted through of the operators O and Ω. Let fM1, fM2

be FMs. It is said that fM1 has, in complexity, inferior ECCglobal (respect-

ively, ECClocal) magnitude than fM2, denoted fM1 ≤OECCglobal
fM2 (respectively,

fM1 ≤OECClocal
fM2) if ECCglobal (fM1)(n) = O(ECCglobal (fM2)(n)) (respectively,

ECClocal (fM1)(n) =O(ECClocal (fM2(n)))).
fM1 has, in complexity, higher ECCglobal (respectively, ECClocal) magnitude

than fM2, denoted fM2 ≤ΩECCglobal
fM1 (resp, fM2 ≤ΩECCglobal

fM1) if ECCglobal

(fM1)(n) =Ω(ECCglobal (fM2)(n)) (respectively, ECClocal (fM1)(n)=Ω(ECClocal (
fM2(n)))).

Theorem 6.5 The relations ≤OECCglobal
, ≤OECClocal

, ≤ΩECCglobal
and ≤ΩECClocal

are anti-

symmetry and transitive in Zeus49.

A factorial analysis of the measures ECC can be done through of a factorial
scale. To do this is sufficient to take G(n) = 1

n! and this allows to have a way to

classify the machines in the factorial scale {1, 12! , 13! , ..., 1n! , 1
(n+1)! , ...}.

This classification, between the machines, allows to sort the machines by its
efficiency in complex tasks. The classification of the FMs through of the ECC
favors an analysis of the efficiency of the machine as the capacity to perform
simple tasks. Therefore, is necessary to do a factorial analysis of the ECC to
obtain a classification of the machines by its efficiency in to execute complex
tasks.

6.3 ECC and PCC in Current Formal Computational Systems

In this subsection are presented the measures PCC and ECC for the k-Turing
Machines, PushdownAutomata, Transducers, Finite Automata and k- Unboun-
ded Registers Machine. In this subsection for a more easy approach, each one
of the FMs are called by the name of the machines from which they are ob-
tained. Thus, for example, the FM obtained from a k-Turing Machine is called,
for abuse of language, a k-Turing Machine.

49The prove of the theorem consists of algebraic manipulations and is left to the reader

103

Except the k-Unbounded Registers Machine, in all others machines, that
have been referred, happen that ∆1∞ = ∆2∞ = ∆3∞ = ∅, and |A∞| = ℵ0. Then
of each one of that machines PCC∞ = ℵ0. Thus, the PCC∞ is ℵ0 and the ECC
measure is obtained for each one of the FCSs values for ReadVN and InstMVN .
In Turing Machines and Transducers in each VNC they are 3 uses of the oper-
ator ⊢50.

i) PCC an ECC of a k-Turing Machine

Af =Q, A∞ = TI × (T1 × ...×Tk)×TO × pI × (p1 × ...× pk)× pO
A configuration of the set of a k-Turing Machine is an element:

Q ×A♭ω × (Γ♭ω)k ×O♭ω ×N×Nk ×N
(q,Z0u♭

w, (Z0γ1♭
w, ...,Z0γk♭

w),Z0o♭
w,n0, (n1, ...,nk),nO)

The PCCf is:
PCCf = |Q|log6(2) +∇f log6(3), and PCC∞ = ℵ0

To local and global ECC is possible to get, in general, the possible com-
ponents for a machine. All others must be obtained in each concrete ma-
chine. Let τ = (τI ,τO) be a task and e an execution of τ. ReadVN (τ,e) = 1
and InstVN (τ,e) = 3.

ii) PCC and ECC of a Pushdown Automata

Af =Q, A∞ = TI × pI ×P

The set of configurations of a Pushdown Automata is:

Q ×A♭ω × Γ ×N×N

A configuration of the machine is an element

(q,Z0u♭
w,Z0γ,n0,nP)

PCCf = |Q|log6(2) +∇f log6(3), and PCC∞ = ℵ0
To local and global ECC is possible to get, in general, the possible compon-

ents of a machine. All others must be obtained in each concrete machine. Let
τ = τI be a task and e an execution of τ. T ime(τ,e) = |τI (TI)⌋, ReadVN (τ,e) = 1
and InstVN (τ,e) = 1

iii) PCC and ECC of a Transducer

Af =Q, A∞ = TI × pI ×TO × pO
The set of configurations of the machine is a transducer,

Q ×A♭ω ×O♭ω ×N×N.
50See the definition of a Turing Machines and a Transducer, in [Hop08], and observe that they

have two functions for work with the steps of computation. That is the reason for InstMVN = 3.
You can see in the same book the others FCSs and to repair that each one of them has only one
function to operate with the steps of computation that. This is the reason for InstMVN = 1.

104

A configuration of the machine is an element

(q,Z0u♭
w,Z0o♭

w,n0,no)

PCCf = |Q|log6(2) +∇f log6(3), e PCC∞ = ℵ0

To local and global ECC is possible to get, in general, the possible compon-
ents of a machine. All others must be obtained in each concrete machine. Let
τ = (τI ,τO) be a task and e an execution τ. T ime(τ,e) = |τI (TI)⌋, ReadVN (τ,e) = 1
e InstVN (τ,e) = 3.

iv) PCC and ECC of Finite Automata

Af =Q, A∞ = TI × pI
The set of configurations of the machine of a Finite Automata ,

Q ×A♭ω ×N.

A configuration of the machine is an element

(q,Z0a♭
w,n)

PCCf = |Q|log6(2) +∇f log6(3), e PCC∞ = ℵ0

To local and global ECC is possible to get, in general, the possible compon-
ents of a machine. All others must be obtained in each concrete machine. Let
τ = (τI ,τO) a task and e an execution of τ. T ime(τ,e) = |τI (TI)⌋, ReadVN (τ,e) = 1
e InstVN (τ,e) = 1

v) PCC and ECC of a k-Unbounded Register Machine

Af = ∅, A∞ = I × pI ×R0 × (R1 × ...×Rk)

The set of configurations of the machine of a k-Unbounded Register Machine,

I ×N×N3 ××ki=1N. A configuration of the machine is an element

(I1...In, (n00,n10,n20), r1, ..., rk)

PCCf = ∇f log6(3), e PCC∞ = ℵ0

To local and global ECC is possible to get, in general, the possible com-
ponents of a machine. All others must be obtained in each concrete machine.
Let τ = (τI ,τO) a task and e an execution process of τ. ReadVN (τ,e) = 1 e
InstVN (τ,e) = 1.

6.4 Concrete Automata

In this subsection I present several finite automata represented in directed
graphs. From the definition of a finite automaton follows that there is always
a transition (q,♭,q) for any state q. In the representations of Automata, which
follow, it is understood, to be common practice, not put in every state, q, a

105

loop representing the configuration (q,♭,q). The existence of these configur-
ations are seen implicitly. Let e be an execution of a task τ in a finite auto-
maton. Let c ∈ Conf M(e) be a configuration of e such that c = (q,Z0u♭

w,n). As
cpos = {c′ : c ⊢ c′} (respectively, cprior = {c′ : c′ ⊢ c}), then cpos = {(q′ ,Z0u♭

w,n+1)}
or cpos = ∅ (respectively, cprior = {(q′ ,Z0u♭

w,n − 1)} or cprior = ∅). Thus the rela-
tion ρ in finite automata can be rewritten by the following theorem.

Theorem 6.6 51

cρc′ if only if
i) if |cpos | = |c′pos | = 1, then cpos(Q)− c(Q) = c′pos(Q)− c′(Q) or

ii) if |cpost | = |c′post | = 0 and |cprior | = |c′prior | = 1, then c(Q) − cprior (Q) = c′(Q) −
c′prior (Q) or

iii) if |cpost | = |c′post | = |cprior | = |c′prior | = 0, then c = c′ .

Figure 49: A4 Figure 50: A5

Figure 51: A6 Figure 52: A7

51The prove of the theorem consists of algebraic manipulations and is left to the reader

106

Figure 53: A8 Figure 54: A9

Figure 55: A10

6.5 Calculation of the PCC and ECC for concrete Automata

The relation ρ in automata is characterized by the set Q. I Take the automaton
A10, ∆1 = {q1−q0}, ∆2 = {q5−q5 = 0, q5−q4} and ∆3 = {q1−q0, q2−q1, q3−q2, q2−
q3, q4 − q3, q4 − q1, q5 − q4, q5 − q5 = 0}. Thus, |∆1| = 1, |∆2| = 1 and |∆3| = 8.

Table 21: Calculation the PCC(A)

Automata, A |Af | |∆1f | |∆2f | |∆3f | ∇f PCCf (A) PCC∞(A)
A4 3 1 1 2 2 2,357525045 ℵ0
A5 3 1 2 3 6 4,582735049 ℵ0
A6 2 1 2 2 4 3,055156699 ℵ0
A7 2 1 0,5 2 1 1,386249197 ℵ0
A8 3 1 0,5 3 1,5 2,079373795 ℵ0
A9 5 1 2 6 12 8,750496749 ℵ0
A10 6 1 2 8 16 11,3906801 ℵ0

107

In the following table are presented the values of the components of the
ECCglobal (τ,e) of some words τ, τ = 001n with n = 0,1,2,3,12,13, carried out
by the automataA9 andA10. It is exemplified the counts of the components in
ECC through of the description of the computation of the task Z0001.

e = (q0,Z0001♭
w,1) ⊢ (q1,Z0001♭

w,2) ⊢ (q4,Z0001♭
w,3) ⊢ (q5,Z0001♭

w,4) ⊢
(q5,Z0001♭

w,5) (computation in A10)

Table 22: Calculation the ECCCglobal (τ)

A9,A10, τ Read Movements T ime Space Symbols InstM ECCglobal (τ)

Z000 3 3 3 6 12 3 0,065972222

Z0001 4 4 4 7 13 4 0,010164835

Z00011 5 4 5 8 14 5 0,001453373

Z000111 6 4 6 9 15 6 0,000184083

Z000 1...1
︸︷︷︸

12

16 4 15 19 18 15 4,23669E-13

Z000 1...1
︸︷︷︸

13

16 4 16 20 18 16 2,59552E-14

For the same tasks and the same automata I am building the table which is
following for obtain the measure ECClocal (τ,e)

Table 23: Calculation the ECClocal (τ)

(1) (2) (3) (4) (5) ReadVN MovementsVN SymbolsVN InstMVN ECClocal (τ)

Z000 3 3 3 15 1 1 5 1 0,533333333
Z0001 4 4 4 24 1 1 6 1 0,131944444
Z00011 5 5 4 35 1 0,8 7 1 0,02827381
Z000111 6 6 4 63 1 0,666666667 10,5 1 0,004993386
Z000 1...1

︸︷︷︸

12

15 15 4 255 1 0,266666667 17 1 4,4421E-12

Z000 1...1
︸︷︷︸

13

16 16 4 288 1 0,25 18 1 2,89424E-13

(1)-A9,A10, τ; (2)-lenght of the word; (3)-T ime, (4)-MovementsT , (5)-
SymbolsT

6.6 Intelligent measures for Formal Machines

I begin this subsection for assume that the environment where machines and
peoplemove is described by the theory of words [Lothaire, 2005],[Lothaire, 2002]
and therefore can be described through of the use of an alphabet, a non-empty
finite set. I will denote this alphabet by Env. The set of all possibles descrip-
tions of the environment contains the set Env∗. Based on what I said I describe
in FMs some concepts that are associated with the idea of intelligence. That
descriptions are in the following table:

108

Table 24: Concepts Associated with the Idea of Intelligence

The concept Measure

Adaptation (A) MIQA = 1
|Env|−|WIO |

WIO = {~a = (a1, ..., an) ∈ ×ni=1A(Ci)|
∃~c = (c1, ..., cn) ∈ Conf Mi ∪Conf Mf :
|ci |ai , 0 for all i = 1, ...,n}

Creativity (C) MIQC =
∑

I∈InstM,~c∈dom(I)
∑∞

k=1
|I(~c)∩(×ni=1A(Ci))

k)|
|Env|k

Deep of Knowledge (DeepK) MIQDeepK =max{∑~c∈Conf M |ci⌋ : ~c = (c1, ..., cn)}
Language (Lang) MIQLang = ×ni=1(A(Ci)∩Ci)

Level of Knowledge (LK) MIQLK =
∑+∞

k=1
|{τ=(τI ,τO)∈Conf M :|τI |+|τO |=k}|

|Envk |
Learning (L) MIQL(t) = lim∆−→0

{ECC(t+∆)−ECC(t)}
∆

∗LK
Memory (Mem) MIQMem =

∑n
i=1 |Ci |

Motivation (Mot) MIQMot(t) =MIQA ∗MIQL(t) ∗PCC
Perception (Pep) MIQPep =

∑

τ∈L(f M)
Read(τ)
ReadT (τ)

Reasoning (R) MIQR = ECC ∗MIQC

The Intelligent measures which I define are the Adaptation (A), Creativity
(C), Language (Lang), Level of Knowledge (LK), Learning (L), Memory (Mem),
Motivation (Mot), Perception (Pep) and Reasoning (R). To measure the intel-
ligence of a machine I define a quantitative measure, the Machine Intelligent
Quotient (MIQ), of each one of the concepts associated to intelligence. Thus,
for measure the adaptation (A), the creativity (C) and so on ... I use respectively
the MIQA, MIQC and so on.

Now I explain each one of the concepts through of the measures defined:

i) Adaptation (A). This measure measures the adaption of the FM to the
environment. This is made through of the capacity that the machine shows to
have for rewrite the external environment in words of FM’s alphabets.

MIQA(fM) = 1
|Env|−|WIO | with WIO = {~a = (a1, ..., an) ∈ ×ni=1A(Ci)|∃~c = (c1, ..., cn) ∈
Conf Mi ∪Conf Mf : |ci |ai , 0 for all i = 1, ...,n}

WIO is the FMs alphabet. The Adaptation is measured by the inverse of the
difference between the quantity of the letters necessary for describe all the
situations in the environment and the quantity of letters that exist in the tasks
carried out by the machine

ii) Creativity (C). This measure intends to measure the creativity of the
machine. The creativity is measured through of the measuring of the capacity
that the machine have to diverge.

MIQC(fM) =
∑

I∈InstM,~c∈dom(I)
∑∞

n=1
|I(~c)∩Envn |
|Envn |

109

The creativity is measured through of the capacity that the FM has for di-
verge. This measure is a sum of proportions. Each proportion is the quantity
of the configurations that are possible to obtain for an instruction divided by
all words of the same lengths of the environment alphabet.

This measuremeasures the capacity of themachine to do computation from
a set of configurations cP . Indeed, the machine diverge capacity is high if the
sets of configurations {c′P : cp ⊢ c′p} has very much elements. The capacity to di-

verge is expressed in the steps of computation cP ⊢ c′P . The creativity is measure
from vectors of configurations ~c = (c1, ..., cn) wherein all ci belong to cP and the
instruction I ∈ InstM which are applied on ~c

iii) Language (Lang). This measured intends to measure the capacity that
the machine presents to communicate on words.

MIQLang (fM) = | ×ni=1 (A(Ci)∩Ci)|

This measure intends to measure the capacity that the machine has to com-
municate on words. This communications is made through of the alphabets.
Hence, it has in count the alphabets of the set of configurations Conf M and
the quantity of letters that they possesses.

iv) Level of Knowledge (LK). This measure intends to measure the level of
the knowledge of the machine. This is made through of the a ratio between the
quantity of tasks that the machine carries out and the quantity of words that
the Environment possesses.

MIQLK (fM) =
∑+∞

i=1
|{τ=(τI ,τO)∈L(f M):|τI |+|τO |=n}|

|Envn |

This is a sum of ratios. Each one of the ratios is a ratio between the length
of the words, that the machine carries out, and the quantity of the words, of
the same length, possibles in the environment

v) Learning (L). This measure measures the capacity of the machine to
learn. This is done by calculating the instantaneous Effective Computational
Capacity, in certain iteration or moment, multiplied by the Level of the Know-
ledge of the machine.

MIQL(fM)(t) = lim∆−→0
ECC(t+∆)−ECC(t)

∆
∗LK

Looking to the formula is possible to see that to be able to learn is necessary
that the machine is involved in the process of acquisition of knowledge. In this
process the values of the FBU measures are changed over the time or along the
iterations. The learning is a process that happen over the time or along the
iterations.

vi) Memory (Mem). This measure measures the capacity that the machine
has to store. This is done by the sum of the cardinality of the machine com-
ponents.

MIQM =
∑n

i=1 |Ci |

110

vii) Motivation (Mot). This measures intends to measure the motivation
which the machine possesses. The Adaptation of the machine to the environ-
ment, their capacity to learn, and their potential computational capacity, are
considered important measures related with the motivation and, because of
that, they are part of the measure.

MIQMot(t) =MIQA ∗MIQL(t) ∗PCC

viii) Perception (Pep). This measure measures the capacity which the ma-
chine presents to precept the outer environment. This is done through of a
ratio between the distinct reads and the total reads that the machines carries
out to run a certain task.

MIQPep =
∑

τ∈L(fM)
Read(τ)
ReadT (τ)

Is supposed that all the phenomenons, each one of its occurrence, happen
always with something different. So don’t exist phenomenons exactly equals.
Thus, several attributions of the same symbol to several perceptions of the
environment must have a penalisation.

ix) Reasoning (R). This measures intends to measure the capacity which
the machine has to reasoning. This capacity is related with the effective com-
putational capacity of the machine and with its creativity. Thus are part of the
measure the ECC and the MIQC .

MIQR = ECC ∗MIQC

111

7 Validating some Formal Machines Measures us-
ing Machine Learning

In this section I describe a study that I did. The study had as aim to validate
some of the measures that was referred in sub section 6.6. The work consisted
in to study Machine Lerning (ML) and FMs measures and to relate heuristic-
ally that measures. This was done through of the analysis that was done in a
set of data about the health condition of a person52. These data are collected
in four countries Spain, Italy, Japan and Chine53. The data consisted in a set
of Excel files54. In each Excel file the data are divided in 5 columns (one for
each sensor) and for each one the data are one hundred until two hundreds
values obtained of five sensors. For each person that was analyzed, the five
sensors are used to obtain data about its health condition. The decision about
the health condition, good or not, was evaluated by themonitor that performed
the measurements. In following can be seen the steps that was given to per-
form the work. This work was accomplished in six phases:
1- Analyzing graphically the data. First I built a java program with a library
imported to work with Excel files and in each one of the files I draw the graph-
ical of the sensors. From the graphical built I saw that the graphics have all the
same structure and based on that I found several features (See table 24)
2- Building a dataset. I used the features that I found in the data and I built
a dataset. The dataset is a set of rows, 4230 rows, each row is composed by
values of the features referred55. After this I prepared the dataset for working
with MLs56

3- Generating and training 1000 Neural Networks. After to have the dataset I
used a Software to generate and to train Neural Networks with three layers57.
For to do this was necessary to divided the dataset in three new excel files; one
for the train, one to validate the train and more one to test the train of the
networks58. As the result of the training of one thousand of that machines the
software give us a file about each one of the machines. In this file is described
the structure of each one of the machines and for each one appear the respect-
ive ML measurements59.

52https://drive.google.com/folderview?id=0B-VWbS8s9OIlZElRdXU1TkNjaUk&usp=

sharing
53The data were sent to me by profesor Omatu and already originated a published work “Multi-

agent systems for classification of e-nose data”[Iketal15]
54https://drive.google.com/folderview?id=0B-VWbS8s9OIlZElRdXU1TkNjaUk&usp=

sharing
55https://docs.google.com/spreadsheets/d/1RGDB5w0DFMNW8iVPXW9QKVxouBbJswsH_

05xZZnezZ4/edit?usp=sharing
56https://docs.google.com/spreadsheets/d/1nK5Y57GUdF0pT_

yFMm96hY1MJT6H3CFPkb8ImPUwiDk/edit?usp=sharing
57mbp.sourceforge.net/
58https://drive.google.com/folderview?

id=0B-VWbS8s9OIlfndqTUN2cHJPRndEaXdJWHJZb3NEbG9PNlFjYklPR1puNjlaZER4c0V5V0E&usp=

sharing
59

112

4- Developing a drive to the Back-Propagation Neural Networks Machines
(BPNNs). I developed an algorithm to transform the generated ML machines
in FMs and I calculated for each one of the FMs several FMs measurements60.
5- Relating MLs and FMs measurements. I compared the usual measures of
the ML with the measures built in FMs and I established relations between the
two types of measures.
6- Amathematical conjecture as result. As the conclusions obtained were heur-
istic conclusions I made a mathematical conjecture based in statistical observa-
tions. The population are all BPNNs or the FMs that are obtained from BPNNs
without they losing their structure. The mathematical result is conjectured for
all BPNNs.

7.1 An information system

The original data were data without treatment. These data were collected in
four countries, in Italy in Spain, Japan and in Chine and were about the heath
condition of a person. There were two possible results, the person was in a
good health state or not. The data were collected frommeasures of five sensors,
and the analysis about the health state, of the person submitted to the sensors,
is doing by the person who collected the data. The sensors used to measure the
health state of a person were following.

Table 25: Table of sensors used

Sensor number Model number Application
1 SB· AQ5 Volatile Organic Coumpound)
2 SB· 15 · 00 Flammable Gas(Propane, Butatne)
3 SB· 30 · 04 Alchol Detection
4 SB· 42A · 00 Refrigerant Gas (Freon)
5 SB· 31 · 02 Solvent Detection

The data collected were around 1000 thousand Excel files each file with five
columns of data one for each sensor. Each column referred had a quantity of
data rows between one hundred until two hundred.

After the collection of the data I drew the graphical of the sensor values in
each one of the Excel files. I saw that all graphics are similar. The graphics are
similar to the following graphic.

60https://drive.google.com/file/d/0B-VWbS8s9OIlUjY4VXRyNFVMaFk/view?usp=sharing

113

Figure 56: (left) Excel file about the data collection of the five sensors. (Right)
features of the data)

Figure 57: Excel file about the data collection of the five sensors

114

Figure 58: features of the data

From the study of this graphics I designed the features and I discovered a
lot of them. The features found are about twelve different types61 and with
them I built a dataset62.

I wrote the dataset in only one Excel sheet, that is a set of raws of the fea-
tures and the Result is the health condition of the person submitted to the
measurements. Each previous file generate 5 different rows in the dataset one
for each sensor andwere found new algebraic features as for example the differ-
ence between the values of the sensors. These new features were increased for
around 30. Thus, the dataset is a file with around 4235 rows and 30 columns.
Each column was a feature or the health condition of the person.

Following I used a software to train Neural Networks Machines63 and I
generated 1000 machines and for each one I calculated 4 measures 64; the F-
measure, the Accuracy, the RMS and the time of the train.

61https://drive.google.com/file/d/0B-VWbS8s9OIlcC1seHMyQ3RVUlU/view?usp=sharing
62https://drive.google.com/drive/folders/0B-VWbS8s9OIlZGlyWjZfc1A5ZkU
63http://sourceforge.net/projects/mbp/
64https://drive.google.com/file/d/0B-VWbS8s9OIlVGpGZU42MnUwZ0k/view?usp=sharing

115

Table 27: Measures of the MLs

precision =
tp

tp+f p recall = tp
tp+f n

Accuracy =
tp+tn

tp+tn+f p+f n F −measure = precisionṙecall1
precision+recall

RMS =
√∑n

i=1(ŷi − ȳi)

Table 26: Evaluation of All possible results of a ML

Total population Condition positive Condition negative
Test outcome tp= fp=

positive true positive false positive
Test outcome fn= tn=

negative false negative true negative

For doing this from the dataset I built three new Excel data files extracted
from the dataset. These new files were sets of rows of the dataset file. Thus I
obtained a file to train the machines65, a file to validate the train66 and a file to
test the decisions of the machine67. After this step I developed an algorithm to
transform Neural Networks in Formal Machines and then I calculated several
measures of the FMs68.

7.2 Obtaining a FMs from a Back-Propagation of Neural Net-
work Machine

fM = (CompMB,CompMR,Conf M,Conf Mi ,Conf Mf , InstM,AlgVN).

Let a ML be a Back-Propagation Neural Network (BPNN) that is a network
with three layers one of them is a hidden layer, a set of inputs and an output
layer. The network is composed in each layer by neurons, that neurons make
processing. The neurons within of the same layer have not connection among
them. Each neuron of a layer is connected to all neurons of the next layer.
Each connections is an edges between neurons. The inputs introduced in the
networks are in same quantity of the neurons in the first layer. Each input is in-
troduced in only one neuron of the first layer. These networks, these machines
should be trained to answer to certain question, to take some decisions.

65https://docs.google.com/spreadsheets/d/1kM1C6MAT_Yi-cxWpp4PVxPcn3RxuAX5by2pE3tU18Xk/

edit?usp=sharing
66https://docs.google.com/spreadsheets/d/1uxRle6RpAN5PE01pGsWBsejpkxVdNKrdfB8X6fs2X3o/

edit?usp=sharing
67https://docs.google.com/spreadsheets/d/1YWkepSHLp-KtHZfpxhTkaFcQwxQG-B49H9mKmS8wB-8/

edit?usp=sharing
68https://docs.google.com/spreadsheets/d/1jiRlInuGYLwyecjX47gXZrKQkPUzAgLSeDPLlTiI1io/

edit?usp=sharing

116

Figure 59: A Back-Propagation Neural Network Machine Architecture, 59-3-1

Now, I am going to describe the algorithm that allows to transform the
BPNN to a FM. The implementation of this algorithm is what I call a drive of
the BPNN FMs.

CompMB = {C1,C2,C3,C4} wherein
C1 =

�n2
i=1[0,1], C2 =

�n1
i=1(

�n2
j=1[0,1]), C3 =

�n2
i=1[0,1] and C4 = {0,1},

CompMR = ∅,
Conf M = C1 ×C2 ×C3 ×C4

Conf Mi = Conf Mf = Conf M

InstM = {I1, I2, Imv} wherein I1(x
1
1,x

1
2, ...,x

1
n1) = (x21,x

2
2, ...,x

2
n2), and

I2(x
2
1,x

2
2, ...,x

2
n2) = z.

(x21,x
2
2, ...,x

2
n2) = I1(x

1
1,x

1
2, ...,x

1
n1) = f1(M(n2,n1)(x

1
1,x

1
2, ...,x

1
n1)

T) wherein

M(n2,n1) =

w1
11 w1

12 w1
13 . . . w1

1n1
w1
21 w1

22 w1
23 . . . w1

2n1
...

...
...

. . .
...

w1
n21

w1
n22

w1
n23

. . . w1
n2n1

z = I2(x
2
1,x

2
2, ...,x

2
n2) = f2(M(1,n2)(x

2
1,x

2
2, ...,x

2
n1)

T) wherein

M(1,n2) =
[

w2
11 w2

12 w2
13 . . . w2

1n2

]

Von Neumann Algorithm, VNAlg
1- Get an input from the Environment, cinput
2- Translate cinput for a n2-tuple of the machine alphabet, u

3- Take the initial configuration c = (
�n1

i=1ui ,
�n1

i=1(
�n2

j=1w
1
ij),

�n2
j=1w

2
1j ,0)

4- Take u = (u1,,un) and applies the instruction Imv , Imv(u) = u′ wherein
u′ = (u′1,,u

′
n) such that if the i-th row is not a missing value row then u′i = ui

otherwise u′i = ui + δri .

117

5- Obtain c1 from c, c1 = (
�n1

i=1u
′
i ,

�n1
i=1(

�n2
j=1w

1
ij),

�n2
j=1w

2
1j ,0)

6- Obtain c2 from c1, c2 = (
�n1

i=1u
′
i ,

�n1
i=1(

�n2
j=1w

1
ij), I1(u

′), I2(I1(u′)))
7- z←− I2(I1(u′));
8- Translate z to coutput in the Environment Language.

7.3 BPNNs and FMs measures

In following I created a new dataset to analyze and compare the measures used
on BPNNs and the measures used and created for FMs. This new dataset69 is a
sheet of an Excel file with around 1000 rows and 37 columns. The columns is
composed bymeasures of the BPNN and bymeasures of FMs. This new dataset
is structure of the following way:
i) dataset row number
ii) data about the Neural Network Machines, BPNN
ii.1) The architecture of the machine
ii.1.1) Network
ii.2) measures of the machine
ii.2.1) Epoch, ii.2.2) Time (s), ii.2.3) Train RMS (%), ii.2.3) F-Measure (%), ii.2.4)
Accuracy (%), ii.2.5) Saved (filename),
iii) data about FMs
iii.1) The architecture of the FM
iii.1.1) C1, iii.1.2) C2, iii.1.3) C3, iii.1.4) Inst, iii.1.5) COA
iii.2) measures unities of FMs
iii.2.1) Space, iii.2.2) Time,iii.2.3) Symbols, iii.2.4) Movements, iii.2.5) Read,
iii.2.6) Inst,iii.2.7) Write,
iii.3) derived measures of FMs
iii.3.1) ECCglobal , iii.3.2)MIQDK ,iii.2.2)MIQLK , iii.3.4)MIQLf act , iii.3.5)MIQL

iv) Normalization of the BPNNs and FMs measures and the construction of the
respective graphics
iv.1) N Train RMS (%), iv.2) N F-Measure (%), iv.3) N Accuracy (%),
iv.4) N Space,iv.5) N Movements,iv.6) N ECC, iv.7) MIQDK , iv.8) MIQL

Analyzing the graphics, referred above in iv), below and reading the data
is possible to observe the behavior of certain measures compare them and con-
clude somethings.

69https://docs.google.com/spreadsheets/d/1WCxVPAhHA0-jLKg_

AMysj9vkpvkukYwUMutv2k_A_Ck/edit#gid=1794133931

118

Figure 60: Normalized FMs measures, Space, Movements, ECC. Normalized
ML measure: A cc

Observing the figure 60 in BPNNs the ECC ≈ Acc and Movements ≈ Space
assume approximately the same values, heuristically can be said that they are
equal. This make sense because in slight language the ECCglobal is a measure
that intended to measure the computational capacity, of the FM, to process
simple tasks. Considering that the population are the tasks which can occur
in the environment. That tasks should be divided in tasks that a BPNN is able
to perform, condition positive, and tasks that they are not, condition negative.
(See Table 26) The Acc of a BPNN is a measure that corresponding to a pro-
portion between the tasks which one specifies BPNN performed tp under the
condition positive and the tasks that the machine no performed f p under the
condition negative. Thus, in slight language the ECCglobal and Acc, in BPNNs,
intended to measure the same computational capacity. When both measures
are normalized the values obtained by ECCglobal and Acc are very close. The
measuresMovements and Space are both measures of FMs and their proximity
is a consequence of the properties of the BPNNs machines. The Movements
intended to measure the quantity of movements that is made by the machine
and Space intends to measure the space occupied in the machine during the
execution of a task. In the BPNN machines always that is done a movement,
within the machine, is generated a new value that is stored in a place.

Figure 61: Back-Propagation Neural Network Machine Architecture

119

Analyzing the graphical in the figure 61, in BPNNs, theAcc ≈MIQL, T ime ≈
MIQDK and ref lexion(RMs) ≈MIQDK . The Acc, the ECCglobal andMIQL with
the values normalized are measures have values very close. Thus, you can
measure the learning capacity of a BPNN, the MIQL, by its Acc and the deep
knowledge of the machine through of a reflection of the RMS made under a
specific line reflection previews built.

From the analyze of the dataset70 is possible to stablish the relations that
are presented in the figure 61. The read of the tables should be done in fol-
lowing way. In the table above can be seen, in the columns Row, Movements
and Space respectively the value of their quartile 1, quartile 3 and quartile 3.
The read should be done in the following way in the dataset, in a row where
you can see the value of the RMS corresponding to the quartile 1, in the same
row you can find for Movements a value around their quartile 3 and for the
measure Space also a value around their quartile 3. Now at the shadow of this
way of interpreting the table I found a lot of relations among the Measures.

Table 28: Relations among RMS, Movements and Spaces

RMS Movements Space
Minimum Maximum Maximum
quartile 1 quartile 3 quartile 3
quartile 2 quartile 2 quartile 2
quartile 3 quartile 1 quartile 1
Maximum Minimum Minimum

The values, of the measures RMS of the BPNNs and Movements and Space
of the FMs, that give position in the BPNNs as a population have inverted po-
sition values. If you classify the machines, the BPNNs, through of their RMS
values, by the quartile:
i) you have that the machines that have RMS values between the minimum and
the quartile 1 are approximately the same machines that would be between the
quartile 3 and the maximum if you now classify FMs machines, obtained from
the BPNN FM drive, by the measures Movements and Space.

ii) you have that the machines that have RMS values between the quart-
ile 1 and the quartile 2 are approximately the same machines that would be
between the quartile 2 and the quartile 3 if you now classify FMs machines,
obtained from the BPNN FM drive, by the measures Movements and Space.

iii) you have that the machines that have RMS values between the quart-
ile 2 and the quartile 3 are approximately the same machines that would be
between the quartile 1 and the quartile 2 if you now classify FMs machines,
obtained from the BPNN FM drive, by the measures Movements and Space.

70https://docs.google.com/spreadsheets/d/1jiRlInuGYLwyecjX47gXZrKQkPUzAgLSeDPLlTiI1io/

edit?usp=sharing

120

iv) you have that the machines that have RMS values between the quart-
ile 3 and the Maximum are approximately the same machines that would be
between the Minimum and the quartile 1 if you now classify FMs machines,
obtained from the BPNN FM drive, by the measures Movements and Space.

Table 29: Relations among Time, MIQDK

Time MIQDK

Minimum Minimum
quartile 1 quartile 1
quartile 2 quartile 2
quartile 3 quartile 3
Maximun Maximun

Following the same way of read the data you have that the values of the
BPNN measure time(s) (the time that is necessary to train the BPNN) and the
values of the FM measure MIQDK , which give position in the BPNNs as a
population, have the same position values. If you classify the machines, the
BPNNs, through of their time(s) value by the quartile:
i) you have that the BPNN machines that have values between the minimum
and the quartile 1 are approximately the same FMs machines, obtained from
the drive BPNN FM, that have values between the minimum and the quartile
1 measured from MIQDK ,
ii) you have that the BPNN machines that have values between the quartile 1
and the quartile 2 are approximately the same FMs machines, obtained from
the drive BPNN FM, that have values between the quartile 1 and the quartile
2 measured from MIQDK ,
iii) you have that the BPNN machines that have values between the quartile 2
and the quartile 3 are approximately the same FMs machines, obtained from
the drive BPNN FM, that have values between the quartile 2 and the quartile
3 measured from MIQDK ,
iv) you have that the BPNN machines that have values between the quartile 3
and the Maximum are approximately the same FMs machines, obtained from
the drive BPNN FM, that have values between the quartile 3 and theMaximum
measured from MIQDK ,

The results that I have are about samples, samples of 1000 MLs more spe-
cifically 1000 BPNNs. Now based in these samples and in others indications
presented by the data and joiningmy experience as mathematician I conjecture
with a considerable grade of belief the following results.

Conjecture 7.1 In Back Propagation Neural Networks and the FMs obtained from
them there are the following results about measurements:
i) The row of the dataset that contains in the column of the Time, measures on

121

BPNNs, their Minimun (respectively, quartile 1, quartile 2, quartile 3, Maximun)
contains also asymptotically in the column of the MIQDK their Minimun (respect-
ively, quartile 1, quartile 2, quartile 3, Maximun).
ii) The row of the dataset that contains in the column of the RMS their Minimun
(respectively, quartile 1, quartile 2, quartile 3, Maximun) contains also asymptot-
ically in the column of the Movements their Maximun (respectively, quartile 3,
quartile 2, quartile 2, Minimun).
iii)Movementsi ∼a Spacei , with i ∈ {Minimun,quartile 1,quartile 2,quartile 3,Maximun}
iv) Accuracy ∼a ECCglobal

To transform this conjecture in a mathematical theorem is part of a future
work in FMs technology theory. I am thinking to do the proof in a soon future.

122

8 Analyzing a Microcontroller

Next I am going to sketch an instantiation of a ATMEL MCU Hardware in the
formalism that was presented here, the FMs. The MCU is a chip. The CompMB
are the components of the chip; transistors, resistors, capacitors, and so on ...
All the discrete electrical elements that constitute the chip. The communica-
tion channels, which allows to connect the different elements of the chip and
from which runs the electric flux are CompMR elements. The machine config-
urations are their different electrical states and they are the components of the
machine, which are reflected in the state of the registers. Thus, the configur-
ations are regarded as the state of the registers. The machine instructions are
instructions which are contained in the datasheet of the chip. Each instruc-
tion is measured in cycles of machine. Each machine cycle is a Von Neumann
Cycle. Thus is sketched an instantiation of an ATMEL MCU in the formalism
presented. A configuration in which there is at least one port configured as
input (respectively output) is an initial configuration (respectively final). All
configurations are materialized in the registers of the MCU. The configurations
of the machine can be seen as their registers.

123

9 Conclusion and Future Work

One of the results of this work was in the construction of a new formalism,
called Formal Machine. This formalism is a computational model, and was
proved that a lot of computational models can be rewritten as FMs. The new
formalism also allowed, using Category theory, to defined what it means to
preserve the structure of a computational model. The notion of preserving a
structure of an FCS was defined according to the functor concept.

The schema of the Database of an FM was built, and an API was developed
to allow translating a Finite Automata for an FM and store it. The algorithm
that allows to transform a FCS to a is called a drive. The same work is on-
going for others computational systems such as Pushdown Automata, Turing
Machines, URM and so on.

With the aim to implement FMs was designed their computational struc-
ture. This structure is what allows to implement different FMs to solve prob-
lems. The computation algorithm for the computational structure of the FM
was designed in serial and parallel mode. The serial mode already is imple-
mented. The implementation of the parallel mode is ongoing71.

Two games were built, the Tic Tac Toe game and the Four In Line game, to
test how an FM can be implemented to solve a problem, to play a game, and
so on ... I plan to implement a game of checkers with an FM acting as one
of the players and playing against human players. Furthermore, I expected
to implement solutions in FM Technology for a large number of engineering
problems.

In this work also was defined, as measures in FMs, many concepts and skills
that are associated with intelligent procedures. Thus, arose the Machine Intel-
ligence Quotient (MIQ) as a way of measuring intelligence in FCSs through
of the FMs. In fact the MIQ are several measures one for each concept asso-
ciated with intelligence. These measures can be seen as measures in all com-
putational models. In the generating universes Software, “Generator of Uni-
verses and Simulator of Formal Machines”, you can simulate the behavior of
certain FCSs. The FM yet is no implemented in the software. But, once that the
computational models are embedded or rewritten in FMs without losing their
structure when I implement the FMs I can simulating the behavior of any com-
putational models. The implementation of the MIQ in the software is another
thing that is ongoing.

In this work also was showed that the FMs havemore computational power-
ful than Turing Machines. From this idea has made possible to define the no-
tion of supermachines. The supermachines are machines more power than
Turing Machines.

71Can happen that while you read this thesis the implementation is ended

124

Conclusión y trabajos futuros

Uno de los resultados de este trabajo fue la construcción de un nuevo formal-
ismo, llamado Máquina formal, en inglés Formal Machine (FM). Este formal-
ismo es un modelo computacional, y se demostró que una gran cantidad de
modelos computacionales se pueden reescribir como FMs. El nuevo form-
alismo también permitió que, utilizando la teorı́a de categorı́as, si ha defin-
ido lo que significa preservar la estructura de un sistema computacional. La
noción de preservar la estructura de un Sistema Computacional formal, en
inglés Formal Computational System (FCS), se define de acuerdo con el con-
cepto functor. En el trabajo fue construida la estructura de la base de datos de
una FM, y fue desarrollada una algoritmo para permitir la traducción de un
autómata finito para una FM y hacer almacenarla en la base de datos. La im-
plementación de este tipo de algoritmos que permiten transformar las FCSs en
FMs se llaman drive, ası́ se ha construido una drive para Autómatas finitos. Lo
mismo se está trabajando para otros sistemas computacionales como Autómata
de Pila, Máquinas de Turing, URM y ası́ sucesivamente. Con el objetivo de im-
plementar FMs fue diseñada su estructura computacional. Esta estructura es
la que permite poner en práctica las FMs para resolver problemas. El algor-
itmo para la estructura computacional del FM fue diseñado en el modo serie y
paralelo. El modo serie ya está implementado. La implementación del modo
paralelo está en curso72. Dos juegos fueron construidos, el juego de Tic Tac
Toe y el juego Cuatro en Lı́nea, para probar cómo en una FM se pueden imple-
mentar para resolver un problema; cómo jugar un juego, etc.. Yo tengo la in-
tención de poner en práctica un juego de damas con una FM siendo uno de los
jugadores y ponerla a jugar contra jugadores humanos. Además, en el futuro
pienso implementar soluciones en Tecnologı́a de FMs para un gran número de
problemas de ingenierı́a. En este trabajo se define también, con mediciones en
las FMs, conceptos y habilidades que están asociados con proceder de forma
inteligentes. Esas medidas son obtenidas por lo que llamo Cociente de In-
teligencia de las Máquinas, en inglés Machine Intelligent Quotient (MIQ). El
MIQ es la forma de medir la inteligencia en los sistemas computacionales y
es definida en FMs. Se tiene un tipo de MIQ para cada uno de los concep-
tos que están asociados con la idea de comportamiento inteligente. Al medir
estés conceptos en las FMs vamos a tener también una medición para modelos
computacionales en general. Yo he desarrollado un software, en inglés “Gener-
ator of Universes and Simulator of Formal Machines”, en él se puede simular
el comportamiento de ciertas FCSs. Las FMs son aunque por implementar en
el software. Pero, una vez que los modelos computacionales están incrusta-
dos o reescritos en FMs sin perder su estructura cuando yo implementar la
FM va a ser posible la simulación de comportamiento cualquier modelos com-
putacionales. La aplicación de los MIQs en el software está otra de las cosas
que están en curso. Ha sido demostrado que las FMs son computacionalmente
más poderosas que las máquinas de Turing. Basado en esta idea ha sido posible

72Puede que sucederá que mientras usted lee esta tesis la implementación ya ha terminado

125

definir la noción de supermachines. Las supermachines son máquinas con más
potencia computacional que las máquinas de Turing.

126

References

[ArB09] Arora, Sanjeev and Barak, Boaz, 2009 Computational Complexity: A
modern approach, Cambridge University Press

[Atm13] Atmel, last updated: 02/2013 ATmega48A/PA/88A/
PA/168A/PA/328 /P Complete,
Datasheet http://www.atmel.com/devices/atmega328.aspx?tab=documents

[Atm14] ATmega48A/PA/88A/
PA/168A/PA/328 /P Summary,
Datasheet http://www.atmel.com/Images/Atmel-8271-8-bit-AVR-Microcontroller
-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_

Summary.pdf

[BDR10] Berstel, Jean; Dominique, Perrin; and Reutenauer, Christophe, 2010,
Codes and Automata (Encyclopedia of Mathematics and its Applications), Cam-
bridge University Press.

[BoM82] Bondy, J.A. and Murty, U.S.R., 1982, Graph Theory with Applications,
North-Holand.

[BSS99] B. Schölkopf, C. J. C. Burges, and A. J. Smola, 1999 Advances in Kernel
Methods: Support Vector Learning MIT Press, Cambridge, MA

[CaWi07] Mathematical Logic Chiswell, Ian and Wilfrid, Hodges, 2007 Math-
ematical Logic, Oxford University Press, Inc. New York, NY, USA ©2007,
page 213-215 ISBN 978–0–19–857100–1 ISBN 978–0–19–921562–1 (Pbk)

[ChAl36a] Church, Alonzo 1936 A Note on the Entscheidungsproblem J. Symb.
Log. 1(1): 40-41

[ChAl36b] Church, Alonzo, 1936 Correction to A Note on the Entscheidungs-
problem J. Symb. Log. 1(3): 101-102

[ChAl85] Church, Alonzo, 1985 The Calculi of Lambda Conversion. (AM-6) (An-
nals of Mathematics Studies) Princeton University Press Princeton, NJ, USA
©1985 ISBN:0691083940

[ChNo56] Chomsky, Noam (1956). Three models for the description
of language IRE Transactions on Information Theory (2): 113–124.
doi:10.1109/TIT.1956.1056813.

[ChNo59] Chomsky, Noam, 1959 On certain formal properties of grammars In-
formation and Control 2 (2): 137–167. doi:10.1016/S0019-9958(59)90362-
6.

[CoE11] Courcelle, Bruno and Engelfriet, Joost, 2011, Graph Structure and
Monadic Second-Order Logic, a Language Theoretic Approach, Cambridge Uni-
versity Press.

127

(pag 46) Theorem 1.16 A set of terms over a Finite signature is MS-definable
if and only if it is recognizable, i.e., accepted by a Finite automaton.

[Cut97] Cutland, N. J., 1997, Computability, An introduction to recursive func-
tion theory, Cambridge: Cambridge University Press.

[DaE12] Darmois, E. and Elloumi, O., 2012, Introduction to M2M, in
M2M Communications: A Systems Approach (eds D. Boswarthick, O. El-
loumi and O. Hersent), John Wiley and Sons, Ltd, Chichester, UK. doi:
10.1002/9781119974031.ch1

[DHS01] R.O. Duda, P.E. Hart, D.G. Stork, 2001 Pattern Classification Wiley,
ISBN 0-471-05669-3

[Eil74] Eilenberg, Samuel, 1974, Automata, languages, and machines, Volume A,
Academic Press.

[MaDa06] Davis, Martin, 2006 textitThe Incompleteness Theorem, in Notices
of the AMS vol. 53 no. 4 (April 2006), p. 414.

[HeDO49] Hebb, D. O., 1949 The Organization of Behavior: A Neuropsycholo-
gical Theory New York: Wiley and Sons. ISBN 9780471367277.

[HiD02] Hilbert, David, 1902Mathematical Problems, Bulletin of the American
Mathematical Society, vol. 8, no. 10 (1902), pp. 437-479. Earlier publications
(in the original German) appeared in Göttinger Nachrichten, 1900, pp. 253-
297, and Archiv derMathematik und Physik, 3dser., vol. 1 (1901), pp. 44-63,
213-237.

[Hop08] Hopcraft, John E., 2008, Introduction to Automata Theory, Languages,
And Computation, 3/E, Pearson Education.

[Iketal15] Ikeda Yoshinori, Omatu Sigeru, Chamoso Pablo,Pérez Alberto and
Javier Bajo, 2015 Multi-agent Systems for Classification of E-Nose Data, Am-
bient Intelligence - Software and Applications Advances in Intelligent Sys-
tems and Computing Volume 376, 2015, pp 183-192

[KPPK] Artificial Neural Networks: An Introduction, Por Kevin L. Priddy,Paul E.
Keller pag 11 International Society for Optinal Engineering 2005

[Laf03] Lafore, Robert, 1997, Data Strutures and Algorithms in Java Sams Pub-
lishing

[Lot97] Lothaire, M., 1997, Combinatorics on Words Cambridge University
Press

[Lothaire, 2005] Lothaire, M., 2005, Applied Combinatorics on Words (Encyclo-
pedia of Mathematics and its Applications), Cambridge University Press

128

[Lothaire, 2002] Lothaire, M., 2002, Algebraic Combinatorics on Words (Encyc-
lopedia of Mathematics and its Applications), Cambridge University Press; 1
edition (May 20, 2002)

[Ma98] Mac Lane, Saunders, 1998 Categories for the Working Mathematician
Springer (Graduate Texts in Mathematics) ISBN 0-387-98403-8

[Mac10] Mac Lane, Saunders, 2010, Categories for the Working Mathematician,
(Graduate Texts in Mathematics). Berlin: Springer.

[MiPa69] MARVINMINSKY and SEYMOUR PAPERT, 1969 Perceptrons. An In-
troduction to Computational Geometry M.I.T. Press, Cambridge, Mass., 1969.
vi + 258 pp.

[Neu45] Neumann, John Von, 1945 Journal IEEE Annals of the History of Com-
puting archive Volume 15 Issue 4, October 1993 Page 27-75

[RaPa14] Raatikainen, Panu, ”Gödel’s Incompleteness Theorems”, The Stan-
ford Encyclopedia of Philosophy (Spring 2014 Edition), Edward N. Zalta
(ed.), URL = ¡http://plato.stanford.edu/archives/spr2014/entries/goedel-
incompleteness/¿.

[Raat14] Raatikainen, Panu, 2014, Gödel’s Incompleteness Theorems, The
Stanford Encyclopedia of Philosophy (Spring 2014 Edition), Edward N.
Zalta (ed.),
URL = ¡http://plato.stanford.edu/archives/spr2014/entries/goedel-
incompleteness/¿.

[RoF58] Rosenblatt, Frank, 1958, The Perceptron: A Probabilistic Model
for Information Storage and Organization in the Brain, Cornell Aero-
nautical Laboratory, Psychological Review, v65, No. 6, pp. 386–408.
doi:10.1037/h0042519.

[RuMc86a] Rumelhart, D. E., McClelland, J. L., and the PDP research group,
1986 Parallel distributed processing: Explorations in the microstructure of cog-
nition Volume I. Cambridge, MA: MIT Press.

[RuMc86b] McClelland, J. L., Rumelhart, D. E., the PDP research group, 1986
Parallel distributed processing: Explorations in the microstructure of cognition
Volume II. Cambridge, MA: MIT Press.

[Sha11] Shaffer, Clifford A., 2011 Data Structures and Algorithm Analysis,
Dover Edition

[SiS94] Siegelmann, Hava T. and Sontag, Eduardo D., 1994, Analog computa-
tion via neural networks, Theorectical Computer Science 131(1994) 331-360.
Elsevier.

[Sip13] Sipser, Michael, 2013, Introduction to the Theory of Computation, Cen-
gage Learning.

129

[TAM36] Turing, A.M. 1936 On Computable Numbers, with an Application to
the Entscheidungs problem, Proceedings of the London Mathematical Soci-
ety. 2 (1937) 42: 230–265. doi:10.1112/plms/s2-42.1.230. (and Turing, A.M.
(1938). On Computable Numbers, with an Application to the Entscheidungs-
problem: A correction, Proceedings of the London Mathematical Society. 2
(1937) 43 (6): 544–6. doi:10.1112/plms/s2-43.6.544.).

[WMWP98] Warren, S. McCulloch, Walter Pitts, 1988 A logical calculus of the
ideas immanent in nervous activityNeurocomputing: foundations of research,
Pages 15-27 MIT Press Cambridge, MA, USA ©1988 ISBN:0-262-01097-6

[WeD03] MathML 2.0 DTD, 2003,
http://www.w3.org/Math/DTD/mathml2/mathml2.dtd,
W3C, www.w3.org.

[WeD] Recommended List of Doctype declarations, DTD,
http://www.w3.org/QA/2002/04/valid-dtd-list.html,
W3C, www.w3.org.

[WDS] DTD Specification,
http://www.w3.org/XML/1998/06/xmlspec-report.htm,
W3C, www.w3.org.

[Wer74] P. J. Werbos, P. J., 1974 Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences PhD thesis, Harvard University.

[Wer94] Werbos, P. J., 1994 The Roots of Backpropagation: From Ordered Deriv-
atives to Neural Networks and Political Forecasting ISBN: 978-0-471-59897-8

[WFM] Focus Group of the ITU for study M2M, FG M2M,
http://www.itu.int/en/ITU-T/focusgroups/m2m/Pages/default.aspx,
W3C, www.w3.org.

[Vap95a] V. Vapnik, 1995, The Nature of Statistical Learning Theory Springer

[Vap95b] V. Vapnik, 1998 Statistical Learning Theory Wiley-Interscience, New
York

[Vieira15a] Paulo Vieira, and Juan Corchado, 2915 A Formal Machines as a
Player of a Game. DCAI: Distributed Computing and Artificial Intelligence,
DCAI 2015: 137-147

[Vieira15b] Paulo Vieira, Juan Corchado and Sigeru Omatu, 2015 Formal Ma-
chines and the Back Propagation Neural Networks. submitted (on preparation)
to: “Machine Learning Journal”, Springer 2015

[Vieira15c] Paulo Vieira, Adérito Alcaso, Carlos Carreto, Juan Corchado and
Sigeru Omatu, 2015 Embedded Systems, Artifical Intellgience and Fornal Ma-
chines. submitted to: “Applied Intelligence”, Springer 2015

130

[YuB09] Yoshua Bengio, 2009 Learning Deep Architectures for AI Journal
Foundations and Trends in Machine Learning archive Volume 2 Issue 1,
January 2009 Pages 1-127

131

10 Appendix

10.1 Figure

The following figure illustrates the point b) of the definition of the instruction,
I , of a FM (page 16)

~c = (c1 , ...,

cj

︷ ︸︸ ︷

(c
j
1, ..., c

j
t1
, ..., c

j
triv

, ..., c
j
n) , ..., cn)

↓ I , u ∈ Riv , Riv(uriv+l) = Civ

cP = {c1 , ..., (ci1, ..., cw1
, ..., cwsiv

, ..., cin)
︸ ︷︷ ︸

ci

, ..., ct}

with u = (c
j
t1

︸︷︷︸

u1

, ..., c
j
riv

︸︷︷︸

uriv

, ciw1
︸︷︷︸

u(riv+1)

, ..., ciwl
︸︷︷︸

u(riv+l)=civ

, ..., ciwsiv
) ∈ Riv

10.2 Data Structure of FA FMs

When in the arguments of the extension and understanding methods is neces-
sary to introduce a set as for example {a1, a2, a3} its introduced “a1;a2;a3”. Fol-
lowing I describe the DS of FA FMs.

Methods that implement the DS of a FA FM 73

Methods for implementing the set CompMB:
public void extensionM B(String FM,String N C,String U C,String v set)
public void understandingM B(String FM,String N C,String U C,String px)

Methods for implementing the set CompMR:
public void extensionM R(String FM,String N R,String Up,String relation)
public void understandingM R(String FM,String N R,String Up,String px)

Methods for implementing the set Conf M :
public void extensionConf(String FM,String N conf,String conf)
public void understandingConf(String FM,String N conf,String px)

Methods for implementing the set InstM :
public void extensionInst(String FM,String N I,String conf,String set conf)
public void understandingInst(String FM,String N I,String U I,String domain,String
Ic)

73The code and the documentation of the class ds fa fm can be queried and downloaded at:
http://www.ipg.pt/user/˜pavieira/SW_Documentation/index.html

132

The data type conf:
public class conf {

public char i;
public char f;
public String kind of conf;
public String Q;
public String T I;
public String p I;
/*
* The constructor of the class data type, conf
* @param m m is 00, 01,10 or 11
* @param q q is a state, q belongs to Q
* @param u u is a word that is in the T I of the FA FM
* @param n n is the place in the T I where the pointer points
*/
public conf(String m,String q, String u,String n){

i=m.charAt(0);
f=m.charAt(1);
kind of conf=m;
Q=q;
T I=u;
p I=n;

}
}

The data type productU:

public class productU {
String q 1st;
String q 2nd;
String word;
int p I 1st;
int p I 2nd;
/*
* The constructor of the data type productU. The set CompM B of the

FA FM is CompM B=Q,T I,p I
* @param Q1 Q1 is the component Q of the CompM B
* @param T I T I I is the component T I of the CompM B
* @param p I1 P I1 is the component p I of the CompM B
* @param Q2 Q2 is the component Q of the CompM B
* @param p I2 P I2 is the component p I of the CompM B
*/
public productU(String Q1,String T I,int p I1,String Q2,int p I2){

q 1st= Q1;
q 2nd= Q2;
word= T I;

133

p I 1st= p I1;
p I 2nd= p I2;

}
}

10.3 Report about the PhD instance

With the aim to obtain to add of my PhD title international mention since
April up to July I made a Phd instance in Portugal, in Guarda. the doctoral
instance was held in the Technological and Management School74 of the Poly-
technic Institute of Guarda (IPG)75. The Phd instance was accompanied by two
teachers of the School, by profesor Carlos Carreto (of the UTC of Informatic)
and by profesor Adérito Alcaso (of the UTC of Environment and Energy). In
the PHD instance I developed a tester of smells board and an Information Sys-
tem. The tester of smells consists in an electronic board with gas sensors and
the Information system consists in collected data from the gas sensors and put
it in Google Cloud to do an automatic data analysis. The idea was to do the
data analysis using computational formal systems. Then I projected the data
treatment necessary and I thought in what I can do with formal machines (fig-
ure). Thus, I implement a FM that are a union of those computational formal
systems. The data analysis is made with three aims; i) to give alerts because
the data can indicate that the board is damage, ii) to give alerts because the
data can indicate that the sensors are no calibrated or are damage and iii) to
give alerts about certain values collected by the sensors. The work consisted
in create a way of mechanize all of this. This mechanization will allow to do
similar works in easy way. In this report I will describe it.

The build of this system will create databases, in Google Cloud, of values
of the gases collected by the sensors. The aim of create databases in Google
Cloud, or in another Cloud, with the data collected from real situation and
in Real time is to analysis the data, to obtain knowledge from them and to
act upon the environment in real time in an intelligent way. I also create an
implementation of the CSFM to the Google Cloud and I wrote it in a google
script language. This allows that the some of the data analysis can be done by
a FM. The interest of doing this through of a FM is because the FM formal-
ism is a computational system where is possible to rewrite any other FCS. The
FMs have associated several measures related with the idea of Intelligence, the
MIQ (Machine Intelligent Quotient) measures. The idea of MIQ is to have to
the machine an analogue of the IQ of the humans or in late sense of the bio-
logical beings. The MIQ allows to measure, in formal systems, characteristics
that usually is looked as intelligent behaviors. Thus is possible to evaluated
the intelligence of the information system that will be mounted for similar
situation. I can answer to the question. How much the system is intelligent?

74http://portal.ipg.pt/webapps/portal/frameset.jsp-
75www.ipg.pt

134

Based on that I can decided, How much intelligent I want put in a system to
solve a problem.

10.3.1 The iGases

The iOlphat system is a personal project and is a project about intelligent smell
technologies. The iGases system is part of the iOlfact system. The iGases con-
sists physically of an electronic board connected to an Internet cloud platform.
The system measures several levels of gases concentration, processes data in
real time and provides the resulting information in the Internet. The iGases is
part of my PhD work.

Motivation:
There are three types of motivations to do this work. First, I have a personal
project the iOlphat about to design and develop smell technologies. Second,
the act of smell or sniff I see as an act of prove smells. Prove smells can be very
useful, with this capacity you is able to distinguish fragrances, odors, smells
in general. The smells provoke in biological beings a lot of sensations, allow to
them distinguish substances and can be a qualitative way of distinguish differ-
ent levels of a concentration of a gas. Some gases concentrations can be dan-
gerous and harmful to biological life and can react with other substances. The
other type of motivation is because the system is projected to use formal pro-
gramming methods. The use of formal methods, in systems that are designed
to solve engineering problems is very important since a lot of mathematical
mechanisms are available for use in the solutions. This is important in the mo-
ment that the problem is to be solved, because a lot of things are known about
the formalism and is possible to use them. Other advantage of this strategy
is that other researchers can easily add new functionalities/improvements to
the solution found since that the formal methods are known by the scientific
community and developers.

135

Figure 62: FM Tecnhology: Design of the iGases System

Figure 63: FM Tecnhology: The e-nose board

136

Figure 64: FM Tecnhology: Google cloud. An interface to introduce values in
no automatic way. https://goo.gl/oqk51o

Figure 65: Google cloud: Input Spreadsheet Day (ISD) of the sensors values.
https://goo.gl/z2TJZ1

137

Figure 66: Google cloud: Example of an Output Spreadsheet Day (OSD) of the
sensors values. https://goo.gl/90JWv6

Objectives:
i) - To build a system that is able to reading concentrations of different gases
and put the information in real time in internet.
ii) - To do data analysis with the data collected.
iii) - The data processing is done through of a formal methods. The formal
method used is one that was projected in the work of Paulo’s PhD. This formal
method is a computational system called Formal Machine (FM).
iv) - The administrator of the system can start, stop and configure the system
through the Internet.

Results Obtained: The system created was tested widely in laboratory con-
ditions and their application in real environment will be done in a posterior
phase. The system detect gases in environment, and classify (in a qualitative
way), different levels of concentrations, generate alerts (alert e-mails), check
the states of the sensors (whether they are calibrated or damaged), and verify
any damage on the electronic board. All this information is based in the pro-
cessing that is done from the data sensor values gathered. The output results
obtained in real time after FM’s processing, contains useful information that
is not present in original inputs. This is an evidence of the utility of formal
methods in data processing, in particular to the FM computational model.

Electronic board(figure 63): The electronic board is composed of a micro-
controller, inexpensive gas sensors, and a Wi-Fi hook up to an Internet con-
nection. The sensors read the concentration levels of gases as a value and the
Wi-Fi module inserts these readings in a spreadsheet in a cloud.

Cloud platform(figure 64,65,66): In the cloud platform there are two spread-
sheets; the input spreadsheet and the output spreadsheet. The input spread-
sheet receives the data from the Wi-Fi module, as a private object. The out-

138

put spreadsheet shows treated information to the users. I chose to work with
spreadsheets because they have a sufficient storage system to the amount of
data which are collected and exist a historical API, in Spreadsheets (Excel and
so on), that allow a good mathematical work with data. In the cloud, the in-
put spreadsheet receives the sensor data values sent from the electronic board.
After this, the data is processed through a Formal Machine (FM). The FM pro-
duction goes to the output spreadsheet and, based on the data analysis, the FM
does a qualitative classification of the environment, generates alerts, checks
the sensors and uses a set of algorithms to determine whether they are calib-
rated or damaged, and verify any damage on the electronic board.

i) Building the iGases, the e-Nose
In following you can see some pictures about the building of the e-nose in

different moments.

Figure 67: FM Technology: bottle stoppers serves as a socket to gas sensors

(a) FM Technology: the
bottle stopper of the
MQ135 gas sensor

(b) FM Technology: the
MQ135 gas sensor con-
nectors

(c) FM Technology: The
gas sensor MQ135 in a
front view

Figure 68: FM Technology: the MQ135 gas sensor

139

(a) FM Technology: Experience
connection, the MQ135 smelling
alcohol, 1

(b) FM Technology: Experience
connection, the MQ135 smelling
alcohol, 2

Figure 69: FM Technology: MQ135 smelling alcohol, experience

(a) FM Technology: MQ135
smelling alcohol, values

(b) FM Technology: MQ135 no
smelling alcohol, values

Figure 70: FM Technology: reading values from MQ135

140

Figure 71: FM Technology: the first e-nose circuit, draft

(a) FM Technology: work-
ing in the laboratory, sol-
dering iron

(b) FM Technology: the
gases sensors in the labor-
atory

(c) FM Technology: the
pcb of the e-nose in the
laboratory

Figure 72: FM Technology: working in the laboratory

(a) FM Technology: the
first e-nose board, back
view

(b) FM Technology: the
first e-nose board, front
view 1

(c) FM Technology: the
first e-nose board, front
view 2

Figure 73: FM Technology: the first e-nose board

141

The processes of building the e-nose in pictures

(a) FM Technology: Build-
ing the e-nose, 1

(b) FMTechnology: Build-
ing the e-nose, 2

(c) FM Technology: Build-
ing the e-nose, 3

(a) FM Technology: Build-
ing the e-nose, 4

(b) FMTechnology: Build-
ing the e-nose, 5

(c) FM Technology: Build-
ing the e-nose, 6

(a) FM Technology: Build-
ing the e-nose, 7

(b) FMTechnology: Build-
ing the e-nose, 8

(c) FM Technology: Build-
ing the e-nose, 9

(a) FM Technology: Build-
ing the e-nose, 10

(b) FMTechnology: Build-
ing the e-nose, 11

(c) FM Technology: Build-
ing the e-nose, 12

142

(a) FM Technology: Build-
ing the e-nose, 13

(b) FMTechnology: Build-
ing the e-nose, 14

(c) FM Technology: Build-
ing the e-nose, 15

(a) FM Technology: Build-
ing the e-nose, 16

(b) FMTechnology: Build-
ing the e-nose, 17

(c) FM Technology: Build-
ing the e-nose, 18

Table 30: gas sensors used in the e-nose

Sensors High sensibility Small sensibility features
MQ 5 LPG, natural gas, alcohol, smoke Fast response, Stable and

town gas long life, simple drive circuit
MQ 6 LPG, iso butane, alcohol, smoke Fast response, Stable and

propane long life, Simple drive circuit
MQ 4 CH4, alcohol, smoke Fast response, Stable and

Natural gas alcohol, smoke long life, Simple drive circuit
MQ 135 NH3, NOx, alcohol, Wide detecting scope, Fast response,

Benzene, smoke,CO2 ,etc High sensitivity Stable, long life Simple drive circuit
MQ 8 Hydrogen (H2) alcohol, LPG,cooking fumes Stable and long life

MG 811 Good sensitivity and Low humidity, temperature dependency,
selectivity to CO2 Long stability, reproducibility

ii) Building the iGases, the Cloud

In iGases system, seen as an information system, the system alerts are im-
plemented with processing done by a FM. The alerts system is the first imple-
mentation of the FMTechnology in the cloud. This implementation involves an
architecture that includes a Finite Automaton (FA) and three Hypotheses Test-
ing (HT); HT1, HT2 and HT3. The finite automaton is responsible for identify
whether there are sensor values that exceed certain limits. The hypotheses test-
ing are responsible for identifying the states of the sensors and the board. The
HT1 is used to identify whether there are Sensors are Out of Calibration (SOC),
the HT2 is used to identify whether there are Damaged Sensors (DS) and HT3
is used to identify whether the Board is Damaged in (BD).

143

Figure 80: FM Technology: Architecture of the System implemented in the FM

So, if there are sensors out of calibration SOC = 3, if there are not SOC = 1.
For damaged sensors DS = 5, if there are not DS = 1. If the board is damaged
BD = 7, if not BD = 1. The output value of the FM (FM o) is given by FM o =
FA*SOC*DS*BD and runs every hour.

Table 31: FM Technology: Table of output values of the FM

Computational Output, Output,
Systems no problem value problem value

FA FA=1 FA=2
HT1 SOC=1 SOC=3
HT2 DS=1 DS=5
HT3 BD=1 BD=7

There is a script that executes the FM every hour. If FM o = 1 nothing is ex-
ecuted if FM o>1 are called two script functions for sending alerts; alertSensor-
Values() and alertDamage(). In the implementation of the FM were chosen
prime numbers to identify the different types of problems and the output value
of the FM is the multiplication of these numbers. The decomposition in prime
factors of the output value obtained allows, to the scripts alertSensorValues()
and alerDamage(), to know the problems identified by the FM.

144

Figure 81: FM Technology: alert sent about high values collected by the
sensors. script function alertSensorValues().

Figure 82: FM Technology: Alert sent about the state of the sensors and the
board. script function alertDamage().

145

(a) FM Technology: Alert send about high values of the sensor

The system administrator can interact with the system in two ways; locally
and through of a web application. Locally is on the device through of buttons
to connected, disconnected and restored the iGases system. In the application
web is through of an url.

In the application web, the system administrator can interact with the two
parties that make up the system; on the e-nose device and on the information
system. The actions on the device are done through the commands imple-
mented in a web interface. The action in the device are made through of the
iGases Device Commands. The device can be connected, disconnected or re-
started. The actions in the information system are made through of the iGases
Information System Commands. The information system can be connected,
disconnected or restarted.

Figure 84: FM Technology: Architecture System about the FM implementation

The iGases system have control priorities. The local commands are the
higher priority commands. Only if the e-nose is connected is possible to use
the device commands, and the information system commands. The device
commands and the information system commands are independent and are

146

connected by default.

iii) How working the iGases system

Table 32: FM Technology: Temporal diagram of the Spreadsheets on cloud

Temporal diagram 8 am ... 9 am ... 10 am ... 1 pm ... 2 pm ... 8 pm ... 9 pm ...
ISD collected data sends data to collected data sends data to collected data sends data to collected data sends data to collected data sends data to auto clean sleeping sleeping
Input the OSD the OSD the OSD the OSD the OSD the ISD

Spreadsheet sends data to
Day the AS

(figure 65)
OSD sleeping sleeping receives data sleeping receives data sleeping receives data sleeping receives data sleeping receives data auto clean sleeping sleeping

Output from OSD from OSD from OSD from OSD from OSD the OSD
Spreadsheet Eventually Eventually Eventually Eventually Eventually

Day sends alerts sends alerts sends alerts sends alerts sends alerts
(figure 66)

AS sleeping sleeping sleeping sleeping sleeping sleeping sleeping sleeping sleeping sleeping sleeping receives data sleeping sleeping
Archive from ISD

Spreadsheet
https://goo.gl/sX9lRE

The iGases system in an automated working day wakes up at 8 am and
closes at 9pm. Then goes into hibernation until 8am the next day. 8am to 8pm
the system collects data and sends alerts if necessary. 8pm to 9pm, in back-
office, the system performs a set of tasks of the end day work and prepares the
next day.

The data collection of 8am to 8pm, is done by the e-nose board collects,
the e-nose puts the data into the Input Spreadsheet Day. Every hour there is a
script in the Input Spreadsheet Day that copies the data to the Output Spread-
sheet Day. The FM is implemented in the Input Spreadsheet Day. From the
output Spreadsheet Day are eventually sent alerts to the users. In the system
there are two types of users the PRIME users who have access to Input and
Output Spreadsheets Day and to the Database and the others who have access
only to Output Spreadsheet Day.

8pm to 9pm the system copies the data from the Input Spreadsheet Day
to a file and deletes the data of the Input and Output Spreadsheets Day. The
data file is a spreadsheet and is on a folder in the Cloud. In this folder they are
stored spreadsheets named by month and year. In each spreadsheet the data
are stored by day, each day correspond to a sheet of the spreadsheet. In each
day the data are stored by the time stamp, timestamp example 27/07/2015
19:19:17.

The iGases is turned on in automatic mode when the e-nose board in the
manual mode is ON and in the web platform the e-nose and the information
system are ON. When the e-nose is turned on in manual mode and one of the
systems on the web platform is disconnected, the system is in configuration
mode. When the e-nose is off in manual mode, the system is off.

iv) Conclusion and Future work

As initially I said, this work the iGases is part of a personal project called
iOlphat that consists in create intelligent technology to smell. The iGases sys-
tem developed is not in the process of being placed on the market, for that it
needs to be more robust, smaller and more versatile. The next version of iG-
ases will be directed to have a prototype to place on the market. Thus, in the
next version I will improve and I will work on the following:

147

- Create in the web application a system configuration button and implement
it
- Make the e-nose board more robust in the electronic level
- Make a the e-nose to smaller size
- Make e-nose board more versatile in the sense that make it is easy to change
the gas sensors
- Put on the e-nose board a connector to enable connection to smartphones and
other mobile devices
- Create a smartphone application that takes advantage of sensors are in mo-
bile device.

Thus, I end the description of my job in my PhD instance in the Polytechnic
Institute of Guarda, Portugal. In this instance I developed the first version of
the system that I called iGases.

10.4 Terms and Abbreviations

BPNN - Back Propagation Neural Network
DB - Database
DBs - Databases
DS - Data Structure
DSs - Data Structures
CVN - Cycle Von Neumann
CVNs - Cycles Von Neumann
DTD - Document Type Definition
FA FM - Finite Automaton Formal Machine
FA FMs - Finite Automata Formal Machines
FCS - Formal Computational System
FCSs - Formal Computational Systems
FM - Formal Machine
FM’s DB - Formal Machine’s Database
FMs - Formal Machines
FOL - First Order Logic
HOL - High Order Logic
IoT - Internet of Things
ML - Machine Learning
MLs - Machines Learning
m2M - man-to-Machine
M2M - Machine-to-Machine
NNM - Neural Network Machine
NNMs - Neural Network Machines
PL - Propositional Logic
VNAlg - Von Neumann’s Algorithm
wff - well Formed Formula
wffs - well Formed Formulas

148

